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Abstract
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“The overall e↵ect on aggregate employment seems ambiguous, depending on the

stochastic structure of firm-level shocks. This being the case, evidence on the firm-level

stochastic environment is necessary.” Hopenhayn and Rogerson (1993)

1 Introduction

Heterogeneous firm models are at the center of modern macroeconomics and are

nowadays routinely used both for positive and normative analysis. Since the seminal

contribution of Hopenhayn (1992), this type of framework has increasingly been em-

ployed in macroeconomics to study, among many other topics, the contributions of

labor frictions to aggregate outcomes (Hopenhayn and Rogerson, 1993); the cyclical

implications of firm entry and exit (Bilbiie et al., 2012; Clementi and Palazzo, 2016;

Lee and Mukoyama, 2018); the decline in business dynamism (Decker et al., 2016,

2020; Karahan et al., 2022); the role of firm heterogeneity in shaping aggregate invest-

ment dynamics (Khan and Thomas, 2008, 2013; Winberry, 2021); the propagation

of financial frictions (Moll, 2014; Midrigan and Xu, 2014; Ottonello and Winberry,

2020); uncertainty shocks (Bloom et al., 2018); and the drivers and consequences

of resource misallocation (Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009;

Bento and Restuccia, 2017; Kehrig and Vincent, 2020). This broad family of models

has also been highly influential in the trade literature (Melitz, 2003).

In this paper, we revisit standard assumptions regarding the driving force in these

models, namely the idiosyncratic shocks faced by firms. The broad importance of

these shocks was recognized early on by Hopenhayn and Rogerson (1993), as evidenced

by the quote at the top of this page. Specifically, we show that the common parametric

assumption made in the literature for idiosyncratic shocks – a Gaussian AR(1) –

leads to firm-level distributions and dynamics that di↵er in important ways from

those observed empirically. Furthermore, we demonstrate that these di↵erences have

a sizable impact on aggregate predictions when analyzing the response of quantitative

models to a range of simply policy experiments. In what follows, we describe these

findings in more detail.

We start by constructing a large firm-level panel dataset from the historical ORBIS

database. Relative to common alternative US datasets, ORBIS proves attractive by

providing, for a set of countries, a representative size distribution – due to its inclusion

of both private and publicly listed firms – and information on a broad range of firm-
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level outcomes. For our baseline country, Spain, our sample covers just over one

million firms that were active at some point during the 2005-2014 period. We also

show that our results are robust to instead using other countries with broad coverage

in ORBIS.

Next, we exploit this large dataset to nonparametrically characterize revenue dy-

namics for incumbent firms, as well as firm entry and exit patterns. We compare our

empirical estimates to similar objects implied by the widely used Gaussian AR(1)

model. Broadly speaking, we find that the stationary distribution of firm revenue is

not strikingly di↵erent in the two cases, except for the well-known presence of a fat or

power law tail in the empirical cross section. The dynamics, however, are very di↵er-

ent. For instance, a firm initially in the center of the revenue distribution has a much

higher probability of placidly remaining near the median or dramatically moving to

the tails than implied under a Gaussian AR(1). Conversely, conditional on starting

in the tails of the distribution, firms face a greater probability of returning towards

the center than in the Gaussian AR(1). These di↵erences result in a fat-tailed or lep-

tokurtic distribution of revenue growth in the data, incompatible with the standard

Gaussian AR(1) assumption.

What are the economic implications of these statistical findings? In any model,

a firm’s expected continuation value is ultimately the object that shapes its optimal

decisions, such as whether to exit or how much to hire and invest. But firm value is, of

course, not typically observable in representative datasets like ours, for which private

firms represent the vast majority of businesses. Hence, for the remainder of our

empirical analysis we define and construct a related concept of firm-level “lifetime

revenue,” i.e., the present discounted value of expected revenue. We empirically

measure two versions of lifetime revenue based on the firm dynamics implied by the

nonparametric empirical and parametric Gaussian AR(1) models. We show that the

implied firm-level lifetime revenue distributions di↵er substantially between these two

cases. In particular, lifetime revenue is more clustered at lower revenue states where

the likelihood of exit is high, i.e., the probability density function is much higher

in these regions, for the nonparametric version. The reason is intuitive: the higher

probability of moving away from the tails and, conversely, remaining near the center

of the revenue distribution creates a pronounced compression of the distribution of

firm lifetime prospects under the nonparametric empirical specification.

Our empirical findings have potential implications for almost any model featuring
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firm optimization in the face of idiosyncratic shocks. As a first step, we demonstrate

analytically, within a simple pared-down firm dynamics model with entry and exit,

that clustered distributions like those observed empirically cause a higher sensitivity

of the firm exit rate to shifts in the economy. We then generalize this intuition by

building and analyzing a canonical quantitative general equilibrium firm dynamics

model with heterogeneous firms. Our particular model is intentionally standard and

based on Hopenhayn (1992) and Hopenhayn and Rogerson (1993), featuring firm-level

profitability shocks, fixed costs of operation, endogenous exit, and sunk entry costs.

We consider and solve both nonparametric and parametric versions of the model.

For the nonparametric version, we develop a novel solution and calibration technique

allowing us to perfectly match our key empirical objects: (i) the revenue transition

distribution for incumbents; (ii) the exit hazard; and (iii) the relative size distribution

of entrants. For the parametric version, we follow the literature in calibrating a

Gaussian AR(1) shock process as well as other parameters to match a number of

straightforward empirical moments. Aside from the modeling of the idiosyncratic

shock processes, the two models are identical and therefore directly comparable.

Motivated by some of the earliest theoretical experiments in the firm dynamics

literature in Hopenhayn (1992), we then compare the impacts of two types of simple

policies in both models: a fixed subsidy to each operating firm and a subsidy to

entrants. In both cases, the exit rate responds more in the nonparametric case because

firm value is more clustered at lower revenue levels, where exit is both more likely

and more sensitive. In other words, the intuition from our empirical analysis of

lifetime revenue and from our simple model carries over directly to the quantitative

model. Yet, we show that the implications for the response of aggregate output to the

subsidies is more subtle and depends on the nature of the policy under consideration:

the response in the nonparametric model is significantly smaller response for the fixed

operating subsidy but larger for the entry subsidy. As we explain next, the reason is

tied to the role of selection.

Consider first the subsidy to operating firms, which directly increases firms’ values

and lowers the overall exit rate. As a result, selection worsens, leading to more

low-profitability firms surviving. Due to a stronger decline of the exit rate, this

negative selection e↵ect is more pronounced in the nonparametric model, dampening

the aggregate increase in output relative to the AR(1) version. On the other hand, the

entry subsidy generates an increase in the exit rate. As a result, selection improves,

4



boosting output more in the nonparametric case.

With our benchmark results in hand, we then undertake multiple robustness

checks and extensions. Empirically, we construct alternative ORBIS datasets based

on other countries, time periods, sectoral subsamples, and data treatment approaches,

including an investigation of the role played by firm age. In every case, we continue

to uncover fat-tailed revenue dynamics inconsistent with a Gaussian AR(1). In ad-

dition, we repeat our model-based quantitative analysis and show that under each

robustness check, we continue to uncover dramatically higher sensitivity of exit rates

in our nonparametric model. The same findings hold when we consider various alter-

native model assumptions and parameterizations, or rely on an extended parametric

statistical model. Finally, we document a correlation between clustered distributions

and higher exit rate sensitivity at the industry level that is in line with the predictions

of the model.

In summary, we not only show that the common use of the Gaussian AR(1) model

in heterogeneous firms models is at odds with observed fat-tailed revenue dynamics,

but we also argue that these di↵erences matter for quantitative macroeconomic anal-

ysis.

