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Abstract

A single-unit ascending auction in which agents have interdependent values and observe mul-

tidimensional signals is studied. The focus is on a symmetric model in which each agent observes

two private signals: a signal about an idiosyncratic shock and a noisy signal about a common

shock. The challenge is to characterize how the (multidimensional) signals observed by an agent

are aggregated into the agent’s (one-dimensional) bid; this is solved by projecting the private

signals of an agent onto a one-dimensional equilibrium statistic. An agent’s equilibrium statis-

tic aggregates the agent’s private signals while taking into account the feedback effects between

agents’ bids.

The equilibrium characterization reveals important properties of bidding strategies that do not

arise when agents observe one-dimensional signals. In contrast to one-dimensional environments,

the ascending auction may have multiple symmetric equilibria that yield different social surpluses.

This is the result of a strategic complementarity on how signals are aggregated into an agent’s

bid. In multidimensional environments, there is a failure of the linkage principle; in fact, a public

signal may jointly increase the social surplus and decrease the revenue. This is because changes

in the parameter of the model change how the signals are aggregated into an agent’s bid.
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1 Introduction

Motivation. Auctions have been extensively studied in economics. It is an empirically

relevant and a theoretically rich literature: auctions are commonly used to allocate

goods across agents and there is a rich class of models that allows the study of bidding

in auctions. One of the critical assumptions in most auction models is that agents

observe one-dimensional signals.

The objective of our paper is twofold: (i) characterize the equilibrium of an auc-

tion in which agents observe multidimensional signals and (ii) analyze the differences

between auctions with one-dimensional signals and auctions with multidimensional sig-

nals. As a byproduct, we provide predictions of auctions that arise only when agents

observe multidimensional signals.

Our paper is motivated by the observation that in many environments agents’ infor-

mation is naturally a multidimensional object. As an example, consider the auction of

an oil field. Suppose that an agent’s valuation of the oil field is determined by the size

of the oil field and by the agents’ cost of extracting oil. Furthermore, assume that each

agent can privately observe his own cost of extracting oil and, additionally, agents ob-

serve conditionally independent noisy signals about the size of the oil field. This would

be an environment in which agents observe two-dimensional signals. Similarly, in most

auction environments agents observe multidimensional signals about their valuation of

the good (e.g. timber, procurements, art, and real estate).1

There is an important conceptual difference between bidding in an auction with one-

dimensional signals and multidimensional signals. If agents observe one-dimensional

signals, observing the bid of agent i is informationally equivalent to observing agent

i’s signal. In contrast, in environments with multidimensional signals, observing the

bid of agent i is not informationally equivalent to observing all the signals observed by

agent i. Hence, a bid must aggregate an agent’s signals. In the oil field example, agent

j cannot disentangle whether agent i’s low bid is caused by a high cost of extracting oil

or by the belief that the oil reservoir is small. The extent to which agent i’s bidding is

1In timber auctions, agents may differ in their harvesting cost and their estimate about the harvest quality (see Haile
(2001) or Athey and Levin (2001)). In highway procurement auctions, bidders are exposed to idiosyncratic cost shocks
and common cost shocks (see Somaini (2011) or Hong and Shum (2002)). In art auctions and real estate auctions,
agents have a known taste shock and an unknown common shock that can represent the quality of the good or the
future resale value.
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driven by his private costs or his beliefs about the size of the oil reservoir is critical for

agent j to determine his own bidding strategy. After all, agent j’s valuation of the oil

field is independent of agent i′s costs but is affected by agent i′s signal about the size

of the oil reservoir. This leads to an important difference in the equilibrium bidding.

The conceptual challenge is to take into account the feedback between agents’ bids:

the way agent i’s signals are aggregated into his bid depends on how agent j’s signals

are aggregated into his bid. For example, in an oil field auction, if costs are positively

correlated across agents, then agent i’s costs allow to partially disentangle the elements

that determine agent j’s bid (that is, agent j’s costs and his private signal about the

size of the oil reservoir). This influences agent i’s bid; in fact, as we show, this leads

agent i to bid less aggressively on his own private cost. This, in turn, influences agent

j’s bidding strategy. This problem of information aggregation has impeded the study

of auctions with multidimensional signals. We provide an equilibrium characterization

that allows to understand this problem of information aggregation.

Model. The model consists of N agents bidding for an indivisible good in an

ascending auction. The utility of an agent if he wins the object is determined by

a common shock and an idiosyncratic shock. Each agent privately observes his own

idiosyncratic shock and, additionally, each agent observes a conditionally independent

signal about the common shock. The valuations are log-normally distributed and the

signals are normally distributed. We focus on symmetric environments and symmetric

equilibria.

The two-dimensional signals contains the elements of a pure common values en-

vironment and a pure private values environment.2 Hence, the only departure from

the classic models in the auction literature is the multidimensionality of the informa-

tion structure. This allows to distill the essential elements of bidding strategies that

arise with multidimensional signals. Yet, the solution method extends to any Gaussian

information structure, possibly asymmetric.

The focus on an ascending auction and Gaussian signals is helpful to fully charac-

terize a class of equilibria. The assumption of Gaussian signals has been used in the

empirical auction literature (see, for example, Hong and Shum (2002)). Hence, this is

2If agents observed only their idiosyncratic shock, this would be a classic pure private value environment. If agents
observed only the signal on the common shock, this would be a classic pure common value environment.
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a natural model to study auctions with multidimensional signals.

Characterization of the Equilibrium. The main result of our paper is the char-

acterization of a class of equilibria in the ascending auction. In the class of equilibria

we characterize the drop-out time of an agent is determined by a linear combination

of the signals he observes. This linear combination is a sufficient statistic to determine

an agent’s bid in equilibrium. Since this is not in general a sufficient statistic of all

the information observed by an agent, we call this linear combination of signals an

equilibrium statistic. The equilibrium statistic has two roles: (i) it determines the in-

formation that agent n learns from the drop-out time of agent m, and (ii) it is optimal

for agent n to use only his equilibrium statistic to determine his drop-out time. Of

course, the optimality condition of agent n takes into account the information he infers

from the drop-out time of other agents.

The equilibrium characterization is tractable because the drop-out time of an agent

is determined by a linear combination of the signals he observes: the equilibrium

statistic. The linearity arises because expectations with Gaussian signals are linear.

Gaussian signals are commonly used in models in which agents have linear best re-

sponse.3 However, the ascending auction is not a linear best response game. In fact,

at any point in time, the beliefs of an agent about his own valuation are not Gaussian;

this is because an agent can only infer a lower bound on the drop-out time of the agents

that have not yet dropped out.

The ascending auction plays a critical role in keeping the Bayesian updating within

the Gaussian family when we evaluate the equilibrium conditions. In the equilibria we

characterize, an agent’s drop-out time remains optimal even after observing the drop-

out time of all other agents.4 Consequently, we evaluate the best response conditions

using the realized drop-out time of each agent (and not a lower bound). This property

of the equilibria in an ascending auction, in conjunction with the Gaussian signals,

makes the problem tractable. For example, a first-price auction with Gaussian signals

does not preserve the same tractability because it is not possible to evaluate an agent’s

best response conditions using the realized bids of all other agents.

3The classic approach in linear best-response games is to conjecture (and later verify) that there is an equilibrium
in which the joint distribution of actions is Gaussian.

4Formally, the set of equilibria we characterize form a posterior equilibrium. This is a stronger notion of equilibrium,
due to Green and Laffont (1987).
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Novel Predictions. The outcome of the auction is ultimately determined by the

equilibrium statistic. The analysis of auctions in multidimensional environments is

different than in one-dimensional environments because the equilibrium statistic is an

endogenous object. This leads to important features of bidding strategies that arise

only when gents observe multidimensional signals. These additional elements of bidding

strategies result in predictions of the ascending auction that arise only when agents

observe multidimensional signals.

In contrast to one-dimensional environments, in multidimensional environments, the

ascending auction may have multiple symmetric equilibria.5 The different equilibria

will yield different social surplus and different revenue.6 The multiplicity of equilibria

is caused by a complementarity in the weight agents place on their own idiosyncratic

shock in their bidding strategy. This complementarity arise because signals must be

aggregated into an agent’s bid. In general, with multidimensional signals, there is no

straightforward mapping between the distribution of signals and the social surplus.

In one-dimensional environments, public signals do not change the social surplus,

and public signals increase the revenue.7 In contrast, a public signal about the average

idiosyncratic shock across agents overturns both of these predictions: (i) the public

signal increases the social surplus generated by the auction, and (ii) the public signal

may also decrease the revenue.8 Note that a public signal about the average idiosyn-

cratic shock across agents does not change an agent’s expected valuation conditional

only on his private information: the valuation of an agent is independent of the id-

iosyncratic shock of other agent. Nevertheless, this public signal changes an agent’s

beliefs about the realization of the common shock. The public signal allows an agent

to disentangle what component of the bid of other agents is determined by their own

idiosyncratic shock or their signal about the common shock. This ultimately changes

the equilibrium statistic. More broadly, the comparative statics will be different in one-

dimensional environments than in multidimensional environments because any change

in the primitives of the model will change the equilibrium statistic. Hence, comparative

5Bikhchandani, Haile, and Riley (2002) show that there is a continuum of symmetric equilibria. Nevertheless, the
allocation and equilibrium price is the same across equilibria. See Krishna (2009) for a textbook discussion.

6We write “revenue” for ex ante expected revenue, and “social surplus” for ex ante expected surplus.
7In one-dimensional environments, the auction is efficient, so public signals cannot change the social surplus. The

fact that public signals increase the revenue is called the linkage principle. We discus this in Section 5.3.
8In fact, if the public signal about the average idiosyncratic shock is precise enough then the auction will be efficient

but the revenue will be equal to 0.
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statics are mediated by changes in the equilibrium statistic.

Literature Review. The literature on auctions with one-dimensional signals is

extensive. A large part of this literature is based on the seminal contribution by

Milgrom and Weber (1982). They eloquently describe the assumption as follows:

“To represent a bidder’s information by a single real-valued signal is to make

two substantive assumptions. Not only must his signal be a sufficient statistic

for all of the information he possesses concerning the value of the object

to him, it must also adequately summarize his information concerning the

signals received by the other bidders.” Milgrom and Weber (1982), p. 1097

The quote provides a clear explanation of what is entailed by assuming one-dimensional

signals. This also illustrates the difficulty in characterizing an equilibrium when agents

observe multidimensional signals: in general, an agent’s bid is not determined simply

by his interim expected valuation.9

The literature on auctions with multidimensional signals has made progress in two

ways. The first way is to make the appropriate assumptions on the distributions of

signals such that an agent’s bid is determined only by his interim expected valuation.

The second way is to provide properties of an auction without the need to characterize

the equilibrium bids. The distinguishing feature of our paper is that we do not impose

any assumptions on the correlations of signals across agents and we fully characterize

a class of equilibria. This allows to study how signals are aggregated into an agent’s

bid taking into account the feedback effects between the bids of different agents. This

ultimately delivers the new predictions about ascending auctions. We now discuss the

literature on auctions with multidimensional signals and interdependent valuations.10

Wilson (1998) studies an ascending auction with two-dimensional signals. Wilson

(1998) assumes that the random variables are log-normally distributed and drawn from

a diffuse prior.11 This can be seen as a particular limit of our model (see Footnote 21).

9An agent’s interim expected valuation is his expected valuation conditional only on his private signals.
10There is a literature that studies multidimensional signals in private value environments (see, for example, Fang

and Morris (2006) or Jackson and Swinkels (2005)). This literature is largely based on first-price auctions and aims to
understand how multidimensional signals change the bid-shading in a first-price auction. The presence of multidimen-
sional signals in this literature play a different role than in our model. In fact, an ascending auction has an equilibrium
in dominant strategies when agents have private values.

11The signals are drawn from a diffuse prior, hence, these are not technically random variables, and the updating
is not technically done by Bayes’ rule. The updating is done using a heuristic linear rule, which is akin of Bayesian
updating under log-normal random variables.
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In this limit, the bid of an agent is determined only by an agents interim expected

valuation. Due to its tractability, which is shared to a great extent by our model, the

model studied by Wilson (1998) has been used in empirical work.12

Dasgupta and Maskin (2000) study a generalized VCG mechanism. They show

that, if agents’ signals are independently distributed across agents, then an agent’s

interim expected valuation delivers a one-dimensional statistic that can be used to

characterize the Nash equilibria of the mechanism.13 Moreover, this can be used in

many other mechanisms as long as signals are independently distributed, including an

ascending auction and a first-price auction (see, for example, Goeree and Offerman

(2003) for an application to auctions).14

Jackson (2009) provides an example of an ascending auction in which an equilibrium

does not exist. The model studied therein is similar to our model — with a private and

a common signal — except the distribution of signals and payoff shocks has a finite

support (and hence, non-Gaussian). This shows that existence of an equilibrium is not

guaranteed in an auction model with multidimensional signals. The extent to which

it is possible to construct equilibria with multidimensional non-Gaussian information

structures is still an open question.

Pesendorfer and Swinkels (2000) study a sealed-bid uniform price auction in which

there are k goods for sale, each agent has a unit demand and each agent observes

two-dimensional signals. They study the limit in which the number of agents grows to

infinity. Pesendorfer and Swinkels (2000) are able to provide asymptotic properties of

any equilibrium (if this exists) without the need to characterize or prove the existence

of an equilibrium.

The paper is organized as follows. Section 2 provides the model. Section 3 studies

one-dimensional signals. Section 4 characterizes the equilibrium with two-dimensional

signals. Section 5 studies the impact of public signals. Section 6 generalizes the

methodology to allow for multidimensional asymmetric signals and other mechanisms.

Section 7 concludes. All proofs that are omitted in the main text are collected in the

appendix.

12See Hong and Shum (2003) for further discussions on the empirical anlysis and use of normal distributions.
13An interesting variation of a VCG mechanism for environments in which agents observe multidimensional signals

that are not independently distributed is studied by McLean and Postlewaite (2004).
14See also Levin, Peck, and Ye (2007).
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2 Model

2.1 Payoffs and Information

We study N agents bidding for an indivisible good in an ascending auction. The utility

of agent n ∈ N if he wins the object at price p is given by:

u(in, c, p) , exp(in) · exp(c)− p, (1)

where exp(·) denotes the exponential function, in ∈ R is an idiosyncratic shock and c

is a common shock. If an agent does not win the good he gets a utility equal to 0. To

make the notation more compact, we define:

vn , in + c. (2)

The payoff shock vn summarizes the valuation of agent n (note that exp(in) · exp(c) =

exp(vn)).

The idiosyncratic shocks and the common shock are jointly normally distributed

with mean 0 and variance σ2
i and σ2

c respectively. Assuming that the idiosyncratic and

common shock have 0 mean reduces the amount of notation, but it does not have any

role in the analysis. The idiosyncratic shocks have a correlation ρi ∈ (−1/(N − 1), 1)

across agents and are independently distributed of the common shock.15

Agent n observes two signals. The first signal agent n observes is a perfectly infor-

mative signal about his own idiosyncratic shock in. The second signal is a noisy signal

about the common shock:

sn , c+ εn, (3)

where εn is a noise term independent across agents, independent of all other random

variables in the model and normally distributed with variance σ2
ε. The private informa-

tion of agent n is summarized by the pair of random variables (in, sn). If every agent

n observed only signal in, this would be a pure private values model. If every agent n

observed only signal sn, this would be a pure common values model.

