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Abstract

We propose a method to conduct uniform inference for the (optimal) value function, that
is, the function that results from optimizing an objective function marginally over one of its
arguments. Marginal optimization is not Hadamard differentiable (that is, compactly differ-
entiable) as a map between the spaces of objective and value functions, which is problematic
because standard inference methods for nonlinear maps usually rely on Hadamard differentia-
bility. However, we show that the map from objective function to an Lp functional of a value
function, for 1 ≤ p ≤ ∞, are Hadamard directionally differentiable. As a result, we establish
consistency and weak convergence of nonparametric plug-in estimates of Cramér-von Mises and
Kolmogorov-Smirnov test statistics applied to value functions. For practical inference, we de-
velop detailed resampling techniques that combine a bootstrap procedure with estimates of the
directional derivatives. In addition, we establish local size control of tests which use the resam-
pling procedure. Monte Carlo simulations assess the finite-sample properties of the proposed
methods and show accurate empirical size and nontrivial power of the procedures. Finally, we
apply our methods to the evaluation of a job training program using bounds for the distribution
function of treatment effects.
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1 Introduction

The (optimal) value function, that is, a function defined by optimizing an objective function over

one of multiple arguments, is used widely in economics, finance, statistics and other fields. The

statistical behavior of estimated value functions appears, for instance, in the study of distribution

and quantile functions of treatment effects under partial identification (see, e.g., Firpo and Ridder

(2008, 2019) and Fan and Park (2010, 2012)). More recently, investigating counterfactual sensitiv-

ity, Christensen and Connault (2019) construct interval-identified counterfactual outcomes as the

distribution of unobservables varies over a nonparametric neighborhood of an assumed model spec-

ification. Statistical inference for value functions can be analyzed at a point as in Römisch (2006)

or Cárcamo, Cuevas, and Rodŕıguez (2020) and inference can be carried out using the techniques

of Hong and Li (2018) or Fang and Santos (2019).

This paper extends these pointwise inference methods to uniform inference for value functions

that are estimated with nonparametric plug-in estimators. Uniform inference has an important role

for the analysis of statistical models.1 However, uniform inference for the value function can be

quite challenging. In order to use standard statistical inference procedures, one must show that the

map from objective function to value function is Hadamard (i.e., compactly) differentiable as a map

between two functional spaces, which may require restrictive regularity conditions. As a result, the

delta method, as the conventional tool used to analyze the distribution of nonlinear transformations

of sample data, may not apply to marginal optimization as a map between function spaces due to

a lack of differentiability. We propose a solution to this problem that allows for the use of the delta

method to conduct uniform inference for value functions.

Because in general the map of objective function to value function is not differentiable, our

solution is to directly analyze statistics that are applied to the value function. This is in place of a

more conventional analysis that would first establish that the value function is well-behaved and as

a second step use the continuous mapping theorem to determine the distribution of test statistics.

In settings involving a chain of maps, this can be seen as choosing how to define the “links” in the

chain to which the chain rule applies. The results are presented for Lp functionals for 1 ≤ p ≤ ∞,

that are applied to a value function, which should cover many cases of interest. In particular, this

family of functionals includes Kolmogorov-Smirnov and Cramér-von Mises tests.

By considering Lp functionals of the value function, we may bypass the most serious impediment

to uniform inference. However, these Lp functionals are only Hadamard directionally differentiable.

A directional generalization of Hadamard (or compact) differentiability was developed for statistical

1For example, Angrist, Chernozhukov, and Fernández-Val (2006) discuss the importance of uniform inference vis-
à-vis pointwise inference in a quantile regression framework. Uniform testing methods allow for multiple comparisons
across the entire distribution without compromising confidence levels, and uniform confidence bands differ from
corresponding pointwise confidence intervals because they guarantee coverage over the family of confidence intervals
simultaneously.
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applications in Shapiro (1990) and Dümbgen (1993). There is a more recent growing literature of

applications using Hadamard directional differentiability. See, for example, Sommerfeld and Munk

(2017), Chetverikov, Santos, and Shaikh (2018), Cho and White (2018), Hong and Li (2018), Fang

and Santos (2019), Christensen and Connault (2019), Masten and Poirier (2020), and Cattaneo,

Jansson, and Nagasawa (2020). We separately analyze Lp functionals for 1 ≤ p < ∞ and the

supremum norm, as well as one-sided variants used for tests that have a sense of direction. As

an intermediate step towards showing the differentiability of supremum-norm statistics, we show

directional differentiability of a minimax map applied to functions that are not necessarily convex-

concave.

Directional differentiability of Lp functionals provides the minimal amount of regularity needed

for feasible statistical inference. We use directional differentiability to find the asymptotic distribu-

tions of test statistics estimated from sample data. The distributions generally depend on features

of the objective function, and we show how to combine estimation with resampling to estimate the

limiting distributions, as was proposed by Fang and Santos (2019). This technique can be tailored

to impose a null hypothesis and is simple to implement in practice. We provide three examples

throughout the paper to illustrate the proposed methods — dependency bounds, stochastic dom-

inance, and cost and profit functions. Moreover, we establish local size control of the resampling

procedure in general and uniform size control for some functionals.

As a practical illustration of the developed framework, we consider bounds for the distribution

function of a treatment effect. We use this model in both the Monte Carlo simulations and em-

pirical application. Treatment effects models have provided a valuable analytic framework for the

evaluation of causal effects in program evaluation studies. When the treatment effect is heteroge-

neous, its distribution function and related features, for example its quantile function, are often of

interest. Nevertheless, it is well known (e.g. Heckman, Smith, and Clements (1997); Abbring and

Heckman (2007)) that features of the distribution of treatment effects beyond the average are not

point identified unless one imposes significant theoretical restrictions on the joint distribution of

potential outcomes. Therefore it has became common to use partial identification of the distribu-

tion of such features, and to derive bounds on their distribution without making any unwarranted

assumptions about the copula that connects the marginal outcome distributions.2

Monte Carlo simulations (reported in a supplementary appendix) assess the finite-sample prop-

erties of the proposed methods. The simulations suggest that Kolmogorov-Smirnov statistics used

to construct uniform confidence bands have accurate empirical size and power against local al-

ternatives. A Cramér-von Mises type statistic is used to test a stochastic dominance hypothesis

using bound functions, similar to the breakdown frontier tests of Masten and Poirier (2020). This

2Bounds for the CDF and quantile functions at one point in the support of the treatment effects distribution
were developed in Makarov (1982); Rüschendorf (1982); Frank, Nelsen, and Schweizer (1987); Williamson and Downs
(1990). These bounds are minimal in the sense that they rely only on the marginal distribution functions of the
observed outcomes, not the joint distribution of (potential) outcomes.

2



test has accurate size at the breakdown frontier and power against alternatives that violate the

dominance relationship. All results are improved when the sample size increases and are powerful

using a modest number of bootstrap repetitions.

We illustrate the methods empirically using job training program data set first analyzed by

LaLonde (1986) and subsequently by many others, including Heckman and Hotz (1989), Dehejia

and Wahba (1999), Smith and Todd (2001, 2005), Imbens (2003), and Firpo (2007), without making

any assumptions on dependence between potential outcomes in the experiment. This experimental

data set has information from the National Supported Work Program used by Dehejia and Wahba

(1999). We document strong heterogeneity of the job training treatment across the distribution of

earnings. The uniform confidence bands for the treatment effect distribution function are impre-

cisely estimated at some parts of the earnings distribution. These large uniform confidence bands

may in part be attributed to the large number of zeros contained in the data set, but are also

inherent to the fact that the distribution function is everywhere only partially identified.

The remainder of the paper is organized as follows. Section 2 defines the statistical model of

interest for the value function. Section 3 establishes directional differentiability for the functionals of

interest. Inference procedures are established in Section 4. An empirical application to job training

is discussed in Section 5. Finally, Section 6 concludes. Monte Carlo simulation descriptions and

results and all proofs are relegated to the supplementary appendix.

Notation

For any set T ⊆ Rd let `∞(T ) denote the space of bounded functions f : T → R and let C(T )

denote the space of continuous functions f : T → R, both equipped with the uniform norm

‖f‖∞ = supt∈T |f(t)|. Given a sequence {fn}n ⊂ `∞(T ) and limiting random element f we write

fn ; f to denote weak convergence in (`∞(T ), ‖ · ‖∞) in the sense of Hoffmann-Jørgensen (van der

Vaart and Wellner, 1996). Let [x]+ = max{x, 0} and [x]− = min{x, 0}. A set-valued map (or

correspondence) S that maps elements of X to the collection of subsets of Y is denoted S : X ⇒ Y .

For set-valued map S : X ⇒ Y , let grS denote the graph of S as a set in X × Y .

2 The model

Consider two sets U ⊆ RdU and X ⊆ RdX , a set-valued map A : X ⇒ U that serves as a choice set,

and an objective function f ∈ `∞(grA). The objective function and the value function are linked by

a marginal optimization step that maps one functional space to another. Let ψ : `∞(grA)→ `∞(X)

map the objective function to the value function obtained by marginally optimizing the objective

f with respect to u ∈ A(x) for each x ∈ X. Without loss of generality, we consider only marginal
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maximization with respect to u for each x:

ψ(f)(x) = sup
u∈A(x)

f(u, x). (1)

The value function ψ(f) is the object of interest and we would like to conduct uniform inference us-

ing a plug-in estimator ψ(fn). First we introduce examples of the value function model represented

in equation (1).

Example A (Dependency bounds). Dependency bounds describe bounds on the distribution func-

tion of the sum of two random variables X and Y , FX+Y , using only the marginal distribution

functions FX and FY and no information from the joint distribution FXY . Frank, Nelsen, and

Schweizer (1987) showed that bounds derived for FX+Y by Makarov (1982) are related to copula

bounds and can be extended to other binary operations. Upper and lower dependency bounds for

the CDFs FX+Y , FX−Y , FX·Y and FX/Y and their associated quantile functions are provided in

Williamson and Downs (1990).

Williamson and Downs (1990) show that for any x, LX+Y (x) ≤ FX+Y (x) ≤ UX+Y (x), where

LX+Y (x) =

[
sup
u∈R

(FX(u) + FY (x− u)− 1)

]
+

(2)

UX+Y (x) = 1−
[

inf
u∈R

(FX(u) + FY (x− u))

]
−
. (3)

Similarly, letting f−1 denote the generalized inverse of an increasing function, bounds for the

quantile function F−1
X+Y (τ) may be considered for 0 < τ < 1. The functions above may be inverted

to find that for each quantile level τ , U−1
X+Y (τ) ≤ F−1

X+Y (τ) ≤ L−1
X+Y (τ), and the quantile function

bounds are

U−1
X+Y (τ) = sup

u∈(0,τ)

{
F−1
X (u) + F−1

Y (τ − u)
}

(4)

L−1
X+Y (τ) = inf

u∈(τ,1)

{
F−1
X (u) + F−1

Y (τ − u+ 1)
}
. (5)

The functions U−1
X+Y and L−1

X+Y are value functions where marginal optimization takes place over

a set-valued map that varies with τ .

All these related functions may be written as maps that depend on a value function in some

part of a chain of maps. For example, take LX+Y . For a pair of functions f = (fx, fy) ∈ (`∞(R))2,

let Π+ : (`∞(R))2 → `∞(R2)

Π+(f)(s, t) = fx(s) + fy(t− s)− 1 (6)

and let ψ be as in (1) with A(x) = R for all x. Then LX+Y = ψ(Π+(F ) ∨ 0). Similarly, consider
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U−1
X+Y . For a pair of CDFs f = (fx, fy) where fx, fy : R→ [0, 1], define Π̃+ : (`∞(R))2 → `∞([0, 1]2)

by3

Π̃+(f)(s, t) = f−1
x (s) + f−1

y (t− s) (7)

and let ψ use A(τ) = (0, τ) for each τ ∈ (0, 1). Then U−1
X+Y = ψ(Π̃+(F )). We will focus on

constructing uniform confidence bands for LX+Y and U−1
X+Y , since the calculations for the other

functions are analogous.

Example B (Stochastic dominance). Inference for features of FX−Y at a given x, when X−Y may

be considered a treatment effect distribution, has been considered in Fan, Guerre, and Zhu (2017)

and the references cited therein. Consider testing for first order stochastic dominance without

assuming point identification. Suppose that (XA, XB, X0) have marginal CDFs (GA, GB, G0) ∈
(`∞(R))3, and let F∆A

and F∆B
be the distribution functions of the treatment effects ∆A = XA−X0

and ∆B = XB −X0. Without point identification we cannot test the hypothesis H0 : F∆A
�FOSD

F∆B
, which is equivalent to the condition that F∆A

(x) − F∆B
(x) ≤ 0 for all x. However, the

distributions of ∆A and ∆B may be bounded. For example, using references from the previous

example it can be shown that for each x,

F∆A
(x) ≥ LA(x) =

[
sup
u∈R

(GA(u)−G0(u− x))

]
+

,

F∆B
(x) ≤ UB(x) = 1 +

[
inf
u∈R

(GB(u)−G0(u− x))

]
−
.

Under the null hypothesis, LA ≤ F∆A
≤ F∆B

≤ UB, so that LA(x)−UB(x) ≤ F∆A
−F∆B

≤ 0 for all

x, and the null hypothesis may be rejected whenever there exists an x′ such that LA(x′) > UB(x′).

This holds regardless of the correlations between treatment outcomes. Let Π− : (`∞(R))2 → `∞(R2)

be, for f = (f0, f1)

Π−(f)(u, x) = f1(u)− f0(u− x)

and let ψ be defined by (1) with A(x) = R for all x. The function used to indicate a violation of

dominance maps three distribution functions into a function in `∞(R): for each x ∈ R,

LA(x)− UB(x) = sup
u∈R

(GA(u)−G0(u− x))− 1− inf
u∈R

(GB(u)−G0(u− x)) (8)

= ψ(Π−(G0, GA))(x)− 1 + ψ(−Π−(G0, GB))(x). (9)

We would like to test the hypothesis that FA dominates FB, without knowledge of the dependence

between X0, XA and XB, by looking for x where LA(x)− UB(x) > 0, a case in which a one-sided

functional f 7→ ‖[f ]+‖p is preferred for testing.

Example C (Cost and profit functions). Suppose a firm produces outputs x ∈ Rn+ for n ≥ 1.

Given cost function c : Rn → R, the firm’s profit at given product prices p ∈ Rn is π(p) =

3We have simplified the problem by excluding {0, 1} from the definition of ψ̃ for ease of exposition — see p.115-117
of Williamson and Downs (1990) for more complex cases which include these points.
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supx∈Rn+(〈p, x〉− c(x)). Suppose that we have an accurate model of costs and would like to conduct

inference for the profit curve, for example by putting a confidence band around an estimated profit

curve.

The Legendre-Fenchel transform can be used to find the dual conjugate function of a convex

function f or the convex hull of a non-convex function f (Rockafellar and Wets, 1998, Chapter 11).

For convex f : Rn → R, the conjugate f∗ : Rn → R is f∗(x) = supu∈Rn (〈u, x〉 − f(u)), that is, the

smallest function such that f∗(x) + f(u) ≥ 〈u, x〉. We can recast this as an optimization map by

defining the Legendre transform as a map L : `∞(Rn)→ `∞(Rn) defined by

L(f)(x) = sup
u∈Rn

(〈u, x〉 − f(u)) .

Then the profit function can be seen as the conjugate dual function of the cost function: π(p) =

L(c)(p) = supx∈Rn (〈p, x〉 − f(x)). As discussed in the text, it is possible (i.e., when it is not

possible to directly calculate π from the cost function) that π is not Hadamard differentiable.

Instead, consider the supremum of the absolute value of transformed functions λ̌(f) = ‖L(f)‖∞.

Since π = L(c), we can find a confidence band for π using λ̌(c) using a sample analog λ̌(cn).

In Example A, the bounds on the quantile function are an example where A(x) varies with

x. It would be notationally simpler to consider optimization problems over the rectangle X × U .

However, given an x-varying set of constraints we would need to use “indicator functions” as they are

used in the optimization literature, e.g. we would change the optimization problem to f̃(u, x) =

f(u, x) + δA(u, x), where δA(u, x) = 0 for u ∈ A(x) and (for maximization) δA(u, x) = −∞ for

u /∈ A(x). This takes us out of the realm of bounded functions and towards the consideration of epi-

or hypographs, which may be more complicated. For example, see Bücher, Segers, and Volgushev

(2014). The literature on weak convergence in the space of bounded functions is voluminous and

more familiar to researchers in economics.

To analyze the asymptotic properties of the above examples with plug-in estimates, one would

typically rely on the delta method because ψ is a nonlinear map from objective function to value

function. In the next section we discuss the difficulties encountered with the delta method for value

functions and a solution for the purposes of uniform inference.

3 Differentiability properties

We use the delta method to establish uniform inference methods for value functions. This depends

on the notion of Hadamard (or compact) differentiability to linearize the map near the population

distribution (see, for example, van der Vaart and Wellner (1996, Section 3.9.3)), and has the

advantage of dividing the analysis into a deterministic part and a statistical part. We first consider
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Hadamard derivatives without regard to sample data, before explicitly considering the behavior of

sample statistics in the next section.

3.1 Directional differentiability

The delta method between two metric spaces usually relies on (full) Hadamard differentiability

(van der Vaart and Wellner, 1996, Section 3.9). Shapiro (1990), Dümbgen (1993) and Fang and

Santos (2019) discuss Hadamard directional differentiability and show that this weaker notion also

allows for the application of the delta method.4

Definition 3.1 (Hadamard directional differentiability). Let D and E be Banach spaces and con-

sider a map φ : Dφ ⊆ D→ E. φ is Hadamard directionally differentiable at f ∈ Dφ tangentially to

a set D0 ⊆ D if there is a continuous map φ′f : D0 → E such that

lim
n→∞

∥∥∥∥φ(f + tnhn)− φ(f)

tn
− φ′f (h)

∥∥∥∥
E

= 0

for all sequences {hn} ⊂ D and {tn} ⊂ R+ such that hn → h ∈ D0 and tn → 0+ as n → ∞ and

f + tnhn ∈ Dφ for all n.

