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1 Introduction

It is well documented that productivity and wages tend to be higher in large and densely populated cities

compared with smaller cities or rural areas (Ciccone and Hall, 1996; Glaeser and Mare, 2001; Baum-Snow

and Pavan, 2012; Moretti, 2013; Diamond, 2016). The elevated productivity in large cities is primarily

attributed to the “agglomeration effect” resulting from the geographical clustering of workers and firms.

Increased interaction and proximity among workers in large cities enables easier knowledge transfer and

skill acquisition, which elevates local productivity (Glaeser, 1999; Wheaton and Lewis, 2002; Jaffe et al.,

2003; Charlot and Duranton, 2004; Kerr and Kominers, 2010; Akcigit et al., 2018; Davis and Dingel, 2019;

Baum-Snow et al., 2021; Jarosch et al., 2021; Emanuel et al., 2023). Additionally, the co-agglomeration of

firms and industries facilitates professional networking and the establishment of new business relationships,

which further boosts productivity within these large urban areas and industry clusters (Ellison et al., 2010).

This paper studies the impact of working from home (WFH) on the agglomeration economies of cities

and its aggregate productivity implication. On the upside, WFH enhances job flexibility, which has been

shown to boost productivity for certain workers (Bloom et al., 2015; Barrero et al., 2021; Emanuel and

Harrington, 2022). It also allows workers to access high-productivity firms in large cities without incurring

the high costs of urban living. This could increase the labor supply to these large-city firms, potentially

driving up aggregate productivity, wages, and output.

Conversely, WFH could dilute the positive productivity spillovers arising from spontaneous in-person

interactions. The lack of informal “coffee talks” could limit the exchange of knowledge and ideas, both

within and between firms clustered in large cities. Furthermore, the decrease in physical presence may

undermine the role of large cities in fostering professional networks and facilitating complex business rela-

tionships. If WFH weakens the agglomeration effect, it could negatively impact productivity and wages in

large-city firms, potentially causing workers to shift to smaller-city firms. This could not only reduce the

urban wage premium but also lead to a decline in aggregate productivity, wages, and output.

We present a highly stylized spatial equilibrium model to illustrate the competing forces through which

WFH affects the strength of agglomeration economies, the urban wage premium, and aggregate economic

output. The model assumes that the agglomeration effect is fueled by the productivity externalities generated

by onsite workers. The model predicts that the adoption of WFH reduces the wage premium in large cities,

regardless of whether WFH weakens the agglomeration effect in large cities. Specifically, if the agglomer-
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ation effect remains strong despite a reduction in onsite workers, WFH adoption could increase the labor

supply for firms in large cities. This increase would result in more workers servicing large-city firms while

residing in smaller cities, which enables broader access to these firms’ high productivity and thus elevates

aggregate productivity, wages, and output. In contrast, if the switch from onsite to remote work significantly

weakens agglomeration economies in large cities, this could lead to diminished productivity in large cities.

In such a scenario, workers might be incentivized to switch to firms in smaller cities. The decreased produc-

tivity in large cities and the equilibrium reallocation of workers could lead to lower aggregate productivity,

wages, and output.

Based on our model, we derive two empirical predictions to validate the model and to examine whether

the adoption of WFH weakens the agglomeration economies. First, the urban wage premium should de-

crease with the advent of WFH, regardless of whether agglomeration economies in large cities are weak-

ened. Second, the direction of employment shift between cities depends on the primary driver of the reduced

urban wage premium. If the decrease is primarily due to a weakened agglomeration effect in large cities, em-

ployment (based on employers’ locations) should move from large to small cities. However, if an increased

labor supply to large cities is the main cause, employment should shift from small to large cities.1

To empirically assess whether the adoption of WFH affects local productivity and whether the effect is

due to a decrease in agglomeration economies, we use the COVID-19 pandemic as an exogenous shock to

the prevalence of WFH. The pandemic forced many employers across various occupations to suddenly and

unexpectedly shift to a WFH model, while other occupations, due to the nature of their work, were unable

to do so (Bartik et al., 2020; Bick et al., 2022; Brynjolfsson et al., 2020). These differential levels of WFH

adoption provide an empirical setting to examine the effects of WFH on economic outcomes such as wages

and employment in large cities compared with smaller cities.

Our empirical method assumes that shocks unrelated to the WFH adoption during the pandemic did not

disproportionately affect wages of jobs located in large cities within high-WFH-adoption occupations. We

are aware that other pandemic shocks unrelated to WFH adoption could have distinct impacts on high- and

low-WFH-adoption occupations. However, if the effects operate at the occupational level, they should not

alter the urban wage premium or employment growth differently by city size. Similarly, other pandemic
1It is worth noting that observing an increase in employment in large cities does not necessarily contradict a decrease in the

agglomeration effect. This is because the surge in labor supply might outweigh the reduced agglomeration effect. Conversely, a
disproportionate decrease in both employment and the wage premium in large cities would provide compelling evidence for the
decline of agglomeration economies in large cities.
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shocks might have affected wages and employment differently in large and small cities. However, our

conclusion should hold as long as these city-specific effects do not differ systematically by occupations’

level of WFH adoption.2

We test our model’s urban wage premium prediction using data on advertised wages from Emsi Burning

Glass (now Lightcast). Our findings indicate a significant decrease in urban wage premium for jobs in

occupations that heavily adopted WFH after the pandemic shock. This decrease was observed for both

college-degree-required and non-degree jobs. Furthermore, the reduced urban wage premium in high-WFH-

adoption occupations did not bounce back post-2020 and remained well below pre-pandemic levels as of

mid-2023. Conversely, for occupations with low WFH adoption, the urban wage premium remained mostly

unchanged after the pandemic shock. These findings validate our model’s first prediction.

One potential concern is that our results might be influenced by spatial sorting of skill supply or demand

during and post-pandemic, potentially reflecting changes in skill sorting rather than an actual urban wage

premium reduction. To mitigate the concern, we show that even after controlling for jobs’ observable skill

needs, there is a significant decrease in the urban wage premium within high-WFH-adoption occupations.

Additionally, to rule out any confounding effects due to geographical changes in job postings, we examine

the location-specific industry-level average weekly earnings from the Quarterly Census of Employment

and Wages (QCEW). We find a similarly disproportionate drop in the urban wage premium in high-WFH-

adoption industries over the three years following the pandemic.

Another potential concern is that the decrease in the urban wage premium within high-WFH-adoption

occupations might simply be a mechanical result of larger cities offering a greater share of WFH-compatible

jobs. If WFH functions as a job amenity that provides compensating wage differentials, a disproportionate

increase in WFH-compatible jobs offered by large-city firms could automatically reduce the urban wage

premium without any decrease in agglomeration economies or increase in labor supply in large cities. To

demonstrate that the drop in the urban wage premium is not mechanically driven by a higher WFH adoption

in large cities, we show that the urban wage premium decreased among both WFH-compatible and non-

compatible jobs within high-WFH-adoption occupations. For added robustness, we use the latest American

Community Survey (ACS) and find that hourly wages reported by onsite workers in high-WFH-adoption

occupations witnessed a significant urban wage premium drop in 2021, compared with 2018 and 2019.
2It is noteworthy that this paper does not intend to analyze the short- or long-run effect of the pandemic per se, such as

predicting the extent to which on-site work will return in the long term or whether large cities will make a come-back eventually.
The pandemic is used as the empirical setting of the study, not the subject.
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We next explore whether the decreased urban wage premium among jobs in high-WFH-adoption oc-

cupations was mainly driven by diminished agglomeration effects in large cities or by an increased labor

supply (of remote workers) in these cities. We use the QCEW to analyze the location-specific employment

growth. Since the QCEW reports employment by industry (not by occupation), we examine whether em-

ployment growth in high-WFH-adoption industries was faster in larger employment clusters compared with

smaller ones post-pandemic. Our finding suggests a disproportionate decline in employment (based on em-

ployers’ locations) in high-WFH-adoption industries in larger cities compared to smaller cities relative to

the pre-pandemic period. In other words, high-WFH-adoption industries in large cities not only experienced

a relative wage decrease but also saw an outward employment shift. According to our model, this finding

implies that the decreased relative wage in large cities is likely attributable, at least partially, to weakened

agglomeration economies in these cities.3

Lastly, we move away from empirical model tests and shift our focus to indirectly evaluating the weak-

ening of agglomeration economies using an alternative approach. We employ a Gelbach decomposition

exercise, drawing from Gelbach (2016), to identify which skills listed in posted jobs contribute the most

to the overall decline in the urban wage premium within high-WFH-adoption occupations. Our hypothesis

is that if labor supply to large cities increased due to WFH adoption, we should observe disproportionate

decreases in the urban wage premium of skills that are specifically complementary to remote work, such

as information technology skills. In contrast, if the weakening of agglomeration economies in large cities

plays a more important role, we should anticipate disproportionate decreases in the urban wage premium of

skills supportive of knowledge spillovers, network building, or fostering business relationships.

Our decomposition results suggest that several skill cluster families, including “Marketing and Public

Relations,” “Customer and Client Support,” “Building Relationship,” “Communications,” “Business Man-

agement,” and “Information Technology,” play a crucial role in the decline of the urban wage premium.

Notably, skills related to “Marketing and Public Relations,” “Customer and Client Support,” “Building Rela-

tionship,” and “Communications” tend to be particularly productive in interactive activities (Deming, 2017;

Deming and Kahn, 2018). The relative decline in wage returns to these skills in large cities suggests that
3Some studies have found higher or unexpectedly high productivity for remote workers compared with onsite workers (Bloom

et al., 2015; Barrero et al., 2021; Emanuel and Harrington, 2022). Our findings do not dispute these results. Specifically, we are
not comparing the productivity of remote and onsite workers, holding all other factors equal. Rather, our results suggest that WFH
adoption may have disproportionately affected the relative productivity of jobs based in larger cities. The productivity reduction
could affect both onsite and remote workers because fewer onsite workers due to WFH could decrease the degree of knowledge
spillovers for all workers.

4



there has likely been a decrease in the frequency of productive interactive activities requiring these skills in

firms located in large cities. In addition to the decrease in the urban wage premium for these skills, we also

observe a decline in the frequency that these skills are listed in job postings in large cities compared with

smaller ones, further suggesting reduced demand for these skills in large-city workplaces. These findings

constitute indirect evidence that large cities saw their agglomeration economies weakened due to reduced

productive interactions.

In contrast, “Information Technology” skills typically involve using electronic tools and applications,

which complement the feasibility of remote work. These skills also saw a significant decrease in the urban

wage premium. This finding suggests that the decline in the urban wage premium could also be partially

attributed to an increase in the labor supply of remote workers to large cities.

Our paper contributes to several strands of literature. First, we add to the ongoing discussions sur-

rounding the impact of the pandemic-induced rise in WFH on cities and productivity. Many studies have

highlighted a shift in housing demand from city centers to suburbs and from larger to smaller cities due to

the increasing prevalence of WFH (Gupta et al., 2021; Liu and Su, 2021; Ramani and Bloom, 2021; Althoff

et al., 2022; Delventhal et al., 2022; Li and Su, 2022; Howard et al., 2023; Monte et al., 2023). Other studies

explore how the endogenous change in productivity brought about by the WFH shock affects the well-being

and inequality of the U.S. population (Behrens et al., 2021; Davis et al., 2021; Delventhal and Parkhomenko,

2022). Especially relevant to our paper, Brueckner et al. (2021) present a spatial equilibrium model with

WFH and show that remote work is likely to equalize wages across regions. We further demonstrate that

both the weakening of agglomeration economies in large cities and the increased labor pool accessible to

firms in these cities are likely important drivers behind the diminished wage differentials across space.

In addition, our paper complements the extensive body of research exploring the agglomeration economies

of cities and the urban productivity premium. This literature seeks to unravel why workers and firms in larger

cities tend to be more productive. Prior studies provide evidence that the productivity advantage in large

cities arises from both the effect of sorting of more productive firms and workers into these areas and the

productivity-boosting effect of the large cities themselves (Combes et al., 2008; D’Costa and Overman,

2014; Gaubert, 2018; Martellini, 2022). Notably, research by Glaeser and Mare (2001), De La Roca and

Puga (2017), and Eckert et al. (2022) demonstrates that experience in large cities not only increases work-

ers’ productivity and wages but also bolsters wage growth even after individuals leave these areas. Our

paper offers additional insight into the mechanisms behind cities’ agglomeration effects. Previous research
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has established micro-foundations and provided evidence for various mechanisms that drive agglomeration

economies, with knowledge spillovers, input-output linkages, and labor pooling being the most prominent

(Rosenthal and Strange, 2003; Duranton and Puga, 2004; Bleakley and Lin, 2012). Our paper adds to this

literature by studying the effect of the removal of in-person interactions on agglomeration effects.

The rest of the paper is organized as follows. Section 2 presents a stylized model and its predictions.

Section 3 describes the data. Section 4 presents the empirical results that test the model predictions. Sec-

tion 5 presents additional skill-level analyses to further shed light on the mechanism behind the weakened

agglomeration effect. Section 6 concludes.

2 Stylized Model of Working from Home and Agglomeration

To demonstrate how increased WFH adoption could affect agglomeration economies, the urban wage pre-

mium, and productivity, we introduce a stylized model, which captures the key mechanisms at work and

summarizes the main implications of WFH in the presence of local agglomeration externalities.

Assume there are two locations: H and L. H represents a large or high-density city, and L represents

a small or low-density city. People who work for firms in H can either be onsite by living in location H

or work remotely by living in location L.4 However, if they live and work in different locations, they incur

a long-distance cost ϕ. We assume that people who work for firms in location L must also live in L.5 All

workers are identical. The total number of workers in the economy sums up to 1.

Notation-wise, let NHH be the number of workers who work for firms in H and live in H; let NHL be

the number of workers who work remotely for firms in H and live in L; let NLL be the number of workers

who work for firms in L and live in L.
4Note that our model assumes that remote workers of firms in H can only live in location L. Without the presence of amenities,

if location H has higher housing costs, any workers who work from home would choose to live in L in equilibrium, even if they
could opt to live in H . In Appendix A3, we present an alternative model allowing workers employed by firms in H to choose
between living in H or L while WFH, effectively separating the concepts of WFH and remote work. We show that the core insights
from our baseline model persist even with this additional feature.

5We assume away the margin between WFH and onsite work in L for simplicity. The assumption is consistent with the fact
that agglomeration economies are largely a large-city phenomenon. Moreover, even if WFH is modeled in L, under the assumption
of perfect mobility and that rent is higher in H , workers who work in L will all choose to live in L.
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2.1 Production

Large/High-Density City H: The production function in the large and high-density location H is given

by the following equation:

FH(BH , NHH , NHL) = BH(NHH +NHL)
γ ,

where BH is the productivity level in location H , which firms in H take as given. Given the level of

BH , firms use labor, either provided onsite NHH or remotely NHL, as the input for production. Beyond

each firm’s control, the presence of onsite workers generates productivity externalities. Specifically, BH =

BH(NHH) is a function of the number of onsite workers located in H:

BH(NHH) = B0HN θ
HH ,

where θ > 0, which represents the intensity of productivity externalities, influenced by the agglomeration

effect of workers in location H . This can be interpreted as externalities resulting from spontaneous physical

interactions and the ease of building relationships in large and densely populated areas.

Firms’ profit-maximization problem implies that the wage is equal to the marginal product of labor:

WH = γB0HN θ
HH(NHH +NHL)

γ−1.

We can see that the wage level of location H decreases as the labor supply increases due to the diminishing

marginal return of labor. However, owing to the production externality term, a greater number of onsite

workers can boost wages due to the agglomeration effect.

Small/Low-Density City L: The production function in the small and low-density location L is simpler,

as only onsite workers are used in production:

FL(BL, NLL) = BLN
γ
LL.

We assume that the productivity level in location L only contains an exogenous component BL, which is

equivalent to assuming θ = 0. We believe this is a reasonable assumption because production externalities
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are usually facilitated by intense communication and knowledge exchanges, which are more common in

large cities and industry clusters. In addition, previous research suggests that the strength of agglomeration

tends to exhibit some degree of convexity with respect to city size (Moretti, 2021).

Firms’ profit-maximizing problem yields that the wage level in location L is

WL = γBLN
γ−1
LL .

2.2 Housing Market

Local housing costs adjust based on local housing demand, varying according to the local housing supply

elasticity. The housing demand in location j, j ∈ {H,L}, is the sum of the population who chooses to live

in location j regardless of the location of their labor supply.

The rent of local housing services in location H is

rH = π0H + πH ln(NHH).

The housing demand in H is the number of workers who work and live in H . The rent in location L is

rL = π0L + πL ln(NHL +NLL).

Slightly different from location H , the housing demand in L is the sum of workers who supply labor re-

motely for firms in H while living in L and workers who work and live in L.

2.3 Workers’ Location Choice

Workers can make one of the following choices: (i) working and living in H: HH , (ii) working in H and

living in L: HL, or (iii) working and living in L: LL. We use an exogenous cost of remote work, denoted by

ϕ, to model the shock of WFH adoption—the cost decreases exogenously when WFH becomes prevalent.

We then examine the impact of WFH on the equilibrium outcomes by evaluating the comparative statics of a

decrease in ϕ.6 Appendix A2 presents an alternative setup where workers adopt WFH as a result of both an
6Our model of WFH is more simplified compared with some other studies that explore the impact of WFH on productivity,

such as Davis et al. (2021) and Delventhal and Parkhomenko (2022). In our baseline model, we assume the marginal productivity
of remote and onsite workers is identical; we use the cost of WFH (ϕ) to induce a shift in the fraction of remote workers. A decrease
in ϕ can be viewed as a reduced-form way to account for both the relative productivity increase of WFH as described by Davis et al.
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exogenous decrease in the cost of WFH and an exogenous increase in the productivity of remote workers.

We show that ϕ can capture both sources of exogenous shocks in a reduced-form way.

Workers can attain the following utility levels based on their work and residential location choices:

UHH = wH − βrH ,

UHL = wH − βrL − ϕ,

ULL = wL − βrL,

where wH and wL are the log wages in H and L, respectively; rH and rH are log rents in H and L,

respectively; ϕ is the cost of working remotely from another city.

Since all workers are assumed to be identical, in equilibrium, all three levels of utility must equalize

(assuming we are not in a corner solution where UHL is too low such that no one works remotely):

Ū = wH − βrH = wH − βrL − ϕ = wL − βrL.

The equalization property of the homogeneity assumption allows for easy comparative statics.

2.4 Effect of WFH in Equilibrium

Urban Wage Premium From the equalized utility levels, it is evident that a decrease in ϕ would narrow

the spatial gaps in both rents and wages. Specifically, taking the difference between the first and second

equations, we can see that the rent premium between H and L is a function of ϕ:

rH − rL =
ϕ

β
.

Taking the difference between the third and second equations, we can see that the wage premium between

H and L is exactly ϕ:

wH − wL = ϕ.

(2021) and the shift in social norms as described by Delventhal and Parkhomenko (2022). Our analysis does not require explicit
assumptions on these factors. In addition, our stylized model abstracts away from commuting and hybrid arrangement. While our
model simplifies many aspects of the work environment, it is designed with the specific aim of illustrating how WFH can affect
agglomeration economies. As such, we intentionally streamline other forces to present a focused picture.
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Thus, when the cost of WFH (ϕ) decreases, the urban wage premium also decreases. However, this condi-

tion alone does not directly indicate how much the aggregate wages and output levels are impacted by the

decrease of ϕ. Below, we analyze these effects.

