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Abstract

In many implementation problems, one does not know the true probability gov-
erning the type space Ω but will know some summary statistics. To this setting
I introduce stylized implementation: The mechanism designer first whittles Ω
down to a high probability event Ω∗. She then ex-post implements the desired
decision over Ω∗, yielding some mechanism as the solution. I argue that if
the mechanism designer uses that mechanism, then, with high probability, the
desired decision will be implemented over Ω. Taking the stylized approach to
implementation can yield significantly better solutions than taking the ex-post
approach. An application to repeated resource allocation is considered.
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1 Introduction

In a typical implementation problem involving a mechanism designer and a set of
agents, it is unlikely that the true probability measure governing the type space Ω will
be common knowledge, or even known to anyone. On the other hand, having common
knowledge of some basic summary statistics about Ω seems quite plausible. Such
knowledge could come from prior experience dealing with similar decision problems
or groups of players.

In such a scenario, without a prior, the mechanism designer is unable to take
the Bayesian approach to implementation. Ex-post implementation is certainly an
option, but that would involve completely ignoring the available summary statistics.
Intuitively, ignoring such statistics could be quite suboptimal. For example, if a type
involves repeated draws from a distribution – a common situation in dynamic decision
problems – and it is known that the draws are close to independent, then when there
are many dates, the Central Limit Theorem would imply that the realized type is
highly likely to lie in a tiny sliver of the type space. Such a seemingly important fact
would simply not be incorporated in ex-post implementation.

In this paper, I present an alternative approach to implementation, related to
ex-post implementation, but that can incorporate those potentially very valuable
summary statistics.

To begin with, I introduce a new equilibrium notion weaker than ex-post equi-
librium: Given a direct mechanism, possibly dynamic, I define what it means for
truth-telling to be an ε-ex-post equilibrium. When truth-telling is an ε-ex-post equi-
librium, I argue that one can expect, with high probability, all agents to report the
truth at all dates.

And now, consider the following stylized approach to implementation: The mech-
anism designer whittles the true type space Ω down to a smaller “stylized type space”
Ω∗. The whittling must be guided by the known summary statistics: Ω∗ needs to be
chosen in a way so that, given the known summary statistics, it is common knowledge
that the realized type ω will land in Ω∗ with sufficiently high probability.

The mechanism designer then takes the ex-post approach to solve the implemen-
tation problem over Ω∗. Let M∗, a direct mechanism over Ω∗, be a resulting solution.
Compose M∗ with a retraction mapping [·] : Ω → Ω∗ to get a direct mechanism
M∗ ◦ [·] over the true type space Ω. Call it a stylized mechanism.

The stylized approach to implementation is to generate such a stylized mechanism
and use it on the agents.

In what sense does this approach “work?” In the paper I show that truth-telling
is an ε-ex-post equilibrium of M∗ ◦ [·]. Consequently, the mechanism designer can
expect with high probability that all agents report the truth at all dates. Moreover,
recall, M∗ implements the desired decision over Ω∗, which is, itself, a high probability
event. Putting these two together, and we conclude that M∗ ◦ [·] implements the
desired decision with high probability.
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If the mechanism designer is comfortable with implementation with high proba-
bility rather than implementation over the entire type space, then taking the stylized
approach to implementation can yield significantly better mechanisms than taking
the ex-post approach. In particular, in settings where there is a notion of cost, it can
yield significantly cheaper mechanisms.

In the second half of the paper I demonstrate this by considering an application
to a repeated resource allocation problem. The setting is quasilinear, agents are
protected by limited liability, and the mechanism designer can make nonnegative
transfers to the agents in an effort to implement the efficient allocation of resources
each date. I show that when the number of agents and dates goes to infinity, the
cheapest ex-post mechanism – which is essentially just a sequence of VCG mechanisms
– has an infinite cost-to-surplus ratio. On the other hand, if agents are patient and
some “Central Limit Theorem style” summary statistics are known, then, by taking
the stylized approach to implementation, the principal can – via a stylized mechanism
I call the linked VCG mechanism – implement the efficient allocation almost surely
at a cost-to-surplus ratio of zero.