In case the derivative map φ′f is linear and tn may approach 0 from both negative and positive

sides, the map is fully Hadamard differentiable. The delta method and chain rule can be applied

to maps that are either Hadamard differentiable or Hadamard directionally differentiable.

To discuss the differentiability of ψ in equation (1), for any ε ≥ 0 let Uf : X ⇒ U define the

set-valued map of ε-maximizers of f(·, x) in u for each x ∈ X:

Uf (x, ε) = {u ∈ A(x) : f(u, x) ≥ ψ(f)(x)− ε} . (10)

Results on the directional derivatives of the optimization map f 7→ supX f date to Danskin (1967).

For example, Cárcamo, Cuevas, and Rodŕıguez (2020, Theorem 2.1) show that, in our notation, for

fixed x ∈ X, ψ is directionally differentiable in `∞(A(x)× {x}), and for directions h(·, x)

ψ′f (h)(x) = lim
ε→0+

sup
u∈Uf (x,ε)

h(u, x). (11)

Assuming the stronger conditions that A is continuous and compact-valued and that f is continuous

on the graph of A (grA), the maximum theorem implies that Uf is non-empty, compact-valued and

upper hemicontinuous (Aliprantis and Border, 2006, Theorem 17.31), and Cárcamo, Cuevas, and

Rodŕıguez (2020, Corollary 2.2) show that tangentially to C(U × {x}), the derivative of ψ(f)(x)

4The derivative φ′f in the definition is also called a semiderivative (Rockafellar and Wets, 1998, Definition 7.20).
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simplifies to ψ′f (h)(x) = supu∈Uf (x,0) h(u, x). Further, when (for fixed x) Uf (x, 0) is a singleton set,

ψ(f)(x) is fully differentiable, not just directionally so.

The pointwise directional differentiability of ψ(f)(x) at each x might lead one to suspect that

ψ is differentiable more generally as a map from `∞(grA) to `∞(X). However, this is not true. The

following example illustrates a case where ψ is not Hadamard directionally differentiable as a map

from `∞(grA) to `∞(X), although f and h are both continuous functions.

Example D. Let U ×X = [0, 1]× [−1, 1] and define f : U ×X → R by

f(u, x) =

0 x ∈ [−1, 0]

x(u2 − u) x ∈ (0, 1]
.

Let h(u, x) = −u2 + u. Then ψ(f)(x) = 0 for all x and for any t > 0,

ψ(f + th)(x) =


t/4 x ∈ [−1, 0]

(t− x)/4 x ∈ (0, t]

0 x ∈ (t, 1]

.

Therefore for each x,

lim
t→0+

ψ(f + th)(x)− ψ(f)(x)

t
=

1

4
I(x ≤ 0).

However, for any t > 0,

sup
x∈[−1,1]

|(ψ(f + th)(x)− ψ(f)(x))/t− (1/4)I(x ≤ 0)| = 1/4.

This implies that no derivative exists as an element of `∞([−1, 1]). The functions f and h are

well behaved, but because the candidate derivative I(x ≤ 0)/4 is not continuous in x, uniform

convergence of the quotients to the candidate fails.

3.2 Directional differentiability of norms of value functions

The lack of uniformity of the convergence to ψ′f (h)(·) appears to preclude the delta method for

uniform inference, because the typical path of analysis would use a well-behaved limit of rn(ψ(fn)−
ψ(f)) and the continuous mapping theorem to find the distribution of statistics applied to the limit.

However, real-valued statistics are used to find uniform inference results, so we examine maps that

include not only the marginal optimization step but also a functional applied to the resulting value

function.

Consider Lp norms (for 1 ≤ p ≤ ∞) applied to ψ(f) or [ψ(f)]+. Letting m denote the domi-
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nating measure, define λj : `∞(grA)→ R for j = 1, . . . , 4 by

λ1(f) = sup
x∈X

∣∣∣∣∣ sup
u∈A(x)

f(u, x)

∣∣∣∣∣ , λ2(f) = sup
x∈X

[
sup

u∈A(x)
f(u, x)

]
+

,

λ3(f) =

(∫
X

∣∣∣∣∣ sup
u∈A(x)

f(u, x)

∣∣∣∣∣
p

dm(x)

)1/p

, λ4(f) =

(∫
X

[
sup

u∈A(x)
f(u, x)

]p
+

dm(x)

)1/p

.

(12)

The maps λ2 and λ4 are included because one-sided comparisons may also be of interest, and

the map f 7→ [f ]+ is pointwise directionally differentiable but not differentiable as a map from

`∞(X) to `∞(X). We illustrate its use in a stochastic dominance example below.

We make the following definitions in order to construct well-defined derivatives. First, let µ(f)

be the supremum of f over grA and let σ(f) be the maximin value of f over grA:

µ(f) = sup
(u,x)∈grA

f(u, x) (13)

σ(f) = sup
x∈X

inf
u∈A(x)

f(u, x). (14)

Define Aµf ⊆ grA for any ε > 0 to be the set of ε-maximizers of f in (u, x) over grA. Next, let

Xσ
f ⊆ X collect the ε-maximinimizers of f in x over X. That is, define

Aµf (ε) = {(u, x) ∈ grA : f(u, x) ≥ µ(f)− ε} (15)

Xσ
f (ε) =

{
x ∈ X : inf

u∈A(x)
f(u, x) ≥ σ(f)− ε

}
. (16)

Also, note that U(−f)(x, ε) is the set of ε-minimizers of f(u, x) in u for given x.

Cárcamo, Cuevas, and Rodŕıguez (2020) show that the map (13) has directional derivative

µ′f (h) = lim
ε→0+

sup
x∈Aµf (ε)

h(u, x) (17)

and Lemma B.1 in the Appendix shows that (14) has directional derivative

σ′f (h) = lim
δ→0+

sup
x∈Xσ

f (δ)
lim
ε→0+

inf
u∈U(−f)(x,ε)

h(u, x). (18)

To analyze derivatives of the one-sided λ2(f) and λ4(f), define the contact set

X0 = {x ∈ X : ψ(f)(x) = 0} . (19)

The following two theorems describe the form of the four directional derivatives generally and
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under the condition that the value function is zero everywhere or on some subset of X.

Theorem 3.2. Suppose f, h ∈ `∞(grA), where A : X ⇒ U is non-empty-valued for all x ∈ X.

Define µ by (13) and σ by (14), and their derivatives µ′f and σ′f as in (17) and (18). Then:

1. λ1(f) is Hadamard directionally differentiable and

λ′1f (h) =


µ′f (h), µ(f) > σ(−f)

max
{
µ′f (h), σ′(−f)(−h)

}
, µ(f) = σ(−f)

σ′(−f)(−h), µ(f) < σ(−f)

.

2. If ‖ψ(f)‖∞ = 0, λ1(f) is Hadamard directionally differentiable and

λ′1f (h) = max

{
lim
ε→0+

sup
(u,x)∈Uf (X,ε)

h(u, x), lim
ε→0+

sup
x∈X

inf
u∈Uf (x,ε)

(−h(u, x))

}

= lim
ε→0+

sup
x∈X

∣∣∣∣∣ sup
u∈Uf (x,ε)

h(u, x)

∣∣∣∣∣ .
3. λ2(f) is Hadamard directionally differentiable and

λ′2f (h) =


µ′f (h), µ(f) > 0[
µ′f (h)

]
+
, µ(f) = 0

0 µ(f) < 0

.

4. If ‖[ψ(f)]+‖∞ = 0, λ2(f) is Hadamard directionally differentiable and

λ′2f (h) =

limε→0+ sup(u,x)∈Uf (X0,ε) [h(u, x)]+ , µ(f) = 0

0, µ(f) < 0
.

The first part of Theorem 3.2 essentially takes advantage of the identity |x| = max{x,−x}, and

breaks the evaluation of the supremum of the absolute value of the value function into two parts

that are well-defined, a maximization and a minimization problem. The second part of the theorem

is simpler because the x 7→ [x]+ map simplifies the evaluation of the supremum.

The next result shows that the Lp functionals for 1 ≤ p < ∞ defined in (12), are Hadamard

directionally differentiable. The form of the derivatives for these maps also change depending on

whether λj(f) = 0 or λj(f) 6= 0.

Theorem 3.3. Suppose that f, h ∈ `∞(grA) where A : X ⇒ U is non-empty-valued for all x ∈ X
and m(X) <∞. Recall ψ′f defined in (11). Then:
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1. If ‖ψ(f)‖p 6= 0, then λ3 is Hadamard directionally differentiable and

λ′3f (h) = ‖ψ(f)‖1−pp

∫
X

sgn(ψ(f)(x))|ψ(f)(x)|p−1ψ′f (h)(x)dm(x).

2. If ‖ψ(f)‖p = 0, then λ3 is Hadamard directionally differentiable and

λ′3f (h) =

(∫
X

∣∣ψ′f (h)(x)
∣∣p dm(x)

)1/p

.

3. If ‖[ψ(f)]+‖p 6= 0, then λ4 is Hadamard directionally differentiable and

λ′4f (h) = ‖[ψ(f)]+‖1−pp

∫
X

[ψ(f)(x)]p−1
+ ψ′f (h)(x)dm(x).

4. If ‖[ψ(f)]+‖p = 0, then λ4 is Hadamard directionally differentiable and

λ′4f (h) =

(∫
X0

[
ψ′f (h)(x)

]p
+

dm(x)

)1/p

.

Theorem 3.3 is related to the results of Chen and Fang (2019), who dealt with a squared L2

statistic. It is interesting to note here that using an L2 statistic instead of its square results in first-

order (directional) differentiability of the map, unlike the squared L2 norm, which has a degenerate

first-order derivative but nondegenerate second-order derivative.

We conclude this section by revisiting Examples A, B, and C and describing the computation

of the directional derivatives in the corresponding cases.

Example A (Dependency bounds continued). To construct a uniform confidence band for LX+Y

we can invert a test for the hypothesis that LX+Y = L0. Recalling the map Π+ defined in (6),

consider the statistic λ : (`∞(R))2 → R defined by

λ(F ) = sup
x∈R
|max{sup

u∈R
Π+(F )(u, x), 0} − L0(x)|. (20)

This is challenging because of the pointwise maximum inside the absolute value. Lemma B.3 in the

appendix, which uses calculations similar to those in the proof of Theorem 3.2, shows that, letting

X0 = {x ∈ R : sup
u∈R

(FX(u) + FY (x− u)) = 1}

X+ = {x ∈ R : sup
u∈R

(FX(u) + FY (x− u)) > 1}

UF (x, ε) = {u ∈ R : FX(u) + FY (x− u) ≥ sup
u∈R

(FX(u) + FY (x− u))− ε},

11



λ is Hadamard directionally differentiable and its derivative is, for direction h = (hX , hY ),

λ′F (h) = max

{
lim
ε→0+

sup
x∈X0

sup
u∈UF (x,ε)

[hX(u) + hY (x− u)]+,

lim
ε→0+

sup
x∈X+

∣∣∣∣∣ sup
u∈UF (x,ε)

(hX(u)− hY (x− u))

∣∣∣∣∣
}
. (21)

Similarly, we may work with the bound U−1
X+Y on the quantile function F−1

X+Y . When a CDF

F is continuously differentiable on a set T = [F−1(p)− ε, F−1(q) + ε] for 0 < p < q < 1 and ε > 0,

it is fully Hadamard differentiable in `∞(T ) with derivative in direction h at any τ ∈ T given by

−h(F−1(τ))/f(F−1(τ), where f is the density associated with F (van der Vaart and Wellner, 1996,

Lemma 3.9.23). Recall the definition of Π̃+ in (7) and consider, for F = (FX , FY ),

λ̃(F ) = sup
τ∈T
| sup
u∈(0,τ)

Π̃+(F )(u, x)− U−1
0 (x)|. (22)

Under differentiability of the CDFs, we have

(Π̃+)′F (h)(s, t) = −
hX(F−1

X (s))

fX(F−1
X (s))

−
hY (F−1

Y (t− s))
fY (F−1

Y (t− s))
.

Then this fact, Theorem 3.2 and the chain rule imply that, letting Ũ(τ, ε) = {u ∈ (0, τ) : F−1
X (u) +

F−1
Y (τ − u) ≥ supu∈(0,τ)(F

−1
X (u)− F−1

Y (τ − u))− ε},

λ̃′F (h) = lim
ε→0

sup
τ∈T

∣∣∣∣∣ sup
u∈Ũ(τ,ε)

(
−
hX(F−1

X (u))

fX(F−1
X (u))

−
hY (F−1

Y (τ − u))

fY (F−1
Y (τ − u))

)∣∣∣∣∣ .

Example B (Stochastic dominance continued). Similarly to the previous example, we may test

the necessary condition for stochastic dominance using the test statistic

Λ =

(∫
[(LA(x)− UB(x))]2+dm(x)

)1/2

. (23)

This test statistic is zero when LA ≤ UB and greater than zero otherwise. The map Π− is fully

differentiable with derivative (Π)′f (h) = h1(u) − h0(u − x). Then Λ is directionally differentiable
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and, extending Theorem 3.3 to two functions inside the integral,

Λ′G(h) =

(∫
LA=UB

[
lim
ε→0+

sup
u∈UΠ−(G0,GA)(ε,x)

Π−(h0, hA)(u, x)

− lim
ε→0+

inf
u∈U−Π−(G0,GB)(ε,x)

Π−(h0, hB)(u, x)
]2

+
dm(x)

)1/2

. (24)

Example C (Cost and profit functions continued). This example shows how some of the technical

difficulties encountered in the previous two examples may be alleviated with assumptions on the

economic model. Recall that a uniform confidence band for π = L(c) depends on the derivative of

λ̌(f) = supx |L(f)(x)|. Suppose that (u, x) ∈ U×X , a compact set. More generally, the assumptions

that firms will not operate with negative profits and that the cost function is 1-coercive (that is, that

lim‖x‖→∞ c(x)/‖x‖ = +∞) would ensure that π is continuous. Given the existence of optimizers

and a maximum, write

λ̌(c) = max
p

∣∣∣max
x

(p · x− c(x))
∣∣∣

= max

{
max
p,x

(p · x− c(x)),max
p

min
x

(c(x)− p · x)

}
.

Since c is estimated and c only depends on x, it is sufficient to perturb the above statistic in a

direction that does not depend on p, i.e., h(x), to calculate derivatives.

Define the derivative of µ̌(c) = maxp,x(p · x− c(x)) by

µ̌′c(h) = max
argmax(p·x−c(x))

(−h(x)),

and the derivative of σ̌(c) = maxp minx(c(x)− p · x) by

σ̌′c(h) = max
argmaxp(argminx(c(x)−p·x))

min
argminx(c(x)−p·x)

h(x).

With strict convexity of c the argmin expressions in µ̌′ and σ̌′ would be single-valued, and these

would be simpler. The directional derivative of λ(c) is

λ′c(h) =


µ̌′c(h), µ̌(c) > σ̌(c),

µ̌′c(h) ∨ σ̌′c(h), µ̌(c) = σ̌(c),

σ̌′c(h) µ̌(c) < σ̌(c)

. (25)
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4 Inference

In this section we derive asymptotic distributions for uniform statistics applied to value functions,

and propose bootstrap estimators of their distributions that can be used for practical inference.

4.1 Asymptotic distributions

The derivatives developed in the previous subsections can be used in a functional delta method.

We make a high-level assumption on the way that observations are related to estimated functions,

but conditions under which such convergence holds are well-known, and examples will be shown

below.

A1. Assume that for each n there is a random sample {Zi}ni=1 with P denoting their joint probabil-

ity distribution. Assume there is a map {Zi}ni=1 7→ fn where fn ∈ `∞(U×X). In case λ3 or λ4

is used, also assume m(X) <∞. Furthermore, for some sequence rn →∞, rn(fn− f) ; GP ,

where GP is a tight random element of `∞(grA).

In case an Lp statistic is used (with p < ∞), we restrict the space of allowable functions. In

order to ensure that Lp statistics are well-defined we make the assumption that the measure of X

is finite. While stronger than the assumption used for the supremum statistic, it is sufficient to

ensure that the Lp statistics of the value function are finite. This assumption also has the advantage

of providing an easy-to-verify condition based on the objective function f , rather than the more

direct, but less obvious condition ψ(f) ∈ Lp(m). Lifting this restriction would require some other

restriction on the objective function f that is sufficient to ensure the value function is p-integrable.5

Given assumption A1 and the derivatives of the last section, the asymptotic distribution of test

statistics applied to the value function is straightforward.

Theorem 4.1. Under Assumption A1,

rn (λj(fn)− λj(f)) ; λ′jf (GP ),

where for j ∈ {1, . . . 4}, λj are defined in (12) and λ′jf are defined in Theorems 3.2 and 3.3.

This theorem is abstract and hides the fact that the limiting distributions may depend on

features of λj and f . Therefore it is only indirectly useful for inference. A resampling scheme is

the subject of the next section.

5We attempted to show p-integrability by assuming that f is bounded and integrable (note that this would imply
f is p-integrable in grA), but were unable to show that this implies that the value function is integrable (in X). Note
that if one were able to show that f is bounded and integrable, then the elegant results in Kaji (2019, Section 3)
would apply for the purposes of verifying Assumption A1.
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The delta method as used in Theorem 4.1 is tailored to arguments that have weak limits in the

space `∞(grA), which is an intrinsic feature of the delta method. That implies some limitations

on the type of functions that may be considered. For example, functions estimated using kernel

methods do not converge to a weak limit as assumed in Assumption A1. One can in general only

show the stochastic order of the sequence rn(fn−f), and methods for uniform inference must shown

using something other than the delta method. We leave uniform inference for value functions based

on less regular estimators to future research.

Our bootstrap technique ahead is designed for resampling under the null hypothesis that λj(f) =

0. We assume that when j = 1 or j = 3 (that is, conventional two-sided statistics are used), the

statistics are used to test the null and alternative hypotheses

H0 : ψ(f)(x) = 0 for all x ∈ X (26)

H1 : ψ(f)(x) 6= 0 for some x ∈ X. (27)

Meanwhile, when j = 2 or j = 4 (the one-sided cases) we assume the hypotheses are

H0 : ψ(f)(x) ≤ 0 for all x ∈ X (28)

H1 : ψ(f)(x) > 0 for some x ∈ X. (29)

The probability measure P is assumed to belong to a collection P which describes the set

of probability measures allowed by the model. A few subcollections of P serve to organize the

asymptotic results below. When P is such that ψ(f) ≡ 0, we label P ∈ PE00. For functional

inequalities, the behavior of test statistics under the null is more complicated. If P is such that

ψ(f) ≤ 0 everywhere, then label P ∈ PI0 . When P ∈ PI0 makes ψ(f)(x) = 0 for at least one x ∈ X,

then we label P ∈ PI00.