Agglomeration and Aggregate Productivity To examine the effect of a reduction in ϕ on equilibrium

productivity, wages, and output, we totally differentiate the sum of production in both locations with respect

to ϕ. This allows us to understand the mechanisms through which ϕ affects output. Since we assume a

constant and equal labor share (γ) in both H and L, and the total population is normalized to one, the

direction of change for output aligns with the direction of change in wages and productivity.

The effect of a decrease in ϕ on the aggregate output is

∂(FH + FL)

∂(−ϕ)
= θB0HN θ−1

HH

∂NHH

∂(−ϕ)
(NHH +NHL)

γ︸ ︷︷ ︸
Weakening of Agglomeration Economies

< 0

+(WH −WL)
∂(NHH +NHL)

∂(−ϕ)
.︸ ︷︷ ︸

Reallocation of Labor from L to H

< 0 or > 0

(1)

The effect can be decomposed into two components: (i) a decrease in the aggregate output due to weakened

agglomeration economies in H and (ii) a change in the output due to the reallocation of labor between L

and H (in terms of job location). Below, we show that the first component is definitively negative if θ > 0.

However, the second component’s sign depends on the direction of labor reallocation between H and L,

which is not definitive. The intuition of Equation 1 is as follows: The rise in WFH reduces the number of

onsite workers, thereby lowering the agglomeration effect in H and the output. The extent of this effect

depends on the sensitivity of productivity in H with respect to the number of onsite workers, i.e., θ. If

the reduction in H’s agglomeration effect is minimal and WFH allows a sufficient number of workers to

remotely supply their labor to the high-productivity location H while residing in L, the gains from such

reallocation could compensate for the productivity loss from a weakened agglomeration effect. However, if

the reduction in H’s agglomeration effect is so significant that it drives workers to relocate from H to L, the

aggregate output will definitively decrease. It is important to note that a scenario exists where there is a net

increase of workers moving to firms in H , but the weakened agglomeration economies still result in a net

loss of output.

To analyze the sign of each component in Equation 1, we need to know the direction of changes in

the number of onsite workers ∂NHH
∂(−ϕ) and the reallocation of labor ∂(NHH+NHL)

∂(−ϕ) . Appendix A1 presents
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the derivation. Here, we show the effect of a decrease in ϕ on the numbers of onsite and remote workers

servicing firms in H:
∂NHH

∂(−ϕ)
= − 1

β
(

πL
1−NHH

+ πH
NHH

) < 0; (2)

∂NHL

∂(−ϕ)
=

1

β
(

πL
1−NHH

+ πH
NHH

) +
β
(

πL
1−NHH

+ πH
NHH

)
− θ

NHH

β
(

πL
1−NHH

+ πH
NHH

)(
1−γ
NLL

+ 1−γ
NHH+NHL

) . (3)

In line with the discussed intuition, we demonstrate that reducing the cost of WFH decreases the number of

onsite workers (NHH ). However, the effect on the total labor supply for production in H is not certain:

∂(NHH +NHL)

∂(−ϕ)
=

β
(

πL
1−NHH

+ πH
NHH

)
− θ

NHH

β
(

πL
1−NHH

+ πH
NHH

)(
1−γ
NLL

+ 1−γ
NHH+NHL

) . (4)

Interestingly, the impact of a decrease in the cost of WFH on labor supply to location H can be either

positive or negative, depending on the intensity of agglomeration, θ. If θ = 0 (no externality spillovers),

a reduction in ϕ will definitely increase the total labor supply to location H . The intuition is that before

WFH adoption, workers employed by firms in H have to bear the cost of housing in H , thereby limiting

the number of workers who can take advantage of the productivity offered in H . The adoption of WFH

allows more workers to relocate to L while still working for firms in H , effectively relieving the congestion

problem associated with working in H .

Conversely, if θ > 0 (where agglomeration externalities exist), the positive effect of reducing ϕ on the

total labor supply to H diminishes and could even reverse if θ is large enough. This happens because as more

workers switch from onsite to remote work, the productivity spillover from onsite workers decreases, which

lowers the marginal product of both onsite and remote workers. Since these externalities are not internalized

in firms’ profit maximization problem and hence not priced in wages, the number of onsite workers and the

total number of workers at firms in H will decrease and will fall below the optimal level.

Model Predictions In sum, our model predicts that the rise of WFH (a decrease in ϕ) will invariably

reduce the urban wage premium, irrespective of potential weakening in agglomeration economies of large

cities. This can be attributed to WFH expanding the labor pool available to firms in these large cities, which

could also drive down the urban wage premium.

To further test whether agglomeration economies have declined in large cities, we need to assess whether
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∂(NHH+NHL)
∂(−ϕ) < 0. If we observe not only a reduced urban wage premium but also a decline in employment

by firms in large cities due to WFH, this would suggest a drop in productivity in these cities so that workers

are encouraged to switch to firms in smaller cities. In this scenario, the weakened agglomeration economies

in large cities would reduce aggregate productivity, output, and wages.

2.5 Empirical Tests in the Context of the COVID-19 Pandemic

We use the sudden and unprecedented surge in WFH prevalence during the COVID-19 pandemic as an

empirical setting. The adoption of WFH during this period varied widely across occupations. To test our

model predictions, we examine changes in the spatial patterns of wages and employment separately for

occupations with different levels of WFH adoption.

Occupations with High WFH Adoption Figure 1a illustrates how the labor demand and supply curves

would theoretically shift during the pandemic in large cities for high-WFH-adoption occupations and the

effects on the equilibrium wage and employment. For high-WFH-adoption occupations, the model predicts

that the reduced number of onsite workers in large cities during the pandemic may lower productivity due

to weakened agglomeration economies, which could lead to decreased labor demand. Meanwhile, the labor

supply of remote workers for high-WFH-adoption occupations may increase in large cities as they remotely

work for large-city jobs due to the increased prevalence of WFH. The reduced labor demand and expanded

labor supply in large cities will lower the wage level (w → w′′′) and thus reduce the urban wage premium

within high-WFH-adoption occupations.7 Crucially, if we observe a decrease in employment within high-

WFH-adoption occupations in large cities post-pandemic, this implies that the labor demand in large cities

must have shifted downward (because the labor supply curve moves upward due to the advent of WFH).

Occupations with Low WFH Adoption We now turn to the local labor markets for occupations with

low WFH adoption. It is noteworthy that the COVID-19 pandemic, besides increasing WFH adoption, also

sparked a surge in migration from large cities to smaller ones. This was not only fueled by the shift away

from locations of employers due to the prevalence of WFH but also driven by the pandemic-induced decline

in urban amenities and activities. This migration away from large cities likely shrunk the local labor supply

in large cities for onsite positions while having less impact on occupations with high WFH adoption.
7In smaller cities, labor supply is likely to shift downward due to the reallocation of labor, resulting in higher wages. This

could further reduce the urban wage premium.
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In addition, the migration would naturally redistribute demand for local services, like restaurants, from

large to smaller cities. This shift would likely decrease local labor demand in local service sectors of

large cities, which predominantly require the onsite presence of workers. In contrast, high-WFH-adoption

occupations, usually in professional services, are less impacted by local service demand shift (Eckert et al.,

2022).

Figure 1b illustrates the potential impact of these labor demand and supply shifts on equilibrium wage

and employment in large cities for low-WFH-adoption occupations. The concurrent downward shifts could

reduce employment in these occupations within large cities (M →M ′). However, equilibrium wages might

not shift definitively in any direction. Thus, the urban wage premium for low-WFH-adoption occupations

may remain relatively stable if the demand and supply effects offset each other.

Table 1 summarizes the expected changes in the urban wage premium and employment in large and small

cities separately for occupations with high and low WFH adoption and the underlying economic forces.

Identifying Assumption The key assumption behind our empirical approach of using the pandemic shock

to identify the effect of WFH adoption is that other pandemic shocks unrelated to WFH adoption did not

disproportionately affect wages and employment for jobs in high-WFH-adoption occupations in large cities.

Given this assumption, if we observe a decrease in the urban wage premium for high-WFH-adoption oc-

cupations post-pandemic, while it remains largely unchanged for low-WFH-adoption occupations, we can

attribute the decline in urban wage premium to WFH adoption, thereby validating our model’s prediction.

It is important to acknowledge that during the pandemic, other shocks unrelated to WFH adoption,

such as the exacerbated labor shortage in the low-skilled market, could have affected high- and low-WFH-

adoption occupations differently. However, as long as these effects did not vary systematically by city size,

we would not expect to see a disproportionate change in the urban wage premium for high-WFH-adoption

occupations. Similarly, other pandemic-driven shifts, such as altered preferences for low-density housing

and changes in urban amenities, may have affected the labor supply of large and small cities differently,

subsequently affecting wage levels in these cities differently. While these factors could potentially induce

changes in the urban wage premium, they are not expected to cause a disproportionate shift in high-WFH-

adoption occupations.8

8One could argue that workers in high-WFH occupations were leading the suburbanization wave, which may have decreased
the total labor supply in these occupations to large cities instead of increasing it. If this were the case, it should have led to an
increase in the urban wage premium. Under this scenario, the observed decline in the urban wage premium among high-WFH
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3 Data

3.1 Advertised Wages by Occupation and Geography: Burning Glass (Lightcast)

We use data from various sources to test the model’s predictions. Our main wage data come from Lightcast,

formerly known as Burning Glass Technologies, which we will refer to as Burning Glass data henceforth.

Burning Glass is a company that scrapes and cleans job postings from about 40,000 online job boards and

company websites across the U.S. The aim is to capture the universe of job postings in the U.S. A de-

duplication algorithm is used to avoid repetition. We use the Burning Glass data from January 2018 to

May 2023. The dataset represents approximately 70% of U.S. vacancies (Carnevale et al., 2014).9 Around

20% of the postings in the Burning Glass data contain wage information, including total and hourly salary

provided as a range (maximum and minimum value). We calculate a job’s wage by taking the mid-point

between the maximum and minimum hourly salary for the job (Hazell et al., 2022).

Notably, the job postings include highly detailed occupation codes (SOC) and industry codes (three-digit

NAICS), which are generated by Burning Glass based on the text within each job listing. Additionally, the

data include the county associated with each job posting, which we take as the primary job location.10

The job postings also offer various job-level details such as minimum degree requirement, full-/part-

time status, salary types, tax terms, and an extensive array of skill requirements.11 These detailed job

characteristics enable us to study changes in the urban wage premium controlling for job characteristics.

With the specific skill requirements, we can distinguish between changes in the composition of workers or

local skill demand and shifts in local wage premium, holding constant skill demand. The absence of such

information in most datasets, including government administrative data, makes Burning Glass data a unique

resource for our analysis.

For the sake of computational efficiency, we randomly sample 10% of the raw Burning Glass data for

occupations could only be explained by a significant decrease in productivity in large cities.
9Carnevale et al. (2014) show that online job ads can overrepresent higher-skilled, white-collar positions, a potential bias in the

Burning Glass data. However, we do not use the Burning Glass data to study the overall job number or local composition. Instead,
we use the wage information of the posted jobs to analyze how local wage changes vary across different occupations.

10Some might question whether the location associated with each job posting truly reflects the primary job location or the firm’s
location, rather than the location of workers targeted by the job ads. Given that Burning Glass scrapes online job postings, there
is no direct method to confirm whether the location information indeed represents the actual job or firm location. We indirectly
verify this by comparing the local industry shares in the Burning Glass data with the those in the Quarterly Census of Employment
and Wages (QCEW), which is based on employer locations. We compute the 3-digit NAICS industry shares in each metropolitan
statistical area (MSA) using both datasets. Figure A1 shows the binned scatterplot of the shares, separately for January 2020 (pre-
pandemic) and July 2020 (during the pandemic). The industry compositions in the Burning Glass data closely correspond with
those derived from employers’ locations in the QCEW, both before and after the pandemic began.

11Salary types include base pay, bonus, commission, and shift premium. Tax terms include employee and contractor.
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our statistical analysis, including binned scatterplots and regression analyses.

3.2 Spatial Patterns of Employment

Our employment data are from the Quarterly Census of Employment and Wages (QCEW). The data provide

quarterly employment counts, covering over 95% of all U.S. jobs, across industries defined by NAICS codes.

Nevertheless, the QCEW data do not provide breakdowns in employment numbers by occupation.

Our primary measure of the relevant local labor market size for each job is the employment size of the

job’s occupation and metropolitan statistical area (MSA). Thus, we need to impute employment size by

occupation and MSA. To do so, we use the Burning Glass data to generate a crosswalk between the three-

digit NAICS code and the SOC occupation code. Since each job posting in the Burning Glass data is assigned

a three-digit NAICS code and SOC code, we calculate the empirical distribution of the NAICS conditional

on each SOC code. Using the probabilistic crosswalk, we impute employment by SOC occupation and

county. We then use a county-MSA crosswalk to compute the employment size by occupation and MSA.

However, to analyze differential employment growth across MSAs, we directly use industry-level em-

ployment data from the QCEW. We use industry-level employment data rather than the imputed occupation-

level data for employment analysis because the imputation process using the NAICS-SOC crosswalk can

mute a substantial amount of variations in cross-industry employment growth found in the raw industry-level

data. Therefore, to capture any variations accurately, we reply on the original industry-level data to analyze

spatial patterns of employment.

Importantly, because the QCEW data are drawn from employment information reported by business

establishments participating in the Unemployment Insurance programs, the employment counts reflect the

locations of employers, not workers. This distinction is crucial for analyzing how the rise of WFH has

influenced labor supply to firms in large cities compared with smaller ones.

3.3 Measuring the Adoption of Working from Home (WFH)

Burning Glass We categorize each job as WFH-compatible or not using the original texts of job postings

from 2018 to 2022. We use a dictionary approach, where we search for keywords associated with WFH or

remote work. To ensure our categorization is immune to negations (e.g., employers reference WFH-related

topics to indicate the lack of such options), we exclude jobs from the WFH-compatible category if any
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negation words appear just before or immediately following the WFH keywords. We discuss our dictionary

approach in details in Appendix A4.1.

After classifying each job as WFH-compatible or not, we calculate the fraction of WFH-compatible

jobs within each SOC occupation. We define an occupation’s WFH adoption level as high, moderate, or

low based on the post-pandemic increase in the fraction of WFH-compatible jobs. In our main analysis,

occupations with high WFH adoption are defined as those that saw an over 20 percentage point increase in

the national share of WFH-compatible jobs, as determined by comparing pooled data from 2018 to March

2020 with pooled data from April 2020 to May 2023 in the Burning Glass data (representing the 90th

percentile of the distribution in change of WFH-compatible job share). Occupations with moderate WFH

adoption saw an 11 to 20 percentage point increase in the share of WFH-compatible jobs (representing the

50th and 90th percentiles), while occupations with low WFH adoption saw less than an 11 percentage point

increase.

American Community Survey (ACS) We use the ACS from 2018 to 2021 to supplement the Burning

Glass data. The ACS collects information on how respondents usually commute to work in the previous

week (Ruggles et al., 2022). The survey reports whether a respondent “worked from home” during the

prior week. Combining this information with occupational codes (OCC2010), we compute the fraction of

respondents from each occupation who worked from home each year up to 2021. Therefore, by assessing

the change in the fraction of WFH workers by occupation before and after the pandemic’s onset, we can

also classify each occupation’s WFH adoption level in the ACS data.12 We use the levels of WFH adoption

by occupation measured with the ACS data to conduct a number of robustness checks.13

12In ACS, we define an occupation’s WFH adoption level based on the change in the national share of remote workers within the
occupation between 2019 and 2021. We classify occupations as high-WFH-adoption occupations if they saw an over 28 percentage
point increase in the national share of WFH workers, comparing data from 2019 and 2021 (representing around the 90th percentile
of the distribution in the change of WFH worker share within the ACS data). Moderate-WFH-adoption occupations saw an 8 to
28 percentage point increase in the share of WFH workers (representing the 50th and 90th percentiles), while low-WFH-adoption
occupations saw less than an 8 percentage point increase.

13For robustness checks that use the ACS to evaluate changes in the urban wage premium, we compute the occupation-level
WFH adoption directly from the ACS. In other checks, we measure the level of WFH adoption by occupation using the ACS and
merge the measurement with the Burning Glass data. However, a challenge arises because the ACS uses the broader Census Occu-
pation Code (OCC2010), while the Burning Glass uses the more detailed SOC codes. Thus, a large number of SOC occupations
in the Burning Glass data cannot be directly matched to OCC2010 codes. To leverage the ACS’s WFH-adoption information, we
combine 57 SOC-occupation-level work context characteristics from the Occupational Information Network (O*NET) data with the
observed occupation-level WFH adoption in the ACS. Then using observed O*NET work contexts for all occupations, we impute
the level of WFH adoption for all SOC occupations. Please refer to Appendix A4.2 for more details on the imputation process.
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American Time Use Survey (ATUS) The ATUS provided by the Bureau of Labor Statistics is another re-

source for tracking WFH adoption by occupation (Hofferth et al., 2020). The ATUS measures the amount of

time that respondents spend on various activities over a 24-hour period. Hence, the data allow us to calculate

the fraction of working hours spent at home by occupation over time. With its annual data releases, we can

compare the prevalence of WFH before and after the pandemic. However, the ATUS has its limitations as

the number of respondents is often too small for occupation-level analyses. Thus, we mainly use the ATUS

to validate our findings from the Burning Glass data and ACS.

Cross-Validations To ensure the credibility of our primary WFH adoption measurement from the Burning

Glass data, we cross-validate it using alternative datasets. It is crucial to note that our study does not focus on

the precise level of WFH adoption but rather the relative changes in WFH adoption levels across occupations

post-pandemic. In other words, it is the ranking of WFH adoption across occupations that is relevant for our

analysis. For validation, we compute WFH prevalence by occupation group using the ACS and ATUS data

and the fraction of WFH-compatible jobs by occupation or occupation group in the Burning Glass data over

the first two years of the pandemic (2020–2021). Figures 2a and 2b plot the fraction of WFH-compatible

jobs by occupation group against the workers’ WFH prevalence by occupation group in the ATUS and ACS

data, respectively, both indicating strong correlations. Figure 2c compares our estimated shares of WFH-

compatible jobs by occupation with those from Bloom et al. (2023), suggesting a high correlation with an

R-squared exceeding 0.75.14 Lastly, Figure 2d shows that the WFH prevalence measures across occupation

groups using the ACS and ATUS data align closely with an R-squared close to 0.9.15

4 Empirical Evidence

4.1 The Adoption of WFH Arrangement

We begin our empirical analysis by documenting changes in WFH adoption over time. Using the ACS and

ATUS data from 2005–2021, we first calculate the aggregate share of remote workers by year.16 Figure 3a
14Bloom et al. (2023) develop a machine-learning technique to categorize WFH-compatible jobs with increased precision.
15For the validation of the imputed levels of WFH adoption based on the ACS and O*NET occupational characteristics, please

see Appendix A4.2.
16For 2020, to highlight changes in WFH during the pandemic, we impute Q2-Q4 share of remote workers, assuming the Q1

2020 share is equal to the 2019 share. Specifically, assume that the 2019 share of remote workers is share2019 and observed 2020
share is share2020. Then the imputed share of remote workers in Q2-Q4 2020 is shareQ2−Q4,2020 = share2020−0.25share2019

0.75
.
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reveals a dramatic rise in WFH adoption starting in 2020 and a high level maintained into 2021. The pattern

is reflected in both ACS and ATUS.