We view this paper as closely linked to three main strands of the literature. First,

the paper naturally relates to theoretical and empirical work on firm dynamics (Dunne

et al., 1989; Hopenhayn, 1992; Davis and Haltiwanger, 1992; Kehrig, 2015; Clementi

and Palazzo, 2016; Karahan et al., 2022). This literature exploits firm heterogeneity to

rationalize stylized facts about firm dynamics and draw macro conclusions. Our paper

contributes both new facts and new quantitative implications. Second, we contribute

to existing work contrasting empirical and “conventional” distributions (Midrigan,

2011; Carvalho and Grassi, 2019; Forneron, 2020; Guvenen et al., 2021; Sterk et al.,

2021; Guvenen et al., 2023; Boar et al., 2023; Barro and Ursúa, 2012), showing that

the common parametric assumptions used in heterogeneous agent models are poor

approximations of reality. Third, our work relates to the allocative implications of

policy and shocks in the presence of firm heterogeneity (Hopenhayn and Rogerson,

1993; Guner et al., 2008; Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009;

Davies and Eckel, 2010; Gourio and Miao, 2010; Asker et al., 2014; Garicano et al.,

2016; Catherine et al., 2018; Kehrig and Vincent, 2020; Ottonello and Winberry, 2020;

Bils et al., 2021; Sraer and Thesmar, 2021). We show that our empirical findings alter

policy impacts in a quantitatively significant manner.
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The rest of the paper is organized as follows. Section 2 introduces our data and

facts. Section 3 analyzes our simple model. Section 4 builds a canonical quantitative

general equilibrium firm dynamics model. Section 5 employs separate nonparametric

and parametric approaches to solve and calibrate the model. Section 6 analyzes simple

experiments within each version of the model that highlight the economic implica-

tions of the nonparametric calibration. Section 7 discusses empirical and quantitative

robustness checks. Section 8 concludes. Online appendices provide further details on

our empirical analysis (Appendix A) and quantitative analysis (Appendix B).

2 Data

In this section, we introduce our representative firm microdata and present our non-

parametric approach to extracting several key empirical objects. With this framework

in hand, we then describe empirical firm revenue dynamics.

2.1 ORBIS Data

Measuring firm outcomes, even key variables such as revenue, is notoriously di�cult

in the US. Accessible sources such as Compustat tend to limit their scope to publicly

listed – large, nonrepresentative – firms, while government data sources such as those

within the US Census often lack financial outcomes, or also su↵er from unrepresen-

tativeness (Crouzet and Mehrotra, 2020). To overcome these challenges, we broaden

our focus and turn to Moody’s, formerly Bureau van Dijk’s, historical ORBIS dataset.

ORBIS is drawn mostly from government business registers and contains many firm-

level outcomes for both private and publicly listed companies at yearly frequency,

for many countries. Coverage and representativeness vary greatly across countries,

and researchers working with ORBIS data must also be mindful of di↵erentiating the

commercial from the historical ORBIS datasets, with varying sample selection crite-

ria. Despite these subtleties, Kalemli-Ozcan et al. (2022) and Bajgar et al. (2020)

demonstrate in detail that for multiple countries, mostly located in Western Europe,

the historical ORBIS data yields a representative sample matching administrative

measures – such as those aggregated in the COMPNET database – of the firm size

distribution for revenue or employment.

Our baseline sample consists of just over one million private and public Spanish

6



firms that are active at some point over the years 2005-2014, for a total of around five

million firm-year observations. Appendix Table A.1 presents some summary statistics

on this sample. Although our Spanish ORBIS data is a useful benchmark, we show

in Section 7 that our results are robust to instead using data from Italy, Portugal,

France, and Norway, nations for which ORBIS data is also representative.

2.2 Measuring Three Key Empirical Objects

ORBIS includes many economic and financial variables, but we focus on revenue

given its role in canonical firm dynamics models as an outcome linked to both shock

processes and a firm’s production choices. Revenue is also, helpfully, one of the most

populated outcomes in ORBIS across countries. Given our focus on idiosyncratic

patterns, we analyze log firm revenue residualized with respect to both sector and year

e↵ects, sometimes succinctly referring to this measure as “revenue” below. Omitting

subscripts, we denote this outcome y for a given firm year and let y
0 indicate the

following year’s outcome at the same firm. We also construct indicators for firm entry

and exit, a task made easier by ORBIS’ firm panel structure. We separate firms into

the potentially overlapping categories of “incumbents” including all those operating in

a given year; “entrants” including only first-year incumbents; and “continuing” firms

which operate in future year(s). With this dataset in hand, we nonparametrically

measure three objects.

1. The transition distribution, i.e., the distribution of next-year’s revenue condi-

tional upon current revenue for continuing incumbent firms, denoted H(y0|y)

2. The distribution of revenue for entrant firms, denoted HE(y)

3. The exit hazard for incumbent firms, denoted P(Exit|y)

Our extensive sample allows us to perform straightforward nonparametric estimation.

First, we discretize firm revenue into 101 equally weighted intervals. Next, we estimate

three objects: the matrix H(y0|y) describing incumbent dynamics, obtained using

transitions of firm revenue across intervals for continuing incumbents; the vector

HE(y), defined as the distribution of entrants across revenue intervals; and the vector

P(Exit|y), capturing the exit rates of incumbent firms across revenue intervals. Below,
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we will interchangeably refer to these objects as “nonparametric” or “empirical,” and

all of the facts we lay out below are functions of these three items.

For comparison, we also consider a Gaussian AR(1) parametric model for revenue

y
0 = ⇢yy+�y", where " ⇠ N(0, 1). We estimate ⇢ and � to match the autocorrelation

and unconditional variance of revenue in our data.1 This parametric model implies a

transition distribution HAR(1)(y0|y), di↵erent from the empirical distribution H(y0|y).
Our analysis below contrasts nonparametric empirical facts and those implied by the

parametric Gaussian AR(1) case.

Appendix A presents more detailed information on our sample construction, data

treatment, and estimation approaches. Section 7 demonstrates our results’ robustness

to a range of alternative data treatment choices and sample splits. Notably, our

robustness exercises also confirm that our results are not driven by firm age, a variable

not directly incorporated in our baseline analysis.

2.3 Facts

This section lays out some key stylized facts. Where relevant, red lines indicate our

empirical nonparametric estimates while blue lines indicate outcomes implied by a

parametric Gaussian AR(1).

Entry and Exit Patterns Figure 1 plots the entry density hE(y) (left panel) and

exit hazard P(Exit|y) (right panel). Both objects are convex and downward sloping in

revenue y, although the entry distribution is somewhat flatter. The downward slope

of the exit hazard aligns with the predictions of canonical firm dynamics models.2

Revenue Dynamics The top row of Figure 2 plots two measures of revenue dy-

namics for continuing incumbents. The top left panel plots the densities from our

empirical transition distribution H(y0|y) and the parametric AR(1) transition dis-

tribution HAR(1)(y0|y), conditional upon a starting level of revenue y equal to the

median. Specifically, conditional on being initially at its median value, the proba-

bility of log revenue remaining around the median is much higher empirically than

1For our baseline Spanish (log) revenue dataset, we find ⇢̂y = 0.94 and �̂y = 0.57 for continuing
incumbent firms.

2The sharp downward slope of the exit hazard in revenue provides another justification for our
focus on revenues to discipline our firm dynamics model. In fact, in Appendix Table A.6 we also
show that firm revenue contains more explanatory power for firm exit than firm profits.
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Figure 1: Firm Entry and Exit Patterns in the Data
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Notes: The figure plots the estimated entry density hE(y) (left panel) as well as the estimated exit
hazard P(Exit|y) (right panel) as a function of y, i.e., log revenue residualized by sector and year.
Both objects are estimated nonparametrically using our baseline Spanish ORBIS sample covering
around five million firm years for around one million firms over the 2005-2014 period.

under the AR(1) specification. Yet, the empirical distribution also features a higher

(though low) likelihood of moving to the tails from the median.

The top right panel plots unconditional distributions of revenue growth. The

empirical (parametric) revenue growth distribution features a standard deviation,

skewness, and kurtosis of 0.65 (0.59), -0.31 (0), and 29.21 (3) respectively. Hence,

although the dispersion and skewness are roughly similar, the empirical revenue dy-

namics are distinctly leptokurtic or “fat-tailed.” Intuitively, firms are overwhelmingly

more likely to experience very small, but also sometimes very large, yearly revenue

growth rates relative to those implied by the standard Gaussian AR(1).