The following corollary combines the derivatives from Theorem 3.2 and Theorem 3.3 with

the result of Theorem 4.1 for these distribution classes. Recall that the set X0, defined in (19),

represents the subset of X where ψ(f) is zero.

Corollary 4.2. Under Assumption A1, for j ∈ {1, . . . 4},

1. For each P ∈ PE00, rn(λ1(fn)− λ1(f)) ; limε→0+ supx∈X

∣∣∣supu∈Uf (x,ε) GP (u, x)
∣∣∣.

2. (a) For each P ∈ PI00, rn(λ2(fn)− λ2(f)) ; limε→0+ sup(u,x)∈Uf (X0,ε) [GP (u, x)]+ .

(b) For each P ∈ PI0\PI00, rn(λ2(fn)− λ2(f))
p→ 0.

3. For each P ∈ PE00, rn(λ3(fn)− λ3(f)) ;
(∫

X

∣∣∣ψ′f (GP )(x)
∣∣∣p dm(x)

)1/p
.

4. (a) For each P ∈ PI00, rn(λ4(fn)− λ4(f)) ;

(∫
X0

[
ψ′f (GP )(x)

]p
+

dm(x)

)1/p

.
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(b) For each P ∈ PI0\PI00, rn(λ4(fn)− λ4(f))
p→ 0.

The distributions described in the above corollary under the assumption that P ∈ PE00 or PI00

are those that we emulate using resampling methods in the next section.

4.2 Resampling

In the previous section we established asymptotic distributions for the test statistics of interest.

However, for practical inference we turn to resampling to estimate their distributions. This section

suggests the use of a resampling strategy that was proposed by Fang and Santos (2019), and it com-

bines a standard bootstrap procedure with estimates of the directional derivatives λ′jf . Hadamard

directional differentiability also implies that the numerical approximation methods of Hong and

Li (2018) may be used to estimate these directional derivatives, an approach that we address in

simulations (in the supplementary appendix).

The resampling scheme described below is designed to reproduce the null distribution under

the assumption that the statistic is equal to zero, or in other terms, that P ∈ PE00 or P ∈ PI00.

This is achieved by restricting the form of the estimates λ̂′jn. The bootstrap routine is consistent

under more general conditions, as in Theorem 3.1 of Fang and Santos (2019). However, we discuss

behavior of bootstrap-based tests under the assumption that one of the null conditions described

in the previous section holds.

All the derivative formulas in Corollary 4.2 require some form of an estimate of the near-

maximizers of f in u, that is, of the set Uf (x, ε) defined in (10) for various x. The set estimators we

use are similar to those used in Linton, Song, and Whang (2010), Chernozhukov, Lee, and Rosen

(2013) and Lee, Song, and Whang (2018) and depend on slowly decreasing sequences of constants

to estimate the relevant sets in the derivative formulas. For a sequence an → 0+ we estimate

Uf (x, ε) with the plug-in estimator Ufn(x, an). The sequence an should decrease more slowly than

the rate at which fn converges uniformly to f , an assumption which will be formalized below.

The one-sided estimates λ̂′2n and λ̂′4n use a second estimate. For another sequence bn → 0+,

estimate the contact set X0 defined in (19) with

X̂0 =

{x ∈ X : |ψ(fn)(x)| ≤ bn} if {x ∈ X : |ψ(fn)(x)| ≤ bn} 6= ∅

X if {x ∈ X : |ψ(fn)(x)| ≤ bn} = ∅
.

This is a method used by Linton, Song, and Whang (2010) of achieving uniformity in the conver-

gence of estimators that depend on contact set estimation under the null hypothesis P ∈ PI00.
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Define estimators of λ′1f and λ′2f by

λ̂′1n(h) = max

{
sup

(u,x)∈Ufn (X,an)
h(u, x), sup

x∈X
inf

u∈Ufn (x,an)
(−h(u, x))

}
(30)

= sup
x∈X

∣∣∣∣∣ sup
u∈Ufn (x,an)

h(u, x)

∣∣∣∣∣
and

λ̂′2n(h) = sup
(u,x)∈Ufn (X̂0,an)

[h(u, x)]+ . (31)

These formulas impose the condition that P ∈ PE00 or PI00 on the derivative estimates, following

the forms shown in Corollary 4.2. For more general estimation we would need to devise more

complex estimators to deal with the variety of limits discussed in Theorems 3.2 and 3.3, and also

the technique of Hong and Li (2018) could be used in that case. However, inference is usually

of primary interest, and generating a bootstrap distribution that respects the null hypothesis can

improve the performance of bootstrap inference procedures. When P ∈ PE00 the imposition amounts

to the assumption that ψ(f)(x) = 0 for each x, so that the set of population ε-maximizers in grA

is Uf (X, ε), and the estimator λ̂′1n emulates that. The condition P ∈ PI00 implies that X0 is not

empty, and X̂0 is meant to estimate this contact set, while using all of X when the distribution is

not as is hypothesized.

The estimators λ̂′3n and λ̂′4n are defined similarly to the supremum-norm estimators: let

λ̂′3n(h) =

(∫
X

∣∣∣∣∣ sup
u∈Ufn (x,an)

h(u, x)

∣∣∣∣∣
p

dm(x)

)1/p

(32)

and

λ̂′4n(h) =

(∫
X̂0

sup
u∈Ufn (x,an)

[h(u, x)]p+ dm(x)

)1/p

. (33)

We use an exchangeable bootstrap, which depends on a set of weights {Wi}ni=1 that put proba-

bility mass Wi at each observation Zi. This type of bootstrap describes many well-known bootstrap

techniques including sampling with replacement from the observations (van der Vaart and Wellner,

1996, Section 3.6.2).

We make the following assumptions to ensure the bootstrap is well-behaved.

A2. Assume an, bn → 0+, anrn →∞ and bnrn →∞.

A3. Suppose that for each n, W is independent of the data Z and there is a map {Zi,Wi}ni=1 7→ f∗n

where f∗n ∈ `∞(grA). Suppose rn(f∗n − fn) is asymptotically measurable; for all continuous
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and bounded g, g(rn(f∗n − fn)) is a measurable function of {Wi} outer almost surely in {Zi};
and rn(f∗n − fn) ; GP , where GP was defined in Assumption A1.

We remark that it is difficult to propose a general method for choosing how to set an and bn in

practice. We numerically investigated their effect in simulations. We apply similar rules to those

used in Linton, Song, and Whang (2010) and Lee, Song, and Whang (2018). However, in general

situations, where the variance of the objective function changes significantly over its domain, one

would need to estimate the pointwise standard deviation of the function. For example, Fan and

Park (2010) provide pointwise asymptotic distributions for estimated dependency bound functions

for FX−Y . Nevertheless, we leave this extension for future research.

Assumption A2 is used to ensure consistency of the ε-maximizer set estimators used in the

bootstrap algorithm. Assumption A3 is a condensed version of Assumption 3 of Fang and Santos

(2019) to ensure that rn(f∗n − fn) behaves asymptotically like rn(fn − f).

Resampling routine to estimate the distribution of rn(λj(fn)− λj(f))

1. Estimate λ̂′jn using sample data and formulas (30)-(33) above.

Then repeat steps 2-3 for r = 1, . . . R:

2. Use an exchangeable bootstrap to construct rn(f∗n − fn).

3. Calculate the resampled test statistic λ∗r = λ̂′jn(rn(f∗n − fn)) using the estimate from step 1.

Finally,

4. Let q̂λ∗(1− α) be the (1− α)-th sample quantile from the bootstrap distribution of {λ∗r}Rr=1,

where α ∈ (0, 1) is the nominal size of the test. Reject the null hypothesis if rnλj(fn) is larger

than q̂λ∗(1− α).

The consistency of this resampling procedure under the null hypothesis is summarized in the

following theorem. To discuss weak convergence it is easiest to use the space of bounded Lipschitz

functions, which indicates weak convergence. That is, definingBL1(R) = {g ∈ Cb(R) : supx |g(x)| ≤
1, supx 6=y |g(x)− g(y)| ≤ |x− y|}, Xn converges weakly to X if and only if supg∈BL1(R) |E [g(Xn)]−
E [g(x)] | → 0 (van der Vaart and Wellner, 1996, §1.12).

Theorem 4.3. Under Assumptions A1-A3, if either j ∈ {1, 3} and P ∈ PE00, or j ∈ {2, 4} and

P ∈ PI00, then for any ε > 0,

lim sup
n→∞

P

{
sup

g∈BL1(R)

∣∣∣E [g (λ̂′jn (rn(f∗n − fn))
) ∣∣{Zi}ni=1

]
− E

[
g
(
λ′jf (GP )

)]∣∣∣ > ε

}
= 0.
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We conclude this section by revisiting Examples A, B, and C and describing the resampling

procedures in the corresponding cases.

Example A (Dependency bounds continued). Recall that tests using the statistic λ(F ) defined

in (20) may be inverted to find a uniform confidence band for LX+Y (here we focus on the lower

dependency bound for the CDF FX+Y only). Suppose that we observe two independent random

samples, {Xi}nXi=1 and {Yi}nYi=1 and Fn = (FXn,FY n) be their empirical CDFs. Then

λ(Fn) = sup
x∈R
|Ln(x)− L0(x)|, (34)

where Ln(x) = Ln(x,Fn) = max {supu∈R(FXn(u) + FY n(x− u))− 1, 0}.

Standard conditions ensure that, with n = nX + nY ,
√
n(Fn − F ) ; GF , where GF is a

Gaussian process in (`∞(R))2. Under the hypothesis that L0 is the true lower bound function,
√
nλ(Fn) ; λ′F (GF ), where λ′F is defined in (21). This derivative needs to be estimated as in (30),

estimating the set-valued map UF (x, ε) with the plug-in estimate

UFn(x, an) = {u ∈ R : max{FXn(u) + FY n(x− u), 0} ≥ Ln(x)− an} , (35)

where an is a sequence that converges slowly to zero, and with an additional slowly-decreasing

sequence bn that is used to determine the regions where Π+(Fn) falls in the interval (−bn, bn) or

is above bn to estimate X̂0 and X̂+. Labeling the estimated derivative λ̂′F , slight modifications of

Corollary 4.2 and Theorem 4.3 imply that for all q ≥ 0,

P
{
λ̂′F (
√
n(F∗n − Fn)) ≤ q

∣∣∣{Xi}nXi=1, {Yi}
nY
i=1

}
p→ P

{
λ′F (GF ) ≤ q

}
.

We can find a critical value of the asymptotic distribution using the bootstrap by estimating

q̂λ∗(1− α) = min
{
q : P

{
λ̂′F (
√
n(F∗n − Fn)) ≤ c

∣∣∣{Xi}nXi=1, {Yi}
nY
i=1

}
≥ 1− α

}
by simulation. For r = 1, . . . R, let λ∗r = λ̂′F (

√
n(F∗n − Fn)), and let q̂λ∗(1 − α) be the (1 − α)-th

quantile of the bootstrap sample {λ∗r}Rr=1. Simulation evidence presented in the supplementary

appendix verifies that the coverage probability of these intervals is accurate in moderate sample

sizes by examining the empirical rejection probabilities of the associated tests.

Example B (Stochastic dominance continued). Suppose that three independent random samples

{X0i}ni=1, {XAi}ni=1 and {XBi}ni=1 are observed. Let Gn = (G0n,GAn,GBn) be their empirical

distribution functions, and define the sample statistic

Λ̂(Gn) =

(∫
R

[LAn(x)− UBn(x)]2+ dm(x)

)1/2

, (36)

where LAn is the plug-in estimate of LA using G0n and GAn and UBn is the plug-in estimate of UB
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using G0n and GBn. Under standard conditions, with n = n0 +nA+nB,
√
n(Gn−G) ; GG, where

GG is a Gaussian process in (`∞(R))3. The theory above can be extended in a straightforward way

to show that Λ̂(
√
nGn) ; Λ′G(GG), where Λ′G(h) was defined in (24). To estimate the distribution

of Λ′G(GG), some estimates of the derivative are required. Given sequence {bn}, let

X̂0 = {x ∈ R : |ψ(Π−(G0,GA))(x)− ψ(−Π−(G0,GB))(x)| ≤ bn},

and estimate the near-maximizers in u for each dependency bound and all x as in the previous

example. Estimate the distribution by calculating resampled statistics, for r = 1, . . . , R,

Λ∗r =
√
n

(∫
X̂0

[
sup

u∈UΠ−(G0n,GAn)(x,an)
Π(G∗0n −G0n,G∗An −GAn)(u, x)

+ sup
u∈U−Π−(G0n,GBn)(x,an)

(−Π)(G∗0n −G0n,G∗Bn −GBn)(u, x)

]2

+

dm(x)

)1/2

.

A test can be conducted by comparing
√
nΛ̂(Gn) to the (1 − α)-th quantile of the bootstrap

distribution {Λ∗r}Rr=1. A simulation in the supplementary appendix illustrates the accurate size and

power of this testing strategy.

Example C (Cost and profit functions continued). Now consider estimating a confidence band

for a conjugate function. Suppose that we observe {Xi}ni=1 and have a parametric model c(x, θ),

estimated using c(x, θ̂). Supposing that θ ∈ Rp, this is a VC-subgraph class of functions and
√
n(c(·, θ̂) − c(·, θ)) ; Gc where Gc is a Gaussian process (van der Vaart, 1998, Example 19.7).

To estimate the directional derivative λ′(Gc) where λ′ is defined in (25), we need to estimate

several quantities. Let ̂̌µ = maxp,x(px − c(x, θ̂)) and ̂̌σ = maxp minx(c(x) − px). For a slowly

decreasing sequence an, decide whether ̂̌µ + an < ̂̌σ, |̂̌µ − ̂̌σ| ≤ an or ̂̌µ > ̂̌σ + an. Given this

determination, estimate the derivative λ̌′(Gc) by ̂̌σ′(G∗c ), max{̂̌µ′(G∗c ), ̂̌σ′(G∗c )} or ̂̌µ′(G∗c ) respectively,

where G∗c =
√
n(c(·, θ̂∗)−c(·, θ̂)). Given q̌λ∗(1−α/2), a quantile from the bootstrap sample {λ̌∗r}Rr=1

calculated as just described, we could estimate a symmetric level (1− α) uniform confidence band

for L(c) using L(c(·, θ̂))± q̌λ∗(1− α/2).

4.3 Local size control

It is also of interest to examine how these tests behave under sequences of distributions local to

distributions that satisfy the null hypothesis. We consider sequences of local alternative distribu-

tions {Pn} such that for each n, {Zi}ni=1 are distributed according to Pn, and Pn converges towards

a limit P that satisfies the null hypothesis. To describe this process, for t ≥ 0 define a path t 7→ Pt,
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where Pt is an element of the space of distribution functions P, such that

lim
t→0

∫ (
((dPt)

1/2 − (dP0)1/2)/t− 1

2
h(dP0)1/2

)2

= 0, (37)

where the score function h ∈ L2(F ) satisfies E [h] = 0 and P0 is a distribution that satisfies the

null hypothesis. The direction that the sequence approaches the null is described asymptotically

by the score h. We assume that by letting t = c/rn for c ∈ R, we can parameterize distributions

that are local to P0 and for t ≥ 0 denote f(Pt) as the function f under distribution f(Pt) so that

the unmarked f described above can be rewritten f = f(P0). See, e.g., van der Vaart and Wellner

(1996, Section 3.10.1) for more details.

The following assumption ensures that f remains suitably regular under such local perturbations

to the null distribution.

A4. For all c ∈ R,

(a) For given c, there exists some f ′(c) ∈ `∞(grA) such that ‖rn(f(Pc/rn) − f(P0)) −
f ′(c)‖∞ → 0, where Pc/rn satisfy (37).

(b) rn(fn − f(Pc/rn)) ; GP0 in `∞(grA), where for each n, {Zi}ni=1 ∼ Pc/rn .

Both parts of Assumption A4 ensure that fn behave regularly as distributions drift towards P0 ∈
PE00 or P0 ∈ PI00. These additional regularity conditions allow us to describe the size and local

power properties of the test statistics.

Theorem 4.4. Under Assumptions A1-A4:

1. Suppose j = 1 or 3, P0 ∈ PE00 and for each n, the observations {Zi}ni=1 are distributed

according to Pn = Pc/rn ∈ PE00. Suppose that the CDF of λ′jf (GP0) is continuous and increasing

at q1−α, its (1− α)-th quantile. Then

lim sup
n→∞

Pn {rnλj(fn) > q̂λ∗(1− α)} ≥ P0

{
λ′jf (GP0 + f ′(c)) > q1−α

}
.

This holds with equality if q1−α is a continuity point of the CDF of λ′jf (GP0 + f ′(c)). If c = 0

then the limiting rejection probability is equal to α.

2. Suppose j = 2 or 4, P0 ∈ PI00 and for each n, the observations {Zi}ni=1 are distributed

according to Pn = Pc/rn ∈ PI0 . Suppose that the CDF of λ′jf (GP0) is continuous and increasing

at its (1− α)-th quantile. Then

lim sup
n→∞

Pn {rnλj(fn) > q̂λ∗(1− α)} ≤ α.
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Theorem 4.4 shows that the size of tests can be controlled locally to the null region (and the

nominal rejection probability matches the intended probability) in only some cases. In particular,

the tests for the null that P0 ∈ PE00 cannot be shown to control local size without more information

about the direction of the local alternatives. This is because we must make assumptions about the

underlying objective functions without being able to make similar assumptions about the corre-

sponding value functions — note that Assumption A4 is made with regard to f(P ), not ψ(f(P )).