Recently, Lee (2017) and Azevedo and Budish (2019) have explored notions of
approximate strategy-proofness. My work is related in the sense that a stylized
mechanism can be viewed as being an approximately ex-post mechanism. Also related
are Jackson and Manelli (1997), who show how the attractive properties of the market
mechanism are approximately preserved when the price-taking assumption is relaxed,
and Bergemann and Välimäki (2002), who consider dynamic ex-post implementation
when there is a common prior. The concept of ε-ex-post equilibrium is related to
the contemporaneous perfect ε-equilibrium of Mailath, Postlewaite, and Samuelson
(2005).

In the application to repeated resource allocation, my work on linking VCG mech-
anisms over stylized type spaces is related the work of Holmström (1979) on VCG
mechanisms over restricted preference domains. See also Green and Laffont (1977).
In the many agents and dates limit, the linked VCG mechanism that implements the
efficient allocation almost surely at a cost-to-surplus ratio of zero can be viewed as a
type of budget mechanism. A number of papers have shown how budget mechanisms
can align incentives across multiple problems when transfers are unavailable. See, for
example, Jackson and Sonnenschein (2007) and Frankel (2014). My work reveals a
surprising connection between budget mechanisms and VCG mechanisms.

2 Stylized Implementation

Decision Problems.

An N -agent T -date decision problem is a triple (Ω, D, U). Ω = Π1≤n≤N, 1≤t≤TΩn
t is

the type space, where each Ωn
t is a finite set of date t types for agent n. D = ΠT

t=1Dt

is a finite set of decision sequences. Un : D × Ω → R is agent n’s payoff function –
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which can depend on other agents’ types – and is defined to be

Un(d, ω) =
T∑
t=1

βt−1unt (d|t, ω|t),

where β ∈ (0, 1] is the discount factor and unt : D|t × Ω|t → R is agent n’s date t
utility function, which depends on the history of decisions, d|t, and types, ω|t, up
through date t.

For the rest of this section, fix a decision problem (Ω, D, U).

Notation.

For an object ·nt indexed by agents and dates, let the superscript denote the agent
index and the subscript denote the date index. Let ·n denote agent n’s sequence of ·nt
across all dates and let ·t denote the date t profile of ·nt across all agents. Let · denote
the array of ·nt across agents and dates. If an object ·n is only indexed by agents, then
let · denote the profile of ·n across agents. If an object ·t is only indexed by date, then
let · denote the sequence of ·t across all dates, and let ·|t denote the subsequence of ·
up through date t.

Let A and B be two sets of sequences. A map f : A → B is adapted is
a|t = a′|t ⇒ f(a)|t = f(a′)|t.

Statistical Models

A statistical model is summarized by a nonempty set of probabilities, P , over Ω. It is
common knowledge that ω is governed by some true probability, call it P , lying in P .
In a typical application, P will be an infinite set of probabilities derived from some
exogenous commonly known summary statistics about ω.

In addition, I assume it is common knowledge each agent n knows his own
marginal, P n, of the true probability.

Direct Mechanisms

A direct mechanism is an adapted map M : Ω→ D.
Given a direct mechanism M , an agent n strategy, σn, consists of a sequence of

maps σnt : D|t−1 × Ωn|t → Ωn
t . Let Σn denote the set of all agent n strategies. A

profile of strategies, σ, can be viewed as an adapted map σ : Ω → Ω. Let id be the
strategy profile in which all agents report the truth at all dates.

ε-Ex-Post Equilibrium

3



For the rest of the paper, fix an ε > 0, to be interpreted as “small.”
Given a direct mechanism M , consider the following scenario: Agent n is standing

at date t, having

• observed (d|t−1, ω
n|t),

• reported the truth up through date t− 1, and

• conjectured that all other agents are playing id−n.

