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Abstract

By reducing the negative correlation between local prices and productivity shocks,
trade liberalization changes the volatility of returns. In this paper, we explore the
second moment effects of trade. Using forty years of agricultural micro-data from
India, we show that falling trade costs increased farmer’s revenue volatility, causing
farmers to shift production toward crops with less risky yields. We then character-
ize how volatility affects farmer’s crop choice using a portfolio choice model where
returns are determined in general equilibrium by a many-location, many-good Ri-
cardian trade model with flexible trade costs. Finally, we structurally estimate the
model—recovering farmers’ unobserved risk-return preferences from the gradient of
the mean-variance frontier at their observed crop choice—to quantify the second mo-
ment welfare effects of trade. While the expansion of the Indian highway network
would have increased the volatility of farmer’s real income had their crop choice re-
mained constant, by changing what they produced farmers were able to avoid this
increased volatility and amplify the gains from trade.
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1 Introduction
While trade liberalization increases average returns through specialization, it also af-

fects the volatility of returns by reducing the negative correlation between local prices and
productivity shocks. When production is risky, producers are risk averse, and insurance
markets are incomplete—as is the case for farmers in developing countries—the interac-
tion between trade and volatility may have important welfare implications. Yet we still
have a limited understanding of the empirical importance of the relationship between
trade and volatility. In particular, does volatility magnify or attenuate the gains from
trade and how do agents respond to changes in the risk they face arising from falling
trade costs?

In this paper, we empirically, analytically, and quantitatively explore the second
moment effects of trade. Using forty years of agricultural micro-data from India, we
show empirically that trade increased farmer’s revenue volatility by reducing the
responsiveness of local prices to local rainfall, causing farmers to shift production toward
crops less volatile yields. We then incorporate a portfolio allocation model—where
producers optimally allocate resources across risky production technologies—into a
many country, many good, general equilibrium Ricardian trade model. The model
yields analytical expressions for the equilibrium allocation of resources and generates
straightforward relationships between observed equilibrium outcomes and underlying
structural parameters, allowing us to quantify the second moment welfare effects of
trade. Structural estimates suggest that farmers are able to avoid an increase in volatility
from falling trade costs by reallocating their production toward less risky crops, thereby
amplifying the gains from trade compared to an endowment model of trade.

Rural India—home to roughly one-third of the world’s poor—is an environment where
producers face substantial risk. Even today, less than half of agricultural land is irrigated,
with realized yields driven by the timing and intensity of the monsoon and other more
localized rainfall variation. Access to agricultural insurance is very limited, forcing farm-
ers—who comprise more than three quarters of the economically active population—to
face the brunt of the volatility, see e.g. Mahul, Verma, and Clarke (2012). Furthermore,
many are concerned that the substantial fall in trade costs over the past forty years (due,
in part, to expansions of the Indian highway network and reductions in tariffs) has am-
plified the risk faced by farmers. As the The New York Times writes:

“When market reforms were introduced in 1991, the state scaled down sub-
sidies and import barriers fell, thrusting small farmers into an unforgiving
global market. Farmers took on new risks, switching to commercial crops and
expensive, genetically modified seeds... They found themselves locked in a
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whiteknuckle gamble, juggling everlarger loans at exorbitant interest rates, al-
ways hoping a bumper harvest would allow them to clear their debts, so they
could take out new ones. This pattern has left a trail of human wreckage.”
(“After Farmers Commit Suicide, Debts Fall on Families in India”, 2/22/2014).

These concerns, and the importance to policymakers of better understanding the link be-
tween trade and volatility, are encapsulated by the fact that the entire Doha round of
global trade negotiations collapsed in 2008 (and remains stalled today) precisely because
of India and China’s insistence on special safeguard mechanisms to protect their farmers
from excessive price volatility.

Using a dataset containing the annual price, yield, and area planted for each of 15
major crops across 308 districts over 40 years matched to imputed bilateral travel times
along the evolving national highway network, we confirm that reductions in trade costs
did affect volatility. In particular, we document three stylized facts. First, reductions in
trade costs due to the expansion of the highway network raised the volatility of nominal
income (but not the price index). Second, this increase in volatility occurred because re-
ductions in trade costs reduced the elasticity of local prices to local supply shocks. Third,
in response to this changing risk profile, farmers changed what they produced, reallocat-
ing land toward crops with higher average yields (as traditional trade models predict)
and to crops with less volatile yields (to reduce the volatility the face), although the re-
allocation toward less volatile crops was less pronounced in districts where farmers had
better access to banks.

We next develop a quantitative general equilibrium model of trade and volatility. To
do so, we first construct a many country Ricardian trade model with a finite number of
homogenous goods and arbitrary (symmetric) bilateral trade costs. To circumvent the
familiar difficulties arising from corner solutions for prices nd patterns of specialization,
we assume that there are many (infinitesimal) traders who randomly match to farmers,
each of whom has a distinct iceberg trade cost drawn from a Pareto distribution. We
show that—consistent with mechanism highlighted by the second stylized fact—this as-
sumption allows equilibrium prices to be written as a log-linear function of yields in all
locations, with the constant elasticities determined by the matrix of shape parameters
governing the distribution of bilateral trade costs. Furthermore, in the absence of volatil-
ity, we derive an analytical expression for the equilibrium pattern of specialization across
countries that depends solely on exogenous model fundamentals (i.e. the distribution of
trade costs and productivities).

To incorporate volatility in the model, we assume that producers allocate their factor
of production across crops prior to the realization of productivity shocks. By combin-
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ing our Ricardian trade model with tools from the portfolio allocation literature (see e.g.
Campbell and Viceira (2002)), we are able to derive tractable expressions for the equi-
librium pattern of specialization given any set of average crop productivities and any
variance-covariance matrix governing the volatility of productivities across crops. The
model remains sufficiently tractable to yield comparative statics consistent with the three
stylized facts detailed above and to analytically characterize the welfare effects of trade.

Finally, we estimate the model and empirically quantify the second moment effects of
trade. The tractability of the model allows us to recover key model parameters from the
data in a transparent manner. First, the model implies that the unobserved trade costs
determine the elasticity of local prices to yield shocks in all locations. Conveniently, this
relationship can be reduced to a linear equation and so we can recover unobserved trade
costs via ordinary least squares. In particular, we find that expansion of the highway
network not only decreased the responsiveness of local prices to local yields (as already
shown in the second stylized fact) but also increased the responsiveness of local prices to
yields elsewhere, with the bilateral trade costs between i and j recoverable from the elas-
ticity of i’s price to j’s yield shocks. Second, farmers’ unobserved risk-return preferences
shape the gradient of the mean-variance frontier at the farmers’ observed crop choice. As
above, we show that estimates of risk-return tradeoffs can be inferred from these observed
choices via ordinary least squares. Reassuringly, the resulting estimates are strongly cor-
related with spatial and temporal variation in access to rural banks (which, by providing
access to a risk mitigating technology, should make farmers act less risk averse).

We use these parameter estimates to quantify the welfare effects of the expansion
of the Indian highway network. We find that had farmers’ crop allocation remain un-
changed, the increased volatility caused by the expansion of the highway network would
have offset approximately 15 percent of the first moment gains from trade. However, by
changing what they produce, farmers are able to fully hedge against the increased risk,
increasing the total gains from trade by appropriately 40 percent over the baseline where
crop allocations are held constant. However, the gains from trade varied substantially
across India, with districts that experienced above median improvements in market ac-
cess seeing welfare increases almost three times as large as those below the median.

This paper relates to a number of strands of literature in both international trade and
economic development. The theoretical literature on trade and volatility goes back many
years (see Helpman and Razin (1978) and references cited therein). In a seminal paper,
Newbery and Stiglitz (1984) develop a stylized model showing that trade may actually be
welfare decreasing in the absence of insurance (although to obtain this result, in contrast
to our model they require that farmers and consumers differ in their preferences and do
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not consume what they produce). Eaton and Grossman (1985) and Dixit (1987, 1989a,b)
extend the theoretical analysis of Newbery and Stiglitz (1984) to incorporate imperfect
insurance and incomplete markets. Our paper incorporates the intuition developed in
these seminal works into a quantitative trade model that is sufficiently flexible (e.g. by
incorporating many goods with arbitrary variances and covariances of returns and flex-
ible bilateral trade costs) to be taken to the data. More recently, several papers have ex-
plored the links between macro-economic volatility and trade, see e.g. Easterly, Islam,
and Stiglitz (2001); di Giovanni and Levchenko (2009); Karabay and McLaren (2010); Lee
(2013). Our paper, in contrast, focuses on the link between micro-economic volatility—i.e.
good-location specific productivity shocks—and trade.

Most closely related to our paper are the works of Burgess and Donaldson (2010, 2012)
and Caselli, Koren, Lisicky, and Tenreyro (2014). Burgess and Donaldson (2010, 2012) use
an Eaton and Kortum (2002) framework to motivate an empirical strategy that studies the
relationship between famines and railroads in colonial India.1 Caselli, Koren, Lisicky, and
Tenreyro (2014) also use an Eaton and Kortum (2002) framework to quantify the relative
importance of sectoral and cross-country specialization in a world of globally sourced
intermediate goods. We see our paper as having two distinct contributions relative to
these papers. First, we depart from the Eaton and Kortum (2002) framework and develop
an alternative quantitative general equilibrium framework that allows us to analyze the
pattern of trade for a finite number of homogeneous goods. Second, by embedding a port-
folio allocation decision where real returns are determined in a general equilibrium trade
setting, we theoretically characterize the endogenous response of agents to trade-induced
changes in their risk profile; and empirically validate that farmers are indeed responding
as predicted and that these responses substantially amplify the gains from trade.

The paper is also related to a growing literature applying quantitative trade models to
the study of agriculture. Sotelo (2013) and Costinot, Donaldson, and Smith (2014) exam-
ine how trade affects crop choice using an Eaton and Kortum (2002) framework, where
locations grow multiple crops due to the heterogeneity in the productivity of different
plots (in contrast to wanting to diversify against risk, as in our model). As in Costinot
and Donaldson (2011), we use farmers’ observed crop allocation to identify important
unobservables in the model (farmers’ risk aversion in our context, prices in their context).

1Despite focusing on intra-national trade in the same country, India, there are also important differ-
ences between modern India and the colonial setting studied by Burgess and Donaldson (2010, 2012), most
notably that trade costs seem if anything to have risen between the tail end of the Colonial period and the
start of our sample, 1970. As evidence for this claim, we find that local rainfall shocks affect local prices
at the start of our sample period (consistent with substantial barriers to trade across locations), while
Donaldson (2008) finds they did not post railway construction in his Colonial India sample (consistent
with low barriers to trade across locations).
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As in Allen (2014), we relax the traditional no-arbitrage condition, although rather than
allowing information frictions, we incorporate heterogeneous trade costs.

Finally, we also relate to two strands of the economic development literature. First,
we follow a long tradition of modeling agricultural decisions as portfolio allocation prob-
lems, see e.g. Fafchamps (1992); Rosenzweig and Binswanger (1993); Kurosaki and Fafchamps
(2002). Second, there is also a substantial development literature examining the effect that
access to formal credit has on farmers, see e.g. Burgess and Pande (2005) and Jayachan-
dran (2006). Consistent with both strands of literature, we find that better access to rural
banks is associated with farmers allocating their resources toward more risky portfolios.

The remainder of the paper is organized as follows. In Section 2, we describe the em-
pirical context and the data we have assembled. Section 3 presents three new stylized
facts relating trade to volatility and the resulting responses by farmers. In section 4, we
develop the model, show that it is consistent with the reduced form results, and analyti-
cally characterize the second moment welfare effects of trade. In Section 5, we structurally
estimate the model and quantify these welfare effects. Section 6 concludes.

2 Empirical context and Data
2.1 Rural India over the past forty years

This paper focuses on rural India over a forty year period spanning 1970 to 2010.
Over this period, there were three major developments that had substantial impacts on
the welfare of rural Indians. The first set of changes were to the technology of agricultural
production. (Note that the majority of rural households derive income from agriculture;
85 percent of the rural workforce was in agriculture in the 1971 Census and 72 percent in
the 2011 Census.) Increased use of irrigation, with coverage rising from 23 to 49 percent
of arable land, reduced the variance of yields by reducing the reliance on rainfall.2 The
use of high-yield varieties (HYV) increased from 9 to 32 percent of arable land—a process
dubbed “the green revolution”—raising both mean yields and altering the variance of
yields (with the variance falling due to greater resistance to pests and drought, or rising
due to greater susceptibility to weather deviations—see Munshi (2004) for further discus-
sion). The second major change was the policy-driven expansion of formal banking into
often unprofitable rural areas (see Burgess and Pande (2005) and Fulford (2013)).3 The

2These figures (and the HYV ones below) come from the 1970-2009 change in area under irrigation
(under HYV crops) among districts in the ICRISAT VDSA data introduced in the next section.

3As reported in Basu (2006), the share of rural household debt from banks rose from 2.4 percent to 29
percent between 1971 and 1991. By 2003, 44 percent of large farmers (more than 4 acres, accounting for 55
percent of India’s agricultural land), 31 percent of small farmers (1-4 acres, 40 percent of land) and 13 percent
of marginal farmers (less than 1 acre, 15 percent of land) had an outstanding loan from a formal bank.
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availability of credit helped farmers smooth income shocks and so provided a form of
insurance.4

The third set of changes relate to reductions in inter- and particularly intra-national
trade costs. The reductions were driven by two types of national policy change. The first,
that we will exploit extensively in the empirical analysis, were major expansions of the In-
dian inter-state highway system including the construction of the ‘Golden Quadrilateral’
between Mumbai, Chennai, Kolkata and Delhi and the ‘North South and East West Cor-
ridors’.5 The result was that over the sample period, India moved from a country where
most freight was shipped by rail to one dominated by roads—in 1970 less than a third
of total freight was trucked on roads, four decades later road transport accounted for 64
percent of total freight.6 The second policy change was the broad economic liberalization
program started in 1991 that reduced agricultural tariffs with the outside world and be-
gan to dismantle the many restrictions to inter-state and inter-district trade within India
as documented in Atkin (2013). This paper focuses on the inter-state and inter-district
trade that constituted the overwhelming majority of India’s agricultural trade over our
sample period, in effect treating India as a closed economy.7

2.2 Data

We have assembled a detailed micro-dataset on agricultural production and trade
costs covering the entirety of the forty year period discussed above. These datasets come
from the following sources:

Crop Choices: Data on cropping patterns, crop prices8 and crop yields come from

4India also has a subsidized crop insurance scheme. However, even today coverage is limited, with
only 6 percent of farmers voluntarily purchasing cover (a further 11 percent of farmers have agricultural
loans with mandatory insurance requirements, see Mahul, Verma, and Clarke (2012)).

5See Datta (2012); Ghani, Goswami, and Kerr (2014); Asturias, García-Santana, and Ramos (2014) for
estimates of the effect of the “Golden Quadrilateral” on firm inventories, manufacturing activity, and firm
competition, respectively.

6These figures are Indian government estimates from the 10th, 11th and 12th five-year-plans.
7Focusing on the three most traded products—rice, sugar and wheat—external trade (international

exports plus imports) equaled 0.5, 0.3 and 11 percent of production by weight in the 1970s, and 2.8, 0.7
and 3 percent in the 2000s, respectively. Unfortunately, India only records internal trade by rail, river and
air (recall road accounted for between one and two thirds of freight); and then only for trade between 40
or so large trading blocks in India. Using the rail, river and air data that likely severely underestimate
inter-district trade, internal trade equaled 3.8, 1.3 and 21.4 percent of production by weight in the 1970s,
and 10.2, 0.9 and 16.3 percent in the 2000s.

8These are producer prices—i.e. the farm gate price a farmer receives. India has a system of minimum
support prices (MSPs) which, if binding, affect the farm gate price and potentially attenuate any price
response our theory will predict. Appendix figures 5-8 plot the distribution of log prices alongside the
MSPs for applicable crops for 1970, 1980, 1990 and 2000. There is little evidence of price heaping just at or
above the MSPs, as well as substantial mass below the MSPs, suggesting any attenuation from excluding
MSPs from our model is limited.
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the ICRISAT Village Dynamics in South Asia Macro-Meso Database (henceforth VDSA)
which is a compilation of various official government datasources. The database covers
15 major crops across 308 districts from the 1966-67 crop year all the way through to the
2009-10 crop year.9 The dataset uses 1966 district boundaries to ensure consistency over
time and covers districts in 19 States (containing 95 percent of India’s population in the
2001 Census).

Trade Costs: We obtained the government-produced Road Map of India from the years
1962, 1969, 1977, 1988, 1996, 2004 and 2011. The maps were digitized, geo-coded, and the
location of highways identified using an algorithm based on the color of digitized pixels.
Figure 1 depicts the evolution of the Indian highway system across these years; as is evi-
dent, there was a substantial expansion of the network over the forty year period. Using
these maps, we construct a “speed image” of India, assigning a speed of 60 miles per
hour on highways and 20 miles per hour elsewhere and use the Fast Marching Method
(see Sethian (1999)) to calculate travel times between any two points in India.10

Rural Bank Data: Data on rural bank access, an important insurance instrument in
India, come from RBI bank openings by district assembled by Fulford (2013).

Consumer Preferences: Consumption data come from the National Sample Survey
(NSS) Schedule 1.0 Surveys produced by the Central Statistical Organization.

Rainfall Data: Gridded weather data come from Willmott and Matsuura (2012) and
were matched to each district by taking the inverse distance weighted average of all the
grid points within the Indian subcontinent.

3 Trade and Volatility: Stylized Facts
In this section, we present three sets of stylized facts. The first fact documents an ex-

plicit link between trade costs and farmer income: reductions in trade costs induced by
the expansion of the Indian highway system raised the volatility of nominal income but
not the price index. We then explore the mechanisms that will deliver these predictions
in our theoretical model. The second fact provides evidence for the central link between
trade costs and volatility in our model: reductions in trade costs reduced the elasticity of
local prices to local quantities thereby raising revenue volatility for farmers. The third fact

9The 15 crops are barley, chickpea, cotton, finger millet, groundnut, linseed, maize, pearl millet, pigeon
pea, rice, rape and mustard seed, sesame, sorghum, sugarcane, and wheat. These 15 crops accounted for
an average of 73 percent of total cropped area across districts and years. The data coverage across crops
with districts is good: in the median district-decade pair, we observe at least one year of production data
for 13 of the 15 crops and at least one year of price data for 11 of the 15 crops. The data are at the annual
level and combine both the rabi and kharif cropping seasons.

10See Allen and Arkolakis (2014) for a previous application of the Fast Marching Method to estimate
trade costs. The results that follow are similar for alternative assumptions in the construction of the speed
images; see below.
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provides evidence that farmers respond by making risk-reducing crop choices consistent
with a portfolio choice model: reductions in trade costs led farmers to move into crops
with higher means (a first-moment effect) and less risky yields (a second-moment effect),
with the latter effect attenuated by greater access to rural banks.