Consistent with predictions of Dingel and Neiman (2020) and findings from other studies, we document

that the level of WFH adoption varied widely across different types of workers, occupations, and industries

(Barrero et al., 2021; Bick et al., 2022; Brynjolfsson et al., 2020).17 Figure 3b shows that college-educated

workers were more likely to transition to WFH in 2020 than their non-college-educated counterparts. Across

occupations, Figure 3c shows a very high WFH uptake by computer and mathematical occupations, followed

by business and financial occupations. In contrast, occupations related to food services and health care saw

a much lower level of WFH adoption. Similarly, Figure 3d shows industry-level disparities, with finance,

information, and professional and business services sectors leading in WFH adoption, contrasting with

sectors such as accommodation and food services, as well as health care and social assistance.

4.2 The Effect of WFH Adoption on the Urban Wage Premium

In this section, we examine the effect of WFH adoption during the COVID-19 pandemic on the urban wage

premium. Based on the empirical tests outlined in Section 2.5, we expect a decrease in the urban wage

premium for occupations with high WFH adoption during the pandemic. Conversely, occupations with low

or moderate WFH adoption are expected to see smaller changes.

We begin by presenting binned scatterplots of residualized log posted hourly wages against residualized

log employment of each job’s occupation and MSA. We use employment size by occupation and MSA as a

measure of the relevant local labor market size for each job.18 To residualize the variables, we control for

dummy variables for SOC occupation code, three-digit NAICS code, job’s required education level, salary

type, full-/part-time status, tax terms, and the posting month. Hourly wages are from the Burning Glass

data, and employment size is from the QCEW. Figure 4 presents these plots, where the slopes of the curves

represent the urban wage premium.19

17A few recent papers use customized surveys to document differential changes in the prevalence of WFH during the pandemic—
e.g., the Survey of Working Arrangements and Attitudes by Barrero et al. (2021). We do not use the survey data because our analysis
requires a highly detailed occupation code, which is not available in these surveys.

18We also present similar binned scatterplots using total MSA employment (rather than by MSA and occupation) to measure
the job’s relevant local labor market size. These plots are presented in Figure A2.

19We validate the urban wage premium estimated from the Burning Glass data using the 2019 ACS. We use the ACS for the
pre-pandemic year because estimating the urban wage premium requires the location of jobs, and the ACS reports the job locations
only for onsite workers. The prevalence of WFH before the pandemic was very low, so using the ACS to measure the urban wage
premium before the pandemic is unlikely to introduce significant bias. Figure A3 compares the urban wage premium estimated
from the two datasets and shows that they are highly comparable.
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Figure 4a presents the plot for all jobs from two periods: the pre-pandemic era (January 2018 to March

2020) and the period after the pandemic hit (April 2020 to May 2023). In a cross-sectional view, the slopes of

the curves are positive, indicating that residual wages are generally higher in larger labor markets, a finding

that aligns with prior empirical evidence. Following the pandemic, the urban wage premium experienced a

drop, decreasing from 0.0276 to 0.0212, and the decline is statistically significant.

Figures 4b and 4c present the plots for jobs that require a college degree and those that do not, re-

spectively. While both plots show a decrease in the urban wage premium, the decline is not statistically

significant for the jobs that require a college degree.

Figures 4d and Figure 4e present the plots for jobs in occupations with high and low levels of WFH

adoption, respectively. From Figure 4d, we observe a large and statistically significant decline in the urban

wage premium for occupations with high WFH adoption. The drop is from 0.0417 to 0.0309, approximately

a 26% decline. In contrast, for jobs in low-WFH-adoption occupations (as shown in Figure 4e), the decline

in the urban wage premium is much smaller, decreasing from 0.0174 to 0.0167. This corresponds to roughly

a 4% decrease from a much lower base number. This finding—i.e., a more dramatic decrease in the urban

wage premium for occupations with high WFH adoption compared with those with low WFH adoption—is

consistent with the prediction of our model as described in Section 2.5.20

Lastly, Figure 5 presents the urban wage premium annually from 2018 to 2023, separated into four

groups of job postings according to their level of WFH adoption and educational requirements. Each group’s

urban wage premium is normalized by the 2018 estimate. We find a notable drop in the urban wage premium

among occupations with high WFH adoption, regardless of whether a college degree is required. Moreover,

this decrease did not rebound since the pandemic’s outbreak. Conversely, the urban wage premium remained

relatively stable among occupations with low WFH adoption regardless of the need for a college degree.

Spatial Sorting of Skill Demand One might be concerned that the observed decline in the urban wage

premium could be due to factors other than the adoption of WFH, such as the pandemic causing an exodus

of higher-wage firms from large cities for reasons unrelated to WFH. This means that the reduction in the

relative wages in larger cities does not necessarily indicate a true decline in the urban wage premium for a

given set of jobs but could instead be a result of higher-skill jobs leaving these large cities.
20Figure A4 presents binned scatterplots of changes in the urban wage premium of four selected occupation groups. To see

which cities experienced wage declines most during the pandemic, in Figure A5, we present changes in residualized log posted
wages for jobs in four occupation groups across various MSAs. More details are presented in Appendix A5.1.
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To further investigate this possibility, we analyze the extent to which our estimates of the decline in

the urban wage premium are driven by spatial sorting of skill demand and how much they are driven by a

genuine decrease in the urban wage premium for a given set of worker skills. Fortunately, the Burning Glass

data provide a rich array of skill requirements associated with each job posting, allowing us to perform this

analysis.21 Specifically, we estimate the following equation:

ln(wikjt) = α0 lnMkj + α1 lnMkj × Postt + α2 lnMkj ×Modk + α3 lnMkj × Postt ×Modk (5)

+ α4 lnMkj ×Highk + α5 lnMkj × Postt ×Highk + α6Postt + α7Modk + α8Highk

+ α9Postt ×Modk + α10Postt ×Highk +XikjtΘ+ εikjt,

where wikjt is the posted hourly wage of job i in occupation k MSA j and time t; Mkj is the employment

size of occupation j in MSA j (as measured in 2019 Q1); Postt is an indicator of the post-pandemic period

(i.e., 1 if t is after March 2020); Modk is an indicator that k is an occupation with moderate WFH adop-

tion; Highk is an indicator that k is an occupation with high WFH adoption; Xikjt is a vector of job-level

characteristics, including dummy variables for SOC occupation code, three-digit NAICS code, years of ed-

ucation required by the job, salary type, full-/part-time status, tax terms, posting month, and required skills.

The parameter α1 represents the change in the urban wage premium post-pandemic for low-WFH-adoption

occupations; α1 + α3 represents the change in the urban wage premium for moderate-WFH-adoption oc-

cupations; α1 + α5 represents the change in the urban wage premium for high-WFH-adoption occupations;

α3 (α5) represents the differential change in the urban wage premium for moderate (high) WFH-adoption

occupations compared with low-WFH-adoption occupations. We estimate the equation using the Burning

Glass data from 2018–2023.

Table 2 presents the estimates of Equation 5. Column 1 includes basic job characteristics.22 Column

2 further controls for the skill fixed effects. Both specifications show small and statistically insignificant

changes in the urban wage premium for jobs in low-WFH-adoption occupations. However, for high-WFH-

adoption occupations, the change in the urban wage premium is strongly negative. Even after controlling for
21The added complexity of the data is that some job postings specify only a few skill requirements while others list more than

ten distinct skills. To simplify our computations, we focus on the first 20 skills mentioned in each job posting, ranked by the overall
frequency of mentions across all postings. About 90% of the jobs in the sample mention fewer than 20 skills. In job postings with
fewer than 20 skills, the remaining slots are filled as “na.”

22The regression results are slightly different from the slopes of the binned scatterplots in Figure 4d and 4e. This is because in
the figures, we residualize log hourly wage and log M separately for the sample before and after the pandemic began.
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detailed skill fixed effects, the magnitude remains largely unchanged. This suggests that the considerable

decline in the urban wage premium among high-WFH-adoption occupations is likely a true reflection of a

decrease in the relative price of labor in larger cities, holding skills constant.

For further validation, Table A1 columns 1 and 2 present the results after controlling for the interaction

between occupation fixed effects and the post-pandemic dummy, as well as the interaction between MSA

fixed effects and the post-pandemic dummy. These controls aim to capture any pandemic-related changes

that have affected an entire occupation or MSA. The results remain largely consistent with those in Table 2,

thereby strengthening the robustness of our findings.23

Alternative Definitions of WFH Adoption There may be concerns that our results hinge on how we de-

fine the levels of WFH adoption. To address the concern, in Table 2 column 3, we use an alternative indicator

of high WFH adoption that classifies an occupation as “high WFH adoption” if it belongs to business/finance

or computer/mathematics occupation groups. As shown in Figure 3c, these two occupation groups exhibited

a dramatic increase in WFH adoption from 2020 onward. When using this alternative categorization, the

regression results confirm that these two occupation groups experienced a disproportionate decrease in the

urban wage premium compared with other occupations, corroborating the robustness of our baseline results.

In Table A1 columns 3 and 4, we use the same baseline specification but define WFH adoption levels

based on each job’ three-digit NAICS industry code, rather than the SOC occupation code. The results

closely align with those in Table 2 columns 1 and 2.24

Selection Bias Because only a subset of job postings provide wage information, there may be concerns

of selection bias in our estimated regression coefficients. Specifically, if high-skilled jobs in large cities are

less likely to list wages post-pandemic, this could result in a spurious decrease in our urban wage premium

estimates. To address that concern, in column 4, we apply a Heckman correction to rectify the potential

bias. In the first stage, we use the triple interaction between dummy variables for jobs’ required years of
23To address concerns that changes in the urban wage premium might occur at a geographical level below the MSA, such as

the county level, we perform the same regression analysis as in Equation 5, but redefine M at the occupation-county level. The
estimates are reported in Table A2. Column 1 includes only job-level controls, while Column 2 further controls the interaction
term of MSA fixed effects, the high-WFH-adoption dummy, and the post-pandemic dummy. The interaction term absorbs any
MSA-level changes in the urban wage premium. The results suggest that the decline in the urban wage premium has occurred both
within and across MSAs.

24In Table A3, we use the baseline specification but categorize WFH adoption levels using the imputed change in the fraction
of WFH workers—the imputation is based on the observed change in the fraction of WFH workers in the ACS and the O*NET
occupational characteristics. The results are also consistent with those in Table 2. Please see footnote 13 and Appendix A4.2 for
detailed discussions of the imputation.
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education, the post-pandemic period, and occupation’s WFH adoption level across all job postings to predict

the availability of wage information for a given posting. In the second stage, we estimate the conditional

expectation of wages according to Equation 5, given that wage information is available for a job. The results

in column 4 indicate that, after accounting for wage selection based on observed job characteristics, the

estimated decrease in the urban wage premium for high-WFH-occupations is comparable to the baseline

estimates in columns 1 and 2. Although we cannot exclude the possibility of other forms of selection, our

findings suggest that the estimated decline in the urban wage premium using the Burning Glass data is

unlikely to be attributed to a selection bias based on the skill level of jobs.

To further ensure that our findings are robust to selection bias from wage postings, in Table A4, we

estimate changes in the urban wage premium using the average weekly earning data from the QCEW. The

QCEW data offer several benefits. They provide earnings information likely free from selection bias, and

the earnings information is based on employers’ locations. However, some cautionary points need to be

considered: First, the data do not provide hourly wage information; weekly earnings might be confounded

by changes in the number of part-time workers during the pandemic. Moreover, while QCEW reflects the

earnings of existing workers, Burning Glass pertains to new job postings. Despite these differences, the

results in Table A4 point to a substantial and statistically significant decrease in the urban wage premium for

high-WFH-adoption industries.25 The magnitude of the decrease intensified from 2020 to 2022, possibly

because wages for existing workers adjust at a slower pace compared with those for new jobs.

Mechanical Effect of Larger Cities’ Disproportionate WFH Adoption Another potential concern is

that the observed decrease in the urban wage premium among high-WFH-adoption occupations could be

a mechanical result of larger cities’ disproportionate adoption of WFH and the fact that WFH may serve

as a type of amenities compensating for lower wages. If jobs based in larger cities were more likely to

adopt WFH than similar jobs in smaller cities, this could have led to a greater wage reduction in large cities,

creating a spurious decrease in the urban wage premium that is unrelated to weakened agglomeration or

increased labor supply.
25Here, we estimate changes in the urban wage premium by industries with different WFH adoption levels rather than by

occupations, because the QCEW only includes NAICS industry codes. We define high, moderate, and low WFH-adoption industries
using each industry’s fraction of WFH-compatible jobs in the Burning Glass data: Industries (three-digit NAICS) with high WFH
adoption saw an increase of more than 20 percentage points in the national share of WFH-compatible jobs, as determined by
comparing pooled data from 2018 to March 2020 with pooled data from April 2020 to May 2023. Industry with moderate WFH
adoption saw an increase between 11 and 20 percentage points, while industries with low WFH adoption saw an increase of less
than 11 percentage points.
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To examine this concern, we delve into the WFH options at the individual job level. If the decrease in

the urban wage premium among high-WFH-adoption occupations is not solely due to larger cities’ increas-

ing WFH adoption and compensating wage differentials, we should observe a decrease in the urban wage

premium not just overall in high-WFH-adoption occupations but also specifically in both job categories that

do and do not provide WFH options within these occupations. The rationale behind this is that if the decline

in the urban wage premium is driven by weakened agglomeration economies and diminished knowledge

spillovers, then the productivity of onsite workers could be negatively impacted if a substantial proportion

of their colleagues or workers in the same occupation shifted to remote work. Moreover, if labor supply to

firms based in large cities increased due to the “virtual” influx of remote workers, the wages of both remote

and non-remote workers in the same local labor market may face downward pressure.

We conduct the test using both the Burning Glass data and the ACS. First, using the Burning Glass data,

we estimate changes in the urban wage premium separately for jobs allowing and not allowing WFH within

occupations with the same WFH adoption level. Table 3 Panel A presents these results. Columns 1 and 2

show a large and statistically significant decrease in the urban wage premium for both WFH-compatible and

non-WFH-compatible jobs in high- or moderate-WFH-adoption occupations. The magnitude of the decline

is even slightly larger for non-WFH-compatible jobs in high-WFH-adoption occupations. In contrast, for

jobs within low-WFH-adoption occupations (column 3), although we observe a notable decrease in the

urban wage premium for WFH-compatible jobs, it remained unchanged for non-WFH-compatible jobs. The

findings present evidence that the decreased urban wage premium among high-WFH-adoption occupations

is unlikely to have been mechanically driven by larger cities’ disproportionate WFH adoption.

Second, using the ACS data from 2018 to 2021, we estimate changes in the urban wage premium by

occupation’s WFH adoption level among onsite workers.26 We only focus on onsite workers because the

ACS provides the MSA of workers’ workplaces, which only represents the job location for onsite workers.

In other words, using the ACS, we are not able to estimate changes in the urban wage premium based

on job locations for those working remotely.27 If the urban wage premium reduction was purely a result
26The sample is restricted to onsite workers aged from 25–65 who worked at least 35 hours per week. The dependent variable is

a worker’s log hourly wage. M is the employment size of the worker’s occupation in the MSA of the workplace. The post-pandemic
dummy is set to 1 for the years 2020 and 2021. Footnote 12 details the categorization of high-, moderate-, and low-WFH-adoption
occupations. We control for workers’ characteristics, including dummy variables for age, gender, race, Hispanic origin, marital
status, educational attainment, and occupation code.

27One might suggest estimating changes in the urban wage premium based on workers’ residential locations. Pre-pandemic,
the estimates based on residential and workplace locations likely overlapped significantly. However, during the pandemic, with
widespread WFH adoption and subsequent worker migration away from workplace cities, these estimates likely diverged. Jobs with
the most significant drop in the urban wage premium are likely those where workers move away toward smaller cities. Therefore,
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of larger cities’ greater WFH adoption, we would not anticipate any changes in the urban wage premium

among onsite workers. Table 3 Panel B presents the results. Consistent with the results from the Burning

Glass data, the results in the ACS show a decrease in the urban wage premium among onsite workers in

high-WFH-adoption occupations. While we also observe a decrease in the urban wage premium among

onsite workers in low-WFH-adoption occupations, onsite workers in high- and moderate-WFH-adoption

occupations saw a substantially greater decline.

Reduced Compensating Wage Differentials Lastly, a remaining alternative explanation for the decreased

urban wage premium in high-WFH-adoption occupations could be that adopting WFH offers greater amenity

value to workers working for employers based in large cities than they do in smaller cities. After adopting

WFH, firms might pay employees less because of the reduced commuting burden they enjoy. Since commute

time tends to be longer in large cities prior to the pandemic, the switch to WFH could have led to a greater

reduction in commute time for jobs based in large cities, potentially leading to a more substantial wage

decrease in these cities due to changing compensating differentials.

We examine the plausibility of this explanation by exploiting the idea that the reduction in commute

time due to WFH adoption should be larger for workers who initially had longer commutes. If reduced

commute time led to wage reductions, we would expect the largest drops in wages among workers who

likely had the greatest reductions in commuting—those working in high-WFH-adoption occupations living

in neighborhoods with traditionally long commutes for their occupations. Using ACS data from 2015–

2021, we estimate changes in reported wages based on occupation category and the average pre-pandemic

commute time for workers’ residential PUMA and occupation category. Table A5 shows that workers in

high-WFH-adoption occupations residing in neighborhoods with long pre-pandemic commutes experienced

a greater reduction in their commute time. However, despite the gains in commuting amenities, we do not

find that these workers had greater wage decreases. These findings provide some evidence that our observed

reduction in the urban wage premium is unlikely solely driven by reduced compensating wage differentials

in large cities. Appendix A5.2 provides more details on this analysis.

estimating the urban wage premium based on residual locations could severely underestimate the actual decrease.
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4.3 The Effect of WFH on Local Employment

Our model suggests that the surge in WFH could reduce the urban wage premium, whether because of

weakened agglomeration economies in large cities or increased labor supply to firms in these cities due to

the surge in WFH availability. To investigate whether the agglomeration economies in large cities have been

weakened, we can explore whether employment (based on firms’ locations) shifted away from large cities

among the high-WFH-adoption occupations. If firms in large cities employed relatively fewer workers in

high-WFH-adoption occupations and relative wages in large cities declined, it would imply that the local

productivity must have declined among these occupations.

We conduct the employment analysis using the QCEW data. Since QCEW only provides employ-

ment data by industry, not occupation, to avoid potential measurement errors from imputed occupation-level

employment growth, we define jobs’ WFH adoption levels based on their industries, rather than by occupa-

tions.28 We use the following simple regression to examine whether employment in MSAs with large initial

employment sizes increased or decreased across industries with different levels of WFH adoption:

∆ lnEmpkjt =
∑

t=2019,2022

at1 lnM
0
kjt × Lowk +

∑
t=2019,2022

at2 lnM
0
kjt ×Modk (6)

+
∑

t=2019,2022

at3 lnM
0
kjt ×Highk + ηkt + θj + ekjt,

where ∆ lnEmpkjt is the change in log employment in industry k and MSA j between the 1st quarter of

2017 and the 4th quarter of 2019 (t = 2019), or between the 1st quarter of 2020 and the 4th quarter 2022

(t = 2022); M0
kjt is the employment size at the beginning of each period; Lowk is an indicator that industry

k has low WFH adoption; Modk is an indicator that industry k has moderate WFH adoption; Highk is

an indicator that industry k has high WFH adoption. Parameters a20191 , a20192 , and a20193 represent how

employment changed between 2017 and 2019 by the labor market size for low-, moderate-, and high-WFH

industries, respectively. Similarly, parameters a20221 , a20222 , and a20223 represent how employment changed

between 2020 and 2022 by the labor market size for low-, moderate-, and high-WFH industries, respectively.