To see where the problem lies we may take λ1 as an example. The result of Theorem 4.4 shows

that when Pn ∈ PE00 for each n,

√
rnλ1(fn) ; λ′1f (GP0 + f ′(c)).

Although P ∈ PE00 implies λ′f (f ′(c)) = 0, as shown in the proof of Theorem 4.4, it does not

imply that f ′(c) ≡ 0. For example, if f are CDFs corresponding to a location-shift family of

distributions, i.e., for all c ∈ R, Gc(x) = G0(x − c) with differentiable densities that have square-

integrable derivatives. Then since the h in (37) is cg′0(x)/g0(x), the f ′(c) of assumption A4 would

be −cg0(x). This non-zero derivative can cause problems when optimizing it interacts with the

absolute value function. Generally | supu(f(u) + g(u))| 6≤ | supu f(u)| + | supu g(u)| (take f and g

strictly less than zero), and we do not achieve a simplification that would imply the probability

on the right-hand side is less than or equal to α. We cannot assume regularity of ψ(f) because

this would require the existence of a derivative ψ′f (·) ∈ `∞(X), but this derivative cannot generally

exist. It may be that size control could be shown for special cases (for example when theory implies

a shape for the value function), but not in general. On the other hand, for the same reason, the

size of one-sided test statistics is as intended. That is, when the value function is found through

maximization, the positive-part map in the definitions of λ2 and λ4 interacts with it in a way that

maintains size control. In contrast, the negative-part map would not guarantee size control. A

stronger result in this vein will be shown in the next section.

The inequality in the second part of this theorem results from the one-sidedness of the test

statistics λ2 and λ4. This is related to a literature in econometrics on moment inequality testing.

Tests may exhibit size that is lower than nominal for local alternatives that are from the interior

of the null region. A few possible solutions to this problem have been proposed. For example,

one might evaluate the region where the moments appear to hold with equality, which leads to

contact set estimates like in the bootstrap routine described above (Linton, Song, and Whang,

2010). Alternatively, we may alter the reference distribution by shifting it in the regions where

equality does not seem to hold (Andrews and Shi, 2017).
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4.4 Uniform size control

Uniformity of inference procedures in the data distribution was introduced in Giné and Zinn (1991)

and Sheehy and Wellner (1992), and uniformity has become a topic of great interest in the econo-

metrics literature (see, for example, Andrews and Guggenberger (2010), Linton, Song, and Whang

(2010), Romano and Shaikh (2012) or Hong and Li (2018) for an application like ours). Under

stronger assumptions that ensure the underlying fn converge weakly to a limiting process uni-

formly over the set of possible data distributions, some of the above results can be extended from

size control under local alternative distributions to size control that holds uniformly over the class

of distributions that satisfy the null. To ensure uniformity we assume the following regularity

conditions are satisfied.

A5. Suppose that rn(fn − f) ; GP uniformly over P ∈ P:

lim sup
n→∞

sup
P∈P

sup
g∈BL1(`∞(grA))

|E [g(rn(fn − f(P )))]− E [g(GP )]| = 0.

A6. Suppose that the limiting process GP is tight uniformly over P ∈ P:

lim
M→∞

sup
P∈P

P {‖GP ‖∞ ≥M} = 0.

A7. Suppose that on PI00, the processes GP are regular for λ′2f or λ′4f in the following sense: for

any 0 < α < 1/2, there exists a q > 0 depending only on α such that

sup
P∈PI00

P
{
λ′jf (GP ) < q

}
< 1− α

and for any s > 0,

lim sup
η→0+

sup
P∈PI00

P
{∣∣λ′jf (GP )− s

∣∣ ≤ η} = 0.

In addition, suppose that over PI0\PI00, the processes GP are regular for statistics related

to the entire domain X instead of X0 — letting λ̃′2f (h) = limε→0+ sup(u,x)∈Uf (X,ε)[h(u, x)]+

and λ̃′4f (h) = (
∫
X ψ

′
f (h)(x)dm(x))1/p, assume that the above two displays are satisfied with

λ̃′jf (GP ) in the place of λ′jf (GP ).

A8. Suppose that conditional on the observations {Zi}ni=1, rn(f∗n − fn) ; GP uniformly over

P ∈ P: for all ε > 0,

lim sup
n→∞

sup
P∈P

P

{
sup

g∈BL1(`∞(grA))
|E [g(rn(f∗n − fn))|{Zi}ni=1]− E [g(GP )]| > ε

}
= 0.

The above assumptions help define the collection P on which we may assert that inference is
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valid uniformly for P ∈ P. Assumptions A5 and A6 require that the sample objective functions

converge to well-behaved limits uniformly on P. Assumption A7 requires that also the limiting

distributions of the sample statistics rn(λj(fn)−λj(f)) are regular enough over PI0 that their CDFs

do not have extremely large atoms (i.e., extending above the (1−α)-th quantile of the distribution)

and are strictly increasing at the relevant critical value. This assumption may be simplified when

the GP are Gaussian since the functionals λ2 and λ4 are convex (Davydov, Lifshits, and Smoro-

dina, 1998, Theorem 11.1). Assumption A8 requires that the bootstrap objective functions also

converge uniformly, as the original sample functions do. This last assumption may be implied by

Assumption A5, see Lemma A.2 of Linton, Song, and Whang (2010), for example.

Theorem 4.5. Under Assumptions A1-A3 and A5-A8, for j = 2 or 4,

lim sup
n→∞

sup
P∈PI0

P {rnλj(fn) > q̂λ∗(1− α)} ≤ α.

Uniformity for P ∈ P is maintained by the one-sided statistics when optimization matches

the “direction” of the test. That is, when the value function matches the positive-part map in

λ2 and λ4, we have uniformity over P ∈ P, and analogously uniform inference would be possible

for minimization and the negative-part map. Uniformity can be lost when optimization and the

direction of the test do not match, which may be the case with two-sided tests.

In the next section we illustrate the usefulness of our results by providing details on the con-

struction of uniform confidence bands around bound functions for the CDF of a treatment effect

distribution. See the first section of the supplemental appendix for numerical simulations evaluating

the finite-sample performance of the tests developed in Examples A and B.

5 The treatment effect distribution of job training on wages

This section illustrates the inference methods with an evaluation of a job training program. We

construct upper and lower bounds for both the distribution and quantile function of the treatment

effects, confidence bands for these bound function estimates, and describe a few inference results.

This application uses an experimental job training program data set from the National Supported

Work (NSW) Program, which was first analyzed by LaLonde (1986) and later by many others,

including Heckman and Hotz (1989), Dehejia and Wahba (1999), Smith and Todd (2001, 2005),

Imbens (2003), and Firpo (2007).

Recent studies in statistical inference for features of the treatment effects distribution in the

presence of partial identification include, among others, Firpo and Ridder (2008, 2019); Fan and

Park (2009, 2010); Fan and Wu (2010); Fan and Park (2012); Fan, Sherman, and Shum (2014);

Fan, Guerre, and Zhu (2017). These studies have concentrated on distributions of finite-dimensional
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functionals of the distribution and quantile functions, including these functions themselves eval-

uated at a point. Additional work includes, among others, Gautier and Hoderlein (2011), Cher-

nozhukov, Lee, and Rosen (2013), Kim (2014) and Chesher and Rosen (2015). Each of these papers

provides pointwise inference methods for bounds on the distribution or quantile functions, and of-

ten for more complex objects. We contribute to this literature by applying the general results in

this paper to provide uniform inference methods for the bounds developed by Makarov and others,

and hope that it may indicate the direction that pointwise inference for bounds in more involved

models may be extended to be uniformly valid.

The data set we use is described in detail in LaLonde (1986). We use the publicly available

subset of the NSW study used by Dehejia and Wahba (1999). The program was designed as an

experiment where applicants were randomly assigned into treatment. The treatment was work

experience in a wide range of possible activities, such as learning to operating a restaurant or a

child care center, for a period not exceeding 12 months. Eligible participants were targeted from

recipients of Aid to Families With Dependent Children, former addicts, former offenders, and young

school dropouts. The NSW data set consists of information on earnings and employment (outcome

variables), whether treated or not.6 We consider male workers only and focus on earnings in 1978

as the outcome variable of interest. There are a total of 445 observations, where 260 are control

observations and 185 are treatment observations. Summary statistics for the two parts of the data

are presented in Table 1.

Treatment Group Control Group

Mean Median Min. Max. Mean Median Min. Max.

Earnings (1978) 6,349.1 4,232.3 0.0 60,307.9 4,554.8 3,138.8 0.0 39,483.5

(7,867.4) (5,483.8)

Table 1: Summary statistics for the experimental National Supported Work (NSW) program data.

To provide a more complete overview of the data, we also compute the empirical CDFs of the

treatment and control groups in Figure 1. From this figure we note that the empirical treatment

CDF stochastically dominates the empirical control CDF, and that there are a large number of

zeros in each sample. In particular, Ftr,n(0) ≈ 0.24 and Fco,n(0) ≈ 0.35.

Suppose a binary treatment is independent of two potential outcomes (Xco, Xtr), where Xco

denotes outcomes under a control regime and Xtr denotes outcomes under a treatment, and Xco

and Xtr have marginal distribution functions Fco and Ftr respectively. Suppose that interest is in

the distribution of the treatment effect ∆ = Xtr−Xco but we are unwilling to make any assumptions

regarding the dependence between Xco and Xtr. In this section we study the relationship between

6The data set also contains background characteristics, such as education, ethnicity, age, and employment variables
before treatment. Nevertheless, since we only use the experimental part of the data we refrain from using this portion
of the data.
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Figure 1: Empirical CDFs of treatment and control observations in the experimental NSW data.
There are 260 control group observations and 185 treatment group observations, many outcomes
equal to zero and the treatment group outcomes stochastically dominate the control group outcomes
at first order.

the identifiable functions Fco and Ftr and functions that bound the distribution function of the

unobservable random variable ∆.

F∆(·) is not point-identified because the full bivariate distribution of (Xco, Xtr) is unidentified

and the analyst has no knowledge of the dependence between potential outcomes. However, F∆

can be bounded. Suppose we observe samples {Xki}nki=1 for k ∈ {co, tr}. Define the empirical lower

and upper bound functions

L∆,n(x) = sup
u∈R
{Ftr,n(u)− Fco,n(u− x)} (38)

U∆,n(x) = inf
u∈R
{1 + Ftr,n(u)− Fco,n(u− x)}. (39)

These are plug-in estimates of analogous population bounds L∆ and U∆, and are similar to Exam-

ple A because F∆ = F(Xtr−Xco). We make the following assumptions on the observed samples of

treatment and control observations.

B1. The observations {Xco,i}ncoi=1 and {Xtr,i}ntri=1 are iid samples and independent of each other and

are distributed with marginal distribution functions Fco and Ftr respectively. Refer to the pair

of distribution functions and their empirical distribution function estimates as F = (Fco, Ftr)

and Fn = (Fco,n,Ftr,n).

B2. The sample sizes nco and ntr increase in such a way that nk/(nco+ntr)→ νk as nco, ntr →∞,
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where 0 < νk < 1 for k ∈ {co, tr}. Define n = nco + ntr.

Under Assumptions B1 and B2, it is a standard result (van der Vaart, 1998, Example 19.6)

that for k ∈ {co, tr}, √nk(Fkn − Fk) ; Gk, where Gco and Gtr are independent Fco- and Ftr-

Brownian bridges, that is, mean-zero Gaussian processes with covariance functions ρk(x, y) =

Fk(x∧y)−Fk(x)Fk(y). This implies in turn that
√
n(Fn−F ) ; GF = (Gco/

√
νco,Gtr/

√
νtr), where

GF is a mean-zero Gaussian process with covariance process ρF (x, y) = diag{ρk(x, y)/νk}.

Now we focus on the calculation of a uniform confidence band for L only. Because the bootstrap

algorithm was described previously we only verify that the regularity conditions for this plan hold.

Assumptions B1 and B2, along with the above discussion of the weak convergence of
√
n(Fn −F )

imply that Assumption A1 is satisfied. The class of functions {(I(X ≤ x), I(Y ≤ y), x, y ∈ R} is

uniform Donsker and the sequences an and bn can be chosen to satisfy Assumption A2 by making

them converge to zero more slowly than n−1/2. Assuming the weights are independent of the ob-

servations, assumption A3 is satisfied by Lemma A.2 of Linton, Song, and Whang (2010), which

implies that the bootstrap algorithm described above is consistent, as described in Theorem 4.3. It

is also straightforward to verify that, under the high-level assumption (37), both parts of Assump-

tion A4 are satisfied — in the language of the assumption, f(Pc/
√
n) are the pair (Fnco, F

n
tr) under

the local probability distribution Pc/
√
n, and f ′ = (

∫ ·
−∞ h

c
co,
∫ ·
−∞ h

c
tr)) for direction hc indexed by c

and
√
n(Fn − Fn) ; GF (van der Vaart and Wellner, 1996, Theorem 3.10.12).

The main objective is to provide uniform confidence bands for the CDF of the treatment effects

distribution. We calculate the lower and upper bounds for the distribution function using the

control and treatment samples as in equations (38)–(39). The bounds are computed on a grid with

increments of $100 dollars along the range of the common support of the bounds, which is roughly

from -$40,000 to $60,000. We focus on the region between -$40,000 and $40,000, which contains

almost all the observations (there is a single $60K observation in the treated sample). The results

are presented in Figure 2 and given by the black solid lines in the picture. The most prominent

feature is that, as expected, the upper bound for the CDF of treatment effects stochastically

dominates the corresponding lower bound.

Next, we compute the uniform confidence bands as described in the text. They are shown in

Figure 2 as the dashed lines around the corresponding solid lines. Due to the large number of zero

outcomes in both samples, these bounds have some interesting features that we discuss further.

First, we note that for any ε greater than zero but smaller than the next smallest outcome (about

$45), Ftr,n(0)−Fco,n(−ε) = 0.24, which explains the jump in the lower bound estimate near zero (it is

really for a point in the grid just above zero). Likewise, for the same ε, Ftr,n(−ε)−Fco,n(0) = −0.35,

which explains the jump in the upper bound just below zero. Without these point masses at zero,

both bounds would more smoothly tend towards 0 or 1. Second, the point masses at zero imply

another feature of the bounds that can be discerned in the picture. The upper bound to the left of 0
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Figure 2: Bound functions and their uniform confidence bands. These confidence bands were
constructed by inverting Kolmogorov-Smirnov-type test statistics as described in the text.

is the same as 1−Fco,n(−x) and the lower bound to the right of zero is the same as Ftr,n(x). Taking

the lower bound as an example, for each x > 0 find the closest observation from the control sample

yco,i∗ , and set x∗(x) = Xco,i∗ + ε, leading to the supremum Ftr,n(Xco,i + ε) at every point where

Xco,i + ε < Xtr,j for all j in the treated sample. It is identical to the empirical treatment CDF for

the entire positive part of the support because the treatment first-order stochastically dominates

the control. The situation would be different if there were a jump in the empirical control CDF at

least as large as the jump in the empirical treatment CDF at zero. Because the opposite is the case

for the upper bound, it does change slightly above the zero mark, tending from 1−Ftr,n(0)+Fco,n(0)

to 1 as x goes from 0 to the right.

We can also use the confidence bands for the bound functions to construct a confidence band for

the true distribution function of treatment effects. This is shown in Figure 3. A 1 − α confidence

band can be constructed by using the upper 1−α/2 limit of the upper bound confidence band and

the lower α/2 limit of the lower confidence band. This band is a uniform asymptotic confidence band

for the true CDF, and uniform over correlation between the potential outcomes between samples.

In other words, if P is the collection of bivariate distributions that have marginal distributions Ftr

and Fco, then

lim inf
n→∞

inf
P∈P

P {F∆(x) ∈ CB(x) for all x} ≥ 1− α.
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This confidence band is likely conservative, since

P
{
∃x : F∆(x) 6∈ CB(x)

}
= P

{
{∃x : F∆(x) < L∆,n(x)− q∗L,1−α/2/

√
n} ∪ {∃x : F∆(x) > U∆,n(x) + q∗U,1−α/2/

√
n}
}

≤ P
{
{∃x : L∆(x) < L∆,n(x)− q∗L,1−α/2/

√
n} ∪ {∃x : U∆(x) > U∆,n(x) + q∗U,1−α/2/

√
n}
}
.

See Kim (2014) and Firpo and Ridder (2019) for a more thorough discussion of the sense in which

these bounds are not uniformly sharp for the treatment effect distribution function. We leave more

sophisticated, potentially tighter confidence bands for future research. Note that the technique

of Imbens and Manski (2004) cannot be used to tighten these bounds, because the parameter, a

function, could violate the null hypothesis at both sides of the confidence band.
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Figure 3: A uniform confidence band for the true treatment effect CDF. This bound is constructed
by using the lower α/2 limit of the lower bound and the upper α/2 limit of the upper bound. A few
other estimates of the treatment effect distribution are made: the vertical line at zero represents
an informal hypothesis test that the effect is zero across the entire distribution, and is rejected (see
the calculations at the beginning of this section about the nontrivial parts of the bounds to see
why this is so). The vertical line to the right of zero is the average treatment effect, and it can be
seen that this average ignores some variation in treatment effect outcomes. The dotted curve in
between the bounds is the same as the (inverted) quantile treatment effect, which is equivalent to
assuming rank invariance between potential treatment and control outcomes.

We plot some other features in this figure for context. First, the dotted vertical line is positioned

at y = 0, and it can be seen that we (just) reject the null hypothesis H0 : P {∆ = 0} = 1. This

hypothesis is closest to non-rejection, and it is clearer that one should reject the null that the

treatment effect distribution is degenerate at any other point besides zero. This supports the

notion that treatment effect heterogeneity is an important feature of these observations, especially
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because this band is completely agnostic about the form of the joint distribution. On the other

hand, by examining the bands at horizontal levels, it can be seen that for the median effect and

a wide interval in the center of the distribution, the hypothesis of zero treatment effect cannot be

rejected (although these are uniform bounds and not tests of individual quantile levels).