3.1 Income volatility and trade costs

Stylized Fact 1A: The volatility of nominal income increased over time

As discussed in Section 2.1, the period between 1970 and 2010 saw large reductions in
trade costs within India. Did this period of reductions coincide with a rise in the variance
of income? To explore this question, we calculate for each district and decade the mean
and variance of nominal (gross) income using annual data on agricultural revenues per
hectare.11 Of course, these are gross of crop costs which may be changing over time—an
issue we confront head on in the structural estimates. While these revenues are deflated
by the all-Indian CPI, a national price index cannot capture local variation in agricultural
prices that play an important role in determining the gains from trade on the consump-
tion side. Accordingly, we also calculate an explicit CES price index for the 15 crops in
our sample, with real income being the ratio of nominal income and this price index.12

Figure 2 plots the log changes in the decade-level mean and variance of each of these
three variables compared to the base decade, the 1970s (averaging over districts).

Consistent with reductions in transport costs generating standard first-moment gains
from trade, decade-district means of real income rose over time due to increases in nom-
inal incomes and reductions in the price index. However, there were second moment
effects as well. Consistent with the literature (e.g. Newbery and Stiglitz (1984)), nominal
income became more volatile (since producers faced more revenue risk) and the price in-
dex stabilized (since consumers faced less consumption risk). In net, real income became
more volatile.

Stylized Fact 1B: The volatility of nominal income increases with market access

Given the myriad of changes over this period, the link between the reduction in trade
barriers and the real income trends documented above is, at best, suggestive. We now es-

11This paper focuses on the effects of yield volatility across years. Within a year, the timing of the harvest
and farm- or micro-region-specific crop failures present additional sources of volatility. Data limitations—
the Indian government produces statistics only at the district-year level—preclude us from examining
these additional sources of volatility empirically. (Idiosyncratic risk may also be less important if farmers
engage in risk sharing arrangements with other farmers in the same location as in Townsend (1994)).

12We obtain the CES parameters from a regression of log expenditure shares on log prices and district
fixed effects using the 1987/88 NSS household surveys and assume preferences are identical across
locations and time periods. As these parameter estimates are used primarily in the structural estimates, we
describe the exact specification in Section 5.1 and show the estimated parameters in Table 4.
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tablish a more direct link by calculating district-decade level measures of trade openness
from the digitized road maps described in Section 2.2. Recall the digitized maps allow us
estimate the bilateral travel time between any two points in India in any year. Similarly
to Donaldson and Hornbeck (2013), we construct a market access measure for district i by
taking a weighted sum of the (inverse) bilateral travel times to each of the J other districts
as follows:

MAit =
J

∑
j
(

1

travel timeφ
ijt

)Yjt

where Yjt is the income of district j in period t (proxied by the total agricultural rev-
enues in our dataset) and φ > 0 determines how quickly market access declines with
increases in travel times. Higher values of market access correspond to greater trade
openness as districts are able to trade more cheaply with districts where demand is high.
To parametrize φ we draw on the gravity literature that regresses log trade flows on log
distance to estimate how quickly trade flows decline with distance. Following the meta-
analyses of Disdier and Head (2008) and Head and Mayer (2014), we set φ = 1.5—the
average gravity coefficient for developing country samples—in our preferred market ac-
cess specification.13 We also consider φ = 1, a natural benchmark and close to the average
of 1.1 found for the all country sample, as well as alternate estimates of the off-highway
speed of travel (1/4 of that on the highway rather than 1/3) for robustness.

With these measures in hand, we regress the log of either the mean or the variance of
one of the three income measures (nominal income, the price index, and real income) at
the district-decade level on one of the three variants of the market access measure. These
result are shown in the top panel of Table 1, with each cell the coefficient from a separate
regression. All regressions include district and decade fixed effects (and hence identify off
differences within districts over time controlling for trends using time changes in other
districts).

The results are broadly consistent with the crude inference drawn from the aggregate
trends above. We find that the mean of real income rises significantly with all three mea-
sures of market access (Column 5). This comes about through a rise in nominal income
(Column 1) that far exceeds the rise in the price index (Column 3). Turning to second-
moment effects, nominal income becomes significantly more volatile with market access
(Column 2). In terms of magnitudes, a rise in market access equal to the median change in

13Head and Mayer (2014) perform a meta-analysis of gravity estimates and report an average coefficient
on log distance of -1.1 across 159 papers and 2,508 regressions. Head and Mayer (2014) build off an earlier
meta-analysis by Disdier and Head (2008) which reports that estimates based on developing country
samples are lower by an average of 0.44 (column 4 of Table 2 in Disdier and Head (2008)) consistent with
distance being more costly in developing countries as found in Atkin and Donaldson (2015).

9



district-level market access between 1970 and 2009 raises the mean of nominal income by
37 percent and the variance of nominal income by 51 percent. In contrast to the increase
in the volatility of nominal income, the volatility of the price index is unchanged (Column
4), with real income volatility rising on net (Column 6).

In order for these coefficients to be interpreted as causal, we require that road building
does not respond to changes in the means and variances of incomes after controlling for
location and time fixed effects. Endogeneity concerns are mitigated by the fact that, as
we detail in Section 2.1, much the highway construction was part of centrally-planned
national programs designed to connect larger regions. However, worries remain, which
in part motivates out structural estimates which allow us to isolate the impacts of trade
cost reductions on welfare.

3.2 The responsiveness of prices to quantities and trade costs

Stylized Fact 2: The elasticity of price to quantities declines with market access

We now turn to providing direct evidence for the increased responsiveness of local
prices to local supply shocks that links trade costs reductions to the increased nominal
income volatility we found in Stylized Fact 1B. To obtain a scale-invariant measure of
responsiveness, we calculate the elasticity of local prices to local quantities as follows:

ln pigtd = βigd ln qigt + δitd + δgtd + δigd + νigdt, (1)

where ln pigtd is the observed local price in district i of good g in year t in decade d, ln qigt

is the observed production, and βigd is the elasticity. To control for confounds, we include
three sets of fixed effects: a district-year fixed effect that controls for the aggregate income
of the district in that year; a crop-year fixed effect that controls for changes in the world
price of the good; and a district-crop-decade fixed effect that controls for slow-moving
changes in crop-specific costs, in the area allocated to the crop, or in crop-specific costs.
Identification of βigd can be achieved via ordinary least squares as long as the variation in
the production (determined by yields and pre-yield-realization planting choices) of good
g in district i in time t is uncorrelated with the residual. Since production may be driven
by demand shocks as well as supply shocks , we instrument for quantities using local
variation in rainfall.

With these measures in hand, we regress the estimated elasticity of price to production
(at the crop-district-decade level) on market access (at the district-decade level, the level
we cluster the standard errors at). The regression results are shown in Table 2. The first
column also includes crop-district fixed effects while subsequent columns additionally
include crop-decade fixed effects (and hence identify off differences within districts over
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time controlling for crop-specific trends using time changes in other districts). Column
2 presents our main specification, column 3 uses the uninstrumented elasticity estimate,
and columns 4 and 5 use the two alternative market access measures.

Across all five columns, the elasticity of local prices to local production increased
significantly—from negative values towards zero—with improvements in market access.
In terms of magnitudes, using our preferred specification in column 2, a rise in market
access equal to the median 1970-2009 change in district-level market access raises the
elasticity by 0.022 (from a mean in the 1970s of -0.043). Once again, in order for the co-
efficients on market access to be interpreted as causal we require that road building does
not respond to changes in the covariances of production and prices after controlling for
location and time effects. This assumption seems more plausible in this case than it was
for the mean of nominal incomes, but caution is still warranted. In summary, we find
a weakening of the inverse relationship between local prices and productivities as trade
costs fell, the key mechanism in our model through which trade costs affect volatility.

3.3 Crop choices and trade costs

Stylized Fact 3A: Farmer cropping decisions reduce the volatility of nominal income

We expect farmers to respond to the increased elasticity of price to quantities, and the
corresponding increase in revenue volatility, by altering their cropping choices to reduce
the risk they face. Suggestive evidence for this response comes from repeating the exer-
cise in Stylized fact 1B but calculating nominal revenues using the 1970s crop allocations
rather than the actual crop allocations. The bottom panel of Table 1 reports these results. If
farmers mitigate the nominal income volatility they face through their planting decisions,
we would expect volatility to be higher under the initial (i.e. 1970s) crop allocations than
under the actual crop allocations. Comparing Columns 2 and 8 provides support for this
hypothesis, with nominal income volatility increasing more under 1970s allocations for
two of the market access measures and almost unchanged for the third. Conversely, the
mean of nominal income rises less under 1970s allocations. We observe similar patterns
for real income. These increases in volatility and reductions in the mean are consistent
with farmers making crop choices to be on the mean-variance frontier of real returns.

Stylized Fact 3B: Crop choice responds to the mean and variance of the yield

We now explore the planting decisions themselves to provide more direct evidence
for the portfolio choice model underlying the responses above. Different crops have very
different mean yields, and there is also substantial variation within crops across regions
of India and across time. The variance of yields also varies dramatically across crops, dis-
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tricts and time. Equally important are the covariances of yields across crops which allow
farmers to hedge production risk in one crop by planting another crop that can survive
under the agroclimatic or pest conditions which cause the first crop to fail. Appendix
Figures 9, 10, and 11 highlight this heterogeneity in means, variances, covariances, and
crop choice across decades and districts.

Farmers respond to this heterogeneity in the ways modern portfolio theory would
predict. Column 1 of Table 3 regresses crop choice (θigd, the decade-d-average fraction of
total area planted with good g in district i) on the log mean yield, log µ

y
igd, and the log

variance of yield, log vy
igd, for that district-crop-decade:14

θigd = β1 log µ
y
igd + β2 log vy

igd + γgd + γid + γig + εigd

This specification can be seen as reduced form—i.e. a regression of an endogenous vari-
able, crop choice, on exogenous ones, the mean and variance of crop yields. (Our theoret-
ical framework in Section 4 will provide such a mapping from the mean and variance of
yields to crop choice). We saturate the model by including crop-decade, district-decade,
and district-crop fixed effects. These control for both national crop-specific trends and
persistent differences in local agroclimatic conditions that could potentially be related to
local agricultural technologies and hence bias the β coefficients. To further allay worries
about endogenous movements in yields, Appendix Table 9 reports similar results when
we instrument for the mean and variance of yields with the mean and variance of yields
as predicted by rainfall variation and district-crop fixed effects (allowing coefficients on
rainfall to vary by crop, state and decade).

Consistent with farmers being risk averse, farmers allocated a significantly larger frac-
tion of their farmland to crops that had high mean yields and, conditional on the mean
yield, a significantly smaller amount to crops with a high variance of yields.15

Stylized Fact 3C: Farmers move into less-risky portfolios when market access increases

We now show that the farmers’ crop choices introduced in the previous steps re-
sponded to the reductions in trade costs (and corresponding increases in market access)
introduced in Stylized Fact 1B. To do so, we interact both the log mean yield and the log
variance of yield with our market access measures (the main effect of market access is
swept out by the district-decade fixed effects):

θigd = β1 log µ
y
igd + β2 log vy

igd + β3 log µ
y
igd×MAid + β4 log vy

igd×MAid +γgd +γid +γig + εigd

14As crop choices are not independent, standard errors are clustered at the district-decade level.
15In terms of magnitudes, a 10 percent increase in the mean yield raises the fraction of land planted

with a crop by 0.0004, while a 10 percent increase in the variance of the yield reduces the fraction of land
planted by 0.0001.
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The regression coefficients are shown in column 2 of Table 3. We find a significant pos-
itive β3 coefficient and a significant negative β4 coefficient. Reductions in trade costs, and
hence increased market access, led farmers to further increase the share of land allocated
to high yield crops and further reduce the share allocated to high variance crops. In terms
of magnitudes, a rise in market access equal to the median 1970-2009 change in district-
level market access approximately doubles the responsiveness to changes in the mean
and variance of yields. Similar results obtain for the two other market access measures in
columns 4 and 6, and when we instrument for the yield terms and their interactions with
predicted yields using rainfall and interactions in Appendix Table 9.

These findings are consistent with farmers responding to the reduced responsiveness
of price to quantities highlighted in Stylized Fact 2—and the resulting reduction in the
insurance provided by price movements—by moving into less risky crop allocations (a
second-moment effect). The increased loading on the mean yield is consistent with farm-
ers increased specialization that trade allows (a first-moment effect—essentially farmers
can now allocate more land to the most productive crops).

Stylized Fact 3D: Bank access attenuates the movement into less risky portfolios

Finally, we take the previous specification and include additional interactions with the
number of banks per capita in that district. As discussed in Section 2.1, the presence of
banks provides a form of insurance as farmers can take out loans in bad times and repay
them in good times. These triple interactions are shown in columns 3, 5 and 7 of Table 3.
The triple interaction of the log variance of yields, banks and market access is positive and
significantly different from zero using all three market access measures. Consistent with
farmers being willing to bear more risk if insured, the presence of more insurance options
attenuated the move into less risky crops that resulted from reductions in trade costs.16

4 Modeling trade and volatility
In this section, we develop a quantitative general equilibrium model of trade and

volatility. To do so, we first develop a many location Ricardian trade model with a fi-
nite number of homogenous goods and arbitrary (symmetric) bilateral trade costs. We
circumvent difficulties due to corner solutions by assuming trade costs are heterogenous
which yields tractable expressions for equilibrium prices and patterns of specialization
across locations. Importantly for the task at hand, this framework allows us to incorpo-
rate volatility by applying tools from the portfolio allocation literature. We show that the

16As shown in Appendix Table 9, the instrumentation strategy used for facts 3B and 3C does not work
in this case as the first stage is too weak when we create 8 instruments for the 8 exogenous variables using
predicted yields and interactions.
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entire model remains sufficiently tractable to yield both qualitative predictions consistent
with the stylized facts above as well as structural estimating equations that will allow us
to quantify how volatility affects the gains from trade in Section 5.

4.1 Model setup

Geography

The world is composed of a large number of villages (indexed by i ∈ {1, ..., N}). All
pairs of villages are separated by trade costs. Each village i ∈ {1, ..., N} is inhabited by a
measure Li of identical farmers, who produce and consume goods in village i.

Production

There are a finite number of G homogenous goods (“crops”) that can be produced in
each village i. Land is the only factor of production. Each farmer in each village is en-
dowed with a unit of land and chooses how to allocate her land across the production
of each of the G goods.17 Let θ

f
ig denote the fraction of land farmer f living in location i

allocates to good g, where the farmer’s land constraint is ∑G
g=1 θ

f
ig = 1. In what follows,

we refer to
{

θ
f
ig

}
g

as farmer f ’s crop choice.

Production is risky. In particular, let the (exogenous) productivity of a unit of labor
in village i for good g be Aig (s), where s ∈ S is the state of the world. We abstract from
idiosyncratic risk and assume that all farmers within a given village in a particular state
of the world face the same yields for all goods.18 Given her crop choice, the nominal
production income farmer f receives in state s ∈ S is:

Y f
i (s) =

G

∑
g=1

θ
f
ig Aig (s) pig (s) , (2)

where pig (s) be the price of good g in location i in state s (which will be determined in
equilibrium below).

Preferences

Farmer f in location i receives utility U f
i (s) in state s where the utility function dis-

plays constant relative risk aversion governed by parameter ρi > 0 over a constant elas-

17We abstract from the dynamic aspect of crop choice due to, for example, switching costs as in Scott
et al. (2013). In the quantitative analysis, we examine the change in crop allocations across decades rather
than years, mitigating this concern.

18An alternative interpretation that is mathematically equivalent is to assume that farmers face idiosyn-
cratic risk but engage in a perfect risk sharing arrangement with other farmers in the same location as in
Townsend (1994).
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ticity of substitution (CES) aggregate of goods:

U f
i (s) ≡

1
1− ρi

(
Z f

i (s)
)1−ρi

, (3)

where Z f
i (s) ≡

(
∑G

g=1 α
1
σ
g c f

ig (s)
σ−1

σ

) σ
σ−1

is a CES nest across goods, c f
ig (s) denotes the

quantity consumed of good g in state s and αg > 0, ∑G
g=1 αg = 1 is a demand shifter for

good g.
Consistent with Mukesh Eswaran (1990), we interpret the risk aversion parameter ρi

as the “effective risk aversion” which combines both innate risk preferences of the farmer
and any access the farmer has to ex-post risk mitigating technologies (savings, borrowing,
insurance, etc.).19

Trade

As in many trade models, we assume that equilibrium prices are consistent with a
large number of traders who face iceberg trade costs and engage in price arbitrage across
locations. Rather than assuming that all traders face the same costs, however, we in-
stead assume that traders are heterogeneous in their trading technology and capacity
constrained. As a result, the standard no-arbitrage equation—that the ratio of any two
prices is bounded above by the iceberg trade cost–no longer holds as many traders of
various efficiencies engage in price arbitrage. Instead, an alternative no-arbitrage equa-
tion holds, equation (8) below, which has a convenient log-linear form and the intuitive
property that more goods flow toward destinations with higher relative prices. We now
describe the trading process that micro-founds this key arbitrage equation. We note that
alternative micro-foundations, or simply asserting the arbitrage equation, would allow us
to generate equilibrium patterns of specialization and incorporate volatility in a tractable
manner. For example, in Appendix A.2 we show that the arbitrage equation can also arise
from a setup where iceberg trade costs are increasing and convex in the quantity shipped
between two locations

We assume the following trading process. Every farmer wishing to sell a good is ran-
domly matched to a “selling” trader and every farmer wishing to buy a good is randomly
matched to a “buying” trader. Consider first the case of a farmer wishing to sell some
quantity of good g. The “selling” trader she is matched to pays the farmer the local mar-
ket price pig (s) and then decides whether to sell the good locally or export it. If the trader
decides to sell the good locally, he sells it for pig (s), making zero profit. If the trader de-

19In Appendix A.1, we provide a micro-foundation for this interpretation where farmers can purchase
insurance from local perfectly competitive money-lenders.
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cides to export the good, he sells it to a centralized shipper for the maximum price net of
the trade costs across all destinations to which the trader could have sold. The process
works in reverse for a farmer wishing to buy some quantity of good g: she buys for the
local price pig (s) from a “buying” trader prior to which the trader decides whether to im-
port the good or source it locally. If the trader decides to source it locally, he pays pig (s),
earning zero profit. If he decides to import the good, the trader buys the good from the
centralized shipper for the minimum price net of the trade costs across all origins from
which the trader could have bought.

We assume the probability that a randomly matched trader is able to buy a unit of
good from i ∈ {0, ..., N} and sell it to j ∈ {0, ..., N} (or vice versa) with a bilateral ad
valorem trade cost less than τ̄ is Pareto distributed with shape parameter εij ∈ (0, ∞):

Pr
{

τijg ≤ τ̄
}
= 1−

(
bg

τ̄

)εij

.

The greater the value of the shape parameter εij, the lower the bilateral trade costs (in
particular, as εij → 0 trade becomes infinitely costly and as εij → ∞ trade becomes cost-
less). We assume the shape parameter is bilaterally symmetric, i.e. εij = ε ji. The scale
parameter—bg = ϕg (s) for “selling” traders and bg = 1/ϕg (s) for “buying” traders—
determines whether it is relatively more costly to trade when exporting or importing.
The good- and state-specific (endogenous) scalar ϕg (s) captures the equilibrium “market
tightness” and ensures markets clear. Intuitively, if there are more selling traders attempt-
ing to export a good than buying traders attempting to import, a ϕg (s) > 1 acts as a tax
on selling traders and a subsidy on buying traders. This induces more buying traders to
import, while causing marginal selling traders to prefer to sell locally, thereby clearing
the market. We assume that traders’ bilateral trade costs are identical across goods and
independently distributed across destinations (e.g. a trader having a low trade cost to
one destination does not change the probability he will have a low trade cost to another
destination). Finally, because traders earn arbitrage profits in this setup, for simplicity we
assume that all trading profits are redistributed back to farmers proportionally to their
production income, with the proportion denoted by φ (s).