He then wonders – if my type ends up being some ωn, what is the maximum regret I
will feel, in today’s terms, if I continue to report the truth until the end?2

The answer is the following quantity:

Rn
t (d|t−1, ω

n) = max
ω−n∈Ω−n s.t. M(ω−n,ωn)|t−1=d|t−1,

ω̂n∈Ωn s.t. ω̂n|t=ωn|t

T∑
s=t

βs−t[uns (M(ω−n, ω̂n)|s, (ω−n, ωn)|s)

− uns (M(ω−n, ωn)|s, (ω−n, ωn)|s)].

Of course, at date t, agent n has only observed ωn|t, and so does not know what
ωn will be, and therefore what his maximum regret Rn

t (d|t−1, ω
n) is. However, he

does know P n, and can therefore form a conditional expected maximum regret,
EPn [Rn

t (d|t−1, ω
n) | ωn|t]. This quantity measures how far off from being ex-post

optimal it is for agent n to report the truth from date t until the end, assuming all
other agents play id−n, and agent n has reported the truth up through date t− 1.

Definition. An agent n strategy σn is reasonable given the conjecture that all other
agents play id−n if, for all dates t,

EPn [Rn
s (d|s−1, ω

n) | ωn|s] ≤ ε ∀s ≤ t⇒ σnt (d|t−1, ω
n|t) = ωnt . (1)

Consider agent n deciding what to report at date 1. Given his conjecture that all
other agents play id−n, if the left side of (1) is satisfied for t = 1, then it could be
said that, from the perspective of agent n at date 1, reporting the truth starting from
today is within ε of being ex-post optimal. Therefore, I assume agent n reports the
truth at date 1. The definition of reasonable σn is then justified by induction.

Let Σn(id−n) denote the set of all reasonable σn, and let Σ(id) denote the set of
all reasonable strategy profiles.

Definition. id is an ε-ex-post equilibrium if it is common knowledge that every rea-
sonable strategy profile, σ, satisfies P (σ(ω) 6= ω) ≤ ε.

2What if the observed (d|t−1, ω
n|t) is incompatible with the conjecture that all other agents play

id−n, assuming agent n has reported the truth up through date t − 1? This is impossible. If this
were the case, then (d|t−1, ω

n|t) would be incompatible with any σ−n, and, therefore, cannot be
observed by an agent n who has reported the truth up through date t− 1.

4



When id is an ε-ex-post equilibrium of a direct mechanism, I will interpret it to
mean that one can expect some reasonable strategy profile σ ∈ Σ(id) to be played. In
a typical application, the set, Σ(id), will not be known to anyone. Nevertheless, one
will still be able to deduce things just from the knowledge that the strategy profile
being played belongs in Σ(id) – for example, one knows that all agents will report
the truth at all dates will probability at least 1− ε.

I am now ready to introduce the stylized approach to implementation.

Stylized Type Spaces

For the rest of the paper, assume private values: Un(d, ω) = Un(d, ωn) for all n.
Given a nonempty subset Ω∗n ⊂ Ωn for each agent n, define the stylized type

space Ω∗ = Π1≤n≤NΩ∗n. A retraction [·]n is an adapted map from Ωn to Ω∗n that is
the identity on Ω∗n.

Lemma 1. There exists a retraction from Ωn to Ω∗n.

Proof of Lemma 1. Let t(ωn) be the first date t for which there does not exist an
ω̂n ∈ Ω∗n such that ω̂n|t = ωn|t. t(ωn) is a stopping time. If ωn ∈ Ω∗n, then set
t(ωn) = T+1. For each ωn|t(ωn)−1, select a ω̂n ∈ Ω∗n such that ω̂n|t(ωn)−1 = ωn|t(ωn)−1.
Define [ωn] to be the ω̂n selected given ωn|t(ωn)−1. It is clearly the identity function
over Ω∗n.

To verify [·]n is adapted, let ω′n, ω′′n ∈ Ωn satisfy ω′n|t = ω′′n|t for some t. Since
t(ω) is a stopping time, it must be that either t ≥ t(ω′n) = t(ω′′n) or t < t(ω′n), t(ω′′n).
In the former case, [ω′n] = [ω′′n]. In the latter case, [ω′n]|t = ω′n|t = ω′′|t = [ω′′n]|t.