The final feature in the figure is the dashed curve that represents the estimate that one would

make under the assumption of comonotonicity (or rank invariance) — the assumption that, had an

individual been moved from the treatment to the control group, their rank in the control would be

the same as their observed rank. Under this strong assumption the quantile treatment effects are

the quantiles of the treatment distribution and they can be inverted to make an estimate. Clearly,

the estimate under this assumption is just one point-identified treatment effect distribution function

of many.
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Figure 4: Uniform confidence bands for the CDF of treatment effects plotted with a collection of
confidence intervals at treatment outcome levels. The confidence intervals are narrower because they
represent confidence statements at each treatment effect individually, while the uniform bands give
confidence statements about where the entire bound function lies. Pointwise confidence intervals
were calculated using the method proposed in Fan and Park (2010).

Finally, to provide context for the uniform confidence band results within the literature on

inference for bounds, we compare the proposed uniform bands to the pointwise confidence intervals

suggested by Fan and Park (2010). We used Bickel and Sakov (2008)’s automatic procedure to

choose subsample size and constructed confidence intervals for each individual point in the grid

of the treatment effect support. This collection of pointwise confidence intervals are plotted along

with uniform confidence bands in Figure 4. The results show that the uniform bands are farther

from the bound estimates than the set of pointwise confidence intervals.
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6 Conclusion

This paper develops uniform statistical inference methods for optimal value functions, that is,

functions constructed by optimizing an objective function in one argument over all values of the

remaining arguments. Value functions can be seen as a nonlinear transformation of the objective

function. The map from objective function to value function is not Hadamard differentiable, but

statistics used to conduct uniform inference are Hadamard directionally differentiable. We establish

the asymptotic properties of nonparametric plug-in estimators of these uniform test statistics and

develop a resampling technique to conduct practical inference. Examples involving dependency

bounds for treatment effects distributions are used for illustration. Finally, we provide an applica-

tion to the evaluation of a job training program, estimating a conservative uniform confidence band

for the distribution function of the program’s treatment effect without making any assumptions

about the dependence between potential outcomes.
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Supplementary appendix to “Uniform inference for value
functions”

This supplemental appendix contains the results of simulation experiments designed to test the

size and power of tests described in the main text, and proofs of theorems and lemmas stated in

the main text.

A Simulation study

We investigate the finite-sample behavior of the tests using examples A and B the main text.

Specifically, we consider uniform inference for a lower bound function LX+Y for the distribution

function FX+Y without knowledge of the dependence between X and Y by looking at empirical

rejection probabilities for a two-sided test that LX+Y = L0 as in Example A. Then we investigate

the performance of one-sided testing procedures through the stochastic dominance test as outlined

in Example B. Code to reproduce these simulation experiments may be found through the third

author’s personal website.7 In all cases, we test size and power in tests with nominal size 5%

against local alternatives for samples of size 100, 500 and 1000 with respectively 499, 999 and

1999 bootstrap repetitions for each sample size, and use 1,000 simulation repetitions to calculate

empirical rejection probabilities.

A.1 Tuning parameter selection

In this experiment, simulated observations are normally distributed and we shift the location of

one distribution to examine size and power properties of tests using statistic (34) from Example A.

The bound function LX+Y was estimated using sample data and standard empirical distribution

functions. The bounds must be equal to zero for small enough arguments and equal to one for

large enough arguments, and are monotonically increasing in between. However, Ln may change

at all possible Xi − Yj combinations, and computing the function on all nX × nY points could be

computationally prohibitive. Therefore we compute the bound functions on a reasonably fine grid

{xk}Kk=1 (we used increments of 0.05 in the experiment).

In order to make calculations as efficient as possible, it is helpful to know some features of

the support of the bounds given sample data, where the support of a bound is the region where

it is strictly inside the unit interval. The empirical lower bound at a given x may be written

as the maximum of the function FXn(·) − F(x−Y )n(·), which takes steps of size +1/nX at sample

observations {Xi}nXi=1 and, given a value of x, steps of size −1/nY at shifted observations {x −
7https://github.com/tmparker/uniform_inference_for_value_functions.
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Yj}nYhj=1. This function is not right-continuous, but this is not a problem when Y is distributed

continuously and calculations are done on a grid. The upper endpoint of the support of the lower

bound is the smallest value for which it is equal to 1. If for some (large) x, x − Yj ≥ Xi for

all i and j, then the shape of FXn(u) − F(x−Y )n(u) rises monotonically to one, then falls, as u

increases. The x that satisfy this condition are x ≥ maxi,j{Xi + Yj} = maxiXi + maxj Yj . To

find the minimum of the support, the maximum value of x such that Ln(x) = 0, note that the

function FXn(u) − F(x−Y )n(u) is always equal to zero for some u, but zero is the maximum only

when FXn first-order stochastically dominates F(x−Y )n and the functions are equal at at least one

argument. Therefore the smallest x in the support of Ln is the smallest x that shifts the F(x−Y )n

distribution function enough so that it is dominated by FXn. This is can be estimated by computing

the minimum that is, mink{Q̂Xn(τk)− Q̂(−Y )n(τk)} over a common set of quantiles {τk}k. Similar

logic can also be applied to restrict the size of the grid to as small a search area as possible for the

one-sided test experiment below.

We test the null hypothesis that the lower bound of the treatment effect distribution cor-

responds to the bound associated with two standard normal marginal distributions, which is

L0(x) = 2Φ(x/2) − 1 for x > 0 and zero otherwise, where Φ is the CDF of the standard nor-

mal distribution.

We used this design to choose a sequence {an} used to estimate the set of ε-maximizers in the es-

timation of the derivative ψ′ and {bn} used to estimate contact sets in one-sided derivative estimates.

We look for the tuning parameters an and bn that provide size as close as possible to the nominal

5% rejection probability. We chose among an = ca
√

log(log(n))/n and bn = cb log(log(n))/
√
n

where n = n0 + n1 and ca, cb ∈ {0.5, 1.0, 1.5, . . . , 5}. Empirical rejection probabilities are reported

in Tables 2 and 3.

We decided on an = 0.5 log(log(n))/
√
n, since in general smaller ca resulted in more accurate

size. For contact set estimation we chose bn = 3.5 log(log(n))/
√
n, which is similar to the sequence

used in Linton, Song, and Whang (2010), who concentrated on estimating the contact set in a

stochastic dominance experiment.8

A.2 Two-sided tests

We verify that our proposed method provides accurate coverage probability for uniform confidence

bands and power against local alternatives. We test the null hypothesis that the lower bound of

the treatment effect distribution corresponds to the bound associated with two standard normal

8They used sequences of the form c log log(n̄)/
√
n̄, where n̄ = (n1 + n2)/2, where they suggested c between 3 and

4. Using c = 4 but adjusting the formula to depend on n, the sum of the two samples, we have 4/
√

2 ≈ 2.8, so there
is some justification for setting the constant for bn lower. In our simulations there was a slight improvement when
using constant 3.5 instead of 3.
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tab ca = 0.5 ca = 1 ca = 1.5 ca = 2 ca = 2.5 ca = 3 ca = 3.5 ca = 4 ca = 4.5 ca = 5

s. size 100
cb = 0.5 0.8 −1.0 −1.0 −1.3 −0.8 −1.0 −1.4 −2.2 −1.6 −1.8
cb = 1 0.8 0.5 −0.8 −1.8 −1.3 −1.9 −1.6 −2.0 −1.4 −1.5
cb = 1.5 1.6 −1.3 −1.3 −1.7 −2.0 −2.2 −1.7 −2.6 −1.9 −2.1
cb = 2 0.6 −0.5 0.2 −1.2 −2.1 −2.0 −2.0 −0.9 −1.2 −2.7
cb = 2.5 0.7 −0.5 −1.7 −1.5 −1.3 −2.2 −1.8 −2.0 −1.3 −2.4
cb = 3 2.0 1.4 −1.7 −0.1 −1.0 −2.2 −1.6 −2.3 −1.7 −2.0
cb = 3.5 1.2 −0.7 0.1 −1.3 −0.8 −1.4 −1.5 −1.3 −2.0 −1.6
cb = 4 0.6 −1.5 −0.3 −1.5 −2.0 −1.9 −1.6 −2.7 −2.0 −2.2
cb = 4.5 1.0 −1.0 −1.5 −1.4 −2.6 −2.0 −1.8 −1.5 −2.2 −1.9
cb = 5 0.4 −0.5 −0.8 −2.4 −1.7 −0.6 −1.7 −1.3 −1.4 −2.8

s. size 500
cb = 0.5 1.4 −0.4 −1.1 −2.1 −1.7 −2.0 −0.6 −2.4 −2.5 −1.7
cb = 1 0.4 −1.2 −0.9 −1.1 −1.6 −1.9 −1.8 −2.3 −1.5 −2.4
cb = 1.5 1.2 −1.8 −2.5 −1.4 −1.1 −2.5 −1.6 −1.4 −2.1 −1.2
cb = 2 −0.4 −1.5 −1.8 −2.3 −2.4 −2.8 −2.3 −2.5 −1.8 −3.0
cb = 2.5 0.9 −0.4 −1.9 −2.4 −2.2 −1.2 −2.4 −1.9 −2.1 −2.2
cb = 3 0.5 −1.4 −1.6 −2.6 −1.5 −2.4 −1.8 −2.1 −2.5 −1.8
cb = 3.5 −0.1 −0.3 −1.3 −1.7 −1.7 −1.5 −1.4 −1.2 −1.8 −2.1
cb = 4 1.1 −0.8 −1.4 −1.7 −1.6 −2.6 −1.6 −2.2 −1.8 −1.5
cb = 4.5 0.7 −2.1 −0.4 −1.7 −2.2 −1.7 −3.0 −2.4 −1.2 −2.7
cb = 5 0.5 −1.2 −0.7 −1.4 −2.4 −2.6 −1.8 −2.5 −1.7 −2.4

s. size 1000
cb = 0.5 0.0 −1.5 −0.8 −1.6 −1.8 −2.3 −2.3 −2.4 −1.7 −2.5
cb = 1 0.3 −0.4 −0.9 −2.3 −2.4 −1.5 −1.7 −1.1 −1.3 −1.9
cb = 1.5 −0.9 −1.2 −1.3 −1.5 −2.1 −1.7 −1.8 −2.4 −1.6 −2.6
cb = 2 −1.7 −0.8 −2.3 −0.8 −2.6 −1.7 −0.9 −2.4 −2.6 −2.4
cb = 2.5 0.7 −1.8 −1.4 −1.9 −2.9 −2.1 −1.8 −1.1 −2.8 −2.5
cb = 3 0.1 −1.2 −1.8 −2.2 −2.1 −1.9 −2.2 −2.1 −1.7 −1.6
cb = 3.5 −0.1 −1.4 −1.2 −1.2 −0.8 −1.9 −2.5 −2.8 −1.2 −2.0
cb = 4 −0.1 −1.5 −1.8 −2.2 −1.2 −2.2 −1.8 −1.7 −2.4 −2.0
cb = 4.5 1.1 −1.2 −2.3 −2.1 −1.5 −0.7 −3.2 −2.0 −2.1 −1.6
cb = 5 0.0 −2.0 −1.4 −3.1 −2.1 −1.6 −2.4 −2.4 −2.2 −1.9

Table 2: Empirical minus nominal 5% rejection frequency for a test that LX+Y ≡ L0 for known
L0. Numbers in the table closer to zero are better. Rows describe tuning parameters for contact
set estimation and columns for epsilon-maximizer estimation.
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tab ca = 0.5 ca = 1 ca = 1.5 ca = 2 ca = 2.5 ca = 3 ca = 3.5 ca = 4 ca = 4.5 ca = 5

s. size 100
cb = 0.5 1.1 −2.3 −1.7 −2.8 −2.9 −2.2 −2.3 −4.6 −2.3 −4.0
cb = 1 1.8 −0.1 −1.6 −3.2 −2.6 −3.4 −4.0 −4.1 −3.2 −3.2
cb = 1.5 1.3 −1.9 −1.7 −2.5 −1.8 −2.7 −2.8 −4.6 −3.1 −4.0
cb = 2 0.9 −1.6 −1.2 −2.6 −3.2 −3.5 −2.3 −4.1 −3.0 −5.3
cb = 2.5 0.8 −1.5 −1.8 −1.5 −2.4 −4.1 −3.3 −3.3 −1.9 −4.4
cb = 3 3.0 0.9 −2.8 −2.9 −2.4 −3.5 −3.6 −4.5 −3.4 −4.2
cb = 3.5 1.2 −1.5 −1.9 −3.4 −1.0 −2.4 −3.9 −3.1 −3.1 −3.2
cb = 4 1.1 −1.0 −1.6 −2.5 −3.4 −4.6 −3.2 −5.0 −3.8 −3.3
cb = 4.5 2.1 −0.4 −3.2 −3.0 −4.6 −3.3 −4.0 −2.4 −4.8 −3.3
cb = 5 −0.8 −1.5 −2.1 −4.5 −3.2 −1.5 −3.0 −2.4 −2.8 −4.4

s. size 500
cb = 0.5 −0.1 −0.6 −2.3 −2.5 −4.3 −4.2 −2.5 −4.3 −4.2 −3.4
cb = 1 0.3 −2.6 −2.2 −1.7 −2.7 −3.2 −4.6 −4.0 −3.3 −4.9
cb = 1.5 1.4 −2.6 −2.8 −2.1 −2.7 −3.7 −2.9 −3.4 −4.5 −3.4
cb = 2 0.5 −2.0 −2.7 −3.5 −3.6 −4.3 −3.2 −4.5 −3.4 −4.3
cb = 2.5 1.3 −0.5 −3.4 −3.4 −4.2 −2.7 −4.3 −3.2 −4.2 −3.9
cb = 3 −0.3 −3.6 −2.4 −5.1 −3.1 −4.0 −3.5 −2.5 −4.0 −3.8
cb = 3.5 −0.1 −0.6 −2.6 −3.8 −2.6 −3.1 −2.7 −2.6 −4.0 −3.4
cb = 4 1.3 −2.2 −3.2 −2.4 −3.2 −4.3 −3.6 −5.2 −3.8 −3.9
cb = 4.5 1.9 −3.7 −2.0 −2.8 −4.5 −3.7 −4.5 −3.9 −2.5 −4.3
cb = 5 0.8 −2.2 −1.6 −2.9 −4.3 −4.1 −3.2 −4.1 −2.9 −4.1

s. size 1000
cb = 0.5 −1.2 −3.2 −2.0 −3.9 −3.5 −4.3 −2.8 −4.1 −3.9 −4.8
cb = 1 1.0 −1.7 −1.7 −4.9 −3.4 −2.8 −2.6 −3.6 −2.1 −2.9
cb = 1.5 −1.0 −1.9 −3.5 −3.1 −2.9 −3.1 −3.0 −4.1 −3.5 −5.0
cb = 2 −1.6 −2.0 −4.3 −2.3 −3.5 −3.6 −2.3 −5.0 −3.9 −4.6
cb = 2.5 0.5 −2.5 −2.0 −3.0 −4.6 −4.7 −3.0 −3.5 −5.9 −4.6
cb = 3 0.5 −2.6 −3.0 −3.5 −3.9 −3.6 −4.0 −4.1 −2.5 −3.7
cb = 3.5 −0.2 −1.9 −2.0 −1.8 −1.6 −3.8 −4.7 −4.3 −3.0 −4.4
cb = 4 −0.5 −1.9 −2.5 −3.6 −2.5 −3.3 −3.5 −3.4 −3.6 −3.6
cb = 4.5 1.9 −2.2 −4.0 −3.3 −3.3 −2.1 −4.5 −3.8 −4.4 −2.5
cb = 5 −0.1 −2.8 −1.8 −5.0 −3.2 −3.0 −3.6 −4.6 −4.5 −4.4

Table 3: Empirical minus nominal 10% rejection frequency for a test that LX+Y ≡ L0 for known
L0. Numbers in the table closer to zero are better. Rows describe tuning parameters for contact
set estimation and columns for epsilon-maximizer estimation.
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marginal distributions, which is L0(x) = 2Φ(x/2) − 1 for x > 0 and zero otherwise, where Φ is

the CDF of the standard normal distribution. The upper bound is symmetric so it is sufficient

to examine only the lower bound test. Alternatives are local location-shift alternatives with the

mean µX = 0 while the mean µY changes. In previous experiments we found good power against

alternatives with µY = k/
√
n for varying k, but thanks to referee suggestions we also consider a

wider range of local alternative specifications: corresponding to those alternatives used in Hong

and Li (2018), we let µY ∈ {0, n−1, n−2/3, n−1/2, n−1/3, n−1/6, n−1/10, 2}, and also consider these

means multiplied by negative 1. These are tests that should reject for any alternative µY 6= 0, but

nontrivial power against all local alternatives cannot be guaranteed for them. Results from this

simulation experiment are collected in Tables 4, 5 and 6.

Hong and Li (2018) suggest estimating the directional derivative nonparametrically using

λ̂′HL =
λ(Fn + εn

√
n(F∗n − Fn))− λ(Fn)

εn
,

where εn → 0 and n1/2εn → ∞. However, it is difficult to use this estimate here, because it is

difficult to impose a null hypothesis on the form of the derivative in this experiment. Specifically,

the derivative (21) relies on L0. Although L0 does not need to be known in the analytic construction

of a derivative estimate, it is needed to estimate the derivative numerically using the above formula.

