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Abstract – We propose a novel approach to estimate the marginal external 
congestion cost of motor vehicle travel and associated welfare losses, while 
allowing for hypercongestion, i.e. when the road supply curve is backward 
bending. We apply this approach to the city of Rome, using quasi-experimental 
variation in public transit supply to address endogeneity issues. We find that the 
marginal external cost is substantial. Hypercongestion accounts for about 30 
percent of welfare losses due to congestion. We demonstrate that the marginal 
congestion-relief benefit of public transit supply is sizeable and approximately 
constant over the full range of public transit supply levels. These results imply 
that large welfare gains can be obtained not only by introducing road pricing, but 
also by adopting quantity-based measures (e.g. adaptive traffic lights) to avoid 
hypercongestion. The results also support separate lanes for buses, as road 
congestion has a strong effect on travel time delays of bus travelers.  
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1. Introduction 

Road congestion is a major issue in cities throughout the world. To deal with this problem, 

policymakers have several options, including road tolls, quantity-based restrictions (e.g. road-

plate rationing), subsidized public transit supply and transport infrastructure expansion. None 

of these options comes at a low cost. Tolls, fuel taxes, and quantity restrictions are politically 

controversial (Parry and Small, 2005; Small and Verhoef, 2007), while transit supply and 

infrastructure expansions are expensive (Parry and Small, 2009, Duranton and Turner, 2011). 

It is therefore important to know how large the welfare losses that we can avoid by adopting 

these policies are. Yet, quite surprisingly, we still know very little about the costs of 

congestion in cities.  

The main objective of this paper is to measure the welfare losses of road congestion in 

large cities. We estimate these losses based on traffic observations from a wide set of roads in 

Rome, the Italian capital. We quantify the marginal external costs and the deadweight losses 

of congestion on motor vehicle travelers. We also estimate the costs of congestion on bus 

travelers, who constitute a substantial share of the travel market in Rome. Finally, we evaluate 

the effectiveness of public transit supply as a tool to alleviate road congestion. 

 Evaluating the welfare losses of congestion is conceptually simple, but estimating 

them is far from trivial. Estimation requires knowledge of the relation between travel (time) 

costs and traffic flow (the “road supply curve”). However, the supply relation on heavily 

congested roads is backward bending, a phenomenon which is labelled as hypercongestion 

(Arnott and Inci, 2010). Hence, this relation cannot be estimated using standard econometric 

techniques (Keeler and Small, 1977). The transportation science literature (Hall, 1996) 

addresses this issue by estimating the effect of vehicle density on travel time and deriving the 

travel time-flow relation by applying fundamental identities.1 Yet, this literature estimates the 

causal effect of density on travel time without accounting for endogeneity. Common 

unobservable shocks, e.g. road accidents, may affect density and travel time simultaneously, 

producing an omitted variable bias. More fundamentally, density is the product of flow and 

travel time. Hence, any measurement error in travel time induces a positive correlation with 

density. The first contribution of this paper is to deal with the issue of hypercongestion, while 

proposing an instrumental variable approach to account for the endogeneity in the relation 

between travel time and density. We exploit changes in public transit supply in Rome, due to 

labor strikes, as an instrument for density.  
                                                           
1 In a dynamic model of congestion, Henderson (1974) also models travel time as a function of density, 
measured as the quantity of commuters on a road at a given time. See also Henderson (1981). 
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A second important contribution of our paper is that we employ our road supply 

estimates to quantify the marginal external cost of congestion and the resulting deadweight 

losses, while explicitly accounting for hypercongestion. We find that these losses are 

substantial. Furthermore, although hypercongestion is present in only about 2 percent of the 

observations, we find that about 30 percent of the welfare losses of congestion are due to 

hypercongestion alone. We show that the welfare losses due to travel delays in the presence of 

hypercongestion, are an order of magnitude – about 50 times – higher than the welfare losses 

realized when on the equilibrium lies on the upward-sloping part of the road supply curve. 

These results suggest that policy interventions to curb congestion, such as road pricing, can 

bring to significant welfare gains. However, even if pricing is unavailable (for instance due to 

political constraints), it may be possible to achieve large gains just by removing 

hypercongestion, for example by adopting traffic management measures such as adaptive 

traffic lights (Kouvelas et al., 2017).  

We argue that a complete analysis of the costs associated with road congestion 

ultimately requires considering how all road users are affected. Congestion will not only 

impose travel time losses on motor vehicle travelers but also on bus travelers. Accordingly, 

we estimate the costs of congestion on bus users. In cities such as Rome, where buses are the 

mainstay of the transit system and rarely travel on dedicated corridors, these costs are 

potentially large. We show that the marginal external cost on bus travelers is substantial and 

that about one third of the welfare losses due to motor vehicle congestion are borne by bus 

travelers. These results are important not only because existing literature typically ignores the 

effect of motor vehicle congestion on bus travelers, but also because it delivers clear policy 

implications. Specifically, our results provide an economic foundation for traffic management 

interventions such as the design of separate bus lanes (see, e.g., Basso and Silva, 2014). 

Having established that congestion produces non-negligible welfare losses, we turn 

our attention to one of the most commonly advocated remedies: the provision of (subsidized) 

public transport. In Rome, as in many other cities, public transport subsidies are large, 

especially given the relatively limited modal share of transit.2 Yet, little is known about the 

congestion-relief benefit of public transit – i.e., the reduction in motor vehicle and bus travel 

times due to the provision of public transit services. We follow a recent literature that uses a 

                                                           
2 In most OECD countries, subsidies to public transit range from 30% to 90% of operating costs (USDOT, 2011, 
Kenworthy and Laube, 2001). In Rome, similarly to other European cities, around 28% of total passenger-kms 
are taken by transit. In the US, public transit carries less than 1% of passenger kilometers, but receives about 
25% of all transit funding (USDOT, 2011). Despite this, political support for subsidies is substantial (Cummings 
and Manville, 2015). 
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quasi-experimental approach exploiting shocks in transit supply due to labor strikes, but we 

propose two fundamental data novelties. First, we observe strikes that vary at the intensive 

margin. Specifically, we have information about hourly reductions in public transit supply 

during strikes (in vehicle kilometers), which allows us to estimate the marginal congestion 

relief benefit of public transit. This is relevant because policy decisions typically focus on 

marginal transit supply changes, whereas complete shutdowns are an uncommon policy 

option. Second, we estimate the congestion relief benefit to motor vehicle – car and 

motorcycle – travelers, as well as to bus travelers.  

We show that the marginal congestion benefit of public transit supply is sizeable and 

approximately constant over the full range of public transit supply levels. Nevertheless, it 

appears that the total congestion relief benefit is moderate. This suggests that there is room 

for a range of policies that reduce congestion (e.g., bus lanes, increase in parking prices) to 

increase the efficiency of transport. We show that bus travelers benefit several times more 

than motor vehicle travelers from a marginal reduction in road congestion.3  

Our work relates to different strands of literature. Regarding the welfare losses of 

congestion, numerous papers measure the relationship between travel time (or speed) and 

traffic flow at the level of single roads (see Small and Verhoef, 2007, for an overview), but 

none addresses the fundamental endogeneity issue discussed earlier. Furthermore, most 

papers rely on limited samples of roads to quantify the marginal external congestion costs and 

the welfare losses in a city.4 In recent work, Couture et al. (2016) estimate aggregate travel 

supply relations for a large sample of North American cities. Akbar and Duranton (2016) 

estimate travel supply and demand relationships at a citywide level for Bogotà, exploiting 

travel surveys and Google Maps data. Our work is complementary to theirs. We adopt a 

disaggregate framework that measures costs at the level of single roads. Our approach may be 

less representative of travel costs at a wide area level, for example because it does not account 

for the possibility that drivers avoid heavily congested roads by taking detours. On the other 

hand, our approach provides a more fine-grained view of congestion costs at the street level. 

We show that, even though heavy congestion may be locally concentrated (e.g., because only 

                                                           
3 Strong reductions in travel time for public transit travelers result through reductions in road congestion is in 
line with the study by Small (2004).  
4 Geroliminis and Daganzo (2008) use similar road level data to estimate a speed-density curve for the city of 
Yokohama. They do not focus on estimating external costs and welfare losses. 
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a few roads are jammed at a certain moment), the implied welfare losses it produces are 

relevant in the aggregate.5  

The standard way of measuring of the marginal external cost uses directly postulates a 

relationship between travel time and flow in order to derive the optimal road tax, as suggested 

by Pigou (1920). We demonstrate that this way of measuring the marginal external costs 

provides a severe underestimate and is, thus, not informative about the optimal road tax given 

hypercongestion. This observation is noteworthy because the latter (Pigouvian) measure is 

still frequently used in the academic literature (e.g., Mayeres et al., 1996), in authoritative 

reports by the US Federal Highway Administration (e.g., FHWA, 1997) and in much-cited 

handbooks (e.g., Maibach et al., 2008). We believe we are the first empirical study which 

estimates the marginal external cost of flow while acknowledging that travel time is a 

function of density. Our paper also contributes to the literature on the costs of congestion by 

providing evidence on the spillover effects of congestion on bus travelers. To our knowledge, 

we are the the first to provide this sort of evidence for a whole city.  

Our paper also belongs to a growing literature that aims to evaluate the congestion 

relief benefit of public transit. Focusing on different cities, Anderson, 2014, Adler and van 

Ommeren, 2016, and Bauernschuester et al. 2016, have used quasi-experimental approaches 

exploiting transit strikes, showing that the congestion-relief benefit is significant.6 We 

contribute to this literature by analyzing the marginal effects of partial service shutdowns. 

Furthermore, by measuring the travel time losses of congestion for bus users, we evaluate the 

congestion-relief benefit also on transit users themselves. 

Finally, in a broader perspective, our paper contributes to a diverse literature 

estimating externalities in cities. Davis (2008) analyzes the effects of driving restrictions on 

air quality. Chay and Greenstone (2005) examine the social costs of air pollution, including 

transport-related emissions. Duranton and Turner (2016) analyze the effects of urban structure 

on driving and congestion externalities. Other papers have looked at housing externalities 

(e.g., Rossi-Hansberg et al., 2010) and economies of density (Ahlfeldt et al., 2015). Combes 

and Gobillon (2015) survey the literature on agglomeration externalities.  

                                                           
5 Akbar and Duranton also devise a strategy to deal with endogeneity issues, based on reconstructing trip 
counterfactuals. We tackle this problem differently (see above). 
6 Using aggregate numerical models, Nelson et al. (2007) and Parry and Small (2009) find that during peak hours 
subsidies in excess of 90% of operating cost are justified for Washington D.C., Los Angeles and London. 
Börjesson et al. (2015) show that, despite the adoption of road tolls, substantial subsidies are still welfare 
enhancing in Stockholm. 
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The paper proceeds as follows. In section 2, we introduce the theory that underlies our 

empirical identification strategy. Section 3 presents the empirical models to estimate the 

marginal external costs of motor vehicle travel as well as the congestion relief benefit of 

transit. We then characterize Rome’s transportation market in section 4 and describe the data. 

Section 5 provides our main results: the marginal external cost of motor vehicle travel on 

motor vehicle and bus travelers as well as the effect of public transit supply on motor vehicle 

travel time.7 In section 6, we examine the welfare effects of public transport subsidies while 

adjusting public transit supply. Section 7 concludes. 

 

2. Theoretical background 

We develop a simple theoretical framework to guide the estimation of the road supply curve, 

the marginal external cost of congestion and the ensuing welfare losses, as well as the 

congestion relief benefit of public transit supply. We consider an isotropic road in a stationary 

steady-state. Private motor vehicles (cars and motorbikes) share the road with buses. 

Individuals choose whether to travel and which mode to use depending on generalized travel 

costs. Road congestion affects the travel time of motor-vehicle travelers 𝑇 – as well as of bus 

travelers  𝑇𝑃𝑃.  

 

2.1 The road supply curve 

We first focus on the road supply curve. In line with the transport engineering literature (e.g. 

Helbing, 2001), we assume that travel time 𝑇 is an increasing and convex function of the 

density of motor vehicles on the road, D: 

(1) 𝑇 =  ℎ(D), 
where 𝜕𝑇/𝜕𝜕 > 0.7F

8 Using (1) and the fact that density is defined as 𝜕 = 𝐹𝑇, where 𝐹 

denotes the flow of motor-vehicle travelers, we find: 

(2) 
𝑑𝑇
𝑑𝐹

=
𝜕ℎ(𝜕)
𝜕𝐹

1 − 𝜕ℎ(𝜕)
𝜕𝑇

=
𝜕𝑇
𝜕𝜕 𝑇

1 − 𝜕𝑇
𝜕𝜕 𝐹

, 

which describes the relationship between 𝑇 and 𝐹.9 To understand this relationship, note that 

when density is zero, flow is zero as well. Higher density raises travel time and, given (2), 

                                                           
7 We also discuss some other results (reported in appendix) including: the effect public transit fares on motor 
vehicle travel time as well as flow, the effect of public transit supply on motor vehicle flow as well as the 
relationship between motor vehicle travel times and bus travel times.  
8 For the moment, we ignore that motor vehicle travel time depends directly on the number of buses. We account 
for this effect in the empirical analysis. 
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flow if 𝜕𝑇/𝜕𝜕  < 1/𝐹. However, as density increases, the point where 𝜕𝑇/𝜕𝜕 > 1/𝐹 is 

reached, so  𝑑𝑇/𝑑𝐹 < 0 and 𝑑𝐹/𝑑𝜕 < 0.9F

10  Greater density of vehicles has a positive direct 

effect on flow, but a negative indirect effect because vehicles travel at lower speed. When the 

latter dominates, the travel time-flow relationship bends backwards, and there is 

hypercongestion. Figure 1 provides an illustration.11   

Figure 1 - Fundamental diagram of traffic congestion.  