There are a several things to note about this setup. First, while we require that farmers
both buy and sells goods through traders, because these transactions occur at the local
market price, a farmer happy to do so.20 Second (and relatedly), while we require that

20This mechanism through which farmers must sell all their output via traders mimics agricultural mar-
keting boards that are present in many developing countries, including India. The Agricultural Produce
Marketing Committee Act mandates that Indian farmers must sell exclusively through government-
authorized traders. Because farmers cannot directly trade with other districts (and trader income is
redistributed proportionally to total income), farmer income depends only on local equilibrium prices,
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traders sell their goods to a centralized shipper rather than transact directly with other
locations, because these transactions occur at the best price a trader could have received,
a trader is happy to do so. (The centralized shipper is also happy with this price, as it
maximizes its own surplus from the transaction.) The centralized shipper act as a clear-
ing house for all imports and exports of a good, allowing us to rely on standard market
clearing conditions to solve for equilibrium market tightness. This assumption, however,
does come at a cost: as in a standard Ricardian trade model with more than two locations,
only total net exports for each location-good pair are pinned down in equilibrium with
bilateral trade flows indeterminate.

4.2 Trade and equilibrium prices

We first solve for equilibrium prices in a given state of the world and a given crop
choice, i.e. holding supply constant. The CES preferences imply that in equilibrium, the
total expenditure on good g in location i at price pig (s) will be:

pig (s)Cig (s) =
αg
(

pig (s)
)1−σ

∑h αh (pih (s))
1−σ

Yi (s) (1 + φ (s)) , (4)

where Cig (s) = Lic
f
ig (s) is the total quantity of g consumed in a location i and Yi (s) =

LiY
f

i (s) (1 + φ (s)) is the total income in location i. On the production side, Qig (s) =

Liθig Aig (s) is the total quantity produced of good g in village i, where we omit the “ f ”
superscript for the village level land allocation; since faremrs are homogeneous, in equi-
librium θ

f
ig = θig for all f .

We now consider how the arbitrage behavior of traders affects the relationship be-
tween production and consumption in each village. Market clearing requires that the the
quantity consumed of good g in village i that is also produced in village i must be equal
to quantity produced of good g in village i that is also consumed in village i:

Cig (s)× Pr {sourced locally} = Qig (s)× Pr {sold locally} (5)

A “buying” trader chooses to source a good locally rather than import that good only if
the local price is at least as low as any origin price net of trade costs. Because there are a
continuum of farmers each randomly matched to a trader, the law of large numbers im-
plies the fraction of the quantity consumed of good g in village i that is sourced locally is
equal to the probability that a “buying” trader’s trade costs are such that sourcing locally

which simplifies the determination of the optimal crop choice.
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is cheapest:

Pr {sourced locally} = Pr
{

pig (s) ≤ min
j∈{0,...,N}

τji pjg (s)
}
⇐⇒

= ∏
j 6=i

((
pjg (s)
pig (s)

1
ϕg (s)

)ε ji
)1{pjg(s)≤pig(s)ϕg(s)}

, (6)

where 1 {·} is an indicator function and the second line imposes the Pareto distribution
and the assumption that the realization of trade costs are independent across origins.

Similarly, a “selling” trader chooses to sell a good locally rather than exporting the
good only if the local price is at least as high as any destination price net of trade costs.
Again invoking the law of large numbers, the fraction of the quantity produced of good
g in location i that is sold locally is equal to the probability that the trade costs are such
that selling locally is most profitable:

Pr {sold locally} = Pr

{
pig (s) ≥ max

j∈{0,...,N}

pjg (s)
τij

}
⇐⇒

= ∏
j 6=i

((
pig (s)
pjg (s)

ϕg (s)

)εij
)1{pig(s)ϕg(s)≤pjg(s)}

(7)

Together, equations (5), (6), and (7) along with symmetric bilateral distributions provide
the following no-arbitrage condition where the ratio of local consumption and production
is the product of the ratio of the local price to prices elsewhere:

Cig (s)
Qig (s)

= ∏
j 6=i

(
pig (s)
pjg (s)

ϕg (s)

)εij

. (8)

Intuitively, equation (8) states that the higher the price of a good in a village relative to
all other villages, the more of the good will flow into the village relative to how much
flows out (i.e. the village will consume more of a good relative to how much it produces).
As mentioned above, all the results that follow are consistent with any alternative setup
delivering the no-arbitrage equation (8).

Substituting the demand equation (4) into equation (8) and solving the log-linear sys-
tem of equations, we obtain the following expression for equilibrium prices:

pig (s) = α
1
σ
g

N

∏
j=1

(
Dj (s)
Qjg (s)

ϕg (s)
−ε̄ j

)Tij

, (9)

where Di (s) ≡ Yi(s)(1+φ(s))
∑h αh(pih(s))

1−σ is equilibrium aggregate demand,ε̄i ≡ ∑j 6=i εij, T ≡ E−1,
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where E is the N× N matrix with Eij = −εij for i 6= j and Eii = σ + ε̄i for all i ∈ {1, ..., N}.
Equation (9) implies that the partial elasticity of the price of good g in village i to the
quantity produced in village j is Tij (conditional on the aggregate demand Dj (s) and the
market tightness ϕg (s)), i.e.:

−
∂ ln pig (s)
∂ ln Qjg (s)

= Tij.

Intuitively, how responsive the price in one location is to a productivity shock in another
location depends not only on the trade costs between those two locations, but on the full
geography of the system.

There are two notable properties of the price elasticities. First, because E is diagonally
dominant with strictly positive elements on the diagonal and strictly negative elements
off the diagonal, it is an M-matrix, so that its inverse T ≡ E−1 exists and is itself strictly
positive (see conditions F13 and N39 of Plemmons (1977)). As a result, a positive pro-
ductivity shock in any location will (weakly) decrease the equilibrium prices in all other
locations. Second, because ∑N

j=1 Eij = σ, the sum of the elasticity of a price in location i
to all production shocks throughout the world is constant and equal to the inverse of the
elasticity of substitution: ∑N

j=1 Tij =
1
σ . In autarky (when εij = 0 for all j 6= i), the elasticity

of the local price to local production shocks is 1
σ and not responsive to production shocks

elsewhere. With free trade (i.e. as εij → ∞ for all j 6= i), the elasticity of the price in village
i is equally responsive to production shocks throughout the world (with an elasticity 1

σN ).
More generally, as trade costs fall, local prices become less responsive to local production
shocks and more responsive to production shocks elsewhere (closely related to Stylized
Fact 2, and a prediction we will formalize in Section 4.5).

Finally, given the vector of quantities produced of each good in each location in state
s, equilibrium profits of traders φ (s) and the market tightness ϕg (s) are determined in
general equilibrium by the aggregate goods market clearing condition:

N

∑
i=1

Cig (s) =
N

∑
i=1

Qig (s) ∀g ∈ {1, ..., G} ⇐⇒

ϕg (s)
−σ ∑N

j=1 Tij ε̄ j (1 + φ (s)) =
∑N

i=1 Qig (s)

∑N
i=1

(
∏N

j=1
(
Qjg (s)

)σTij
)

D̃i (s)
∀g ∈ {1, ..., G} , (10)

where: D̃i (s) ≡
∑h α

1
σ
h ϕ

∑N
j=1 Tij ε̄ j

h

(
∏N

j=1(Qjh(s))
−Tij

)
Qih(s)

∑h α
1
σ
h ϕ

(1−σ)∑N
j=1 Tij ε̄ j

h

(
∏N

j=1(Qjh(s))
Tij
)σ−1

. The market tightness parameters
{

ϕg (s)
}

ensure that the ratio of the total quantity produced of each good to the total quantity con-
sumed by farmers in the absence of transfers from traders is equal across all goods; the
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equilibrium profits of traders φ (s) then scale consumption upward so that total consump-
tion equals total production.

4.3 Optimal crop choice: no volatility

We now characterize farmers’ optimal crop choice. Prior to discussing the general case
where productivity is stochastic, it is informative to consider the case where productivity
is constant.

In the absence of uncertainty, the return to the farmer per unit of land (i.e. her factor
price) must be equalized across all goods she produces21, i.e.:

pig Aig = wi ∀g ∈ {1..., G} , (11)

for some wi > 0. Taking logs and substituting in equation (9) for the equilibrium price
and recalling that Qig = Liθig Aig yields:

1
σ

ln αg +
N

∑
j=1

Tij ln

(
Dj

θjg AjgLj
ϕ

ε̄ j
g

)
+ ln Aig = ln wi

for some ln wi ∈ R. Solving this system of equations across all villages simultaneously
and applying the land constraint ∑G

g=1 θig = 1 yields (see Appendix A.3.1 for the complete
derivation):

θig =
αg ϕ

−ε̄i
g Aσ−1

ig ∏j 6=i

(
Aig
Ajg

)εij

∑G
h=1 αh ϕ

−ε̄i
h Aσ−1

ih ∏j 6=i

(
Aih
Ajh

)εij
. (12)

Equation (12) provides an analytical characterization of the equilibrium pattern of spe-
cialization in a Ricardian trade model with many countries separated by arbitrary trade
costs who trade a finite number of homogeneous goods.22 All else equal, a country will
specialize more in the production of good g the greater its own demand for that good (the
αig term), the greater its productivity of that good as long as goods are substitutes (the
Aσ−1

ig term), the lower the relative market tightness for “selling” (the ϕ
−ε̄i
g term), and the

21It is straightforward to show that in equilibrium, all goods will be produced in all locations, as equation
(9) implies that the price of a good will go to infinity as the time allocated to that good goes to zero.

22Typically in quantitative many-location general equilibrium trade models, the equilibrium patterns of
specialization do not admit analytical characterization. For example, in extensions of the Eaton and Kortum
(2002) to multiple goods, each of which is a composite of a continuum of varieties, (see e.g. Donaldson
(2008), Costinot, Donaldson, and Komunjer (2011), and Costinot and Rodriguez-Clare (2013)), the amount
of labor allocated to the production of each good can only be determined by solving a nonlinear system
of equations. Intuitively, the reason this setup yields a tractable expression for the equilibrium pattern of
specialization is because farmer revenue depends only on local prices, i.e. prices in other locations only
affect farmer’s crop choice through their equilibrium relationship to local prices. (While farmers do receive
revenue from trade, because this revenue is distributed proportionally to total income, it does not affect
farmer’s crop choice).
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greater its comparative advantage in that good (the ∏j 6=i
(

Aig/Ajg
)εij term), all relative

to those same terms for all other goods. The greater the Pareto shape parameter εij gov-
erning the distribution of bilateral trade costs between i and j (i.e. the lower the bilateral
trade costs), the more the relative productivity of i and j matters for i’s specialization.

What about the gains from trade? Given that returns to production are equalized
across all goods, the utility of farmers can be written as:

U f
i =

1
1− ρi

( G

∑
g=1

αg Aσ−1
ig

) 1
σ−1

(1 + φ)

1−ρi

.

In the absence of volatility, the utility of farmers only depends on trade through the re-
distributed trader profits (the 1 + φ term). As in a standard Ricardian model, opening up
to trade increases the returns to goods that a location has a comparative advantage in,
causing farmers to reallocate resources to the production of those goods. Unlike a stan-
dard Ricardian trade model, however, the presence of heterogeneous trade costs prevents
producers from completely specializing, as the price of a good rises without bound as
the quantity produced approaches zero; for any finite price, some fraction of traders will
draw sufficiently high trade costs elsewhere so as to source locally. As a result, reallo-
cation of resources toward the comparative advantage good lowers its price and raises
the price of other goods, and equilibrium is achieved when the returns to producing all
goods are once again equalized. Hence, here trade does not affect the relative prices that
farmers face nor the income they earn from selling their crops, so welfare is only affected
through the income from trader profits.

4.4 Optimal crop choice: with volatility

We now turn to the general case where productivity is subject to shocks (e.g. rain-
fall realizations) which occur after the time allocation decision has been made (e.g. after
planting). With volatility, farmers make their crop choices in order to maximize their ex-
pected utility. We first characterize the mapping from the distribution of productivities
across states of the world to the distribution of farmer welfare across states of the world.
We then characterize the optimal crop choice of a farmer maximizing her expected utility
taking prices and the crop choice of other farmers as given. Finally, we derive an analyt-
ical expression for the equilibrium crop choice, which is a generalization of equation (12)
above.

By substituting the equilibrium price in equation (9) into the indirect utility function
coming from the preferences in equation (3), we can write the real returns of farmer f
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located in village i in state of the world s as:

Z f
i (s) =

(1 + φ (s))∑G
g=1 θ

f
igα

1
σ
g Aig (s)∏N

j=1

(
θjg Ajg (s) ϕg (s)

−ε̄ j
)−Tij

(
∑G

g=1 α
1
σ
g

(
∏N

j=1

(
θjg Ajg (s) ϕg (s)

−ε̄ j
)Tij(σ−1)

)) 1
1−σ

(13)

Under the following assumption, we can characterize the (endogenous) joint distribu-
tion of real returns across all crops in terms of the (exogenous) joint distribution of yields
across all crops and all locations.

Assumption 1 (Log normal distribution of yields). Assume that the joint distributions of
yields across goods are log normal within any location i and are independently distributed across
locations. In particular, define Ai (s) as the G× 1 vector of Aig (s). Then ln Ai ∼ N

(
µA,i, ΣA,i

)
for all i ∈ {1, ..., N}.23

By applying two commonly used approximations—namely a log-linearization of loca-
tion prices around mean (log) productivity and a second-order approximation implying
that the sum of log normal variables is itself approximately log normal (see, e.g. Campbell
and Viceira (2002))24—we can show that farmer utility is (approximately) log normally
distributed. We summarize this result in the following proposition:

Proposition 1. The distribution of the real returns of farmer f in location i is approximately
log-normal, i.e.:

ln Z f
i ∼ N

(
µZ

i , σ2,Z
i

)
,

where µZ
i and σ2,Z

i are defined in Appendix A.4.

Proof. See Appendix A.4.

Because Proposition (1) shows the log real returns Z f
i (s) are (approximately) log nor-

mally distributed, the expected utility of a farmer takes the following convenient form:

E
[
U f

i

]
=

1
1− ρi

exp
(

µZ
i +

1
2
(1− ρi) σ2,Z

i

)1−ρi

. (14)

23We should note that the assumption that the distributions of yields are independent across locations
is not crucial for the results that follow but we make it in order to substantially simplify the notation.

24Campbell and Viceira (2002) use a second order approximation around zero returns, which is valid for
assets over a short period of time. Because our time period is a year, we instead approximate around the
mean log returns. This comes at a slight cost to tractability, but substantially improves the approximation—
in Monte Carlo simulations, we find the approximated expected utility is highly correlated (correlations
greater than 0.95) with the actual expected utility.
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Because E
[

Z f
i

]
= exp

(
µZ

i + 1
2 σ2,Z

i

)
, equation (14) implies that farmer f trades off the

(log of the) mean of her real income with the variance of her (log) real income, with the
exact trade-off governed by the degree of risk aversion ρi. As a result, a farmer’s optimal
crop choice solves the following maximization problem:

max{
θ

f
ig

} µZ
i +

1
2

(
σ2,Z

i − ρiσ
2,Z
i

)
s.t. ΣG

g=1θ
f
ig = 1. (15)

Substituting the expressions for µZ
i and σ2,Z

i from Proposition 1 implies the following first
order conditions for all g ∈ {1, ..., G}:

µz,i
g − ρi

G

∑
h=1

θ
f
ihΣz,i

gh = λi, (16)

where µz,i
g is the marginal contribution of crop g to the log of the mean real returns, Σz,i

is the variance-covariance matrix of real returns per unit time across crops,25 and λi is
the Lagrange multiplier on the constraint ∑G

g=1 θg = 1. Equation (16)—which is the gen-
eralization of the indifference condition (11) to accommodate uncertainty—is intuitive: a
good with a high total variance of real returns (i.e. a high ∑h=1 Σz,i

ghθ
f
ih), must have high

real returns (i.e. a high µz,i
g ) to compensate for the additional risk.

It is important to note that the equilibrium real returns for any farmer depend on the
crop choice of all other farmers as other farmers’ crop choices will affect the equilibrium
prices (see equation (38) in the appendix). Just as in the deterministic case, we solve for
the equilibrium crop choice across all villages simulatenously by combining the farmer’s
first order conditions with the expression for log nominal revenue per crop and solve the
resulting log-linear system of equations (see Appendix A.3.2 for the full derivation). This
yields the following generalization of equation (12) to incorporate production volatility:

θig ∝ αg exp
(

µA,i
g

)−1
ϕ̄
−ε̄i
g bσ

ig ∏
j 6=i

(
big

bjg

)εij

, (17)

where big ≡
exp(µA,i

g )
λi−

(
1
2 Σx,i

gg−∑G
h=1 θih

(
Σx,i

gh−Σz,i
gh

)
−ρi ∑G

h=1 θihΣz,i
gh

) is the risk adjusted productivity of farm-

ers in village i producing crop g and the scale is determined by the constraint ∑G
g=1 θig = 1.

Whereas in the absence of volatility, patterns of specialization were determined by the rel-
ative productivity of different locations, with volatility, risk adjusted productivity defines

25In particular, µz,i
g ≡

exp
{

µx,i
g

}
∑G

g=1 θ
f
ig exp

{
µx,i

g

} + 1
2 Σx,i

gg − ∑G
h=1 θ

f
ih

(
Σx,i

gh − Σz,i
gh

)
, where the definitions for the

vector µx,i and variance-covariance matrices Σx,i and Σz,i are presented in Appendix A.4.
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comparative advantage and determines the patterns of specialization. As before, trade
costs determine the weighting that each location places on its comparative advantage
relative to each trading partner.

4.5 Qualitative implications

Explaining the stylized facts

We now show that the model developed above is consistent with the stylized facts
presented in Section 3. We summarize the results in the following proposition.

Proposition 2. Suppose that the Pareto distribution of trade costs can be written as εij (t) = εijt,
where t ≥ 0 captures the overall level of openness of the world and an increase in t indicates a fall
in trade costs and there are a large number of villages (so that the equilibrium market tightness is
constant across states of the world) Then:

(1) [Stylized Fact #1] Define σ2
i,Y and σ2

i,P to be the variance of the log of the numerator and the

denominator, respectively, of the real returns Z f
i (s). Then:

dσ2
i,Y

dt
|t=0 > 0 and

dσ2
i,P

dt
|t=0 < 0,

i.e. moving from autarky to costly trade increases the volatility of nominal income and decreases
the volatility of prices.

(2) [Stylized Fact #2] Any increase in openness decreases the responsiveness of local prices to
local yield shocks, i.e.:

d
dt

(
−

∂ ln pig (s)
∂ ln Aig (s)

)
< 0.