The bottom row of Figure 2 provides insight into the revenue mobility of incum-

bents, especially mobility from the tails. Specifically, the bottom left panel plots the

probability that a firm’s revenue next year lies in the 3rd quintile, i.e., the center of

the distribution, while the bottom right panel plots mean revenue growth over the

next year. For the empirical and parametric Gaussian AR(1) versions, outcomes are

plotted conditional upon firm revenue today. We can see in the bottom left panel

that smaller firms are empirically more likely to grow towards the center of the dis-

tribution than an AR(1) would imply. This pattern is echoed in the high conditional

mean of revenue growth rates for such firms in the bottom right panel. Despite the
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Figure 2: Revenue Dynamics
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Notes: The top left panel of the figure plots the distribution of next year’s firm revenue y0 conditional
upon median revenue y in the current year. The top right panel plots the stationary distribution of
yearly revenue growth �y

0. The bottom left panel plots the probability that next year’s firm revenue
y
0 lies within the central or 3rd quintile, conditional upon revenue y in the current year. The bottom

right panel plots mean revenue growth �y
0 over the next year, conditional upon revenue y in the

current year. Here, y is log revenue residualized by sector and year from our baseline Spanish ORBIS
sample covering around five million firm years for around one million firms over the 2005-2014 period.
In each panel, the red line is computed from the empirical nonparametric estimates H(y0|y) while
the blue line reflects the transition distribution HAR(1)(y

0|y) implied by the parametric AR(1) case.

fact that AR(1) implied transitions at the right tail are more aligned with those ex-

tracted from the data, significant di↵erences remain. In particular, the conditional

mean of revenue growth is linear in revenue in the AR(1) case while clearly nonlinear

in the data. In summary, these patterns reveal that firms are more empirically likely

to grow quickly towards, and then remain within, the center of the distribution than

implied by the parametric model.
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Figure 3: Stationary Revenue Distributions in the Data
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Notes: The figure plots the stationary distribution of firm revenue y. Here, y is log revenue
residualized by sector and year from our baseline Spanish ORBIS sample covering around five million
firm years for around one million firms over the 2005-2014 period. The red line is computed from our
empirical nonparametric estimates, while the blue line reflects the transition distribution implied by
the parametric AR(1) case.

Stationary Revenue Distribution Next, we compute the empirical nonparamet-

ric stationary distribution H(y) of firm revenue satisfying

H(y0) =

Z
H(y0|y) (1� P(Exit|y)) dH(y) + P(Exit)HE(y

0),

where H(y0|y), P(Exit|y), and HE(y0) match their data counterparts.3 For compar-

ison, we also compute an otherwise identical parametric stationary distribution of

revenue HAR(1)(y) by simply replacing the empirical transition distribution H(y0|y)
with its counterpart HAR(1)(y0|y). Figure 3 plots the densities associated with these

two unconditional distributions, which do not appear dramatically di↵erent to the

3Note that for the last term we rely on the fact that in a stationary steady state P(Exit) =
P(Entry) =

R
P(Exit|y)dH(y).
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naked eye. Of course the two distributions do di↵er in meaningful ways.4 In par-

ticular, outside the plotted range the empirical distribution H(y) exhibits the well

known fat tail consistent with a power law which no Gaussian model can match, a

fact we document in Appendix Figure A.2. But, overall, the figure draws a contrast

between the reasonably high similarity of the empirical and parametric cross-sectional

distributions of firm revenue levels versus their markedly divergent implications for

firm revenue dynamics documented above.

Figure 4: Lifetime Revenue
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Notes: The figure plots lifetime revenue as a function of current revenue (left panel) as well the
stationary distribution of lifetime revenue (right panel). Here, y is log revenue residualized by
sector and year, and for ease of reference we present lifetime revenue W (y) in logs and subsequently
demeaned. Our empirical estimates come from our baseline Spanish ORBIS sample covering around
five million firm years for around one million firms over the 2005-2014 period. In each panel, the
red line is computed from our empirical nonparametric estimates while the blue line reflects the
transition distribution implied by the parametric AR(1) case.

Firm “Lifetime Revenue” If the documented di↵erences in revenue dynamics be-

tween the empirical and parametric models do not generate large apparent di↵erences

in the stationary distribution of revenue levels, do they still matter? The answer is

yes. Revenue dynamics impact expected firm lifetime outcomes, such as firm value.

In canonical firm dynamics models, firm value – the expected present discounted value

of payouts – is not only the key decision-relevant measure for firm entry and exit, it

4The standard deviation, skewness, and kurtosis of the empirical (parametric) stationary distri-
butions for revenue levels y are roughly comparable at 1.77 (1.36), 0.01 (0.60), and 7.54 (3.28).
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also shapes the firm’s choice along many dimensions, such as hiring and investment.

Directly obtaining information on firm value for a representative set of firms is,

unfortunately, impossible. Since the vast majority of firms are not publicly listed,

their market value is not observable. Instead, our approach is to construct a novel

proxy of firm value, which we refer to as “lifetime revenue:” the expected present dis-

counted value of future firm revenue. As we show below, this object can be computed

from any dataset that includes information on firm revenue and exit patterns for both

listed and unlisted firms, suchs as ORBIS. Note that the measure relies on revenue

instead of payouts, because information on payouts is often missing or of dubious

quality in representative firm-level datasets. Yet, in most widely used quantitative

firm dynamics models, payouts in firm value equations are highly correlated with and

dominated quantitatively by firm revenue.5 Moreover, we later show in Appendix A.2

that for the small subsample of publicly listed firms, our measure of lifetime revenue

is a good predictor of observed market value.

Lifetime revenue W (y) can be easily computed as a function of current firm rev-

enue y, using only the estimated objects already in hand, via the Bellman equation

W (y) = e
y +

✓
1� P(Exit|y)

R

◆Z
W (y0)dH(y0|y).

We choose R > 1 to deliver a conventional constant yearly real interest rate of 4%.

Besides this assumption, lifetime revenue W (y) is otherwise purely a function of our

estimated empirical transition distribution H(y0|y) and exit hazard P(Exit|y). We

also compute an analogous lifetime revenue object WAR(1)(y) using the same Bellman

equation but replacing the transition distribution H(y0|y) with its parametric AR(1)

counterpart HAR(1)(y0|y). Finally, relying on the stationary revenue distributions

H(y) and HAR(1)(y) computed above, we immediately obtain stationary distributions

of lifetime revenue H(W ) and HAR(1)(W ) for the empirical and nonparametric cases.

In the left panel of Figure 4, we plot the lifetime revenue constructs W (y) and

WAR(1)(y) as a function of current revenue y. The two functions are strikingly di↵er-

5In particular, note that in most quantitative applications of models in the Hopenhayn (1992)
tradition, firm payouts can be divided into two terms. The first term is proportional to firm rev-
enue, and the second term reflects transitory adjustments based on flow factors such as investment,
financial frictions, or adjustment costs. The first term tends to be meaningfully larger in magnitude
and more persistent than the second, driving a high correlation between revenue outcomes over a
firm’s lifetime and its underlying di�cult-to-measure expected firm payouts.
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ent, with the empirical version being much flatter than its AR(1) counterpart. This

finding is a key insight from our paper with important implications for the predictions

of dynamic heterogeneous firm models, as we show in later sections.

To understand the intuition behind this result, recall two facts that we documented

earlier. First, revenue dynamics in the data are fat-tailed or leptokurtic, a property

highlighted in Figure 2. In particular, for the median firm, small revenue transitions

are by far the most common outcomes. Second, firms face a higher likelihood of

transitioning out of the tails of the size distribution than what is implied by the AR(1)

process (see the bottom row of Figure 2). That is, movement towards the center is

more prevalent than generally assumed, particularly from low-y states. Together,

these two facts about dynamics generate an implied lifetime revenue function that is

much less sensitive to current revenue under the non-parametric empirical case than

under the parametric AR(1). In other words, firms with di↵erent current revenue

levels of y have lifetime revenue values that are not as di↵erent from one another

as the AR(1) model suggests. As a result, the stationary distribution of lifetime

revenue, shown in the right panel of Figure 4, is therefore much less dispersed and

exhibits more “clustering” or higher densities at low levels in the data than under the

parametric AR(1).6

In the remainder of the paper, we draw out the implications of this key insight

for firm dynamics models. Specifically, we show that the degree of clustering for

firm values links directly to the sensitivity of overall firm exit to changes in the

economic environment, i.e., that these empirical facts directly discipline and change

the quantitative aggregate implications of workhorse firm dynamics models.

3 Simple Model

In the previous section, we showed that the cross-sectional firm size distribution in

the data is roughly similar to the one implied by the parametric Gaussian AR(1)

case. Yet, firm revenue dynamics di↵er markedly, generating important di↵erences in

expected lifetime outcomes. In this section, we first analyze the implications for firm

dynamics of this divergence in a simple and transparent analytical framework. We

then proceed in Section 4 to a quantitative general equilibrium heterogeneous firms

6The standard deviation, skewness, and kurtosis of the empirical (parametric) log lifetime revenue
distributions in the right panel of Figure 4 are 1.17 (1.85), 1.67 (0.20), and 6.66 (2.53), respectively.
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model.