In a model of an oil field, exp(c) can be interpreted as the size of the oil field and

15The minimum statistically feasible correlation is −1/(N − 1). Hence, we do not impose any restrictions on the set
of possible feasible correlations beyond the fact that it must be an interior correlation.
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exp(in) can be interpreted as the technology of firm n. The total amount of oil that

firm n, with technology exp(in), can extract from an oil reserve exp(c) is equal to

exp(in) · exp(c). Li, Perrigne, and Vuong (2000) use log-additive payoffs (as in (1)) to

study Outer Continental Shelf wildcat auctions.

Multiplying the utility function by -1, the model can be interpreted as the procure-

ment of a project, with exp(in) · exp(c) being cost of delivering the project. exp(in)

can be interpreted as the total amount of inputs that bidder n needs to complete the

project and exp(c) can be interpreted as a price index of the inputs needed to com-

plete the project. Hong and Shum (2002) use log-additive payoffs (as in (1)) to study

procurements held by the state of New Jersey.

2.2 Ascending Auction

We study an ascending auction.16 An auctioneer rises the price continuously. At each

moment in time, an agent can drop out of the auction, in which case the agent does not

pay anything and does not get the object. The last agent to drop out of the auction

wins the object and pays the price at which the second to last agent dropped out of

the auction.17 18 As each drop-out time is associated to a unique price, we often use

the words price and drop-out time interchangeably.

The outcome of the ascending auction is described by the order in which each agent

drops out and the price at which each agent drops out. The number of agents left

in the auction when agent n dropped out of the auction is denoted by a permutation

π.19 For example, the identity of the last agent to drop out of the auction is given by

π−1(1). The price at which agents drop out of the auction is denoted by p1 > .... > pN .

Hence, for any strategy profile the expected utility of agent n is:

E[1

{
π−1(1) = n

}
(exp(in) · exp(c)− p2)],

16We follow Krishna (2009) in the formal description of the ascending auction.
17We assume that the auction continues until all agents have dropped out of the auction. The price at which the

last agent drops out is obviously payoff irrelevant because he only pays the price at which the second to last agent
dropped out of the auction. This allow us to simplify the notation in some parts of the paper because there is always
one drop-out time for each agent.

18In case of a tie the good is sold to each agent that was last to drop out with equal probability. In equilibrium, there
will be no ties and an agent will not be able to tie with another agent by changing his strategy unilaterally. Hence, as
it is standard in an ascending auction, the tie breaking rule does not matter.

19A permutation is a bijective function π : N → N .
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where 1{·} is the indicator function. We study the symmetric Nash equilibria of the

auction.

A symmetric strategy of agent n is a set of functions {P k
n}k∈N , with

P k
n : R2 × RN−k → R+. (4)

The function P k
n (i, sn, pk+1, ..., pN) is the drop-out time of agent n, when k agents are

left in the auction and the observed drop-out times are pN < ... < pk+1. The function

P k
n (i, sn, pk+1, ..., pN) must satisfy:

P k
n (i, sn, pk+1, ..., pN) ≥ pk+1.

That is, agent n cannot drop out of the auction at a price lower than the price at which

another agent has already dropped out. Note that we restrict attention to symmetric

equilibria in symmetric environments. Hence, it is sufficient to specify the price at

which an agent dropped of the auction but the identity of the agent is irrelevant (see

Section 6 for a generalization).

3 Benchmark: One-Dimensional Signals

We first study one-dimensional signals. The analysis of one-dimensional environments

will be helpful to understand the analysis of two-dimensional environments. The results

in this section are either direct corollaries or simple extensions of results that are well

known in the literature.

3.1 Information Structure

We assume agent n observes a one-dimensional signal:

s′n = in + b · (c+ εn), (5)

where b ∈ R+ is an exogenous parameter. That is, agent n observes only a linear

combination of the two-dimensional signal (in, sn).

The one-dimensional signal (5) provides a parametrized class of information struc-
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tures that allows to span from pure common values to pure private values. If b = 0,

then the model is a pure private value auction. The social surplus created will be large

and the winner’s curse will be low. If b→∞, then the model is a pure common value

auction. The social surplus created will be low and the winner’s curse will be high.

The specific form of the signal (in (5)) makes the connections to the model in

which agents observe both signals separately more transparent. This class of one-

dimensional signals is essentially a particular case of the model studied by Milgrom and

Weber (1982).20 Although we believe (5) provides a natural class of one-dimensional

information structures, to the best of our knowledge, there is no paper that studies

this specific class of signals except for the case b = 1.21

3.2 Characterization of Equilibrium with One-Dimensional Signals

We now characterize the equilibrium of the ascending auction. We relabel agents such

that the realization of signals satisfy:

s′1 > ... > s′N .

As signals are noisy, we might have that the order over valuations is not preserved. For

example, we may have vn+1 > vn (even though by construction s′n+1 ≤ s′n).

The expectation of vn assuming that signals (s′1, ..., s
′
n−1) are equal to s′n (that is,

assuming that all signals higher than s′n are equal to s′n) is denoted by:

E[vn|s′n, ..., s′n, s′n+1, ..., s
′
N ]. (6)

For example, if N = 3, then E[v2|s′2, s′2, s′3] denotes the expected valuation of the agent

with the second highest signal, conditional on the realization of his own signal, the

signal of agent 3, and assuming that the realization of agent 1’s signal is equal to s′2.

20If b ≤ 1, then this environment is a particular case of the model studied by Milgrom and Weber (1982). If b > 1,
then this environment may fail to satisfy all the assumptions in Milgrom and Weber (1982) but their analysis goes
through without important changes. For example, if b > 1 and σ2

ε = 0, then this information structure would not
satisfy a monotonicity assumption in Milgrom and Weber (1982). In particular, in this case the utility of agent n will
be decreasing in the realization of the signal of agent m. The failure of this monotonicity condition is “mild enough”
that all the analysis in Milgrom and Weber (1982) goes through unchanged.

21Hong and Shum (2002) study a model in which the payoff environment is as in (1) and agents observe one-dimensional
signals as in (5) with b = 1 (see also Hong and Shum (2003)). In Wilson (1998) agents observe two-dimensional signals
as in our model. Yet, the shocks are drawn from a diffuse prior (this corresponds to taking the limits σ2

c →∞, σ2
i →∞

and ρi → 1 at a particular rate). For this reason the model reduces to a one-dimensional signal as in (5) with b = 1
(see also Hong and Shum (2002) for a discussion).
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Proposition 1 (Equilibrium of Ascending Auction).

The ascending auction with one-dimensional signals as in (5) has a Nash equilibrium

in which agent n’s drop-out time is given by:

pn = E[exp(vn)|s′n, ..., s′n, s′n+1..., s
′
N ]. (7)

In equilibrium, agent 1 gets the good and pays p2 = E[exp(v2)|s′2, s′2, s′3, ..., s′N ].

Proposition 1 provides the classic equilibrium characterization found in Milgrom and

Weber (1982). This is essentially the unique symmetric equilibrium.22 In equilibrium

the agent with the n-th highest signal drops out of the auction at his expected valuation

conditional on the signals observed by the agents that already dropped out of the

auction (that is, agents m > n) and assuming that the n − 1 signals that are higher

than s′n are equal to s′n.

The equilibrium strategies (see (7)) satisfy the following two conditions: (i) agent

1 does not regret winning the good at price p2, and (ii) every agent m > 1 does not

regret dropping out of the auction instead of waiting until agent 1 drops out of the

auction. Formally, the two conditions are written as follows:

E[exp(v1)|s′1, ..., s′N ]− E[exp(v2)|s′2, s′2, ..., s′N ] ≥ 0; (8)

∀m > 1, E[exp(vm)|s′1, ..., s′N ]− E[exp(v1)|s′1, s′1, s′2, ..., s′m−1, s
′
m+1, ..., s

′
N ] ≤ 0. (9)

Condition (8) states that the expected valuation of agent 1 conditional on all the signals

is greater than the price at which agent 2 drops out of the auction. Hence, agent 1 does

not regret winning the good. Condition (9) states that the expected valuation of agent

m conditional on all the signals is less than the price at which agent 1 would drop out

of the auction if agent m waits until agent 1 drops out of the auction.23 Hence, agent

m > 1 does not regret dropping out of the auction, even if he observed the realization

of all the signals. This constitutes an important property; the strategy profile (see (7))

would still be a Nash equilibrium even if every agent observed the realization of the

22Bikhchandani, Haile, and Riley (2002) show that there is a continuum of symmetric equilibria. Nevertheless, the
allocation and equilibrium price is the same across equilibria. See Krishna (2009) for a textbook discussion.

23Note that if agent m > 1 waits until all other agents drop out of the auction, then he would win the good at price:
p̃2 = E[exp(v1)|s′1, s′1, s′2, ..., s′m−1, s′m+1, ..., s′N ]. This is the expected valuation of agent 1, conditional on the signals
of all agents different than agent m, and assuming that agent m observed a signal equal to agent 1.
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signals of all other agents.24

We show that the social surplus generated by the auction is decreasing in the weight

b.

Proposition 2 (Comparative Statics: Social Surplus).

The social surplus E[exp(v1)] is decreasing in b.

Proposition 2 provides an intuitive result. As b becomes larger, the correlation

between the drop-out time of agent n and the noise term εn increase. This leads to

inefficiencies that reduce the social surplus. If b→ 0, then the drop-out time of an agent

is perfectly correlated with his idiosyncratic shock. Hence, the auction is efficient. If

b→∞, then the drop-out time of an agent is perfectly correlated with the noise term.

Hence, the allocation of the object is independent of the realization of the idiosyncratic

shocks.

4 Characterization of Equilibrium

We now characterize a class of equilibria when agents observe two-dimensional signals

(in, sn). The first step of the equilibrium characterization is to project the signals

into a one-dimensional object. We call this an equilibrium statistic. We then show

that there exists a class of equilibria in which each agent behaves as if he observes

only his equilibrium statistic. After we characterize the equilibrium, we provide an

intuition on how the equilibrium statistic is determined. As an illustration of the

subtle mapping between the information structure and the outcome of the auction, we

show that the ascending may have multiple symmetric equilibria that generate different

social surpluses.

4.1 Equilibrium Statistic

The fundamental object that allow us to characterize an equilibrium is the equilibrium

statistic. This is the projection of signals that determine the drop-out time of agents.

24Formally, this is an ex post equilibrium. We discuss this in more detail in Section 6.2.
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Definition 1 (Equilibrium Statistic).

The random variables {tn}n∈N are an equilibrium statistic if there exists β ∈ R such

that for all n ∈ N :

tn = in + β · sn; (10)

E[vn|in, sn, t1, ..., tN ] = E[vn|t1, ..., tN ]. (11)

An equilibrium statistic is a linear combination of signals that satisfy statistical con-

dition (11). The expected value of vn conditional on all equilibrium statistics {tn}n∈N
is equal to the expected value of vn conditional on all the equilibrium statistics {tn}n∈N
and conditional on (in, sn). In other words, if agent n knows the equilibrium statistic

of other agents, then the equilibrium statistic of agent n is a sufficient statistic of both

signals observed by agent n to compute the expectation of vn. Note that the weight

β is the same for all agents. This is because we focus on symmetric equilibria, and

hence, all agents use the same weight. Throughout the paper, we use tn to denote an

equilibrium statistic.

We characterize the set of equilibrium statistics.

Proposition 3 (Equilibrium Statistic).

A linear combination of signals tn = in + β · sn is an equilibrium statistic if and only

if β is a root of the cubic polynomial:

x3 · β3 + x2 · β2 + x1 · β + x0, with:

x3 =
1

(1− ρi)(1 + (N − 1)ρi)

(σ2
ε +N · σ2

c)

σ2
iσ

2
c

; x2 =
−1

(1− ρi)σ2
i

; x1 =
σ2
ε + σ2

c

σ2
εσ

2
c

; x0 =
−1

σ2
ε

.

(12)

Moreover, all real roots of the polynomial are between 0 and 1.

Proposition 3 shows that the set of equilibrium statistics is determined by a cubic

equation. The cubic equation always has at least one real root. We first provide the

equilibrium characterization of the ascending auction and later provide an intuition on

how the information structure determines the equilibrium statistic.
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4.2 Equilibrium Characterization

We show that for every equilibrium statistic there exists a Nash equilibrium in which

each agent n behaves as if he observed only his equilibrium statistic tn. The char-

acterization of the equilibrium strategies are analogous to Section 3, but using the

equilibrium statistic. It is important to highlight that agents observe two-dimensional

signals (in, sc). Hence, the equilibrium statistic is only an auxiliary element that helps

characterize a class of equilibria.

Analogous to the analysis of one-dimensional signals, we assume that agents are

ordered as follows:

t1 > ... > tN . (13)

If there are multiple equilibrium statistics, then there will be one Nash equilibrium for

each equilibrium statistic. Different equilibrium statistics induces a different order (as

in (13)), so the Nash equilibrium is described in terms of the order induced by each

equilibrium statistic.

Theorem 1 (Symmetric Equilibrium with Multidimensional Signals).

For every equilibrium statistic, there exists a Nash equilibrium in which agent n’s drop-

out time is given by:

pn = E[exp(vn)|tn, ..., tn, tn+1, ..., tN ], (14)

In equilibrium, agent 1 gets the object and pays p2 = E[exp(v2)|t2, t2, ..., tN ].

Theorem 1 shows that there exists a class of equilibria in which agents project their

signals into a one-dimensional statistic using the equilibrium statistic tn = in + β · sn.

In equilibrium every agent n behaves as if he observed only tn, which is a one-

dimensional object.

We prove Theorem 1 in two steps: (i) we provide the equilibrium conditions, and

(ii) we show that these conditions are satisfied. The equilibrium conditions are similar

to (8) and (9): an agent’s drop-out time remains optimal even after observing the

realized drop-out times of all agents in the auction.25 Importantly, agent n can learn

the equilibrium statistic of agentm by looking at his drop-out time, but not both signals
25Formally, the Nash equilibrium we characterize is also a posterior equilibrium (see Green and Laffont (1987)).
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agent m observed separately. Therefore, the optimality condition of agent n’s drop-out

time takes into account both signals observed by agent n and the equilibrium statistic

of other agents {tm}m 6=n. We then use the properties of the equilibrium statistic to show

that the optimality conditions are satisfied. We do this by reducing the equilibrium

conditions in the two-dimensional environment to the same equilibrium conditions that

arise in a one-dimensional, but replacing the signals with the equilibrium statistics.

Proof of Theorem 1. We check the following two conditions: (i) agent 1 never

regrets winning the object at price p2 after all agents m > 1 drop out of the auction;

and (ii) every agent m > 1 does not regret dropping out of the auction instead of

waiting until all other agents (including agent 1) drop out of the auction. Formally,

the conditions that need to be satisfied are the following:

E[exp(v1)|i1, s1, t1, ..., tN ]− E[exp(v2)|t2, t2, ..., tN ] ≥ 0; (15)

∀m > 1, E[exp(vm)|im, sm, t1, ..., tN ]− E[exp(v1)|t1, t1, t2, ..., tm−1, tm+1, ..., tN ] ≤ 0.