(3) [Stylized Fact #3] Any increase in openness causes farmers to reallocate production toward
crops with higher mean yields. Moreover, as long as farmers are sufficiently risk averse (i.e. ρi

is sufficiently large and positive), goods are substitutes (i.e. σ ≥ 1), and local prices are not too
responsive to local productivity shocks (i.e. (1− Tii) θig ≥ Tiiαg), then any increase in openness
causes farmers to reallocate production towrad crops with less volatile yields, although the latter
effect is attenuated the greater the access to insurance (i.e. the lower ρi). Formally for any two
crops g 6= h:

d
dt

∂
(
ln θig − ln θih

)
∂µA

ig
> 0,

d
dt

∂
(
ln θig − ln θih

)
∂ΣA,i

gg
≤ 0, and − d

dt
∂2 (ln θig − ln θih

)
∂ΣA,i

gg ∂ρi
≥ 0.

Proof. See Appendix A.5.
Intuitively, as trade costs fall, more traders engaging in arbitrage across villages, so

that an incease in openness causes local prices to be less responsive to local yields – con-
sistent with Stylized Fact #2. Because local prices are less responsive to local yields, prices
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rise less in states of the world with low yields, increasing the volatility of nominal income
and decreasing the volatility of the price index – consistent with Stylized Fact #1. Finally,
consistent with Stylized Fact #3, farmers change their crop choice, balancing traditional
gains from specialization by moving into crops with higher average means against ef-
forts to reduce their risk by moving into crops with less volatile yields, with the trade-off
governed by their level of risk aversion..

Volatility and the gains from trade

We now turn to the welfare implications of the model. We summarize the relationship
between welfare, trade costsand volatility in the following proposition:

Proposition 3. 1) Moving from autarky to costly trade (weakly) improves farmer welfare, i.e. the
gains from trade are always (weakly) positive. 2) Increasing the volatility of productivity (keeping
constant the average productivity) may amplify or attenuate the gains from trade.

Part (1) of Proposition 3 arises from the standard revealed preference argument for
why trade is welfare improving (see, e.g. Dixit and Norman (1980)). Because all farmers
in a village are identical, in autarky, each consumes what she produces in all states of the
world. With trade, a farmer always has the option to make the same planting decisions;
moreover, in any state of the world, because the farmer both buys and sells to traders at
the local price, she always has the option to consume what she produces. Hence, in all
states of the world, a farmer can always achieve the same level of utility as in autarky, so
that across all states of the world, her expected utility must with trade must be at least as
great as in autarky.26

Parts (2) of Proposition 3 can be illustrated with two simple examples (illustrated
in Table 10 of the Appendix). We first show how volatility can amplify the gains from
trade. Consider a world of two villages and two crops. Suppose that farmers have Cobb-
Douglas preferences over the two goods with equal expenditure shares. Suppose too that
the average productivity of each good in each village in the same. Because the two vil-
lages are identical, in the absence of volatility there are no gains from trade. Now suppose
that the production of good A in village 1 is risky. As discussed above (see equation (??)),
in autarky farmers in village 1 will allocate an equal amount of labor to the production
of both crops even though good A is risky as the unit price elasticity implies that the
volatility farmers face is aggregate price index risk. With trade, however, the local price

26This is in contrast to Newbery and Stiglitz (1984), where trade can make agents worse off in the
presence of volatility. In that paper, agents are not permitted to consume what they produce; instead,
they rely on the existence of two types of agents: “farmers” that produce crops an consume a numeraire
good, and “consumers” that consume crops and produce the numeraire good. As a result, the autarkic
consumption bundle is not necessarily always available to agents.
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in village 1 no longer responds one-for-one to the local productivity shock. This allows
farmers in village 1 to reduce the risk they face by reallocating production toward good
B. Farmers in village 2 benefit by reallocating production toward good A, which now has
a higher relative price. Intuitively, by decoupling production and consumption decisions,
trade converts the aggregate price index risk farmers would face in autarky into idiosyn-
cratic crop specific risk, allowing farmers allocate their crops in such a way so as to reduce
their risk exposure.27

However, volatility can also attenuate the gains from trade. As above, consider a
world of two village and two crops, where farmers have Cobb-Douglas preferences over
the two goods with equal expenditure shares. Suppose that village 1 has a comparative
and absolute advantage in good A and village 2 has a comparative and absolute advan-
tage in good B so that in the absence of volatility, there are gains from trade through
specialization. Now let us introduce volatility by supposing that the production of good
A in village 1 is risky and the production of good B in village 2 is risky. In autarky, farmers
in both villages will allocate an equal amount of labor to the production of both goods.
With trade, however, if farmers are sufficiently risk averse, they will not specialize in the
production of the risky crops despite their respective comparative advantages. As a re-
sult, the standard gains through specialization will be smaller, attenuating the total gains
from trade.

5 Quantifying the welfare effects of trade and volatility
We now bring the model developed above to the data on rural India to quantify the

welfare effects of trade in the presence of volatility. We first estimate the preference pa-
rameters using household survey data. We then show that the model yields structural
equations that allow us to easily estimate key model parameters, namely the trade open-
ness of each location and the effective risk aversion in each district. Finally, we use the
estimates to quantify the welfare effects of trade and volatility for India.

5.1 Estimation

In order to quantify the welfare effects of volatility, we need to know the full set of
structural parameters, namely: the preference parameters

{
αg
}

and σ, the matrix of shape
parameters

{
εij
}

i 6=j governing trade costs, the effective risk aversion ρi in each district

and the mean and variance-covariance matrix µA,i and ΣA,i for the yields of all goods
produced (net of production costs). We discuss how we estimate each of these in turn.

27Introducing volatility can also amplify the first moment gains of trade, as differences in the realized
productivities in the two countries generate gains from trade, even if the average productivities in the two
countries are identical.
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Estimating the preference parameters from variation in budget shares and prices

We can recover the preference parameters
{

αg
}

and elasticity of substitution σ by es-
timating the CES demand function implied by equation 3:

ln
(
Cig/Yi

)
= (1− σ) ln pig − (1− σ) ln Pi + ln αg (18)

where Pi = (∑g αg(pig)
1−σ)

1
1−σ . We regress log budget shares on the village-level median

price-per-calorie using the detailed household-level consumption surveys from the 1987-
88 NSS described in Section 2.2. The elasticity is recovered from the coefficient on local
prices, the price index term is accounted for by the district fixed effects, and the pref-
erence parameters are recovered from the coefficient on the good fixed effects. As local
prices may be endogenous to local demand shocks, we instrument for prices with the log
median price-per-calorie in neighboring villages (with the identifying assumption being
that supply shocks are spatially correlated but that demand shocks are not).

Table 4 presents the estimated demand parameters using the methodology described
above. The implied elasticity of substitution is 2.4 using our preferred IV specification.

Estimating openness to trade from the observed relationship between local prices and
yields

From equation (9), the observed local price in any location is a log linear combination
of yields across all locations, where the elasticities depend on the distribution of bilat-
eral trade costs. If we assume that crop choice is constant within a decade d and each
year within a decade is a different state of the world we obtain the following regression
formulation of equation (9):

ln pigt = −
N

∑
j=1

Tijd ln Ajgt + δit + δigd + δgt + vigt, (19)

where δit is a location-year fixed effect capturing the weighted aggregate destination de-
mand, δigd is a location-good-decade fixed effect capturing the weighted destination de-
mand relative to supply, δgt is a good-year fixed effect capturing the average effect of
market tightness on prices, and vigt is a residual capturing the district deviations in the
effect of market tightness.28 While equation (19) follows directly from the structural equa-
tion (9), it also has an intuitive interpretation: conditional on the appropriate set of fixed

28More precisely, vigt ≡
(

∑N
j=1 Tij ε̄ j − 1

N ∑N
j=1 ∑N

k=1 Tjk ε̄k

)
ln ϕgt. Note that if all villages shared the same

total level of openness (i.e. ε̄i ≡ ∑j 6=i εij = ε̄ for all i), then the residual would be equal to zero since

∑N
j=1 Tij ε̄ ln ϕ̄gt =

ε̄
σ ln ϕ̄gt would be absorbed by the good-year fixed effect. Hence the residual εigt captures

only deviations of the elasticity weighted average of the total openness of a district’s trading partners from
the average.
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effects, locations are more open to trade the less responsive their local prices are to local
yield shocks and the more responsive they are to yields shocks elsewhere.

While the elasticities
{

Tijd
}

can be estimated non-parametrically if there are a large
number of time periods and goods relative to number of locations, unfortunately this is
not the case in our empirical context. To proceed, we instead assume that the bilateral
Pareto shape parameters are inversely related to travel times:

εijd = βD−φ
ijd , (20)

where we use the same φ’s and travel time specifications as used in Section 3. Because E is
an M-matrix, we can write its inverse T as an infinite geometric sum. (see Appendix A.6
for further details). Approximating T by the first two elements of this series and applying
the parametric assumption in equation (20), we can rewrite equation (19) as:

ln pigt = −γ1 ln Aigt − γ2 ∑
j 6=i

D−φ
ijd ln

(
Ajgt

Aigt

)
+ δit + δigd + δgt + µigt, (21)

where γ1 ≡ 1
κ2 (2κ − σ), γ2 ≡ β

κ2 for some κ > 0 and the residual µigt captures the higher
order terms from the infinite series expansion of T.

Given D−φ
ijd , the coefficients γ1 and γ2 can be identified using ordinary least squares as

long as yields are uncorrelated with the residual (as is the case in our framework where
yields are idiosyncratic). Given the previous estimate of σ, these two parameters allow us
to recover β and κ and ultimately the bilateral shape parameter εijd using equation (20).

Table 5 reports the results of regression (21). As can be seen, prices are lower when
both own yields and the distance-weighted sum of other districts’ yields are higher. The
γ1 and γ2 coefficients are both negative and statistically significant regardless of our
choice of φ (either φ = 1 or φ = 1.5) or our estimate of the off-highway speed of travel
(1/3 or 1/4 of that on the highway). In our preferred specification (column 1), the esti-
mates imply that the average Pareto shape parameter between villages in 1970 was 0.16,
rising to 0.25 by 2000, indicating high trade costs across locations.29

Estimating risk aversion and costs of cultivation from the observed distribution of
yields and allocation decisions

From Section 4.4, farmers choose a time allocation along the frontier of the (log) mean
real returns and the variance of (log) real returns, with the gradient of the frontier at the
chosen allocation equal to their effective risk-aversion parameter ρi. This implies that any

29While the estimated shape parameters are quite low, recall that we assume the iceberg trade costs are
drawn independently across location. Since there are more than 300 districts, the low values of the shape
parameters are necessary in order to ensure that the probability of buying or selling locally remains high.
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produced good that has higher mean real returns must also contribute a greater amount
to the variance of the real returns, as if this were not the case the farmer should have allo-
cated more time to that good, lowering its mean return. This relationship is summarized
in the farmer’s first order conditions from equation (16), which we re-write here:

µz,i
g = ρi

G

∑
h=1

θihΣz,i
gh + λi. (22)

Equation (22) forms the basis of our estimation of both effective risk-aversion and the
costs of cultivation. Note that if we observed the distribution of real returns and the
variance-covariance matrix of real returns, we could directly regress the former on the
latter with a district-decade fixed effect in order to recover ρi.

However, instead we observe the prices, yields and area allocated to each good in
each year and each district from the VDSA data, which has two limitations: first, they
are the nominal revenues rather than the real returns; second, they are the revenues gross
rather than net of costs. To address the first problem, we note that given the distribution
of trade costs estimated in the previous subsection, we can use Proposition 1 to transform
the mean covariance of the (observed) nominal gross yields into the mean and covari-
ance of real returns.30 To address the second problem, we assume that each good within
a district-decade has an unobserved utility cost κigd that is constant across states of the
world and log additive (so that it enters linearly into the first order conditions). As a
result, we can re-write equation (22) solely as a function of observables :

µz,id
g = ρid

G

∑
h=1

θd
ihΣz,id

gh + δid + δig + δgd + ζigd, (23)

where δid ≡ λid is the Lagrange multiplier and the unobserved crop cost κigd is assumed
to be a combination of a district-good fixed effect δig, a crop-decade fixed effect δgd, and
an idiosyncratic district-crop-decade term ζigd. Note that given these estimated crop costs
(along with the other estimated structural parameters), the farmer’s first order conditions
will hold with equality at their observed time allocation. In other words, we calibrate the
unobserved crop costs so that farmers in all districts and all decades are producing at the
optimal point along the mean-variance frontier.

Under the assumption that the production costs are constant within district-decade
(and hence mechanically uncorrelated with the covariance of log real returns), ρid can be
estimated using equation (23) using ordinary least squares. To correct for (classical) mea-

30To calculate the mean and variance-covariance matrix of yields, we we aggregate across years within
district-decade, implicitly assuming that time allocations are constant within decade. Therefore, in what
follows we also construct the time allocation within a district-decade by averaging across years.
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surement error bias arising, for example, from the fact that our variance-covariance ma-
trix is itself an estimate, we instrument for the marginal contribution to the log variance of
real returns with the marginal contribution to the log variance of rainfall-predicted yields

∑h=1 Σ̂A,i
gh θ1970

ih (where Σ̂A,i is the estimated variance-covariance matrix using observed
rainfall variation and θ1970

ih is the observed crop allocation in the 1970s).
Finally, to account for the fact that the effective risk aversion parameter, ρid, captures

both the inherent risk aversion of farmers and their access to risk-mitigating technologies,
we allow ρid to depend on bank access bankid (measured as rural banks per capita):

ρid = ρAbankid + ρB,

so that equation (23) becomes:

µz,id
g = ρAbankid ×

G

∑
h=1

θd
ihΣz,id

gh + ρB
G

∑
h=1

θd
ihΣz,id

gh + δid + δig + δgd + δ + νigd. (24)

If insurance improves with bank access, we expect ρA < 0.
Equation (24) follows directly from the structural equation (22) but has a straightfor-

ward interpretation: at the optimal allocation, crops that have higher mean returns must
also have higher (marginal contributions to overall) volatility. The more risk the farmer is
willing to accept in order to increase her mean returns, the less risk averse she is (and/or
the better access to insurance she has).

Table 6 reports the results from the estimation of the effective risk aversion parame-
ters, ρid, using regression (24).31 Column 1 finds that there is a strong positive relation-
ship between the mean real returns and the marginal contribution to the variance of real
returns, with an effective risk-aversion parameter of 0.9 on average. This estimate is con-
sistent with previous estimates of risk aversion of Indian farmers (e.g. Rosenzweig and
Wolpin (1993) who also finds a parameter around 1). Column 2 shows that districts with
greater access to banks had a less positive relationship between the mean real returns
and the marginal contribution to the variance of real returns, consistent with bank ac-
cess improving farmer insurance and leading them to act in a manner that appears less
risk averse. Columns 3 and 4 show that the point estimates increase slightly for the IV
specification, consistent with measurement error creating a downward bias (with column
4 the preferred estimate we use in the quantification). Reassuringly, the combination of

31In some districts, the VDSA records very small numbers for sparsely planted crops. In other districts,
no number is recorded. As these differences are likely measurement error, and additive measurement error
biases upward the variance of log yields, we exclude from the regression any crops which is allocated
less than 0.1 percent of land area in a district-decade; including these crops reduces the magnitude of the
estimated coefficients but does not change the qualitative results.
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fixed effects and the residual from regression (24)—which we interpret as unobserved
crop costs, those that ensure the crop choice observed in the data is the optimal choice in
the model—positively correlate with actual crop costs we observe at the state-level for a
subset of our sample period; see Table 11 in the appendix for further details.

5.2 Trade, volatility and welfare

We now use our structural estimates to quantify the welfare effects of the expansion
of the Indian highway network. To isolate the gains from trade, we hold all structural
parameters except openness (i.e. the distribution of productivities, crop costs, levels of in-
surance, and bank access) constant at the estimated level for the 1970s. We then calculate
the equilibrium crop choice, the distribution of real returns and the resulting welfare un-
der the estimated distribution of bilateral trade costs in the 1980s, 1990s, and 2000s.32 Be-
cause our parameterization in equation 20 ensures that the estimated bilateral trade costs
change over time only through travel time reductions resulting from highway expansions,
this procedure isolates the welfare effects of changes to the Indian highway network.

For each district in each decade, we calculate the (log of the arithmetic) mean real
returns, the variance of the (log) real returns, and overall welfare (which, after the appro-
priate monotonic transformation, is a linear combination of the two; see equation (14)).
We also decompose the effects of trade into the effects on the production side (the mean
and variance farmer nominal income, and the implied welfare of a “producer” who uses
this nominal income to purchase a hypothetical numeraire good) and on the consumption
side (the mean and variance of the inverse of the price index, and the implied welfare of
a “consumer” who uses the income from a sale of a hypothetical numeraire good to pur-
chase the CES consumption bundle).

Table 7 summarizes the changes in theseobjects across decades by projecting the object
of interest (e.g. the log of the mean real returns) on a set of decade dummies effect and
using district fixed effects so that the dummies report the average change across districts
in the object of interest over time. To highlight the effect of the endogenous crop choice of
farmers, Panel A first considers the effects of the highway expansion holding farmer crop
choice fixed at the observed 1970s allocations. Consistent with the reduced form results of
Table 1, we find that the expansion of the highway network increases both the mean and
variance of nominal income, increases the mean of the price index (i.e. reduces the mean
returns of a “consumer”), and increases the mean and variance of real returns. Given

32Because the model implies that all crops will be grown in all villages, for crops that were not grown in
a district in a given decade, we set the mean and standard deviation of log yields equal to zero and the area
allocated to their production to a small number (1e-6). This effectively implies that any crops that are not
grown in the data will not be grown in the counterfactuals (see Figure 4); alternative choices of the small
number have a negligible effect on the quantitative results that follow.
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our risk aversion estimates (holding bank access at 1970s levels), highway expansions be-
tween the 1970s and 2000s increase welfare by approximately 2.5 percent; however, given
that the mean real returns increase by 2.9 percent, the increased volatility erodes the first
moment gains from trade by approximately 15 percent.

Panel B of Table 7 reports the results allowing farmers to optimally reallocate their
production. When farmers choose their crops optimally, the effects of highway expansion
are qualitatively similar to Panel A—the mean and variance of nominal income increase,
along with the mean of the price index. However, compared to Panel A, when farmers
optimally choose their crops, the mean nominal income increases by more and the volatil-
ity of nominal income increases by less—as we found in the reduced form results of Table
1. As a result, the expansion of the Indian highways from the 1970s to the 2000s increases
the mean real returns of farmers by 3.4 percent without increasing the volatility of real
returns, i.e. farmers are able to fully hedge against the increased risk of the highway ex-
pansion by altering their crop choice. All told, the highway expansion increases farmer
welfare by 3.4 percent—40 percent more than the gains in Panel A, highlighting the im-
portance of accounting for the fact that farmers respond to changes in the risk profile they
face by altering their crop choices.33

The average gains from trade mask substantial heterogeneity across space. Table 8
explores this heterogeneity. Column 1 of 8 replicates Column 9 of Panel B of Table 7. Col-
umn 2 shows that much of the gains from trade over time can be captured by observed im-
provements in market access, suggesting that the general equilibrium spillovers to other
districts are reasonably small (e.g. the coefficient on the 2000s decade dummy falls by
three quarters after controlling for observed market access). Figure 3 confirms that dis-
tricts with greatest increase in market access between the 1970s and the 2000s also tended
to have larger gains from trade over the period (the correlation between the two figures
is 0.21).