Time is discrete. Each of a unit mass of existing firms chooses at the start of

period t = 0 whether to exit or to continue operating. Continuing commits a firm

to operate forever, from t = 0 onwards, while a firm exiting immediately receives an

outside option of 0. Firms are risk neutral and discount the future at the constant

exogenous rate R > 1. Each firm observes its own current exogenous profitability

state z in period 0 before choosing to continue or exit. A firm’s net payo↵ in any

period equals its profitability z plus an exogenous constant µ
�
R�1
R

�
. At the start

of period 0, the cross-sectional firm profitability distribution is exogenously given by

z ⇠ N(0, �2
z
). That is, for all cases discussed below, we assume an identical cross-

sectional distribution of z at t = 0. However, we examine three distinct cases for the

dynamics of z and their implications for the time-0 distribution of the firm values V .

Permanent z In this case, firm profitability z is permanent and fixed, so that a

firm’s value is

Vperm(z) = µ+ z +
1

R
z +

1

R2
+ ... = µ+ z

✓
R

R� 1

◆
.

Hence, the distribution of firm values at the start of period 0 is

Vperm ⇠ N

 
µ, �

2
z

✓
R

R� 1

◆2
!

= N(µ, �2
perm

).

Persistent z In this case, each firm’s profitability follows an independent Gaussian

AR(1) with persistence satisfying 0 < ⇢ < 1 and shock variance �
2 = (1 � ⇢

2)�2
z
. A

firm’s expected value is

Vpers(z) = µ+ z +
1

R
⇢z +

1

R2
⇢
2
z + ... = µ+ z

✓
R

R� ⇢

◆
.

The distribution of firm values at the start of period 0 is therefore

Vpers ⇠ N

 
µ, �

2
z

✓
R

R� ⇢

◆2
!

= N(µ, �2
pers

).
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Transitory z In this case, firm profitability z ⇠ N(0, �2
z
) is iid across time and

firms. A firm’s expected value is

Viid(z) = µ+ z +
1

R
E(z) + 1

R2
E(z) + ... = µ+ z.

As a result, the firm value distribution at the start of period 0 is

Viid ⇠ N
�
µ, �

2
z

�
= N(µ, �2

iid
).

Note that since 0 < ⇢ < 1 < R, we can rank the variances of the underlying firm value

distributions across cases as �2
iid

< �
2
pers

< �
2
perm

. Intuitively, faster mean reversion at

the firm level generates a more compressed distribution of firm value. Hence, although

all cases exhibit an identical cross-sectional distribution of profitability or size z at

t = 0, the divergent dynamics of profitability imply di↵erent distributions of firms’

decision-relevant object: firm value.

For an illustrative parameterization, Figure 5 plots the firm value distribution

under each scenario. Firms with negative value below the plotted threshold level

at 0 choose to exit in period 0. To allow comparison across cases, we choose the

mean payo↵ parameter µ in each case to guarantee an identical exit rate.7 Firm

value dispersion varies widely across the three cases, despite identical cross-sectional

size distributions, with higher mean reversion generating more compressed firm value

distributions in the transitory and persistent cases relative to the permanent case.

But do these distributional di↵erences matter for firm dynamics, and in particular

exit rates? To answer this question, first note that the exit rate is simply P(Exit) =
F (0), where F (V ) is the firm value CDF. Next, consider the implementation of a

one-time subsidy s > 0 paid to all firms. This policy naturally shifts the firm value

distribution to the right and implies a new, lower exit rate P(Exit|s) = F (0 � s).

Specifically, the local sensitivity of the exit rate to the subsidy is @P(Exit)
@s

|s=0 = �f(0),

where f(V ) = F
0(V ). Consequently, when the distribution of firm value is more

clustered, with a higher density of firms at the exit threshold V = 0, the exit rate

is more responsive to the subsidy. Such clustering varies widely across the cases in

Figure 5.

7We target 10%, a round value, in Figure 5. We pick µi such that �
⇣

z
⇤
i �µi

�i

⌘
= pexit, where z⇤i is

such that Vi(z⇤i ) = 0, �i is the standard deviation of the potential firm value distribution as defined
in the text for each case i, and � is the standard normal CDF.
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Figure 5: Firm Value Distributions in the Simple Model
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Notes: The figure plots the distribution of firm value at the start of period 0 in the simple model.
For this illustrative parameterization we choose ⇢ = 0.4, �2

z
= 1, and R = 1/1.2. The figure plots

the firm value distributions for the permanent z case (blue line), the persistent z case (green line),
and the transitory or iid z case (red line) together with the exit threshold of 0 (black vertical line).
We also normalize µ separately for each case to generate an exit rate of 10%.

As we showed in Section 2, the rich firm revenue dynamics observed in the data

generate an empirical distribution of lifetime revenue outcomes that is more clustered,

with higher densities at low levels, than the one implied by the standard Gaussian

AR(1) process ubiquitous in the literature. The basic intuition from our simple model

suggests that such clustering should cause the aggregate exit rate to be more sensitive

to changes in the economy. To formalize and quantify this intuition, we now turn our

attention to a quantitative general equilibrium model of firm dynamics.
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4 Quantitative Model

Our quantitative general equilibrium firm dynamics model is in the spirit of Hopen-

hayn (1992), Hopenhayn and Rogerson (1993) and the literature spawned by their

seminal work. Time is discrete, and the economy exhibits stationarity with no aggre-

gate uncertainty.

4.1 Operating Firms and Exit

Two types of firms in the economy, incumbents and entrants, form a mass MO of

operating firms in any given period. Each operating firm produces a homogenous

numeraire good in the amount y = zn
↵. Firms hire undi↵erentiated labor n at a

competitive wage W . Production exhibits decreasing returns to scale with 0 < ↵ < 1

and is shifted by an exogenous idiosyncratic profitability shock z > 0 following a

first-order Markov chain with transition distribution F (z0|z).8 An operating firm’s

dynamic problem is summarized by its value function

V (z) = max
n


zn

↵ �Wn+ E�F max

⇢
0,��F +

1

R
(1� �)

Z
V (z0)dF (z0|z)

��
. (1)

At the start of a period, each operating firm solves a static profit maximization

problem for labor input n, which is the sole input used in production. Then, each

operating firm receives an iid fixed production cost draw �F which is denominated

in output units and drawn from an exogenous distribution G(�F ). Operating firms

must pay the fixed cost �F in order to continue to produce in the future, although a

firm can alternatively choose to exercise an option to endogenously exit with limited

liability and outside option 0. If an operating firm chooses not to exit, and avoids

an iid exogenous death shock with probability satisfying 0 < � < 1, then the firm

transits as an incumbent to the next period. An operating firm therefore trivially

8Importantly, we note that the decreasing returns to scale production function specification is
isomorphic to a monopolistic competition framework with love of variety; our results are not specific
to the formulation chosen. So we prefer to refer to z as “profitability” instead of the narrower term
“productivity.” In order to match the revenue dynamics we do not need to take a stand on whether
the driving shocks are supply or demand shocks; the revenue function in such a model is given by

Revenue = z
⌫�1k⌫Aggregates,

where z and k respectively denote idiosyncratic productivity shocks and demand shocks.
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chooses to endogenously exit if and only if its fixed cost �F exceeds a threshold level,

or equivalently a continuation value, given by

�
⇤
F
(z) =

1

R
(1� �)

Z
V (z0)dF (z0|z). (2)

4.2 Entry

A mass of potential entrants in the economy considers whether to enter at the start of

each period. Entry requires that a firm pay an exogenous constant sunk cost �E > 0,

denominated in output units, in order to obtain an initial profitability shock draw z

from the exogenous distribution FE(z). After receiving an initial profitability draw

z, each entrant firm joins the mass of currently operating firms in the current period.

Free entry implies that the sunk cost �E must weakly exceed the value to entry

�E �
Z

V (z)dFE(z), (3)

with equality whenever the mass ME of entry is greater than zero.

4.3 Households

The economy is populated by a measure one of identical households. Households

consume the numeraire good and supply labor inelastically in the exogenous amount

N̄ > 0. In addition to labor income, households also receive dividends from operating

firms. The household problem reflects an optimal choice of the level of consumption,

C, to maximize welfare given by the discounted sum of log utility payo↵s. The simple

dynamic problem is represented by

S = max
C

{log(C) + �S
0} (4)

where the time discount rate satisfies 0 < � < 1 and a standard budget constraint

holds. As usual, household intertemporal optimization in a stationary steady state

implies that the real interest rate is proportional to the household time discount rate

� =
1

R
. (5)
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4.4 Timing

To summarize, the timing of the model within each period is as follows:

1. New entrant firms pay entry costs.

2. Incumbent firms and new entrants receive their idiosyncratic profitability draws

z, drawn from FE(z) for entrants and according to the transition distribution

F (z|z�1) for incumbents with previous profitability z�1.