(16)

Condition (15) states that the expected valuation of agent 1 conditional on both signals

he observes and the information he learns from the drop-out time of other agents is

greater than the price at which agent 2 drops out of the auction. Hence, agent 1 does

not regret winning the good. Condition (16) states that the expected valuation of

agent m conditional on both signals he observes and the information he learns from

the drop-out time of other agents is less than the price at which agent 1 would drop

out of the auction if agent m waits until agent 1 drops out of the auction. Hence, agent

m > 1 does not regret dropping out of the auction before agent 1.

We now prove that (15) and (16) are satisfied. Using (11), we note that:

∀n, E[exp(vn)|in, sn, t1, ..., tN ] = E[exp(vn)|t1, ..., tN ].

Note that in (11) the expectations are taken without the exponential function. Yet, as

all random variables are Gaussian, the distribution of vn conditional on (in, sn, t1, ..., tN)

is the the same as the distribution of vn conditional on (t1, ..., tN).26 Hence, if (11) is

26For any (x, y) jointly normally distributed, x|y ∼ N(E[x|y], σ2
x − var(E[x|y])). Since E[vn|in, sn, t1, ..., tN ] =

E[vn|t1, ..., tN ], we also have that var(E[vn|in, sn, t1, ..., tN ]) = var(E[vn|t1, ..., tN ]). Hence, vn|(in, sn, t1, ..., tN ) ∼
vn|(t1, ..., tN ).
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satisfied, then (11) is also satisfied for any function of vn. Hence, (15) and (16) are

satisfied if and only if:

E[exp(v1)|t1, ..., tN ]− E[exp(v2)|t2, t2, ..., tN ] ≥ 0; (17)

∀m > 1, E[exp(vm)|t1, ..., tN ]− E[exp(v1)|t1, t1, t2, ..., tm−1, tm+1, ..., tN ] ≤ 0. (18)

Note that checking (17) and (18) is equivalent to checking the equilibrium conditions in

one-dimensional environments (see (8) and (9)). That is, since in Section 3 we proved

that (8) and (9) are satisfied, then (17) and (18) are also satisfied (just replace b with

β). �

In the class of equilibria characterized in Theorem 1, the analysis in Section 3 can

be applied with the modification that we need to replace s′n with tn (or alternatively,

replace b with β). The key element of the characterization that determines the quali-

tative properties of the equilibrium is the weight that the equilibrium statistic places

on the signals about the common shock: namely β. If β ≈ 0, then the outcome of the

auction will be efficient and the outcome will resemble a pure private value environ-

ment. As β increases, the social surplus decreases and the model resembles more an

interdependent value environment. Note that all equilibrium statistics satisfy β ≤ 1.

Yet, if β ≈ 1 and the variance of the idiosyncratic shock is small enough (relative to the

variance of the common shock and the noise term), then the model will resemble a pure

common values model. The natural question that arises is how does the information

structure determine the equilibrium statistic.

4.3 Analysis of the Equilibrium Statistic

We now provide an intuition on how β is determined. Analogous to how the Nash equi-

librium of any game can be understood by analyzing agents’ best response function,

we understand how the equilibrium statistic is determined by analyzing how the ex-

pectations are determined “out of equilibrium”. We fix an exogenous one-dimensional

signal:27

s′m = sm +
1

b
im, (19)

27The signal is as in Section 3. We divided the signal by 1/b. This obviously makes no difference, but some comparisons
will be more transparent.
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and define γi, γs, γ
′ ∈ R implicitly as follows:28

E[vn|in, sn, {s′m}m 6=n] = γi · in + γs · sn +
γ′

N − 1
·
∑
m 6=n

s′m. (20)

The weight b is an equilibrium statistic if and only if it satisfies:

b =
γs
γi
.

We provide an intuition on how the equilibrium statistic is determined by characterizing

how (γi, γs) change with b. We provide a lemma that formalizes how γi and γs change

with b.

Lemma 1 (Best Responses).

The weights (γi, γs) satisfy:

1. γs is decreasing in b

2. If ρi > 0, then γi is strictly quasi-convex in b. Moreover, in the limit b → 0 and

b→∞, γi → 1

Lemma 1 illustrates how agent n modifies the weights he places on his private signals

if agents m 6= n change the weight he places on his private signals. If agents m 6= n

place a larger weight on their signal about the common shock, then agent n will place

a smaller weight on his signal about the common shock. On the other hand, the weight

that agents m 6= n place on their signal about the common shock has a non-monotonic

effect on the weight that agent n places on his idiosyncratic shock. Note that γi is

decreasing in b (at least in some range of b). This shows that the weight agents place

on their idiosyncratic shock exhibits a complementarity: if agent m increases the weight

he places on im, then agent n will also increase the weight he places on in. This is the

key intuition for the multiplicity of equilibria we illustrate in the following section. We

now provide an intuition for both results in Lemma 1.

Analysis of γs. The informativeness of s′m about c is increasing in b. The amount

that agent n relies on his own private signal about c is decreasing in the amount of

additional information that agent n has about c. Hence, γs is decreasing in b.

28Note that by symmetry the weight on all signals {s′m}m 6=n are the same (denoted by γ′).
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Analysis of γi. The analysis of γi is more subtle. From the perspective of agent

n, im is a noise term in s′m. That is, agent n would like to observe simply sm. If

ρi = 0, then γi is constant in b and equal to 1. This is natural, an agent knows his own

idiosyncratic shock and this is independent of the noise in s′m. Hence, he just places a

weight of 1 on this signal. The conceptual difference between ρi = 0 and ρi 6= 0 is that

in the latter case in has an impact on agent n’s beliefs about c. When in is correlated

with im, agent n uses in to filter out the noise in s′m. The non-monotonicity of γi comes

from the fact that in is used to filter out part of the noise in s′m.29

The reason that γi < 1 (when ρi > 0) is that the direct effect of observing a high or

a low idiosyncratic shock is offset by updating the beliefs about the common shock in

the opposite direction. This can be clearly illustrated in terms of the oil field example.

Suppose agents are bidding for an oil field, the technology shocks are correlated

(ρi > 0), and agent n observes a very high technology shock (in >> 0). If agent n

observes that agent m dropped out early from the auction, then he must infer that

agent m observed a very bad signal about the size of the oil field (sm << 0). After all,

technology shocks are correlated, and hence agent n expects agent m to also observe

a relatively high technology shock. Conversely, if agent n observed a low technology

shock, then agent n would not become so pessimistic about the size of the oil field. In

this way, the direct effect of observing a high or a low technology shock is offset by

updating the beliefs about the size of the oil field in the opposite direction. Hence,

conditional on the drop-out time of agent m, agent n’s technology shock is not very

informative about agent n’s preferences. This makes agents bid less aggressively on

their technology shock (or equivalently, decreases γi). This ultimately reduces the

social surplus.

Comparative Statics with Respect to ρi As suggested by the discussion, ρi

plays an important role in determining β. It is possible to show that, if there exists

a unique equilibrium, then β is increasing in ρi.
30 Hence, if there exists a unique

equilibrium, the efficiency of the auction is decreasing in ρi.
31 If the idiosyncratic shocks

29That is, agent n would like to observe simply sm. If b → ∞, then agent n can observe sm directly, and hence,
agent n does not need to use in to filter out the noise s′m. Hence, in this case γi = 1. If b→ 0, then signal s′m does not
provide any information about c, and hence, agent n does not use s′m to predict c at all. Again, in this case γi = 1. It
is only for intermediate values of b that agent n uses in to predict c.

30If there exists 3 equilibria, then the comparative statics is reversed in one of the equilibrium.
31To be more precise: as ρi increases, the correlation between the identity of the winner of the auction and the

realization of the idiosyncratic shock of this agent decreases. As ρi → 1, the good is allocated independent of the
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are independently distributed (ρi = 0), then there is no complementarity. This implies

that there is a unique equilibrium (within the class of equilibria studied in Theorem

1). The formal statements and proofs of the aforementioned results can be found in

the online appendix.

4.4 Illustration of the Equilibrium Multiplicity

The cubic polynomial that determines the set of equilibrium statistics (see (12)) may

have multiple roots. This implies that an ascending auction with multidimensional

signals may have multiple symmetric equilibria; a different equilibrium for every root.

The multiplicity of equilibria is caused by the complementarity in the weight agents

place on their signals (discussed in the previous section).

We illustrate the multiplicity of equilibria in a parametrized example. In Figure

1a we plot the set of equilibrium statistics for different values of the variance of the

noise. The different colors in the plot corresponds to the different roots of the cubic

polynomial that determines the set of equilibrium statistics (see (12)). We can see that

there are values of the noise term for which there are multiple equilibria (e.g. σε = 50).

In Figure 1b we plot the expected social surplus generated in the auction corre-

sponding to the equilibrium statistic shown in Figure 1a. There is one equilibrium in

which β is small (plotted in blue). This equilibrium will look more like a private value

environment: the social surplus generated will be large and the winner’s curse will be

low. There is one equilibrium in which β is large (plotted in red). This equilibrium

will look more like a common value environment: the social surplus generated will be

small and the winner’s curse will be high. We do not plot the revenue or the buyers’

rents, but these are qualitatively similar to the social surplus generated in the auction.

The social surplus generated in the auction is non-monotonic in the size of the noise

term (σ2
ε). This is because two different effects change the social surplus. First, for

a fixed β, as σ2
ε increases, the correlation between the drop-out time of an agent and

the noise term εn increases. This decreases the social surplus. On the other hand, as

σ2
ε increases the weight on sn decreases (and hence, the weight on the noise term εn

decreases). Since the weight on the noise term decreases, this decreases the correlation

idiosyncratic shocks. Note that in the limit ρi = 1 this is a pure common value environment, and hence, any allocation
is efficient.
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Figure 1: Outcome of ascending auction for σc = 5/2, σi = 0.6, ρi = 3/4 and N = 50.

between the drop-out time of an agent and the noise term εn. This increases the social

surplus.

If the noise term is too large or too small (σ2
ε → ∞ or σ2

ε → 0), then there is a

unique equilibrium. This is because in both limits the model approaches a private

values model. If the variance is too small, then agents know almost perfectly the

realization of c just looking at their private information. If the variance is too large,

then agents ignore sn, and hence the model is again a private values model. Note that

in both limits the equilibrium is efficient. This is not only true for this parametrized

example; always in these extreme cases there is a unique equilibrium (we prove this in

the online appendix).

5 Impact of Public Signals

In this section we study how the precision of a public signal affects the social surplus and

the revenue generated in the auction. The analysis shows that comparative statics in

two-dimensional environments may be different than in one-dimensional environments.

This is because in the class of equilibria characterized by Theorem 1 agents behave

as if they observed only the equilibrium statistic. Yet, the equilibrium statistic is an

endogenous object. This implies that the comparative statics are partially determined

by changes in the equilibrium statistic.
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5.1 Public Signals

We now study the impact of public information on the equilibrium outcome. In a model

with one-dimensional signals, it is natural to consider a public signal about the average

valuation across agents. In our environment, the valuation of an agent is determined

by two payoff shocks. Hence, it is natural to consider a public signal about the common

shock and a public signal about the average idiosyncratic shock.

We assume agents have access to two public signals (in addition to (in, sn)). The

first signal provides agents with more information about the common shock:

s̄1 = c+ ε1, (21)

where ε1 is independent of all random variables defined so far and normally distributed

with variance σ2
1. Signal s̄1 can be interpreted as disclosing additional information

about the good (e.g. more information about the size of an oil field). The second

public signal provides agents with information about the average idiosyncratic shock:

s̄2 =
1

N

∑
n∈N

in + ε2, (22)

where ε2 is independent of all random variables defined so far and normally distributed

with variance σ2
2. Signal s̄2 can be interpreted as providing more information about

the bidders’ characteristics (e.g. more information about the average cost of extracting

oil in the industry).32

Agent n observes the signals (in, sn, s̄
1, s̄2). The analysis in Section 4 can be extended

in a simple way to accommodate for public signals. The only modification to the

analysis is that the public signals must be added as a conditioning variables in the

expectations. That is, the definition of an equilibrium statistic (see (11)) must be

modified as follows:

E[vn|in, sn, t1, ..., tN , s̄1, s̄2] = E[vn|t1, ..., tN , s̄1, s̄2]. (23)

32All the results go through in the same way if instead of having a public signal s̄2 =
∑

n∈N in/N + ε2 each agent
n observes N − 1 private signals on the idiosyncratic shocks of agents m 6= n. That is, if agent n observes signals
smn = im + εmn for all m 6= n.
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Additionally, the strategy of agents (see (14)) must be modified as follows:

pn = E[exp(vn)|tn, ..., tn, tn+1, ..., tN , s̄
1, s̄2]. (24)

Clearly, under these two modifications all the analysis in Section 4 remains the same.

5.2 Impact of Public Signals on the Social Surplus

We study the impact of the public signals on the social surplus. The social surplus is

equal the expected valuation of the agent who observed the highest equilibrium statistic

(that is, E[exp(v1)]).

Proposition 4 (Comparative Statics of Public Signals: Social Surplus).

If the ascending auction has a unique equilibrium, then the social surplus is decreasing

in σ2
2 and σ2

1. In the limit:33

lim
σ2
2→0

E[exp(v1)] = lim
σ2
1→0

E[exp(v1)] = E[max
n∈N

exp(vn)].

Proposition 4 shows that the social surplus increases with the precision of the public

signals. In the limit in which one of the public signals is arbitrarily precise, the equi-

librium approaches the efficient outcome. Note that for any value of σ2
ε the ascending

auction would implement the efficient outcome if agents “ignored” signal sn. Hence, a

precise enough public signal reduces the weight that agents place on sn all the way to

0. If the ascending auction has three equilibria then the social surplus is increasing in

the precision of the public signal in the equilibria with the highest and the lowest β,

while the comparative static is reversed in the equilibrium with the β in the middle.

The intuition on why the social surplus is decreasing in σ2
1 is simple. As the public

information about c is more precise, an agent needs to place less weight on his private

signal sn to predict c. This implies that the correlation between the drop-out time of

an agent and the realization of the noise term εn decreases. Hence, the social surplus

increases.
33We study the ex ante expected social surplus instead of the interim expected social surplus in order to avoid having

to take limits of random variables. The statement goes through without the expectations by considering convergence
in probability.
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The reason that s̄2 changes the social surplus is that it changes how agent n’s id-

iosyncratic shock affects his beliefs about the common shock. As explained in Section

4.3, if ρi > 0, then the direct effect of observing a high idiosyncratic shock is partially

offset by updating the beliefs about the common shock in the opposite direction. This

makes agent n bid less aggressively on his idiosyncratic shock, which reduces the social

surplus. If there is a public signal about im, then the weight on in to predict im is

reduced. Hence, the public signal decreases the correlation between agent n′s idiosyn-

cratic shock and agent n′s beliefs about the common shock. Hence, agent n trades

more aggressively on his idiosyncratic shock, which increases the social surplus.