However, Column 3 of Table 8, demonstrates that the welfare gains associated with
improvements in market access differed across districts for at least two reasons. First,
districts that were initially growing fewer crops had larger gains from improvements to
market access, as reductions in trade costs allowed these districts to more easily import
crops that were costly to grow locally. Second, (and more interestingly), districts in which

33While quantitatively similar, the structural results are substantially smaller in magnitude than the
reduced form estimates from Table 1. For example, the reduced form estimates imply that the improvement
in market access for the median district between the 1970s and 2000s would be associated with a roughly
37 percent increase in nominal income and a 30 percent increase in real income, whereas the structural
estimates find an increase in 2.4 percent and 3.4 percent, respectively. This is consistent with the market
access measure being correlated with, amongst other things, improvements in production technology and
access to insurance (both of which are held constant in the structural estimation).
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the high average yields crops were less risky goods (i.e. the correlation across crops of
the mean and standard deviation of log yields was negative) gained more from improve-
ments in market access than districts for which the high average yield crops were also
the more risky crops (i.e. the correlation across crops of the mean and standard deviation
of log yields was positive). As discussed in Proposition 3, this is because volatility can
attenuate the gains from trade when farmers choose not to specialize in goods they are
more productive in to avoid incurring additional risk.

To see what this means in terms of how the optimal crop choice responds to the ex-
pansion of the highway network, Figure 4 compares the observed mean and standard de-
viation of log yields in the 1970s (Panels A and B, respectively) to the model’s predicted
change in the optimal allocation of labor as a result of the highway expansion (Panel
C). While the highway expansion does increase the overall labor allocation to cash crops
like cotton, it also causes redistribution across space in production, with Northeast India
increasing production of wheat, and the South increasing production of sorghum. Con-
sistent with the model prediction that reductions in trade costs lead districts to specialize
in their risk-adjusted comparative advantage crops, Panels A and B show that wheat has
high mean/low volatility yields in Northeast India, whereas the same is true for sorghum
in the South.34

All told, the structural estimates demonstrate that, while the expansion of the Indian
highway network did increase the risk faced by farmers through the second moment ef-
fects of trade, farmers were able to mitigate the welfare loss from this increased risk by
altering their planting decisions.

6 Conclusion
The goal of this paper has been to examine the relationship between trade and volatil-

ity. To do so, we first document that reductions in trade costs owing to the expansion
of the Indian highway network have reduced in magnitude the negative relationship be-
tween local prices and local yields, which has lead farmers to reallocate their land toward
crops with higher mean yields and lower yield volatility. We then present a novel Ricar-
dian trade model that incorporates a portfolio allocation decision drawn from the finance
literature. Risk averse producers choose their optimal allocation of resources across goods
and the general equilibrium distribution of real returns is determined by this allocation
along with thedistribution of bilateral trade costs and yields. The model yields tractable
equations governing equilibrium prices and farmers’ resource allocations and generates

34Table 12 in the Appendix shows that the model-predicted changes in optimal crop choice from the
1970s are positively correlated with the mean log yields and negatively correlated with the standard
deviation of log yields.
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the patterns documented in the data.
The model provides intuitive and transparent estimating equations to identify both

the bilateral trade costs—using the relationship between local prices and yield shocks in
all locations—and farmers’ risk preferences—-using the slope of the mean-variance fron-
tier at the observed crop choices. Using these estimates, we show that while increased
trade openness would have increased the volatility faced by farmers at their current al-
locations, farmers are able to hedge this risk by changing what they produce, amplifying
the gains from trade.

34



References
ALLEN, T. (2014): “Information frictions in trade,” Econometrica, 82(6), 2041–2083.

ALLEN, T., AND C. ARKOLAKIS (2014): “Trade and the topography of the spatial
economy,” The Quarterly Journal of Economics.

ASTURIAS, J., M. GARCÍA-SANTANA, AND R. RAMOS (2014): “Competition and the wel-
fare gains from transportation infrastructure: Evidence from the Golden Quadrilateral
of India,” Discussion paper, Working paper.

ATKIN, D. (2013): “Trade, Tastes, and Nutrition in India,” American Economic Review,
103(5), 1629–63.

ATKIN, D., AND D. DONALDSON (2015): “Who’s Getting Globalized? The Size and
Implications of Intra-national Trade Costs,” Working Paper 21439, National Bureau of
Economic Research.

BASU, P. (2006): Improving Access to Finance for India’s Rural Poor. World Bank Publications.

BURGESS, R., AND D. DONALDSON (2010): “Can openness mitigate the effects of weather
shocks? Evidence from India’s famine era,” The American Economic Review, pp. 449–453.

(2012): “Can openness to trade reduce income volatility? Evidence from colonial
India’s famine era,” Discussion paper.

BURGESS, R., AND R. PANDE (2005): “Do Rural Banks Matter? Evidence from the Indian
Social Banking Experiment,” American Economic Review, pp. 780–795.

CAMPBELL, J. Y., AND L. M. VICEIRA (2002): Strategic asset allocation: portfolio choice for
long-term investors. Oxford University Press.

CASELLI, F., M. KOREN, M. LISICKY, AND S. TENREYRO (2014): “Diversification through
trade,” Discussion paper.

COSTINOT, A., AND D. DONALDSON (2011): “How Large Are the Gains from Economic
Integration? Theory and Evidence from US Agriculture, 1880-2002,” Massachusetts
Institute of Technology. Mimeo.

COSTINOT, A., D. DONALDSON, AND I. KOMUNJER (2011): “What goods do countries
trade? A quantitative exploration of Ricardo’s ideas,” The Review of Economic Studies,
p. rdr033.

COSTINOT, A., D. DONALDSON, AND C. B. SMITH (2014): “Evolving comparative
advantage and the impact of climate change in agricultural markets: Evidence from

35



1.7 million fields around the world,” Discussion paper, National Bureau of Economic
Research.

COSTINOT, A., AND A. RODRIGUEZ-CLARE (2013): “Trade theory with numbers:
Quantifying the consequences of globalization,” Discussion paper, National Bureau of
Economic Research.

DATTA, S. (2012): “The impact of improved highways on Indian firms,” Journal of
Development Economics, 99(1), 46–57.

DI GIOVANNI, J., AND A. A. LEVCHENKO (2009): “Trade openness and volatility,” The
Review of Economics and Statistics, 91(3), 558–585.

DISDIER, A.-C., AND K. HEAD (2008): “The puzzling persistence of the distance effect
on bilateral trade,” The Review of Economics and statistics, 90(1), 37–48.

DIXIT, A. (1987): “Trade and insurance with moral hazard,” Journal of International
Economics, 23(3), 201–220.

(1989a): “Trade and insurance with adverse selection,” The Review of Economic
Studies, 56(2), 235–247.

(1989b): “Trade and insurance with imperfectly observed outcomes,” The
Quarterly Journal of Economics, pp. 195–203.

DIXIT, A., AND V. NORMAN (1980): Theory of international trade: A dual, general equilibrium
approach. Cambridge University Press.

DONALDSON, D. (2008): “Railroads of the Raj: Estimating the impact of transportation
infrastructure,” Working paper.

DONALDSON, D., AND R. HORNBECK (2013): “Railroads and American Economic
Growth: A" Market Access" Approach,” Discussion paper, National Bureau of
Economic Research.

EASTERLY, W., R. ISLAM, AND J. E. STIGLITZ (2001): “Shaken and stirred: explaining
growth volatility,” in Annual World Bank conference on development economics, vol. 191, p.
211.

EATON, J., AND G. M. GROSSMAN (1985): “Tariffs as Insurance: Optimal Commercial
Policy When Domestic Markets Are Incomplete,” The Canadian Journal of Economics /
Revue canadienne d’Economique, 18(2), pp. 258–272.

EATON, J., AND S. KORTUM (2002): “Technology, geography, and trade,” Econometrica,

36



70(5), 1741–1779.

FAFCHAMPS, M. (1992): “Cash crop production, food price volatility, and rural market
integration in the third world,” American Journal of Agricultural Economics, 74(1), 90–99.

FULFORD, S. L. (2013): “The effects of financial development in the short and long run:
Theory and evidence from India,” Journal of Development Economics, 104(0), 56 – 72.

GHANI, E., A. G. GOSWAMI, AND W. R. KERR (2014): “Highway to success: The
impact of the Golden Quadrilateral project for the location and performance of Indian
manufacturing,” The Economic Journal.

HEAD, K., AND T. MAYER (2014): “Gravity Equations: Workhorse, Toolkit, and
Cookbook,” in Handbook of International Economics, vol. 4, pp. 131–195. Elsevier.

HELPMAN, E., AND A. RAZIN (1978): A Theory of International Trade Under Uncertainty.
Academic Press.

JAYACHANDRAN, S. (2006): “Selling labor low: Wage responses to productivity shocks in
developing countries,” Journal of political Economy, 114(3), 538–575.

KARABAY, B., AND J. MCLAREN (2010): “Trade, offshoring, and the invisible handshake,”
Journal of international Economics, 82(1), 26–34.

KUROSAKI, T., AND M. FAFCHAMPS (2002): “Insurance market efficiency and crop
choices in Pakistan,” Journal of Development Economics, 67(2), 419–453.

LEE, H. (2013): “Industrial output fluctuations in developing countries: General equi-
librium consequences of agricultural productivity shocks,” Department of Economics,
Purdue University, West Lafayette.

MAHUL, O., N. VERMA, AND D. CLARKE (2012): “Improving farmers’ access to
agricultural insurance in India,” World Bank Policy Research Working Paper, (5987).

MUKESH ESWARAN, A. K. (1990): “Implications of Credit Constraints for Risk Behaviour
in Less Developed Economies,” Oxford Economic Papers, 42(2), 473–482.

MUNSHI, K. (2004): “Social learning in a heterogeneous population: technology diffusion
in the Indian Green Revolution,” Journal of development Economics, 73(1), 185–213.

NEWBERY, D., AND J. STIGLITZ (1984): “Pareto inferior trade,” The Review of Economic
Studies, 51(1), 1–12.

PLEMMONS, R. J. (1977): “M-matrix characterizations. I—nonsingular M-matrices,”
Linear Algebra and its Applications, 18(2), 175–188.

37



ROSENZWEIG, M. R., AND H. P. BINSWANGER (1993): “Wealth, weather risk and the com-
position and profitability of agricultural investments,” The Economic Journal, pp. 56–78.

ROSENZWEIG, M. R., AND K. I. WOLPIN (1993): “Credit market constraints, consump-
tion smoothing, and the accumulation of durable production assets in low-income
countries: Investments in bullocks in India,” Journal of political economy, pp. 223–244.

SCOTT, P. T., ET AL. (2013): “Dynamic discrete choice estimation of agricultural land
use,” V Tolouse School of Economics.

SETHIAN, J. (1999): Level Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3.
Cambridge University Press.

SOTELO, S. (2013): “Trade frictions and agricultural productivity: Theory and evidence
from Peru,” Unpublished manuscript, University of Chicago.

TOWNSEND, R. M. (1994): “Risk and insurance in village India,” Econometrica: Journal of
the Econometric Society, pp. 539–591.

WILLMOTT, C., AND K. MATSUURA (2012): “Terrestrial Precipitation: 1900-2010 Grid-
ded Monthly Time Series, Version 3.02,” Discussion paper, University of Delaware,
http://climate.geog.udel.edu/climate/.

38



Ta
bl

e
1:

R
E

A
L

IN
C

O
M

E
A

N
D

R
O

A
D

S

D
ep

en
de

nt
va

ri
ab

le
:

C
om

po
ne

nt
s

of
R

ea
lI

nc
om

e
(L

og
ge

d)
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
M

ea
n

N
om

in
al

Y
V

ar
N

om
in

al
Y

M
ea

n
P

In
de

x
V

ar
P

In
de

x
M

ea
n

R
ea

lY
V

ar
R

ea
lY

M
ar

ke
tA

cc
es

s
0.

54
9*

**
0.

75
5*

**
0.

08
6*

**
0.

03
5

0.
45

1*
**

0.
21

1
(0

.0
84

)
(0

.2
20

)
(0

.0
16

)
(0

.1
54

)
(0

.0
86

)
(0

.2
19

)
M

ar
ke

tA
cc

es
s

(p
hi

=1
)

0.
38

7*
**

0.
59

0*
**

0.
05

8*
**

-0
.0

59
0.

32
0*

**
0.

23
7*

(0
.0

49
)

(0
.1

29
)

(0
.0

09
)

(0
.0

91
)

(0
.0

50
)

(0
.1

29
)

M
ar

ke
tA

cc
es

s
(a

lt
.s

pe
ed

)
0.

53
6*

**
0.

72
0*

**
0.

08
3*

**
0.

03
5

0.
44

0*
**

0.
18

6
(0

.0
87

)
(0

.2
29

)
(0

.0
16

)
(0

.1
60

)
(0

.0
89

)
(0

.2
28

)
D

is
tr

ic
tF

E
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
D

ec
ad

e
FE

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

O
bs

er
va

ti
on

s
12

08
12

08
12

08
12

08
12

08
12

08

D
ep

en
de

nt
va

ri
ab

le
:

C
om

po
ne

nt
s

of
R

ea
lI

nc
om

e
(L

og
ge

d,
19

70
s

C
ro

p
A

llo
ca

ti
on

s)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
M

ea
n

N
om

in
al

Y
V

ar
N

om
in

al
Y

M
ea

n
P

In
de

x
V

ar
P

In
de

x
M

ea
n

R
ea

lY
V

ar
R

ea
lY

M
ar

ke
tA

cc
es

s
0.

48
1*

**
0.

88
8*

**
0.

08
6*

**
0.

03
5

0.
38

3*
**

0.
30

3
(0

.0
76

)
(0

.2
12

)
(0

.0
16

)
(0

.1
54

)
(0

.0
78

)
(0

.2
13

)
M

ar
ke

tA
cc

es
s

(p
hi

=1
)

0.
33

6*
**

0.
57

9*
**

0.
05

8*
**

-0
.0

59
0.

26
9*

**
0.

21
4*

(0
.0

44
)

(0
.1

25
)

(0
.0

09
)

(0
.0

91
)

(0
.0

46
)

(0
.1

26
)

M
ar

ke
tA

cc
es

s
(a

lt
.s

pe
ed

)
0.

46
6*

**
0.

82
1*

**
0.

08
3*

**
0.

03
5

0.
37

0*
**

0.
25

4
(0

.0
79

)
(0

.2
20

)
(0

.0
16

)
(0

.1
60

)
(0

.0
82

)
(0

.2
21

)
D

is
tr

ic
tF

E
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
D

ec
ad

e
FE

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

Ye
s

O
bs

er
va

ti
on

s
12

08
12

08
12

08
12

08
12

08
12

08
N

ot
es

:E
ac

h
en

tr
y

co
rr

es
po

nd
s

to
th

e
co

ef
fic

ie
nt

on
m

ar
ke

ta
cc

es
s

fr
om

a
se

pa
ra

te
re

gr
es

si
on

of
a

co
m

po
ne

nt
of

th
e

m
ea

n
an

d
va

ri
an

ce
of

re
al

in
co

m
e

re
gr

es
se

d
on

al
te

rn
at

iv
e

m
ea

su
re

s
of

m
ar

ke
ta

cc
es

s.
A

ll
re

gr
es

si
on

s
al

so
in

cl
ud

e
di

st
ri

ct
an

d
de

ca
de

fix
ed

ef
fe

ct
s.

N
om

in
al

in
co

m
e

is
ca

lc
ul

at
ed

as
ag

ri
cu

lt
ur

al
re

ve
nu

e
pe

rh
ec

ta
re

ov
er

th
e

15
sa

m
pl

e
cr

op
s.

In
Pa

ne
lA

,a
ct

ua
lc

ro
p

al
lo

ca
ti

on
s,

pr
ic

es
an

d
yi

el
ds

ar
e

us
ed

fo
r

th
is

ca
lc

ul
at

io
n,

In
Pa

ne
lB

,a
ct

ua
ly

ie
ld

s
an

d
pr

ic
es

ar
e

us
ed

al
on

g
w

it
h

th
e

av
er

ag
e

cr
op

al
lo

ca
ti

on
s

in
th

e
19

70
s.

Pr
ic

e
in

de
x

is
a

C
ES

pr
ic

e
in

de
x

of
th

e
sa

m
e

15
cr

op
s

us
in

g
th

e
C

ES
pa

ra
m

et
er

s
sh

ow
n

in
Ta

bl
e

4.
Ea

ch
ob

se
rv

at
io

n
in

ea
ch

re
gr

es
si

on
is

at
th

e
di

st
ri

ct
-d

ec
ad

e
le

ve
l.

C
oe

ffi
ci

en
ts

m
ul

ti
pl

ie
d

by
10

0,
00

0
fo

r
re

ad
ab

ili
ty

.S
ta

rs
in

di
ca

te
st

at
is

ti
ca

ls
ig

ni
fic

an
ce

:*
p<

.1
0

**
p<

.0
5

**
*

p<
.0

1.