Suppose an ex-post direct mechanism over Ω∗ has been identified – that is, an
adapted map M∗ : Ω∗ → D satisfying

Un(M∗(ω−n, ωn), ωn) ≥ Un(M∗(ω−n, ω̂n), ωn) ∀n, ω−n ∈ Ω∗−n, ωn, ω̂n ∈ Ω∗n.

Then composing M∗ with a retraction profile yields a direct mechanism, M∗ ◦ [·]. I
will call such a direct mechanism a stylized mechanism, and, when denoting a stylized
mechanism, I will specify both the direct mechanism and the underlying stylized type
space.

I now show, given a stylized mechanism (Ω∗,M∗ ◦ [·]) and a statistical model P ,
if it is common knowledge P n(Ω∗n) is sufficiently close to 1 for all agents n, then id
is an ε-ex-post equilibrium of M∗ ◦ [·].

Stylized Mechanisms

Fix a statistical model P , a stylized mechanism (Ω∗,M∗ ◦ [·]), and let R be an upper
bound on Rn

t (d|t−1, ω
n) for all n, t.
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Lemma 2. If ωn ∈ Ω∗n then Rn
t (d|t−1, ω

n) = 0.

Proof. The proof relies on the private values assumption and the fact that the way
Ωn is retracted onto Ω∗n is independent of Ω−n for all agents n.

Let ωn ∈ Ω∗n and Rn
t (d|t−1, ω

n) be defined. Then

Rn
t (d|t−1, ω

n) = max
ω−n∈Ω−n s.t. M(ω−n,ωn)|t−1=d|t−1,

ω̂n∈Ωn s.t. ω̂n|t=ωn|t

T∑
s=t

βs−t[uns (M∗ ◦ [ω−n, ω̂n]|s, ωn|s)

−uns (M∗ ◦ [ω−n, ωn]|s, ωn|s)]
= max

ω−n∈Ω−n s.t. M(ω−n,ωn)|t−1=d|t−1,
ω̂n∈Ωn s.t. ω̂n|t=ωn|t

β−t
[
Un(M∗([ω−n]−n, [ω̂n]n), ωn)

−Un(M∗([ω−n]−n, ωn), ωn)
]
.

Since [ω−n]−n ∈ Ω∗−n, [ω̂n]n, ωn ∈ Ω∗n, and M∗ is an ex-post direct mechanism
over Ω∗, therefore, β−t [Un(M∗([ω−n]−n, [ω̂n]n), ωn)− Un(M∗([ω−n]−n, ωn), ωn)] = 0.
Thus, Rn

t (d|t−1, ω
n) = 0.

Proposition 1. For any c > 0, if it is common knowledge that P n(ωn /∈ Ω∗n) ≤ cε
NR

for all agents n, then it is common knowledge that P (σ(ω) 6= ω) < c for all σ ∈ Σ(id).
In particular, if c ≤ ε, then id is an ε-ex-post equilibrium.

Proof of Proposition 1. Define Xn
t (ω) := P n(ωn /∈ Ω∗n | ωn|t). Extend the sequence

by one date by defining Xn
T+1 = Xn

T . It is common knowledge Xn is a nonnegative
martingale with respect to P with expected value Xn

0 = P n(ωn /∈ Ω∗n) ≤ cε
NR

.
Let τn denote the stopping time when Xn

t first exceeds ε
R

. If Xn
t never exceeds

ε
R

, then set τn = T + 1. Let En ⊂ Ω denote the event on which there exists a date t
such that Xn

t exceeds ε
R

. By Doob’s optional stopping theorem, we have

cε

NR
≥ Xn

0 = EXn
τ = EXn

τ 1τ≤T + EXn
τ 1τ=T+1 ≥ EXn

τ 1τ≤T >
ε

R
E1τ≤T =

ε

R
P (En).