The equilibrium converges to the efficient outcome as s̄2 becomes arbitrarily precise

because in the limit the effects are reversed. Namely, the direct effect of observing a

high idiosyncratic shock is reinforced by updating the beliefs about the common shock

in the same direction. Hence, agents trade evermore aggressively on their idiosyncratic

shocks. This increases the social surplus to the efficient levels. This is essentially the

same that happens if idiosyncratic shocks are negatively correlated.

5.3 Impact of Public Information on Revenue

We now study the impact of the public signal about the common shock on the revenue.

We denote by max (2){·} the second order statistic (that is, the second maximum).

Proposition 5 (Public Signal About Common Shock on Revenue).

If the signal about the common shock becomes arbitrarily precise:

lim
σ2
1→0

E[p2] = E[max
n∈N

(2) exp(vn)].

Proposition 5 shows that, as the public signal about c becomes arbitrarily precise

(σ2
1 → 0), the revenue approaches the expected second highest valuation. The intuition

is that in the limit, agents ignore their private signal sn. Hence, it is “as if”, the only

private signal they observe is in. Hence, in this limit, it is “as if” agents had private

values. We now study the impact of a public signal about the average idiosyncratic

shock.
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Proposition 6 (Public Signal About Average Idiosyncratic Shock on Revenue).

If the signal about the average idiosyncratic shock becomes arbitrarily precise:

lim
σ2
2→0

E[p2] = 0.

Proposition 6 shows that, as s̄2 becomes arbitrarily precise (σ2
2 → 0), the revenue

becomes arbitrarily close to 0. Note that the price is greater or equal than 0 in every

realization of the auction. Hence, the price converges in distribution to 0.

We provide an intuition of Proposition 6. To simplify the exposition, suppose N = 2.

The fundamental component of the analysis is that the different between agent 2’s

valuation and agent 2’s drop-out time is increasing in s̄2. That is,

E[v2|t1, t2, s̄2]− E[v2|t2, t2, s̄2],

is increasing in s̄2. This is because s̄2 provides information about i1, which makes

t1 more informative about the common shock. Hence, agent 2 can place a larger

weight on t1 to predict c. The revenue converges to 0 in the limit because the weight

that the expectation E[v2|t1, t2, s̄2] places on t1 diverges to infinity. This is because

the expectation is increasing in t1 and decreasing in s̄2. Hence, the agent places a

arbitrarily large weight on both t1 and s̄2.

To provide a further intuition why the weight that the expectation E[v2|t1, t2, s̄2]

places on t1 diverges to infinity consider the following. If σ2
2 ≈ 0, the equilibrium

statistic of agent n ∈ {1, 2} is given by:34

tn = in + ε · sn,

where ε ≈ 0 (equal to 0 in the limit). Since σ2
2 ≈ 0 agent 2 can infer s1 from t1 almost

perfectly. If σ2
2 ≈ 0, then the expectation can be approximated as follows:

E[v2|t1, t2, s̄2] ≈ t2 +
σ2
c

σ2
c + σ2

ε/2
· 1

ε
· (t1 + t2

2
− s̄2). (25)

Note that the expectations places a weight of order 1/ε on the last term. The second

34Proposition 4 implies that in the limit t2 ≈ i2.
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term in (25) does not diverge precisely because σ2
2 ≈ 0, and hence, ((t1 + t2)/2− s̄2) ≈

ε · (s1 + s2)/2.

The revenue is found by replacing t1 with t2 (that is, computing E[v2|t2, t2, s̄2]).

Hence, when computing the revenue the term 1/ε multiplies ((t2+t2)/2−s̄2) ≈ (t2−t1),

which is negative and does not converge to 0. Hence, E[v2|t2, t2, s̄2] diverges to −∞
(which yields 0 when taking the exponential function).

In our model, public signals s̄1 and s̄2 have opposite effects on revenue. The signal

about the common shock decreases the weight that agent 2 places on t1 to compute the

expected value of v2. This decreases the difference between agent 2’s expected valuation

and the time he drops out of the auction (that is, (E[v2|t1, t2, s̄2]−E[v2|t2, t2, s̄2])), and

hence, increases the revenue. In contrast, the signal about the average idiosyncratic

shock increases the weight that agent 2 places on t1 to compute the expected value of

v2. This increases the difference between agent 2’s expected valuation and the time he

drops out of the auction (that is, (E[v2|t1, t2, s̄2]−E[v2|t2, t2, s̄2])), and hence, decreases

the revenue.

The previous discussion shows that to evaluate the impact of a public signal on

revenue, it is necessary to consider the nature of the public signal. For this, it is

also important to fully account for all private signals of agents. To provide a sharper

illustration consider the following signal:

s̃n , in + ε̃n, (26)

where ε̃n is a noise term independent of all other random variables in the model,

independent across agents and with a small variance (var(ε̃n) ≈ 0). Additionally,

assume that ρi > 0. It is easy to check that, if agents observe only s̃n, then the revenue

would be strictly increasing in the precision of s̄2 (this is a particular case of Milgrom

and Weber (1982)). If agents observe (s̃n, sn), then the revenue would be decreasing

in the precision of s̄2.35 Hence, adding a private signal to the information structure of

agents can reverse the effect of a public signal.

Failure of the Linkage Principle.36 Proposition 6 can be interpreted as a failure

35This can be seen by Proposition 6 and a continuity argument. In Section 6 we generalize the model to any Gaussian
information structure, and the equilibrium changes continuously in the variance covariance matrix of the information
structure.

36The linkage principle states that public signals increase the revenue and ascending auctions yield higher revenue
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of the linkage principle.37 The linkage principle has been shown to fail in other environ-

ments.38 In contrast to the previous literature we show that the linkage principle may

fail in natural symmetric environments. This is only due to the multidimensionality

of the information structure. Hence, our paper provides a new channel by which the

linkage principle may fail.

Failure of Assumptions in Milgrom and Weber (1982). The fact that public

signals may decrease the revenue all the way to 0 implies that some of the assumptions

in Milgrom and Weber (1982) are not satisfied. In our original model agent n’s expected

valuation conditional on all signals (E[vn|{im}m∈N , {sm}m∈N , s̄2]) is non-decreasing in

all the conditioning variables and all signals are positively correlated. Hence, all the

assumptions in Milgrom and Weber (1982) are satisfied, except for the assumption that

private signals are one-dimensional. Yet, we could look at the reduced information

structure in which agent n observes only his equilibrium statistic. Under the reduced

information structure the expected valuation of agents is decreasing in the realization of

s̄2 (see (25)). Hence, the assumptions in Milgrom and Weber (1982) that is not satisfied

under the reduced information structure is that the utility of agents is increasing in

the realization of the public signals.39

6 Extensions

We now discuss how to extend the solution method used in Section 4 to other envi-

ronments. We first explain how the analysis can be extended to any Gaussian multidi-

mensional information structure, possibly asymmetric. We then explain how the same

equilibrium statistic can be used to find a class of Nah equilibrium in other mecha-

than first-price auctions (see Krishna (2009) for a textbook discussion).
37Proposition 6 shows that public signals may decrease revenue. Bergemann, Brooks, and Morris (2017) show that

the revenue in a first-price auction are bounded away from 0. Hence, Proposition 6 also shows that an ascending auction
may yield lower revenue than a first-price auction.

38Perry and Reny (1999) show that the linkage principle may fail in multi-unit auctions. The linkage principle has also
been shown to fail in environments in which the payoff structure is asymmetric (see Krishna (2009)) and in environments
with independent and private values (see Thierry and Stefano (2003)). Axelson and Makarov (2016) shows that the
linkage principle fails in common-value auctions when an agent must take an action after winning an object. As in our
model, in the model studied by Axelson and Makarov (2016) the bid of an agent does not fully reveal the signal this
agent observed, but the reason is that the final payoff of the good is not strictly monotonic in the realization of the
signals observed by agents (see also Atakan and Ekmekci (2014)).

39Milgrom and Weber (1982) assumes that the utility of agents is increasing in the realization of all signals and
signals are positively correlated (strictly speaking, they assume that signals are affiliated, but there is no difference in
a Gaussian environment). Of course, it is possible to change the sign of s̄2, in which case the public signal would have
a positive impact on agent n’s valuation. Yet, in this case the public signal s̄2 would be negatively correlated with tn,
which would break the affiliation property.
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nisms. In this section we provide an informal discussion. All the formal results and

analysis can be found in the online appendix.

6.1 General Multidimensional Signals

The analysis in Section 4 can be extended in a natural way to any multidimensional

Gaussian information structure. Suppose that each agent n ∈ N observes J signals:

sn = (s1
n, ..., s

J
n),

where bold fonts denote vectors and superscript denotes the number of the signal. The

utility of agent n if he wins the object is equal to:

u(vn)− p,

where vn ∈ R is a payoff shock and u(·) is a strictly increasing function. In our baseline

model we assumed u(·) = exp(·). The joint distribution of signals and payoff shocks

(v1, ..., vN , s1, ..., sN) is jointly Gaussian, but possibly asymmetrically distributed.

There is a class of equilibria that can be characterized in the same way as we

characterized a class of equilibria with symmetric two-dimensional signals. First, we

project the signals. For this, we need to find a set of weights (β1, ....,βN) ∈ RN×J such

that, for all n ∈ N :

E[vn|sn, s1 · β1, ..., sN · βN ] = E[vn|s1 · β1, ..., sN · βN ], (27)

where βn ·sn denotes the dot product. In asymmetric environments the weights of each

agent (βn) may be different. There always exist weights such that (27) is satisfied.

For each projection of signals:

(t1, ..., tN) = (s1 · β1, ..., sN · βN),

that satisfy a regularity condition, there exists an equilibrium in which agent n ∈ N
behaves “as if” he observes only the one-dimensional signal tn. The regularity condi-

tion is called the average crossing property. The average crossing property is necessary



29

to guarantee that in asymmetric environments the ascending auction has an ex post

equilibrium when agents observe one-dimensional signals.40 It is simple to check in

applications whether the information structure has an equilibrium statistic that satis-

fies the average crossing condition.41 Note that the only constraint in the equilibrium

characterization comes from characterizing an equilibrium in one-dimensional environ-

ments. The projection of signals per se is not a problem, as this always exists. It is

worth highlighting that in Section 4 we implicitly checked that an ex post equilibrium

exists when agents observe only their equilibrium statistic. We did this by first solving

the model in which agents observe only one-dimensional signals in Section 3.

6.2 Other Mechanisms

We now extend the methodology used in Section 4 to find a class of Nash equilibrium

when agents observe multidimensional Gaussian signals in a larger class of games. The

solution method remains the same. We first project the signals into a one-dimensional

equilibrium statistic. We then show that an equilibrium exists in which each agent

behaves “as if” he observes only his equilibrium statistic. Importantly, the definition

of an equilibrium statistic does not change.

Consider a game with N agents. Agent n ∈ N takes an action an ∈ An and the

payoff function is given by:

un(vn, a1, ..., aN),

where vn ∈ R is a payoff shock. Agent n observes J signals (s1
n, ..., s

J
n) and the joint dis-

tribution of all signals and payoff shocks is jointly normally distributed. An equilibrium

statistic is defined the same way as in the previous section (as in (27)).

Fix an equilibrium statistic, and consider first an auxiliary game in which agent

n only observes a one-dimensional signal equal to his equilibrium statistic (βn · sn).

Suppose in this auxiliary game, there exists a strategy profile {α̂n}n∈N , with α̂n :

R → An, that is an ex post equilibrium.42 Then in the original game (where agent n

observes J signals), the following strategy profile {αn}n∈N , with αn : RJ → An, is a

40See Krishna (2009) for a textbook discussion
41The same characterization can be applied if we consider an ascending auction with reentry (see the following section

for a discussion). Besides being a more realistic model in many applications, allowing for reentry relaxes the conditions
under which an ex post equilibrium exists when agents observe one-dimensional signals (see Izmalkov (2001)).

42A Nash equilibrium (a1, ..., aN ) is an ex post equilibrium if agent n’s action is optimal even if he knew the realization
of the signals of all other agents. See Bergemann and Morris (2005) for a discussion.
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Nash equilibrium:43

α(sn) = α̂(βn · sn). (28)

This is the natural extension of Theorem 1.

The methodology can be extended to games that have an ex post equilibrium when

agents observe one-dimensional signals. These mechanisms have the property that the

optimality condition can be evaluated using the realized value of all signals when agents

observe one-dimensional signals (as in an ascending auction). We briefly provide an

overview of some of the mechanisms that have an ex post equilibrium when agents

observe one-dimensional signals.

There are classic trading mechanisms that have an ex post equilibrium when agents

observe one-dimensional signals. For example, multi-unit ascending auctions (see, for

example, Ausubel (2004) or Perry and Reny (2005)) and generalized VCG mechanism

(see for example, Dasgupta and Maskin (2000)). Supply function competition in linear-

quadratic environments has an ex post equilibria when agents are symmetric (see, for

example, Vives (2011)). Additionally, many recent papers study novel mechanisms

that have an ex post equilibria when agents observe one-dimensional signals.44

The equilibrium statistic can also be used to understand models of competitive

equilibrium under asymmetric information. Ganguli and Yang (2009) and Manzano

and Vives (2011) study a rational expectations equilibrium in which agents observe two-

dimensional signals. Amador and Weill (2010) study a micro-founded macro model

with informational externalities. The fixed-point that determines an equilibrium in

those models is closely related to the equilibrium statistic defined in our paper. In

Heumann (2016) we study the properties of a competitive economy when agents observe

multidimensional signals. We use the equilibrium statistic defined in this paper to

characterize the equilibrium.

It is worth mentioning some mechanisms that do not have an ex post equilibria when

agents observe one-dimensional signals. Two classic examples are a first-price auctions

and Cournot competition. In a first-price auction an agent tries to anticipate the bid

43As in the ascending auction, this in fact constitutes a posterior equilibrium (see Green and Laffont (1987)).
44Ausubel, Crampton, and Milgrom (2006) propose the Combinatorial Clock Auction that is meant to auction many

related items. Sannikov and Skrzypacz (2014) study a variation of supply function equilibria in which each agents can
condition on the quantity bought by other agents. Kojima and Yamashita (2014) study a variation of a double auction
that improves upon the standard double auction along several dimensions. All the mechanisms previously mentioned
have an ex post equilibria when agents observe one-dimensional signals.
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of other agents in order determine how much he wants to shade his bid. In contrast,

in an ascending auction an agent’s drop-out time remains optimal, even if he knew

the drop-out time of other agents. Hence, an agent does not need to anticipate the

drop-out time of other agents. In Cournot competition an agent tries to anticipate the

quantity submitted by other agents, as these quantities will ultimately determine the

equilibrium price. In contrast, in supply function competition an agent can condition

the quantity he buys on the equilibrium price, and hence he does not need to anticipate

the demands submitted by other agents. Understanding a first-price auction or Cournot

competition when agents observe multidimensional signals requires different techniques

than the ones developed in this paper.45

7 Conclusions

The auction literature has largely relied on the assumption that agents observe one-

dimensional signals. We provided a tractable model of an ascending auction in which

agents observe multidimensional signals. The key conceptual contribution is that in

multidimensional environments the bid of an agent is determined by an endogenous

object, namely, the equilibrium statistic. We showed that in multidimensional envi-

ronments there may be multiple symmetric equilibria and classic results on the impact

of public signals are overturned. These novel predictions are a sharp illustration of

two broader points: (i) in multidimensional environments there is no simple map-

ping between the primitives of the model and the outcome of the auction, and (ii) in

multidimensional environments comparative statics will change with respect to one-

dimensional environments. Our paper provides a set of tools that can be used to

further understand multidimensional environments and how these environments differ

from their one-dimensional counterparts.