3. Operating firms, i.e., both incumbents and entrants, produce output y = zn
↵

by combining z and labor n hired at the prevailing wage W .

4. Operating firms draw an iid fixed cost �F ⇠ G(�F ).

5. Operating firms form expectations of their continuation value �
⇤
F
(z), choosing

whether to exit endogenously or remain in operation for next period. Operating

firms that choose to remain pay the fixed cost �F .

6. Households receive firm profits and labor income and then consume.

7. A fraction � of operating firms exogenously exits.

8. Surviving operating firms transition to the next period as incumbents.

4.5 Stationarity and Aggregates

Stationarity requires that the distribution FO(z) of operating firms is stable across

periods according to the mapping

MOFO(z) = (1� �)MO

Z
G(�⇤

F
(z�1))F (z|z�1)dFO(z�1) +MEFE(z), (6)

which implicitly defines the distribution FO(z) but also implies proportionality of the

operating and entrant masses according to

MOP(Exit) = ME.
9 (7)

9Take z ! 1 in Equation (6) to obtain MO = MO(1 � �)
R
G(�⇤

F
(z�1))dFO(z�1) +ME . SinceR

(1� �)G(�⇤
F
(z�1))dFO(z�1) =

R
[1� P(Exit|z�1)] dFO(z�1) = 1�P(Exit), we immediately obtain

MOP(Exit) = ME .
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Aggregates in the economy can be written as a function of the stationary distribution.

Output Y , total fixed costs �F , and total sunk costs �E satisfy the equations

Y = MO

Z
y(z,W )dFO(z) (8)

�F = MO

Z Z

{�F�⇤
F (z)}

�FdG(�F )dFO(z) (9)

�E = ME�E (10)

which together imply the level of consumption C via the aggregate resource constraint

Y = C + �F + �E. (11)

Total labor demand N is given by

N = MO

Z
n(z,W )dFO(z), (12)

which, of course, must equal exogenous labor supply if markets clear

N = N̄ . (13)

4.6 General Equilibrium

Stationary general equilibrium in this economy is a value function V (z), exit thresh-

olds �
⇤
F
(z), a stationary distribution FO(z) of operating firms, an operating mass

MO, an entrant mass ME, aggregate output Y , aggregate fixed operating costs �F ,

aggregate sunk entry costs �E, aggregate consumption C, aggregate labor demand

N , a wage W , and an interest rate R such that operating firms’ optimal value satisfies

(1), exit thresholds are optimal according to (2), the stationary distribution replicates

itself according to (6), the operating mass is proportional to entry via (7), free entry

holds in (3), the aggregate production and resource constraints in (8), (9), (10), and

(11) hold, the labor market clears with demand in (12) equal to supply via (13), and

household intertemporal optimality holds in (5).
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5 Calibration and Solution

In this section, we lay out our approach to calibrating and solving the quantitative

general equilibrium framework described in Section 4. We consider two versions of the

same model. The first case is based on our empirical nonparametric estimates from

Section 2, while the second case employs the standard Gaussian AR(1) parametric

assumptions adopted in the literature.

5.1 Calibration

We calibrate the model at annual frequency. As an initial step, we first externally

calibrate four parameters shared by both versions of our model. In particular, we

choose ↵ = 0.67 to match a labor share of two thirds. The value � = 1/1.04 is picked

to generate a yearly net real interest rate R � 1 of 4%. We also normalize N̄ to the

mean employment rate of 59.7% in Spain during our sample period. And, finally, we

set the exogenous exit rate � equal to the 3.9% exit rate observed among the largest

firms in our empirical sample, another normalization.

In both versions of our model, we discipline our calibration of profitability shocks

z using empirical evidence on firm revenue. In fact, by inverting a firm’s static labor

demand from the optimization problem in (1), we obtain and employ the simple

formula

log z = (1� ↵)y + Constant, (14)

which allows us to obtain z directly, up to a normalizing aggregate constant, from

observed firm revenue y.

Nonparametric Empirical Calibration In Section 2, we nonparametrically esti-

mated three key objects: the empirical revenue transition distribution for continuing

incumbents H(y0|y), the entrant revenue distribution HE(y), and the revenue exit

hazard P(Exit|y). Inverting firm profitability z from revenue y via equation (14) di-

rectly yields equivalent empirical estimates as functions of z, which we label H(z0|z),
HE(z), and P(Exit|z).

Helpfully, the profitability transition and entrant profitability distributions are

primitive exogenous objects. Hence, to empirically calibrate the nonparametric ver-

sion of our model we simply set F (z0|z) = H(z0|z) and FE(z) = HE(z), i.e., we can
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Table 1: Model Calibration

Value Empirical Target
Panel A: Nonparametric Case
Profitability transition, F (z0|z) - H(z0|z)
Entrant distribution, FE(z) - HE(z)
Fixed cost distribution, G(�F ) - P(Exit|z)
Sunk entry cost, �E 22.9 Employees per firm, 12.3
Panel B: Parametric AR(1) Case
Profitability persistence, ⇢ 0.94 Profitability autocorr., 0.94
Profitability volatility, � 0.19 Profitability st. dev., 0.56
Entrant profitability mean, µE -0.43 Mean entrant vs operating log z, -0.36
Fixed cost support, �̄F 2.30 Exit rate P(Exit), 6.9%
Sunk entry cost, �E 5.18 Employees per firm, 12.3

Notes: Panel A of the table lists internally calibrated model objects, their calibrated values where
relevant, and the associated empirical targets for the nonparametric version of the model, while
Panel B reports the same information for the parametric version of the model. All empirical targets
come from our baseline Spanish ORBIS sample covering around five million firm years for around
one million firms over the 2005-2014 period. In Panel A, dash placeholders are used to denote three
distributions pinned down nonparametrically, as discussed in the main text, to exactly match the
indicated empirical targets.
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directly choose the model distributions to exactly replicate their empirical equiva-

lents. Calibrating the exogenous fixed cost distribution, by contrast, requires more

care, since exit is endogenous in the model. To do so, we exploit the theoretical

identity

P(Exit|z) = 1� (1� �)G(�⇤
F
(z)) (15)

linking the endogenous, but observable, exit hazard P(Exit|z) to the exogenous, but

unknown, fixed cost distribution G(�F ). We observe that the exit thresholds �
⇤
F
(z)

can be determined straightforwardly as a function of the firm value function V (z)

through equation (2). Therefore, taking the value function V (z) and the exit thresh-

olds �
⇤
F
(z) as given, the identity in equation (15) directly and nonparametrically

implies a unique fixed cost distribution G(�F ) which is precisely consistent with the

observed exit hazard P(Exit|z).
Of course, we do not observe V (z) ex ante. However, our solution algorithm for

the nonparametric version of the model, summarized below, employs conventional

dynamic programming or value function iteration to solve the Bellman equation (1).

Within each step of this iteration, we employ our ongoing updated guesses for the

value function V (z), and hence continuation values �
⇤
F
(z), to compute ongoing up-

dated guesses for the fixed cost distribution G(�F ). Convergence of V (z) then delivers

convergence of the fixed cost distribution G(�F ).

Taken as a whole, our approach to calibration of this version of the model delivers

nonparametric distributions F (z0|z), FE(z), and G(�F ) that allow us to perfectly

replicate both our empirical estimates of H(z0|z), HE(z), and P(Exit|z), as well as

their revenue-indexed versions H(y0|y), HE(y), and P(Exit|y). We emphasize that

since the empirical results in Section 2 were computed as functions of these empirical

targets, our calibrated model also, by construction, matches all of the nonparametric

results we presented in that section, including observed revenue dynamics, revenue

mobility, the stationary distributions of current and lifetime revenue, exit hazards,

and exit rates.

One parameter, the sunk entry cost �E, remains to be calibrated. Note that higher

levels of the sunk cost �E cause, via the free entry condition (3), an increase in mean

entry values, requiring lower equilibrium wages W and driving up mean employment

per firm. We therefore calibrate �E, jointly with the distributions above, to exactly

match the mean ratio of employees per firm in our baseline Spanish dataset. Panel
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A of Table 1 summarizes the results of our internal calibration of the nonparametric

version of the model.

Parametric AR(1) Calibration The calibration of our parametric model is more

conventional and relies on various distributional assumptions. We assume that the

transition distribution for profitability z, F (z0|z), is governed by an exogenous Gaus-

sian AR(1) process

log z0 = ⇢ log z + �"
0
, " ⇠ N(0, 1).

where persistence and volatility satisfy 0 < ⇢ < 1 and � > 0. For the entrant

distribution FE(z), we also assume that entrants’ log profitability log z ⇠ N(µE, �
2)

is drawn from a Gaussian distribution with mean µE. We further assume that the

distribution of iid fixed costs G(�F ) is uniformly distributed between 0 and an upper

bound �̄F > 0, so G(�F ) = U(0, �̄F ).