Thus, it is common knowledge P (En) < c
N

. Now, by de Morgan’s Law, it is common
knowledge that

P

(
∃t, n P n(ωn /∈ Ω∗n | ωn|t) >

ε

R

)
= P (∪Nn=1E

n) ≤
N∑
n=1

P (En) < c.

Let ω /∈ ∪Nn=1E
n. Then ∀t, n P n(ωn /∈ Ω∗n | ωn|t) ≤ ε

R
. Since Lemma 2 implies

EPn [Rn
t (d|t−1, ω

n) | ωn|t] ≤ P n(ωn /∈ Ω∗n | ωn|t)R, we have

∀t, n EPn [Rn
t (d|t−1, ω

n) | ωn|t] ≤ ε.
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Let σ ∈ Σ(id). Then, by definition, σ(ω) = ω. Thus, P (σ(ω) 6= ω) ≤ P (∪Nn=1E
n) <

c.

Stylized Implementation

Consider the following set of primitives:

A decision problem (Ω, D, U), a statistical model P , and an implementation
problem consisting of, for each ω ∈ Ω, a set of desirable decisions D(ω) ⊂ D.

Example: In an auction decision problem, a decision would be an allocation of
the object along with payments from the bidders. And now, if the implemen-
tation problem is the efficient one, then the set of desirable decisions would be
those that allocate the object to the bidder with the highest valuation.

The ex-post approach to implementation is to find an ex-post direct mechanism
M : Ω→ D satisfying M(ω) ∈ D(ω) for all ω ∈ Ω.

If the mechanism designer is willing to accept implementation with high probabil-
ity over implementation for all types, then the theory we have developed in this paper
– in particular, Proposition 1 – provides the mechanism designer with an alternative:
The stylized approach to implementation.

• First choose a stylized type space Ω∗ such that it is common knowledge P n(Ω∗n)
is sufficiently close to 1 for all agents n.

• Take the ex-post approach to solving the implementation problem over Ω∗.

• This yields some ex-post direct mechanism M∗ : Ω∗ → D satisfying M∗(ω) ∈
D(ω) for all ω ∈ Ω∗.

• Create the stylized mechanism M∗◦ [·]. With high probability, M∗◦ [ω] ∈ D(ω).

Moreover, Proposition 1 tells us the mechanism designer can control how high is
the probability the desired decision is implemented by choosing how likely is Ω∗n for
each n. In particular, as all Ω∗n become almost sure, M∗ ◦ [·] implements the desired
decision almost surely.

3 Application: Repeated Resource Allocation

A Model of Repeated Resource Allocation.
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A principal (she) possesses a quantity q of a divisible, durable resource. She repeatedly
allocates this resource to a set of N ≥ 2 agents across T ≥ 1 dates.

At each date t, each agent n is endowed with ωnt ∈ [0,∞) units of a project type, f .
f is a strictly concave, C1 function f : [0,∞) → [0,∞) that maps resource quantity
to payoff. Assume f ′(0) <∞.

An allocation array a assigns agent n at date t an amount ant ≥ 0 of the resource,
subject to feasibility constraints,

∑N
n=1 a

n
t ≤ q for all t. A transfer profile w specifies

a profile of nonnegative payments from the principal to the agents at date T .
The principal desires to efficiently allocate her resource each date.
One application of this model is to an organization’s problem of designing an

internal talent marketplace. Instead of having a static collection of employee-job
matchings, many organizations are reimagining work as a flow of discrete tasks that
need to be assigned to available employees through some dynamic mechanism. See
Smet, Lund and Schaninger (2016).

This problem can be viewed through the repeated resource allocation model: The
principal corresponds to the organization’s headquarters and the agents correspond
to various departments. Projects are departmental tasks. The stock of durable re-
sources is the organization’s pool of employees parameterized by hours of labor per
date, where a date could be, say, one month. Transfers from the principal to agents
correspond to incentive pay for department managers.

Of course, realistically, departments might have different types of projects and
employees might have different skill sets that may make them more suitable to some
projects than others. The repeated resource allocation model can be generalized to
accommodate such realism by allowing for multiples project and resource types. The
analysis below can be adapted to handle such a generalization of the model.