 

The above discussion implies that there is a maximum flow, defined as 𝐹 � = 1
𝜕𝜕
𝜕𝜕

, and a 

corresponding level of density 𝜕�. To illustrate, let us assume that 𝑇 = 𝛽𝑒𝛼𝛼 , where α, 𝛽 > 0. 

Note that we adopt this functional form in the empirical analysis. We show there that this 

form provides a reasonable description of the travel time-density relation for the roads in our 

sample (we test it against more general statistical relationships). In this case, we have 

(3)                                          𝑑𝑃
𝑑𝑑

= 2αT
1 − αD

⇒  𝜕� = 1
α

,𝐹� = 1/(α𝛽𝑒)  
Given these assumptions, the maximum flow is such that 𝑇 = 𝛽𝑒. Hypercongestion thus 

occurs when 𝜕 > 𝜕�.  

 

2.2 The demand for transport 

There is a given number of individuals in the transport market, denoted by N, who have 

perfect information. We assume that each individual takes at most one trip, and all trips are of 

                                                                                                                                                                                     
9 Similarly it can be shown that: dF/dD=(1-F ∂T/∂D)/T, which describes the relationship between 𝐹 and 𝜕. Note 
that 𝑑𝑇/𝑑𝐹 and 𝑑𝐹/𝑑𝜕 have the same sign. 
10 Convexity of h(.) is crucial for this argument: if the function is linear, hypercongestion does not occur. 
11 There is a debate in the literature about whether hypercongestion is a stable equilibrium for the theoretical 
models analysing this issue. See Small and Verhoef (2007) and, for more recent contributions, Arnott and Inci 
(2010) and Fosgerau and Small (2013). 
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equal length, normalized to one. Individuals can travel by private motor vehicles or public 

transit and are heterogeneous in their reservation utility of travel by each mode. Aggregate 

travel demand for motor vehicles and transit are negatively sloped and with positive cross-

price elasticities. The generalized price of public transit, 𝑝𝑃𝑃, increases with travel time, 𝑇𝑃𝑃, 

and the fare, 𝑓, whereas it decreases with transit supply 𝑆  (e.g. through lower waiting times). 

Hence, 𝑝𝑃𝑃=𝑝𝑃𝑃(𝑇𝑃𝑃 ,𝑓, 𝑆). In total, there are 𝑁𝑃𝑃 public transit travelers, 𝐹 motor-vehicle 

travelers and 𝑁𝑃 non-travelers. The generalized price of motor-vehicle travel is equal to 𝑇. We 

have 

(4) 𝑁 = 𝑁𝑃𝑃(𝑝𝑃𝑃,𝑇) + 𝐹(𝑇,𝑝𝑃𝑃) + 𝑁𝑃(𝑝𝑃𝑃,𝑇), 

where 𝑁𝑃𝑃(. , . ) and 𝐹(. , . ) are decreasing in their first argument and increasing in their 

second argument, whereas 𝑁𝑃(. , . ) is increasing in both arguments.  

 

2.3. The effect of public transit strikes 

We normalize the supply of public transit (veh-kms) during regular service to one, and denote 

by S∈[0,1] the share of service available per unit of time. This quantity is defined as the ratio 

between the quantity of service actually provided and the scheduled supply with regular 

service. If a public transit strike takes place, 𝑆 will be less than one. Because motor vehicles 

and public transit are substitutes, demand for motor-vehicle transport goes up, so in the new 

equilibrium, 𝑇 and D increase. If the road is not hypercongested, the number of motor vehicle 

travelers (i.e., traffic flow) goes up during a strike. However, in presence of hypercongestion, 

the number of motor vehicle travelers may decrease. The economic loss produced by the 

ensuing travel time increase is the (negative of) the congestion relief benefit of public transit 

to motor-vehicle travelers. Furthermore, because 𝑇 goes up, if transit and private vehicles 

share the road, 𝑇𝑃𝑃 increases as well. Hence, demand for motor-vehicle travel increases even 

more. In addition, there is a travel time loss to public transport travelers, the (negative of) the 

congestion relief benefit of public transit to public transport travelers. Finally, because 𝑇 and 

𝑝𝑃𝑃 both go up, 𝑁𝑃 goes up as well.  
 

2.4 Equilibrium 

To facilitate the interpretation of the empirical results later on, we make three major 

assumptions about the equilibrium. First, we take one hour as our unit of time. Hence, hourly 

demand and supply are equal to each other. We ignore any variation in demand within the 
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hour. The main consequence is that we have underestimates of the welfare losses of 

congestion, because travel time is a convex function of density.12 Second, we assume that the 

demand function is linear with a given slope: any temporal variation in demand occurs 

because of shifts in the intercept.13 Furthermore, we assume that any temporal variation in the 

demand function is exogenous to traffic conditions (e.g., workers have to be at work at a 

certain time). Hence, we disregard that demand functions are interrelated during the day, for 

example because of rescheduling of trips to avoid excessive congestion.  

 

2.5 Welfare analysis  

The total cost for society of motor-vehicle travel equals 𝐹 𝑇 (we normalize the value of travel 

time to one). The standard quantity capturing the distortions on the transport market is the 

marginal external cost of motor-vehicle travel. This cost is defined as the difference between 

the time cost to society of a marginal motor-vehicle user and the time cost to this user. One of 

our objectives in the empirical analysis is to measure this cost. We consider the travel cost of 

bus users below.  

 We introduce now two measures of the marginal external cost, which we will label as 

the immediate measure, denoted by mec, and the overall measure, denoted by 𝑀𝑀𝑀. The mec 

captures the immediate external costs of one additional motor vehicle traveler that increases 

density when entering the traffic flow.14 To obtain it, we partially differentiate the total 

societal cost with respect to flow and subtract the average cost T: 

(5) 𝑚𝑒𝑚 =
𝜕[𝐹𝑇(𝜕)]
𝜕𝐹

− 𝑇  =
𝜕𝑇
𝜕𝜕

𝜕𝜕
𝜕𝐹

𝐹 +  𝑇 − 𝑇 =
𝜕𝑇
𝜕𝜕

𝜕𝜕
𝜕𝐹

𝐹 =
𝜕𝑇
𝜕𝜕

𝑇𝐹 =  
𝜕𝑇
𝜕𝜕

𝜕. 

This expression shows that the marginal external cost of flow is equal to the marginal 

effect of density on travel time multiplied with the density of motor-vehicle travelers. This 

measure of the external cost is worthy of consideration for several reasons. It is used to 

calculate the optimal road tax, as suggested by Pigou (1920). Furthermore, it is frequently 

used in the academic literature (e.g., Mayeres et al., 1996), in authoritative reports by the US 

Federal Highway Administration (e.g., FHWA, 1997) and in much-cited handbooks (e.g., 

Maibach et al., 2008).  

                                                           
12 One has underestimates also if the function is linear, because the welfare loss is still approximately a quadratic 
function of the marginal external cost.  
13 This is a standard assumption in empirical welfare analysis. 
14 The equivalent thought experiment is that current density is increased, because current inflow is exogenously 
increased by one 
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Let us now focus on the overall measure, 𝑀𝑀𝑀. Total differentiation of the social costs 

and subtracting the average cost T shows that: 

(6) 𝑀𝑀𝑀 =
𝑑[𝐹𝑇(𝜕)]

𝑑𝐹 − 𝑇  =
𝑑𝑇
𝑑𝐹𝐹+  𝑇− 𝑇 =

𝑑𝑇
𝑑𝐹𝐹 =

𝜕𝑇
𝜕𝜕𝜕

1 − 𝜕𝑇
𝜕𝜕 𝐹

, 

Note that the numerator of this expression is equal to 𝑚𝑒𝑚. 14F

15  

Let us now focus on equilibria where the road is not hypercongested, so 1 − 𝜕𝑇
𝜕𝛼
𝐹 

ispositive and less than one. An increase in density, e.g. due to an upward shift in the demand 

for motor vehicle travel, causes an increase in the steady-state flow. It follows that 𝑀𝑀𝑀 is 

positive and always exceeds mec.16 The difference between these two measures is substantial 

when flow approaches its maximum. To illustrate, assume again that 𝑇 = 𝛽𝑒𝛼𝛼 . Then 

𝑀𝑀𝑀 = αD 𝑇 /(1 −  αD)  =  𝑚𝑒𝑚/(1 − 𝛼𝜕).  For densities close to, but not equal to, 1/α, 

the overall measure is an order of magnitude higher than the partial measure. Hence, the 

immediate measure usually provides a substantial underestimate of the marginal external cost. 

We will use the 𝑀𝑀𝑀 as a key input for our welfare analysis. Let us suppose that there 

are no other distortions and that the government aims to maximize welfare. The standard 

prescription is to introduce a road tax equal to MEC. The tax will then induce an optimal flow 

below the equilibrium flow (when the road is initially not hypercongested). The welfare gain 

is straightforward to calculate. It depends, among other things, on the shape of the demand 

function. For example, when demand is horizontal, the welfare gain (the eliminated 

deadweight loss) is exactly equal to optimal flow times the ensuing reduction in travel time. 

By contrast, if demand is vertical one gets the well-known result that the welfare gain is zero 

(because there is no reduction in travel time). See Figure 2, where we show the average cost 

function – hence, travel time as a function of flow –as well as the marginal social cost, MSC, 

for the part where the average cost function is upward sloping. MEC is the difference between 

the MSC and the average cost function T. 

 We focus now on equilibria where the road is hypercongested, i.e. such that 1 − 𝜕𝑇
𝜕𝛼
𝐹 is 

negative. Given hypercongestion, an increase in density (e.g., due to a shift in the demand 

                                                           
15 Equation (6) suggests that when 𝐹 is close to 𝐹�, which equals 1/(𝜕𝑇/𝜕𝜕), the external cost of adding one 
vehicle is infinite, which is not intuitive (given that travel time is finite when 𝐹 = 𝐹�). However, noting that the 
number of vehicles is discrete, it appears that for 𝐹 = 𝐹� − 1, 𝑀𝑀𝑀 is equal to 𝐹�𝑇, which is finite. 
16 This result is intuitive, because the immediate measure ignores the reversed effect of travel time on density 
and therefore flow. Another way of viewing this is by noting that the overall measure takes into account that 
outflow is endogenously reduced by the increase in inflow. The formal demonstration is as follows: the marginal 
change in density, dD, induced by a marginal increase in (in)flow is equal to T. The overall induced change in 
(out)flow is then equal to T𝜕𝐹/𝜕𝜕 = T𝜕(𝜕/𝑇)/𝜕𝜕 =  1 - 𝐹𝜕𝑇/𝜕𝜕, which is smaller than one.  
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function) causes an increase in travel time and a reduction in the flow. Therefore, (6) implies 

that MEC is negative. Furthermore, it is straightforward to show that the marginal social cost, 

MSC, which equals T/(1 − 𝜕𝑇
𝜕𝛼
𝐹), is also negative. This is intuitive: any steady-state 

equilibrium with a higher flow level and lower travel time is welfare improving. This implies 

that an equilibrium with hypercongestion can never be optimal. Any policy measure which 

prevents hypercongestion is thus welfare improving. Note, furthermore, that in an equilibrium 

with hypercongestion, the immediate measure of marginal external cost, 𝑚𝑒𝑚, is positive. 

However, this measure is uninformative about the optimal road tax.  

 

Figure 2 - Deadweight loss (DWL) from congestion with horizontal and vertical demand.  

 
  

In principle, governments may prevent hypercongestion by imposing a large toll on 

vehicles entering the parts of the road network where density exceeds the level associated 

maximum flow. However, because (as we show below) hypercongestion is a quite sporadic 

and local phenomenon, implementing this kind of pricing could be difficult, as it would 

require varying the toll by roads and time on a short notice. Furthermore, as Figures 2 and 3 

suggest, on a given road the equilibrium with hypercongestion may not be unique (this 

depends on the shape of the demand function, for instance).17 Therefore, pricing instruments 

alone may not be well-suited to control it. Indeed, the first-best toll is equal to the MEC 

evaluated at the optimal allocation, which, as pointed out before, lies on the upward sloping 

part of the supply curve. This tax may not be sufficient to avoid hypercongestion. More 

realistically, governments can intervene by adopting quantity restrictions (possibly in 
                                                           
17 Our data actually suggests that demand is unlikely to be steep enough to generate multiple equilibria. 
However, hypercongestion may be caused by temporary shocks to demand or supply (e.g. accidents or 
temporary road closures in other parts of the network).  
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combination with pricing instruments). These include (second-best) policies such as adaptive 

traffic lights. This conclusion is backed by traffic-engineering studies which show that 

reducing inflow of traffic into cities by letting vehicles waiting longer for traffic lights when 

entering the city reduces hypercongestion, resulting in an equilibrium with lower travel times 

(Kouvelas et al., 2017). 

But what can we gain by avoiding hypercongestion? An objective of our empirical 

investigation is to evaluate the magnitude of the loss to society when roads are 

hypercongested. Specifically, we determine the loss compared to the optimal equilibrium. 

Again, this welfare gain depends, among other things, on the demand function.18 When the 

latter is horizontal, the welfare gain is equal to the product of the optimal flow and the 

reduction in travel time. If the demand is perfectly inelastic, the welfare gain is equal to 

product of the optimal flow times the travel-time reduction. Therefore, contrary to the non-

hypercongested case, there is a (substantial) welfare gain even if demand is vertical. Indeed, 

hypercongestion is a very inefficient way of “producing” travel. See Figure 3. 