We addressed this problem in two ways. First, we imposed the hypothesis that LX+Y = L0, that is,

using statistic (34) exactly as written with the hypothesized L0 in λ̂′HL. Second, we used a plug-in

estimate of LX+Y . Recalling (20), let

λ̃′HL = ε−1
n

(
sup
x∈R
|max{sup

u∈R
Π+(Fn + εn

√
n(F∗n − Fn))(u, x), 0} − Ln(x)|

− sup
x∈R
|max{sup

u∈R
Π+(Fn)(u, x), 0} − Ln(x)|

)
= ε−1

n sup
x∈R
|max{sup

u∈R
Π+(Fn + εn

√
n(F∗n − Fn))(u, x), 0} − Ln(x)|,

where the second equality arises from the fact that Ln(x) = max{supu∈R Π+(Fn)(u, x), 0} by defi-

nition. Neither of these options is very satisfactory, since L0 is unlikely to be known and using Ln
as in λ̃HL results in a statistic that appears to estimate the derivative inside the L∞ norm. The

method proposed in Hong and Li (2018) requires εn to be larger than n−1/2, so size distortions for

smaller choices of εn may be expected. However, those εn were also considered in their paper so we

included them here.
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Location Analytic Numeric (null known) Numeric (null estimated)

εn = n−1/6 εn = n−1/3 εn = n−1/2 εn = n−1 εn = n−1/6 εn = n−1/3 εn = n−1/2 εn = n−1

−2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

−n−1/10 0.968 0.976 0.984 0.992 0.997 0.967 0.977 0.981 0.973

−n−1/6 0.816 0.841 0.893 0.938 0.981 0.806 0.842 0.860 0.824

−n−1/3 0.301 0.335 0.441 0.568 0.739 0.283 0.330 0.367 0.297

−n−1/2 0.130 0.155 0.245 0.363 0.570 0.118 0.151 0.173 0.131

−n−2/3 0.093 0.110 0.180 0.294 0.500 0.081 0.108 0.120 0.092
−n−1 0.072 0.085 0.161 0.266 0.482 0.063 0.088 0.098 0.069

Null is true
0 0.058 0.072 0.141 0.273 0.483 0.053 0.069 0.077 0.059

n−1 0.048 0.061 0.120 0.246 0.433 0.043 0.057 0.066 0.049

n−2/3 0.037 0.052 0.118 0.237 0.432 0.030 0.046 0.055 0.035

n−1/2 0.030 0.050 0.132 0.266 0.427 0.025 0.036 0.045 0.030

n−1/3 0.017 0.057 0.200 0.322 0.419 0.016 0.020 0.024 0.019

n−1/6 0.242 0.497 0.750 0.850 0.836 0.222 0.283 0.320 0.254

n−1/10 0.662 0.863 0.947 0.972 0.964 0.646 0.714 0.740 0.665
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4: Empirical rejection frequencies for a test that LX+Y ≡ L0 for known L0. Analytic derivative estimates are described in the
text, while Numeric derivative estimates use the method suggested by Hong and Li (2018). Each row label gives the location parameter
of one of the distributions, while the null assumes both parameters are zero. Samples of size 100, 499 bootstrap repetitions per test, 1000
simulation repetitions.
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Location Analytic Numeric (null known) Numeric (null estimated)

εn = n−1/6 εn = n−1/3 εn = n−1/2 εn = n−1 εn = n−1/6 εn = n−1/3 εn = n−1/2 εn = n−1

−2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

−n−1/10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

−n−1/6 0.997 0.997 0.998 1.000 1.000 0.995 0.997 0.998 0.997

−n−1/3 0.383 0.388 0.483 0.655 0.813 0.356 0.416 0.438 0.383

−n−1/2 0.106 0.114 0.182 0.339 0.549 0.096 0.122 0.139 0.108

−n−2/3 0.050 0.056 0.103 0.256 0.465 0.041 0.064 0.073 0.051
−n−1 0.061 0.065 0.124 0.272 0.452 0.054 0.067 0.074 0.060

Null is true
0 0.058 0.060 0.108 0.257 0.453 0.051 0.066 0.072 0.055

n−1 0.050 0.056 0.111 0.240 0.430 0.042 0.057 0.069 0.050

n−2/3 0.040 0.041 0.100 0.215 0.397 0.034 0.049 0.059 0.035

n−1/2 0.035 0.042 0.113 0.241 0.362 0.027 0.039 0.044 0.034

n−1/3 0.064 0.116 0.281 0.455 0.494 0.057 0.074 0.088 0.067

n−1/6 0.904 0.953 0.989 0.996 0.991 0.896 0.924 0.933 0.909

n−1/10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5: Empirical rejection frequencies for a test that LX+Y ≡ L0 for known L0. Analytic derivative estimates are described in the
text, while Numeric derivative estimates use the method suggested by Hong and Li (2018). Each row label gives the location parameter
of one of the distributions, while the null assumes both parameters are zero. Samples of size 500, 999 bootstrap repetitions per test, 1000
simulation repetitions.
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Location Analytic Numeric (null known) Numeric (null estimated)

εn = n−1/6 εn = n−1/3 εn = n−1/2 εn = n−1 εn = n−1/6 εn = n−1/3 εn = n−1/2 εn = n−1

−2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

−n−1/10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

−n−1/6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

−n−1/3 0.432 0.434 0.555 0.708 0.852 0.411 0.460 0.506 0.438

−n−1/2 0.108 0.107 0.172 0.349 0.536 0.095 0.115 0.132 0.107

−n−2/3 0.072 0.074 0.135 0.271 0.450 0.061 0.079 0.088 0.070
−n−1 0.041 0.044 0.098 0.267 0.428 0.037 0.048 0.057 0.041

Null is true
0 0.046 0.045 0.107 0.245 0.435 0.037 0.053 0.060 0.045

n−1 0.051 0.053 0.116 0.259 0.419 0.046 0.058 0.068 0.050

n−2/3 0.046 0.049 0.108 0.239 0.408 0.039 0.050 0.060 0.041

n−1/2 0.027 0.030 0.103 0.264 0.387 0.024 0.032 0.035 0.026

n−1/3 0.089 0.131 0.328 0.520 0.539 0.074 0.099 0.115 0.087

n−1/6 0.994 0.998 0.999 1.000 0.999 0.993 0.995 0.996 0.995

n−1/10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 6: Empirical rejection frequencies for a test that LX+Y ≡ L0 for known L0. Analytic derivative estimates are described in the
text, while Numeric derivative estimates use the method suggested by Hong and Li (2018). Each row label gives the location parameter
of one of the distributions, while the null assumes both parameters are zero. Samples of size 1000, 1999 bootstrap repetitions per test,
1000 simulation repetitions.
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The tables indicate power loss only for alternatives that are very small and positive (for locations

of size n−2/3 and n1/2). The numerically estimated reference distribution with known L0 was usually

outperformed by the analytically estimated distribution and that using Ln in the place of L0. When

using a known L0, the choice of εn is crucial. On the other hand, the numerical derivatives do well

when L is estimated and εn converges either slowly or very quickly to zero — surprisingly, the last

column, with estimated null and εn = n−1 is closest to the behavior of the test with analytically

estimated reference distribution. The analytic estimate does not require knowledge of L0 and

performs as well as the best-performing numeric estimates.

A.3 One-sided tests

In a second experiment we simulate uniformly distributed samples and test the condition that

implies stochastic dominance of F∆A
over F∆B

using statistic (36). A control sample is made up

of uniform observations on the unit interval, as is treatment B, while treatment A is distributed

uniformly on [µ, µ + 1]. We test the hypothesis that LA − UB ≤ 0. When µ = −1, LA − UB ≡ 0

so that value of µ = −1 represents a least-favorable null hypothesis.9 When µ > −1, the null

hypothesis is satisfied with a strict inequality and should not be rejected, while for µ < −1 the

null should be rejected. We examine local alternatives around the central value µ = −1, which is

normalized to zero in Tables 7-9. We test size and power against local alternatives for samples of

size 100, 500 and 1000 with respectively 499, 999 and 1999 bootstrap repetitions for each sample

size and a grid with increment size 0.02. 1,000 simulation repetitions were used for each sample

size. In this experiment the method of Hong and Li (2018) can be implemented without issue. We

compare the analytically-estimated derivative using the same an and bn and numerically-estimated

derivatives using the same choices for εn as in the previous experiment.

The reference distribution estimated analytically performs well in terms of size and power,

although not as well as in the previous experiment — the empirical rejection probability is higher

than expected at the boundary of the null region. The largest choice of εn appears to work best,

although this leads to a conservative test for the largest sample size. The analytic test with sample

size 1,000 show higher rejection rate for a very small location shift towards the interior of the null

region (location n−1 in the table) than on the boundary of the null region. Theorem 4.5 predicts

that this should disappear asymptotically.

9It can be verified that if X ∼ Unif[µ, µ+ 1] and Y ∼ Unif[0, 1], then LX−Y is the CDF of a Unif[µ, µ+ 1] random
variable and UX−Y is the CDF of a Unif[µ− 1, µ] random variable.
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Location Analytic Numeric

εn = n−1/6 εn = n−1/3 εn = n−1/2 εn = n−1

−2 1.000 1.000 1.000 1.000 1.000

−n−1/10 1.000 1.000 1.000 1.000 1.000

−n−1/6 1.000 1.000 1.000 1.000 1.000

−n−1/3 1.000 1.000 1.000 1.000 1.000

−n−1/2 0.645 0.479 0.819 0.984 1.000

−n−2/3 0.266 0.179 0.410 0.721 0.961
−n−1 0.114 0.070 0.199 0.438 0.812

Null bndry.
0 0.100 0.059 0.193 0.407 0.778

n−1 0.070 0.043 0.129 0.355 0.708

n−2/3 0.032 0.018 0.059 0.177 0.432

n−1/2 0.005 0.004 0.011 0.044 0.128

n−1/3 0.000 0.000 0.000 0.000 0.003

n−1/6 0.000 0.000 0.000 0.000 0.000

n−1/10 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000

Table 7: Empirical rejection frequencies for a test that LA ≤ UB. Analytic derivative estimates are
described in the text, while Numeric derivative estimates use the method suggested by Hong and
Li (2018). Each row label gives the location parameter of one of the distributions, while the null
assumes both parameters are zero. Samples of size 100, 499 bootstrap repetitions per test, 1000
simulation repetitions.
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Location Analytic Numeric

εn = n−1/6 εn = n−1/3 εn = n−1/2 εn = n−1

−2 1.000 1.000 1.000 1.000 1.000

−n−1/10 1.000 1.000 1.000 1.000 1.000

−n−1/6 1.000 1.000 1.000 1.000 1.000

−n−1/3 1.000 1.000 1.000 1.000 1.000

−n−1/2 0.668 0.526 0.781 0.983 1.000

−n−2/3 0.172 0.099 0.245 0.570 0.943
−n−1 0.090 0.057 0.140 0.363 0.802

Null bndry.
0 0.085 0.049 0.146 0.358 0.777

n−1 0.063 0.037 0.137 0.340 0.751

n−2/3 0.029 0.013 0.053 0.162 0.482

n−1/2 0.004 0.002 0.005 0.029 0.116

n−1/3 0.000 0.000 0.000 0.000 0.000

n−1/6 0.000 0.000 0.000 0.000 0.000

n−1/10 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000

Table 8: Empirical rejection frequencies for a test that LA ≤ UB. Analytic derivative estimates are
described in the text, while Numeric derivative estimates use the method suggested by Hong and
Li (2018). Each row label gives the location parameter of one of the distributions, while the null
assumes both parameters are zero. Samples of size 500, 999 bootstrap repetitions per test, 1000
simulation repetitions.

42



Location Analytic Numeric

εn = n−1/6 εn = n−1/3 εn = n−1/2 εn = n−1

−2 1.000 1.000 1.000 1.000 1.000

−n−1/10 1.000 1.000 1.000 1.000 1.000

−n−1/6 1.000 1.000 1.000 1.000 1.000

−n−1/3 1.000 1.000 1.000 1.000 1.000

−n−1/2 0.653 0.528 0.776 0.978 1.000

−n−2/3 0.169 0.104 0.261 0.559 0.932
−n−1 0.084 0.054 0.135 0.355 0.793

Null bndry.
0 0.067 0.031 0.107 0.334 0.730

n−1 0.069 0.031 0.110 0.305 0.729

n−2/3 0.033 0.017 0.054 0.167 0.518

n−1/2 0.002 0.001 0.005 0.026 0.102

n−1/3 0.000 0.000 0.000 0.000 0.000

n−1/6 0.000 0.000 0.000 0.000 0.000

n−1/10 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000

Table 9: Empirical rejection frequencies for a test that LA ≤ UB. Analytic derivative estimates are
described in the text, while Numeric derivative estimates use the method suggested by Hong and
Li (2018). Each row label gives the location parameter of one of the distributions, while the null
assumes both parameters are zero. Samples of size 1000, 1999 bootstrap repetitions per test, 1000
simulation repetitions.
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B Proofs

Lemma B.1. Suppose that U ⊆ RdU and X ⊆ RdX and f, h ∈ `∞(grA). Let A : X ⇒ U be

non-empty-valued and define σ : `∞(grA) → R by σ(f) = supx∈X infu∈A(x) f(u, x). Then σ is

Hadamard directionally differentiable and

σ′f (h) = lim
δ→0+

sup
x∈Xσ

f (δ)
lim
ε→0+

inf
u∈U(−f)(x,ε)

h(u, x),

where Uf and Xσ
f are defined in (10) and (16).

Proof of Lemma B.1. It can be verified using that |σ(f) − σ(g)| ≤ ‖f − g‖∞, so we can focus on

Gâteaux differentiability for a fixed f and h (Shapiro, 1990, Proposition 3.5). Fix some f, h ∈
`∞(grA) and tn → 0+.

Start with an upper bound for the scaled difference (σ(f+tnh)−σ(f))/tn, which, using sn = t−1
n

may be rewritten as σ(snf + h)− snσ(f). Consider the inner optimization problem in u. For any

x ∈ X and ε > 0, by definition of U(−f) (which collects near-minimizers in u of f) there exists a

uε ∈ U(−f)(x, ε) such that h(uε, x) ≤ infu∈U(−f)(x,ε) h(u, x) + ε and f(uε, x) ≤ infu∈A(x) f(u, x) + ε

and therefore

inf
u∈U(−f)(x,ε)

h(u, x) ≥ h(uε, x)− ε

= snf(uε, x) + h(uε, x)− snf(uε, x)− ε

≥ inf
u∈A(x)

(snf + h)(u, x)− sn inf
u∈A(x)

f(u, x) + sn

(
inf

u∈A(x)
f(u, x)− f(uε, x)

)
− ε

≥ inf
u∈A(x)

(snf + h)(u, x)− sn inf
u∈A(x)

f(u, x)− (sn + 1)ε.

Thus, for each n, for any x ∈ X,

inf
u∈A(x)

(snf + h)(u, x)− sn inf
u∈A(x)

f(u, x) ≤ lim
ε→0+

inf
u∈U(−f)(x,ε)

h(u, x). (S.1)

Next consider the outer optimization problem in x: for each x ∈ X, we may write

inf
u∈A(x)

(snf + h)(u, x)− snσ(f) =

(
inf

u∈A(x)
(snf + h)(u, x)− sn inf

u∈A(x)
f(u, x)

)
+ sn

(
inf

u∈A(x)
f(u, x)− σ(f)

)
≤ lim

ε→0+
inf

u∈U(−f)(x,ε)
h(u, x) + sn

(
inf

u∈A(x)
f(u, x)− σ(f)

)
,
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where the inequality comes from (S.1). Consider this inequality for some x′ /∈ Xσ
f (δ), for any δ > 0:

inf
u∈A(x′)

(snf + h)(u, x′)− snσ(f) ≤ lim
ε→0+

inf
u∈U(−f)(x

′,ε)
h(u, x′) + sn

(
inf

u∈A(x′)
f(u, x′)− σ(f)

)
≤ lim

ε→0+
inf

u∈U(−f)(x
′,ε)
h(u, x′)− snδ.

Recall that sn = t−1
n so that sn diverges as n → ∞, and that x′ that are not δ-maximinimizers

cannot be optimal. Then for any δ > 0,

lim sup
n→∞

(σ(snf + h)− snσ(f)) = lim sup
n→∞

(
sup

x∈Xσ
f (δ)

inf
u∈A(x)

(snf + h)(u, x)− snσ(f)

)

≤ sup
x∈Xσ

f (δ)

(
lim
ε→0+

inf
u∈U(−f)(x,ε)

h(u, x)

)

and therefore this inequality holds as δ → 0.

To obtain a lower bound, start again with the inner problem. For any x ∈ X, choose an ε > 0

and note that for any u′ ∈ A(x)\U(−f)(x, ε),

snf(u′, x) + h(u′, x)− sn inf
u∈A(x)

f(u, x) ≥ inf
u∈A(x)

h(u, x) + snε.

Therefore, again recalling that sn diverges with n, we may restrict attention to the ε-minimizers

(in u) for each x ∈ X:

lim inf
n→∞

(
inf

u∈A(x)
(snf + h)(u, x)− sn inf

u∈A(x)
f(u, x)

)
= lim inf

n→∞

(
inf

u∈U(−f)(x,ε)
(snf + h)(u, x)− sn inf

u∈A(x)
f(u, x)

)
(S.2)

≥ inf
u∈U(−f)(x,ε)

h(u, x) (S.3)

and this holds as ε→ 0+ as well.

Consider again the outer maximization problem. For any δ > 0, define

h̃(δ) = sup
x∈Xσ

f (δ)
lim
ε→0+

inf
u∈U(−f)(x,ε)

h(u, x).

For each δ there is an xδ ∈ Xσ
f (δ) such that

lim
ε→0+

inf
u∈U(−f)(xδ,ε)

h(u, xδ) ≥ h̃(δ)− δ
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and by construction,

lim
ε→0+

inf
u∈U(−f)(xδ,ε)

f(u, xδ) ≥ inf
u∈A(xδ)

f(u, xδ)

≥ sup
x∈X

inf
u∈A(x)

f(u, x)− δ = σ(f)− δ,

where the second inequality follows from the definition of Xσ
f (δ). Then for each n,

h̃(δ) ≤ lim
ε→0+

inf
u∈U(−f)(xδ,ε)

h(u, xδ) + δ

= sn lim
ε→0+

inf
u∈U(−f)(xδ,ε)

f(u, xδ) + lim
ε→0+

inf
u∈U(−f)(xδ,ε)

h(u, xδ)− sn lim
ε→0+

inf
u∈U(−f)(xδ,ε)

f(u, xδ) + δ

≤ lim
ε→0+

inf
u∈U(−f)(xδ,ε)

(snf + h)(u, xδ)− sn lim
ε→0+

inf
u∈U(−f)(xδ,ε)

f(u, xδ) + δ

=

(
lim
ε→0+

inf
u∈U(−f)(xδ,ε)

(snf + h)(u, xδ)− snσ(f)

)
− sn

(
lim
ε→0+

inf
u∈U(−f)(xδ,ε)

f(u, xδ)− σ(f)

)
+ δ

≤

(
lim
ε→0+

inf
u∈U(−f)(xδ,ε)

(snf + h)(u, xδ)− snσ(f)

)
+ (sn + 1)δ

Then letting δ → 0 and using (S.2) and (S.3) we have

lim inf
n→∞

(σ(snf + h)− snσ(f)) ≥ lim
δ→0+

h̃(δ).