The Induced Decision Problem

The repeated resource allocation model defines an N -agent T -date decision prob-
lem:

• Ω = [0,∞)NT ,

• D = {(a, w) |
∑N

n=1 a
n
t ≤ q ∀t and wn ≥ 0 ∀n}, and

• Un((a, w), ω) = Un((an, wn), ωn) =
∑T

t=1 β
t−1ωnt f

(
ant
ωn
t

)
+ βT−1wn for all n.

In addition, define the following auxiliary quantities,

• agent n surplus: Sn((a, w), ω) = Sn(an, ωn) =
∑T

t=1 β
t−1ωnt f

(
ant
ωn
t

)
,

• total surplus: S((a, w), ω) = S(a, ω) =
∑N

n=1 S
n(an, ωn), and

• cost: C((a, w), ω) = C(w) =
∑
wn.
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A direct mechanism can be expressed as a pair of adapted maps (A,W ) : Ω → D
consisting of an allocation map and a transfer map. The efficient allocation map is
the unique allocation map, A, satisfying

An
t (ω) =

ωnt∑N
m=1 ω

m
t

· v ∀ω ∈ Ω.

A direct mechanism (A,W ) is efficient if A ≡ A.
The principal’s desire to efficiently allocate her resource each date induces an im-

plementation problem where the set of desirable decisions isD(ω) = {(A(ω), w) | wn ≥
0 ∀n} for all ω ∈ Ω.

I now compare the ex-post and stylized approaches to implementation, with a
focus on which approach is cheaper for the principal.

The Unlinked VCG Mechanism

Suppose the principal wants to ex-post implement the efficient allocation. One option
is to run a separate Vickrey-Clark-Groves (VCG) mechanism each date, paying each
agent the sum of all other agents’ contributions to surplus:

Definition. The unlinked VCG mechanism (A, V ) is the efficient direct mechanism
with transfer map defined as follows: For all ω ∈ Ω,

V n(ω) =
∑
m 6=n

T∑
t=1

βt−Tωmt f

(
Am
t (ω)

ωmt

)
.

Proposition 2. The unlinked VCG mechanism is the cheapest efficient ex-post direct
mechanism: Let (A,W ) be any efficient ex-post direct mechanism. Then for every
ω ∈ Ω, we have C(V (ω)) ≤ C(W (ω)).

Proposition 2 is a corollary of Proposition 3 below.
Even though the unlinked VCG mechanism is the cheapest mechanism that ex-

post implements the efficient allocation, it is still expensive with cost-to-surplus ratio

C(ω)

S(A(ω), ω)
= N − 1.

In particular, as the number of agents tends to infinity, so does the cost-to-surplus
ratio.

The Linked VCG Mechanism
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Definition. Given Ω∗, the linked VCG mechanism (A|Ω∗ , V ∗) is an efficient ex-post
direct mechanism over Ω∗ with transfer map defined as follows: For all ω ∈ Ω∗,

V ∗n(ω) = V n(ω)− arg min
ω̂n∈Ω∗n

V n(ω−n, ω̂n).

Proposition 3. If Ω∗ is convex, then the linked VCG mechanism (A|Ω∗ , V ∗) is the
cheapest efficient ex-post direct mechanism over Ω∗.

Proposition 3 is a consequence of Theorem 1 of Hölmström (1979) about the
necessity of VCG mechanisms over restricted domains. The proof is a straightforward
application of the envelope theorem.

Since the decision problem is one of private values, given an arbitrary retrac-
tion profile [·] : Ω → Ω∗ (which exists by Lemma 1), Proposition 1 implies that
(Ω∗, (A|Ω∗ , V ∗) ◦ [·]) implements the efficient allocation with high probability pro-
vided it is common knowledge P n(Ω∗n) is sufficiently close to 1 for each agent n. As
an abuse of nomenclature, call (Ω∗, (A|Ω∗ , V ∗) ◦ [·]) a linked VCG mechanism as well,
and from now on I will denote it by (Ω∗, V ∗).