We control for industry × time period fixed effects.

Table 4 presents the results. Column 1 shows that employment growth of all three industry groups was

relatively slower in larger MSAs over the three years pre-pandemic—estimates of a20191 , a20192 , and a20193 all

28The categorization of WFH adoption levels by industry is detailed in footnote 25.
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are negative, though not statistically significant for a20193 . However, with the onset of the pandemic, there

was a more pronounced decline in employment in larger MSAs for both types of occupations—estimates of

a20221 , a20222 and a20223 are all strongly negative, which surpass the magnitudes of a20191 , a20192 , and a20193 . In

Column 2, high-WFH-adoption industries are classified as “Finance,” “Information,” and “Professional and

Business Services.” The finding remains the same.

It is worth noting that industries with low or moderate levels of WFH adoption also saw a sizable shift in

employment from large to small cities post-pandemic. This finding is consistent with the predictions detailed

in Section 2.5. However, the reasons for the disproportionate employment drop in large cities differ between

low-/moderate-WFH-adoption industries and high-WFH-adoption industries, as elaborated in Table 1.

In conclusion, the substantial decrease in the urban wage premium for occupations and industries with

high WFH adoption, combined with the disproportionate negative employment growth in larger cities for

these industries, suggest that the adoption of WFH weakened the productivity advantage of large cities

during the pandemic.29

5 Decomposition by Skill

Next, to provide additional evidence for changes in agglomeration economies and spatial labor supply due to

WFH adoption, we shift our focus from directly testing the model predictions. We implement an alternative

approach by examining the urban wage premium associated with specific skills required in posted jobs. We

consider each job as a package of required skills, and the wage return for each job can be considered as

the sum of the wage returns for all required skills on the job. With this framework, we can decompose the

urban wage premium for the high-WFH-adoption occupations into the sum of the urban wage premium of

individual skills and identify which specific skills contribute the most to the overall decline in the urban

wage premium among these jobs.

What can we learn from such a decomposition exercise? If skills that foster idea exchange, relationship

building, and networking saw a disproportionate wage reduction in large cities (i.e., a decreased urban wage

premium for these skills), it would suggest that productive interactive activities, where these skills are highly

useful, have likely diminished in workplace in these locations. This supports the hypothesis that the rise of

WFH weakened the agglomeration economies in large cities. On the other hand, if skills complementary
29Figures A6 show employment growth by industry in selected MSAs. Appendix A5.1 presents more discussions.
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to remote work (e.g., using electronic technologies) saw a substantial drop in their urban wage premium, it

would suggest that the labor supply has expanded in large cities due to remote technologies.

In addition to assessing spatial wage changes linked to skills, we also explore how the listing inten-

sity of skill requirements among jobs in high-WFH-adoption occupations shifted geographically. If the

agglomeration economies in large cities were indeed weakened, we should expect the listing intensity for

relationship-building, communication, and networking skills to decrease in large cities. Conversely, if WFH

led to an expanded labor pool in large cities, the listing intensity for skills complementary to remote work

should increase in those areas.

5.1 Gelbach Decomposition

To identify which skills contribute to the decline in the urban wage premium the most, we use the Gelbach

decomposition method (Gelbach, 2016). We focus on jobs in occupations with high WFH adoption (with at

least a 15 percentage point rise in the share of WFH-compatible jobs).30 To estimate the change in the urban

wage premium, we use the following equation:

ln(wikjt) = γ0 lnMkj + γ1Postt + γ2 lnMkj × Postt +XikjtΨ+ ϵikjt. (7)

The variables are defined the same as in Equation 5. The change in the urban wage premium for high-WFH-

adoption occupations post-pandemic is γ2.31

If we consider changes in the skill-specific urban wage premium as the underlying driving forces behind

the overall urban wage premium, then the fully specified equation is

ln(wikjt) = γ̃0 lnMkj + γ̃1Postt + γ̃2 lnMkj × Postt +XikjtΨ̃ (8)

+
∑
s

βs
0 lnMkj × Skillsit +

∑
s

βs
1Postt × Skillsit

+
∑
s

βs
2 lnMkj × Postt × Skillsit + ϵ̃ikjt,

30We use a threshold of 15 percentage points instead of 20 (in the Section 4 analyses) to increase the sample size for the
decomposition. This criterion includes approximately 28% of job postings. Some occupations from the upper range of moderate-
WFH-adoption occupations are also included in this analysis.

31This is a simpler version of Equation 5, excluding occupations with low/moderate WFH adoption. The estimate of γ2 is very
similar to the estimate of α1 + α3 in Equation 5, which pools all jobs. The estimation results of Equation 7 are not reported due to
space limitations.
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where Skillsit is an indicator that skill s is required in job i. βs
2 represents the change in the skill-specific

wage premium among high-WFH-adoption occupations post-pandemic. After controlling for the skill inter-

action terms, the change in the residual urban wage premium is likely to drop from γ2 to γ̃2. This reduction

signifies the portion of the decline in overall urban wage premium that can be attributed to the decrease in

the skill-specific urban wage premiums. The gap between γ2 and γ̃2 can also be understood as the size of

the contribution of adding back the “omitted” covariates.

However, as demonstrated by Gelbach (2016), when covariates are statistically correlated, we cannot

simply add or subtract each covariate to individually decompose its contribution. According to his method,

to determine the contribution of each covariate, we need to estimate the effect of each covariate on the

outcome variable and how each covariate correlates with the main regressors in the equation. In our context,

this implies that if skill s is very frequently required in high-WFH-adoption occupations, a large estimate of

βs
2 (i.e., a substantial decline in the urban wage premium for skill s) would suggest that the decline in the

urban wage premium for skill s greatly contributes to the overall decrease in the urban wage premium. In

contrast, if skill s is rarely required in high-WFH-adoption occupations, even a large estimate of βs
2 would

not significantly contribute to the overall decline in the urban wage premium.

To apply the Gelbach decomposition, we estimate the following equation separately for each skill s:

lnMkj × Postt × Skillsit = Γs
0 lnMkj + Γs

1Postt + Γs
2 lnMkj × Postt +XikjtΓx + ηikjt, (9)

where Γs
2 represents how much each added covariate of skill s correlates with the key regressors. The

contribution of the change in the urban wage premium for each skill s to the overall change in the urban

wage premium in high-WFH-adoption occupations is as follows:

π̂s =
Γ̂s
2 · β̂s

2

γ̂2
, (10)

where Γ̂, β̂, and γ̂ represent the estimated coefficients.

Results For computational feasibility, we define s as a skill cluster family, as defined in the Burning Glass

data. There are 35 skill cluster families in total. Detailed definitions and assignments of these skill cluster

families are provided in Appendix A4.3.
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Table 5 presents the Gelbach decomposition results.32 We conduct the decomposition analysis for three

time periods to assess the contribution of changes in skill returns to the overall decline in the urban wage

premium from 2018–2019 to 2020, from 2018–2019 to 2021, and from 2018–2019 to 2022–2023 (up until

May of 2023). We separate the three time periods to account for potential changes in the returns to skills

over time as work dynamics evolved to accommodate developments such as hybrid work arrangements,

especially those skills linked to interpersonal interactions.

For each period, we rank the skill cluster families based on their contributions to the decline in the ur-

ban wage premium. Our findings suggest that among the skill cluster families contributing the most to the

decrease in the urban wage premium are “Marketing and Public Relations,” “Business Management,” “In-

formation Technology,” “Customer and Client Support,” “Building Relationship,” and “Communications,”

although “Information Technology” drops off over the horizon to 2021.33

Among the skills identified, WFH likely enabled more workers with “Information Technology” skills

to remotely work for firms in large cities or industry clusters. These skills are typically compatible with

electronic tools, making remote work more feasible (Bloom et al., 2015; Dingel and Neiman, 2020; Bar-

rero et al., 2021). The increased labor supply enabled by these technologies to large cities would likely

drive down the wage returns to skills complementary to these technologies in large cities, which is largely

consistent with the evidence.

In contrast, other prominent skills such as “Communications,” “Building Relationship,” “Marketing and

Public Relations,” and “Customer and Client Support” do not inherently benefit from WFH. These skills,

rather, are typically useful with productive interactive activities at the workplace. They often play a key role

in facilitating knowledge spillovers, forming professional networks, and establishing client relationships

(Deming, 2017; Deming and Kahn, 2018). The large decrease in the urban wage premium for skills pre-

dominantly used in interactive activities suggests that the demand for these skills declined disproportionately

among employers based in large cities, which constitutes indirect evidence that in-person interactive activ-

ities at the workplace for which these skills are useful have most likely reduced. The decline in the urban

wage premium due to the absence of interactive workplace activities among large-city employers supports

the hypothesis that WFH weakened the agglomeration effects of cities.34

32Tables A10 and A11 in the Appendix present the Gelbach decomposition results for jobs that require a college degree and
jobs without a degree requirement, respectively.

33Tables A8 and A9 present the most frequently listed skills that belong to these skill cluster families.
34In Table A13, we conduct the same decomposition exercise, but use the sample of high-WFH-adoption occupations based

on the imputed WFH adoption levels (from the ACS and O*NET data). The results also suggest that the interactive skills and
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Note that “Business Management” skills, which are ranked high on the list, might be versatile enough

to facilitate both remote work and face-to-face interactions. There could be a dual effect where the rise of

WFH increases the labor supply in large cities for jobs needing such skills, while the decline in interpersonal

activities lowers their productivity. Thus, both factors could contribute to reduced urban wage premium

associated with “Business Management” skills.

5.2 Skill Intensity

Lastly, we investigate how the listing intensity of the few key skill groups within high-WFH-adoption jobs

has shifted geographically. If agglomeration economies have diminished in large cities, we would expect

reduced demand for relationship-building and networking skills in these cities. Hence, in addition to a

decreased urban wage premium for these skills, we should also expect decreased listings of these skills in

the job ads made by firms based in large cities. Conversely, if WFH has expanded the labor pool in large

cities due to remote technologies, then the supply of workers possessing IT skills should increase in large

cities. Therefore, not only should the jobs that require these skills see a decreased urban wage premium due

to an increased supply of workers possessing these skills, we should also expect an increase in the listings

of these skills by employers in large cities.

We assess the spatial changes in skill demand using the following equation:

Skillsikjt = λs
0 lnMkj + λs

1Postt + λs
2 lnMkj × Postt +XikjtΛx + uikjt, (11)

where the outcome variable is an indicator that a skill in skill cluster family s was listed in job posting

i within occupation k in MSA j at time t. Xikjt is a vector of basic job characteristics (excluding skill

dummies). Other variables are defined the same as in Equation 5. We again focus on jobs in occupations

with high WFH adoption (with at least a 15 percentage point rise in the share of WFH-compatible jobs).

We focus on the six skill cluster families that contribute the most to the overall decline in the urban

wage premium among jobs in high-WFH-adoption occupations, as indicated by our Gelbach decomposition

results. These are “Information Technology,” “Business Management,” “Building Relationship,” “Commu-

nications,” “Customer and Client Support,” and “Marketing and Public Relations.” These skills are either

inherently suited to remote work, conducive to interactive activities, or both. Our prediction is that “Infor-

“Information Technology” rank prominently on the top of the list (with “Information Technology” dropping off in 2021).
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mation Technology” skills may have been listed more intensively in large cities, whereas “Building Rela-

tionship,” “Communications,” “Customer and Client Support,” and “Marketing and Public Relations” skills

may have seen reduced demand due to diminished workplace interactions. As for “Business Management”

skills, they could either see an increase or decrease in demand, depending on which effect is stronger: the

expanded labor pool or the weakened agglomeration economies.

Results Table 6 presents the results.35 Column 1 shows that “Information Technology” skills were listed

more intensively by job postings in high-WFH-adoption occupations in large cities by 2021, but no statistical

significance over other time horizons. Columns 2–6 show a general decrease in the demand for “Business

Management,” “Building Relationship,” “Communications,” and “Marketing and Public Relations” skills

by 2022–2023. These findings are, for the most part, consistent with our prediction that the demand for

skills enhancing interactive activities would decrease post-pandemic, lending support to the hypothesis of

weakened agglomeration economies due to diminished workplace interactions.36

6 Conclusion

This paper studies how WFH adoption affects the agglomeration economies of large cities. Using a stylized

model, we demonstrate that WFH lowers the urban wage premium through two mechanisms. On the one

hand, WFH increases labor supply to high-productivity firms in large cities because workers can work

remotely for these firms without incurring high housing costs. The boosted employment at high-productivity

firms can raise aggregate productivity, wages, and output. On the other hand, if the number of onsite workers

in large cities decreases significantly, it could lead to a decline in agglomeration economies. This may lower

the productivity of large cities and thus encourage workers to shift from large cities to smaller ones, which

could reduce aggregate productivity, wages, and output. We derive two testable predictions to disentangle

the effects of WFH.

Using wage data from advertised job postings, we find a substantial decrease in the urban wage premium

for occupations with high WFH adoption during the COVID-19 pandemic, which did not bounce back as

of mid-2023. In contrast, occupations with low WFH adoption saw a much smaller decline in the urban
35Table A12 presents the results separately for jobs that require a college degree and jobs without a degree requirement.
36In Table A14 we use the same specification, but the sample of high-WFH-adoption occupations based on the imputed WFH

adoption levels (from the ACS and O*NET data). Similar to our baseline results, these results also indicate reduced listings of
interactive skills in large cities.
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wage premium. Furthermore, among jobs in high-WFH-adoption industries, employment shifted from large

to small cities (based on firm locations). According to our model’s predictions, the decline in the urban

wage premium and employment reallocation away from large cities indicate a reduction in the productivity

of large cities due to WFH adoption, which is consistent with the weakening of agglomeration effects.

To provide additional empirical support that the reduced productivity in big cities has indeed been driven

by weakened agglomeration economies, we perform an additional decomposition analysis. The analysis

aims to identify skills that contribute the most to the decline in the urban wage premium within high-WFH-

adoption occupations. We find that the overall decline in the urban wage premium can be attributed to both

a decline in the urban wage premium of both skills conducive to interactive activities (e.g., relationship-

building skills) and skills compatible with remote work technologies (e.g., information technology skills).

Moreover, we observe a decrease in the intensity of job requirements for relationship-building skills in large

cities. These findings lend support to our hypotheses: (i) the agglomeration economies of large cities were

likely weakened by the adoption of WFH, and (ii) firms in large cities likely benefited from an expanded

labor pool due to WFH adoption.

One limitation of our paper is that we study the adoption of WFH driven by the COVID-19 pandemic,

which may not accurately reflect firms’ work model in long-run equilibrium. During the pandemic, the deci-

sion to adopt WFH was largely determined by the compatibility of job tasks with existing WFH technologies,

such as Zoom or Slack. However, in the long run, firms and workers are expected to make adjustments to

their work tasks and WFH technologies, considering the benefits of in-person interactions and the expanded

labor pool offered by remote work technologies. Hybrid work arrangements may become more prevalent

as the pandemic ends. These creatively designed hybrid arrangements may mitigate the loss of productive

in-person interactions while still providing the benefit of an expanded labor pool for productive firms.

It is important to note that our paper may have limited direct implications for the effect of hybrid work

on agglomeration economies, and we leave this topic for future research. Despite this limitation, our paper

highlights the unintended negative effect of full WFH arrangement, namely reduced productivity spillovers

due to reduced workplace interaction. Our findings suggest that considering agglomeration externalities

when designing future hybrid work arrangements could lead to positive effects on aggregate productivity.
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Figure 1: Changes in Labor Demand and Supply in Large Cities During COVID-19
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Employment (M )

Wage (w)

Demand

←−

←−M ′

Supply

←−

M

w′ ∼ w

(b) Occupations with Low or Moderate Levels of WFH Adoption

Note: The figures present graphical illustrations of how the local labor markets in large cities respond to the COVID-19
pandemic. We illustrate occupations with high levels of WFH adoption in Figure 1a and occupations with low/moderate levels
of WFH adoption in Figure 1b. The solid lines represent the labor demand and supply curves before the pandemic. The dashed
lines represent the shifted labor demand and supply curves during the pandemic.
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Figure 2: Comparison of WFH Shares: Data from Burning Glass, ACS, and ATUS (2020–2021)

(a) Burning Glass vs. ATUS (b) Burning Glass vs. ACS

(c) Burning Glass vs. Bloom et al. (2023) (d) ACS vs. ATUS

Note: These figures compare WFH shares computed from several datasets. Specifically, we compute the share of WFH-
compatible jobs among those posted in 2020 (after the first quarter) and 2021 for each occupation or occupation group using
the Burning Glass data. We also compute the share of workers who worked from home using the ACS and ATUS data for 2020
(after the first quarter) and 2021. Figure 2a presents the share of WFH-compatible jobs from the Burning Glass against the
share of WFH workers from the ATUS. Figures 2b presents the share of WFH-compatible jobs from the Burning Glass against
the share of WFH workers from the ACS. Figure 2c presents the share of WFH-compatible jobs from the Burning Glass (based
on our dictionary approach) against the share computed by Bloom et al. (2023) based on a mechine learning approach. Figure
2d presents the share of WFH workers from the ACS against the share from the ATUS.
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Figure 3: Share of Working-from-Home Workers

(a) All Workers (b) Workers by Education (ACS)

(c) Workers by Selected Occupation Groups (ACS) (d) Workers by Selected Industry Groups (ACS)

Note: The figures plot the share of workers who worked from home from 2005 to 2021. In Figure 3a, we use the American
Community Survey (ACS) and the American Time Use Survey (ATUS) to calculate the share of all workers who worked from
home in each survey year. For the year 2020, to highlight the share of workers who worked from home during the pandemic,
we impute the numbers for the period after the first quarter of 2020. Specifically, we assume that both the ACS and the ATUS
surveyed respondents randomly in each month of 2020 and that the share of workers who worked from home in the first quarter
of 2020 is identical to the share estimated for 2019. For the ACS, we restrict the sample to workers who worked at least 35
hours a week and were aged between 25 and 65. For the ATUS, we calculate the share of workers who worked from home by
dividing the number of workers whose working activities all occurred at home by the number of workers who recorded working
activities during the period surveyed. Figure 3b shows the share of workers with or without college degrees who worked from
home using the ACS data. Figure 3c shows the share of workers for four selected occupation groups who worked from home
using the ACS data. Figure 3d shows the share of workers for four selected NAICS industry groups who worked from home
using the ACS data.
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Figure 4: Urban Wage Premium: 2018–2019 vs. 2020–2023

(a) All Jobs

(b) With College Degree Requirement (c) No College Degree Requirement

(d) High WFH Adoption (e) Low WFH Adoption

Note: The figures present binned scatterplots of residualized log posted hourly wage against residualized log employment of
the occupation and MSA of a job separately for jobs posted between 2018 and 2019 and those posted between 2020 and May
2023, using the Burning Glass data. We residualize log wage and log employment by regressing these variables on dummies for
SOC occupation code, NAICS code, years of education required, salary type, full-/part-time status, tax terms, and job posting
month. We then add back the means of the original variables. Figure 4a presents the plot for all posted jobs. Figures 4b and
4c present the plot for jobs that require a college degree and those without a degree requirement, respectively. Figures 4d and
4e present the plot for jobs in high-WFH-adoption occupations (more than 20 percentage points increase in the fraction of
WFH-compatible jobs) and those in low-WFH-adoption occupations (fewer than 11 percentage points increase in the fraction
of WFH-compatible jobs), respectively.
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Figure 5: Urban Wage Premium Over Time