Proof of Theorem 3.2. The function γ : R2 → R defined by γ(x, y) = max{x, y} has Hadamard

directional derivative

γ′x,y(h, k) =


h x > y

max{h, k} x = y

k x < y

.

Use the equivalence sup |f | = max{sup f, sup(−f)} to rewrite the difference for any n as

1

tn

(
sup
x∈X

∣∣∣∣∣ sup
u∈A(x)

(f(u, x) + tnhn(u, x))

∣∣∣∣∣− sup
x∈X

∣∣∣∣∣ sup
u∈A(x)

f(u, x)

∣∣∣∣∣
)

=

1

tn

(
max

{
sup

(u,x)∈grA
(f(u, x) + tnhn(u, x)) , sup

x∈X

(
− sup
u∈A(x)

(f(u, x) + tnhn(u, x))

)}
−

−max

{
sup

(u,x)∈grA
f(u, x), sup

x∈X

(
− sup
u∈A(x)

f(u, x)

)})
=

1

tn
(max {µ (f + tnhn) , σ (−f − tnhn)} −max {µ(f), σ(−f)}) .
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Defining σ̃(f) = σ(−f), Lemma B.1 implies that σ̃′f (h) = σ′(−f)(−h). Then the chain rule

implies

(γ(µ(f), σ̃(f)))′(h) = γ′(µ(f),σ̃(f))(µ
′
f (h), σ̃′f (h)),

and writing the derivatives out is the first result. The condition ‖ψ(f)‖∞ = 0 is equivalent to

µ(f) = σ(−f) = 0. Specializing the general derivative so that ψ(f) ≡ 0 implies Aµf (ε) = Uf (X, ε).

Lemma B.2, the continuity of max{x, y} and the identity |x| = max{−x, x} imply the second result.

Next consider the functional λ2. Write supx max{supu f(u, x), 0} = max{sup(u,x) f(u, x), 0} and

apply the chain rule with γ(x, 0). Then the general result for λ2(f) results from reversing the order

of the maximum and supremum again. When ‖[ψ(f)]+‖∞ = 0, the derivative is only nonzero if

supgrA f = 0 so that Aµf (ε) = Uf (X0, ε), and similar calculations lead to the final result.

Lemma B.2. Let Aµf (ε) and Uf (·, ε) be defined by (15) and (10) in the text. Let

Xf (ε) =

{
x ∈ X : sup

u∈A(x)
f(u, x) ≥ sup

(u,x)∈grA
f(u, x)− ε

}
.

Then

lim
ε→0+

sup
(u,x)∈Aµf (ε)

h(u, x) = lim
ε→0+

lim
δ→0+

sup
x∈Xf (ε)

sup
u∈Uf (x,δ)

h(u, x).

Proof of Lemma B.2. Note that for any ε > 0, Aµf (ε) = ∪x∈Xf (ε)Uf (x, ε). Define

A = lim
ε→0+

sup
(u,x)∈Aµf (ε)

h(u, x), B = lim
ε→0+

lim
δ→0+

sup
x∈Xf (ε)

sup
u∈Uf (x,δ)

h(u, x).

As families of sets indexed by ε, Aµf (ε), Xf (ε) and Uf (x, ε) (for any x) are nonincreasing in diameter

as ε→ 0. Therefore suprema evaluated over any of these sets are nonincreasing as ε→ 0.

For any ε, δ > 0, A ≤ supx∈Xf (ε) supu∈Uf (x,δ) h(u, x), and by letting ε, δ → 0 we have A ≤ B.

Since h is bounded, A <∞ and for all η > 0 there exist ε∗, δ∗ > 0 such that

sup
x∈Xf (ε∗)

sup
u∈Uf (x,δ∗)

h(u, f) ≤ A+ η.

Then

B ≤ lim
ε→0+

sup
x∈Xf (ε)

sup
u∈Uf (x,δ∗)

h(u, f) ≤ sup
x∈Xf (ε∗)

sup
u∈Uf (x,δ∗)

h(u, f) ≤ A+ η.

By letting η → 0 we find B ≤ A.

Proof of Theorem 3.3. The result of this theorem follows from several applications of the chain

rule for the function evaluated at (almost) every point in X, along with dominated convergence to
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move from pointwise convergence to convergence in the Lp norm. The maps and their Hadamard

directional derivatives are discussed first and then composed.

First, we note that the condition f ∈ `∞(grA) and m(X) < ∞ imply ‖ψ(f)‖p < ∞: since

‖ψ(f)‖pp ≤ ‖f‖p∞m(X), the Lp norm of ψ(f) is well-defined.

Let f and h satisfy the assumptions in the statement of the theorem and choose tn → 0+ and

hn such that ‖hn − h‖∞ → 0. It can be verified from the definition that:

1. For x ∈ R and a ∈ R, the derivative of x 7→ |x| in direction a is sgn(x) · a when x 6= 0 and |a|
when x = 0.

2. For x ∈ R and b ∈ R, the derivative of x 7→ [x]+ in direction b is b when x > 0, [b]+ when

x = 0 and 0 when x < 0.

3. For x ≥ 0, α > 0 and c ∈ R, the derivative of x 7→ xα in direction c is αcxα−1.

Suppose that ‖ψ(f)‖p 6= 0. For almost all x ∈ X the chain rule implies that the derivative of

f(·, x) 7→ |ψ(f)(x)|p in direction h(·, x) is{
p sgn(ψ(f)(x))|ψ(f)(x)|p−1ψ′f (h)(x), ψ(f)(x) 6= 0

0, ψ(f)(x) = 0

}
= p sgn(ψ(f)(x))|ψ(f)(x)|p−1ψ′f (h)(x).

Similarly, for almost all x ∈ X the derivative of f(·, x) 7→ [ψ(f)(x)]p+ in direction h(·, x) is

p[ψ(f)(x)]p−1
+ ×


ψ′f (h)(x), ψ(f)(x) > 0

[ψ′f (h)(x)]+, ψ(f)(x) = 0

0, ψ(f)(x) < 0

 = p[ψ(f)(x)]p−1
+ ψ′f (h)(x).

Then the assumed p-integrability of these functions, implied by Assumption A1 and Proposition

6.10 of Folland (1999), and dominated convergence imply that when ‖ψ(f)‖p 6= 0,

lim
n→∞

1

tn

(∫
X
|ψ(f + tnhn)(x)|pdm(x)−

∫
X
|ψ(f)(x)|pdm(x)

)
=

∫
X
p sgn(ψ(f)(x))|ψ(f)(x)|p−1ψ′f (h)(x)dm(x)

and similarly, when ‖[ψ(f)]+‖p 6= 0,

lim
n→∞

1

tn

(∫
X

[ψ(f + tnhn)(x)]p+dm(x)−
∫
X

[ψ(f)(x)]p+dm(x)

)
=

∫
X
p[ψ(f)(x)]p−1

+ ψ′f (h)(x)dm(x).

When considering the 1/p-th power of these integrals, one more application of the chain rule and
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the third basic derivative in the above list imply

lim
n→∞

λ3(f + tnhn)− λ3(f)

tn

=

(∫
X
|ψ(f)(x)|pdm(x)

)(1−p)/p ∫
X

sgn(ψ(f)(x))|ψ(f)(x)|p−1ψ′f (h)(x)dm(x)

and

lim
n→∞

λ4(f + tnhn)− λ4(f)

tn
=

(∫
X

[ψ(f)(x)]p+dm(x)

)(1−p)/p ∫
X

[ψ(f)(x)]p−1
+ ψ′f (h)(x)dm(x).

On the other hand, when ‖ψ(f)‖p = 0, one can calculate directly that

lim
n→∞

1

tn

((∫
X
|ψ(f + tnhn)(x)|pdm(x)

)1/p

−
(∫

X
|ψ(f)(x)|pdm(x)

)1/p
)

=

(∫
X

∣∣∣∣ lim
n→∞

ψ(f + tnhn)(x)− 0

tn

∣∣∣∣p dm(x)

)1/p

=

(∫
X

∣∣∣∣∣ lim
ε→0+

sup
{u:f(u,x)≥−ε}

h(u, x)

∣∣∣∣∣
p

dm(x)

)1/p

.

The case is slightly different for λ4 because ‖[ψ(f)]+‖p = 0 only implies ψ(f)(x) ≤ 0 for almost all

x ∈ X. Rewrite the difference as in the above display. Rule 2 in the above list of derivative rules

implies that only X0 will contribute asymptotically to the inner integral, and in the limit, using

p-integrability and dominated convergence we have the final statement.

Lemma B.3. Let λ be the map defined in (20). Then λ is Hadamard directionally differentiable

and under the hypothesis that max{Π+(F )(x), 0} = L0(x) for all x ∈ R, its derivative is defined

in (21).

Proof of Lemma B.3. To save space, we have used the notation supA f = supx∈A f(x) and a ∨
b = max{a, b} in this proof. The map Π+ has a Hadamard derivative at any (u, x) equal to

hX(u) + hY (x− u). Therefore we calculate, for f ∈ `∞(R2), in the direction of some h ∈ `∞(R2),

the directional derivative

ϕ′f (h) := lim
t→0+

1

t

(
sup
X
|ψ(f + th) ∨ 0− L0| − sup

X
|ψ(f) ∨ 0− L0|

)
. (S.4)

If ψ(f)(x) < 0 then for small enough t, max{ψ(f + th)(x), 0} = 0. Therefore we may focus on

{x ∈ R : ψ(f)(x) ≥ 0}. Break the domain into the two subsets X0 = {x ∈ R : ψ(f)(x) = 0} and
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X+ = {x ∈ R : ψ(f)(x) > 0}. Write

sup
X
|ψ(f + th) ∨ 0− L0| = max

{
sup
X0

|ψ(f + th) ∨ 0− L0| , sup
X+

|ψ(f + th) ∨ 0− L0|

}
,

and analogously for the second term in the difference (S.4). This indicates that the easiest way to

find the derivative is via the chain rule. We take each one of these two suprema in turn.

Under the null hypothesis that ψ(f) ≡ L0 and on X0, where both are zero,

lim
t→0+

t−1

(
sup
X0

|ψ(f + th) ∨ 0− L0| − sup
X0

|ψ(f) ∨ 0− L0|
)

= lim
t→0+

t−1 sup
X0

ψ(f + th) ∨ 0

= lim
ε→0+

sup
x∈X0

sup
u∈Uf (x,ε)

[h(u, x)]+. (S.5)

Meanwhile, on X+,

lim
t→0+

t−1

(
sup
X+

|ψ(f + th) ∨ 0− L0| − sup
X+

|ψ(f) ∨ 0− L0|

)

= lim
t→0+

t−1

(
sup
X+

|ψ(f + th)− L0| − sup
X+

|ψ(f)− L0|

)
.

Apply Theorem 3.2 using the function f̃(u, x) = f(u, x)− L0(x). Note that Uf̃ (x, ε) = Uf (x, ε) for

all x ∈ X+. Since the second term in the above expression is zero under the null hypothesis that

ψ(f) ≡ L0, Theorem 3.2 implies

lim
t→0+

t−1

(
sup
X+

|ψ(f + th)− L0| − sup
X+

|ψ(f)− L0|

)
= lim

ε→0+
sup
x∈X+

∣∣∣∣∣ sup
u∈Uf (x,ε)

h(u, x)

∣∣∣∣∣ . (S.6)

Let

µ0(f) = sup
X0

|ψ(f) ∨ 0− L0|, µ+(f) = sup
X+

|ψ(f) ∨ 0− L0|.

Then define the derivatives µ′0f and µ′+f by (S.5) and (S.6). Now, via the chain rule, under the

hypothesis that L0 has been correctly chosen, µ0(f) = µ+(f) = 0. Then using the derivative of the

map γ defined in the proof of Theorem 3.2, we have a solution to (S.4):

ϕ′f (h) = max
{
µ′0f (h), µ′+f (h)

}
. (S.7)

To translate this back to a result on the λ defined in (20), use the definitions that precede (21)

in (S.7) and let h(u, x) = hX(u) + hY (x− u).

Proof of Theorem 4.1. The limit statements follow directly from Theorem 3.2, Theorem 3.3 above

50



combined with Theorem 2.1 of Fang and Santos (2019).

Proof of Theorem 4.3. We will apply Theorem 3.2 of Fang and Santos (2019) to show the result by

verifying that the maps involved satisfy the appropriate regularity conditions. First, Theorems 3.2

and 3.3 show that the λj are Hadamard directionally differentiable maps, implying their Assumption

1 is satisfied. Our assumptions A2 and A3 imply their Assumptions 2 and 3.

Next, we show that each map is Lipschitz and consistent for each fixed direction h, so that we

may apply Lemma S.3.6 of Fang and Santos (2019), which implies their Assumption 4 is satisfied.

Start with λ1. Fix f ∈ `∞(grA) and suppose that h, k ∈ `∞(grA). For any n,∣∣∣λ̂′1n(h)− λ̂′1n(k)
∣∣∣ ≤ sup

(u,x)∈Ufn (X,an)
|h(u, x)− k(u, x)| ≤ ‖h− k‖∞.

Next we show that for each h, |λ̂′1n(h)− λ′1f (h)| = op(1). For any η > 0,

P
{∣∣∣λ̂′1n(h)− λ′1f (h)

∣∣∣ > η
}
≤ P

{∣∣∣∣∣ sup
(u,x)∈Ufn (X,an)

h(u, x)− lim
ε→0+

sup
(u,x)∈Uf (X,ε)

h(u, x)

∣∣∣∣∣ > η

}
.

If (un, xn) ∈ Ufn(X, an), then fn(un, xn) ≥ sup(u,x)∈grA fn(u, x)− an. This is equivalent to

f(un, xn) + (fn(un, xn)− f(un, xn)) ≥ sup
(u,x)∈grA

f(u, x) +

(
sup

(u,x)∈grA
fn(u, x)− sup

(u,x)∈grA
f(u, x)

)
− an

⇒ f(un, xn) ≥ sup
(u,x)∈grA

f(u, x)− an − 2‖fn − f‖∞.

That is, Ufn(X, an) ⊆ Uf (X, an + 2‖fn − f‖∞). Therefore as n→∞,

P

{
sup

(u,x)∈Ufn (X,an)
h(u, x) > lim

ε→0+
sup

(u,x)∈Uf (X,ε)
h(u, x) + η

}

≤ P

{
sup

(u,x)∈Uf (X,an+2‖fn−f‖∞)
h(u, x) > lim

ε→0+
sup

(u,x)∈Uf (X,ε)
h(u, x) + η

}
→ 0

It can similarly be shown that Uf (X, an) ⊆ Ufn(X, an + 2‖fn − f‖∞). This implies that

lim
ε→0+

sup
(u,x)∈Uf (X,ε)

h(u, x) ≤ sup
(u,x)∈Uf (X,an)

h(u, x) ≤ sup
(u,x)∈Uf (X,an+2‖fn−f‖∞)

h(u, x).
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Then as n→∞,

P

{
lim
ε→0+

sup
(u,x)∈Uf (X,ε)

h(u, x) > sup
(u,x)∈Ufn (X,an)

h(u, x) + η

}

≤ P

{
sup

(u,x)∈Ufn (X,an+2‖fn−f‖∞)
h(u, x) > sup

(u,x)∈Ufn (X,an)
h(u, x) + η

}
→ 0.

Next consider λ2. Using the fact that x 7→ [x]+ is Lipschitz with constant 1,∣∣∣λ̂′2n(h)− λ̂′2n(k)
∣∣∣ ≤ sup

(u,x)∈Ufn (X,an)
|[h(u, x)]+ − [k(u, x)]+| ≤ ‖h− k‖∞.

In order to show consistency for fixed h, recall that under the hypothesis that P ∈ PI00 there is

only one form for λ′2f (that is, the trivial case where it is equal to zero is ruled out by assumption).

Note that for any η > 0

P
{∣∣∣λ̂′2n(h)− λ′2f (h)

∣∣∣ > η
}
≤ P

{∣∣∣∣∣ sup
(u,x)∈Ufn (X̂0,an)

h(u, x)− lim
ε→0+

sup
(u,x)∈Uf (X0,ε)

h(u, x)

∣∣∣∣∣ > η

}

≤ P

{∣∣∣∣∣ sup
(u,x)∈Ufn (X0∩X̂0,an)

h(u, x)− lim
ε→0+

sup
(u,x)∈Uf (X0∩X̂0,ε)

h(u, x)

∣∣∣∣∣ > η

}
+ P

{
X̂04X0 6= ∅

}
.

On X0∩X̂0, consistency is guaranteed by the argument used above for λ̂′1n. Consider the probability

that X04X̂0 is non-empty. Theorem 4.1 applied to λ1 implies that supx∈X rn|ψ(fn)(x)− ψ(f)(x)|
is asymptotically tight. Therefore if bn satisfies the condition in Assumption A2, for all x ∈ X,

|ψ(fn)(x′)− ψ(f)(x′)| = Op(rn) = op(bn). First, if x ∈ X0 then ψ(f)(x) = 0 and

P
{
x ∈ X0 ∩ X̂c

0

}
= P {|ψ(fn)(x)| > bn} = P {|ψ(fn)(x)− ψ(f)(x)| > bn} → 0.

On the other hand, if x′ /∈ X0 then ψ(f)(x′) 6= 0 and P {|ψ(f)(x′)| ≤ bn} → 0. Then

P
{
x ∈ Xc

0 ∩ X̂0

}
= P

{
|ψ(fn)(x′)| ≤ bn

}
≤ P

{
|ψ(fn)(x′)− ψ(f)(x′)|+ |ψ(f)(x′)| ≤ bn

}
→ 0.