I now show, as the number of agents and dates goes to infinity, assuming agents
are patient and P implies common knowledge of some “Central Limit Theorem style”
summary statistics, then, by taking the stylized approach to implementation, the prin-
cipal can implement the efficient allocation almost surely at a cost-to-surplus ratio of
zero. This is in stark contrast to taking the ex-post approach, which would entail a
cost-to-surplus ratio of infinity.

A Family of Repeated Resource Allocation Models

Fix a quantity q > 0 of the resource and a project type f . Consider the family of
decision problems parameterized by N satisfying (q(N), f(N)) = (Nq, f) and T (N) =
N . Refer to the member of the family with N -agents as the N -agent decision problem.
Throughout the analysis below, we may append (N) to a parameter to emphasize that
it is belongs to the N -agent decision problem.

Assume the family of statistical models {P(N)}N≥2 satisfies the following “Central
Limit Theorem style” summary statistics:

Assumption 1. There exist ωmax > ωavg > 0 and an increasing function I : (0,∞)→
(0,∞) satisfying limx→∞ I(x) = ∞ such that, for each N-agent decision problem, it
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is common knowledge that

P (N)(ωnt > ωmax) = 0 ∀n, t ≤ N,

P (N)

[∣∣∣∣∑N
t=1 ω

n
t

N
− ωavg

∣∣∣∣ > x

]
≤ exp(−I(x)N) ∀x > 0, n ≤ N,

P (N)

[∣∣∣∣∑N
n=1 ω

n
t

N
− ωavg

∣∣∣∣ > x

]
≤ exp(−I(x)N) ∀x > 0, t ≤ N.

Theorem 1. If β = 1, then there exists a family, {(Ω∗(N), V ∗(N))}N≥2, of linked
VCG mechanisms, one for each N-agent decision problem, such that id is an ε-ex-post
equilibrium of each mechanism, and it is common knowledge that

lim
N→∞

sup
σ∈Σ(N)(id)

P (N)(σ(ω) 6= ω) = 0,

lim
N→∞

inf
σ∈Σ(N)(id)

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω)

EP (N)S(A(ω), ω)
= 1,

and

lim
N→∞

sup
σ∈Σ(N)(id)

EP (N)C(V ∗ ◦ [σ(ω)])

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω)
= 0.

Constructing the Linked VCG Mechanisms

Given N and a direct mechanism of the N -model, R(N) := N2vf ′(0) is an upper
bound on Rn

t (d|t−1, ω
n) for all n, t ≤ N .

It is possible to choose a family of positive reals, {x(N)}N≥2 such that

exp(−I(x(N))N) ≤
ε
N
ε

NR(N)
∀N,

lim
N→∞

x(N) = 0.

Given such a family of reals, {x(N)}N≥2, define, for each N ,

Ω∗n(N) =

{
ωn ∈ Ωn(N)

∣∣∣∣∣ ωnt ≤ ωmax ∀t ≤ N,

∣∣∣∣∑N
t=1 ω

n
t

N
− ωavg

∣∣∣∣ ≤ x(N)

}

for all n ≤ N .
This yields a family of stylized type spaces {Ω∗(N)}N≥2, and, consequently, a

family of linked VCG mechanisms {(Ω∗(N), V ∗(N))}N≥2.
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Proposition 1 now implies that id is an ε-ex-post equilibrium in each of these
linked VCG mechanisms and it is common knowledge that

P (N) (σ(ω) 6= ω) <
ε

N
∀σ ∈ Σ(N)(id).

Thus, limN→∞ supσ∈Σ(N)(id) P (N)(σ(ω) 6= ω) ≤ limN→∞
ε
N

= 0.

Efficiency

It is possible to choose a family of positive reals, {y(N)}N≥2 such that

lim
N→∞

(N − 1)N exp(−I(y(N))N) = 0,

lim
N→∞

y(N) = 0.

Define

Ω∗∗(N) =

{
ω s.t.