There are two important assumptions in our model: (i) agents bid in an ascending

auction, and (ii) signals are normally distributed. Extending our analysis to other

auction formats requires developing new techniques. This is because different auction

formats provide different incentives for bidders. For example, in a first-price auction
45Lambert, Ostrovsky, and Panov (2014) study a static version of a Kyle (1985) trading model under multidimensional

Gaussian signals (this is strategically similar to Cournot competition). For the aforementioned reasons, the methodology
developed in this paper is not useful to study a trading model as in Lambert, Ostrovsky, and Panov (2014) and vice
versa.
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agents have the incentive to shade their bid. For this reason, we believe characteriz-

ing the equilibrium of a first-price auction with multidimensional signals would yield

substantive new insights. Generalizing the analysis to non-Gaussian signals would be

an important technical extension. We believe the novel predictions we provided do not

hinge on the assumption of Gaussian signals, but allowing for non-Gaussian signals

may deliver even further new predictions.

8 Appendix: Proofs

Preamble. We first provide explicit expressions for the expectations with normal

random variables. To do this we use the definition of one-dimensional signal in (5).

If y is normally distributed, then:

E[exp(y)] = exp(E[y] +
1

2
var(y)). (29)

This is just the mean of a log-normal random variable. Since (v1, ..., vN , s
′
1, ..., s

′
N) are

jointly Gaussian, we have that the distribution of (v1, ..., vN) conditional on (s′1, ..., s
′
N)

is jointly Gaussian. Hence, using (29):

E[exp(vn)|s′1..., s′N ] = exp(E[vn|s′1, ..., s′N ] +
1

2
· var(vn|s′1, ..., s′N))

Similarly, by replacing (s′1, ..., s
′
N) with (s′n, ...., s

′
n, s
′
n+1, ...., s

′
N) we get

E[exp(vn)|s′n, ..., s′n, s′n+1..., s
′
N ] = exp(E[vn|s′n, ..., s′n, s′n+1..., s

′
N ] +

var(vn|s′1, ..., s′N)

2
)(30)

Note that E[exp(vn)|s′n, ..., s′n, s′n+1..., s
′
N ] is computed as if the realization of (s′1, ..., s

′
n)

is equal to (s′n, ...., s
′
n). Since the conditional variance of normal random variables is

constant, we have that var(vn|s′1, ..., s′N) = var(vn|s′n, ..., s′n, s′n+1..., s
′
N).

We now explicitly compute the coefficients of the Bayesian updating with the normal

random variables. We have that:

E[vn|s′1, ..., s′N ] = κ ·
(
s′n + λ

N∑
m=1

s′m

)
(31)
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with

κ ,
(1− ρi)σ2

i

(1− ρi)σ2
i + b2 · σ2

ε

; (32)

λ ,
1

N

(
((1− ρi) + ρi ·N) · σ2

i + b ·N · σ2
c

((1− ρi) + ρi ·N) · σ2
i + b2(N · σ2

c + σ2
ε)

(1− ρi)σ2
i + b2 · σ2

ε

(1− ρi)σ2
i

− 1

)
. (33)

This is just computing the coefficients of the Bayesian updating. To check the coeffi-

cients λ and κ are correctly computed it is sufficient to check that:

∀m ∈ N, cov(vn − E[vn|s′1, ..., s′N ], s′m) = 0, (34)

using (31) and the definitions of κ and λ.46 Finally, note that κ > 0 and for all n ∈ N :

(1+n·λ) =
n

N

((1− ρi) + ρi ·N) · σ2
i + b ·N · σ2

c

((1− ρi) + ρi ·N) · σ2
i + b2(N · σ2

c + σ2
ε)

(1− ρi)σ2
i + b2 · σ2

ε

(1− ρi)σ2
i

+
N − n
N

> 0.

Proof of Proposition 1 The proof is standard in the literature (see, for example,

Krishna (2009)). Nevertheless, we provide the proof to simplify the reading and to

check all the conditions are satisfied. We check the following three conditions:

1. According to the equilibrium strategies (see (7)) agent n+ 1 drops out of the auc-

tion before agent n. This is a necessary condition for an equilibrium as the equilib-

rium strategy of agent n (according to (7)) conditions on the signals (s′n+1, ...., s
′
N).

Hence, it is necessary to check that agents with higher signals drop out later in

the auction.

Using (31), we note that:

E[vn−1|s′n−1, ..., s
′
n−1, s

′
n, ..., s

′
N ]−E[vn|s′n, ..., s′n, s′n+1, ..., s

′
N ] = κ(1+λ·(n−1))(s′n−1−s′n) > 0.

The equality is using (31), while the inequality comes from the fact that κ > 0,

(1 + (n − 1)λ) > 0 (as previously shown), and (s′n−1 − s′n) > 0 by construction.

46That is, λ and κ solve the following system of equations:

σ2
i + bσ2

c = κ(σ2
i + b2(σ2

c + σ2
ε) + λ(σ2

i + b2(σ2
c + σ2

ε) + (N − 1)(ρi · σ2
i + b2 · σ2

c)));

ρi · σ2
i + bσ2

c = κ(ρiσ
2
i + b2 · σ2

c + λ(σ2
i + b2(σ2

c + σ2
ε) + (N − 1)(ρi · σ2

i + b2 · σ2
c))),

which corresponds to (34) for m = n and m 6= n respectively.
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Hence, using (30), we have that ∀n ∈ {2, ..., N}:

E[exp(vn−1)|s′n−1, ..., s
′
n−1, s

′
n..., s

′
N ]− E[exp(vn)|s′n, ..., s′n, s′n+1..., s

′
N ] > 0 (35)

Hence, agent n drops out of the auction before agent n− 1.

2. We now check that agent 1 does not regret wining the auction (this is (8)).

Using (31), we note that:

E[v1|s′1, ..., s′N ]− E[v2|s′2, s′2, ..., s′N ] = κ(1 + λ)(s′1 − s′2) > 0.

Clearly the inequality is also be satisfied if we take the exponential of v1 and v2.

Hence, (8) is satisfied. Hence, agent 1 does not regret wining the auction.

3. We now check that agent m > 1 does not regret waiting until agent 1 drops out

of the auction (this is (9)).

Using (31), we note that:

E[vm|s′1, ..., s′N ]− E[v1|s′1, s′1, s′2, ..., sm−1, sm+1, ..., s
′
N ] = κ(1 + λ)(s′m − s′1) < 0.

The inequality will also be satisfied if we take the exponential of vm and v1. Hence,

(9) is satisfied. Hence, agent m > 1 does not regret waiting until agent 1 drops

out of the auction.

Hence, the equilibrium strategies constitute an ex post equilibrium. �

Proof of Proposition 2. In order to characterize how the ex ante expected social

surplus is determined by b ∈ R, we first provide an orthogonal decomposition of signals

and payoff shocks. This is also used later in the rest of the proofs. We define:

v̄ ,
1

N

∑
n∈N

vn ; ∆vn , vn − v̄ ; s̄′ ,
1

N

∑
n∈N

s′n ; ∆s′n , s′n − s̄′. (36)

Variables with an over-bar correspond to the average of the variable over all agents.

Variables preceded by a ∆ correspond to the difference between a variable and the

average variable. We refer to variables that have an over-bar as the common component

of a random variable and a variables preceded by a ∆ as the orthogonal component
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of a random variable. For example, v̄ is the common component of vn while ∆vn is

the orthogonal component of vn. Importantly, the common component of a random

variable is always independent of the orthogonal component of a random variable. For

example, cov(∆vn, s̄
′) = 0, which implies independence of the two random variables in

our Gaussian environment.47

By construction agent 1 wins the good. Hence, the expected social surplus given

the realization of the signals is given by:

S(s′1, ..., s
′
N) , E[exp(v1)|s′1, ..., s′N ].

We can write the expected social surplus as follows:

E[S(s′1, ..., s
′
N)] = E[E[exp(v1)|s′1, ..., s′N ]] = E[E[exp(v̄) · exp(∆v1)|s̄′,∆s′1, ...,∆s′N ]]

Since the common component of the random variables are independent of the orthog-

onal component of the random variables, we have:

E[S(s′1, ..., s
′
N)] = E[E[exp(v̄)|s̄′] · E[exp(∆v1)|∆s′1, ...,∆s′N ]]

= E[E[exp(v̄)|s̄′]] · E[E[exp(∆v1)|∆s′1, ...,∆s′N ]].

Using the law of iterated expectations: E[E[exp(v̄)|s̄′]] = E[exp(v̄)] = exp(1
2
σ2
v̄). Hence,

E[S(s′1, ..., s
′
N)] = exp(

1

2
σ2
v̄)× E[E[exp(∆v1)|∆s′1, ...,∆s′N ]]. (37)

Since the equilibrium is efficient, we have that:

E[E[exp(∆v1)|∆s′1, ...,∆s′N ]] =

E[max{E[exp(∆v1)|∆s′1, ...,∆s′N ], ...,E[exp(∆vN)|∆s′1, ...,∆s′N ]}]
47To check this, note that by construction

∑
n∈N ∆vn = 0. By symmetry, for all n,m ∈ N , cov(∆vn, s̄′) =

cov(∆vm, s̄′). By the collinearty of the covariance:
∑

n∈N cov(∆vn, s̄′) = 0. Hence, we must clearly have that
cov(∆vn, s̄′) = 0. The argument can be obviously repeated for the common and orthogonal component of any random
variables.
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Note that ∆vn = ∆in and hence:

∆s′n = ∆vn + β ·∆εn.

Clearly, if β increases then (∆s′1, ...,∆s
′
N) becomes Blackwell less informative about

(∆v1, ...,∆vN). Hence, E[E[exp(∆v1)|∆s′1, ...,∆s′N ]] is decreasing in β. Hence, we prove

the result.�

Proof of Proposition 3 We prove the result in two steps.

(Step 1.) We first prove that tn = in + β · sn is an equilibrium statistic if and only

if:

cov(vn − E[vn|t1, ..., tN ], in) = 0, (38)

and β 6= 0.

Only If. Clearly β = 0 is not an equilibrium statistic (simply note that E[vn|i1, ..., iN ] 6=
E[vn|sn, i1, ..., iN ]) and by the construction of the expectation:

cov(vn − E[vn|in, sn, t1, ..., tN ], in) = 0, (39)

Hence, if E[vn|in, sn, t1, ..., tN ] = E[vn|t1, ..., tN ], then (38) must be satisfied. Hence, we

prove the “only if” direction.

If. Note that by the construction of the expectation,

∀m ∈ N, cov(vn − E[vn|t1, ..., tN ], tm) = 0. (40)

By the collinearity of the expectation, if (38) is satisfied and (40) is satisfied with

β 6= 0, then it is also the case that:

cov(vn − E[vn|t1, ..., tN ], sn) = 0. (41)

This is because sn is a linear combination of tn and in. Hence, if (38) is satisfied, then

by construction (40) and (41) are satisfied. Hence, the covariance of (in, sn, t1, ..., tN)

with (vn − E[vn|t1, ..., tN ]) is equal to 0. Hence, it must be the case that:

E[vn|t1, ..., tN ] = E[vn|in, sn, t1, ..., tN ] (42)
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Hence, we prove the “if” part.

Step 2. We now prove that β satisfies (38) if and only if β solves the cubic poly-

nomial (12). It is clear that: cov(vn, in) = σ2
i . Using (31):

cov(E[vn|t1, ..., tN ], in) = κ((λ+ 1)σ2
i + λ(N − 1)ρiσ

2
i ).

Hence, we can re-write (38) as follows:

1− κ((λ+ 1) + λ(N − 1)ρi) = 0.

Multiplying both sides by:

−
(
β2σ2

ε − (ρi − 1)σ2
i

) (
β2 (Nσ2

c + σ2
ε) + σ2

i ((N − 1)ρi + 1)
)

β(ρi − 1)σ2
cσ

2
iσ

2
ε((N − 1)ρi + 1)

,

We get the cubic polynomial (12). Hence, we prove the result.�

Proof of Theorem 1 We proved this in the main text. �

Proof of Lemma 1 In order to write the expectations in terms of conditionally

independent signals, we define:

ŝ ,
1

N − 1

∑
m6=n

(s′m −
ρi · in
b

) = c+
1

N − 1

∑
m 6=n

(
εm +

1

b
(im − ρi · in)

)
. (43)

Note that ŝ is independent of in. Additionally, by symmetry, ŝ is a sufficient statistic

of {s′m}m 6=n to predict vn. Expectation (20) can be written as follows:

E[vn|in, sn, {s′m}m6=n] = in + E[c|sn, ŝ], (44)

where (sn, ŝ) are conditionally independent signals of c. Using standard formulas of

expectations with Gaussian random variables:

γs =
1/σ2

ε

1/σ2
ε + 1/σ2

c + 1/var(ŝ|c)
; γ′ =

1/var(ŝ|c)
1/σ2

ε + 1/σ2
c + 1/var(ŝ|c)

.
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Using (43), it is easy to check that:

var(ŝ|c) = var

(
1

N − 1

∑
m 6=n

(
εm +

1

b
(im − ρi · in)

))

=
1

N − 1

(
σ2
ε +

1

b2
(1− ρ2

i )σ
2
i +

1

b2
(N − 2)(ρi − ρ2

i )σ
2
i

)
Replacing and simplifying terms, we get that:

γs =
(b2σ2

εσ
2
c + (1− ρi)σ2

iσ
2
c((N − 1)ρi + 1))

b2σ2
ε(Nσ

2
c + σ2

ε) + (1− ρi)σ2
i ((N − 1)ρi + 1)(σ2

c + σ2
ε)

;

γ′ =

(
b2(N − 1)σ2

cσ
2
ε

b2σ2
ε(Nσ

2
c + σ2

ε) + (1− ρi)σ2
i ((N − 1)ρi + 1)(σ2

c + σ2
ε)

)
.

Finally, we have that:

γi = 1− ρi · γ′

b
.

This comes directly from that fact that γi is equal to 1 plus the weight on i that

comes from the prediction of c. Yet, from (43) it is clear that the weight on i from the

prediction of c is −ρi · γ′/b. Hence,

γi = 1− ρi · γ′

b
= 1− b · (N − 1)ρiσ

2
cσ

2
ε

b2σ2
ε(Nσ

2
c + σ2

ε) + (1− ρi)σ2
i ((N − 1)ρi + 1)(σ2

c + σ2
ε)
.