 

Figure 3 – Equilibria and deadweight loss of hypercongestion with horizontal demand (left 

panel) and vertical demand (right panel) 

 
 Let us now focus on the effect of congestion on bus travelers. We have noted that the 

generalized price of public transit, 𝑝𝑃𝑃, increases with travel time, 𝑇𝑃𝑃. Not surprisingly, if 

buses share the road with other vehicles, the travel time of buses is strongly correlated with 

the travel time motor-vehicle travelers, 𝑇. We note two empirical observations about bus 
                                                           
18 Another interesting exercise is to determine the loss to society in the hypercongested equilibrium in 
comparison to the congested one, at given flow. The deadweight loss is then equal to the reduction in travel time 
multiplied with the flow, regardless of the shape of the demand function  
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travel time. First, it is substantially higher than motor vehicles’ travel time (for instance, 

because of the time spent stopping at bus stops). Second, bus speed depends on motor 

vehicles’ speed in a linear way with a marginal effect less than one. These observations imply 

the following relationship between the travel times of public transit and of motor vehicles: 

(7) (𝑇𝑃𝑃)−1  =  𝜃𝑇−1  − 𝜇,   𝜇 > 0;  0 < 𝜃 < 1; 𝑇−1  − 𝜇 > 0 

Hence: 

(8) 
𝜕𝑇𝑃𝑃

𝜕𝑇
=

𝜃𝑇−2

(𝜃𝑇−1  − 𝜇)2 > 1. 

The marginal effect of motor-vehicle time on travel time of public transit is larger than one, 

and the relation between bus and motor-vehicle time is concave. For sufficiently small 𝜇, so 

that public transit speed is proportional to motor-vehicle speed, the marginal effect is a 

constant: 

(9) 𝜕𝑇𝑃𝑃

𝜕𝑇
≈

1
𝜃

. 
Hence, one approach to calculate the marginal external cost of motor-vehicle travel on bus 

users is as follows: 

(10) 𝑀𝑀𝑀 𝑜𝑜 𝑏𝑏𝑏  =
𝑑𝑇
𝑑𝐹

𝑁𝑃𝑇
𝜃𝐹 . 

This approach is indirect, as it uses information on the relationship between bus and motor-

vehicle travel times. We also employ an alternative, direct approach to estimate the marginal 

external cost borne by bus travelers. Specifically, we assume that 𝑇𝑃𝑃 = 𝛾𝑒𝜎𝛼and then 

overall differentiate 𝑇𝑃𝑃 𝑤ith respect to flow. It can be shown that: 

 (11) 𝑀𝑀𝑀  𝑜𝑜 𝑏𝑏𝑏   =
𝑑𝑇
𝑑𝐹𝑁𝑃𝑇 �

𝜎
𝛼

(1 − 𝛼𝜕)
𝑇𝑃𝑇

𝑇
+ 𝛼𝜕

𝑇𝑃𝑇

𝑇
𝑑𝑇𝑃𝑇

𝑑𝑇 �  >
𝑑𝑇
𝑑𝐹𝑁𝑃𝑇

𝜎
𝛼
𝑇𝑃𝑇

𝑇
. 

We find that 𝜎 is only slightly higher than 𝛼, and that 𝑇
𝑃𝑇

𝑃
 is approximately equal to 1

𝜃
, so the 

direct and indirect approach provide very similar results. 

 

3. Empirical Approach 

We are interested in estimating the marginal external cost of congestion on motor-vehicle 

drivers. To do so, we need information about the relationship between motor-vehicle travel 

time and flow. Clearly, given hypercongestion, i.e. if the relationship between 𝑇 and 𝐹 is 

backward bending, the relationship is not an injective function. Therefore, one cannot apply 

standard econometric techniques to estimate it (see, e.g., Keeler and Small, 1977). We 

proceed as follows: we first estimate the effect of density on travel time using (1) and then 

combine this estimate with (2) to derive 𝑑𝑇/𝑑𝐹. Given estimates of h, denoted by ℎ�, for each 
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observation of D, we will calculate the predicted travel time 𝑇�  =  ℎ�(D), as well as the 

predicted flow 𝐹�  =  D/𝑇� . We will show that the travel-time flow relationship obtained using 

𝑇�   and 𝐹� accurately predicts the observed travel-time flow relationship. 

Let us now assume that h is an exponential function, so 𝑇 = 𝛽𝑒𝛼𝛼 . This specification 

implies that the logarithm of travel time is a linear function of density. We have observations 

which vary by road and hour. We will therefore assume that log𝑇𝑖,𝑡,𝛼, at road i, hour t and day 

D is a linear function of density 𝜕𝑡,𝛼, given several controls 𝑋𝑡,𝛼, road fixed-effects 𝜏𝑖 and an 

error term 𝑏𝑖,𝑡,𝛼, so that: 

(12) 𝑙𝑜𝑙𝑇𝑖,𝑡,𝛼 = 𝜏𝑖 + 𝛼𝜕𝑡,𝛼 + 𝜅′𝑋𝑡,𝛼 + 𝑏𝑖,𝑡,𝛼. 

Road fixed effects capture time-invariant differences in road supply such lane width, the 

speed limit as well as the distance to the next intersection. The controls 𝑋𝑡,𝛼 include weather 

(i.e. temperature using a third-order polynomial, precipitation) and many time controls: hour-

of-weekday fixed effects (e.g., Monday morning between 9 and 10 a.m.) and week fixed 

effects. These time controls aim to capture for unobserved changes in supply (e.g. due to road 

improvements which only occur during certain periods). We cluster standard errors by hour, 

so we allow 𝑏𝑖,𝑡,𝛼 and 𝑏𝑗,𝑡,𝛼 to be correlated.19 

Observe that, in the transport engineering literature, equations relating travel time to 

density such as (12) are estimated with OLS, therefore ignoring potential endogeneity issues. 

One econometric difficulty is that density is most likely endogenous, because it is defined as 

the flow multiplied with travel time – which is the dependent variable of interest. This may be 

problematic as in many studies – including the current one – density is not explicitly observed 

but derived from observations of flow and travel time. Therefore, any measurement error in 

travel time causes a positive correlation between travel time and density resulting in an 

overestimate of the effect of density.20 Measurement error is not the only source of 

endogeneity. For example, many unobserved supply shocks (e.g. road closures, accidents…) 

may simultaneously affect density and travel time.21 In the estimation procedure, to deal with 

endogeneity issues, we will use an instrumental variable approach using variation in the share 

of public transit, S, due to strikes. Note that the use of time controls in (12) has an additional 
                                                           
19 Hence, each cluster contains a number of observations equal to the number of road segments observed.  
20 One expects a downward bias in case of measurement error in flow, using a standard attenuation bias 
argument of classical measurement error in the independent variable (Wooldridge, 2002, p.75). Simulations – 
available upon request – indicate that measurement error in travel time is a fundamental issue, e.g., when the 
standard deviation of measurement error in travel time is only 10 percent of the standard deviation of travel time, 
then the upward bias in the estimate of α is about 30 percent, whereas measurement error in flow has an almost 
negligible downward bias.  
21 The weather can also be a factor. We control for weather conditions in our empirical analysis. See below. 
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rationale when employing an instrumental variable approach. Time controls also capture any 

variation in the supply of scheduled public transit (i.e., the schedule in the absence of strikes), 

which makes it more plausible that public transit share is exogenous. 

One issue when using public transit strikes as an instrument is that changes in bus 

supply directly change the number of vehicles on the road, which may invalidate the 

assumption that bus strikes are valid instruments of motor-vehicle density. This is a minor 

issue however, because, in Rome, on average 1 percent of all vehicles refers to buses (per 

hour, only six buses pass a road). Nevertheless, we have addressed this issue by estimating 

models where we explicitly acknowledge that an increase in public transit increases the 

number of vehicles on the road. For example, when we assume that one single bus causes the 

same travel delays as 10 motor vehicles, we still get identical results when instrumental 

variables approaches. 

A second issue is that (12) may be a restrictive specification. To deal with that we 

specify log travel time as a quadratic function of density and apply control functions 

approaches to instrument density. A third issue is that it is unlikely that the marginal effect of 

density is equal for all roads. We therefore allow the marginal effect on density to be road-

segment specific. 

Given estimates based on (12), we can estimate MEC using (2). Intuition suggests 

however that this approach does not generate precise estimates when F approaches 𝐹 � , 

because the supply curve is vertical. More formally, this can be demonstrated when assuming 

that 𝜕𝑇/𝜕𝜕 is a random variable with a given standard deviation, 𝑣𝑣𝑣(𝜕𝑇/𝜕𝜕). Recall from 

standard statistical theory that the ratio of two random variables does not have a well-defined 

variance. It is then standard to approximate the variance using a Taylor expansion. Using such 

an approach it can be shown that the variance of MEC can be written as follows: 

(13) 𝑣𝑣𝑣(MEC)  ≈
𝑣𝑣𝑣(𝜕𝑇/𝜕𝜕) 𝜕

�1 − 𝜕𝑇
𝜕𝜕 𝐹�

4

2

. 

The denominator of this expression contains a power of four. Combined with (2), this implies 

that the estimate of MEC divided by its standard error goes to zero when F approaches 𝐹 � . 

Thus, the estimates for marginal external cost for levels of flow close to its maximum may be 

unreliable. Although there are only few observations of flow close to the maximum in our 

data, we will exclude these observations (our estimate of the total welfare loss of congestion 

remains unaffected by this issue). 

We also aim to estimate the marginal external cost of congestion on bus travelers. In 

the empirical analysis, because we have data per year and cannot distinguish between roads, 
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we use aggregate data on bus travelers time. However, we are able to estimate the effect of 

motor-vehicle travel time on bus travel time, see (9), which allows us to calculate (10). 

Furthermore, we can estimate the effect of log motor-vehicle density on bus travel time, σ, 

which allows us to calculate  (11). 

We also estimate the effect of public transit strikes on travel time. In the literature 

discussing these estimates, it is common to use linear models (e.g, Anderson, 2014). We will 

follow this literature, hence the dependent variable, 𝑇𝑖,𝑡,𝛼, is estimated as a linear function of 

public transit share 𝑆𝑡,𝛼 using the same type of data and controls as in (12), so that: 

(14) 𝑇𝑖,𝑡,𝛼 = 𝜏𝑖 + 𝜑𝑆𝑡,𝛼 + 𝜌′𝑋𝑡,𝛼 + 𝜖𝑖,𝑡,𝛼 
where the coefficient 𝜑 captures the marginal effect of public transit share, 𝜕𝑇/𝜕𝑆.22 We 

estimate (14) using weighted regression where the weights are proportional to the (hourly) 

flow per road to make the estimated t 𝜑 representative for the average motor-vehicle traveler 

in our sample and cluster standard errors by hour.23 In a similar way, we estimate the 

marginal effect of public transit share on motor-vehicle travel flow 𝐹𝑖,𝑡,𝛼 , hence, 𝜕𝐹/𝜕𝑆. 24 

   

4. Data 

4.1 Rome 

Rome is Italy’s capital and largest city, with a population of 2.9 million inhabitants (4.3 

million including the metropolitan area). The city belongs to the Lazio region, and includes 

more than 80% of the region’s population. The city is densely populated and essentially 

monocentric around the ancient core. Rome’s street network is largely based on the ancient 

Roman plan, connecting the center to the periphery with primarily radial roads that get 

narrower as one approaches the center. The city is heavily dependent on motorized travel: 

50% of trips are by car and an additional 16% by motorbike\scooter. Roughly, 28% of all 

annual trips take place by public transport, similarly to other large European cities such as 

Paris and Berlin. In the metropolitan area of Rome there are 1.65 billion motor vehicle trips 

per year, equivalent to 21.5 billion passenger kilometers or 14.5 billion vehicle-kms, 42 

percent of which takes place during peak hours (using information from Citta’ di Roma, 

                                                           
22 The week fixed effects in this specification also control for the effect of a substantial public transit fare 
increase in May 2012. To control for unobserved factors that vary between days, we will also estimate models 
with day fixed effects.  
23 In the sensitivity analyses, we demonstrate that our results are robust with the way we cluster standard errors. 
24 One substantial public transit fare increase took place during our period of observation. This allows us to 
estimate the effect of a public fare change on motor-vehicle travel time using a discontinuity regression 
approach. We use this estimated effect as a robustness analysis and as input for welfare analysis. 
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2014).25 The rest of the trips take place either by walking or by bicycle. The city is one of the 

worst performing European cities in terms of air pollution and road congestion. The average 

speed on inner-city roads can be as low as 15km/h on weekdays. 

The rate of motorization is high for a large European city, with 67 cars and 15 

motorcycles per 100 inhabitants (about double the figures for Paris and London). There are 

1.6 cars per household. The high car ownership rate combined with substantial public transit 

use suggests that many regular transit users have access to a private vehicle, and are 

potentially able to switch mode in the event of a transit strike. 