Our distributional assumptions, together with the sunk entry cost parameter �E,

imply a total of five internally calibrated parameters. Panel B of Table 1 lists the pa-

rameters, the resulting calibrated values, and the empirical targets which we exactly

match in our calibrated parametric model through a joint procedure. Following stan-

dard practice, ⇢ and � are disciplined by the observed autocorrelation and variance

of profitability z in our sample. The mean di↵erence between the log profitability of

entrants versus operating firms varies directly with the entrant profitability mean µE.

Higher values of the upper bound �̄F for the distribution of the fixed cost generate

higher mean fixed costs and, therefore, higher mean exit rates in the model. Finally,

as in the nonparametric case, we target the mean number of employees per firm in

order to help identify the sunk cost of entry �E. The results of our calibration in

Table 1 are unsurprising, with high persistence of profitability of ⇢ = 0.94, moder-

ately high conditional volatility of � ⇡ 20% annually, and a meaningful reduction of

µE = �43% in entrant profitability relative to all operating firms.

Note that both the nonparametric and parametric AR(1) versions of the model

o↵er exact fits to their empirical targets. But the parametric model, as is conventional

in the firm dynamics literature, only matches a narrower, selected set of moments

implied by the empirical profitability distributions and exit hazards. By contrast,

the nonparametrically calibrated model o↵ers an exact fit to all of these distributions

at all points of the support. Consequently, the nonparametric version of our model
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also matches by construction each moment targeted by the parametric version, while

simultaneously exploiting far more information from our empirical dataset.

5.2 Solution

To numerically solve both versions of the model, we employ conventional dynamic

programming methods, i.e., value function iteration. We approximately solve the key

operating firm Bellman equation (1) over a continuous state space for profitability z

in an “inner loop.” We embed this firm-level solution inside a general equilibrium

“outer loop” over the wage W and entry mass ME in order to satisfy the free entry

and labor market clearing conditions (3) and (13). At a high level, this approach is

quite standard within the quantitative firm dynamics literature.

Successfully solving the nonparametric version of our model in a manner fully con-

sistent with our empirical targets requires a few novel ingredients beyond the standard

approach, however. First, we lightly regularize the empirical transition distribution

H(z0|z), imposing that the z process exhibits persistence in a first-order stochastic

dominance sense. Second, we also regularize the exit hazard P(Exit|z), imposing that

the hazard is nonincreasing in profitability z. The first condition improves the stabil-

ity of our value function iteration algorithm, while the second condition ensures that

our recovered fixed cost distribution G(�F ) is in fact nondecreasing. Fortunately, as

we document in Appendix Section B.1, the raw empirical objects quite nearly satisfy

both conditions, resulting in only extremely light adjustments in practice. Finally,

as mentioned in our calibration discussion above, we must nonparametrically recover

updated guesses for the fixed cost distribution G(�F ) which are consistent with ob-

served exit hazards within each step of our value function iteration algorithm. We

defer further technical information on our solution techniques for both versions of the

model to a detailed discussion in Appendix B.

6 Inspecting the Mechanism: Empirical vs AR(1)

Our goal in this section is to assess the quantitative relevance of our empirical findings

for the predictions of macroeconomic models featuring heterogeneous firms. To do so,

we consider the impact of two simple experiments: (i) a subsidy sF for all operating

firms, and (ii) a subsidy sE to entrant firms. These experiments conveniently mirror
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the changes in the fixed operating cost and the sunk entry cost theoretically studied

in Hopenhayn (1992). In each experiment, we compute and analyze the quantitative

response of macroeconomic aggregates, taking into account general equilibrium. Note

that in this model with perfectly competitive output and labor markets, our focus is

on descriptively analyzing the impacts of each experiment rather than on normative

questions.

6.1 The Model-Implied Distribution of Firm Values

Using our simple analytical model, we argued earlier that the clustering of the dis-

tribution at low firm values, where exit occurs, causes a higher sensitivity of the exit

rate to economic changes.

Figure 6: Empirical vs AR(1) Firm Value Distributions
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Notes: The figure plots the stationary distribution of operating firm continuation values �
⇤
F
, in

logs, in the calibrated nonparametric (left panel) and parametric AR(1) (right panel) models.

Figure 6 plots the stationary distribution of operating firm value in our quantita-

tive model in both the calibrated empirical (left panel) and parametric AR(1) (right

panel) cases. Recall that the empirical model matches, by construction, the more

clustered distribution of lifetime revenue in the data in Figure 4. We see from Figure

6 that our earlier intuition about lifetime revenue carries over to the underlying firm

value functions.10 The distribution of firm value is indeed more clustered at the low
10In addition to the fact that Figure 4 and Figure 6 plot di↵erent objects conceptually, i.e., lifetime

revenue vs firm value distributions, one additional technical detail di↵erentiates the two figures. The
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end, with higher densities towards the left of the distribution where exit is most likely.

To demonstrate the quantitative relevance of the firm values distribution, we pro-

ceed with our two simple experiments.

6.2 Subsidy to Operating Firms

In the first experiment, the subsidy sF to operating firms e↵ectively lowers their net

fixed operating costs. We distribute the subsidy, denominated in numeraire output,

to all operating firms each period, financing the subsidy through lump sum taxes on

households. Figure 7 plots the response of various aggregates to the subsidy, for both

the empirical nonparametric (red lines) and parametric AR(1) (blue lines) models.

We find that while the response of the exit rate is significantly more pronounced

under the nonparametric case, the response of output is smaller. In what follows, we

provide an overview of the economic forces behind these responses.

Exit and Selection The subsidy mechanically raises the value of every operating

firm, which leads to a decline in the exit rate in both models (top left panel). Our

intuition from Figure 6 suggests that the exit rate should be more sensitive to the

subsidy under the empirical model, since firm values are more clustered where exit is

more likely. Figure 7 confirms that this intuition holds in our full quantitative model.

Specifically, with a subsidy of 5% of output, the exit rate decline in the empirical

model is three times as large as in the parametric AR(1) model. The fall in exit

in turn triggers a negative selection e↵ect, as lower-z firms now survive with higher

probability. Given the higher decline in the exit rate, this negative selection e↵ect is

more pronounced in the empirical version, partly counteracting the direct increase in

mean firm value due to the subsidy.

Wages The equilibrium wage W in the top right panel of Figure 7 rises to o↵set

the increase in the expected value of entry due to the subsidy, ensuring that the free

entry condition (3) continues to hold.11 While this logic holds in both models, the

empirical vs AR(1) lifetime revenue distributions in Figure 4 both rely on the empirical exit hazard
and entry distributions, while varying only the incumbent revenue transition distributions. In Figure
6, with the parametric model’s structural exit hazards and entry distributions already defined and
in hand, we also vary the entry and exit patterns.

11Recall that firms enter based on an expected continuation value: only after entry do they learn
their profitability level, produce and then choose whether to exit. For this reason, there is no
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Figure 7: Impact of the Fixed Operating Subsidy sF
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Notes: Each panel in the figure plots an aggregate outcome as the subsidy is increased from zero for
the calibrated nonparametric empirical (red lines) and parametric AR(1) (blue lines) models. For
comparability, the horizontal axis in each panel is the aggregate size of the subsidy as a percentage
of zero-subsidy aggregate output in each economy. The vertical axes plot either the levels of the
outcomes or, where natural, percent changes from the zero-subsidy level.

size of the response is di↵erent. Because a stronger decline in the exit rate in the

empirical model generates a stronger negative selection e↵ect, average firm value after

entry rises less as a direct result of the subsidy. As a result, the equilibrium wage

increase required by the free entry condition is smaller in the empirical model.

Labor and the Mass of Firms Recall that total labor in the economy is in fixed

supply N̄ . The labor market clearing condition

N = MO

Z
n(z,W )dFO(z) = N̄ (16)

selection through entry, and thus the sunk entry costs must always equal the average firm value
across the entrant profitability distribution in the free entry condition (3).
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equalizes total demand N to this fixed supply. But, as a result, the mass of operating

firms, MO, must move inversely to the average labor per firm, i.e.,
R
n(z,W )dFO(z).