∣∣∣∣∑N
n=1 ω

n
t

N
− ωavg

∣∣∣∣ ≤ y(N) ∀t ≤ N,

@n, t ≤ N P n(N)(ωn /∈ Ω∗n | ωn|t) >
ε

R(N)

}
By design, σ(ω) = ω for all σ ∈ Σ(N)(id) and ω ∈ Ω∗∗(N), and it is common
knowledge that limN→∞ P (N)(Ω∗∗(N)) ≥ limN→∞ 1−N exp(−I(y(N))N)− ε

N
= 1.

Also,

inf
ω∈Ω∗∗(N)

S(A(ω), ω) ≥ N2(ωavg − y(N))f

(
v

ωavg − y(N)

)
≥ N2vf ′

(
v

ωavg

)
sup

ω∈Ω(N)

S(A(ω), ω) ≤ N2vf ′(0)

Thus, for σ ∈ Σ(N)(id), we have

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω) ≥ EP (N)S(A(ω), ω)− (1− P (Ω∗∗))N2vf ′(0).

Therefore,

lim
N→∞

sup
σ∈Σ(N)(id)

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω)

EP (N)S(A(ω), ω)
≥ lim

N→∞
1− (1− P (Ω∗∗))N2vf ′(0)

N2vf ′
(

v
ωavg

) = 1.

Since, by definition of A, we have S(A|Ω∗(N) ◦ [σ(ω)], ω) ≤ S(A(ω), ω) for all ω ∈
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Ω(N), therefore

lim
N→∞

sup
σ∈Σ(N)(id)

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω)

EP (N)S(A(ω), ω)
= 1.

Expected Cost

Given Ω∗(N), ω ∈ Ω∗(N), and ω̂n ∈ Ω∗n(N), we have, by the concavity of f ,

V n(ω)− V n(ω−n, ω̂n) =
N∑
t=1

[∑
m6=n

ωmt f

(
Nv

ωnt +
∑

m 6=n ω
m
t

)

−
∑
m 6=n

ωmt f

(
Nv

ω̂nt +
∑

m6=n ω
m
t

)]

≤
N∑
t=1

[
f ′

(
Nv

ω̂nt +
∑

m6=n ω
m
t

)(∑
m 6=n

ωmt

)

·

(
Nv

ωnt +
∑

m 6=n ω
m
t

− Nv

ω̂nt +
∑

m6=n ω
m
t

)]

=
N∑
t=1

[
f ′

(
Nv

ω̂nt +
∑

m6=n ω
m
t

)(∑
m6=n

ωmt

)

·

 (ω̂nt − ωnt )Nv(
ωnt +

∑
m 6=n ω

m
t

)(
ω̂nt +

∑
m 6=n ω

m
t

)
 .

This expression then implies

Lemma 3. Given (Ω∗(N), V ∗(N)) and ω ∈ Ω∗∗(N), we have

V ∗n(ω) ≤ N2x(N)vf ′
(

v

ωavg + y(N)

)
ωavg + y(N)

(ωavg − y(N))2

Applying the lemma yields

EP (N)C(V ∗ ◦ [σ(ω)]) ≤ N22x(N)vf ′
(

v

ωavg + y(N)

)
ωavg + y(N)

(ωavg − y(N))2

+

[
N exp(−I(y(N))N) +

ε(N)

N

]
(N − 1)N2vf ′(0).
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Also,

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω) ≥ P (N)(Ω∗∗(N))N2vf ′
(

v

ωavg

)
Putting everything together and the theorem is proved:

lim
N→∞

sup
σ∈Σ(N)(id)

EP (N)C(V ∗ ◦ [σ(ω)])

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω)

≤ lim
N→∞

2x(N)f ′
(

v
ωavg+y(N)

)
ωavg+y(N)

(ωavg−y(N))2
+
[
(N − 1)N exp(−I(y(N))N) + ε(N)(N−1)

N

]
f ′(0)

P (N)(Ω∗∗(N))f ′
(

v
ωavg

)
= 0.
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