Rome has a restricted access zone for motorized traffic, ZTL (Zona a Traffico 

Limitato).26 This restricted access zone is a small part of Rome’s historic center where car 

inflow is restricted to permit holders who can enter during certain hours of the day. Permits 

are mainly for businesses and government officials. We observe hourly the inflow and 

outflow of vehicles for this zone, but have no information about traffic within the zone.27 

 

Table 1 – Descriptives for the Rome metropolitan area  

 
 

  
Car Bus Rail 

 
 

  
Peak Off- Peak Off- Peak Off- 

         Peak   Peak   Peak 
Annual veh-kms, millions 6,116 8,445     
Annual passenger kms, millions 8,623 12,837 3,403 2,304 1,639 628 
Vehicle occupancy (pass-km/veh-km)   51 34 160 87 

 
 

  
      

Operating cost, €/veh-km   10 5 29 17 
Fare, €cents/pass-km 

 
  5 5 5 5 

Subsidy, % of average operating cost   75 69 74 76 
Generalized price, €cents/pass-km   34 40 25 27 
Source: own calculations based on information for the year 2013, from Rome’s General Traffic Plan (PGTU, 2014). 

 

4.2 Public transit in Rome 

Public transit accounts for about 8 billion annual passenger kilometers in Rome, i.e. roughly 

27% of total travel (ATAC SpA, 2013). The lion’s share of public transit supply is through 

buses (about 70% in terms of vehicle-kms as well as passenger-kms) see Table 1. Annual 

                                                           
25 According to the Rome municipality, 376,024 motor-vehicle trips take place during peak hours. We assume 
252 working days per year, 7 peak hours and 9 off-peak hours per working day, whereas each non-working day 
has 16 off peak hours. Further, the number of trips during off-peak hours is assumed to be two thirds of the 
number in peak hours. We get then 1,685,599,000 trips per year. We use then an occupancy of 1.4 (1.51) 
passengers per vehicle in peak (resp. off peak) hours). To obtain the quantity of passenger-kms, we multiply 
annual trips by the average trip length of 13km as reported by the Rome municipality (PGTU, 2014). 
26 Restricted access is not new to Rome’s historic center. In the 1st century BC, Julius Caesar banned wheeled 
traffic from entering Rome during the first ten hours of daylight (Cary, 1929). 
27 The city lifts restrictions on strike days, but the zone´s vehicle in- and outflow is less than 1% of all trips in the 
city. This suggests that the effect of the latter policy on average travel time within the city is small. 
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subsidies to public transport amount to €1.04 billion, i.e. is approximately 72% of annual 

operating of costs (€1.56 billion in 2013). The average operating cost per trip is about €0.90 

(i.e., €0.08 per passenger kilometer) and the price of a single ticket is €1.50.  

The provision of public transit services in Rome is assigned to a large provider, ATAC 

SpA (almost entirely owned by the Rome municipality), and several much smaller bus 

companies, operating under the banner of Roma TPL. ATAC covers approximately 90% of 

the transit market, operating about 360 bus and tramlines, with a fleet of 2,700 buses and 165 

trams. It also operates three metro lines with 83 metro carriages, and three train lines 

connecting Rome with the region of Lazio. 28 See Table 2.  

 
Table 2 – Public transit stock in Rome 
Public transit company Buses Metro (cars) Train (cars) Employees 
Atac SpA 2,700 (+165 trams) 83 55 11,696 
Roma Tpl Scarl 450   839 
Total  3,315 83 55 12,525 
Note: Information for ATAC refers to the year 2015. For Roma TPL the data refers to the year 2011. 
 

4.3 Transit strikes in Rome 

Information on strikes is provided by the Italian strike regulator (Commissione di Garanzia 

per gli Scioperi). Due to the availability of traffic data (see below), our period of observation 

spans from January 2nd 2012 to May 22nd 2015, i.e. 769 working days. There are 43 public 

transit strike days during this period.29 27 of these strikes took place only in Rome (and 

possibly the Lazio region), whereas the other 16 are part of national strikes that possibly 

affected other transportation modes, e.g. aviation.30 We do not distinguish between which 

providers are affected by the strike.31 There is a strike on 6% of the days on our observation 

period – strikes are a frequent occurrence in Rome. This observation is relevant, because 

strike frequency may increase the likelihood of car ownership, and thus the elasticity of 

demand responses during strikes.  

                                                           
28 The number of metro lines is exceptionally low for a European city of comparable size. Archeological 
excavations and financial issues have historically hindered construction. The third metro line (Metro C) is partly 
operational since June 2015, which is outside our observation period. 
29 Strike activity is distributed about equally over the years with at least 7 strikes a year. We ignore 7 additional 
strikes which occurred during on days where traffic data is insufficient. Strikes are usually due to workers’ 
grievances due to unpaid wages.  
30 Two of the strikes fall into a white-strike period (between the 7th and the 27th of June 2014). White strikes 
refer to a labor action whereby bus service is reduced through strict adherence to the providers’ service rules 
(e.g., bus maintenance periods, boarding regulation and ticket controls). 
31 Strikes of different public transit providers usually coincide see Figure A3 in the Appendix (maybe because 
unions are not firm specific and overlap multiple providers). Hence, we may ignore which provider is affected 
although these firms operate in different geographical areas. 
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All strikes in our data were announced to the public several days in advance. Seven 

were partially cancelled (by one of the participating unions). We refer to the latter as semi-

cancelled strikes in the sensitivity analysis (in Appendix A). An additional three announced 

strikes were fully cancelled shortly before taking place. We will refer control for the cancelled 

strike days.32 

Italian law does not allow full transit service shutdowns during strikes. Consequently, 

the strikes we observe are partial, in the sense that a positive share of service is always 

provided. Moreover, regulation forbids (with rare exceptions) strikes during holiday months, 

i.e. in February, August and most of September. Excluding these months, the distribution of 

strike activity is quite even over the year, with somewhat higher concentration in the spring 

period (see Figure A1 in Appendix A). Most strikes take place on Mondays and, in particular, 

Fridays (see Figure A2 in Appendix A). We do not observe strikes on weekends, so we 

exclude all weekends from our analysis (regulation restricts striking on weekends). We also 

exclude nighttime hours because there is no public transit service between midnight and 

5am.33  

In contrast to earlier studies on transit strikes (Anderson 2014, Bauernschuester et al. 

2015, Adler and van Ommeren 2016), we have information about hourly strike intensity. 

Specifically, Rome’s Mobility Agency (Agenzia per la Mobilita’) provided us with the share 

of scheduled service (based on the regular schedule during non-strike days) that actually took 

place during strike hours. This implies that we can exploit hourly variation in the share of 

available public transit for identification purposes. We use information on this share at the 

city level: we do not observe service provision on each particular segment of the network.34  

During strike hours there are, on average, 839 buses/trams operating, in comparison to 

1,496 buses/trams during non-strike hours. There is substantial variation in the hourly share of 

public transit available during strikes, as can be seen in Figure 4. This share varies between 

0.05 and 0.83, the average being 0.56. Note that we observe relatively few strike (peak) hours 

with a very low intensity due to the regulatory scheme, which mandates a high minimum 
                                                           
32 We do not find any effect of these cancelled strikes on motor-vehicle travel time. Given an estimation strategy 
based on public strike days, it is useful to interpret the effect of the cancelled strikes as a placebo test. Because 
we identify based on public strike hours, and are able to include day fixed effects, the placebo test is redundant. 
33 Public transit fare prices are constant during our period of observation except for one major change in May 
2012. We will use this fare change to derive the price elasticity demand for public transit as well as the cross-
price elasticity for car travel. 
34 This feature of the data is of little importance to our study. During strikes, the public transit agency allocates 
available buses to the most important lines (those serving the largest volume of passengers). In all likelihood, the 
agency would behave similarly if it had to reduce service permanently, e.g. due to budget cuts. Furthermore, we 
expect transit users to change to other bus lines during strikes. Because we are interested in the effect on traffic 
At the city level, observing which lines are affected is not crucial.    
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service level during peak hours. In Figure 5, we provide the range and three quantiles for the 

distribution of transit available share distribution over the the day. The median share is 

highest during the 8 a.m. morning peak (about 0.75) and the 7 p.m. evening peak hour (about 

0.65). During these hours, the variation in the share is also small. From 9 a.m. to 3 p.m., the 

share is not only substantially lower, but the range in the share is also much higher.  

We also have information on the scheduled service level (i.e., the number of buses 

operating per hour) for five main bus lines on non-strike days.35 Assuming that the other bus 

lines follow the same schedule, it appears that the total number of operational buses in Rome 

does not vary between 8am and 5pm except when there are strikes (Figures A4 and A6 in 

Appendix A), supporting the use of strikes as a way of identifying the effects of public transit 

supply. 

 
Figure 4 – Public transit share for strikes  Figure 5 –Public transit share per strike hour 

 

 

4.4 Motor-vehicle traffic data 

Our data on motor vehicle traffic is provided by Rome’s Mobility Agency. It contains 

information on hourly flow and travel time for 33 roads in Rome, for a period from the 2nd of 

January 2012 to the 22nd of May 2015.36 Motor vehicles are cars, commercial trucks and 

motorbikes, as the measurement stations do not distinguish between these types of vehicles. 

The measurement locations were chosen by the agency several years prior to our 

study. These locations include twelve one-lane roads – all located in the city center and with a 

speed limit of 50km/h (1.2 min/km). The other 21 roads contain two lanes. These include 
                                                           
35 See http://www.atac.roma.it/page.asp?p=18. 
36 See Figure A5 in the Appendix for a map of the measurement locations. We also have information on eleven 
additional measurement locations that we ignore because they present extreme variation in flow over the period 
observed. This variation is likely due to malfunctioning of loop detectors or road supply changes (e.g., closure of 
lanes). 
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seven large arterial roads with a speed limit of 100 km/h (0.6 min/km), eight with speed limits 

between 60 and 100 km/h and six with the speed limit of 50 km/h. Information from the 

measurement locations is sometimes missing (meters are sometimes malfunctioning). During 

some hours, we have information from only a couple of measurement locations. To avoid 

identification based on a few measurement locations, we only include hourly information 

from a measurement location when at least 19 other measurement locations are observed in 

our data (we exclude 2.2 percent of total observations). 

We measure flow in number of motor vehicles per minute per lane and travel time in 

minutes per kilometer. We calculate density based on the observed flow and travel time. This 

means that density is measured in number of motor vehicles per kilometer. We exclude 

extreme outliers.37 In total, we have 422,691 hourly observations for motor vehicle flow, 

density and travel time.38 We give descriptive information in Table 3. Approximately five 

percent (23,018) of these observations is during strikes. On average, travel time is roughly 1.3 

min/km, flow per lane is above 11 vehicles per minute and density is about 13 motor vehicles 

per kilometer. The distributions of travel time, flow and density can be found in Figures A7 to 

A9 of Appendix A.39  

 

Table 3 – Average values, travel time, density and flow  
 Travel time Density Flow Obs. 

Strike 1.365 14.6 11.1 23,018 

No strike 1.327 13.4 10.5 399,673 

Total 1.330 13.5 10.6 422,691 

Note: Travel time in minutes per kilometer; density in vehicles per kilometer; flow in vehicles per minute per lane. 
 

In Figures 6 and 7, we provide information about average travel time and density by 

hour of the day (information about average travel flow by hour of the day can be found in 

Appendix A, see Figure A10). These figures indicate that on average travel time, density and 

flow are higher during strikes. In these figures, we single out intensive strikes – whereby the 

public transit available share is below 0.5. Travel time, density and flow appear systematically 

larger during intensive strikes. Figure 3 also shows clearly that during peak hours the increase 

in travel time is substantially larger, implying that the marginal effect of public transit strikes 

is higher during these hours. Not surprisingly, the figures also indicate that traffic flow, 
                                                           
37 We drop few observations when travel time either exceeds 5 min/km or is below 0.4 min/km, when flow is 
zero or exceeds 2,100 vehicles per hour. The results are robust to the inclusion of these outliers. 
38 Information on the month of August 2012 and a few other days are missing. August 2012 is missing, because 
the data collection agency moved office in this month. The few other days are missing for unknown reason. 
39 We weigh all descriptive statistics for travel time by flow, as we are interested in the travel time per traveler. 
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density and travel times are larger in peak than in off peak hours. Travel time, flow and 

density are respectively 13, 38 and 50 percent larger during the peak. 

The above figures provide information for average traffic conditions, and thus mask 

substantial differences between roads. In Figures 9 and 10, we depict the backward bending 

travel time-flow curve – for a road that clearly shows signs of hypercongestion – and for a 

road where hypercongestion is absent: indeed, travel time is monotonically increasing with 

flow. 

 
Figure 6 – Travel time by hour of the day  Figure 7 – Density by hour of the day 

 
The congestion relief effect of public transit may differ between roads because of 

differences in their congestion level. We define a road as heavily congested during a certain 

hour when the speed on that road is less than 60 percent of free-flow speed, defined by the 95 

percent percentile of the speed distribution observed on that road. Using this definition, roads 

in our sample are heavily congested about one hour per day, or 5 percent of the time. 

However, there is extreme variation between roads. Figure 8 shows for all roads the average 

number of hours per day that a road is heavily congested. In the figure (and in the empirical 

analysis below), we single out 10 “heavily-congested” roads, defined as such because they are 

heavily congested (according to our definition above) at least one hour per day.40 On average, 

these 10 roads are heavily congested three hours per day.  