Next, note that average labor per firm is pinned down by two margins: the size of

operating firms n(z,W ), which is governed by the wage; and the selection of operating

firms through the distribution FO(z). The operating subsidy acts on both. Higher

wages reduce firm size n(z,W ) for a given z (a stronger force in the AR(1) model),

while negative selection in FO(z) lowers the mean of z across firms (a stronger force

in the empirical model). Because of the o↵setting strengths of these two channels,

the overall decline in average labor per firm in the bottom left panel of Figure 7

turns out to be very similar across in the empirical and AR(1) models. Now, since

labor per firm declines, the mass of operating firms MO must rise to restore labor

market clearing. But because the decline in average labor per firm is comparable

across models, the rise in the mass of operating firms in the bottom right panel of

Figure 7 is also similar.

Figure 8: Decomposed TFP under the Fixed Operating Subsidy sF
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Notes: The figure plots each component of the TFP decomposition in (17) as the subsidy is increased
from zero for the calibrated nonparametric empirical (left panel) and parametric AR(1) (right panel)
models. For comparability, the horizontal axis in each panel is the aggregate size of the subsidy
as a percentage of zero-subsidy aggregate output in each economy. The vertical axes index each
component to one in the zero-subsidy baseline. The black line depicts the no-change line.

TFP and Output In this economy with fixed labor supply, the aggregate levels of

the wage W , output Y , and measured TFP = Y/N
↵ are proportional to one another.
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As a result, the percentage changes in output and TFP under the subsidy exactly

match those plotted in the top right panel of Figure 7 for the wage. We conclude

that output and TFP in this economy respond more in the AR(1) model than in

the empirical version. Specifically, we note that with a subsidy of 5% of output, the

percent change in these outcomes is only two thirds as strong in the empirical model

as in the parametric AR(1). Our discussion above suggested that this di↵erence is

the result of a strong negative selection force generated by the sharp decline in exit

in the empirical economy. To highlight this point, we decompose measured aggregate

TFP in this economy into two margins

TFP = M
1�↵

O| {z }
Operating Mass of Firms

✓Z
z

1
1�↵dFO(z)

◆1�↵

| {z }
Selection

. (17)

The first term increases with the operating mass of firms through a standard extensive

margin e↵ect under decreasing returns. The second term is a geometric mean of

operating profitability, i.e., a measure of firm selection. Figure 8 plots the respective

contributions of these two components from equation (17) to the change in TFP

in the empirical (left panel) and AR(1) (right panel) models. Our decomposition

confirms that the negative contribution from selection is indeed more pronounced in

the empirical model, due to the larger fall in the exit rate. This selection margin

entirely explains the more muted response of TFP (and output) relative to the AR(1)

case.

6.3 Subsidy to Entrants

In our next experiment, the subsidy sE is given only to entrants, lowering their net

entry costs. We again finance this output-denominated subsidy with a simple lump

sum tax on households. As in the case of the operating subsidy, we find that the exit

rate is more sensitive in the empirical model. This time, however, we note that the

response of output is significantly larger than under the AR(1) specification. As in

our first experiment, we conclude that a selection e↵ect driven by shifts in the exit

rate is key to understanding di↵erences in the response across our two model versions.
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Figure 9: Impact of the Entry Subsidy sE

0 5 10
Entry Subsidy, % Output

7

7.5

8
Pe

rc
en

t
Exit Rate

0 5 10
Entry Subsidy, % Output

0

1

2

3

%
 C

ha
ng

e

Wage, Output, TFP
Empirical
AR(1)

0 5 10
Entry Subsidy, % Output

-4

-3

-2

-1

0

%
 C

ha
ng

e

Labor per Firm

0 5 10
Entry Subsidy, % Output

0

1

2

3

4

%
 C

ha
ng

e

Operating Mass M O

Notes: Each panel in the figure plots an aggregate outcome as the subsidy is increased from zero for
the calibrated nonparametric empirical (red lines) and parametric AR(1) (blue lines) models. For
comparability, the horizontal axis in each panel is the aggregate size of the subsidy as a percentage
of zero-subsidy aggregate output in each economy. The vertical axes plot either the levels of the
outcomes or, where natural, percent changes from the zero-subsidy level.

Wages, Exit, and Selection Our entry subsidy lowers the cost of entry to �E�sE

in the free entry condition (3). In order to restore equilibrium, the wage must increase

in both versions of our model to reduce the post-entry expected value of operating.

Wage increases trigger exit among low-profitability firms and hence generate a posi-

tive selection e↵ect. However, due to the shape of the value distributions in Figure 6

with more clustering of firm value at low levels, we see in the top left panel of Figure

9 that the exit rate increases more sharply in the empirical versus the AR(1) model.

Specifically, with a subsidy of 5% of output, the exit rate increase in the empirical

model is three times as large as in the parametric AR(1) model. To o↵set the result-

ingly stronger selection e↵ect, the wage rises by more in the empirical model in the

top right panel of Figure 9.
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Labor and the Mass of Firms A higher wage following the subsidy directly

drives down labor demand n(z,W ) at individual firms, conditional upon profitability

z. Yet the selection channel, driving more low-z firms to exit following the subsidy,

has the opposite e↵ect through indirect changes in the distribution of operating firms.

Ultimately, the net e↵ect on labor per firm is ambiguous. In the bottom left of Figure

9 we see that the direct e↵ect dominates, since average labor demand per operating

firm falls in both models. But the nonparametric model features a stonger indirect

selection e↵ect, generating a smaller overall fall in labor per firm in this case. Finally,

recall from the labor market clearing condition in equation (16) that labor per firm

and the mass of operating firms must move inversely due to the fixed total labor

supply. As a result, we see in the bottom right panel of Figure 9 that the shift in the

mass of operating firms MO is also smaller in the empirical than in the AR(1) model.

Figure 10: Decomposed TFP under the Entry Subsidy sE
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Notes: The figure plots each component of the TFP decomposition in (17) as the subsidy is increased
from zero for the calibrated nonparametric empirical (left panel) and parametric AR(1) (right panel)
models. For comparability, the horizontal axis in each panel is the aggregate size of the subsidy
as a percentage of zero-subsidy aggregate output in each economy. The vertical axes index each
component to one in the zero-subsidy baseline.

TFP Recall that in this economy, measured TFP and aggregate output are both

proportional to the wage and therefore rise following the subsidy (top right panel of

Figure 9). In Figure 10, we rely on equation (17) to decompose the rise in TFP into

separate contributions from the operating mass and selection e↵ects for the empirical
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(left panel) and AR(1) (right panel) models. The sharper response of exit in the

empirical model generates a stronger positive selection e↵ect. The operating mass

of firms, however, rises more in the parametric case. On net, the selection channel

induced by exit is stronger, underlying the larger impact of the subsidy on TFP, and

output, in our empirical nonparametric model. Specifically, with a subsidy of 5% of

output, the increase in TFP and output in the empirical model is one and a half times

as large as in the parametric AR(1) model.

6.4 Taking Stock

Our analysis across both subsidy experiments highlights the quantitative importance

of the shape of firm value distribution in driving aggregate responses in a canonical

general equilibrium model of firm dynamics. Specifically, our nonparametric model

matching the more pronounced empirical clustering of the distribution of lifetime

revenue at lower levels where exit is more likely to occur in Figure 4 also features

a more clustered distribution of underlying firm value in Figure 6 relative to the

standard AR(1) case. As a result, exit rates and hence selection shift more strongly

in our nonparametric model, causing a large di↵erence in the quantitative predictions

of the two models. We conclude that embedding a shock process that adequately

matches the rich distributional dynamics found in the data proves to be crucial for

quantitative work with this class of models.

7 Discussion, Extensions, and Robustness

In this section, we discuss a range of additional robustness checks and extensions to

our empirical and quantitative analysis. We frame our discussion around a number of

natural and sensible questions. In each case, our empirical approach or quantitative

conclusions prove to be robust.

Do country, data treatment, time period, or industry composition drive

our results? Our analysis naturally involves many decisions regarding data treat-

ment and sample construction. Do these choices drive our conclusions? We investigate

whether these choices drive our conclusions using a combination of empirical but also

quantitative model robustness checks.
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Focusing first on the empirical moments that are key to our findings, Appendix

Table A.1 reports a number of statistics on revenue and revenue growth moments in

our baseline ORBIS dataset as well as in a number of robustness checks. We first

consider the role of the sample period by splitting our dataset into pre- and post-2009

samples. Second, we divide our broad representative dataset into manufacturing and

non-manufacturing subsamples. Third, we use unconsolidated firm-level accounts

instead of the consolidated statements from our baseline. Fourth, we exclude firm-

years with reported M&A activity. Fifth, we demean log revenue by year only, rather

than our baseline year and sector demeaning. Sixth, we consider di↵erent treatments

of outliers relative to our baseline baseline trimming of 0.1% of revenue outliers.