39



Table 2: PRICE PRODUCTION ELASTICITIES AND ROADS

Dependent variable: Elasticity of Price to Production
(1) (2) (3) (4) (5)
IV IV OLS IV IV

Market Access 0.039*** 0.033** 0.025***
(0.007) (0.013) (0.009)

Market Access (phi=1) 0.017**
(0.008)

Market Access (alt. speed) 0.034**
(0.014)

Crop-district FE Yes Yes Yes Yes Yes
Crop-decade FE No Yes Yes Yes Yes
R-squared 0.339 0.359 0.356 0.359 0.359
Observations 14023 14023 13706 14023 14023
Mean Predicted Value 1970s -0.043 -0.040 -0.027 -0.040 -0.040
Mean Predicted Value 1980s -0.038 -0.042 -0.025 -0.042 -0.042
Mean Predicted Value 1990s -0.029 -0.023 -0.023 -0.024 -0.024
Mean Predicted Value 2000s -0.022 -0.021 -0.015 -0.021 -0.021

Notes: Estimates of the elasticity of local prices to production regressed on market access
multiplied by 100,000. Each observation is a crop-district-decade. Observations are
weighted by the inverse of the variance of the elasticity estimate. Both estimates and
weights winsorized at the 1 percent level. Elasticity is the coefficient of a regression of log
prices on log production for a particular crop-district-decade. All columns instrument
production with local rainfall shocks bar column 3 which shows the OLS. Standard errors
clustered at the district-decade level are reported in parentheses. Stars indicate statistical
significance: * p<.10 ** p<.05 *** p<.01.
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Table 4: PREFERENCE PARAMETERS

Dependent variable: Log Budget Share
(1) (2)

Transformed Coefficients OLS IV
Elasticity σ 1.598*** 2.382***

(0.022) (0.040)
Rice α 0.110*** 0.115***

(0.001) (0.001)
Wheat α 0.506*** 0.396***

(0.010) (0.009)
Sorghum α 0.516*** 0.312***

(0.015) (0.011)
Pearl Millet α 0.429*** 0.311***

(0.015) (0.012)
Maize α 0.288*** 0.201***

(0.011) (0.008)
Barley α 0.199*** 0.160***

(0.021) (0.015)
Finger Millet α 0.323*** 0.205***

(0.013) (0.009)
Chickpea α 0.132*** 0.195***

(0.003) (0.005)
Pigeon Pea α 0.419*** 0.974

(0.012) (0.046)
Rapeseed α 0.634*** 1.433***

(0.018) (0.065)
Groundnut α 0.766*** 1.661***

(0.021) (0.073)
Other Oil α 0.288*** 0.417***

(0.006) (0.011)
Sugarcane α 0.263*** 0.322***

(0.005) (0.007)
Other α 5.355*** 5.105***

(0.078) (0.074)
Village FE Yes Yes
First Stage F Stat 6871.21
R-squared 0.69 0.93
Observations 750115 750074

Notes: Estimates of the elasticity of local budget shares to village-level median prices.
Each observation is a household-good pair from the 1987 NSS household surveys.
Observations are weighted by NSS survey weights. IV estimates instrument log median
village prices with log median village prices in neighboring village. Coefficients on prices
transformed by 1− x, good fixed effects transformed by ex. Standard errors clustered at
the village level are reported in parentheses. Stars indicate statistical significance: * p<.10
** p<.05 *** p<.01.
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Table 5: PRICES, OWN YIELDS AND DISTANCE-WEIGHTED OTHERS’ YIELDS

Dependent variable: Log Price
(1) (2) (3)

ln yigt -0.041*** -0.044*** -0.037***
(0.004) (0.006) (0.004)

∑j 6=i D−φ
ij ln(

yjgt
yigt

) -0.008***
(0.002)

∑j 6=i D−φ
ij ln(

yjgt
yigt

) (phi=1) -0.002***
(0.001)

∑j 6=i D−φ
ij ln(

yjgt
yigt

) (alt. speed) -0.007***
(0.002)

District-year FE Yes Yes Yes
Crop-district-decade FE Yes Yes Yes
Crop-year FE Yes Yes Yes
R-squared 0.948 0.948 0.948
Observations 82744 82744 82744

Notes: Ordinary least squares. Estimates of local prices
regressed on own log yields and travel time weighted average
of other districts’ yields. Each observation is a crop-district-
year. Standard errors reported in parentheses. Stars indicate
statistical significance: * p<.10 ** p<.05 *** p<.01.
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Table 6: ESTIMATED RISK AVERSION AND INSURANCE

(1) (2) (3) (4)
OLS OLS IV IV

Variance of real 0.899*** 1.349*** 1.329*** 1.794***
returns (0.098) (0.124) (0.157) (0.216)
Rural banks per -7.117*** -7.184***
capita * Variance of real returns (1.105) (2.212)
District-decade FE Yes Yes Yes Yes
District-crop FE Yes Yes Yes Yes
Crop-decade FE Yes Yes Yes Yes
First stage F-stat 964.661 352.048
R-squared 0.860 0.862 0.858 0.860
Observations 11630 11630 11630 11630

Notes: Ordinary least squares. Each observation is a crop-district-decade triplet to which
a farmer allocated more than a tenth of a percent of her time. The dependent variable is
the mean real returns of a crop. The independent variable is the marginal contribution of
a crop to the total variance of real returns. Standard errors clustered at the district-decade
level are reported in parentheses. Stars indicate statistical significance: * p<.10 ** p<.05
*** p<.01.
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Table 8: EXPLAINING THE HETEROGENEITY ACROSS DISTRICTS IN THE GAINS FROM THE
EXPANSION OF THE INDIAN HIGHWAY NETWORK

(1) (2) (3)
1980s 0.007*** 0.000 0.001

(0.001) (0.001) (0.001)
1990s 0.018*** -0.002 0.001

(0.001) (0.003) (0.002)
2000s 0.034*** 0.008* 0.012***

(0.002) (0.005) (0.003)
Log market access 0.040*** 0.244***

(0.008) (0.017)
Number of crops -0.017***
× Log market access (0.001)
Correlation of mean -0.023**
and std.dev. of yields × Log MA (0.009)
District FE Yes Yes Yes
R-squared 1.000 1.000 1.000
Observations 1232 1232 1232

Notes: Ordinary least squares. Each observation is a district-decade pair. The dependent
variable is estimated welfare in a district-decade from expanding the Indian highway
network (holding all other structural parameters fixed). Number of crops is the number
of crops with observed yields in the 1970s in a district. The correlation between mean
and standard deviation of yields is the correlation across crops within district; a positive
(negative) value indicates that crops with higher means in a district also tend to be more
(less) risky. Standard errors clustered at the district level are reported in parentheses.
Stars indicate statistical significance: * p<.10 ** p<.05 *** p<.01.
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Figure 3: The spatial distribution of the gains from trade

Notes: The left panel figure shows the distribution across districts in the gains from trade
from the expansion of the highway network between the 1970s to the 2000s. To calculate
the gains from trade, we hold technology and effective risk aversion parameters constant
at their 1970s levels but allow trade costs to change as the Indian highway network
expands over time. For each district in each decade, we then calculate the optimal
reallocation of labor across different crops and the associated change welfare. The right
frame shows the spatial dispersion of change in market access between the 1970s and the
2000s, where the market access is measured as an inverse travel time weighted average
of agricultural output in all districts, and travel times are calculated using the observed
highway network. In both figures, the gains are reported by decile, where red indicates
greater gains and blue indicates smaller gains.
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A Appendix
A.1 A microfoundation for insurance

In this subsection, we provide a microfoundation for the assumption that in the presence of
(costly) insurance, equilibrium real income after insurance is equal to a Cobb-Douglas combina-
tion of equilibrium real income prior to insurance and expected income. To save on notation, in
what follows, we will denote states of the world with subscripts and the probability of state of the
world s with πs. Denote the real income realization prior to insurance as Is and denote the real
income post insurance as Cs.

The goal is to show that:
Cs = κ Iχ

s E (Is)
1−χ , (25)

where χ ∈ [0, 1] and κ ≡ E[Is]
χ

E[Iχ
s ]

is a scalar necessary to ensure that the mean income remains

constant before and after insurance.
To micro-found equation (25), we proceed as follows. As in the main text, farmers are as-

sume to be risk averse with constant relative risk aversion, but now we allow them the ability
to purchase insurance. A farmer can purchase insurance which pays out one unit of income in
state of the world s for price ps. Hence, consumption in state of the world s will be the sum of
the realized income in that state and the insurance payout less the money spent on insurance:
Cs = Is + qs −∑t ptqt. A farmer’s expected utility function is:

E [U] = ∑
s

πs
1

1− ρ

(
Is + qs −∑

t
ptqt

)1−ρ

,

where as in the main text ρ ≥ 0 is the level of risk aversion of the farmer.
Farmers purchase their insurance from a large number of “money-lenders” (or, equivalently,

banks). Money-lenders have the same income realizations as farmers, but are distinct from farmers
in that they are less risk averse. For simplicity, we assume the money-lenders also have constant
relative risk aversion preferences with risk aversion parameter λ ≤ ρ. Because lenders are also
risk averse, farmers will not be able to perfectly insure themselves. Money lenders compete with
each other to lend money, and hence the price of purchasing insurance in a particular state of the
world is determined by the marginal cost of lending money.

We first calculate the price of a unit of insurance in state of the world s. Since the price of
insurance is determined in perfect competition, it must be the case that each money lender is just
indifferent between offering insurance and not:

∑
t 6=s

πt
1

1− λ
(It + εps)

1−λ + πs
1

1− λ
(It + εps − ε)1−λ = ∑

t
πt

1
1− λ

I1−λ
t ,

where the left hand side is the expected utility of a money-lender offering an small amount ε of
insurance (which pays εps with certainty but costs ε in state of the world s) and the left hand side
is expected utility of not offering the insurance. Taking the limit as ε approaches zero yields that
the price ensures that the marginal utility benefit of receiving psε in all other states of the world is
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equal to the marginal utility cost of paying ε (1− ps) in state of the world s.

psε ∑
t 6=s

πt I−λ
t = ε (1− ps)πs I−λ

s ⇐⇒

ps =
πs I−λ

s

∑t πt I−λ
t

. (26)

Equation (26) is intuitive: it says that the price of insuring states of the world with low aggregate
income shocks is high.

Now consider the farmer’s choice of the optimal level of insurance. Farmers will choose the
quantity of insurance to purchase in each period in order to maximize their expected utility:

max
{qs}

∑
s

πs
1

1− ρ

(
Is + qs −∑

t
ptqt

)1−ρ

which yields the following FOC with respect to qs:

πs

(
Is + qs −∑

t
ptqt

)−ρ

= ps ∑
t

πt

(
It + qt −∑

t
ptqt

)−ρ

⇐⇒

πsC
−ρ
s

∑t πtC
−ρ
t

= ps. (27)

Substituting the equilibrium price from equation (26) into equation (27) and noting that E [C−ρ] =

∑t πtC
−ρ
t and E

[
I−λ
]
= ∑t πt I−λ

t yields:

C−ρ
s

E [C−ρ]
=

I−λ
s

E [I−λ]
. (28)

As in the paper, suppose that ln I ∼ N
(
µI , σ2

I
)

. Then we have:

ln
(

I−λ
s

E [I−λ]

)
∼ N

(
−1

2
λ2σ2

I , λ2σ2
I

)
,

so that it also is the case that ex-post insurance is log normally distributed (with an arbitrary mean
of log returns µC):

ln
(

C−ρ

E [C−ρ]

)
∼ N

(
−1

2
λ2σ2

I , λ2σ2
I

)
⇐⇒

ln C ∼ N
(

µC,
λ2

ρ2 σ2
I

)
,

where µC is an arbitrary mean of log returns. The arbitrary mean arises because the first order
conditions (27) are homogeneous of degree zero in consumption, i.e. the first order conditions do
not pin down the scale of ex-post real income. To ensure that access to insurance only affects the
second moment of returns, we assume that the average income after insurance is equal to average
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income before insurance, i.e:

E [C] = E [I] ⇐⇒

exp
{

µC +
1
2

λ2

ρ2 σ2
I

}
= exp

{
µI +

1
2

σ2
I

}
⇐⇒

µC = µI +
1
2

σ2
I

(
1−

(
λ

ρ

)2
)

.

As a result, we can re-write equation (28) as:

Cs = I
λ
ρ

s E
[
C−ρ

]− 1
ρ E
[

I−λ
] 1

ρ ⇐⇒

Cs = κ Iχ
s E (Is)

1−χ ,

where χ ≡ λ
ρ ∈ [0, 1] and κ ≡ E[Is]

χ

E[Iχ
s ]

as claimed.

A.2 An alternative derivation of the no-arbitrage equation based on convex trans-
portation costs

In the paper, we show that under the appropriate set of assumptions, heterogeneous traders
and a market clearing condition imply the following no-arbitrage condition:

Cig (s)
Qig (s)

= ∏
j 6=i

(
pig (s)
pjg (s)

ϕg (s)
)εij

,

i.e. goods flow toward locations with higher relative prices. In this subsection, we provide an al-
ternative setup that generates the same no-arbitrage condition assuming that transportation costs
are increasing and convex in the quantity traded.35 For notational simplicity, we omit the good g
and state s notation in what follows.

Suppose that iceberg trade costs τij between i and j are increase in the quantity shipped from i
to j with the following functional form:

ln τij =
1
ε ij

(
Qij + κi − κj

)
, (29)

where {κi} are (endogenous) constants that capture the relative cost of importing versus exporting
from a particular location (a larger κi indicates it is relatively more costly to export from a location
than for that location to import). Because these are relative costs, without loss of generality we
assume ∑N

i=1 κi = 0.
In equilibrium, trade flows from i to j, Qij, will only be positive if pj ≥ pi, in which case the

following no-arbitrage condition holds:

ln pj − ln pi = ln τij ⇐⇒

ln pj − ln pi = ln ϕ +
1
ε ij

(
Qij + κi − κj

)
⇐⇒

Qij = ε ij
(
ln pj − ln pi − ln ϕ

)
− κi + κj (30)

35We are grateful to Rodrigo Adao for pointing out this alternative setup.
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iSimilarly, trade flows from j to i, Qji, will only be positive if pi ≥ pj, in which case the following
no-arbitrage equation holds:

ln pi − ln pj = ln τji ⇐⇒

ln pi − ln pj = ln ϕ +
1
ε ji

(
Qji + κj − κi

)
⇐⇒

Qji = ε ji
(
ln pi − ln pj − ln ϕ

)
+ κi − κj (31)

Market clearing implies the total quantity consumed is equal to the total quantity imported:

Ci = Qii + ∑
j 6=i

Qji,

while the total quantity produced is equal to the total quantity exported:

Qi = Qii + ∑
j 6=i

Qij.

Hence the difference between the quantity consumed and the quantity produced is simply equal
to the net imports:

Ci −Qi = ∑
j 6=i

Qji −∑
j 6=i

Qij. (32)

As in the main text, assume that ε ij = ε ji. Then substituting the no-arbitrage equations (30) and
(31) into the market clearing condition (32) yields:

Ci −Qi = ∑
Qji>0

(
ε ji
(
ln pi − ln pj

)
+ κi − κj

)
− ∑

Qij>0

(
ε ij
(
ln pj − ln pi

)
− κi + κj

)
⇐⇒

Ci −Qi = ∑
j 6=i

ε ij
(
ln pi − ln pj

)
+ ∑

j 6=i

(
κi − κj

)
(33)

Finally, we suppose that:

∑
j 6=i

(
κi − κj

)
= (Ci − ln Ci)− (Qi − ln Qi) + ∑

j 6=i
ε ij ln ϕ, (34)

for some ϕ > 0. Note that equation (34) can be written in matrix notation as:

A~κ = b,

where A =
[
Aij
]
=

{
∑i 6=j ε ij if i = j
−ε ij if i 6= j

and b =
[
(Ci − ln Ci)− (Qi − ln Qi) + ∑j 6=i ε ij ln ϕ

]
. Note

that A has rank N − 1, so with the additional constraint that ∑N
i=1 κi = 0 there is a unique set of

{κi} that solve equation (34) . Furthermore, the ϕ can be determined by the aggregate market
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clearing constraint that:

N

∑
i=1

(Ci −Qi) = 0 ⇐⇒

N

∑
i=1

(
∑
j 6=i

ε ij
(
ln pi − ln pj

)
+ ∑

j 6=i

(
κi − κj

))
= 0 ⇐⇒

N

∑
i=1

∑
j 6=i

(
κi − κj

)
=

N

∑
i=1

∑
j 6=i

ε ij
(
ln pj − ln pi

)
As a result, equation (33) becomes:

Ci −Qi = ∑
i 6=j

ε ij
(
ln pi − ln pj

)
+ ∑

i 6=j

(
κi − κj

)
⇐⇒

ln Ci − ln Qi = ∑
i 6=j

ε ij
(
ln pi − ln pj + ln ϕ

)
⇐⇒

Ci

Qi
= ∏

i 6=j

(
pi

pj
ϕ

)εij

, (35)

as required.

A.3 Derivation of the equilibrium crop choice

In this subsection, we provide the full derivation of the equilibrium crop choice when yields
are both deterministic and volatile.

A.3.1 No volatility

We begin with the fact that the returns per unit hectare of all crops that farmers produce must
be equalized for farmers to be willing to produce them. Taking logs of equation (11) yields:

ln pig + ln Aig = ln wi. (36)

Recall from equation (9) that combining the no-arbitrage equation and the CES demand equation
yields the following set of equilibrium prices:

ln pig =
1
σ

ln αg +
N

∑
j=1

Tij ln Dj −
N

∑
j=1

Tij ln
(

ϕ
ε̄ j
g

)
−

N

∑
j=1

Tij ln Ajg −
N

∑
j=1

Tij ln θjg. (37)

Note from the previous equation that because Tii > 0, as the land allocated to crop g in location
i goes to zero, its price rises to infinity, which implies that all crops will be produces in positive
amounts in all locations; intuitively, there will always be some “buying” traders with very high
trade costs that will choose to source locally regardless of the local price.

Substituting the equilibrium price equation (37) into the farmer indifference condition equa-
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tion (36) yields:

1
σ

ln αg +
N

∑
j=1

Tij ln Dj −
N

∑
j=1

Tij ln
(

ϕ
ε̄ j
g

)
−

N

∑
j=1

Tij ln Ajg −
N

∑
j=1

Tij ln θjg + ln Aig = ln wi ⇐⇒

1
σ

ln αg +
N

∑
j=1

Tij ln Dj −
N

∑
j=1

Tij ln ϕ
ε̄ j
g −

N

∑
j=1

Tij ln Ajg + ln Aig − ln wi =
N

∑
j=1

Tij ln θjg ⇐⇒

1
σ

ln αg + T ln ~D− T ln
~
ϕ

¯ j
gε− T ln ~Ag + ln ~Ag − ln ~w = T ln~θg,

where the last line writes the system of equation in matrix notation. Multiplying both sides of the
equation by T−1 = E allows us to solve for the equilibrium pattern of specialization up to scale:

ln~θg = E
(

1
σ

ln αg + ln ~Ag − ln ~w
)
+ ln ~D− ln

~
ϕ

¯ j
gε− ln ~Ag ⇐⇒

ln θig =
N

∑
j=1

Eij

(
1
σ

ln αg + ln Ajg − ln wj

)
+ ln Di − ln ϕε̄i

g − ln Aig ⇐⇒

ln θig =

(
σ + ∑

j 6=i
ε ij

)(
1
σ

ln αg + ln Aig − ln wi

)
−∑

j 6=i
ε ij

(
1
σ

ln αg + ln Ajg − ln wj

)
+ ln Di − ln ϕε̄i

g − ln Aig ⇐⇒

ln θig = ln αg + (σ− 1) ln Aig − ln ϕε̄i
g + ∑

j 6=i
ε ij
(
ln Aig − ln Ajg

)
+

(
ln Di − σ ln wi −∑

j 6=i
ε ij
(
ln wi − ln wj

))
⇐⇒

ln θig = ln αg + (σ− 1) ln Aig − ln ϕε̄i
g + ∑

j 6=i
ε ij
(
ln Aig − ln Ajg

)
+ Ci ⇐⇒

θig ∝ αg Aσ−1
ig ϕ−ε̄i

g ∏
j 6=i

(
Aig

Ajg

)εij

,

where Ci ≡ ln Di − σ ln wi −∑j 6=i ε ij
(
ln wi − ln wj

)
is a crop-invariant constant. Finally, imposing

the land constraint that ∑G
g=1 θig = 1, we can solve for the scale, yielding:

θig =
αg Aσ−1

ig ϕ−ε̄i
g ∏j 6=i

(
Aig
Ajg

)εij

∑G
h=1 αh Aσ−1

ih ϕ−ε̄i
h ∏j 6=i

(
Aih
Ajh

)εij
,

as required.