In theory, a road is hypercongested when, for given flow, the travel time lies on the 

backward bending portion of the supply curve. However, in practice it is not always clear 

whether this condition applies. To illustrate, consider the road in Figure 9 – which clearly 

exhibits hypercongestion – and focus on observations of flow around 25 motor vehicles per 

minute, but where travel times are in between the (to be estimated) backward-bending supply 
                                                           
40 The same 10 roads show a backward bending relation between travel time and flow, indicating the presence of 
hypercongestion for some hours.  
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curve. It is a priori unclear whether these observations refer to hours where the road is 

congested or hypercongested. To deal with this issue, we define a road as hypercongested in a 

given hour if and only if traffic density exceeds the level associated with maximum flow 

(formally defined as 𝜕�, see expression (3) in Section 2.1). For each road, we calculate this 

level using our estimates of the travel time-density relationship on an hourly basis (see 

Section 5.1 below). Note that this definition implies that if a road is hypercongested for only a 

couple of minutes during a certain hour, we do not consider it as hypercongested. Hence, we 

most likely underestimate the pervasiveness of hypercongestion. Note also that the above 

definition of ’heavily congested road’ does not imply that a road is hypercongested. Traffic on 

a road may be very slow on a given hour for reasons not directly related to density (e.g., 

because a high share of cars cruises for parking). However, all roads that we identify as 

hypercongested in a given hour also turn out to be heavily congested. 

 
Figure 8 – Daily number of heavily congested hours per road (33 roads) 

 
 
Figure 9 – Hypercongested road   Figure 10 – Congested road 
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4.5 The effect of road congestion on bus travel times 

The Rome Mobility Agency provided us with information on the in-bus travel time. 

Specifically, we observe the hourly average travel time of buses for the 19 hours in a day --

from 5am to midnight— where transit service is active, from 2012 to 2015. This average is 

computed on a yearly basis, distinguishing hours per the service schedule. There are six 

different service schedules in a year: one for weekdays, one for weekends and one for festive 

days during the schoolyear period (from September to May) and three corresponding 

schedules for the summer period (from June to August).41 We have a total of 380 hourly 

observations.  

The average bus travel time is 2.79 minutes per km, twice the average travel time of 

motor vehicles. Because buses rarely travel on dedicated lanes in Rome, we expect travel 

times of public transit and motor vehicles to be strongly correlated. Figure 11, where we plot 

the hourly observations of bus travel time and motor vehicle travel time, confirms this 

expectation. The data indicate a correlation of 0.79 between these travel times. Furthermore, a 

one-minute increase in motor vehicle travel time is associated with an increase in bus travel 

time of 2.8 minutes.42 Consequently, higher congestion levels imply much larger time losses 

for bus travelers than for motor-vehicle travelers. This suggests that the external congestion 

costs on bus travelers may be substantial. We examine this issue below. 

 

Figure 11 – Travel times of public and private motor vehicles 

 
 

                                                           
41 For example, one observation is the average bus travel time from 11am to 12am for weekdays from January 
2012 to May 2012 and from September 2012 to May 2013. Another observation is the average travel time from 
11am to 12am on weekends over the same period, and so on. Information for August 2012 and the second half of 
2015 is missing. 
42 This effect is so pronounced, because i) bus speed appears almost one-to-one related to motor-vehicle speed, 
ii) average bus speed is much less than average motor vehicle speed; iii) the marginal effect of speed on travel 
time is equal to minus the inverse of speed squared. 
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5. Empirical Results 

5.1 Welfare losses of road congestion 

5.1.1 Travel time losses of motor-vehicle travelers 

To estimate the marginal external cost of congestion through travel time losses of motor-

vehicle travelers, we first estimate the effect of motor-vehicle density on travel time of motor-

vehicle travelers. In column 1 of Table 4, we provide the results assuming a linear effect of 

density on log travel time (see (13)). We find that a marginal increase in density (one vehicle 

per kilometer) increases log travel time by 0.024. Hence, increasing density (per lane) by one 

vehicle increases travel time by approximately 2 percent. When we estimate the same model 

with 2SLS using the share of available public transit as an instrument, we find a smaller effect 

of 0.020 see column 2 (the instrument is strong, with an F value above 100). This implies that 

the OLS estimates provide a non-negligible upward bias of almost 20 percent, as anticipated 

in Section 3.  

Table 4 –Log travel time 
 (1) (2) (3) (4) 
 OLS IV OLS IV 
Density 0.0238*** 0.0202*** 0.0268*** 0.0177*** 
 (0.000101) (0.000959) (0.000388) (0.000719) 
Density2    -0.0000425*** -0.0000653*** 

  (0.00000631) (0.00000241) 
Number of Obs. 422,691 422,691 422,691 422,691 
R2 0.925  0.925   
Note: The dependent variable is logarithm of travel time. Controls are included but not tabulated. The hourly strike intensity 
is the instrument for IV. Robust standard errors clustered by hour-of-day in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001 
 
Table 5 –Log travel time, road-specific estimates of density 
 (1) (2) 
 OLS IV 
Average effect of 
density 

0.0224 0.0181 

Standard deviation of 
effect of density 

(0.00934) (0.0110) 

Number of Obs. 422,691 321,687 
Note: We estimate the marginal effect for each road separately given controls and then report the average as well as the 
standard deviation of the effect of density. 
 

To examine whether the above specification is restrictive, we also include a quadratic 

term of density in the estimation for column 3. As is suggested by the negligible increase in 

the R2, a quadratic approach does not fundamentally change the results. When we account for 

endogeneity of density given the quadratic specification, by applying a control-function 

approach (column 4), we again find a smaller effect of density implying that OLS provides an 

upward bias.  
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We then re-estimate the linear specifications for each road separately, allowing the 

effect of density to be road specific. This approach is preferable, because the travel-time 

density relationship may depend on road characteristics such as maximum speed limit, 

distance to upstream bottlenecks etc. These road-specific estimates are available upon request. 

Table 5 reports the average results. In the OLS specification, for each road, the effect is 

positive, with an average effect of 0.024 (see Table 5). Note that the standard deviation of this 

effect is about 0.01, supporting the idea that the estimated effects differ between roads.  

Concerning the IV specification, we have examined the instrument’s strength for each 

road separately. For all but five roads (i.e. about ninety percent of the roads in our sample), 

the F-test far exceeds the recommended value of 10.43 The estimated effect of density is 

positive for 25 among the 28 remaining roads, whereas it is negative for three. This finding is, 

in our view, not particularly worrying for a number of reasons. First, because we have a large 

number of estimates, random variation is likely to result in a few estimates with the wrong 

sign. Second, the F test for weak instruments of these three roads is substantially lower than 

for the other roads that generate positive effects, which is unlikely to be accidental. Third, the 

OLS estimates of these three roads indicate small positive effects. Finally, the logic of our 

instrument, i.e. strikes do not directly influence travel time of motor vehicles, may not hold 

for a few roads because the ratio of buses to cars is much higher than for the average road 

(about 1 percent). 

The second column of Table 5 reports the IV results for the 25 roads with the positive 

coefficient and a strong instrument. We find that the average effect of density is about 0.018 

(including those with a negative coefficient reduces the average estimate somewhat to 0.015). 

Again, the OLS estimates are severely upward biased, by about 30 percent.44 This upward 

bias is also statistically significant for most roads: for 20 of the 25 roads, the Hausman t-test 

exceeds two (in absolute value). As discussed in Section 3, measurement error in travel time is 

most likely one of the main reasons for this bias.45 

We use the IV estimates to predict each road’s supply curve – i.e. the travel-time flow 

relationship – as explained in Section 2.1. Figure 6 provides an example of such prediction for 

                                                           
43 For the roads where the instrument is weak, the test is equal to 1, 2, 4, 6, and 8 respectively. For these five 
roads, the Hausman t-test (Wooldridge, 2002, page 120) is less than two (in absolute value) suggesting that the 
OLS and IV estimates are statistically equivalent. 
44 This conclusion holds even more if we include all 33 roads. The IV effect is then about 33% lower.  
45 Our finding of an upward bias of about 30 percent is consistent with a lognormal distributed measurement 
error in travel time with a standard deviation e 10 percent of the standard deviation of log travel time. 
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one road (black line). The predicted travel-time flow relationship is backward-bending, in line 

with empirical traffic studies (Helbing, 2001; Geroliminis and Daganzo, 2008).46  

Based on these estimates, we calculate when hypercongestion occurs on the roads we 

observe. Given our specification that 𝑇 = 𝛽𝑒𝛼𝛼 , hypercongestion occurs when D > 1/α, where 

α is the estimated effect of density on log travel time (see expression (3) above). Our 

estimates imply that hypercongestion occurs in about 2 percent of the time, on average. Given 

our observation in Section 4.4 that roads are about 5 percent of the time heavily congested, it 

turns out that about 40 percent of roads that are heavily congested are also hypercongested. 

During the morning peak hours, however, the proportion of hypercongested roads is higher: 

about 60 percent of heavily congested roads are hypercongested (see Figure A11).   

Table 6 summarizes the main results of this section.47 The first column reports the 

main measures describing the observed traffic conditions, including the MEC (computed only 

for the hours where roads are not hypercongested). This measure is useful as it is indicative of 

the level of the optimal road tax.  It shows that the marginal external time cost of a motor-

vehicle travelling one km is about 0.53 minutes on average.48 This value is substantial, given 

that the average travel time per km is 1.33 minutes.  

As argued above, our measure of marginal external cost of travel flow, MEC, always 

exceeds the immediate measure, mec, which is famous because of Pigou (1920), and 

subsequent literature (e.g., Mayeres et al., 1996; FHWA, 1997; Maibach et al., 2008). 

According to our estimates, mec is 0.36, so the estimated marginal external costs are about 40 

percent higher when the proper definition is used. 

To express these estimates in monetary terms, we assume a value of time for private 

vehicle users equal to 15.59€/h.49 Hence, the marginal external time cost of a motor-vehicle 

km is €0.137 (0.53*15.59€/60). Combining this estimate with information about the yearly 

total number of motor-vehicle kilometers in Rome (see Table 1) suggests an aggregate annual 

external cost of congestion on motor-vehicle travelers in the order of €1.4 billion per year. 

Recall that we compute this cost excluding the hours where roads are hypercongested.  

We now describe how we compute the welfare losses of (hyper)congestion. The first 

step is to characterize the demand function for travel. Rather than attempting to estimate this 

                                                           
46 These results are also in line with simulation studies (e.g., May et al., 2000; Mayeres and Proost 2001; 
Newbery and Santos, 2002). 
47 For computational reasons, we provide results using a 10% random sample. 
48 We report here the weighted average of the marginal external time cost for a road, using the flow per road as 
weight. 
49 This is the median value proposed by Rotaris et al. (2010) for Milan, the second largest city in Italy.  
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function, we assume that travel demand on a given road r is linear, with the following 

specification: 𝑇 = 𝜏𝑟,ℎ +  𝜑𝐹. Observe that demand for all roads has the same, time-invariant, 

slope 𝜑. We let the intercepts  𝜏𝑟,ℎ  vary by hour and road. The value of these intercepts can 

be calculated given the assumption that, on a given road-hour pair, the market is in 

equilibrium. Given 𝜑, T and F, one calculates 𝜏𝑟,ℎ .In the following, we consider the case 

where 𝜑 = 0, i.e. a horizontal inverse demand function, and negatively-slope demands with 

𝜑 = -0.1, -0.3 or -2. The implied corresponding average demand elasticity are then either 

minus infinity, -1.5, - 0.5 or -0.07. Hence, we consider a rather broad spectrum of demands 

spanning from perfectly elastic to almost perfectly inelastic.  
 
Figure 12 – Deadweight loss avoided when moving from congested (left panel) and hypercongested 
(right panel) equilibrium to the optimal allocation. 

 

The next step is to characterize the optimal equilibrium – in terms of density, flow and 

travel-time – corresponding to each observed equilibrium (per hour and road).50  To do so, we 

combine the information on demand with an estimate of the road-specific road supply curve 

using the IV estimates in Table 5. Optimality requires that marginal benefit equals marginal 

social cost. Hence, in the optimal equilibrium, 𝜏𝑟 +  𝜑 F = 𝑇 + 𝑀𝑀𝑀 must hold. Given 

𝑇 = 𝛽𝑒𝛼D, and MEC=αD T /(1 - αD), density can be found by numerically solving the 

following equation: 

(15) 𝜏𝑟 +  𝜑 (D/ 𝛽𝑒𝛼D)  = 𝛽𝑒𝛼D  +  αD 𝛽𝑒𝛼D /(1 −  αD) 

                                                           
50 When the road supply curve is backward bending, multiple equilibria can occur, as the equilibrium may lay 
either on the congested or the hypercongested part of the road supply curve (see Figure 12). However, 
multiplicity arises only if the inverse demand function is steeper than the downward sloping part of the (inverse) 
road supply function. In our data, for the supply function, the implied travel time elasticity with respect to flow 
given the presence of hypercongestion is about -5, so the inverse supply function is very steep in the 
hypercongested part. Hence, multiplicity appears to be rather unlikely. 
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Given the value of the optimal density, we calculate the corresponding optimal travel time and 

flow.  

Finally, we calculate the welfare improvement of a policy that induces a shift from the 

observed equilibrium to the optimum. This improvement consists of the change in total 

consumer benefits (the area under the inverse demand function) minus the change in total cost 

(the difference between flow times average time in the optimum and in the observed 

equilibrium). Recall that the optimal equilibrium cannot lie on the hypercongested part of the 

supply curve (see Section 2.1). Observe that when starting from the hypercongested 

equilibrium, it is possible that both changes are welfare improving, specifically if flow 

increases. Figure 12 provides an illustration. 

In Table 6 we report the results for different values of 𝜑. We report the marginal 

external costs of one additional motor vehicle and the (per minute) welfare gain of optimal 

policy – averaged over all roads and hours of the day, expressed in minutes times motor 

vehicles. We decompose this welfare gain into a change in consumer benefits and a change in 

travel time costs. Moreover, we calculate the overall welfare gain from removing 

hypercongested equilibria only and the welfare gain per hypercongested equilibrium. 