Seventh, we consider data from Italy, Portugal, France, and Norway instead of our

Spain baseline. To judge the results in Appendix Table A.1, recall a key fact from

Section 2: revenue growth in Figure 2 is leptokurtic or fat-tailed. Appendix Table

A.1 reveals extremely high baseline revenue growth kurtosis of about 30, compared

to exactly 3 in any Gaussian case. Uniformly, we find fat-tailed revenue growth in all

of our robustness checks.

Next, for each of these alternative data samples, we perform a full recalibration

of our empirical nonparametric and parametric AR(1) models. Appendix Table B.1

lists the recalibrated parameters for all the quantitative model robustness checks. We

recompute the changes in the aggregate exit rate and output induced by an operat-

ing subsidy sF totaling 5% of pre-subsidy output. Appendix Table B.2 reports the

ratio of these responses in the empirical vs parametric AR(1) models. Our baseline

nonparametric model’s exit rate response is 3 times as strong as the one in the para-

metric model, driving a negative selection e↵ect which dampens the output response

to only around two-thirds that of the parametric model. The same overall pattern is

observed in all of our robustness checks.

Do our exact model assumptions drive our results? Our quantitative model

is purposefully conventional within the Hopenhayn (1992) tradition, but we explore

our results’ robustness to multiple alternative assumptions. First, while we fix ag-

gregate labor in our baseline, as a robustness check we instead consider the case of

an endogenous labor supply.12 Second, the parameter ↵, which plays an important

12The extension is straightforward. We replace household log consumption preferences logC with
log-linear utility logC � !N for some ! > 0. Then, we replace the labor market clearing condi-
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role in the TFP decomposition (17), has multiple interpretations. A literal view links

↵ to the labor share, rationalizing our baseline external calibration ↵ = 2/3. But a

revenue function view of our production technology under imperfect competition links

↵ to production and demand elasticities. We therefore entertain values of ↵ of 0.6

and 0.75. After performing model recalibrations and counterfactual analyses for each

scenario, Appendix Table B.2 reports the relative impacts of an operating subsidy

in the nonparametric vs parametric models. Our conclusions are little changed from

baseline.

Does firm age drive our results? Our baseline analysis, like much work following

Hopenhayn (1992), features no separate role for firm age conditional upon size in

predicting growth or exit. Yet, many papers rationalize related evidence, recently

documented authoritatively by Sterk et al. (2021), with mechanisms such as learning

(Jovanovic, 1982; Arkolakis et al., 2018), demand accumulation (Foster et al., 2008;

Gourio and Rudanko, 2014; Moreira, 2018), or financial frictions (Moll, 2014). This

rich firm age literature is complementary to, but quite distinct from, our analysis

contrasting nonparametric versus parametric approaches. Nevertheless, we observe

firm demographic data in ORBIS and can calculate firm age. We therefore conduct

another robustness check by residualizing revenue against firm age – with a full set

of age indicators denominated in years – in addition to our baseline demeaning by

sector and fiscal year. The moments for this alternative dataset, shown in Appendix

Table A.1, reveal that revenue growth remains strongly fat-tailed or leptokurtic, i.e.,

features that are incompatible with a Gaussian AR(1). Finally, Appendix Table B.2

reports that once the model is calibrated, solved and simulated based on the dataset

controlling for age, the relative impact of the operating subsidy across the two models

is in line with that in our baseline for firm exit and in fact stronger in the case of firm

output.

Do firm heterogeneity and noise drive our results? Following the standard

specification adopted in the literature, we naturally contrast our nonparametric em-

pirics to the predictions from a Gaussian AR(1) parametric benchmark. One might

tion with the household intratemporal optimality condition W = !C. Otherwise, the equilibrium
structure remains unchanged. We calibrate ! = 1.51 (empirical case) and ! = 1.39 to match labor
supply N to the Spanish employment rate.
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however wonder whether a richer extension of our AR(1) that includes permanent

firm fixed e↵ects and transitory shocks, ingredients ubiquitous in household incom-

plete markets analyses, might allow us to match the predictions of our nonparametric

model. In Appendix Section A.1.1, we therefore specify and estimate an extended

parametric Gaussian AR(1) model augmented with a Pareto distribution of firm fixed

e↵ects as well as Gaussian transitory shocks. We then subject all our models to a

battery of tests gauging their predictive accuracy for both the mean and full dis-

tribution of observed revenue dynamics. Appendix Table A.2 reports our extended

model’s estimates and shows that the extended model, while still failing to capture

the fat-tailed nature of revenue growth observed in the data, does predict firm rev-

enue somewhat better than our benchmark Gaussian AR(1). Ultimately, however,

even this richer parametric model remains less accurate for prediction than our non-

parametric structure, giving us some assurance that our comparison of parametric

versus nonparametric approaches is not unduly driven by our choice of parametric

benchmark.

Can we empirically link lifetime revenue and market value? Outcomes sum-

marizing a firm’s lifetime prospects such as firm value are not typically available for

unlisted private firms. For this reason, in Section 2 we proposed a new measure,

lifetime revenue, defined as the expected presented discounted value of firm revenue.

This proxy for firm value can be constructed simply using information on revenue and

exit alone. We found earlier that the distributions of data-driven lifetime revenues

(Figure 4) and model-implied firm values (Figure 6) both display similar clustering,

providing support for our proxy. But for the small subset of publicly listed Spanish

firms in our sample, we can push further empirically without directly relying on our

structural model. Regressions in Appendix Table A.3 reveal that, while both cur-

rent revenue and lifetime revenue are highly correlated with observed market value,

current revenue loses its predictive power for firm value once we account for lifetime

revenue. This result confirms that our lifetime revenue measure does in fact capture

useful variation in a firm’s long-term prospects, as captured by realized market value.

Can we empirically link clustered distributions and exit rate sensitivity?

A reader might accept our empirical evidence of fat-tailed revenue dynamics and

clustered lifetime revenue outcomes for firms but still harbor two natural objections.
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First, we do not provide a formal definition of distributional clustering in our analysis

above. Second, we use our quantitative model, inevitably laden with assumptions,

rather than a more direct empirical approach to link our intuitive notion of clustering

to higher exit rate sensitivity.

In Appendix Section A.3 we push further in both directions. To begin, we develop

a reduced-form, purely statistical model that allows us to predict the aggregate exit

rate based on the distribution of firm lifetime revenue. Within this framework, we

analytically derive the predicted local response of the exit rate to a hypothetical one-

time revenue windfall for all firms. This derivative, which is directly computable in

our data, has a natural interpretation as a clustering statistic. This clustering statis-

tic is higher when the lifetime revenue distribution has, on average, higher density in

regions with steeper exit hazards. Empirically, we compute and report the value of

the statistic in Appendix Table A.4 for each two-digit sector within our sample. Clus-

tering varies widely, with particularly high values in sectors including construction

and retail trade and particularly low values in sectors including finance and health

care. We then exploit this cross-sectoral heterogeneity by running a set of panel re-

gressions, whose results are presented in Appendix Table A.5, demonstrating that exit

rates covary more negatively with sales growth at the industry level in the presence

of higher clustering. Our quantitative model, of course, does not incorporate sectoral

shocks or clustering heterogeneity. Yet we view these empirical results as consistent

with our quantitative model’s central prediction, which links the high sensitivity of

the exit rate in the nonparametric specification to the high level of clustering of the

firm value distribution.

8 Conclusion

In this paper, we argue that the standard parametric assumption for firm-level shocks

– a Gaussian AR(1) process – used in the heterogeneous firms literature is not real-

istic. In particular, we find that nonparametrically solving a model consistent with

the firm-level revenue dynamics we observe in the data, i.e., fat-tailed growth and

high mobility from the tails, has a large impact on the behavior of a canonical firm

dynamics model at the macro level. The standard parametric model implies a firm

value distribution which is far too dispersed relative to the firm value distribution

consistent with empirical firm dynamics. As a result, the empirical, nonparametric
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model’s more clustered value distribution generates substantially higher sensitivity of

the exit rate to a set of standard policy experiments. The stronger extensive margin

reaction in our nonparametric model drives strong selection e↵ects serving to amplify

or dampen the response of aggregate output, depending upon the exact details of the

underlying policy. As a result, we conclude that the standard parametric assump-

tions adopted in the quantitative firm dynamics literature are far from innocuous but

instead directly change the macro implications of firm-level mechanisms.
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