Note: This figure shows how the urban wage premium, normalized to the 2018 level, has changed over time by job type, based
on education requirement and the level of WFH adoption during the pandemic. For each year and job type, we estimate the
urban wage premium, controlling for dummies of SOC occupation code, NAICS code, years of education required, salary type,
full-/part-time status, tax terms, and job posting month. We estimate the urban wage premiums using a 10% random sample of
the Burning Glass data. Occupations with high WFH adoption are defined as those that have seen an increase of more than 20
percentage points in the national share of WFH-compatible jobs, as determined by comparing pooled data from 2018 to March
2020 with pooled data from April 2020 to May 2023. Occupations with low WFH adoption are defined as those that have seen
an increase of less than 11 percentage points.
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Table 1: Testable Predictions during the COVID-19 Pandemic

Occupations with High WFH Adoption

Urban Wage Premium Employment by City Size

Productivity Decreases in Large Cities ↓ ↓ in H; ↑ in L

Labor Supply Increases in Large Cities ↓ ↑ in H; ↓ in L

Occupations with Low WFH Adoption

Urban Wage Premium Employment by City Size

Labor Demand Decreases in Large Cities ↓ ↓ in H; ↑ in L

Labor Supply Decreases in Large Cities ↑ ↓ in H; ↑ in L

Note: This table summarizes the expected changes in the urban wage premium (column 1) and employment in
large/high-density (H) and small/low-density (L) cities (column 2) in occupations with high WFH adoption (upper
panel) and low/moderate WFH adoption (lower panel). Different rows indicate the effects of different underlying driv-
ing forces. Section 2.5 presents more detailed discussions.
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Table 2: Changes in Urban Wage Premium by Occupation’s WFH Adoption Level

Log Posted Hourly Wages
(1) (2) (3) (4)

Log M 0.0169*** 0.0175*** 0.0244*** 0.0186***
(0.00405) (0.00400) (0.00409) (0.00428)

Log M ×Moderate WFH 0.0193*** 0.0141*** 0.0209***
(0.00165) (0.00132) (0.00165)

Log M × High WFH 0.0267*** 0.0223*** 0.0262*** 0.0282***
(0.00316) (0.00254) (0.00377) (0.00323)

Log M × Post 0.00176 0.00068 -0.00261*** 0.00255***
(0.00108) (0.0011) (0.00087) (0.00116)

Log M ×Moderate WFH × Post -0.00944*** -0.00628*** -0.0103***
(0.00075) (0.00066) (0.000756)

Log M × High WFH × Post -0.0123*** -0.0127*** -0.00834*** -0.0130***
(0.00157) (0.00136) (0.00179) (0.00159)

Controls: Job characteristics X X X X

Controls: Skill Requirements X

Specification Baseline Baseline Alt. High Heckman
WFH Def. Correction

Observations 7,316,072 5,996,752 7,316,072 20,434,736

Note: This table presents the estimates of the urban wage premium pre- and post-pandemic by occupation category,
based on the level of WFH adoption (i.e., α0–α5 in Equation 5). The sample includes job postings from a 10%
random selection of the Burning Glass data, from 2018 to May 2023. The dependent variable is log posted hourly
wage of a job posting. M is employment size (in 2019 Q1) of the occupation in the MSA of the posted job. Post
is a post-pandemic dummy (i.e., months after March 2020). Moderate WFH is a dummy variable that is equal
to 1 if the occupation of the posted job has moderate WFH adoption (i.e., occupations with an increase of 11–20
percentage points in the national share of WFH-compatible jobs, as determined by comparing pooled data from
2018 to March 2020 with pooled data from April 2020 to May 2023); High WFH is a dummy variable that is equal
to 1 if the occupation of the posted job has high WFH adoption (i.e., occupations with an increase of more than 20
percentage points in the national share of WFH-compatible jobs). Column 1 controls for basic job characteristics,
including dummy variables for SOC occupation code, NAICS industry code, years of education required, salary
type, part-/full-time status, tax term, and posting month. Columns 2 further controls for dummy variables for 20
skill requirements. Column 3 presents results in which an occupation is defined as a high-WFH-adoption occupation
if it belongs to either “Computer and Mathematical Occupations” or “Business and Financial Operations.” Column
4 presents the results of the Heckman correction regression. Standard errors are clustered at the MSA level. ***
p < 0.01, ** p < 0.05, *p < 0.1.
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Table 3: Changes in Urban Wage Premium by Occupation’s WFH Adoption Level
and Job’s WFH Compatibility

Log Hourly Wages
(1) (2) (3)

Panel A: Burning Glass Data 2018–2023 (All Jobs)

Log M WFH Jobs 0.0312*** 0.0409*** 0.0233***
(0.00484) (0.00451) (0.00425)

Other Jobs 0.0426*** 0.0345*** 0.0180***
(0.00438) (0.00434) (0.00411)

Log M × Post WFH Jobs -0.00595** -0.0131*** -0.00668***
(0.00269) (0.00262) (0.00232)

Other Jobs -0.0113*** -0.00725*** -0.00002
(0.00212) (0.00101) (0.00121)

Controls: Job Characteristics X X X

Sample Occupations with Occupations with Occupations with
High WFH Adoption Moderate WFH Adoption Low WFH Adoption

Observations 563,244 2,573,786 2,893,292

Panel B: ACS Data 2018–2021 (Onsite Workers Only)

Log M 0.0796*** 0.0620*** 0.0371***
(0.00900) (0.00763) (0.00696)

Log M × Post -0.0123*** -0.0116*** -0.00595***
(0.00283) (0.00219) (0.00151)

Controls: Worker Characteristics X X X

Sample Occupations with Occupations with Occupations with
High WFH Adoption Moderate WFH Adoption Low WFH Adoption

Observations 315,494 1,044,938 1,140,382

Note: This table presents the estimates of the urban wage premium pre- and post-pandemic by each job’s WFH-compatibility and
by occupation’s overall WFH adoption level. Panel A is based on the sample of all job postings from a 10% random selection of the
Burning Glass data, from 2018 to May 2023. The panel presents the estimates for WFH-compatible jobs and other jobs, separately,
for occupations with high, moderate, and low levels of WFH adoption. The dependent variable is the log posted hourly wage of each
job posting. M is employment size (in 2019 Q1) of the occupation in the MSA of the posted job. Post is a post-pandemic dummy
(i.e., months after March 2020). All regressions control for basic job characteristics, including dummy variables for SOC occupation
code, NAICS industry code, years of education required, salary type, part-/full-time status, tax term, and posting month. Panel B
is based on the sample of onsite workers aged from 25–65 who worked at least 35 hours per week in the ACS from 2018–2021.
The dependent variable is the log hourly wage of a worker. M is employment size of the occupation in the MSA of the worker’s
workplace. Post is a post-pandemic dummy (i.e., years 2020 and 2021). All regressions control for basic worker characteristics,
including dummy variables for age, gender, race, Hispanic origin, marital status, educational attainment, and occupation code.
Section 3.3 describes how we define high-, moderate-, and low-WFH-adoption occupations in both datasets. Standard errors are
clustered at the MSA level. *** p < 0.01, ** p < 0.05, *p < 0.1.43



Table 4: Employment Growth by Local Employment Size: Before and After
the Pandemic for Different Industry Groups

Changes in Log Number of Jobs
(1) (2)

Log M × 2017–2019 × Low WFH -0.0265**
(0.0105)

Log M × 2020–2022 × Low WFH -0.0550***
(0.00696)

Log M × 2017–2019 ×Moderate WFH -0.00741*
(0.00382)

Log M × 2020–2022 ×Moderate WFH -0.0250***
(0.00470)

Log M × 2017–2019 × High WFH -0.00433
(0.0129)

Log M × 2020–2022 × High WFH -0.0373*
(0.0196)

Log M × 2017–2019 × Other Ind -0.0218***
(0.00808)

Log M × 2020–2022 × Other Ind -0.0457***
(0.00571)

Log M × 2017–2019 × Fin./Info./Prof. -0.00512
(0.00690)

Log M × 2020–2022 × Fin./Info./Prof. -0.0314***
(0.00753)

Observations 97,015 97,015

Note: This table presents the estimates of how employment growth changes with respect to employment
size, pre- and post-pandemic by industry category (i.e., a2019

1 , a2022
1 , a2019

2 , a2022
2 , a2019

3 , a2022
3 in

Equation 6), using employment counts from the QCEW. Each observation is an industry-MSA cell
(based on three-digit NAICS industry). The dependent variable is the change in log employment by
industry and MSA between the 1st quarter of 2017 and the 4th quarter of 2019 or the change between
the 1st quarter of 2020 and the 4th quarter of 2022. M is employment size by industry and MSA at
the beginning of each period. 2017–2019 (2020–2022) is a dummy variable that is equal to 1 if the
employment change in the dependent variable is between 2017 and 2019 (between 2020 and 2022).
We report the coefficients on the interactions between Log M and the time period dummies and the
WFH adoption dummies. Fin./Info./Prof. is a dummy variable that is equal to 1 if the three-digit
NAICS industry belongs to “Information” (NAICS 51x), “Finance and Insurance” (NAICS 52x), or
“Professional and Business Services” (NAICS 54x). Each estimate represents how employment growth
varies with respect to the the relevant local initial employment size by time period and industry group.
In both columns, we control for three-digit industry × period fixed effects. The regressions are weighted
by the employment size of each MSA at the beginning of each period. Standard errors are clustered at
the MSA level. *** p < 0.01, ** p < 0.05, *p < 0.1.
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Table 5: Gelbach Decomposition: Contribution of Changes in Skill-Specific Urban Wage Premium
to the Decrease in the Urban Wage Premium among High-WFH Jobs

2020 2021 2022–2023
Skill π Skill π Skill π
Marketing and Public Relations 13.5% Customer and Client Support 33.3% Communications 22.5%
Business Management 11.0% Finance 23.5% Information Technology 22.2%
Information Technology 10.1% Marketing and Public Relations 23.2% Customer and Client Support 21.4%
Physical Abilities 5.2% Building Relationship 17.5% Building Relationship 16.1%
Finance 4.5% Business Management 13.7% Administration 15.9%
Building Relationship 4.1% Communications 11.9% Marketing and Public Relations 14.1%
Maintenance, Repair, and Installation 3.5% Maintenance, Repair, and Installation 9.1% Business Management 11.6%
Engineering 1.3% Administration 8.1% Maintenance, Repair, and Installation 6.6%
Agriculture 1.2% Physical Abilities 3.4% Physical Abilities 4.6%
Creativity 1.0% Decision Making 1.0% Human Resources 3.1%
Environment 0.7% Leadership 0.6% Creativity 2.9%
Education and Training 0.5% Education and Training 0.5% Engineering 2.3%
Manufacturing and Production 0.4% Environment 0.5% Decision Making 2.2%
Design 0.4% Design 0.4% Personal Care and Services 2.1%
Public Safety and National Security 0.4% Personal Care and Services 0.4% Education and Training 1.8%
Legal 0.1% Public Safety and National Security 0.2% Media and Writing 0.8%
Economics, Policy, and Social Studies 0.1% Economics, Policy, and Social Studies 0.1% Design 0.6%
Health Care 0.0% Legal 0.0% Public Safety and National Security 0.5%
Decision Making 0.0% Energy and Utilities -0.1% Agriculture 0.2%
Energy and Utilities 0.0% Agriculture -0.1% Economics, Policy, and Social Studies 0.1%
Personal Care and Services -0.1% Creativity -0.1% Energy and Utilities 0.0%
Human Resources -0.1% Engineering -0.2% Manufacturing and Production 0.0%
Media and Writing -0.2% Manufacturing and Production -0.4% Legal -0.2%
Planning -0.3% Media and Writing -0.8% Organizational Skills -0.3%
Architecture and Construction -0.8% Architecture and Construction -1.2% Architecture and Construction -0.4%
Leadership -2.5% Analysis -1.2% Environment -0.5%
Industry Knowledge -2.5% Health Care -2.1% Finance -0.6%
Administration -6.4% Industry Knowledge -4.3% Leadership -1.7%
Communications -8.5% Planning -4.6% Health Care -6.2%
Analysis -10.6% Human Resources -6.2% Planning -7.2%
Organizational Skills -14.7% Organizational Skills -19.2% Analysis -10.3%
Customer and Client Support -21.5% Information Technology -24.7% Industry Knowledge -11.2%

Note: This table presents the Gelbach decomposition results, i.e., contributions of changes in the urban wage premium of various skills to
the overall decline in the urban wage premium of high-WFH-adoption occupations. We conduct the analysis seperately for three periods,
between 2018–2019 and 2020, between 2018–2019 and 2021, and between 2018–2019 and 2022–May 2023. The sample includes all job
postings in high-WFH-adoption occupations (i.e., occupations with an increase of more than 15 percentage points in the national share
of WFH-compatible jobs, as determined by comparing pooled data from 2018 to March 2020 with pooled data from April 2020 to May
2023) in the Burning Glass data. For each time period, we rank skill cluster families by their contributions to the overall decline in the
urban wage premium (i.e., π in Equation 10).
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Table 6: Spatial Shift in Skill Listing Intensity

IT Business Building Communication Customer Marketing
Relations Support

(1) (2) (3) (4) (5) (6)

Log M 0.00717*** 0.00523*** 0.00574*** 0.00901*** -0.00194 0.00711***
(0.000999) (0.00142) (0.00141) (0.00104) (0.00160) (0.000774)

Log M × 2020 -0.000173 -0.000408 0.00180*** -0.000823 0.00132*** -0.00178***
(0.000648) (0.000667) (0.000578) (0.000709) (0.000453) (0.000630)

Log M × 2021 0.00154* -8.31e-05 0.000119 -0.00180** -0.000143 -0.00205***
(0.000806) (0.000510) (0.000519) (0.000720) (0.000654) (0.000496)

Log M × 2022–2023 0.000136 -0.00118** -0.00281*** -0.00143* 0.000188 -0.00221***
(0.000773) (0.000586) (0.000747) (0.000832) (0.000580) (0.000570)

Observations 1,792,510 1,792,510 1,792,510 1,792,510 1,792,510 1,792,510

Note: The table presents the estimates of changes in the listing intensity of various skill cluster families with respect to employment size
over time, based on Equation 11. The sample includes all job postings in high-WFH-adoption occupations (i.e., occupations with an
increase of more than 15 percentage points in the national share of WFH-compatible jobs, as determined by comparing pooled data from
2018 to March 2020 with pooled data from April 2020 to May 2023) in the Burning Glass data. The dependent variable is an indicator
of whether a skill belonging to the skill cluster family is listed in a job posting. M is employment size (in 2019 Q1) of the occupation
in the MSA of the posted job. 2020 is an indicator that is equal to 1 if the job was posted in 2020, similarly for 2021, and 2022–2023.
All columns control for basic job characteristics, including dummy variables for SOC occupation code, NAICS industry code, years of
education required, salary type, part-/full-time status, tax term, and the posting month. Standard errors are clustered at the MSA level.
*** p < 0.01, ** p < 0.05, *p < 0.1.
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Appendix

A1 Comparative Statics of the Model

In this section, we detail the derivation process of the comparative comparative statics for the baseline model

of WFH and agglomeration presented in Section 2.

We begin with the equalized utility levels in equilibrium:

Ū = wH − βrH

Ū = wH − βrL − ϕ

Ū = wL − βrL.

We simplify the equation set by taking the difference between the first and second equations and between the

third and second equations. taking the difference between the first and second equations and the difference

between the third and the second equations. We then plug in the equilibrium wage and rent equations:

0 = −β(π0H + πH ln(NHH)) + β(π0L + πL ln(1−NHH)) + ϕ

0 = c+ (γ − 1) ln(1−NHH −NHL)− θ ln(NHH)− (γ − 1) ln(NHH +NHL) + ϕ.

Our primary interest lies in ∂NHH
∂ϕ and ∂NHL

∂ϕ . As NHH + NHL + NLL = 1, there is not need to

compute compute ∂NLL
∂ϕ . In these equations, NHH and NHL are endogenous and ϕ is exogenous. The

functional forms are smooth and differentiable. Thus, we use the implicit function theorem to calculated the

comparative static. We define

G1 = −β(π0H + πH ln(NHH)) + β(π0L + πL ln(1−NHH)) + ϕ

G2 = c+ (γ − 1) ln(1−NHH −NHL)− θ ln(NHH)− (γ − 1) ln(NHH +NHL) + ϕ.
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Based on the implicit function theorem,

∂NHH
∂ϕ

∂NHL
∂ϕ

 = −

 ∂G1
∂NHH

∂G1
∂NHL

∂G2
∂NHH

∂G2
∂NHL


−1∂G1

∂ϕ

∂G2
∂ϕ


Expanding the matrices, we get:


∂NHH
∂ϕ

∂NHL
∂ϕ

 = −



∂G2
∂NHL

∂G1
∂ϕ

− ∂G1
∂NHL

∂G2
∂ϕ

∂G1
∂NHH

∂G2
∂NHL

− ∂G1
∂NHL

∂G2
∂NHH

∂G1
∂NHH

∂G2
∂ϕ

− ∂G2
∂NHH

∂G1
∂ϕ

∂G1
∂NHH

∂G2
∂NHL

− ∂G1
∂NHL

∂G2
∂NHH


Plugging in G1 and G2, we get


∂NHH
∂ϕ

∂NHL
∂ϕ

 =


1

β
(

πL
1−NHH

+
πH

NHH

)

− 1

β
(

πL
1−NHH

+
πH

NHH

) − β
(

πL
1−NHH

+
πH

NHH

)
− θ

NHH

β
(

πL
1−NHH

+
πH

NHH

)(
1−γ
NLL

+ 1−γ
NHH+NHL

)


Note that ϕ denotes the cost of WFH. As a result, to determine the impact of reducing the cost of WFH, a

negative sign should be applied to each derivative.

A2 Alternative Model Framework: Productivity Shock on WFH

In this section, we present an alternative model of WFH and agglomeration. In this framework, the shock

that propels worker to adopt WFH also stems from an increase in WFH productivity, rather than only from

the disutility of WFH as outlined in the baseline model in Section 2.

This model adopts all the setups from the baseline model, with one exception in the production function

for the large city or high-density location H . Here, we allow the marginal productivity of onsite and remote

workers to be different—the marginal productivity of remote workers NHL is δ instead of 1. It is reasonable

to anticipate that on average, δ would be less than 1, but we do not explicitly impose such a restriction.
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Specifically, the production function for location H is

FH(BH , NHH , NHL) = BHH(NHH + δNHL)
γ

In this framework, we assume that a WFH shock could either decrease the cost of WFH, ϕ, or increase the

marginal productivity of remote works relative to onsite workers, δ.

Given the potentially different marginal productivity among the three types of workers, the competitive

labor market implies that there would be three equilibrium wages: WHH—the wage for onsite workers in

H; WHL—the wage for remote workers working for H but living in L; WL—the wage for workers working

and living in L.

Given that the choices available to workers remain unchanged, we continue to assume that all three

options provide equal utility at equilibrium. The only difference is that wage offerings from location H are

different for onsite and remote workers:

UHH = wHH − βrH ,

UHL = wHL − βrL − ϕ,

ULL = wL − βrL,

Based on the specification of the production function in H , the marginal products of NHL and NHH

maintain a constant ratio:
WHL

WHH
= δ.