A.3.2 With volatility

The derivation of the optimal crop choice in the presence of volatility proceeds analogously to
the deterministic case, with the first order conditions of the portfolio choice problem in equation
(16) replacing the farmer indifference condition from equation (11):

µz,i
g − ρi

G

∑
h=1

θihΣz,i
gh = λi,
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where µz,i
g ≡

exp{µx,i
g }

∑G
g=1 θig exp{µx,i

g } +
1
2 Σx,i

gg −∑G
h=1 θih

(
Σx,i

gh − Σz,i
gh

)
. Note that we can re-write this as:

µx,i
g = ln

(
λi −

(
1
2

Σx,i
gg −

G

∑
h=1

θih

(
Σx,i

gh − Σz,i
gh

)
− ρi

G

∑
h=1

θihΣz,i
gh

))

+ ln
G

∑
g=1

θig exp
{

µx,i
g

}
⇐⇒

1
σ

ln αg −
N

∑
j=1

Tij ln ϕ̄
ε̄ j
g −

N

∑
j=1

Tij

(
ln θjg + µ

A,j
g

)
+ µA,i

g = ln

(
λi −

(
1
2

Σx,i
gg −

G

∑
h=1

θih

(
Σx,i

gh − Σz,i
gh

)
− ρi

G

∑
h=1

θihΣz,i
gh

))

+ ln
G

∑
g=1

θig exp
{

µx,i
g

}
where the second line substituted in the expression for µx,i

g from equation (38) from Proposition
1. Rearranging this expression yields the following system of equations for the equilibrium crop
choice:

N

∑
j=1

Tij ln θjg =
1
σ

ln αg −
N

∑
j=1

Tij ln ϕ̄
ε̄ j
g −

N

∑
j=1

Tijµ
A,j
g + µA,i

g

− ln

(
λi −

(
1
2

Σx,i
gg −

G

∑
h=1

θih

(
Σx,i

gh − Σz,i
gh

)
− ρi

G

∑
h=1

θihΣz,i
gh

))
− ln

G

∑
g=1

θig exp
{

µx,i
g

}
,

which as in the deterministic case can be inverted to (implicitly) solve for the equilibrium crop
choice up to scale:

ln θig =
N

∑
j=1

Eij

(
1
σ

ln αg

)
− ln ϕ̄

ε̄ j
g − µA,i

g

+
N

∑
j=1

Eij

(
µA,i

g − ln

(
λi −

(
1
2

Σx,i
gg −

G

∑
h=1

θih

(
Σx,i

gh − Σz,i
gh

)
− ρi

G

∑
h=1

θihΣz,i
gh

)))
− Ci ⇐⇒

ln θig = ln αg − ln ϕ̄
ε̄ j
g − µA,i

g + σ ln big + ∑
j 6=i

ε ij
(
ln big − ln bjg

)
− Ci

where Ci ≡ ∑N
j=1 Eij ln ∑G

g=1 θig exp
{

µx,i
g

}
is a good invariant constant and:

ln big ≡ µA,i
g − ln

(
λi −

(
1
2

Σx,i
gg −

G

∑
h=1

θih

(
Σx,i

gh − Σz,i
gh

)
− ρi

G

∑
h=1

θihΣz,i
gh

))
.

Taking the exponent of both sides, this yields:

θig ∝ αg exp
(

µA,i
g

)−1
ϕ̄−ε̄i

g bσ
ig ∏

j 6=i

(
big

bjg

)εij

,

as required.
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A.4 Proof of Proposition 1

Proposition. [Restated with all definitions]The distribution of the real returns of farmer f in location i is
approximately log-normal, i.e.:

ln Z f
i ∼ N

(
µZ

i , σ2,Z
i

)
,

where µZ
i and σ2,Z

i are defined in Appendix A.4.

Proposition 4. The mean of the log real returns can be expressed as:

µZ
i ≡ ln

G

∑
g=1

θ
f
ig exp

{
µx,i

g

}
+

1
σ− 1

ln
G

∑
g=1

αg exp
{

µ
y,i
g

}
+

1
2

(
G

∑
g=1

θ
f
igΣx,i

gg −
G

∑
g=1

G

∑
h=1

θ
f
ihθ

f
igΣx,i

gh

)

+
1
2
(σ− 1)

(
G

∑
g=1

αgΣp,i
gg −

1
2

G

∑
g=1

G

∑
h=1

αgαhΣp,i
gh

)
+ ln (1 + φ̄) ,

where µx,i
g is the mean of the log nominal revenue of crop g per unit time:

µx,i
g ≡

1
σ

ln αg −
(

N

∑
j=1

Tij ε̄ j

) (
ln ϕ̄g

)
−

N

∑
j=1

Tij

(
ln θjg + µ

A,j
g

)
+ µA,i

g , (38)

µ
y,i
g is the mean of the log price of good g (to the power of (1− σ)):

µ
y,i
g ≡ (1− σ)

(
1
σ

ln αg −
(

N

∑
j=1

Tij ε̄ j

)
ln ϕ̄g −

N

∑
j=1

Tij

(
ln θjg + µ

A,j
g

))
,

Σx,i is the G× G variance-covariance matrix of nominal revenue across crops:

Σx,i =

(
(1− Tii) I−

(
N

∑
j=1

Tij ε̄ j

)
Dϕ,i

)
ΣA,i

(
(1− Tii) I−

(
N

∑
j=1

Tij ε̄ j

)
Dϕ,i

)′

+ ∑
j 6=i

((
N

∑
j=1

Tij ε̄ j

)
Dϕ,j + TijI

)
ΣA,j

((
N

∑
j=1

Tij ε̄ j

)
Dϕ,j + TijI

)′
,

Σp,i is the G× G variance-covariance matrix of prices across crops:

Σp,i =
N

∑
j=1

((
N

∑
j=1

Tij ε̄ j

)
Dϕ,j + TijI

)
ΣA,j

((
N

∑
j=1

Tij ε̄ j

)
Dϕ,j + TijI

)′
,

φ̄ is the return to farmers from traders and ϕ̄g is the equilibrium market tightness, both evaluated at the

mean of the log realized productivity shocks, and Dϕ,j ≡
[

∂ ln ϕg
∂ ln Ajh

]
gh

is the G × G matrix of elasticities of

the market tightness with respect to productivity shocks in village j, evaluated at the mean of the log realized
productivity shocks.
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The variance of the log real returns can be expressed as:

σ2,Z
i =

G

∑
g=1

G

∑
h=1

θ
f
igθ

f
ihΣz,i

gh,

where:

Σz,i ≡
(

I−
(

TiiB +

(
N

∑
j=1

Tij ε̄ j

)
BDϕ,j + D̃φ,i

))
ΣA,i

(
I−

(
TiiB +

(
N

∑
j=1

Tij ε̄ j

)
BDϕ,j + D̃φ,j

))′

+ ∑
j 6=i

(
TijB +

(
N

∑
k=1

Tjk ε̄k

)
BDϕ,j + D̃φ,i

)
ΣA,j

(
TijB +

(
N

∑
k=1

Tjk ε̄k

)
BDϕ,j + D̃φ,j

)′
,

B ≡ (IG − 1G~α
′) is a G × G matrix (where 1G is an G × 1 matrix of ones and~α ≡

[
αg
]

g) and D̃φ,j ≡

1G
(
Dφ,j)′, where Dφ,j ≡

[
∂ ln φ

∂ ln Ajg

]
g

is a vector of elasticities of the return to farmers from traders to the

productivity shocks in village j.

Proof. We first log-linearize equilibrium market tightness and transfers from farmers. From equa-
tion (10), given the crop choice of farmers, the equilibrium market tightness

{
ϕg
}

and transfers
from traders to farmers φ can be written as implicit functions of the realized productivity shocks.
As a result, we can log-linearize both around the mean of log productivities:

ln ϕ
({

ln Aig (s)
})
≈ ln ϕ̄

({
µA,i

g

})
+

N

∑
j=1

Dϕ,j
(

ln Aj (s)− µA,j
)

ln
(
1 + φ

({
ln Aig (s)

}))
≈ ln

(
1 + φ̄

({
µA,i

g

}))
+

N

∑
j=1

Dφ,j
(

ln Aj (s)− µA,j
)

where Dϕ,j ≡
[

∂ ln ϕg
∂ ln Ajh

]
gh

and Dφ,j ≡
[

∂ ln φ
∂ ln Ajh

]
.

We proceed by applying this approximation to log nominal revenue per unit of time, ln xig (s) ≡
ln pig (s) + ln Aig (s). Using expression (9) for prices (ignoring the Di (s) term since it cancels out
in the utility function; see equation (13)), we have:

ln xig (s) =
1
σ

ln αg −
(

N

∑
j=1

Tij ∑
k 6=j

ε jk

)(
ln ϕ̄g +

N

∑
j=1

Dϕ,j
g

(
ln Aj (s)− µA,j

))

−
N

∑
j=1

Tij ln
(
θjg + Ajg (s)

)
+ ln Aig (s) .

From Assumption (1), the distribution of productivities is log-normal and the log nominal revenue
per unit of time is a linear combination of the log productivities, it too is distributed log normally.
Using the familiar expression for the distribution of an affine transformation of a normally dis-
tributed variable, we have:

ln xi ∼ N
(

µx,i, Σx,i
)

,
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where:

µx,i
g ≡

1
σ

ln αg −
(

N

∑
j=1

Tij ε̄ j

) (
ln ϕ̄g

)
−

N

∑
j=1

Tij

(
ln θjg + µ

A,j
g

)
+ µA,i

g

Σx,i ≡
(
(1− Tii) I−

(
N

∑
j=1

Tij ε̄ j

)
Dϕ,i

)
ΣA,i

(
(1− Tii) I−

(
N

∑
j=1

Tij ε̄ j

)
Dϕ,i

)′

+ ∑
j 6=i

((
N

∑
j=1

Tij ε̄ j

)
Dϕ,j + TijI

)
ΣA,j

((
N

∑
j=1

Tij ε̄ j

)
Dϕ,j + TijI

)′
.

Similarly, define ln yig (s) = (1− σ) ln pig (s). Again using the log-linearization of ϕg and expres-
sion (9), we have:

ln yi ∼ N
(

µy,i, Σy,i
)

,

where:

µ
y,i
g ≡ (1− σ)

(
1
σ

ln αg −
(

N

∑
j=1

Tij ε̄ j

)
ln ϕ̄g −

N

∑
j=1

Tij

(
ln θjg + µ

A,j
g

))

Σy,i = (σ− 1)2 Σp,i

Σp,i =
N

∑
j=1

((
N

∑
j=1

Tij ∑
k 6=j

ε jk

)
Dϕ,j + TijI

)
ΣA,j

((
N

∑
j=1

Tij ∑
k 6=j

ε jk

)
Dϕ,j + TijI

)′
.

Given these definitions, note that we can write the (log of) the real returns Z f
i (s) as:

ln Z f
i (s) = ln

G

∑
g=1

θ
f
igxig (s) +

1
σ− 1

ln
G

∑
h=1

αhyig (s) + ln (1 + φ (s))

As in Campbell and Viceira (2002), we now rely on a second-order approximaiton of the log real
returns around the mean log productivities. In particular, we write:

ln Z f
i (s) ≈

(
ln

G

∑
g=1

θ
f
ig exp

{
µx,i

g

}
−

G

∑
g=1

θ
f
igµx,i

g

)
+

1
σ− 1

(
ln

G

∑
h=1

αh exp
{

µ
y,i
g

}
−

G

∑
h=1

αhµ
y,i
g

)

+
G

∑
g=1

θ
f
ig ln xig (s) +

1
σ− 1

G

∑
h=1

αh ln yih (s) +
1
2

G

∑
g=1

θ
f
igΣx,i

gg −
1
2

G

∑
g=1

G

∑
h=1

θ
f
ihθ

f
igΣx,i

gh

+
1
2
(σ− 1)

G

∑
g=1

αgΣp,i
gg − (σ− 1)

1
2

G

∑
g=1

G

∑
h=1

αgαhΣp,i
gh

+ ln (1 + φ̄) +
N

∑
j=1

Dφ,j
(

ln Aj (s)− µA,j
)

.

Again, because the log real returns ln Z f
i (s) are an affine transformation of log-normally dis-
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tributed random variables, the log real returns are also log-normally distributed:

ln Z f
i ∼ N

(
µZ

i , σ2,Z
i

)
.

Taking expectations of this expression gives us the mean:

µZ
i ≡ ln

G

∑
g=1

θ
f
ig exp

{
µx,i

g

}
+

1
σ− 1

ln
G

∑
g=1

αg exp
{

µ
y,i
g

}
+

1
2

(
∑
g

θ
f
igΣx,i

gg −∑
g

∑
h

θ
f
ihθ

f
igΣx,i

gh

)

+
1
2
(σ− 1)

(
G

∑
g=1

αgΣp,i
gg −

1
2

G

∑
g=1

G

∑
h=1

αgαhΣp,i
gh

)
+ ln (1 + φ̄) ,

whereas the variance can be written as:

σ2,Z
i =

G

∑
g=1

G

∑
h=1

θ
f
igθ

f
ihΣz,i

gh,

where:

Σz,i ≡
(

I−
(

TiiB +

(
N

∑
j=1

Tij ε̄ j

)
BDϕ,j + D̃φ,i

))
ΣA,i

(
I−

(
TiiB +

(
N

∑
j=1

Tij ε̄ j

)
BDϕ,j + D̃φ,j

))′

+ ∑
j 6=i

(
TijB +

(
N

∑
k=1

Tjk ε̄k

)
BDϕ,j + D̃φ,i

)
ΣA,j

(
TijB +

(
N

∑
k=1

Tjk ε̄k

)
BDϕ,j + D̃φ,j

)′
,

as claimed.

A.5 Proof of Proposition 2

We first restate the proposition:

Proposition. [Restated] Suppose that the Pareto distribution of trade costs can be written as ε ij (t) = ε ijt,
where t ≥ 0 captures the overall level of openness of the world and an increase in t indicates a fall in trade
costs and there are a large number of villages (so that the equilibrium market tightness is constant across
states of the world) Then:

(1) [Stylized Fact #1] Define σ2
i,Y and σ2

i,P to be the variance of the log of the numerator and the denom-

inator, respectively, of the real returns Z f
i (s). Then:

dσ2
i,Y

dt
|t=0 > 0 and

dσ2
i,P

dt
|t=0 < 0,

i.e. moving from autarky to costly trade increases the volatility of nominal income and decreases the volatil-
ity of prices.

(2) [Stylized Fact #2] Any increase in openness decreases the responsiveness of local prices to local yield
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shocks, i.e.:
d
dt

(
−

∂ ln pig (s)
∂ ln Aig (s)

)
< 0.

(3) [Stylized Fact #3] Any increase in openness causes farmers to reallocate production toward crops
with higher mean yields. Moreover, as long as farmers are sufficiently risk averse (i.e. ρi is sufficiently large
and positive), goods are substitutes (i.e. σ ≥ 1), and local prices are not too responsive to local productivity
shocks (i.e. (1− Tii) θig ≥ Tiiαg), then any increase in openness causes farmers to reallocate production to-
ward crops with less volatile yields, although the latter effect is attenuated the greater the access to insurance
(i.e. the lower ρi). Formally for any two crops g 6= h:

d
dt

∂
(
ln θig − ln θih

)
∂µA

ig
> 0,

d
dt

∂
(
ln θig − ln θih

)
∂ΣA,i

gg
≤ 0, and − d

dt
∂2 (ln θig − ln θih

)
∂ΣA,i

gg ∂ρi
≥ 0.

Proof. [Part 1]. From Proposition 1 that the nominal income xig (s) ≡ Aig (s) pig (s) is log-normally
distributed:

ln xi ∼ N
(

µx,i, Σx,i
)

,

where:

µx,i
g ≡

1
σ

ln αg −
(

N

∑
j=1

Tij ε̄ j

) (
ln ϕ̄g

)
−

N

∑
j=1

Tij

(
ln θjg + µ

A,j
g

)
+ µA,i

g

Σx,i ≡
(
(1− Tii) I−

(
N

∑
j=1

Tij ε̄ j

)
Dϕ,i

)
ΣA,i

(
(1− Tii) I−

(
N

∑
j=1

Tij ε̄ j

)
Dϕ,i

)′

+ ∑
j 6=i

((
N

∑
j=1

Tij ε̄ j

)
Dϕ,j + TijI

)
ΣA,j

((
N

∑
j=1

Tij ε̄ j

)
Dϕ,j + TijI

)′
.

Applying the same second order approximation as in Proposition 1, we have that the variance of
the log nominal income is approximately:

σ2
Y,i ≡

G

∑
g=1

G

∑
h=1

θigθihΣx,i
gh .

Similarly, the variance of the log price index is approximately:

σ2
P,i ≡ (σ− 1)

G

∑
g=1

G

∑
h=1

αgαhΣp,i
gh ,

where:

Σp,i =
N

∑
j=1

((
N

∑
j=1

Tij ∑
k 6=j

ε jk

)
Dϕ,j + TijI

)
ΣA,j

((
N

∑
j=1

Tij ∑
k 6=j

ε jk

)
Dϕ,j + TijI

)′
.
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If there are many locations (so that Dϕ,j = 0), then these expressions simplify:

Σx,i = (1− Tii)ΣA,i + ∑
j 6=i

T2
ijΣ

A,j.

Σp,i =
N

∑
j=1

T2
ijΣ

A,j,

so that:
∂σ2

i,Y

∂Tij
=

{
−2 (1− Tii)∑g ∑h ΣA,i

gh θigθih < 0 if i = j

2Tij ∑g ∑h ΣA,i
gh θigθih > 0 if i 6= j

and:
∂σ2

P,i

∂Tij
= 2Tij

G

∑
g=1

G

∑
h=1

αgαhΣA,j
gh > 0.

As a result, we have:

dσ2
i,Y

dt
=

1
σ2

(
∑
j 6=i

ε ij
dσ2

i,Y

dTij
−∑

j 6=i
ε ij

dσ2
i,Y

dTii

)
⇐⇒

dσ2
i,Y

dt
=

1
σ2 2

(
∑
j 6=i

ε ijTij + ∑
j 6=i

ε ij (1− Tii)

)
∑
g

∑
h

ΣA,i
gh θigθih

We also have:

dσ2
i,P

dt
=

1
σ2

(
∑
j 6=i

ε ij
dσ2

i,P

dTij
−∑

j 6=i
ε ij

dσ2
i,P

dTii

)
⇐⇒

dσ2
i,Y

dt
=

1
σ2 2

(
∑
j 6=i

ε ij
(
Tij − Tii

)) G

∑
g=1

G

∑
h=1

αgαhΣA,j
gh .