This implies that for all ε > 0, P
{
d(X̂0, X0) > ε

}
→ 0.
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For the case of λ3, suppose in addition that m(X) <∞. Then

∣∣∣λ̂′3n(h)− λ̂′3n(k)
∣∣∣ ≤ (∫

X

∣∣∣∣∣ sup
u∈Ufn (x,an)

h(u, x)− sup
u∈Ufn (x,an)

k(u, x)

∣∣∣∣∣
p

dm(x)

)1/p

≤

(∫
X

∣∣∣∣∣ sup
u∈A(x)

|h(u, x)− k(u, x)|

∣∣∣∣∣
p

dm(x)

)1/p

≤ m(X)1/p‖h− k‖∞.

The above inequalities follow from Minkowski’s inequality (which implies a reverse triangle in-

equality) and a bound on the Lp norm assuming m(X) is finite. Similarly, for any fixed η > 0,

defining

X1 =

{
x ∈ X : sup

u∈Ufn (x,an)
h(u, x) > lim

ε→0+
sup

u∈Uf (x,ε)
h(u, x)

}
,

X2 =

{
x ∈ X : sup

u∈Ufn (x,an)
h(u, x) < lim

ε→0+
sup

u∈Uf (x,ε)
h(u, x)

}
,

we may write

P
{∣∣∣λ̂′3n(h)− λ′3f (h)

∣∣∣ > η
}

≤ P


(∫

X1

(
sup

u∈Ufn (x,an)
h(u, x)− lim

ε→0+
sup

u∈Uf (x,ε)
h(u, x)

)p
dm(x)

)1/p

> η


+ P


(∫

X2

(
lim
ε→0+

sup
u∈Uf (x,ε)

h(u, x)− sup
u∈Ufn (x,an)

h(u, x)

)p
dm(x)

)1/p

> η


Using an analogous argument as for the λ1 case, this sum is bounded by

P


(∫

X1

(
sup

u∈Uf (x,an+2‖fn−f‖∞)
h(u, x)− lim

ε→0+
sup

u∈Uf (x,ε)
h(u, x)

)p
dm(x)

)1/p

> η


+ P


(∫

X2

(
sup

u∈Ufn (x,an+2‖fn−f‖∞)
h(u, x)− sup

u∈Ufn (x,an)
h(u, x)

)p
dm(x)

)1/p

> η

→ 0

by monotone convergence and the dominated convergence theorem.

Finally, because x 7→ [x]+ is Lipschitz we find

|λ̂′4n(h)− λ̂′4n(k)| ≤

(∫
X

∣∣∣∣∣ sup
u∈A(x)

|h(u, x)− k(u, x)|

∣∣∣∣∣
p

dm(x)

)1/p

≤ m(X)1/p‖h− k‖∞.
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Consistency for fixed h follows from the argument for the λ3 case. Specifically, subdivide the

domain of integration further into X1 ∩ X̂0 ∩X0, X2 ∩ X̂0 ∩X0 and X̂04X0. The first two subsets

can be dealt with as in the λ3 case, and the last can be dealt with as in the argument for the λ2

case.

Bootstrap consistency for λj for all j then follows from Theorem 3.2 and Lemma S.3.6 of Fang

and Santos (2019).

Proof of Theorem 4.4. For j = 1 or j = 3, under the assumption that P ∈ PE00, there are no

interior distributions and so for any sequence Pn → P such that Pn ∈ PE00, λj(f(Pn)) = 0 for all

n. Therefore λ′jf (f ′(c)) = limn→∞ rn(λj(f(Pn))− λj(f(P0))) = 0. Now consider λj for j ∈ {1, 3}.
Theorem 3.3 of Fang and Santos (2019) implies that, using Zn

Lc
; Z to denote weak convergence

under
⊗n

i=1 Pc/rn ,

rn(λj(fn)− λj(f(Pn)))
Lc
; λ′jf (GP0 + f ′(c))− λ′jf (f ′(c)) ∼ λ′jf (GP0 + f ′(c)),

The result for the other two statistics follows from Corollary 3.2 of Fang and Santos (2019) if

we show the convexity of the derivatives λ′jf (h) when λj(f) = 0 for j = 2 or j = 4. The case that

P ∈ PI0\PI00 is trivially convex, so we restrict our attention to P ∈ PI00. It can be verified that for

a, b ∈ R, [a+ b]+ ≤ [a]+ + [b]+. Then for h, k ∈ `∞(U ×X),

λ′2f (αh+ (1− α)k) ≤

[
α lim
ε→0+

sup
Uf (X,ε)

h+ (1− α) lim
ε→0+

sup
Uf (X,ε)

k

]
+

≤ αλ′2f (h) + (1− α)λ′2f (k).

Similarly,

λ′4f (αh+ (1− α)k) ≤
(∫

X0

∣∣α[ψ′f (h)(x)]+ + (1− α)[ψ′f (k)(x)]+
∣∣p dm(x)

)1/p

≤ αλ′4f (h) + (1− α)λ′4f (k).

The next lemma confirms that under assumptions that ensure convergence of the data occurs

uniformly over P ∈ P, the results of Theorems 4.1 and 4.3 also hold uniformly over P ∈ P. The

second result is limited to PI00 because the estimates λ̂′jn are constructed under the assumption

that P ∈ PI00.

Lemma B.4. Under Assumptions A1-A3 and A5-A8, for j ∈ {2, 4},

lim sup
n→∞

sup
P∈P

sup
g∈BL1(R))

∣∣E [g(rn(λj(fn)− λj(f))]− E
[
g(λ′jf (GP ))

]∣∣ = 0
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and for any ε > 0,

lim sup
n→∞

sup
P∈PI00

P

{
sup

g∈BL1(R)

∣∣∣E [g (λ̂′jn(rn(f∗n − fn))
)
|{Zi}ni=1

]
− E

[
g(λ′jf (GP ))

]∣∣∣ > ε

}
= 0.

Proof of Lemma B.4. First note that under Assumptions A5 and A6 (along with Theorems 3.2

and 3.3), the convergence-in-distribution result of Theorem 2.1 of Fang and Santos (2019) may be

rewritten to hold uniformly over P ∈ P. Specifically, use the uniform continuous mapping theorem

developed in Linton, Song, and Whang (2010) in the proof of Theorem 2.1 of Fang and Santos

(2019) (in the place of their appeal to Theorem 1.11.1 of van der Vaart and Wellner (1996)) and

note that under the null hypothesis, λj(fn) = λj(fn)− λj(f).

The second result is similar to Theorem 3.2 of Fang and Santos (2019) but holds uniformly over

P ∈ PI00 for the specific statistics considered in the lemma. For convenience let G∗n = rn(f∗n − fn)

and Z = {Zi}ni=1.

Under Assumptions A3, A6 and A8, Lemma S.3.1 of Fang and Santos (2019) can be extended

to hold uniformly over P ∈ P to show that uniformly in P ∈ P, G∗n ; GP . This implies that for

any closed set F ∈ C(grA),

lim sup
n→∞

sup
P∈P

P {G∗n ∈ F} ≤ sup
P∈P

P {GP ∈ F} . (S.8)

This can be seen by writing

lim sup
n→∞

sup
P∈P

P {G∗n ∈ F} ≤ lim sup
n→∞

sup
P∈P

(P {G∗n ∈ F} − P {GP ∈ F}) + sup
P∈P

P {GP ∈ F} .

If the first term on the right-hand side were strictly positive, then as n → ∞, for some ε > 0 it

occurs infinitely often that there is a P ∈ P such that P {G∗n ∈ F} − P {GP ∈ F} ≥ ε. Construct a

sequence of such measures {Pk}∞k=1. But then it is possible to find functions that are multiples of

functions in BL1(grA) that violate the weak convergence assumption: use functions analogous (the

functions should dominate indicator functions here) to those in Addendum 1.12.3 and Theorem

1.12.2 of van der Vaart and Wellner (1996). This contradiction implies that the first term on the

right-hand side must be nonpositive, implying (S.8).

Next we show that for fixed h, for every ε > 0,

lim sup
n→∞

sup
P∈PI00

P
{
‖λ̂′jn(h)− λ′jf (h)‖∞ > ε

}
= 0. (S.9)
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Consider λ′2f . As in the proof of Theorem 4.3, for any η > 0,

sup
P∈PI00

P
{∣∣∣λ̂′2n(h)− λ′2f (h)

∣∣∣ > η
}
≤ sup

P∈PI00

P

{∣∣∣∣∣ sup
(u,x)∈Ufn (X,an)

h(u, x)− lim
ε→0+

sup
(u,x)∈Uf (X,ε)

h(u, x)

∣∣∣∣∣ > η

}
.

As shown in the proof of that theorem, Ufn(X, an) ⊆ Uf (X, an + 2‖fn − f‖∞) and Uf (X, an) ⊆
Ufn(X, an + 2‖fn − f‖∞). Under Assumptions A5 and A6, the other arguments of that theorem

and Lemma B.2 imply that

sup
P∈PI00

P

{∣∣∣∣∣ sup
(u,x)∈Ufn (X,an)

h(u, x)− lim
ε→0+

sup
(u,x)∈Uf (X,ε)

h(u, x)

∣∣∣∣∣ > η

}
→ 0,

implying (S.9) holds for λ′2f . Arguments like those used in Theorem 4.3 for λ′4f hold uniformly

over PI00 as well under Assumption A5, implying (S.9) holds for λ′4f as well (note that under

Assumption A5, the contact set consistency argument made at the end of the proof of Theorem 4.3

holds uniformly over P ∈ PI00 as well). In the proof of Theorem 4.3 it is shown that λ̂′jn are

Lipschitz with bounded Lipschitz constants. Lemma B.5 shows that this and (S.9) imply that for

any compact set K ⊂ `∞(grA), letting Kδ be its δ-enlargement for any δ > 0,

lim
δ→0+

lim sup
n→∞

sup
P∈PI00

P

{
sup
h∈Kδ

‖λ̂′jn(h)− λ′jf (h)‖∞ > ε

}
= 0. (S.10)

Now fix arbitrary ε > 0 and η > 0. By Assumption A6, there is a compact set K0 ∈ C(grA)

such that supP∈PI00
P {GP /∈ K0} < εη/2. Equation (S.8) implies that for any δ > 0,

lim sup
n→∞

sup
P∈PI00

P
{
G∗n /∈ Kδ

0

}
≤ sup

P∈PI00

P
{
GP /∈ Kδ

0

}
≤ sup

P∈PI00

P {GP /∈ K0} ≤ εη/2. (S.11)

Then for each P ∈ PI00 and any δ0 > 0,

sup
g∈BL1(R)

∣∣∣E [g(λ̂′jn(G∗n))|Z
]
− E

[
g(λ′jf (G∗n))|Z

]∣∣∣
≤ sup

g∈BL1(R)
E
[∣∣∣g(λ̂′jn(G∗n))− g(λ′jf (G∗n))

∣∣∣ ∣∣∣Z]

≤ E

2I(G∗n /∈ K
δ0
0 ) + sup

h∈Kδ0
0

‖λ̂′jn(h)− λ′jf (h)‖
∣∣∣Z


≤ 2P
{
G∗n /∈ K

δ0
0 |Z

}
+ sup
h∈Kδ0

0

‖λ̂′jn(h)− λ′jf (h)‖, (S.12)

where the last term is not conditional on the data Z because λ̂′jn only depends on Z.
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Markov’s inequality and Fubini’s theorem (van der Vaart and Wellner, 1996, Lemma 1.2.7)

imply that

lim sup
n→∞

sup
P∈P

2P
{
P
{
G∗n /∈ K

δ0
0 |Z

}
> ε
}
≤ lim sup

n→∞
sup
P∈P

2ε−1P
{
G∗n /∈ K

δ0
0

}
< η. (S.13)

Furthermore, (S.10) implies that δ0 can be chosen such that

lim sup
n→∞

sup
P∈PI00

P

{
sup
h∈Kδ0

‖λ̂′jn(h)− λ′jf (h)‖∞ > ε

}
< η. (S.14)

Finally, using Assumptions A3, A7, A8 and the Lipschitz continuity of λ′jf , which can be shown

as in the proof of Theorem 4.3, Lemma A.1 of Linton, Song, and Whang (2010) implies

lim sup
n→∞

sup
P∈P

P

{
sup

g∈BL1(R)

∣∣E [g(λ′jf (G∗n))|Z
]
− E

[
g(λ′jf (GP ))

]∣∣ > ε

}
= 0. (S.15)

By combining (S.12), (S.14), (S.13) and (S.15), we have

lim sup
n→∞

sup
P∈PI00

P

{
sup

g∈BL1(R)

∣∣∣E [g(λ̂′jn(G∗n))|Z
]
− E

[
g(λ′jf (GP ))

]∣∣∣ > 3ε

}
< 3η.

Since the constants are arbitrary we have the second result.

Lemma B.5. (Fang and Santos (2019)) Suppose that a Hadamard directional derivative λ′f : D→
E has estimator λ̂′n : D→ E such that for some κ > 0 and Cn ∈ R+, ‖λ̂′n(h)−λ̂′n(k)‖E ≤ Cn‖h−k‖κD.

Let P denote a set of probability distributions. Suppose that (a) Cn = OP (1) uniformly over

P ∈ P, i.e., for all ε > 0 there is an M such that supP∈P P {Cn > M} < ε, and (b) for all ε > 0,

lim supn→∞ supP∈P P
{
‖λ̂′n(h)− λ′f (h)‖E > ε

}
= 0. Then for all compact K ∈ D, letting Kδ for

any δ > 0 denote the δ-enlargement of K, for every ε > 0 we have

lim
δ→0+

lim sup
n→∞

sup
P∈P

P

{
sup
h∈Kδ

‖λ̂′n(h)− λ′f (h)‖E > ε

}
= 0.

Proof of Lemma B.5. This is a straightforward adaptation of Lemma S.3.6 of Fang and Santos

(2019), and only needs a few minor modifications. First, the assumption on Cn must be strength-

ened to hold uniformly over P ∈ P. Most of the statements are analytic in nature (including

the appeal to their Lemma S.3.4) and assumed to hold outer almost surely, and the probabilistic

inequalities still hold when taking suprema over P ∈ P.

Proof of Theorem 4.5. For convenience let G∗n = rn(f∗n − fn) and let Z = {Zi}ni=1. Consider the

subset PI00, which is the collection of P ∈ PI0 such that X0 6= ∅. Let F̂n,P (s) = P
{
λ̂′jn(G∗n) ≤ s|Z

}
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and FP (s) = P
{
λ′jf (GP ) ≤ s

}
be the distribution functions of bootstrapped and asymptotic statis-

tics. We note that q̂λ∗(1− α) = inf{q ∈ R : F̂n,P (q) ≥ 1− α}, and define qPλ′(1− α) = inf{q ∈ R :

FP (q) ≥ 1−α}. Lemma 10.11 of Kosorok (2008) can be extended to hold uniformly over P ∈ PI00,

so that given the second result of Lemma B.4, under Assumption A7, for any closed S ⊂ R with

minS > 0,

lim
n→∞

sup
P∈PI00

P

{
sup
s∈S
|F̂n,P (s)− FP (s)| > ε

}
= 0.

As in the proof of Theorem S.1.1 of Fang and Santos (2019), we find that for any ε > 0,

sup
P∈PI00

P
{
|q̂λ∗(1− α)− qPλ′(1− α)| > ε

}
→ 0, (S.16)

so that the critical values are consistent uniformly over P ∈ PI00. Under the null hypothesis,

rnλj(fn) = rn(λj(fn)− λj(f)), and Lemma B.4, Assumption A7 and (S.16) imply

lim sup
n→∞

sup
P∈PI00

∣∣P {rnλj(fn) > q̂λ∗(1− α)} − P
{
λ′jf (GP ) > qPλ′(1− α)

}∣∣ = 0.

Since the second probability inside the absolute value is less than or equal to α, we have

lim sup
n→∞

sup
P∈PI00

P {rnλj(fn) > q̂λ∗(1− α)} ≤ α. (S.17)

Now consider the subset PI0\PI00, which implies that X0 = ∅, that is, such that ψ(f)(x) < 0

for all x ∈ X. The definition of X̂0 ensures that under the assumption that X0 = ∅,

P
{
X̂0 6= X

}
= P

{
sup
x∈X
|ψ(fn)(x)| ≤ bn

}
≤ P

{
sup
x∈X
|rn(ψ(fn)(x)− ψ(f)(x))|+ sup

x∈X
|rnψ(f)(x)| ≤ rnbn

}
→ 0 (S.18)

uniformly over P ∈ PI0\PI00, where the inequality follows from the fact that supx∈X |ψ(f)(x)| > 0

and bn → 0 and by Assumptions A5 and A6. Let λ̃′jn be defined like their asymptotic counterparts

λ̃′jf that were defined in Assumption A7:

λ̃′2n(h) = sup
(u,x)∈Ufn (X,an)

[h(u, x)]+, λ̃′4n(h) =

(∫
X

sup
u∈Ufn (x,an)

[h(u, x)]p+dm(x)

)p
.

A small modification of the proof of the second part of Lemma B.4 (that is, without estimation

of X0) implies that λ̃′jn(rn(f∗n − fn)) ; λ̃′jf (GP ) in probability uniformly over P ∈ PI0 . Since

also (S.18) implies that for all ε > 0, lim supn→∞ supP∈PI0\PI00
P
{∣∣∣λ̂′jn(G∗n)− λ̃′jn(G∗n)

∣∣∣ > ε|Z
}

= 0,
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we know also that λ̂′jn(G∗n) ; λ̃′jf (GP ) uniformly over P ∈ PI0\PI00. Under Assumption A7, there

is some q > 0 such that infP∈PI0\PI00
inf
{
q ∈ R : P

{
λ̃′jf (GP ) ≤ q

}
≥ 1− α

}
≥ q. Using this fact

with another small modification of the second part of Lemma B.4 implies that there is a q > 0 such

that

lim inf
n→∞

inf
P∈PI0\PI00

P
{
q̂λ∗(1− α) ≥ q

}
= 1. (S.19)

On the other hand, the first part of Lemma B.4 implies, as in Corollary 4.2 in the main text but

uniformly over P ∈ PI0\PI00, that for all ε > 0, lim supn→∞ supP∈PI0\PI00
P {rnλj(fn) > ε} = 0.

Combining this fact with (S.19) implies that

lim sup
n→∞

sup
P∈PI0\PI00

P {rnλj(fn) > q̂λ∗(1− α)} = 0. (S.20)

Then (S.17) and (S.20) together imply the result.
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