This implies that log wages wHL = wHH + ln δ. If δ < 1, then the log wage of remote workers is always

lower than that of onsite workers. Plugging this relationship back into remote workers’ utility function, we

get

UHL = wHH − βrL + ln δ − ϕ.︸ ︷︷ ︸
Reduced form

cost of remote work: ϕ̃

It is worth noting that this utility function resembles that in the baseline model, with one exception: the

constant in UHL that imposes a penalty for remote work now incorporates both the productivity discount of

remote work, ln δ, and the utility cost of remote work ϕ. Therefore, in this alternative model framework, an
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exogenous increase in productivity δ operates much like an exogenous decrease in ϕ in the baseline model,

in terms of influencing the workers’ choices among the three options.

As a result, the rent premium in equilibrium is

rH − rL =
ϕ− ln δ

β
.

Because there are two wage offerings from location H , the urban wage premiums are:

wHH − wL = ϕ− ln δ,

wHL − wL = ϕ.

The intuition behind the difference between the two wage gaps is that the wage gap between the remote

workers residing in L and those employed by L should only compensate for the utility cost of remote work.

Nevertheless, the wage gap between onsite workers in H and workers employed by L should reflect the

additional productivity premium for working onsite at H (if δ < 1).

Agglomeration and Aggregate Productivity The effect of an increase in the relative productivity of

remote workers on aggregate output is

∂(FH + FL)

∂δ
= θB0HN θ−1

HH

∂NHH

∂δ
(NHH + δNHL)

γ︸ ︷︷ ︸
Weakening of Agglomeration Economies

< 0

+(WHH −WL)
∂(NHH +NHL)

∂δ︸ ︷︷ ︸
Reallocation of Labor from L to H

< 0 or > 0

−(WHH −WHL)
∂NHL

∂δ︸ ︷︷ ︸
Adjustment for Reallocation into WFH

+ WHHNHL︸ ︷︷ ︸
Direct Productivity Effect of δ

The effect of an increase in the relative productivity of remote workers on the reallocation of labor is

∂NHH

∂δ
= − 1

δβ
(

πL
1−NHH

+ πH
NHH

) , (12)
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∂NHL

∂δ
=

1

δβ
(

πL
1−NHH

+ πH
NHH

) (13)

+
β
(

πL
1−NHH

+ πH
NHH

)
−
(
NHLδβ

(
πL

1−NHH
+ πH

NHH

)
+ (1− δ)

)
1−γ

NHH+δNHL
− θ

NHH

δβ
(

πL
1−NHH

+ πH
NHH

)(
1−γ
NLL

+ δ(1−γ)
NHH+NHL

) .

Similar to the baseline model results, the effect of increasing δ on the total labor supply to location H is not

definitive:

∂(NHH +NHL)

∂δ
=

β
(

πL
1−NHH

+ πH
NHH

)
−
(
NHLδβ

(
πL

1−NHH
+ πH

NHH

)
+ (1− δ)

)
1−γ

NHH+δNHL
− θ

NHH

δβ
(

πL
1−NHH

+ πH
NHH

)(
1−γ
NLL

+ δ(1−γ)
NHH+NHL

) .

(14)

A3 Alternative Model Framework: Distinguishing Between

WFH and Remote Work

In our baseline model, we assume that if a worker opts to work from home for firms in H , they are required to

reside in L and work remotely for H . In such a scenario, remote workers employed by H would choose not

to live in H . This is because the baseline model does not include location-specific amenities, and therefore

there are no reasons for workers to endure the high housing cost in H while opting not to work onsite. We

set up the baseline model to streamline the equilibrium characterization by reducing the number of choices

a workers needs to consider. However, there may be concerns as to whether the predictions and intuition of

the baseline model would hold if we allowed people to work from home while residing in the same city as

their employers. In this section, we present an alternative model in which workers can choose to work from

home for firms in H while still residing in H . We demonstrate that all the predictions remain the same.

In this framework, we maintain the production functions in H and L, but we allow workers living in H

and working for firms in H the option to work either onsite or from home. Let No
HH be the number of onsite

workers who live and work in H , and let Nh
HH be the number of workers who live in H but work from home

for firms in H . Same as the baseline model, NHL denotes the number of workers who work remotely for

firms in H and live in L, and NLL denotes the number of workers who work for firms in L and live in L.

Rather than having three options, workers now have four: working onsite in H , working from home for

H while residing in the same city (thus, not remotely), working remotely for H (thus, living and working in

51



different cities), and working onsite in L. We define the utility associated with each choice as follows:

Uo
HH = wH − βrH − C(No

HH),

Uh
HH = wH − βrH − ϕ,

UHL = wH − βrL − φϕ,

ULL = wL − βrL.

In this alternative model, we introduce the following elements: First, we add congestion as a utility cost of

onsite work, C(No
HH), which we assume to strictly increase in the number of onsite workers, No

HH . This

term may capture the reality that if fewer people work onsite, the utility of working onsite may enhance due

to lighter traffic, less workplace noise, etc. The term is introduced to ensure that No
HH and Nh

HH would

be non-zero in equilibrium. Second, to account for the likely higher cost of living and working in different

cities compared with working from home in the same city, we introduce a utility cost of cross-city remote

work as φϕ, with φ > 1. This term would ensure that Nh
HH > 0. Without φ > 1 or modeling amenities, no

one would choose to work from home in H .

As workers are perfectly mobile and homogeneous, utility levels will equalize in equilibrium. Equating

the first two equations implies that

C(No
HH) = ϕ.

Since C(.) is a strictly increasing function, the inverse function C−1(.) should also be increasing:

∂No
HH

∂(−ϕ)
= −C−1′(ϕ) < 0.

In other words, an exogenous decrease in the cost of WFH (ϕ) would reduce the number of onsite workers

in H .

Urban Wage and Rent Premiums By equalizing the utility equations, we can get the urban wage and

rent premiums:

wH − wL = φϕ,

rH − rL =
(φ− 1)ϕ

β
.

52



Same as the baseline model predictions, here too, an exogenous decrease in ϕ will unambiguously reduce

both the urban wage and rent premiums.

Labor Reallocation Equalizing the second and third utility functions and then differentiating the resulting

equation with respect to ϕ, we get

∂Nh
HH

∂(−ϕ)
= −(φ− 1)

(No
HH +Nh

HH)(1−No
HH −Nh

HH)

βπH
(
(1−No

HH −Nh
HH) + βπL(No

HH +Nh
HH)

) − ∂No
HH

∂(−ϕ)
.

Equalizing the third and fourth utility functions and then differentiating the resulting equation with

respect to ϕ, we can determine the effect of ϕ on total employment in H:

∂(No
HH +Nh

HH +NHL)

∂(−ϕ)
= −

(
(No

HH +Nh
HH +NHL)NLL

γ − 1

)(
φ− θ

No
HH

∂No
HH

∂ϕ

)
.

We can see that the effect of the WFH shock on total employment (either onsite, WFH in the same city, or

working remotely) is theoretically uncertain. If θ = 0, i.e., there are no agglomeration spillovers, the effect

would be positive. In that case, a lower cost of WFH/remote work would bring a larger labor supply to

location H . In contrast, if θ > 0 and is sufficiently large, the decrease in the number of onsite workers may

significantly reduce productivity in H , leading to a possbile shift of total employment from H to L. The

model’s prediction and the underlying intuition regarding the impact of ϕ on employment remains exactly

the same as in the baseline model.

A4 Data Appendix

A4.1 Determining WFH-Compatible Jobs Using Original Texts from Job Postings

We evaluate the content of job descriptions in the Burning Glas data to determine whether the job is likely to

accommodate remote work. We start with scanning the text of each job posting for keywords that indicate

a remote work setup. These keywords include “remote,” “telework,” “work from home,” “work at home,”

“wfh,” “home office,” “virtual,” “work anywhere,” and “mobile office.” If any of these keywords appear, the

job is initially classified as being compatible with remote work.

However, a serious concern is the potential misclassification because these keywords may appear in a

negated context. For instance, a job description stating “You cannot work from home” would be incorrectly
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be labeled as remote-compatible. To mitigate the issue, we conduct a search for negation words such as

“cannot,” “couldn’t,” or “don’t” within 20 characters preceding each keyword. Similarly, we look for “no”

or “not” immediately following any keywords. If any of these negation words are found, we exclude the job

posting from the remote-compatible classification.

Lastly, we search for a separate list of keywords that indicate onsite work. These keywords include “fully

onsite,” “fully on-site,” “attendance,” “physical appearance,” “physically,” “show up on time,” “in office,”

“in person,” “requires onsite,” “requires on-site,” “require onsite,” “require on-site,” “onsite required,” “on-

site required,” “onsite only,” and “on-site only.” If any of these keywords appear, the job is classified as

being not WFH-compatible.

We acknowledge that our classification method may result in measurement errors. Specifically, there is

the possibility of false positives and false negatives. For instance, a false positive might occur in situations

when the remote work keywords appear without any negation but may be construed in contexts other than

work arrangements. For example, if a job ad mentions that “our team also serves geographically remote

areas of the state”, where the word “remote” does not indicate remote work. Conversely, a false negative

might occur in cases where remote work is implied in the ads but none of the keywords appear. For example,

if a job ad says that “locations of work are flexible” or “our team members are located across the nation.”

Despite the potential presence of measurement errors, it is important to note that the goal of our empirical

exercise is not to quantify the prevalence of WFH per se, in which these false-positive and false-negative

errors would skew the summary statistics of WFH-compatibility. Instead, our aim is to capture variations

in WFH adoption across occupations, based on their relative changes in the levels of WFH adoption after

the pandemic started. We use these variations to analyze whether the adoption of WFH disproportionately

affects the wages and productivity of firms in large cities. In other words, it is the ranking of WFH adoption

across occupations that is relevant for our analysis, not the exact the level. Figure 2c compares our estimated

shares of WFH-compatible jobs by occupation group with those estimated by Bloom et al. (2023), who

address these measurement errors through a combination of manual classification and machine-learning

approach, suggesting a high correlation between the two measures with an R-squared value exceeding 0.75.

Potential Threat to Identification from Measurement Errors There exists a potential threat to identifi-

cation if occupations with an increase in false-positives also saw a disproportionate reduction in the urban

wage premium for reasons unrelated to local productivity changes. This may incorrectly attribute such a
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disproportionate decrease in the urban wage premium among incorrectly measured “high-WFH-adoption”

occupations to the adoption of WFH. As previously mentioned, certain occupations might have seen an in-

crease in jobs that require interaction with customers in remote areas post-pandemic. This may result in a

surge of false positives in WFH-compatible jobs due to the use of the term “remote.” If the demand for these

“false-positive” jobs in large cities declined relative to smaller cities since the start of the pandemic, then the

disproportionate decrease in the urban wage premium among the “high-WFH-adoption” occupations may

not entirely be a result of WFH adoption.

Our empirical strategy assumes that the occupations with a rise in false positive or drop in false negative

classifications do not see a disproportionate drop in labor demand or disproportionate increase in labor

supply in large cities for reasons unrelated to remote work. Under this assumption, the measurement errors

present in our classification should dilute the estimated change in the urban wage premium among the high-

WFH occupations. This means that the more severe the measurement error is, the more likely the true effect

of WFH on urban wage premium is actually larger than the number implied by our estimate.

In our analysis, we also include a number of robustness checks where we use alternative definitions of

WFH adoption that do not rely on the above-mentioned classification procedure. Results are all consistent

with our baseline findings.

A4.2 Imputing WFH Adoption Levels with ACS and O*NET Data

For robustness checks, we also measure the levels of WFH adoption using the change in the fraction of

workers who report that they work from home before and after the start of the pandemic. Since the ACS

data categorize occupations by the Census Occupation Code, there are many SOC occupation codes in the

Burning Glass data that cannot be matched to the occupations categorized in the ACS. To enable all of

the SOC occupations in the Burning Glass data to be matched to a level of WFH adoption measured by

the information provided by the ACS data, we combine the ACS data with the Occupational Information

Network (O*NET) work context characteristics.

The O*NET is developed by the U.S. Department of Labor and the Employment and Training Admin-

istration. The data report the levels and importance of skills required for each occupation, the activities

involved in performing the jobs, and the work context in terms of the nature of human interaction, physi-

cal work conditions, and structural job characteristics. Each occupation is scored across 57 work context

characteristics. Because of the universal coverage of occupations in the O*NET, we use the occupational
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characteristics to impute changes in WFH prevalence based on the similarity of occupational characteristics

in the Burning Glass occupations to the occupations observed in the ACS data.

The imputation procedure works as follows:

1. We use the Lasso regression to select the O*NET occupational characteristics that can best predict

changes in WFH adoption based on occupations that can be matched between the ACS and O*NET.

We then estimate an OLS regression model using the selected characteristics. Table A6 shows the

Lasso coefficients and the OLS coefficients post-estimation. Figure A7 plots the predicted changes

in the fraction of workers who WFH against the observed changes in the fraction workers who WFH

in the ACS among occupations that can be matched between SOC and Census Occupation Code. It

shows that the predicted changes in the share of WFH workers line up well with the observed changes

from the ACS.

2. We then match the SOC occupations in the Burning Glass data to the same set of work context occu-

pational characteristics. We use the estimated OLS regression coefficients from step 1 to impute the

predicted change in the fraction of workers who WFH for each SOC occupation occupation.

A4.3 Definition and Assignment of Skill Cluster Families

The Burning Glass data provide over 13,000 distinct skills associated with the job postings, extracted directly

from the job descriptions. These skills serve a dual purpose in our paper. First, they allow us to include

detailed job-level controls when estimating changes in the urban wage premium. Second, they facilitate our

analysis of changes in the urban wage premium by skill and the shift of skill listing intensity, as detailed in

Section 5.

The data structure poses a challenge for estimation due to the varying lengths of skill vectors across job

postings; some list only one or two skills, while others feature nearly 20. To tackle this, we include controls

for the top 20 skills associated with each job, ranked by each skill’s overall frequency of appearance in the

dataset. About 90% of jobs in the sample mention fewer than 20 skills. In job postings with fewer than 20

skills, the remaining slots are filled as “na.”

To decompose the overall decrease in the urban wage premium into changes in the urban wage premium

by skill, we need to interact lnM with skill dummies. However, using the detailed skill dummies is not

feasible due to the large number. The Burning Glass data organize skills into broader categories known as
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skill clusters and skill cluster families. There are over 650 skill clusters and 29 skill cluster families. We

use these skill cluster families for our decomposition analysis. Notably, not all skills are assigned to a skill

cluster family, so we manually allocate some commonly listed unassigned skills. Table A7 presents our

manual assignment of these unassigned skills.

Lastly, we note that the skill cluster family “Business” in the Burning Glass data includes a broad range

of skills, mostly related to management. To improve the interpretability of this category, we reclassify

skills typically related to team and people management under “Human Resources.” These reassignments are

shown in Table A7.

A5 Robustness Tests

A5.1 Changes in Wages and Employment in Selected MSAs

Figure A5 presents changes in residualized log posted hourly wage for four occupation groups across various

selected MSAs, between the pre-pandemic and pandemic periods. Notably, the most pronounced relative

wage declines in computer and mathematical occupations are evident in cities traditionally considered hubs

for the computer industry. Similarly, cities renowned as significant business and financial centers suffered the

greatest wage reductions in business and financial occupations. However, such patterns are not discernible

in food preparation, service, and health occupations. Correspondingly, Figure A6 shows a substantial depar-

ture of employment from cities traditionally associated with the finance and information industries for the

associated industry groups.

While the patterns generally hold true, there are exceptions. For example, despite a significant wage

decline in high-WFH-adoption occupations in San Jose and San Francisco, the employment decrease in the

relevant finance and information industry was comparatively mild in San Jose, and San Francisco actually

saw some employment growth in that industry. This suggests that San Jose and San Francisco’s wage decline

might have been in part due to a labor supply increase from remote workers residing elsewhere. Austin, TX

serves as another exception. Although it saw a wage drop in high-adoption occupations, it also experienced

an exceptionally high employment growth in these fields. This could be attributed to an increased labor

supply through remote working or possibly due to the inflow of high-tech firms into Austin during the

pandemic.

Figures A5 and A6 also highlight a notable case in the food preparation and service occupations and

57



the food and accommodation industries. While the wage decline does not show a strong correlation with

city size, the employment drop is more pronounced in larger cities and business hubs. This is likely a result

of both declining labor demand and supply in service sectors in large cities, leading to a steep decrease in

employment but ambiguous wage changes, as illustrated in Figure 1b.

A5.2 Reduced Compensating Differentials: An Alternative Source of Decreasing Urban

Wage Premium

Another reason for the observed decline in the urban wage premium for jobs in high-WFH-adoption occu-

pations could be a reduction in compensating wage differentials. Firms might have reduced wages following

WFH adoption because workers could now avoid lengthy commutes. Since commute time was likely longer

in larger cities or dense areas pre-pandemic, the drop in the urban wage premium might be driven by the

disproportionate decrease in compensating differentials in large cities, in addition to (or instead of) the re-

duced agglomeration economies. We cannot directly disentangle this possibility from our hypothesis with

our main analysis because the Burning Glass data do not include workers’ residential locations.

However, we can examine this alternate explanation indirectly using the ACS data from 2015–2021. We

exploit the idea that the reduction in commuting due to WFH adoption should be larger for workers who

previously had longer commutes. Therefore, if reduced commute time led to wage reductions, we would

expect the largest drops in wages among workers who likely had the greatest reductions in commuting—

those working in high-WFH-adoption occupations living in neighborhoods with traditionally long commutes

for their occupations. Specifically, we estimate the following triple-difference regression:

yikjmt = λ0Highk + λ1Highk × Postt + λ2Ckjm + λ3Ckjm × Postt + λ4Highk × Ckjm (15)

+ λ5Highk × Ckjm × Postt + ξm × ζt + ΛtXi + ϵikjmt,

where yikjmt is log hourly wage or commute time of individual i in occupation k in PUMA j of MSA m

in year t; Highk is an indicator that occupation k has high WFH adoption during the pandemic; Postt is

an indicator for post-pandemic period (i.e., t = 2020 or 2021); Ckjm is the average commute time faced by

workers in occupation k living in PUMA j in MSA m between 2015 and 2019. We approximate Ckjm by

calculating the average commute time experienced by two broad occupation groups: high-WFH-adoption
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occupations and low/moderate-WFH-adoption occupations.37 Xi is a vector of workers’ characteristics, in-

cluding indicators of sex, age, race, Hispanic status, marital status, and education. We allow the coefficients

Λt to vary over time to account for changes in sorting of workers over time. The coefficient of interest in λ5.

Table A5 presents the estimates of λ0–λ5. The sample comprises workers aged from 25–65 who worked

at least 35 hours per week. In Columns 1–2, the dependent variable is the log hourly wage. In Columns

3–4, the dependent variable is the commute time. All columns control for the interaction between year fixed

effects and MSA fixed effects. Columns 2 and 4 further control for workers’ demographic characteristics.

The estimates of λ5 in Columns 1 and 2 suggest that during the pandemic, workers in high-WFH-adoption

occupations who lived in neighborhoods with high commute time pre-pandemic saw a wage increase relative

to others, although the magnitude is small. Adding workers’ characteristics does not significantly affect the

result. This finding is contradict the hypothesis of changing compensating differentials. In contrast, as

Columns 3 and 4 show, these workers experienced a more substantial decrease in commute time, translating

to increased amenities of reduced commuting, as expected. If the change in compensating differentials was

driving the observed reduction in the urban wage premium, the increased amenities should have led to a

wage decrease. Therefore, the results Table A5 offer some indirect evidence that our finding of reduced

urban wage premium is unlikely solely driven by reduced compensating wage differentials.