 

Table 6 – Welfare changes: observed and optimal equilibria 
 Observed 

 
Optimal 
𝜑=0 

Optimal 
𝜑= - 0.1 

Optimal 
𝜑= - 0.3 

Optimal 
𝜑= - 2 

Density (motor vehicles/km/lane) 13.49 6.71 10.38 11.71 13.06 
Flow (motor vehicles/min/lane) 10.49 6.02 8.91 9.73 10.58 
Travel time (min/km) 1.33 1.20 1.26 1.29 1.31 
Hypercongestion 0.02 0 0 0 0 
Marginal external cost , MEC (min) 0.53 0.18 0.29 0.36 0.49 
Welfare gain (min/lane)  1.38 1.05 0.81 0.56 
    change in travel time cost  -7.35 -3.68 -2.37 -1.04 
    change in consumer benefits  - 5.83 - 2.63 - 1.55 - 0.48 
    removing hypercongested eq.  0.24 0.37 0.34 0.37 
Welfare gain per hypercongested 
equilibrium 

 26.78 24.79 24.14 22.75 

Note: These are averages for all roads and all hours. Hypercongestion measures the share of time that a road is 
hypercongested. We compute the marginal external cost for times when a road is not hypercongested.  

 

For brevity, we discuss the results in detail only for the case where 𝜑 = − 0.1. As 

shown in Table 6, density decreases when moving from the observed to the optimal equilibria. 

The average reduction in density is substantial from 13.49 to 10.38 vehicles (about 25 

percent). Average travel time falls from 1.33 to 1.26, so by 0.07 min/km, i.e. 5 percent. This 

reduction may seem small, but on some roads the drop in travel time is very substantial. For 

example, for the road depicted in Figure 9, average travel time falls from 0.96 to 0.81 
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minutes, i.e. by about 15 percent. In addition, we see from Table 6 that the average flow 

decreases by about 15 percent. The induced welfare gain is equal to 1.05 motor vehicle 

minutes (per minute/kilometer/road lane), roughly twice the marginal external cost as 

measured in the observed equilibrium, so therefore about €0.26 per minute (per 

kilometer/road lane). This welfare gain comes into existence because travel time cost fall by 

3.68 motor-vehicle minutes. This is a substantial drop, but the consumer benefits also fall 

substantially, by about 2.63 motor vehicle minutes. 

To provide a sense of the relevance of hypercongestion, we also calculate the welfare 

gain when we only remove hypercongestion equilibria (into optimal equilibria). See the 

penultimate row in Table 6. Focusing again on the case where 𝜑 =  − 0.1, we obtain that, 

despite that the roads in our sample are hypercongested only 2 percent of the time, about 35 

percent of the overall welfare gain (0.37/1.05) can be obtained from optimal policies on roads 

that are hypercongested. Observe that this result depends on the assumed slope of the demand 

function. When the demand for travel is very inelastic, 𝜑 =  − 2, about two thirds of the 

welfare gain (0.37/0.56) is due to the removal of hypercongestion. Nevertheless, even when 

the demand for travel is perfectly elastic, the welfare gain due to removal of hypercongestion 

is still substantial and equal to 17 percent of the overall welfare gain. 

Confirming the above results, the last row in Table 6 indicates that the welfare 

improvements are much larger on roads that are hypercongested. The average welfare gain on 

these roads is equivalent to 25 car minutes, so in monetary terms roughly €6 per minute (per 

kilometer/road lane). To put this in perspective, the hourly welfare gain of removing 

hypercongestion is about €700 for a standard two-lane road. The latter result depends very 

little on the slope of the demand function. For example, when 𝜑 is equal to -2, so demand is 

essentially inelastic, the welfare gain is still equivalent to 23 car minutes. Clearly, given 

hypercongestion it is possible to get substantial welfare gains even without reducing flow.51  

We emphasize that the above results focus on the average welfare gain. When we 

focus on the heavily-congested road depicted in Figure 9, the welfare gains of policy are 

much more substantial. For this road, welfare gains are about twice the average and travel 

time reductions up to 25 percent are welfare improving. 
                                                           
51 In Table 6, we have provided the marginal external costs, averaged over all observations. This masks 
uncertainty about the estimates of the marginal external cost for individual observations. To examine this, we 
focus on one observation for which density is 20 motor-vehicles per kilometer, flow is 20 motor-vehicle per 
minute and travel time is 1 minute per kilometer. Given the estimate and standard error of α, as provided in 
Table 4, (6) and (13) imply then that MEC is equal to 0.66 motor-vehicle minutes per lane with a standard error 
of 0.05. When density is 40, flow is almost 15 and travel time equals 2.7. MEC is then equal to about 20 with a 
standard error of 1. Consequently, the standard errors of the individual estimates are usually quite small. 
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To complete the picture, we show the marginal external cost for the observed 

equilibria (and when there is no hypercongestion) in Figure 13, as well as the welfare gain of 

optimal policy per hour of the day, when 𝜑 =  − 0.1 in Figure 14. Not surprisingly, the MEC 

and the overall welfare gain fluctuate over the day and the welfare gains of reducing 

congestion are much larger during peak hours.  
 

Figure 13 – Marginal external cost   Figure 14 – Welfare gains  

  

Taken together, the results of this section indicate that the welfare losses due to road 

congestion in Rome are substantial. However, some discussion of our results is in order. First, 

although we observe traffic data from many measurement locations that are quite evenly 

spread across the city, our sample may not be entirely representative of the road network in 

Rome. Second, we have to make assumptions on the underlying travel demand function, 

because our data does not allow us to provide a fully-fledged estimation. Third, we estimate 

road supply curves at the individual road level, and not at an area- or network-wide level. 

Hence, our estimates of the external costs do not account for the possibility of avoiding 

heavily-congested roads by using different links within the road network.52 A priori, this 

possibility has several implications. On the one hand, if individuals can reduce their travel 

time by, say, using secondary roads, we are likely to overestimate the average external costs 

of congestion. On the other hand, in a city like Rome, it is unclear to what extent drivers are 

able to avoid congested primary arteries without having to take substantial detours. In this 

case, the extra-vehicle kilometers may increase the aggregate travel time losses, implying that 

we are somewhat underestimating these costs.  

 

                                                           
52 Akbar and Duranton (2016) provide citywide estimates of supply and demand functions for Bogota’, using 
information from travel surveys and Google Maps.  
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5.1.2 Travel time losses of bus travelers 

We now estimate the external cost of congestion of motor vehicles on bus travelers. We start 

with the approach based on (10). This expression states that the ratio of the marginal external 

time cost to bus travelers and to motor-vehicle travelers equals  𝜃−1𝑁𝑃𝑃/𝐹 , where  𝑁𝑃𝑃/𝐹 is 

the number of bus travelers relative to the motor-vehicle flow travelers, which is roughly 0.4 

in Rome53, and where 𝜃−1denotes the marginal effect of motor vehicle travel time on bus 

travel time. We estimate 𝜃−1 by regressing bus travel time on motor vehicle travel time. The 

first column of Table 7 reports the estimate of a bivariate model. In the second column, we 

control for hour of the day, bus-schedule day and year. Given controls, we find that 

𝜃−1 equals roughly two, so substantially higher than one, with a standard error of 0.1. Hence, 

 𝑁𝑃𝑃/(𝜃𝐹) is equal to about 0.80. To give an idea of the implied order of magnitudes, let us 

assume that the value of time of bus vehicle travelers is 60 percent of that of motor-vehicle 

travelers.54 Then the marginal external cost to bus travelers is in the order of 40 to 50 percent 

of the marginal external cost to motor-vehicle travelers. Consequently, the marginal external 

cost to bus travelers is quite large. 

 We also estimate the time losses to bus users via an alternative approach, based on  

(11). This approach uses estimates of the marginal effect of motor-vehicle density on log bus 

travel time, σ, using the aggregated bus schedule times. Recall that we have 380 observations. 

We find that this marginal effect, given controls, is about 0.0188, see column 3 of Table 7. To 

examine whether this effect depends on the selection of the data, we have also estimated the 

effect of density on the log of motor-vehicle travel time, α. Given controls, we find that the 

effect of density on log bus travel time is slightly higher than the effect on log motor-vehicle 

travel time when using the same aggregated data, see column 4, so if we assume that σ =α, we 

obtain a conservative estimate.55 Given that, on average, bus travel time, 𝑇𝑃𝑃, is about twice 

the motor-vehicle travel time, T, it appears that the marginal external effect of a motor-vehicle 

traveler through longer travel times of bus travelers is at least half of its effect through longer 

                                                           
53 Given information about the average occupancy of buses, which is 42, provided to us by the city of Rome, this 
implies about 6 bus per hour per road. 
54 For Milan, Rotaris et al. (2010) report a median VOT of €9.54/h for bus travelers. We did not find 
corresponding studies for Rome. 
55 This effect is somewhat smaller than the effect presented in column (1) of Table 4, which uses less aggregated 
data. The downward bias of the estimates shown in Table 7 is to be expected, since aggregation is rather 
substantial which usually results in a downward bias. 
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motor-vehicle travel times, according to (11).56 Hence, both approaches provide similar 

results.  

Using the above results, we compute the marginal external cost of motor vehicle travel 

on bus users to be about 0.05€/veh-km, i.e. roughly 30% of the overall marginal external cost 

(0.137+0.05=0.172€/veh-km). As the aggregate external cost of congestion to motor-vehicle 

travelers is about €1.4 billion per year, the previous results suggest that the external cost of 

congestion to bus travelers is about €0.6 billion per year. Thus, the total external cost of 

congestion to motor vehicle and bus travelers combined is about €2 billion per year, that is 

about 2% of the Rome metro area’s GDP.57 In sum, the results of this section suggest that a 

relevant share of the external congestion cost of congestion is borne by bus users. 

 
Table 7 – Bus travel time and motor-vehicle travel time  
 (1) (2) (3) (4) (5) (6) 
 Bus 

travel 
time 

Bus 
travel 
time 

Bus travel 
time (log) 

Bus travel 
time (log) 

Motor-vehicle 
travel time 

(log) 

Motor-vehicle 
travel time 

(log) 

Motor-veh. 
travel time 

2.792*** 1.996***     

 (0.106) (0.108)     
Density   0.0242*** 0.0188*** 0.0153*** 0.0169*** 
   (0.000621) (0.000896) (0.000360) (0.000486) 
Controls No  Yes No Yes No Yes 
N 380 380 380 380 380 380 
R2 0.646 0.941 0.818 0.965 0.859 0.955 
The dependent variable is bus travel time in min/km. Standard errors are robust. We control for hour, bus-schedule day and 
year. * p < 0.05, ** p < 0.01, *** p < 0.001 
 

 

5.2 The congestion relief benefit of public transit 

We now turn to the congestion-relief benefit of transit. We first estimate the effect of public 

transit share on hourly vehicle flow and travel time.58 We include controls for location, 

weather conditions and hour of the weekday, week of the year and month of the year.59 These 

controls capture unobserved factors that affect traffic conditions and may be correlated with 

                                                           
56 This result supports the simulation study of Basso and Silva (2014) which concludes that the marginal 
contribution of transit subsidies to welfare improvements is much lower than that of reductions in road 
congestion through road tolls or the building of separate bus. 
57 The GDP of Rome metro area in 2005 was roughly €94 billion. See https://en.wikipedia.org/wiki/Rome. 
58 In the analysis of vehicle flow, we estimate weighted regressions, with weights proportional to the number of 
lanes. In the analysis of travel time, we estimate weighted regressions with weights proportional to the hourly 
flow. 
59 Hence, we include a dummy for each month in our dataset, interactions between week and year (169 dummies) 
and between hour and weekday (120 dummies).  
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strikes. For example, unions may prefer to strike on certain days of the week to maximize the 

impact of their action. We also control for days with cancelled strikes. 

 

Table 8 –Flow 
 All roads  

(33) 
Heavily 

congested (10) 
One-lane  

(12) 
Arterial roads  

(7) 
Morning peak: Public 
transit share 

-1.07 
(0.20) 

*** -0.32 
(0.27) 

 -1.39 
(0.20) 

*** -0.49 
(0.36) 

 

Afternoon peak: 
Public transit share 

-0.83 
(0.12) 

*** -0.85 
(0.17) 

*** -1.10 
(0.15) 

*** -0.79 
(0.25) 

*** 

Off-peak: Public 
transit share 

-0.76 
(0.07) 

*** 0.86 
(0.09) 

*** -0.84 
(0.07) 

*** -0.80 
(0.13) 

*** 

         
Controls     
Location Yes Yes Yes Yes 
Hour-of-weekday Yes Yes Yes Yes 
Month Yes Yes Yes Yes 
Week-of-year Yes Yes Yes Yes 
Weather Yes Yes Yes Yes 
Observations 422,691 117,790 158,427 81,981 
R2 0.8354 0.8578 0.7141 0.8681 
Note: The dependent variable is flow expressed in veh/min/lane. Standard errors (in parenthesis) robust and clustered by 
hour. Significance levels indicated at 1%, ***, 5%, ** and 10%. *. The number in parenthesis in column titles indicates the 
number of roads.  