It is easy to check that γs is decreasing in b and in the limits b → 0 and b → ∞
we get σ2

c/(σ
2
c + σ2

ε) and σ2
c/(Nσ

2
c + σ2

ε) respectively. Similarly, it is easy to check that

γi < 1 and if b → 0 or b → ∞, then γi → 1. It is also possible to check that γi is

quasi-convex in b.�

Proof of Proposition 4. Before we provide the proof, we make some observations.

Remark 1. We use the notation defined in (36), and we extend the definition to all

other random variables. That is, variables with an over-bar correspond to the average

of the variable over all agents. Variables preceded by a ∆ correspond to the difference

between a variable and the average variable. We also note that:

σ2
v̄ = σ2

v(
1 + (N − 1)ρv

N
) and σ2

∆v = σ2
v

(N − 1)(1− ρv)
N

,
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where ρv is the correlation of the payoff shocks across agents. Similarly, for any random

variable, the variances of the common and orthogonal components are determined by

the correlation of the random variable across agents in the same way. Multiplying all

terms in the cubic polynomial (12) by N/(N − 1), (12) can be written in terms of the

common and the orthogonal component of a random variable as follows:

x3 =
(σ2

∆i + σ2
ı̄ )(σ

2
ε̄ + σ2

c)

σ2
∆iσ

2
ı̄σ2

c

; x2 =
−1

σ2
∆i

; x1 =
σ2

∆ε + σ2
ε̄ + σ2

c

σ2
∆εσ

2
c

; x0 =
−1

σ2
∆ε

. (45)

Remark 2. We now show that in the model with public signals, a linear combina-

tion of signals tn = in +β · sn is an equilibrium statistic if and only if β is a root of the

cubic polynomial x3 · β3 + x2 · β2 + x1 · β + x0, with:

x3 =
(σ2

∆i + σ2
ı̄′)(σ

2
ε̄ + σ2

c′)

σ2
∆iσ

2
ı̄′σ

2
c′

; x2 =
−1

σ2
∆i

; x1 =
σ2

∆ε + σ2
ε̄ + σ2

c′

σ2
∆εσ

2
c′

; x0 =
−1

σ2
∆ε

, (46)

where:

σ2
ı̄′ = σ2

ı̄ −
σ4
ı̄

σ2
ı̄ + σ2

2

and σ2
c′ = σ2

c −
σ4
c

σ2
c + σ2

1

. (47)

That is, the analysis of the equilibrium with public signals is equivalent to redefining

the variances of the common shocks and the common component of the idiosyncratic

shock.

To prove this define:

i′n , in − E[in|s̄2] and c′ , c− E[c|s̄1].

Note that E[in|s̄2] is the same across agents, and hence, ∆in = ∆i′n. That is, public

signals do not change the idiosyncratic component of a random variables. The variance

of ı̄′ and c̄′ are given by (47). Analogously, define:

s′n , c′ + εn and t′n , i′n + β · (c′ + εn). (48)

Note that for the purpose of this proof s′n is defined differently than in (5). All variables

with a prime are orthogonal to (s̄1, s̄2). Hence, we have that the linear combination of
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signals t′n = i′n + β · s′n is an equilibrium statistic if and only if:

E[i′n + c′|t′1, ..., t′N ] = E[i′n + c′|i′n, s′n, t′1, ..., t′N ].

Hence, we can use the characterization of an equilibrium statistic in Proposition 3, but

using the variables with primes. This corresponds to changing the variance of ı̄′ and c′

according to (47).

Remark 3. Analogous to the proof of Proposition 2, the expected social surplus

can be written as follows:

E[S(s1, ..., sN)] = exp(
1

2
var(v̄))× E[E[exp(∆v1)|∆t1, ...,∆tN ]]. (49)

where:

∆tn = ∆in + β ·∆εn.

As in Proposition 2, it is easy to check that the expected social surplus is decreasing

in β and if β → 0, then the equilibrium approaches the efficient outcome.

Main Step. Define the polynomial:

q(β, σ2
2, σ

2
1) , x3 · β3 + x2 · β2 + x1 · β + x0, (50)

with x3, x2, x1, x0 defined in (46) (note that these coefficients depend on (σ2
2, σ

2
1)). Let

β∗(σ2
2, σ

2
1) be a root of (50), and let this root be unique. It is easy to check that:

∂β∗(σ2
2, σ

2
1)

∂σ2
2

= −
∂q(β∗(σ2

2,σ
2
1),σ2

2,σ
2
1)

∂σ2
2

∂q(β∗(σ2
2,σ

2
1),σ2

2,σ
2
1)

∂β

, (51)

and similar for the derivative with respect to σ2
1. It is easy to check that, q(β, σ2

2, σ
2
1)

is decreasing in σ2
ı̄′ and σ2

c′ (hence, also decreasing in σ2
2 and σ2

1 respectively). Hence,

the numerator of (51) is negative. If q(β, σ2
2, σ

2
1) has a unique root then q(β, σ2

2, σ
2
1) is

increasing at this root. Hence, the denominator of (51) is positive. Hence, if q(β, σ2
2, σ

2
1)

has a unique root, then this root is increasing in σ2
2 and σ2

1. This implies that the social

surplus is decreasing σ2
1 and σ2

2.

For the limit, note that in the limit σ2
ı̄′ → 0 or σ2

c′ → 0 every root of the polynomial



41

q(β) must converge to 0. Hence, the social surplus is equal to the social surplus of the

efficient outcome. Hence, we prove the result. �

Proof of Proposition 5 The proof is similar to the proof of Proposition 4. We use all

the definitions and arguments therein, and extend them to show the results on revenue.

We first provide some additional observations.

Remark 1. The coefficients λ and κ (defined in (32) and (33)) can be re-written in

terms of the common and orthogonal components of the random variables as follows:

κ =
σ2

∆i

σ2
∆i + β2 · σ2

∆ε

; (52)

λ =
1

N

(
σ2
ı̄ + β · σ2

c

σ2
ı̄ + β2(σ2

c + σ2
ε̄)

σ2
∆i + β2 · σ2

∆ε

σ2
∆i

− 1

)
. (53)

Remark 2. Using the definition of s′n in (48), the expectations can be written as

follows:

E[vn|s′1, ..., s′N , s̄1, s̄2] = κ′ ·
(
s′n + λ′

N∑
m=1

s′m

)
+ E[vn|s̄1, s̄2], (54)

where κ′ and λ′ are defined as follows:

κ′ ,
σ2

∆i

σ2
∆i + β2 · σ2

∆ε

; (55)

λ′ ,
1

N

(
σ2
ı̄′ + β · σ2

c′

σ2
ı̄′ + β2(·σ2

c′ + σ2
ε̄)

σ2
∆i + β2 · σ2

∆ε

σ2
∆i

− 1

)
, (56)

where σ2
ı̄′ and σ2

c′ are defined in (47).

Remark 3. The price paid in the auction is equal to E[exp(v2)|t2, t2, ..., tN , s̄1, s̄2].

Using (30) and (54) we have that:

p2 = E[exp(v2)|t2, t2, ..., tN , s̄2, s̄1]

= exp(E[v2|t1, ..., tN ]− κ′λ′(t1 − t2) +
1

2
var(v2|t1, ..., tN , s̄2, s̄1))

= exp(−κ′ · λ′ · (t1 − t2))× E[exp(v2)|t1, ..., tN , s̄2, s̄1] (57)

Main Step. We now provide the main part of the proof. As shown in Proposition

4, in the limit σ2
1 → 0 we have that β → 0 and σ2

c′ → 0 (note that σ2
ı̄′ is strictly above

0 in the limit σ2
1 → 0). In this case λ′ · κ′ → 0 and tn → i′n. Hence, using (57), in the
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limit:

lim
σ2
1→0

E[p2] = E[E[exp(v2)|i1, ..., iN , s̄2, s̄1]],

where v2 is the valuation of the agent that observed the second maximum over (t1, ..., tN).

Yet, since β → 0, this is the same as the agent that has the second maximum over

(v1, ..., vN). Hence, we prove the result.�

Proof of Proposition 6 The proof is similar to the proof of Proposition 5. We use all

the definitions and arguments therein, and extend them to show the results on revenue.

We now prove that:

lim
σ2
2→0

p2 = 0.

In the limit σ2
2 → 0 we have that β → 0 and σ ı̄ → 0. In this limit we have that λ′ →∞

and κ′ → 1 (see (55) and (56)). Note that t1−t2 is greater than 0 always because agents

are relabelled such that this is satisfied. Additionally, in the limit, t1 − t2 → i1 − i2.

Hence, (t1−t2) has positive variance. Also, clearly E[exp(v2)|t1, ..., tN , s̄2, s̄1] is finite as

this is the expected valuation of the agent with the second highest equilibrium statistic.

Hence, we have that:

lim
σ2
2→0

E[exp(−κ′ · λ′ · (t1 − t2))× E[exp(v2)|t1, t2, ..., tN , s̄2, s̄1]] = 0,

because λ′ →∞ and (t1 − t2) has positive variance. Hence, we prove the result. �
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Online Appendix to:
An Ascending Auction with Multidimensional

Signals

Tibor Heumann

October 18, 2017

The online appendix contains complementary results to the main paper. It is or-

ganized as follows. Section A provides additional results on the baseline model (with

two-dimensional signals). Section B shows how to characterize a class of Nash equilib-

rium in an ascending auction for any Gaussian information structure. Section C shows

how to characterize a class of Nash equilibrium in a broader class of mechanisms when

agents observe multidimensional Gaussian signals. Section D provides the proofs of

the results in the online appendix.
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A Online Appendix: Additional Results on Baseline Model

In this section we provide additional results of our baseline model. That is, throughout

this section we continue to assume a model as in Section 2. We provide conditions that

guarantee the existence of a unique equilibrium and we provide additional comparative

statics.

A.1 Uniqueness of Equilibrium

We now study when there is a unique equilibrium (within the class of equilibria studied

in Theorem 1). We begin by providing conditions under which the cubic equation (12)

has a unique root.

Proposition 7 (Multiplicity of Equilibria).

The auction has a unique (multiple) equilibrium within the class of equilibria studied

in Theorem 1 if: 18x3x2x1x0−4x3
2x0 +x2

2x
2
1−4x3x

3
1−27x2

3x
2
0 < 0(> 0) (with x3, x2, x1,

x0 defined in (12)).48

Proposition 7 is a characterization of the environments in which the cubic polynomial

(12) has multiple roots. We use Proposition 7 to derive corollaries that are easier to

interpret. We show that the following conditions are necessary for the multiplicity

of equilibria: (i) the idiosyncratic shocks are positively correlated; and (ii) the noise

therm in signal sn is large, but not too large.

(i) Correlated idiosyncratic shocks. Multiple equilibria arise only if idiosyn-

cratic shocks are positively correlated (corr(in, im) > 0).

Corollary 1 (Correlation in Idiosyncratic Shocks).

If the idiosyncratic shocks are independently distributed ( ρi = 0 ), then the ascending

auction has a unique equilibrium ( within the class of equilibria studied in Theorem 1).

Corollary 1 shows that correlated idiosyncratic shocks is a necessary condition to

find multiple equilibria in the ascending auction. If the idiosyncratic shocks are inde-

pendently distributed, then the beliefs of agent n about c are independent of in. Hence,

there is no complementarity in the weight agents place on in.
48The case 18x3x2x1x0 − 4x32x0 + x22x

2
1 − 4x3x31 − 27x23x

2
0 = 0 must be considered independently. If 18x3x2x1x0 −

4b3d+ x22x
2
1 − 4x3x31 − 27x23x

2
0 = 0, then there is a unique equilibrium if and only if x2 = 3x3x1.



3

(ii) Intermediate size of the noise terms. We show that for large enough σ2
ε

or small enough σ2
ε there is a unique equilibrium.

Corollary 2 (Uniqueness of Equilibrium).

If either σ2
ε → 0 or σ2

ε → ∞, then there exists a unique equilibrium ( within the class

of equilibria studied in Theorem 1).

Corollary 2 shows that if the noise term is large enough or small enough, then there

exist a unique equilibrium. If σ2
ε → 0, then agents have complete information about

the common shock. This limit corresponds to a private value environment, and hence

there is a unique equilibrium. If σ2
ε → ∞, then agent n ignore sn. This limit also

corresponds to a private value environment. Corollary 2 shows that multiple equilibria

only arise for an intermediate level of noise. This does not provide any intuition on

the magnitudes that are necessary to consider.

Multiple equilibria arise when signal sn is noisy enough such that agent n does not

learn “too much” about c from sn. Additionally, signal sn must be precise enough such

that the collection of all signals (s1, ..., sN) is informative about c. In a loose sense,

this can be stated as follows:

corr(sn, c) ≈ 0 and corr(sn, c) ≈ 1. (58)

If (58) is satisfied, when agent n observes only sn he cannot make a precise prediction

of c. Yet, if agent n observed (s1, ..., sN), then he would be able to make a precise

prediction of c.

As the number of agents increases, the possibility that (58) is satisfied for very

noisy signals increases. This is because corr(
∑

n∈N sn, c) converges to 1 as N → ∞.

Hence, by taking the limits N →∞ and σ2
ε →∞ at the right rates, corr(

∑
n∈N sn, c)

converges to 1 and corr(sn, c) converges to 0. This happens when N grows faster than

σ2
ε.
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Corollary 3 (Multiplicity of Equilibria).

If σ2
ε →∞, N →∞ (with N diverging faster than σ2

ε), then there are multiple equilibria

if and only if:

σ2
c ≥

4(1− ρi)
ρi

σ2
i . (59)

Corollary 3 shows that it is possible to have multiple equilibria, even in the limit

σ2
ε → ∞ (as long as N grows faster than σ2

ε). This shows that the model has an

interesting discontinuity as we approach large markets (N →∞). In the limit N →∞
and σ2

ε →∞, the model does not approach a model of private values. This is because

if the number of agents grows faster than σ2
ε, then the collection of the signals observed

by all the agents is still informative about c.

A.2 Comparative Statics with Respect to ρi.

Finally, we provide the comparative statics with respect to ρi.

Proposition 8 (Comparative Statics with Respect to ρ).

If there is a unique equilibrium statistic, then β is increasing in ρi.

Proposition 8 shows that β decreases with the correlation of the idiosyncratic shocks.

This implies that the efficiency of the auction is decreasing in the correlation of the

idiosyncratic shocks across agents.

B Online Appendix: General Multidimensional Signals

We extend the methodology developed in Section 4 to allow for general Gaussian

signals. The idea remains the same as in Section 4. That is, we first compute an

equilibrium statistic, and then compute the equilibrium as if agents observe only the

equilibrium statistic.
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B.1 Payoff Environment and Information Structure

As in Section 2, we study N agents bidding for an indivisible good in an ascending

auction. The utility of agent n ∈ N if he wins the object at price p is given by:

u(vn, p) , exp(vn)− p, (60)

where vn ∈ R is a payoff shock. If an agent does not win the good he gets a utility

equal to 0. Agent n observes J signals:

sn = (s1
n, ..., s

J
n),

where bold fonts denote vectors. The joint distribution of signals and payoff shocks is

jointly Gaussian (possibly asymmetrically distributed). That is, (v1, ..., vN , s1, ..., sN)

is jointly normally distributed. The description of the auction remains the same as

Section 2 (although we do not restrict attention to equilibria in which agents use

symmetric strategies).