37We calculate commuting time at a higher occupation group level because commute time at a detailed occupational and geo-
graphical level tends to have many sparsely populated cells.
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Figure A1: Industry Share within MSAs in the Burning Glass Data vs. QCEW

Note: This figure aims to validate that the geographical distribution of job postings in the Burning Glass data is likely to
represent the locations of employers. The y-axis represents the 3-digit NAICS industry share in each MSA from the Burning
Glass data, and the x-axis represents the 3-digit NAICS industry share in each MSA from the Quarterly Census of Employment
and Wages (QCEW), which is based on employer locations. We present the binned scatterplot of the shares, separately for
January 2020 (pre-pandemic) and July 2020 (during the pandemic).
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Figure A2: Urban Wage Premium: Estimation based on Total Employment by MSA

(a) All Jobs

(b) High WFH Adoption (c) Low or Moderate WFH Adoption

Note: The figures present binned scatterplots of residualized log posted hourly wage against residualized log employment of
the MSA of a job, separately for jobs posted between 2018 and 2019 and those posted between 2020 and May 2023, using
the Burning Glass data. We residualize log wage and log employment by regressing these variables on dummies for SOC
occupation code, NAICS code, years of education required, salary type, full-/part-time status, tax terms, and job posting month.
We then add back the means of the original variables. Figure A2a presents the plot for all posted jobs. Figures A2b and A2c
present the plot for jobs in high-WFH-adoption occupations and those in low-WFH-adoption occupations, respectively.
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Figure A3: Urban Wage Premium: Estimation from the Burning Glass Data vs. ACS (2019)

(a) All Jobs

(b) Business and Finance (c) Computer and Mathematics

(d) Food Services (e) Health Care

Note: These figures validate the urban wage premium estimates from the Burning Glass data with the ACS estimates. We
estimate the urban wage premium using the 2019 Burning Glass data by regressing log posted hourly wage on log employment
of the MSA of the corresponding job, controlling for dummy variables for SOC occupation code. We estimate the urban
wage premium using the 2019 ACS data by regressing log hourly wage on log employment of the MSA, controlling for dummy
variables for occ2010 occupation code. Figure A3a presents the demeaned binned scatterplots based on all jobs/workers. Figure
A3b, A3c, A3d, and A3e present the demeaned binned scatterplots for four selected occupation groups.
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Figure A4: Urban Wage Premium: Selected Occupation Groups

(a) Computer and Mathematics (b) Business and Finance

(c) Food Prep and Service (d) Health

Note: The figures present binned scatterplots of residualized log posted hourly wage against residualized log employment of the
occupation and MSA of a job, separately for jobs posted between 2018 and 2019 and those posted between 2020 and May 2023,
using the Burning Glass data. We residualize log wage and log employment by regressing these variables on dummies for SOC
occupation code, NAICS code, years of education required, salary type, full-/part-time status, tax terms, and job posting month.
We then add back the means of the original variables. Figure A4a presents the plot for jobs categorized in the occupation group
of “Computer and Mathematical Occupations.” Figure A4b presents the plot for jobs in “Business and Financial Operations
Occupations.” Figure A4c presents the plot for jobs in “Food Preparation and Serving Related Occupations.” Figure A4d
presents the plot for jobs in “Healthcare Practitioners and Technical Occupations.”
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Figure A5: Residual Wage Growth of Selected Occupation Groups

(a) Computer and Mathematical (b) Business and Finance

(c) Food Prep and Service (d) Health

Note: The figures present changes in residualized log posted hourly wage between the pre-pandemic period (2018–2019)
and the post-pandemic period (2022–May 2023) for four occupation groups across selected MSAs, using the Burning Glass
data. We residualize log wage by regressing these variables on dummies for SOC occupation code, NAICS code, years of
education required, salary type, full-/part-time status, tax terms, and job posting month. We then add back the means of the
original variables. Figure A5a presents the residualized wage growth across selected MSAs for jobs in the occupation family of
“Computer and Mathematical Occupations.” Figure A5b is for jobs in “Business and Financial Operations Occupations.” Figure
A5c is for jobs in “Food Preparation and Serving Related Occupations.” Figure A5d is for jobs in “Healthcare Practitioners and
Technical Occupations.”
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Figure A6: Employment Growth of Selected Industry Groups

(a) Finance and Information (b) Prof. and Business Services

(c) Accom. and Food Services (d) Health Care and Social Assist.

Note: The figures present changes in log employment between the pre-pandemic period (2018–2019) and the post-pandemic
period (2022–May 2023) for four industry groups across selected MSAs, using the QCEW. Figure A6a presents employment
growth across selected MSAs for jobs in the industry group of “Finance and Information”, which include NAICS 51x and 52x.
Figure A6b is for jobs in “Professional and Business Services.” (NAICS 54x) Figure A6c is for jobs in “Accommodation and
Food Services.” (NAICS 72x) Figure A6d is for jobs in “Health Care and Social Assistance.” (NAICS 62x)
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Figure A7: Observed WFH Adoption vs. Predicted WFH Adoption

Note: This figure validates the predicted adoption of WFH with the observed adoption of WFH. We use the subset of occupa-
tions that the vectors of O*NET occupational characteristics can be matched to the ACS occupation code. Please see section
A4.2 for imputation details.
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Table A1: Changes in Urban Wage Premium by Occupation’s WFH Adoption Level:
Robustness Checks

Log Posted Hourly Wages
(1) (2) (3) (4)

Log M 0.0275*** 0.0204*** 0.0169*** 0.0175***
(0.00842) (0.00658) (0.00405) (0.00340)

Log M ×Moderate WFH 0.0122*** 0.00844*** 0.0193*** 0.0141***
(0.00129) (0.00114) (0.00165) (0.00132)

Log M × High WFH 0.0130*** 0.0108*** 0.0267*** 0.0223***
(0.00234) (0.00210) (0.00316) (0.00254)

Log M × Post 0.00238 0.00277 0.00176 0.000676
(0.00480) (0.00379) (0.00108) (0.00108)

Log M ×Moderate WFH × Post -0.00538*** -0.00363*** -0.00944*** -0.00629***
(0.000818) (0.000678) (0.000753) (0.000658)

Log M × High WFH × Post -0.00267* -0.00513*** -0.0123*** -0.0127***
(0.00160) (0.00124) (0.00157) (0.00136)

Controls: Job Characteristics X X X X

Controls: MSA FE × Post, Occ × Post X X

Controls: Skill Requirements X X

WFH Def Based on SOC Occ. SOC Occ. NAICS Ind. NAICS Ind.

Observations 7,316,061 5,996,739 7,316,072 5,996,752

Note: This table presents the estimates of the urban wage premium pre- and post-pandemic by occupation and industry category,
based on the level of WFH adoption, as robustness checks. The sample includes job postings from a 10% random selection
of the Burning Glass data, from 2018 to May 2023. The dependent variable is log posted hourly wage of a job posting. M is
employment size (in 2019 Q1) of the occupation or industry in the MSA of the posted job. Post is a post-pandemic dummy (i.e.,
months after March 2020). Moderate WFH is a dummy variable that is equal to 1 if the occupation or industry of the posted
job has moderate WFH adoption (i.e., occupations or industries with an increase of 11–20 percentage points in the national
share of WFH-compatible jobs, as determined by comparing pooled data from 2018 to March 2020 with pooled data from
April 2020 to May 2023); High WFH is a dummy variable that is equal to 1 if the occupation or industry of the posted job has
high WFH adoption (i.e., occupations or industries with an increase of more than 20 percentage points in the national share of
WFH-compatible jobs). All columns control for basic job characteristics (including dummy variables for SOC occupation code,
NAICS industry code, years of education required, salary type, part-/full-time status, tax term, and posting month). Columns
1 and 2 define WFH adoption based on occupation categories and include the interaction between occupation fixed effects and
the post-pandemic dummy, and the interaction between MSA fixed effects and the post-pandemic dummy. Columns 3 and 4
define WFH adoption based on industry categories (three-digit NAICS). Columns 2 and 4 include controls of the indicators of
skill requirements. Standard errors are clustered at the MSA level. *** p < 0.01, ** p < 0.05, *p < 0.1.
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Table A2: Changes in Urban Wage Premium by Occupation’s WFH Adoption Level:
Cross-County and Within-MSA Comparisons

Log Posted Hourly Wages
(1) (2)

Log M 0.0117*** 0.00794***
(0.00278) (0.00174)

Log M ×Moderate WFH 0.0192*** 0.0170***
(0.00196) (0.00129)

Log M × High WFH 0.0268*** 0.0290***
(0.00353) (0.00259)

Log M × Post 0.00454*** 0.00156**
(0.000672) (0.000608)

Log M ×Moderate WFH × Post -0.0103*** -0.00654***
(0.000775) (0.000664)

Log M × High WFH × Post -0.0118*** -0.0127***
(0.00155) (0.00122)

Controls: Job Characteristics X X

Controls: MSA ×M / H WFH × Post X

Measurement of M Emp Size by Emp Size by
Occ and County Occ and County

Observations 7,429,678 7,315,951

Note: This table presents the estimates of the urban wage premium pre- and post-pandemic by
occupation category, based on the level of WFH adoption. The sample includes job postings from a
10% random selection of the Burning Glass data, from 2018 to May 2023. The dependent variable
is log posted hourly wage of a job posting. M is employment size of the occupation in the county
of the posted job. Post is a post-pandemic dummy (i.e., months after March 2020). Moderate
WFH is a dummy variable that is equal to 1 if the occupation of the posted job has moderate WFH
adoption (i.e., occupations with an increase of 11–20 percentage points in the national share of
WFH-compatible jobs, as determined by comparing pooled data from 2018 to March 2020 with
pooled data from April 2020 to May 2023); High WFH is a dummy variable that is equal to 1 if
the occupation of the posted job has high WFH adoption (i.e., occupations with an increase of more
than 20 percentage points in the national share of WFH-compatible jobs). Both columns control
for basic job characteristics (including dummy variables for SOC occupation code, NAICS industry
code, years of education required, salary type, part-/full-time status, tax term, and posting month).
Columns 2 further include the interaction of the MSA fixed effects, dummy for high- or moderate
WFH adoption, and the post-pandemic dummy. Standard errors are clustered at the MSA level. ***
p < 0.01, ** p < 0.05, *p < 0.1.
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Table A3: Changes in Urban Wage Premium by Occupation’s WFH Adoption Level: Imputed WFH
Adoption Levels by O*NET Characteristics

Log Posted Hourly Wages
(1) (2)

Log M 0.0178*** 0.0183***
(0.00390) (0.00402)

Log M ×Moderate WFH 0.0120*** 0.00901***
(0.00163) (0.00139)

Log M × High WFH 0.0305*** 0.0234***
(0.00393) (0.00339)

Log M × Post 0.000248 0.000117
(0.00106) (0.00103)

Log M ×Moderate WFH × Post -0.00451*** -0.00341***
(0.000744) (0.000655)

Log M × High WFH × Post -0.00777*** -0.00893***
(0.00149) (0.00133)

Controls: Job Characteristics X X

Controls: Skill Requirements X

Specification Baseline Baseline

Observations 6,913,047 5,661,761

Note: This table presents the estimates of the urban wage premium and its change over time for occu-
pations with different levels of WFH adoption. We present the results from the baseline specification
using the Burning Glass job posting data, similar to columns 1 and 2 in Table 2. The difference is that
we define occupations’ WFH adoption levels using the imputed WFH share based on O*NET occu-
pation characteristics. Please see Appendix A4.2 for the imputation procedure. We define the level
of WFH adoption for an occupation based on changes in the imputed share of remote workers within
the occupation between 2019 and 2021. We classify occupations as high-WFH-adoption occupations if
they experienced an over 25 percentage point increase in the national share of WFH workers, comparing
data from 2019 and 2021 (corresponding to the 90th percentile of the distribution in change of WFH
worker share). Moderate-WFH-adoption occupations experienced an 10 to 25 percentage point increase
in the share of WFH workers (representing the 50th and 90th percentiles), while low-WFH-adoption
occupations experienced less than a 10 percentage point increase. *** p < 0.01, ** p < 0.05, *p <
0.1.
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Table A4: Changes in Urban Wage Premium by Occupation’s WFH Adoption Level:
Average Weekly Earnings from QCEW

Log Average Weekly Earnings
(1) (2)

Log M × Post 0.00277***
(0.000798)

Log M × 2020 0.00242**
(0.000958)

Log M × 2021 0.00200***
(0.000728)

Log M × 2022 0.00528***
(0.00130)

Log M ×Moderate WFH × Post -0.00399***
(0.000783)

Log M × High WFH × Post -0.0185***
(0.00273)

Log M ×Moderate WFH × 2020 0.00194
(0.00163)

Log M ×Moderate WFH × 2021 -0.00127
(0.000878)

Log M ×Moderate WFH × 2022 -0.00936***
(0.00130)

Log M × High WFH × 2020 -0.00861***
(0.00258)

Log M × High WFH × 2021 -0.00732
(0.00585)

Log M × High WFH × 2022 -0.0290***
(0.00303)

Observations 1,921,245 1,921,245

Note: This table presents the estimates of the urban wage premium pre- and post-pandemic by industry’s
WFH adoption level. The sample comprises quarterly average weekly earnings by MSA and industry
(3-digit NAICS) from the QCEW for Q1 2018 to Q4 2022. The dependent variable is log average weekly
earning by MSA and industry. Observations are weighted by employment size (2019 Q1) of the MSA
and industry. Moderate WFH is dummy for industries with an increase of 11–20 percentage points in the
national share of WFH-compatible jobs, as determined by comparing pooled data from 2018 to Q1 2020
with pooled data from Q2 2020 to 2022). High WFH is dummy for industries with an increase of more
than 20 percentage points in the national share of WFH-compatible jobs. Standard errors are clustered at
the MSA level. *** p < 0.01, ** p < 0.05, *p < 0.1.70



Table A5: Compensating Differentials: Alternative Explanation of Changes in the Urban Wage Premium

Log Hourly Wage Commute Time
(1) (2) (3) (4)

High WFH 0.355*** 0.196*** 0.249** 0.119
(0.0170) (0.0099) (0.0987) (0.1000)

High WFH × Post -0.0135 0.0023 2.838*** 3.671***
(0.00948) (0.00895) (0.335) (0.324)

Pre-Pandemic Commute -0.00746*** -0.00344*** 0.989*** 0.985***
(0.00114) (0.00066) (0.00438) (0.00441)

Pre-Pandemic Commute × Post -0.00052 -0.00036 -0.060*** -0.101***
(0.00035) (0.00030) (0.0138) (0.0124)

High WFH × Pre-Pandemic Commute 0.00693*** 0.00348*** -0.00398 -0.00554
(0.00064) (0.00036) (0.00366) (0.00366)

Hig -WFH × Pre-Pandemic Commute × Post 0.00059* 0.00064** -0.370*** -0.351***
(0.00033) (0.00031) (0.0124) (0.0120)

Controls: Year FE ×MSA FE Yes Yes Yes Yes

Controls: Year FE ×Worker Characteristics No Yes No Yes

Observations 7,471,296 7,471,296 7,313,590 7,313,590

Note: This table presents the estimates of changes in log hourly wage and commute time pre- and post-pandemic by occupation’s WFH
adoption level and the average pre-pandemic commute time of the worker’s residential location and occupation group. The sample
comprises workers aged from 25–65 who worked at least 35 hours per week in the ACS from 2015–2021. Post indicates the pandemic
period (i.e., 2020 or 2021). High WFH is an indicator that is equal to 1 if the occupation of the posted job has a high level of
WFH adoption. Pre-Pandemic Commute is the average commute time between 2015 and 2019 by workers’ residential PUMA and
high-WFH indicator. All columns include year fixed effects, MSA fixed effects, and their interaction. Columns 2 and 4 further include
the interactions between year fixed effects and various demographic characteristics, including indicators of sex, age, race, Hispanic
status, marital status, and education. Standard errors are clustered at the PUMA level. *** p < 0.01, ** p < 0.05, *p < 0.1.
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Table A6: Lasso Selection Results:
Work Context Characteristics as Predictors for WFH Adoption During the Pandemic

Lasso OLS

Deal With External Customers -0.0086 -0.0184***
(0.00459)

Deal With Physically Aggressive People -0.0126 -0.0155*
(0.00840)

Electronic Mail 0.0073 0.0089**
(0.00397)

Exposed to Contaminants -0.0121 -0.0123**
(0.00527)

Exposed to Disease or Infections -0.0035 -0.0042
(0.00443)

Exposed to Minor Burns, Cuts, Bites, or Stings -0.0031 -0.0032
(0.00594)

Level of Competition 0.0110 0.0262***
(0.00622)

Physical Proximity -0.0103 -0.0137**
(0.00692)

Public Speaking 0.0023 0.0085
(0.00646)

Responsible for Others’ Health and Safety -0.0277 -0.0380***
(0.00656)

Spend Time Sitting 0.0168 0.0120
(0.0115)

Spend Time Standing -0.0113 -0.0144
(0.0124)

Spend Time Using Your Hands to Handle, Control, or Feel Objects, Tools, or Controls -0.0215 -0.0195***
(0.00576)

Work With Work Group or Team 0.0077 0.0278***
(0.00865)

Constant 0.2695 0.2520***
(0.0773)

Note: This table presents the results of the Lasso regression and the OLS regression after selecting variables. We
use the O*NET work context characteristics as predictors for the change in the share of WFH workers during
the pandemic. There are 57 work context characteristics. We show the regression coefficients for the variables
retained by Lasso. The shrinkage parameter λ is searched for based on Extended Bayesian information criterion
(EBIC) (Chen and Chen, 2008). *** p < 0.01, ** p < 0.05, *p < 0.1.
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Table A7: Manual Assignment of Unassigned Skills

Skill Skill Cluster Family

Building Effective Relationship Building Relationship
Teamwork / Collaboration Building Relationship
Mentoring Building Relationship
Verbal / Oral Communication Communication
Telephone Skills Communication
Written Communication Communication
Writing Communication
Communication Skills Communication
Presentation Skills Communication
Oral Communication Communication
Microsoft Excel Information Technology
Microsoft Word Information Technology
Computer Literacy Information Technology
Problem Solving Analysis
Critical Thinking Analysis
Creativity Analysis
Decision Making Analysis
Research Science and Research
Repair Maintenance, Repair, and Installation
Cleaning Maintenance, Repair, and Installation
Preventive Maintenance Maintenance, Repair, and Installation
Work Area Maintenance Maintenance, Repair, and Installation
Planning Planning
Leadership Leadership
Organizational Skills Organizational Skills
People Management Human Resources
Staff Management Human Resources
Supervisory Skills Human Resources
Conflict Management Human Resources
Team Management Human Resources
Personnel Management Human Resources
Escalation Management Human Resources
Employee Training Human Resources
Employee Relations Human Resources
Employee Engagement Human Resources
People Development Human Resources
Employee Coaching Human Resources
Staff Development Human Resources
Typing Administration
Troubleshooting Administration
Time Management Administration

Notes: We manually assign some of the unassigned skills to skill cluster families. We select the
skills that appear in the skill vectors very frequently but are unassigned to any skill cluster fam-
ilies. Some skill cluster families shown above are created by us because the existing categories
do not fit. “Building Relationship”, “Communication”, “Organizational Skills” are created by
us.
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Table A8: Most Frequently Listed Skills Under Key Skill Cluster Families (Part 1)

Rank Custumer and Client Support Business Management Marketing and Public Relations