 

Our main interest is in the effect of public transit supply on travel time. However, 

starting from the analysis of the effect on traffic flow (Table 8) facilitates the interpretation, 

because the presence of hypercongestion suggests that the effect of strikes on flow may be 

small. We distinguish between the effects of public transit share during the morning peak, the 

afternoon peak and off-peak. We report the estimation for the entire sample (column 1), as 

well as for heavily-congested roads (column 2), for one-lane roads (column 3) and for large 

arterial roads (column 4).  In the morning peak, provision of transit services decreases traffic 

flow on average by 1 vehicle per minute (first row of Table 8). That is, about 9.6% of the 

average flow.60 The point estimates of the effects of public transit share are somewhat smaller 

during the afternoon peak and outside peak hours. In line with the idea that hypercongestion is 

relevant in Rome, the effect of public transit on flow in heavily-congested roads is statistically 

insignificant (Anderson, 2014, Small and Verhoef, 2007).61 

                                                           
60 We find similar effects when estimating the same model using log of flow as dependent variable (see 
appendix). It is also in line with estimates for Rotterdam (Adler and Van Ommeren, 2016). 
61 In our analysis we have excluded night times observations. During night times, travel times and flows are 
essentially identical on strike and non-strike days, which can be interpreted as a placebo test of strike exogeneity 
(see similarly, Anderson, 2014).  
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Table 9 reports the results of the estimation of the effect of transit supply on travel 

time.62 We find that public transit provision reduces travel time in peak morning hours by 

0.245 minutes per km. The effect is substantially smaller during the evening peak (0.095) and 

off peak (0.065 min/km) in line with Figure 3. These are our main estimates that we will later 

use in the welfare analysis of Section 5.3. These estimates are significantly larger than the 

implied estimate used by Parry and Small (2009). However, although the effect is substantial, 

the estimate is smaller than that reported by Bauernschuster et al. (2016) and Adler and Van 

Ommeren (2016) for inner cities. There are at least two explanations for this finding. First, 

contrary to both studies, the effect we estimate relates to motor vehicles, i.e. cars as well as 

motorbikes. It is reasonable to assume that the effect of congestion on motorbikes is less 

pronounced. Because the latter have a peculiarly large modal share in Rome, the effect on 

motor vehicle travel time is most likely larger than the estimates reported in the table. A 

second explanation is the relatively low speed and high occupancy of buses, which provide 

most of the transit services in Rome. It is then reasonable to expect that supply shocks due to 

strikes have a smaller effect on modal choice in Rome than in other cities. 

 
Table 9 –Travel Time 
 All roads  

(33) 
Heavily congested 

(10) 
One-lane  

(12) 
Arterial roads  

(7) 
Morning peak: Public 
transit share 

-0.245 
(0.036) 

*** -0.525 
(0.079) 

*** -0.136 
(0.027) 

*** -0.370 
(0.074) 

*** 

Afternoon peak: Public 
transit share 

-0.095 
(0.021) 

*** -0.178 
(0.041) 

*** -0.041 
(0.017) 

** -0.076 
(0.035) 

** 

Off-peak: Public transit 
share 

-0.065 
(0.010) 

*** -0.115 
(0.021) 

*** -0.042 
(0.008) 

*** -0.054 
(0.018) 

*** 

         
Controls as in Table 8 Yes Yes Yes Yes 
Observations 422,691 117,790 158,427 81,981 
R2 0.5865 0.5291 0.8276 0.1656 
Note: The dependent variable is travel time, measured in min/km. Standard errors (in parenthesis) robust and 
clustered by hour. Significance levels indicated at 1%, ***, 5%, ** and 10%. *. The number in parenthesis in 
column titles indicates number of roads.  
 

The effect of public transit share on travel time on heavily-congested roads is 

substantially larger than on the average road, particularly during the morning peak, where the 

point estimate is equal to -0.524 min/km (see column 2). Hence, increased demand for car 

travel when public transit supply is reduced produces strong increases in travel time and 

traffic jams associated with hypercongestion (as there is little evidence of higher flows, see 

Table 3). By comparison, the travel time reductions on arterial roads, and in particular one-

                                                           
62 We have estimated the same model using the logarithm of speed as the dependent variable. The results are 
very similar. In the literature it is common to use travel time because welfare effects of congestion are defined by 
travel time losses.  
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lane roads (column 4), are systematically lower than on the most heavily congested roads. 

Nevertheless, the effect of public transit in one-lane roads during morning peaks is still 

substantial in magnitude (- 0.136 min/km, column 3).  

Another way to demonstrate the importance of public transit during (morning) peak 

hours is to estimate hour-of-the-day specific effects of public transit share on travel time as 

well as flow. As shown in Figure 11, the negative effect of public transit share on travel time 

is particularly strong during peak hours, but the effect on traffic flow is (almost) absent during 

these hours. 
 
Figure 11 – Travel time     Figure 12 – Flow 

 
We have also estimated models where we regress the presence of hypercongestion – as 

defined by our estimates in section 5.1.1 – on the public transit share using the same controls 

as in Table 8. We find that the effect is negative and equal to - 0.038. Given that the average 

level of hypercongestion is only 0.02, this suggests that reducing the current supply of public 

transit would approximately double the level of hypercongestion. 

Taken together, these results imply that the effect of transit supply on road congestion 

in Rome is far from negligible. Disruptions in public transit service during strikes produce 

positive demand shocks for motor-vehicle travel, particularly during the morning peak when 

hypercongestion is more likely to be present. As a result, travel time substantially increases 

suggesting a relevant congestion relief benefit of public transit.  

Note that previous estimates provide a measure of the average congestion-relief 

benefit of public transport. However, to interpret our results of the marginal congestion relief 

benefit of public transit, it is relevant to know whether the derived marginal effect of public 

transit share is constant, i.e. to what extent the effect of public transit on travel time is linear. 

To investigate this, we have estimated several nonlinear models, which all suggest nonlinear 

effects, where the marginal effect is more pronounced for shares between 0.4 and 0.8 than 
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between 0.8 and 1. However, statistical tests indicate that we cannot reject the linear 

specification hypothesis, i.e. that the marginal effect of public transit share on travel time is 

constant.63 We come to the same conclusion when we focus on the effect of public transport 

on flow. Here we present the results using a fifth-order polynomial of the public transit share 

in Figures 13 and 14. 

 
Figure 13 – Travel time     Figure 14 – Flow 

 
One criticism of the above analysis is that we use exogenous variation in the public 

transit share rather than exogenous variation in the public transit level. Note that we control 

for the scheduled service level by including hour of the day dummies. Furthermore, note that 

the scheduled service level is constant, with a supply about 1800 buses, between 9 a.m. and 5 

p.m. Hence, we have re-estimated the model for observations during these hours (177450 

observations). We find that then the standard errors are somewhat higher, but the results 

hardly change. For example, the estimated effect during peak hours is now -0.270 (with a 

standard error of 0.054), very close to the original estimate. Given this estimate, it appears 

that the marginal effect of a single bus during one peak morning hour on motor vehicles’ 

travel time is about -0.00015 minutes per kilometer (-0.27/1800). 

Finally, reductions in public transit supply can be regarded as an implicit overall 

public transit price increases to the transit traveler. In our data, we observe one substantial 

public transit increase in the price. We have investigated the effect of this price increase on 

motor vehicle travel time as a robustness check. Our results indicate that an increase in public 

transit prices by 50 percent increases motor-vehicle travel times by about 0.05 minutes per 

kilometer. The size of this effect is similar to a 20 percent reduction in public transit supply, 

which seems a reasonable result (see Appendix B for details). 

                                                           
63 We have few observations with public transit shares that are either between 0.75 and 1 or less than 0.3, so the 
power of this test is low. 
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5.3 The long-run congestion relief benefit of public transit for Rome 

We now use the above estimates to quantify the overall congestion-relief benefit of public 

transit in Rome. According to our results, the marginal effect of public transit supply on road 

traffic is approximately constant. Hence, the short-run effect of a full shutdown of public 

transit services (consisting of 201 million vehicle-kms per year) results, on average, in 57 

additional motor vehicles per hour per road lane during the peak and 45 additional vehicles 

off peak (see Table 8).  

 
Table 10 – Congestion relief benefit of public transport, aggregate calculations 

  Full shutdown Marg. shutdown  
(1% of total veh-km) 

Assumptions 
 

  
Annual veh-km, private motor vehicles 14. 5 billion 
Annual veh-km, public transport 201 million 
Travel time increase cars (peak), min/veh-km                 0.17 min/km               0.0017 min/km 
Travel time increase cars (off-peak), min/veh-km                0.065 min/km               0.00065 min/km 
Travel time increase buses (peak), min/veh-km 

 
        0.0034min/veh-km 

Travel time increase buses (off-peak), min/veh-km          0.0013min/veh-km 
Value of time of car travelers €15.59/h 
Average op. cost public transport, veh-km €7.76/veh-km 
Results 

 
  

Public transit congestion relief benefit, year €595 million €8.25 million 
Operating cost saving, year €1.56 billion €15.2 million 
Subsidy reduction €1.03 billion €15.2 million 
Net congestion relief benefit (% of cost saving) 38% 54% 

 

Furthermore, using the results of Table 9, it results in a 0.17 min/km increase in travel 

time in peak hours (averaging for morning and afternoon), and 0.065 min/km off peak. The 

(forgone) annual congestion relief benefit to motor-vehicle travelers is then about 38 million 

hours of travel time. Assuming that the value of time is 15.59 €/h, this benefit is valued at 

roughly €595 million.64 This is equivalent to about 38% of the total public transport operating 

cost (1.56 billion euros in 2013), and about 30% of the total external costs of congestion. Note 

that these values do not include the welfare losses of transit users. We summarize these 

findings in the first column of Table 10. Based on the same estimates, we also consider the 

effect a 1% shutdown in public transit provision. This decrease costs €5.95 million in lost 

congestion relief benefits to motor-vehicle travelers but also €2.3 million to bus travelers.65 

                                                           
64 We multiply annual passenger-kms by private vehicles (see Table 1) by the estimated travel time increases in 
peak and off peak hours, and by the value of time. We assume that people who switch from private motor 
vehicles to public transit only benefit by half as much as people that already use public transit. Note that this 
measure does not include the loss of surplus to former transit users. 
65 Combining the results of Table 9 mentioned above with the results of Table 7, the effect of a 1% decrease in 
transit services results in excess travel time for buses is 0.0034min/veh-km in peak hours and 0.0013min/veh-km 
off peak. Table 1 indicates that there are 66.7 million veh-kms of bus service in Rome per year in peak hours 
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The total loss due to extra congestion is thus 8.25 million euros annually, i.e. roughly 54 

percent of the operating cost savings for the transit agency. We report these results in the 

second column of the table. 

Another interesting exercise is to compute the marginal congestion relief benefit of an 

additional bus. On the 33 roads analyzed here, there are about 500,000 motor-vehicle travelers 

in the morning peak who, let’s assume, travel on average 4 km on these roads, which is likely 

a conservative estimate. Hence, the marginal reduction in time delay is about 300 minutes. 

Assuming that the value of time is 9.54 Euros per hour, the marginal external benefit of a bus 

during peak hours is about 48 Euros. Given that there are about four morning peak hours, the 

external benefit of a bus during peak hours is at least 200 Euro per day.  

An important caveat regarding the interpretation of these results is that they are based 

on short-run estimates, exploiting temporary service disruptions. Hence, one should apply 

some caution when using them to predict long-run effects of (permanent) changes in transit 

supply. In Rome, car ownership is very high and strikes are frequent, suggesting that travelers 

may respond to them in a way that is more similar to a permanent service reduction than in 

other cities. Thus, our estimates are more likely to approximate long-run effects than previous 

literature using a similar methodology (e.g., Anderson, 2014). It is plausible that the main 

difference between our estimates and long-term estimates is the possibility during strikes to 

cancel trips. Note that individuals who respond to strikes by canceling their trip likely have 

less leeway to do so in the long run and will switch to car use. Hence, long-run effects of 

reductions in supply on road congestion are most likely larger than indicated by our current 

estimates. Nevertheless, we emphasize that we do not capture the very long-run effects of 

transit supply changes, such as job, house and firm relocation, and maybe even the spatial 

structure of cities; hence, we interpret our estimates as only indicative of the long-run effects 

of changes in transit service. 

 

6. The effect of public transit subsidies given adjustments in public transit supply 

The results of the previous section suggest that the congestion relief benefit of public 

transport is substantial. Although this finding provides some justification for the volume of 

public transit subsidies in Rome, it does not imply that their current level is close to optimal. 

Subsidies may also have other justifications (e.g, economies of scale, environmental 

                                                                                                                                                                                     
(average occupancy 51 pax/veh) and 67.7 million veh-km off peak (34pax/veh). Therefore, we calculate an extra 
total travel time of 0.192 million extra hours of travel time for bus users in peak hours and 0.049 off peak. 
Assuming the value of time for bus travelers is 9.54 euros/h, we get a total extra loss of 2.3 million euros. 
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externalities) but also produce a price distortion. We have ignored these issues up to now. 

Furthermore, for a proper evaluation of public transit subsidies one has to consider possible 

adjustments in service by the transit agency, in response to (subsidy-induced) changes in 

demand. To provide more insight on whether the current subsidy level is justified, we use the 

model of Parry and Small (2009). In this model, travelers choose between three travel modes 

(private motor-vehicle, bus, rail) and two time periods (peak vs. off-peak), while the (welfare-

maximizing) public transit agency chooses transit supply and fares subject to a budget 

constraint. This model has been calibrated for several cities (Los Angeles, London, 

Washington DC), but not for Rome. We calibrate its parameters using our empirical estimates 

and data provided by the city of Rome (see Table C1 in Appendix C for details).  