B.2 One-Dimensional Signals

We begin by studying one-dimensional signals. If agents observe one-dimensional sig-

nals, and the average crossing condition is satisfied, then the ascending auction has

an ex post equilibrium that is efficient (see Krishna (2003)). The average crossing

condition is defined as follows.

Definition 2 (Average Crossing Condition).

The one-dimensional information structure (s1, ..., sN , v1, ..., vN) satisfies the average

crossing condition if for all A ⊂ {1, ..., N}, and for all n,m ∈ A with n 6= m:

0 <
∂E[vn|s1, ..., sN ]

∂sm
≤ 1

|A|
∑
h∈N

∂E[vh|s1, ..., sN ]

∂sm

The average crossing condition guarantees that the impact of agent n’s signal on

agent m’s valuation is not to high. The comparison is done with respect to the average

impact that agent n’s signal has on any group of agents that contains n.
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To characterize the equilibrium we assume that agents are ordered as follows:

E[vn|s1, ..., sN ] > ... > E[vN |s1, ..., sN ]. (61)

That is, we assume that agents are ordered according to their expected valuation

conditional on the signals of all agents. We define s̃1 ∈ R as follows:

s̃1 , arg mins′∈R E[v1|s′, s2, ..., sN ]

subject to ∀n ∈ N, E[v1|s′, s2, ..., sN ] ≥ E[vn|s′, s2, ..., sN ]
(62)

s̃1 is the signal that yields the lowest expected payoff shock to agent 1, but keeping the

expected payoff shock of agent 1 above the expected payoff shocks of other agents.

Proposition 9 (Equilibrium for One-Dimensional Signals ).

The ascending auction with one-dimensional signals has a Nash equilibrium in which

agent 1 wins the object and pays a price:

p2 = E[v1|s̃1, s2, ..., sN ]. (63)

The ascending auction has an equilibrium in which the agent with the highest ex-

pected valuation wins the object. The price paid for the object is the expected valuation

of the winner of the object, but evaluated at the minimum signal this agent could have

observed and still win the good.

B.3 Equilibrium Statistic

As in section 4 the characterization of the equilibrium relies on projecting the signals an

agent observes into a one-dimensional statistic. In equilibrium, agents behave as if they

observed only their equilibrium statistic. The only difference in the characterization of

the equilibrium statistic is that we need to allow for higher dimensional objects for the

weights. Since different signals generally receive different weights, it is convenient to

work with vectors. We denote the dot product between β ∈ RJ and sn ∈ RJ by β · sn.

We define an equilibrium statistic for general Gaussian information structures.



7

Definition 3 (Equilibrium Statistic).

The random variables {tn}n∈N are an equilibrium statistic if there exists (β1, ...,βN) ∈

RN×J such that for all n ∈ N :

tn = βn · sn; (64)

E[vn|t1, ..., tN ] = E[vn|sn, t1, ..., tN ]. (65)

The definition of an equilibrium statistic is the natural extension of Definition 1,

but allowing for general J-dimensional signals. Note that the weights on the signals

of agent n (βn), may be different than the weights on the signals of agent m (βm).

The equilibrium statistic is the fundamental object that allows us to characterize the

equilibrium in multidimensional environments.

In order to prove that an equilibrium statistic exists, we assume that every agent n

observes an additional signal (label J + 1):

sJ+1
n = εn, (66)

where εn is normally distributed with mean equal to 0 and variance equal to 1, in-

dependent across agents and independent of all other random variables in the model.

That is, each agent observes an additional signal that is only noise. We call this the

augmented information structure. We prove that an equilibrium statistic exists

Proposition 10 (Existence).

If the variance covariance matrix var(s1, ..., sN) has full rank, then the augmented

information structure has an equilibrium statistic exists. If the information structure

is symmetric, then there exists a symmetric equilibrium statistic.49

Proposition 10 guarantees the existence of equilibrium statistic for generic infor-

mation structures.50 The additional signal (66) is used to guarantee the existence of

an equilibrium statistic in the cases in which agent n observes signals that contain no

information about vn. Hence, in most natural example it is not necessary to consider

the additional signal sJ+1
n to guarantee the existence of an equilibrium statistic. In

49For symmetric information structures it is possible to prove the existence of an equilibrium statistic without the
need to consider the augmented information structure.

50The uniqueness of the equilibrium statistic is clearly not guaranteed (see Section 4.4).
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the proof of Proposition 10 we explain in more detail under what circumstances the

additional signal sJ+1
n could be needed.

Finding the set of equilibrium statistics ({βn}n∈N) can be found by using a “guess-

and-verify” method and checking that the coefficients satisfy (65). In symmetric en-

vironments, this reduces to finding the roots of a polynomial of order 2 · J − 1. In

asymmetric environments, this reduces to solving a multilinear system of equations.

B.4 Equilibrium with Multidimensional Signals

We now characterize a class of equilibria when agents observe multidimensional signals.

We fix an equilibrium statistic (t1, ..., tN). Agents are ordered as follows:

E[v1|t1, ..., tN ] > ... > E[vN |t1, ..., tN ]. (67)

That is, we assume that agents are ordered according to their expected valuation

conditional on the equilibrium statistic of all agents. We define t̃1 ∈ R as follows:

t̃1 , arg mint′∈R E[v1|t′, t2, ..., tN ]

subject to ∀n ∈ N, E[v1|t′, t2, ..., tN ] ≥ E[vn|t′, t2, ..., tN ]
(68)

t̃1 is the analogous of s̃n, but using the equilibrium statistic.

Theorem 2 (Equilibrium for Multidimensional Signals).

If the equilibrium statistic {tn}n∈N satisfies the average crossing condition, then the

ascending auction has a Nash equilibrium in which agent 1 wins the object and pays a

price equal to:

p2 = E[v1|t̃1, t2, ..., tN ].

Theorem 2 characterizes a class of equilibria in which agents behave “as if” they

observe only one-dimensional signals. This is the natural extension of Theorem 1. The

characterization requires that the equilibrium statistic satisfies the average crossing

condition. In applications it is easy to check whether the average crossing condition is

satisfied.

The same characterization can be applied if we consider an ascending auction with

reentry (see the following section for a formal argument). Besides being a more realistic
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model in many applications, allowing for reentry relaxes the conditions under which an

ex post equilibrium exists when agents observe one-dimensional signals (see Izmalkov

(2001)).

C Online Appendix: Other Mechanisms

We now extend the methodology to find a class of Nash equilibrium when agents observe

multidimensional Gaussian signals in a larger class of games. The solution method

remains the same. We first project the signals into a one-dimensional equilibrium

statistic. We then show that an equilibrium exists in which agents behave “as if” agents

observe only their equilibrium statistic. Importantly, the definition of an equilibrium

statistic does not change.

C.1 General Games

We consider a game with N agents. Agent n ∈ N takes action an ∈ An, where An

is assumed to be a metric space. The payoff of agent n ∈ {1, ..., N} depends on the

realization of his payoff shock vn ∈ R and the action taken by all agents. The payoff

of agent n is denote by:

un(vn, a1, ..., aN).

As before, vectors are denoted in bold font. A profile of actions is denoted by:

a , (a1, ..., aN).

We denote by (a′n, a−n) the action profile:

(a′n, a−n) = (a1, ..., an−1, a
′
n, an+1, ..., aN).

We keep the information structure the same as in Section B. The definition of an

equilibrium statistic is the same as in Definition 3.

We distinguish between the payoff environment and the information structure. This

is because we want to compute the set of equilibria for a fixed payoff environment, but

under different information structures. The actions available to each agent and the
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utility functions are called the payoff environment and are denoted by P . The joint

distribution of signals and payoff shocks is the information structure and is denoted

by I. The game is defined by the payoff environment and the information structure

(P,I). Given an equilibrium statistic (t1, ..., tN) ∈ RN , the information structure in

which agent n observes only tn is called the reduced form information structure and is

denoted by Î.

In game (P,I) , a strategy profile for agent n is defined by a function αn : RJ → An.

In game (P, Î) a strategy for agent n is a functions α̂n : R→ An. We denote by (α(s))

the strategy profile:

(α(s)) , (α1(s1), ..., αN(sN)).

We denote by (a′n,α−n(s−n)) the strategy profile in which all agents play according to

(α(s)) except for agent n, and agent n takes action a′n for all realizations of the signals

he observes. That is,

(a′n,α−n(s−n)) , (α1(s1), ..., αn−1(sn−1), a′n, αn+1(sn+1), ..., αN(sN)).

C.2 Solution Concepts

In order to provide our results, it is convenient to work with stronger solution concepts

than Nash equilibrium. This allow us to provide sharper results. We define posterior

equilibrium.

Definition 4 (Posterior Equilibrium).

A strategy profile (α1, ..., αN) forms a posterior equilibrium if for all agents n ∈ N , for

all signals realizations (s1, ..., sN) ∈ RJ , and for all actions a′n ∈ An:

E[un(vn,α(s))|sn,α(s)] ≥ E[un(vn, (a
′
n,α−n(s−n)))|sn,α(s)]. (69)

In a posterior equilibrium, the strategy of agent n remains optimal even if he knew

the actions taken by all other agents. The definition of posterior equilibrium is due

to Green and Laffont (1987). In contrast to a Nash equilibrium, the information set

with respect to which the action needs to be optimal is augmented. The action taken

by agent n remains optimal even if he knew the action taken by other agents. It is
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transparent to see that, if a strategy profile is an posterior equilibrium, then it is also

a Nash equilibrium.

It is convenient to compare posterior equilibrium with ex post equilibrium. A strat-

egy profile (α1, ..., αN) forms an ex post equilibrium if for all agents n ∈ N , for all

signals realizations (s1, ..., sN) ∈ RJ , and for all actions a′n ∈ An:

E[un(vn,α(s))|s1, ..., sN ] ≥ E[un(vn, (a
′
n,α−n(s−n)))|s1, ..., sN ]. (70)

In an ex post equilibrium, agent n’s action is optimal even if he knew the realization

of the signals of all other agents. The definition of ex post equilibrium is standard in

the literature.51

The difference between posterior equilibria and ex post equilibria is the amount of

information with respect to which a strategies is optimal. That is, the difference lies

in the conditioning variables in (70) and (69). The action taken by agent n is less

informative than the signals agent n observes. Hence, if an equilibrium is an ex post

equilibrium, then it is also a posterior equilibrium.

C.3 General Characterization of Equilibria

We now show how to compute a class of posterior equilibria in game (P,I). We do this

by providing an equivalence between ex post equilibria in game (P, Î) and posterior

equilibria in game (P,I).

Theorem 3 (Equivalence).

If (β1 · s1, ...,βN · sN) ∈ RN is an equilibrium statistic and strategies profile {α̂n}n∈N
is an ex post equilibrium in game (P, Î), then the strategy profile {αn}n∈N defined as

follows:

αn(sn) = α̂n(βn · sn), (71)

is a posterior equilibrium in game (P,I).

Proposition 3 shows that equilibria can be computed using a two step procedure.

The first step is to find the one-dimensional equilibrium statistic using (65). The second

51Ex post equilibrium has been studied by many papers in different contexts (see, for example, Bergemann and Morris
(2005) for a discussion).
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step is to compute a posterior equilibrium as if agents observed only the equilibrium

statistic.

In order to characterize a posterior equilibrium when agents observe multidimen-

sional signals, the mechanism must have an ex post equilibrium when agents observe

only the equilibrium statistic. Yet, the equilibrium statistic is an endogenous object.

So, to apply the methodology in our paper, it is necessary that the mechanism has an

ex post equilibrium for a broad class of one-dimensional signals. For example, if a di-

rect revelation mechanism has an ex post equilibrium under a specific one-dimensional

signal then, in general, this same mechanism (that is, this same mapping from mes-

sages to outcomes) will no longer have an ex post equilibrium under a different joint

distribution of signals and payoff shocks. Hence, the methodology can be applied to a

large class of indirect mechanisms that have an ex post equilibrium, regardless of the

precise description of the information structure. If a mechanism has an ex post equilib-

rium for some one-dimensional information structure but not for other one-dimensional

information structures, then it is necessary to check whether the mechanism has an ex

post equilibrium when agents observe only the equilibrium statistic.

D Online Appendix: Proofs of Results in Online Appendix

Proof of Proposition 7 It is a standard property of cubic polynomials that they have

a unique root if and only if their discriminant is greater than 0. For (12) this reduces

to the condition in Proposition 7. Hence, we prove the result.�

Proof of Corollary 1 We show this by proving that if ρi = 0, then the discriminant

of the polynomial (12) is negative (see Proposition 7). If ρi = 0, we have that:

x3 =
(σ2

ε +N · σ2
c)

σ2
iσ

2
c

; x2 =
−1

σ2
i

; x1 =
σ2
ε + σ2

c

σ2
εσ

2
c

; x0 =
−1

σ2
ε

. (72)

Replacing this into 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 we get:

1

σ6
εσ

6
iσ

8
c

(
− 4σ8

εσ
4
i + σ2

εσ
2
iσ

6
c

((
−27N2 + 18N + 1

)
σ2
c − 4(3N + 1)σ2

i

)
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−4σ6
εσ

2
iσ

2
c

(
(N + 3)σ2

i + 2σ2
c

)
− 4σ4

εσ
4
c

(
(9N − 5)σ2

iσ
2
c + 3(N + 1)σ4

i + σ4
c

)
− 4Nσ4

iσ
8
c

)
It is easy to check all terms are negative for N ≥ 1, and hence the ascending auction

has a unique equilibrium.�

Proof of Corollary 2 We prove the result using the characterization in Proposition

7. In the limit σ2
ε → 0, we have that x0 → ∞ and x1 → ∞. Clearly the term that

dominates is −4x3
1x3, and hence, in the limit the discriminant is negative. Hence, the

cubic polynomial has a unique root. In the limit σ2
ε → ∞ we have that x3 → ∞.

Clearly the term that dominates is −27x2
3x

2
0, and hence, in the limit the discriminant

is negative. Hence, the cubic polynomial has a unique root.

Proof of Corollary 3 We prove the result using the characterization in Proposition

7. We take the limit σ2
ε →∞, N →∞ (with N diverging faster than σ2

ε). In the limit

N →∞:

x3 =
1

(1− ρi)ρi
1

σ2
i

Considering this value for x3 we have that:

lim
σ2
ε→∞

18x3x2x1x0 − 4x3
2x0 + x2

2x
2
1 − 4x3x

3
1 − 27x2

3x
2
0

=
−4(1− ρi)2 · σ4

i − 4(1− ρi)ρi · σ4
i + ρi · σ2

iσ
2
c

(1− ρi)ρi · σ4
iσ

6
c

. (73)

Clearly (73) is positive if and only if:

σ2
c ≥

4(1− ρi)
ρi

σ2
i

By re-arranging terms we get the result.�

Proof of Proposition 8 Define the polynomial:

q(β, ρi) , x3 · β3 + x2 · β2 + x1 · β + x0, (74)

with x3, x2, x1, x0 defined in (12) (note that these coefficients depend on ρi). Let β∗(ρi)
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be the unique root of (74). It is easy to check that:

∂β∗(ρi)

∂ρi
= −

∂q(β∗(ρi),ρi)
ρi

∂q(β∗(ρi),ρi)
β

. (75)

If q(ρi) has a unique root then q(ρi) is increasing at this root (hence, the denominator

of (75) is positive). It is possible to check that, q(ρi) is decreasing in ρi (to be checked

later). Hence, the numerator of (75) is negative. Hence, if q(β, ρi) has a unique root,

then this root is increasing in ρi.