1 Customer Service Project Management Social Media
2 Customer Contact Quality Assurance and Control Packaging
3 Customer Checkout Process Improvement Salesforce
4 Cash Handling Business Process Client Base Retention
5 Basic Mathematics Key Performance Indicators (KPIs) Marketing
6 Guest Services Business Administration Facebook
7 Cash Register Operation Project Planning and Development Skills Market Strategy
8 Point of Sale System Product Management Customer Relationship Management (CRM)
9 Claims Knowledge Performance Appraisals Market Research
10 Customer Accounts Cost Control Digital Marketing
11 Refunds Exchanges and Adjustments Change Management Newsletters
12 Customer Complaint Resolution Performance Management Instagram
13 Processing Item Returns Stakeholder Management Market Trend
14 Needs Assessment Operations Management Marketing Materials
15 Client Needs Assessment Strategic Planning LinkedIn
16 Customer Experience Improvement Business Acumen Fundraising
17 Claims Adjustments Performance Analysis Social Media Platforms
18 Service Improvement Business Planning Customer Retention
19 Payment Collection Business Analysis Market Analysis
20 Payment Processing Thought Leadership Product Marketing
21 Bagging Items Business Operations Brand Experience
22 Checking Out Customers Contract Review Market Planning
23 Satisfaction Failure Correction Business Strategy Competitive Analysis
24 Processing Customer Requests Property Management Brand Awareness Generation
25 Issuing Receipts Root Cause Analysis Community Relations
26 Presenting Solutions Business Management Google Analytics
27 Customer Service Enhancement Contract Preparation Customer Acquisition
28 Responding to Patient Phone Calls Lifecycle Management Marketing Management
29 Product Availability Technical Assistance Business-to-Business Sales
30 End-user training Service Level Agreement Youtube
31 Product Assortment Event Planning Promotional Materials
32 Account Information Maintenance Contract Management Marketing Strategy Development
33 Customer Referrals Process Design Copywriting
34 Claims Processing Business Solutions Crisis Management
35 Wellness Services Restaurant Management Effective Communications
36 Deposit Collection Due Diligence Email Marketing
37 Inventory Checking Real Estate Experience CRM software
38 Pizza Delivery Professional Services Marketing Consumer Behavior
39 Customer Relationship Marketing Progress Reports Marketing Communications
40 Settlement Negotiation Business Systems Analysis Ad Campaigns
41 Credit Card Transaction Processing Resource Management Marketing Programs
42 Providing Warranties Business Communications Focus groups
43 Product Features Assistance Profit Targets Social Media Marketing
44 Price Checks Policy Implementation Direct Mail
45 Store Communications 5S Methodology Consumer Segmentation
46 Charge and Disbursement Determination Business Case Analysis Branding Strategy
47 Credit Card Applications Benchmarking Email Campaigns
48 Deposit Preparation Contract Negotiation Account Development
49 Client Care Order Entry Consumer Research
50 Customer Account Review Strategic Development Social Content
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Table A9: Most Frequently Listed Skills Under Key Skill Cluster Families (Part 2)

rank Information Technology

1 Microsoft Office
2 Computer Literacy
3 Microsoft Word
4 Microsoft Powerpoint
5 SQL
6 Software Development
7 Python
8 Spreadsheets
9 Software Engineering
10 Java
11 Technical Support
12 Microsoft Outlook
13 Software as a Service (SaaS)
14 Information Systems
15 SAP
16 Enterprise Resource Planning (ERP)
17 Oracle
18 JavaScript
19 Microsoft Azure
20 Scrum
21 Word Processing
22 Linux
23 DevOps
24 Data Management
25 Atlassian JIRA
26 Git
27 Telecommunications
28 Information Security
29 Microsoft Windows
30 Microsoft Sharepoint
31 Microsoft C#
32 Microsoft Access
33 Microsoft Project
34 ServiceNow
35 Agile Development
36 Systems Engineering
37 Amazon Web Services (AWS)
38 C++
39 Kubernetes
40 Troubleshooting Technical Issues
41 Systems Development Life Cycle (SDLC)
42 Network Hardware/Software Maintenance
43 System Design
44 Debugging
45 Relational Databases
46 Unit Testing
47 System Administration
48 UNIX
49 SQL Server
50 OpenStack
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Table A10: Gelbach Decomposition: Contribution of Changes in Skill-Specific Urban Wage Premium
to the Decrease in the Urban Wage Premium within High-WFH-Adoption Occupations—Jobs Requiring

College Education

2020 2021 2022–2023
Skill π Skill π Skill π
Communications 35.7% Finance 58.4% Information Technology 58.1%
Business Management 24.7% Communications 49.5% Marketing and Public Relations 43.6%
Leadership 8.9% Marketing and Public Relations 36.9% Business Management 34.0%
Creativity 5.7% Business Management 30.3% Building Relationship 21.9%
Planning 4.4% Building Relationship 27.5% Communications 19.7%
Education and Training 3.2% Customer and Client Support 8.3% Finance 15.9%
Human Resources 2.5% Leadership 4.8% Creativity 9.0%
Marketing and Public Relations 2.5% Maintenance, Repair, and Installation 4.7% Analysis 4.5%
Media and Writing 1.8% Education and Training 2.9% Education and Training 2.6%
Physical Abilities 1.0% Planning 2.6% Leadership 1.7%
Decision Making 0.9% Analysis 1.1% Decision Making 1.4%
Public Safety and National Security 0.8% Manufacturing and Production 1.1% Public Safety and National Security 1.3%
Analysis 0.7% Economics, Policy, and Social Studies 0.2% Agriculture 0.6%
Agriculture 0.7% Agriculture 0.2% Physical Abilities 0.3%
Maintenance, Repair, and Installation 0.7% Administration 0.2% Maintenance, Repair, and Installation 0.2%
Legal 0.5% Energy and Utilities 0.1% Energy and Utilities 0.1%
Health Care 0.4% Media and Writing 0.1% Media and Writing 0.0%
Energy and Utilities 0.2% Public Safety and National Security 0.1% Engineering -0.1%
Environment 0.0% Environment 0.0% Legal -0.1%
Design -0.3% Legal 0.0% Architecture and Construction -0.5%
Economics, Policy, and Social Studies -0.4% Health Care -0.1% Economics, Policy, and Social Studies -0.6%
Engineering -0.9% Architecture and Construction -0.2% Design -1.4%
Finance -1.3% Physical Abilities -0.2% Planning -1.5%
Architecture and Construction -1.9% Decision Making -0.3% Manufacturing and Production -1.7%
Manufacturing and Production -2.7% Design -0.4% Personal Care and Services -1.9%
Information Technology -4.0% Creativity -0.5% Environment -3.6%
Building Relationship -5.4% Engineering -1.2% Health Care -4.2%
Personal Care and Services -7.0% Personal Care and Services -3.4% Administration -4.7%
Industry Knowledge -14.4% Industry Knowledge -4.2% Organizational Skills -7.3%
Administration -22.4% Information Technology -10.7% Industry Knowledge -7.6%
Organizational Skills -26.4% Organizational Skills -14.8% Customer and Client Support -7.9%
Customer and Client Support -54.2% Human Resources -15.6% Human Resources -14.2%

Note: This table presents the Gelbach decomposition results for jobs that require a college degree. We conduct the analysis separately for
three periods: between 2018–2019 and 2020, between 2018–2019 and 2021, and between 2018–2019 and 2022–May 2023. The sample
includes jobs postings that require a college degree in high-WFH-adoption occupations (i.e., occupations with an increase of more than 15
percentage points in the national share of WFH-compatible jobs, as determined by comparing the pooled data from 2018 to March 2020
with pooled data from April 2020 to May 2023) in the Burning Glass data. For each time period, we rank the skill cluster families by their
contributions to the overall decline in the urban wage premium (i.e., π in Equation 10).
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Table A11: Gelbach Decomposition: Contribution of Changes in Skill-Specific Urban Wage Premium
to the Decrease in the Urban Wage Premium within High-WFH-Adoption Occupations—Jobs Not

Requiring College Education

2020 2021 2022–2023
Skill π Skill π Skill π
Marketing and Public Relations 10.9% Customer and Client Support 55.1% Customer and Client Support 42.1%
Information Technology 8.7% Marketing and Public Relations 24.2% Communications 29.5%
Building Relationship 8.0% Administration 23.2% Administration 26.5%
Business Management 7.7% Building Relationship 17.5% Building Relationship 14.1%
Physical Abilities 6.4% Finance 12.6% Information Technology 8.1%
Finance 4.8% Maintenance, Repair, and Installation 10.9% Maintenance, Repair, and Installation 7.7%
Maintenance, Repair, and Installation 4.0% Business Management 8.5% Human Resources 7.4%
Customer and Client Support 3.1% Physical Abilities 5.2% Business Management 6.5%
Industry Knowledge 2.9% Communications 4.3% Physical Abilities 6.1%
Engineering 1.9% Decision Making 2.5% Marketing and Public Relations 4.2%
Agriculture 1.6% Personal Care and Services 0.5% Engineering 3.1%
Manufacturing and Production 1.3% Engineering 0.4% Decision Making 2.9%
Administration 1.0% Environment 0.4% Media and Writing 1.8%
Personal Care and Services 0.8% Design 0.4% Personal Care and Services 1.4%
Human Resources 0.3% Economics, Policy, and Social Studies 0.2% Agriculture 0.8%
Economics, Policy, and Social Studies 0.2% Education and Training 0.0% Education and Training 0.7%
Design 0.2% Legal 0.0% Creativity 0.6%
Education and Training 0.1% Agriculture -0.1% Design 0.3%
Energy and Utilities 0.1% Energy and Utilities -0.2% Organizational Skills 0.3%
Legal 0.0% Public Safety and National Security -0.3% Environment 0.2%
Creativity -0.1% Creativity -0.8% Economics, Policy, and Social Studies 0.1%
Environment -0.2% Analysis -1.0% Public Safety and National Security 0.0%
Public Safety and National Security -0.3% Media and Writing -1.2% Energy and Utilities -0.1%
Decision Making -0.4% Manufacturing and Production -1.3% Manufacturing and Production -0.1%
Health Care -0.4% Human Resources -1.4% Legal -0.1%
Architecture and Construction -0.6% Architecture and Construction -1.7% Architecture and Construction -0.2%
Planning -0.8% Leadership -3.0% Finance -2.0%
Media and Writing -1.1% Health Care -4.7% Leadership -3.3%
Leadership -6.2% Industry Knowledge -6.8% Health Care -6.9%
Organizational Skills -10.5% Planning -9.5% Planning -12.4%
Analysis -13.0% Organizational Skills -21.1% Industry Knowledge -13.8%
Communications -13.9% Information Technology -31.7% Analysis -14.2%

Note: This table presents the Gelbach decomposition results for jobs that do not require a college degree. We conduct the analysis separately
for three periods: between 2018–2019 and 2020, between 2018–2019 and 2021, and between 2018–2019 and 2022–May 2023. The sample
includes jobs postings that do not require college education in high-WFH-adoption occupations (i.e., occupations with an increase of more
than 15 percentage points in the national share of WFH-compatible jobs, as determined by comparing the pooled data from 2018 to March
2020 with pooled data from April 2020 to May 2023) in the Burning Glass data. For each time period, we rank the skill cluster families by
their contributions to the overall decline in the urban wage premium (i.e., π in Equation 10).
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Table A12: Spatial Shift in Skill Listing Intensity: By College Education Requirement

IT Business Building Communication Customer Marketing
Relations Support

(1) (2) (3) (4) (5) (6)

Panel A: Jobs Requiring College Education

Log M 0.00808*** 0.000456 0.00537*** 0.00841*** -0.00278* 0.00662***
(0.00126) (0.00238) (0.00208) (0.00138) (0.00166) (0.00104)

Log M × 2020 0.00154 0.00510*** 0.00124 0.000467 0.00196** 0.00238***
(0.00111) (0.00133) (0.00118) (0.00127) (0.000928) (0.000881)

Log M × 2021 0.000508 0.00266** -0.00345*** -0.00283** 0.000375 3.51e-05
(0.00117) (0.00107) (0.00119) (0.00112) (0.000760) (0.000836)

Log M × 2022-2023 -0.000795 0.00352*** -0.00352*** -0.000789 0.000900 -0.00151*
(0.00118) (0.00103) (0.00132) (0.00147) (0.000838) (0.000781)

Observations 549,972 549,972 549,972 549,972 549,972 549,972

Panel B: Jobs Not Requiring College Education

Log M 0.00602*** 0.00658*** 0.00531*** 0.00919*** -0.00145 0.00653***
(0.00103) (0.00113) (0.00115) (0.00116) (0.00163) (0.000785)

Log M × 2020 -0.000203 -0.00192*** 0.00222*** -0.00112 0.00115** -0.00264***
(0.000687) (0.000548) (0.000568) (0.000755) (0.000542) (0.000738)

Log M × 2021 0.00191** -0.00101** 0.00166*** -0.00181** -0.000364 -0.00254***
(0.000808) (0.000476) (0.000535) (0.000739) (0.000806) (0.000570)

Log M × 2022-2023 0.000828 -0.00270*** -0.00182*** -0.00194*** -0.000152 -0.00219***
(0.000767) (0.000597) (0.000618) (0.000748) (0.000665) (0.000629)

Observations 1,242,522 1,242,522 1,242,522 1,242,522 1,242,522 1,242,522

Note: The table presents the estimates of changes in the listing intensity of various skill cluster families with respect to employment size
over time, based on Equation 11. Panel A uses the sample of job postings that require a college degree in high-WFH-adoption occupations
(i.e., occupations with an increase of more than 15 percentage points in the national share of WFH-compatible jobs, as determined by
comparing pooled data from 2018 to March 2020 with pooled data from April 2020 to May 2023) in the Burning Glass data. Panel B uses
the sample of job postings without a degree requirement in high-WFH-adoption occupations. The dependent variable is an indicator of
whether a skill belonging to the skill cluster family is listed in a job posting. M is employment size of the occupation in the MSA of the
posted job. 2020 is an indicator that is equal to 1 if the job was posted in 2020, similarly for 2021, and 2022–2023. All columns control for
basic job characteristics, including dummy variables for SOC occupation code, NAICS industry code, years of education required, salary
type, part-/full-time status, tax term, and the posting month. Standard errors are clustered at the MSA level. *** p < 0.01, ** p < 0.05,
*p < 0.1.
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Table A13: Gelbach Decomposition: Contribution of Changes in Skill-Specific Urban Wage Premium
to the Decrease in the Urban Wage Premium within High-WFH-Adoption Occupations (Based on

Imputation from O*NET Characteristics)

2020 2021 2022–2023
Skill π Skill π Skill π
Information Technology 25.4% Marketing and Public Relations 53.6% Information Technology 86.6%
Business Management 11.1% Finance 45.4% Marketing and Public Relations 50.5%
Marketing and Public Relations 8.6% Business Management 37.0% Business Management 31.0%
Physical Abilities 4.4% Building Relationship 22.6% Communications 28.4%
Industry Knowledge 3.7% Communications 16.8% Organizational Skills 19.9%
Building Relationship 2.7% Customer and Client Support 16.7% Building Relationship 19.6%
Engineering 2.7% Leadership 8.8% Customer and Client Support 15.7%
Creativity 2.2% Creativity 4.6% Administration 10.8%
Education and Training 1.8% Maintenance, Repair, and Installation 3.2% Personal Care and Services 10.2%
Environment 1.3% Physical Abilities 2.9% Maintenance, Repair, and Installation 7.6%
Human Resources 0.7% Personal Care and Services 2.6% Decision Making 5.1%
Public Safety and National Security 0.7% Environment 2.0% Physical Abilities 4.8%
Maintenance, Repair, and Installation 0.5% Decision Making 1.6% Finance 4.7%
Agriculture 0.3% Analysis 1.5% Engineering 4.6%
Economics, Policy, and Social Studies 0.1% Industry Knowledge 0.8% Creativity 3.5%
Decision Making 0.0% Education and Training 0.7% Human Resources 2.4%
Legal 0.0% Manufacturing and Production 0.3% Education and Training 1.2%
Media and Writing -0.1% Economics, Policy, and Social Studies 0.3% Public Safety and National Security 1.1%
Manufacturing and Production -0.2% Energy and Utilities 0.3% Leadership 1.0%
Energy and Utilities -0.3% Public Safety and National Security 0.1% Agriculture 0.4%
Health Care -0.4% Agriculture 0.0% Legal 0.4%
Design -0.6% Media and Writing -0.1% Energy and Utilities 0.2%
Architecture and Construction -0.8% Legal -0.1% Economics, Policy, and Social Studies 0.1%
Finance -0.8% Engineering -0.2% Environment -0.3%
Planning -0.9% Design -0.5% Media and Writing -0.3%
Leadership -3.3% Architecture and Construction -2.0% Manufacturing and Production -0.7%
Personal Care and Services -3.9% Health Care -2.5% Architecture and Construction -1.0%
Analysis -4.1% Information Technology -2.7% Design -1.3%
Organizational Skills -8.3% Planning -7.3% Planning -7.9%
Communications -17.6% Organizational Skills -13.2% Health Care -9.9%
Customer and Client Support -26.2% Human Resources -18.8% Industry Knowledge -11.3%
Administration -44.0% Administration -42.0% Analysis -16.6%

Note: This table presents the Gelbach decomposition results for jobs with or without college degree requirements. We conduct the analysis
between 2018–2019 and 2020–May 2023. The sample includes jobs postings in high-WFH-adoption occupations as defined by the levels
of WFH adoption predicted by O*NET work context characteristics (occupations with at least 20 percentage points increase in the imputed
fraction of workers WFH). For the detailed imputation procedures, please see section A4.2. For each time period, we rank the skill cluster
families by their contributions to the overall decline in the urban wage premium (i.e., π in Equation 10).
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Table A14: Spatial Shift in Skill Listing Intensity among High-WFH-Adoption Occupations (Based on
Imputation from O*NET Characteristics)

IT Business Building Communication Customer Marketing
Relations Support

(1) (2) (3) (4) (5) (6)

Ln M 0.00964*** 0.00643*** 0.00695*** 0.0105*** -0.000939 0.00694***
(0.000954) (0.00168) (0.00141) (0.00106) (0.00154) (0.000790)

Ln M × 2020 0.000523 0.000767 0.000702 0.000546 0.000968** -0.000157
(0.000610) (0.000570) (0.000611) (0.000621) (0.000491) (0.000491)

Ln M × 2021 0.000190 0.000191 -0.00156*** -0.00182*** -3.72e-05 -0.00142***
(0.000764) (0.000556) (0.000506) (0.000697) (0.000544) (0.000430)

Ln M × 2022-2023 -0.000466 -0.00102* -0.00270*** -0.000931 3.56e-05 -0.00162***
(0.000755) (0.000555) (0.000752) (0.000831) (0.000513) (0.000462)

Observations 2,249,696 2,249,696 2,249,696 2,249,696 2,249,696 2,249,696

Note: The table presents the estimates of changes in the listing intensity of various skill cluster families with respect to employment
size over time, based on Equation 11. The sample includes jobs postings in high-WFH-adoption occupations as defined by the levels of
WFH adoption predicted by O*NET work context characteristics (occupations with at least 20 percentage points increase in the imputed
fraction of workers WFH). For the detailed imputation procedures, please see section A4.2. The dependent variable is an indicator of
whether a skill belonging to the skill cluster family is listed in a job posting. M is employment size of the occupation in the MSA of the
posted job. 2020 is an indicator that is equal to 1 if the job was posted in 2020, similarly for 2021, and 2022–2023. All columns control
for basic job characteristics, including dummy variables for SOC occupation code, NAICS industry code, years of education required,
salary type, part-/full-time status, tax term, and the posting month. Standard errors are clustered at the MSA level. *** p < 0.01, ** p <
0.05, *p < 0.1.
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