Finally, evaluating at t = 0 yields:

∂σ2
i,Y

∂t
|t=0 = 2

(
σ + ∑j 6=i ε ij − 1

σ + ∑j 6=i ε ij

)(
1
σ2 ∑

j 6=i
ε ij

)(
∑
g

∑
h

ΣA,i
gh θigθih

)
> 0

∂σ2
i,P

∂t
|t=0 = −2

(
σ + ∑j 6=i ε ij − 1

σ + ∑j 6=i ε ij

)(
1
σ2 ∑

j 6=i
ε ij

)(
∑
g

∑
h

ΣA,i
gh αgαh

)
< 0,

as claimed.
[Part 2]. The matrix T (t) ≡ E (t)−1, where E (t) ≡ σI + (diag (ε1N + (ε i0)i)− ε) t and ε is the

N × N matrix with zeros on diagonal and ε ij off diagonal. Using the familiar expression for the
derivative of an inverse of a matrix, we have:

dT (t)
dt

= −E (t)−1 dE (t)
dt

E (t)−1

Since E (t) is an M-matrix (see above), all elements of its inverse T (t) ≡ E (t)−1 are strictly posi-
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tive. Hence we have:
dTii (t)

dt
= −T (t) diag (ε1N + (ε i0)i)T (t) < 0

since diag (ε1N + (ε i0)i) > 0. From equation (9), we have− ∂ ln pig(s)
∂ ln Aig(s)

= −Tii, so d
dt

(
− ∂ ln pig(s)

∂ ln Aig(s)

)
< 0

as claimed.
[Part 3]. Taking logs of equation (17) yields:

ln θig = ln αg − µA,i
g − ε̄ i ln ϕg + σ ln big + ∑

j 6=i
ε ijt
(
ln big − ln bjg

)
− Ci,

where ln big ≡ µA,i
g − ln

(
λi −

(
1
2 Σx,i

gg −∑G
h=1 θih

(
Σx,i

gh − Σz,i
gh

)
− ρi ∑G

h=1 θihΣz,i
gh

))
and the crop-invariant

constant Ci ≡ ln
(

∑G
g=1 αg exp

(
µA,i

g

)−1
ϕ̄−ε̄i

g bσ
ig ∏j 6=i

(
big
bjg

)εij
)

ensures land constraint holds. Hence,

the difference in crop allocation between any two crops g 6= h can be expressed as:

ln θig − ln θih =

(
ln αg − µA,i

g − ε̄ i ln ϕg + σ ln big + ∑
j 6=i

ε ij
(
ln big − ln bjg

))
−(

ln αh − µA,i
h − ε̄ i ln ϕh + σ ln bih + ∑

j 6=i
ε ij
(
ln bih − ln bjh

))

Taking the partial derivative with respect to µA,i
g (holding constant λi) yields:

∂
(
ln θig − ln θih

)
∂µA,i

g
=

(
σ + ∑

j 6=i
ε ijt− 1

)

so that:
d
dt

∂
(
ln θig − ln θih

)
∂µA,i

g
= ∑

j 6=i
ε ij > 0,

as required. Similarly, we have:

d
dt

∂
(
ln θig − ln θih

)
∂ΣA,i

gg
=

(
∑
j 6=i

ε ij

)
∂ ln big

∂ΣA,i
gg

and:
d
dt

∂2 (ln θig − ln θih
)

∂ΣA,i
gg ∂ρi

=

(
∑
j 6=i

ε ij

)
∂2 ln big

∂ΣA,i
gg ∂ρi

Since ln big ≡ µA,i
g − ln

(
λi −

(
1
2 Σx,i

gg −∑G
h=1 θih

(
Σx,i

gh − Σz,i
gh

)
− ρi ∑G

h=1 θihΣz,i
gh

))
, we have sign

(
∂ ln big

∂ΣA,i
gg

)
=

sign

(
∂
(

1
2 Σx,i

gg−∑G
h=1 θih

(
Σx,i

gh−Σz,i
gh

)
−ρi ∑G

h=1 θihΣz,i
gh

)
∂ΣA,i

gg

)
and sign

(
∂2 ln big

∂ΣA,i
gg ∂ρi

)
= −sign

(
∂ ∑G

h=1 θihΣz,i
gh

∂ΣA,i
gg

)
. As long as

ρi is sufficiently large (i.e. producers are risk averse), then sign
(

∂ ln big

∂ΣA,i
gg

)
= −sign

(
∂ ∑G

h=1 θihΣz,i
gh

∂ΣA,i
gg

)
.

Hence, to prove the remainder of Part 3, it only remains to show that
∂ ∑G

h=1 θihΣz,i
gh

∂ΣA,i
gg

> 0, i.e. an in-
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crease in the variance of the log yield of crop g increases the total variance of real returns. To see
this, we first note that ∑G

h=1 Σz,i
ghθih = 1

2
∂

∂θig
∑G

g=1 ∑G
h=1 Σz,i

ghθigθih. Then, recall from Proposition 1 that
the variance-covariance of real returns in location i can be written as:

Σz,i ≡
(

I−
(

TiiB +

(
N

∑
j=1

Tij ε̄ j

)
BDϕ,j + D̃φ,i

))
ΣA,i

(
I−

(
TiiB +

(
N

∑
j=1

Tij ε̄ j

)
BDϕ,j + D̃φ,j

))′

+ ∑
j 6=i

(
TijB +

(
N

∑
k=1

Tjk ε̄k

)
BDϕ,j + D̃φ,i

)
ΣA,j

(
TijB +

(
N

∑
k=1

Tjk ε̄k

)
BDϕ,j + D̃φ,j

)′
,

where B ≡ (IG − 1G~α
′) is a G × G matrix (where 1G is an G × 1 matrix of ones and ~α ≡

[
αg
]

g)

and D̃φ,j ≡ 1G
(
Dφ,j)′, where Dφ,j ≡

[
∂ ln φ

∂ ln Ajg

]
g

is a vector of elasticities of the return to farmers

from traders to the productivity shocks in village j. With a large number of villages (so that the
D matrices are equal to zero) and noting that the variance-covariance matric of local yields only
enters the first term, we have:

∂

∂ΣA,i
gg

G

∑
h=1

Σz,i
ghθih =

1
2

∂2

∂ΣA,i
gg ∂θig

G

∑
g=1

G

∑
h=1

Σz,i
ghθigθih ⇐⇒

=
1
2

∂2

∂θig

∂

∂ΣA,i
gg

G

∑
g=1

G

∑
h=1

Σz,i
ghθigθih ⇐⇒

=
1
2

∂

∂θig

(
∂

∂ΣA,i
gg

~θi (I− TiiB)ΣA,i (I− TiiB)
′~θi

)
⇐⇒

=
1
2

∂

∂θig

(
∂

∂ΣA,i
gg

~θ′i
(
(1− Tii) I− Tii1G~α

′)ΣA,i ((1− Tii) I− Tii1G~α
′)′~θi

)
⇐⇒

=
1
2

∂

∂θig

(
∂

∂ΣA,i
gg

G

∑
h,l=1

(
(1− Tii)

2 ΣA,i
hl − (1− Tii) Tii

G

∑
k=1

αk

(
ΣA,i

hk + ΣA,i
kl

)
+ T2

ii

G

∑
l,k=1

ΣA,i
lk αlαk

)
θihθil

)
⇐⇒

=
1
2

∂

∂θig

(
(1− Tii)

2 θ2
ig − 2 (1− Tii) Tiiαgθig + T2

iiα
2
g

)
⇐⇒

=
1
2

∂

∂θig

(
(1− Tii) θig − Tiiαg

)2 ⇐⇒

=
(
(1− Tii) θig − Tiiαg

)
(1− Tii)

Note that Tii ≤ 1 as long as σ ≥ 1 (since ∑N
j=1 Tij =

1
σ ) so we have that:

(1− Tii) θig ≥ Tiiαg =⇒ ∂

∂ΣA,i
gg

G

∑
h=1

Σz,i
ghθih ≥ 0,

as required.
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A.6 Approximating the matrix T of price elasticities

In this subsection, we describe how we approximate the matrix T of price elasticities. Recall
that T ≡ E−1, where:

E =

{
∑j 6=i ε ij + σ if i = j
−ε ij o/w

.

Because E is diagonally dominant with negative off-diagonal elements and positive diagonal ele-
ments, it is an M-matrix. Because E is an M-matrix, it can be expressed as E = κI−B, where I is an
identity matrix, B =

[
Bij
]

where Bij ≥ 0, and κ is greater than the maximum eigenvalue of B (see
e.g. Plemmons (1977) for a discussion of the many properties of M-matrices). Define Ẽ ≡ 1

κ E and
B̃ ≡ 1

κ B. Note that Ẽ = I− B̃ is also an M-matrix and B̃ has a maximum eigenvalue smaller than 1.
Note that T = E−1 =

(
κẼ
)−1

= 1
κ Ẽ−1. Furthermore, recall that because B̃ has a maximum

eigenvalue smaller than 1, the following representation its geometric infinite sum holds:

∞

∑
k=0

B̃k =
(
I− B̃

)−1
= Ẽ−1.

Hence we can write the matrix of price elasticities as an infinite sum of the (appropriately scaled)
matrix of bilateral Pareto shape parameters:

T =
1
κ

∞

∑
k=0

(
I− 1

κ
E
)k

.

A first order approximation of T is hence:

T ≈ 2
κ

I− 1
κ2 E ⇐⇒

Tij ≈
{

1
κ2

(
2κ − σ−∑j 6=i ε ij

)
if i = j

1
κ2 ε ij o/w

Using this approximation in the estimating equation results in:

ln pigt = −
N

∑
j=1

Tij ln Ajgt + δit + δig + δgt + νigt ⇐⇒

ln pigt = −
1
κ2 (2κ − σ) ln Aigt −

1
κ2 ∑

j 6=i
ε ij ln

(
Ajgt

Aigt

)
+ δit + δig + δgt + µigt

Finally, if we assume that the Pareto shape parameters are parametrized by travel time Dij, i.e.
ε ij = βD−φ

ij , where β is an unknown parameter, we can write:

ln pigt = −γ1 ln Aigt − γ2 ∑
j 6=i

D−φ
ij ln

(
Ajgt

Aigt

)
+ δit + δig + δgt + µigt,

where γ1 ≡ 1
κ2 (2κ − σ) and γ2 ≡ β

κ2 , as claimed in the main text.
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A.7 Additional Tables and Figures

Table 9: CROP CHOICE AND OPENNESS (YIELDS INSTRUMENTED WITH RAINFALL)

Dependent variable: Fraction of land planted by crop
(1) (2) (3) (4) (5) (6) (7)

phi=1 phi=1 alt. speed alt. speed
Log(Mean Yield) 0.006*** -0.020*** -0.023*** -0.035*** -0.034*** -0.017*** -0.019***

(0.002) (0.004) (0.005) (0.006) (0.007) (0.004) (0.005)
Log(Variance Yield) -0.001* 0.004*** 0.005** 0.006*** 0.005* 0.003** 0.004*

(0.001) (0.001) (0.002) (0.002) (0.003) (0.001) (0.002)
Log(Mean)XMA 0.042*** 0.043*** 0.016*** 0.015*** 0.040*** 0.039***

(0.006) (0.008) (0.002) (0.003) (0.006) (0.007)
Log(Var)XMA -0.008*** -0.007** -0.003*** -0.002 -0.007*** -0.006*

(0.002) (0.003) (0.001) (0.001) (0.002) (0.004)
Log(Mean)XBank 0.484 0.134 0.405

(0.609) (0.924) (0.566)
Log(Var)XBank -0.306 -0.068 -0.220

(0.295) (0.426) (0.285)
Log(Mean)XMAXBank -0.242 0.164 0.141

(0.930) (0.374) (0.947)
Log(Var)XMAXBank 0.017 -0.094 -0.089

(0.458) (0.179) (0.485)
Crop-decade FE Yes Yes Yes Yes Yes Yes Yes
District-decade FE Yes Yes Yes Yes Yes Yes Yes
Crop-district FE Yes Yes Yes Yes Yes Yes Yes
R-squared 0.974 0.974 0.974 0.974 0.974 0.974 0.974
Observations 13790 13790 13765 13790 13765 13790 13764
First-stage F stat 193.542 30.381 1.211 78.864 2.562 31.744 1.054

Notes: Ordinary least squares. Crop choice regressed on the log mean and variance of yields,
and the log mean and variance of yields interacted with market access multiplied by 100,000 and
or banks per capita multiplied by 1000. Mean and variance of yield instrumented with mean
and variance of yield predicted from rainfall variation and district-crop fixed effects (allowing
coefficients on rainfall to vary by crop, state and decade). Interaction terms instrumented by
predicted yield terms interacted with market access and bank access. Each observation is a
crop-district-decade. Observations are weighted by the number of years observed within decade.
Standard errors clustered at the district-decade level are reported in parentheses. Stars indicate
statistical significance: * p<.10 ** p<.05 *** p<.01.
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Table 10: EXAMPLES OF RELATIONSHIP VOLATILITY, INSURANCE AND THE GAINS FROM
TRADE

EXAMPLE 1: Average productivity is the same in both villages
Autarky Trade Gains from Trade

No volatility
Village 1 0 0 0
Village 2 0 0 0

Volatility
Village 1 -0.125 -0.1032 0.0218
Village 2 0 0.0201 0.0201

EXAMPLE 2: Comparative advantage goods are risky
Autarky Trade Gains from Trade

No volatility
Village 1 0 0.7273 0.7273
Village 2 0 0.7273 0.7273

Volatility
Village 1 -0.125 -0.125 0
Village 2 -0.125 -0.125 0

Notes: This table reports the welfare of each village for the examples discussed in
Proposition 2 in Section 4.5. In each example, we calculate the gains from trade (i.e.
the difference between welfare with costly trade and in autarky) when productivity is
deterministic and when productivity is volatile. In example 1, two villages have the same
(unit) mean of two goods. In autarky, ε = 0, whereas in trade ε = 1. With volatility,
ΣA,1

11 = 1 and µ11 = 0.5 to keep the average yield constant. In example 2, the µ11 = 1,
µ12 = 0, µ21 = 0, and µ22 = 0 so that village 1 (2) has a comparative advantage in good
A (B). With volatility, we set ΣA,1

11 = 1 and ΣA,1
22 = 1 and reduce the log mean yield of

those two goods to 0.5 to keep average yield constant. In both examples, demand is
Cobb-Douglas with equal expenditure shares and the risk aversion parameter ρ = 2. See
the text in Section 4.5 for the intuition behind the results.
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Table 11: ESTIMATES CROP COSTS AND ACTUAL CROP COSTS

Dependent variable: Estimated Crop Costs (Log)
(1) (2)

Actual Crop Costs (Log) 1.379*** 1.379**
(0.314) (0.571)

Decade FE Yes Yes
Crop FE Yes Yes
State-Decade-Crop Clustered SEs No Yes
R-squared 0.331 0.331
Observations 3021 3021

Notes: Regression of the log of estimated crop costs on the log of actual state-level crop
costs, decade fixed effects and crop fixed effects. Each observation is a crop-district-
decade log crop cost. Estimated crop costs come from a combination of fixed effects
and residuals from regression 24 which are the unobserved crop costs that ensure that
observed crop choices in the data are optimal crop choices in the model. Raw data on
actual crop costs in Rupees/Hectare come from the Government publication Cost of
Cultivation of Principal Crops in India. Data are annual at the state-crop level and cover 13
of our 15 crops between 1983-2008. To match with the crop-decade level estimated crop
costs, actual costs are deflated by the all-India CPI and averaged over decades for each
crop and state. Standard errors are reported in parentheses. As the actual crop costs are
only at the State level, column 2 clusters standard errors at the state-decade-crop level.
Stars indicate statistical significance: * p<.10 ** p<.05 *** p<.01.
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Table 12: CROP CHARACTERISTICS AND THE RESPONSE OF CROP ALLOCATIONS TO THE
INDIAN HIGHWAY EXPANSION

Change across decades Change between 1970s and 2000s
(1) (2) (3) (4)

Log of std.dev. of -0.058*** -0.065*** -0.054 -0.052
1970s log yields (0.020) (0.022) (0.035) (0.038)
Log of mean of 1970s 0.216* 0.332** 0.744*** 0.739**
log yields (0.130) (0.166) (0.212) (0.305)
Crop-decade FE Yes Yes Yes Yes
District FE No Yes No Yes
R-squared 0.183 0.256 0.025 0.187
Observations 10155 10155 3385 3381

Notes: Ordinary least squares. The dependent variable is the change of the log of the
optimal fraction of labor (as calculated by the model) allocated between time periods in
response to the expansion of the highway network holding all other parameters fixed,
where the difference is either taken across decades (in columns 1 and 2) or between the
1970s and the 2000s (in columns 3 and 4). Each observation is a district-crop-decade
triplet. Standard errors clustered at the district level are reported in parentheses. Stars
indicate statistical significance: * p<.10 ** p<.05 *** p<.01.
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Figure 5: Distribution of Prices and MSPs in 1970-71
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Notes: This figure plots the distribution of log prices across districts for our sample crops
in the 1970-71 crop year. Vertical lines show minimum support prices (MSPs) for crops
with MSPs in 1970-71.
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Figure 6: Distribution of Prices and MSPs in 1980-81
0

2
4

6
8

4.5 5 5.5

Barley

0
2

4
6

MSP 5.4 5.6 5.8 6 6.2

Chickpea

0
1

2
3

4
5

MSP5 5.5 6 6.5 7

Cotton

0
2

4
6

8
10

MSP4.4 4.6 4.8 5 5.2

Finger Millet
0

2
4

6
8

MSP5.4 5.6 5.8 6 6.2 6.4

Groundnut

0
2

4
6

5.4 5.6 5.8 6 6.2

Linseed

0
1

2
3

4

4 5 6 7

Maize

0
1

2
3

MSP4.5 5 5.5

Paddy

0
1

2
3

4

MSP4.4 4.6 4.8 5 5.2 5.4

Pearl Millet

0
1

2
3

4

MSP 5.4 5.6 5.8 6 6.2

Pigeonpea

0
2

4
6

5 5.5 6 6.5

Rape and Mustard Seed

0
1

2
3

4
5

5 5.5 6

Rice

0
2

4
6

5.5 6 6.5 7

Sesamum

0
1

2
3

4
5

MSP4.4 4.6 4.8 5 5.2 5.4

Sorghum

0
.5

1
1.

5
2

2.
5

MSP 5 5.5 6 6.5

Sugar (from cane)

0
1

2
3

4

MSP4.5 5 5.5 6

Wheat

D
en

si
ty

Log Price (Log Rs. per 100kg)

Notes: This figure plots the distribution of log prices across districts for our sample crops
in the 1980-81 crop year. Vertical lines show minimum support prices (MSPs) for crops
with MSPs in 1980-81.

72



Figure 7: Distribution of Prices and MSPs in 1990-91
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Notes: This figure plots the distribution of log prices across districts for our sample crops
in the 1970-71 crop year. Vertical lines show minimum support prices (MSPs) for crops
with MSPs in 1990-91.

73



Figure 8: Distribution of Prices and MSPs in 2000-01
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Notes: This figure plots the distribution of log prices across districts for our sample crops
in the 2000-01 crop year. Vertical lines show minimum support prices (MSPs) for crops
with MSPs in 2000-01.
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Figure 9: Mean of yields: Examples
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Chittaurgarh, Rajasthan: 1970s
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Chittaurgarh, Rajasthan: 2000s

−2

0

2

4

6

8

10

12

C
hi

ck
pe

a

C
ot

to
n

F
in

ge
r 

M
ill

et

G
nu

t

M
ai

ze

P
ea

rl 
M

ill
et

P
ig

eo
np

ea

R
ic

e

R
m

se
ed

S
es

am
um

S
or

gh
um

S
ug

ar

M
ea

n 
lo

g 
yi

el
d

Madurai, Tamil Nadu: 1970s
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Madurai, Tamil Nadu: 2000s

Notes: This figure shows the mean of (log) yields across crops for two example districts—
Chittargarh, Rajasthan (top row) and Madurai, Tamil Nadu (bottom row)—in both the
1970s (left column) and the 2000s (right column).
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Figure 10: Covariance matrix of yields: Examples

Notes: This figure shows the co-variance of (log) yields across crops for two example
districts—Chittargarh, Rajasthan (top row) and Madurai, Tamil Nadu (bottom row)—in
both the 1970s (left column) and the 2000s (right column).
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Figure 11: Crop choice over time: Examples

Chittaurgarh, Rajasthan: 1970s Chittaurgarh, Rajasthan: 2000s

Madurai, Tamil Nadu: 1970s Madurai, Tamil Nadu: 2000s

Chickpea Cotton Gnut Maize
Other Pearl Millet Pigeonpea Rice
Rmseed Sesamum Sorghum Sugarcane (gur)

Notes: This figure shows the allocation of land for two example districts—Chittargarh,
Rajasthan (top row) and Madurai, Tamil Nadu (bottom row)—in both the 1970s (left
column) and the 2000s (right column).
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