Proof that q(β, ρi) is decreasing in ρi. We first provide bounds on the value of

the root β∗(ρi). It is easy to check that:

If β >
(1 + (N − 1)ρi)σ

2
c

(σ2
ε +Nσ2

c)
, then x3 · β3 + x2β

2 > 0.

On the other hand,

If β >
σ2
c

σ2
ε + σ2

c

, then x1 · β + x0 > 0.

Hence, the root must satisfy that:

β∗(ρi) ≤ max{(1 + (N − 1)ρi)σ
2
c

(σ2
ε +Nσ2

c)
,

σ2
c

σ2
ε + σ2

c

}.

To check that q(β, ρi) is decreasing in ρi note that:

∂q(β, ρi)

∂ρi
= β2(

(−(N − 1)(1− ρi) + (1 + (N − 1)ρi))

(1− ρi)2(1 + (N − 1)ρi)
2

(σ2
ε +N · σ2

c)

σ2
iσ

2
c

β − 1

(1− ρi)2σ2
i

).

(76)

If (76) is negative when we evaluated at:

β =
(1 + (N − 1)ρi)σ

2
c

(σ2
ε +Nσ2

c)
and β =

σ2
c

σ2
ε + σ2

c

, (77)

then it will continue to be negative at the root β∗. This is because the term inside

the parenthesis in (76) is an affine function of β with a negative intercept. Hence, the

term inside the parenthesis is either an increasing function of β or it is negative for

all positive values of β. Hence, if the term inside the parenthesis is negative when we

evaluated at (77) then it will continue to be negative at the root β∗ (which is smaller
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than both terms in (77)).

If we replace β =
(1 + (N − 1)ρi)σ

2
c

(σ2
ε +Nσ2

c)
in (76) and simplify terms, we get:

−β2 N − 1

(1− ρi)σ2
i ((N − 1)ρi + 1)

< 0

If we replace β =
(1 + (N − 1)ρi)σ

2
c

(σ2
ε +Nσ2

c)
in (76) and simplify terms, we get:

−β2 (N − 1) ((N − 1) (ρ2
iσ

2
ε + (ρi − 1)2σ2

c) + σ2
ε)

(ρi − 1)2σ2
i ((N − 1)ρi + 1)2

(
σ2
c

2 + σ2
ε

) < 0

Hence, (76) is negative when we evaluated at the root β∗(ρi). Hence, q(ρi) is decreasing

in ρi. Hence, we prove the result. �

Proof of Proposition 9 Krishna (2003) shows that the ascending auction has an

efficient ex post equilibrium (see Theorem 2 therein). Second we prove that the price

paid in the ex post efficient equilibrium is (63). Yet, this is standard in the literature

(see for example Ausubel (1999)). Finally, Perry and Reny (1999) provides a revenue

equivalence theorem for ex post equilibria. That is, if two mechanisms implement the

same allocation as an ex post equilibrium, then the payments must be the same. Hence,

(63) must also be the payment in the outcome of the ascending auction. Hence, we

prove the result. �

Proof of Proposition 10 Before we provide the proof it is convenient to provide a

brief explanation what is the difficulty of the proof. An equilibrium statistic is defined

by the fixed point (65). Hence, to prove existence one would like to directly use a fixed

point theorem (e.g. Brouwer’s fixed-point theorem). The expectation of agent n is

continuous in the weights that agent m places on his signal βm, except at 0. That is,

at the point βm = (0, ..., 0) the expectation E[vn|sn,β1·s1, ...,βN ·sN ] is discontinuous in

βm. Hence, the whole difficulty of the proof is to circumvent this point of discontinuity.

The proof proceeds in two steps. We first define a perturbed payoff environment

and show that an equilibrium statistic exists in this perturbed environment. In the

perturbed payoff environment an agent will always place a positive weight on one

signal, and hence the point βm = (0, ..., 0) will not be in the range of the possible

weights we consider. This circumvents the discontinuity. In the second step we show
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that an equilibrium statistic exists in the original environment by taking a sequence of

perturbed environments that converges to the original one.

(Step 1) Recall that the augmented information structure is equal to the original

information structure, but adding a signal (labeled J + 1) to each agent:

sJ+1
n = εn, (78)

where {εn}n∈N have a variance equal to 1, independent across agents and independent

of all other random variables in the model. We denote by s′n the set of all original

signals observed by n plus sJ+1
n . That is. s′n , (sn, s

J+1
n ). Note that s′n is different than

sn as defined in (5). We incur in this abuse of notation because there is no ambiguity

on the use of the notation and this allow us to keep the notation simpler.

Consider a payoff environment in which for all n ∈ N , the payoff shock of agent n

is equal to:

v′n , vn +
1

k
sJ+1
n ,

where k ∈ N. Note that we are adding a shock to vn, and each agent knows the

realization of his additional shock.

We denote by R ⊂ RJ+1, the set of all vectors that have a 1/k in the component

J + 1 and have a norm smaller or equal than some big enough M ⊂ R, where M is

big enough to satisfy a condition specified later. Clearly, R is a convex and compact

subset of RJ+1.

We define function fn : RN−1 → R as the weights agent n places on his own

signals when he knows (β′1 · s1
′, ...,β′n−1 · sn−1

′,βn+1
′ · sn+1

′, ...,β′N · s′N). That is,

fn(β′1, ...,β
′
n−1,βn+1

′, ...,β′N) is defined implicitly as follows:

E[v′n|s′n,β′1 · s′1, ...,β′N · s′N ] , fn(β′1, ...,β
′
n−1,βn+1

′, ...,β′N) · s′n +
∑
m 6=n

γm · β′m · ·s′m,

(79)

for some {γm}m 6=n ∈ RN−1. There are several things to note.

(i) Since the original signals have full rank, the expectation in (79) is uniquely de-

fined. That is, fn(β′1, ...,β
′
n−1,βn+1

′, ...,β′N) is a function (and not a correspon-

dance).



17

(ii) Since {sJ+1
n }n∈N is independent of all other random variables in the model, agent

n always places a weight equal to 1/k on sJ+1
n . This guarantees that

fn(β′1, ...,β
′
n−1,βn+1

′, ...,β′N) is always equal to 1/k in the coordinate J + 1.

(iii) We can bound the weights agent n places on his own signals. This is because

the variance of the expectation is always smaller than the variance of the original

random variable. That is, it is possible to find M large enough such that if

||βn|| > M , then

var

(
βn · s′n +

∑
m6=n

γm · β′m · ·s′m
)
> var

(
v′n

)
,

for any {γm}m6=n. This is because var(s1, ..., var(sN) has full rank. This guaran-

tees that fn(β′1, ...,β
′
n−1,βn+1

′, ...,β′N) has a norm smaller or equal than M .

(iv) the points (ii) and (iii) guarantee that the range of fn(β′1, ...,β
′
n−1,βn+1

′, ...,β′N)

is equal to R.

(v) Since the variance covariance matrix of signals has full rank, and the component

J + 1 is always equal to 1/k, the function fn(β′1, ...,β
′
n−1,βn+1

′, ...,β′N) is con-

tinuous in RN−1. That is, the expectation would be discontinuous at the point

(0, ..., 0), but we are not considering this vector in the domain of the function.

This is because the domain of the function is R, which has 1/k in the component

J + 1.

We now define function f : RN →RN as folllows:

f(β′1, ...,β
′
N) , (f1(β′2, ...,β

′
N), ..., fN(β′1, ...,β

′
N−1)).

By the previous argument, f is a continuous function, with a domain equal to its

range, and defined on a compact domain. By Brouwer’s fixed-point theorem f has a

fixed point. By construction, the fixed point (βk1, ....,β
k
N) satisfies:

E[v′n|s′n,βk1 · s1, ...,β
k
N · sN ] = E[v′n|βk1 · s1, ...,β

k
N · sN ].

Hence, (βk1, ....,β
k
N) is an equilibrium statistic under the perturbed payoff shock.
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(Step 2) We denote by (βk1, ....,β
k
N) the equilibrium statistic of the perturbed

environment. We normalize the equilibrium statistic such that for all n ∈ N , ||βkn|| = 1

(remember the J + 1 component is equal to 1/k, so the norm is never 0). Since

(βk1, ....,β
k
N) is defined on a compact set, it has a convergent subsequence. By re-

labeling the series, we can assume that (βk1, ....,β
k
N) is a convergent sequence, and

define the limit (β∞1 , ....,β
∞
N ). Note that by taking the limit k → ∞, we are not

changing the joint distribution of signals and payoff shocks (v1, ..., vN , s1, ..., sN). By

changing k we only change the impact that εn has on v′n.

We have considered equilibrium statistics such that for all n ∈ N , ||βkn|| = 1, and

the joint distribution of signals stays constant as we take the limit. Hence,

lim
k→∞

E[vn|s′n,βk1 · s′1, ...,βkN · s′N ] = E[vn|s′n,β∞1 · s′1, ...,β∞N · s′N ]; (80)

lim
k→∞

E[vn|βk1 · s′1, ...,βkN · s′N ] = E[vn|β∞1 · s′1, ...,β∞N · s′N ]. (81)

That is, the informational content of βkn · s′n changes continuously in the limit k →∞.

Hence, the expectations must change continuously. By construction of the equilibrium

static:

E[vn +
1

k
εn|s′n,βk1 · s′1, ...,βkN · s′N ] = E[vn +

1

k
εn|βk1 · s′1, ...,βkN · s′N ],

then we must also have that:

lim
k→∞

var

(
E[vn|s′n,βk1 · s′1, ...,βkN · s′N ]− E[vn|βk1 · s′1, ...,βkN · s′N ]

)
= 0. (82)

This implies that:

E[vn|β∞1 · s′1, ...,β∞N · s′N ] = E[vn|s′n,β∞1 · s′1, ...,β∞N · s′N ].

Hence, (β∞1 · s′1, ...,β∞N · s′N) is an equilibrium statistic of the environment in which

agents observe an additional signal sJ+1
n that is pure noise.

Note that when taking the expectation E[vn|s′n,β∞1 · s′1, ...,β∞N · s′N ], an agent always

places 0 weight on sJ+1
n (as this is pure noise in the limit). Hence, if the equilib-

rium statistic β∞n · s′n places non-zero weight on sJ+1
n , this means that the expectation



19

E[vn|β∞n · s′1, ...,β∞N · s′N ] places 0 weight on β∞1 · s′n. Hence, if the equilibrium statistic

β∞n · s′n places non-zero weight on sJ+1
n , this means an agent ignores his own signals in

equilibrium. In most natural applications this obviously is not satisfied, and hence the

weight on sJ+1
n is 0.

(Symmetric Information Structures.) Clearly, if the information structure is

symmetric, then we can repeat the argument using symmetric equilibrium statistic.

That is, instead of considering β−n , (β1, ...,βn−1,βn+1, ..., ,βN), one needs to con-

sider β−n in which βm = βk, for all m, k 6= n.

Hence, we prove the result.�

Proof of Theorem 2 This is a direct corollary of Theorem 3 and the fact that the

equilibrium characterized in Proposition 9 is an ex post equilibrium. �

Proof of Theorem 3. It is clear that for any equilibrium statistic, the joint distri-

bution of the random variables (v1, ..., vN , s1, ..., sN , t1, ..., tN) is jointly normally dis-

tributed (this is just a linear combination of Gaussian signals). We first provide the

main steps of the proof and then explain each step in detail. If α̂n : R → An is an ex

post equilibrium of game (P, Î), then:

⇒ ∀n ∈ N,∀t ∈ RN , ∀a′n ∈ An, E[un(α̂(tn), α̂(t−n), vn)|t]

≥ E[un(a′n, α̂(t−n), vn)|t] (83)

⇒ ∀n ∈ N,∀t ∈ RN , ∀sn ∈ RJ , ∀a′n ∈ An, E[un(α̂(tn), α̂(t−n), vn)|t, sn]

≥ E[un(a′n, α̂(t−n), vn)|t, sn] (84)

⇒ ∀n ∈ N,∀t ∈ RN , ∀sn ∈ RJ , ∀a′n ∈ An, E[un(α̂(tn), α̂(t−n), vn)|sn, α̂1(t1), ..., α̂N(tN)]

≥ E[un(a′n, α̂(t−n), vn)|sn, α̂1(t1), ..., α̂N(tN)]

(85)

⇒ α∗ : RJ →M , with α∗(sn) = α̂(tn) = α̂(βn · sn) is a posterior equilibrium of game G

(86)

Step (83) This is by definition of ex post equilibria in game (P, Î).

Step (84) First, note that the expectations are over random variable vn. Hence, we

need to prove that:

∀t ∈ RN , ∀sn ∈ RJ , vn|t=vn|t,sn .
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That is, the distribution of vn conditional on t is the same same as the conditional

distribution of vn conditional on t and sn. As the random variables are normally

distributed, it suffices to prove that:

∀t ∈ RN , ∀sn ∈ RJ , E[vn|t] = E[vn|t, sn]; (87)

∀t ∈ RN , ∀sn ∈ RJ , var(vn|t)=var(vn|t, sn) (88)

(87) is true by the definition of an equilibrium statistic. (88) is true because the

variables are jointly Gaussian and hence:

var(vn|t) = var(vn)− var(E[vn|t])=var(vn)− var(E[vn|t, sn]) = var(vn|t, sn)

Step (85) Note that α̂n(tn) is measurable with respect to tn. Hence,

E[un(a′n, α̂(t−n), vn)|t, sn] = E[un(a′n, α̂(t−n), vn)|sn, t, α̂1(t1), ..., α̂N(tN)]; (89)

E[un(α̂(tn), α̂(t−n), vn)|t, sn] = E[un(α̂(tn), α̂(t−n), vn)|sn, t, α̂1(t1), ..., α̂N(tN)]. (90)

That is, we can add α̂n(tn) as conditioning variable. Hence, we can write (84) as

follows:

E[un(α̂(tn), α̂(t−n), vn)|sn, t, α̂1(t1), ..., α̂N(tN)] ≥ E[un(a′n, α̂(t−n), vn)|sn, t, α̂1(t1), ..., α̂N(tN)].

Taking expectation of the previous equation conditional on (sn, α̂1(t1), ..., α̂N(tN)) and

using the law of iterated expectations:

E[un(α̂(tn), α̂(t−n), vn)|sn, α̂1(t1), ..., α̂N(tN)] ≥ E[un(a′n, α̂(t−n), vn)|sn, α̂1(t1), ..., α̂N(tN)].

Hence, we prove the step.

Step (86) Using that βn · sn = tn, we get the definition of posterior equilibria.

Hence, we prove the result.�
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