For consistency with our empirical analysis, we slightly adapt Parry and Small’s 

model as follows. First, we assume that motor-vehicle travel time is a function of density.66 

Specifically, we assume that 𝑇 = 𝛽𝑒𝛼D, with 𝛼 = 0.02 (this is the estimate from Table 4, 

column 2). Consistent with this assumption, we compute the marginal external cost based on 

MEC as provided in (6). Secondly, we include the marginal external cost of motor-vehicle 

traffic on bus users, assuming (10), with  1
𝜃

= 2 (as estimated in Table 7, column 2).67 Finally, 

we calibrate the fare elasticity of transit passenger-kms using our own estimates and data 

provided by the city of Rome (see Appendix B). We use an elasticity of 0.22, as suggested by 

our data. This elasticity is rather low in comparison to the elasticities assumed by Parry and 

Small. However, given that transit fares in Rome are much smaller than in comparable 

European cities, low fare elasticity seems quite reasonable. Our results hardly change when 

we use elasticities as assumed by Parry and Small. 

Table 11 reports the results. The top panel reports the marginal external congestion 

cost per motor vehicle kilometer, which equals €0.29/veh-km in peak hours, and €0.11/veh-

km during off peak (see the first row of Table 11). These costs are the sum of the external 

costs imposed on motor vehicle drivers (€0.21/veh-km in peak hours, €0.09/veh-km off-peak), 

as well as the external costs imposed on bus travelers (€0.086/veh-km in peak hours, 

€0.023/veh-km off-peak). 

The bottom panel of Table 11 reports the marginal change in social welfare resulting 

from a marginal increase in the public transit subsidy (assuming this increase results in a fare 

reduction), starting from the current level. The reported “marginal benefit” is the marginal 
                                                           
66 Parry and Small postulate a time-flow relation, whereby travel time is a power function of flow. 
67 We assume a that there are on average six buses running on a road per hour and use the average peak and off 
peak occupancies of 51pax/veh and 34pax/veh respectively, as provided by the Rome municipality. 
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welfare gain from a one-cent-per-km reduction in passenger fare, expressed in cents per initial 

passenger-km. We decompose this effect into four components: (i) a welfare loss due to the 

increased gap between marginal production costs of producing public transit and public transit 

prices, (ii) a welfare gain due to additional economies of scale, (iii) a welfare gain due to a 

reduction in externalities (congestion and motor-vehicle pollution reduction) and (iv) the 

welfare benefit of diverting passengers from other transit modes for which the marginal social 

cost per passenger-km exceeds the fare. The marginal social benefit of a fare reduction is 

positive for rail and bus services, except for off-peak rail. The average marginal social benefit 

is equal to 0.1. This finding suggests that, despite their already substantial level, increasing 

transit subsidies is welfare improving. On average, an additional cent of subsidy brings 

roughly 0.15 cents of externality-relief benefit, and 0.12 cents in scale economies.68 In 

addition, we find that in the optimum – in the absence of road pricing – subsidies should 

cover at least 72% of operating costs (bottom row in Table 11). 

 

Table 11 – Parry and Small model for Rome: optimal public transit subsidies 

            Peak Off peak 
  Marginal external cost, motor vehicle travel. €cent/veh-km 32.95 12.89 
    

 
of which: on other motor vehicles travelers 20.84 9.31 

    
  

on bus travelers 
 

12.11 3.58 
              Rail Bus 

   
     

Peak Off- Peak Off- 
    

      
Peak 

 
Peak 

  Current subsidy, share of op. cost 
  

0.76 0.76 0.74 0.69 
    

    
Weighted 

   
  

  Marginal welfare effects 
  

 Avg.  
   

  
  Marginal benefit per €cent/pax-kma 

 
0.10 0.31 -0.07 0.11 0.21 

    
 

marginal cost/price gap -0.24 -0.38 -0.41 -0.34 -0.21 
    

 
net scale economy 

 
0.12 -0.02 0.21 0.04 0.31 

    
 

externality 
 

0.15 0.53 0.14 0.31 0.02 
    

 
other transit 

 
0.08 0.19 0.11 0.10 0.09 

  Optimum subsidy, share of op. cost     >0.9 0.72 >0.8 >0.9 
  Notes 

           a This is the marginal welfare gain from a one cent-per-km reduction in the fare, in euro cents per initial passenger-km. 
b The subsidy for each time period and mode is optimized holding the others at their current values. 

  

 

 
                                                           
68 The marginal congestion relief benefit is comparable to the average benefit obtained in the previous section 
(see Table 10), though smaller. One reason is that the model of this section assumes that a higher subsidy 
translates into lower fares, which, given the low fare elasticity in Rome, attenuates the congestion relief benefit. 
By contrast, in Table 10 we consider the effect of a change in service (veh-kms). Furthermore, the methodology 
adopted in this section is more comprehensive. For example, it takes into account the effects on travel demand 
that come from both a change in prices and the adjustment in public transit supply. 
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7. Conclusion 

We estimate the marginal external cost of road congestion allowing for hypercongestion, i.e. 

when the road supply curve is backward bending. We use variation in public transit strikes to 

account for endogeneity issues. We use the same quasi-experimental approach to estimate the 

effect of public transit supply on road congestion. We demonstrate that, for the city of Rome, 

the marginal external cost is substantial: it is, on average, at least as large as half of private 

time travel cost, while reaching considerably higher levels during peak hours. 

Our findings suggest that congestion relief policies bring substantial welfare gains. For 

the city of Rome, when roads are not hypercongested, the marginal external cost of motor 

vehicle travel is €0.17 per kilometer on average, but almost double during peak hours. We 

also find that the welfare losses produced by congestion can be up to 50 times larger for 

hypercongested than for normally congested roads. We found that an increase in road 

congestion which induces a one minute delay for each motor travel induces a two minutes 

travel time loss for a bus traveler sharing the same road. About one third of the marginal 

external cost of road congestion in Rome are borne by bus travelers.  

Our findings support a range of alternative policies. For example, the high relevance of 

hypercongestion suggests that, even if road pricing instruments were politically acceptable, 

the use of quantitative measures to curb traffic on heavily congested roads (e.g. through traffic 

lights) may be welfare increasing. Our findings indicate that separate lanes for buses should 

be a priority in Rome, as road congestion has a strong effect on travel time delays of bus 

(Basso and Silva, 2014; Börjesson et. al, 2016). 

Our results also support policies aiming at reducing road congestion through an 

increased supply of public transit. We find that public transit – which has a modal share of 

28% in Rome – reduces travel time of motor vehicles by roughly 15 percent in the morning 

peak, on average. We further show that the marginal congestion relief benefit of public transit 

provision does not vary with the level of public transit supply. In light of the significance of 

the congestion-relief effect, the current level of subsidies, which is about 80 percent of the 

operational costs in Rome, is justified and should possibly be even increased. 
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Appendix A1: Figures and Tables 

Figure A1 – Strikes by month     Figure A2 – Strikes by weekday  

 

 
Figure A3 –Public transit share by company  Figure A4 – Public transit on non-strike day  

 

Figure A5 – Rome  
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Figure A6 – Public transit service on strike days Figure A7 – Travel time histogram  

  
  
Figure A8 – Vehicle density histogram     Figure A9 – Vehicle flow histogram 

 
 
Figure A10 – Vehicle flow by hour of the day  Figure A11 – Heavy congestion by hour  
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Table A1 - Logarithm of travel time 
 (1) (2) (3) (4) 
 All roads (33) Heavily congested 

(10) 
One-lane (12) Arterial roads (7) 

Density 0.0238*** 0.0251*** 0.0110*** 0.0290*** 
 (0.000101) (0.000121) (0.000128) (0.000932) 
N 422691 117,790 158,427 81,981 
R2 0.925 0.927 0.945 0.9163 
Note: The dependent variable is the logarithm of travel time. Controls are included but not tabulated. 
 
Table A2 – Public transit effect on motor-vehicle density 
 All roads  

(33) 
Heavily congested 

(10) 
One-lane  

(12) 
Arterial roads  

(7) 
Morning peak: Public transit 
share 

-5.15 
(0.67) 

*** -9.16 
(1.40) 

*** -3.78 
(0.51) 

*** -9.17 
(1.56) 

*** 

Afternoon peak: Public 
transit share 

-2.68 
(0.35) 

*** -4.56 
(0.74) 

*** -2.27 
(0.36) 

*** -2.60 
(0.78) 

*** 

Off-peak: Public transit 
share 

-1.71 
(0.16) 

*** -2.69 
(0.32) 

*** -1.68 
(0.16) 

*** -1.69 
(0.35) 

*** 

         
Observations 422,691 117,790 158,427 81,981 
R2 0.5445 0.4760 0.6814 0.5431 
Note: The dependent variable is density. Controls are included Standard errors (in parenthesis) robust and 
clustered by hour. Significance levels indicated at 1%, ***, 5%, ** and 10%. *. The number in parenthesis in 
column titles indicates the number of roads.  
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Appendix A2: Sensitivity Analysis of the effect of public transit share on travel time 

We conduct a range of sensitivity analyses to verify the effect of public transit share on travel 

time to various specifications. Our results appear very robust. We focus here on specifications 

where we do not distinguish between morning peak, afternoon peak and outside peak hours in 

the table below (the others can be obtained upon request). In column (1), we show results with 

day fixed effects. In column (2), we cluster standard errors by road and week-of-year.69 

Standard errors become only slightly larger. 

 
Table A.2 – Travel time: alternative specifications 
 (1) (2) (3) 
 Travel time Travel time Travel time 

Public transit share -0.094 
(0.021) 

*** -0.100 
(0.024) 

*** -0.060 
(0.012) 

*** 

Public transit share × 
National strike     0.028 

(0.011) 
** 

Public transit share × Semi-
cancelled strike     0.025 

(0.015) 
* 

White strike (dummy)     0.032 
(0.013) 

** 

       
Day-fixed effects Yes No No 
Clusters of standard errors Location Week-of-year 

and location Day 

Observations 422,810 422,810 422,810 
R2  0.5892 0.0003 0.5892 
Note: standard errors are robust and clustered. Significance level are indicated at 1%, ***, 5%, ** and 10%, * 
levels. Includes weather and time controls as in the main analysis. 
 

In column (3), we add additional interaction effects for national strikes and semi-

cancelled strikes as well as a white strike dummy.70 On days to which these atypical strikes 

apply, we set the public transit share to zero so that the reported effect of these controls is the 

additional effect to the public transit share. During the white strike, travel time increases by 

0.044 min/km relative to non-strike days. For national and semi-cancelled strike interacted 

with public transit share, we do find a statistically significant strike effects relative to non-

strike days. Semi-cancelled strikes have a smaller strike effect than the one reported in Table 

5 implying that strike cancellation announcements might have an effect. 

 

  
                                                           
69 Two-way clustering is possible because one dimension (measurement location) is much smaller than the other 
(i.e. week-of-year) and therefore we can make use of the asymptotic properties necessary for robust standard 
errors. As an alternative it seems useful to cluster standard errors both in terms of location and day, but this 
reduces the degrees of freedom below the value for which one can still estimate standard errors. 
70 During the white strike, a period of two weeks where public transit service was reduced through alternative 
means of striking excludes two strike days that fell into this period. 
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Appendix B: Public transit fares and motor-vehicle demand 

The effect from a change in public transit prices – fares – is another supply side function 

aspect we investigate. Rome`s public transit operator adjusted fare prices on May 25th of 

2012, most notably for single tickets from €1 to €1.5.71 Fare prices are thought to affect 

demand for public transit and therefore its main alternative, private motor-vehicle use. Annual 

single ticket sales declined from 2011 to 2013 by 11% (ATAC 2011; 2013). This suggests 

that the price elasticity of public transit is -0.22, so public transit demand is rather inelastic, in 

line with Litman (2015). 

The fare increase allows us to estimate the effect of fares on travel time and flow using 

a discontinuity regression approach. We include observations for the year 2012, so we choose 

a window of about six months on both sides of the boundary, and we use the same control 

variables as in Table 4, while including third-order polynomial time trends before and after 

the boundary rather than week fixed effects. For results, see Table B1.  

We find that the fare hike increases flow by 30 vehicles (about 5% of the mean). The 

cross price elasticity of motorized vehicle travel with respect to transit prices is then about 

0.10. This estimate is similar to long-run effects estimated for other (see Litman, 2015). More 

importantly the fare increase also increased travel time for motor vehicles by 0.048 min/km. 

The elasticity of motor vehicle travel time with respect to public transit fares is then about 

0.078.  

 

 
Table B.1 – Travel time and flow as a function of public transit fare changes 
 Travel time Flow  
 All roads Heavily congested All roads 
Fare increase by 50% 0.048 

(0.013) 
*** 0.116 

(0.026) 
*** 30.8 

(6.9) 
*** 

Time trends before boundary Yes Yes Yes 
Time trends after boundary Yes Yes Yes 
Controls    
Public transit share Yes Yes Yes 
Road fixed effects Yes Yes Yes 
Hour-of-weekday fixed effects (120) Yes Yes Yes 
Weather Yes Yes Yes 
Observations 113,129 31,654 113,139 
R2 0.7338 0.7239 0.8934 
Note: Time trends refers to 3rd order polynomials of time. Travel time regression is weighted by flow. Flow per 
lane regression is weighted by the number of lanes. Robust standard errors are clustered by hour. Significance 
levels indicated at 1%, ***, 5%, ** and 10%, *. 
 
                                                           
71 At the same time the maximum allowed travel time on a single ticket was increased from 75 min to 100 min, 
so far some travelers the price increase was less steep. Fare prices increased for monthly and annual tickets in a 
similar way.  
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 We have investigated the robustness of these results in several ways. In particular we 

have estimated models controlling for linear trends while reducing the window size around 

the boundary. Given a six-months window (on both sides) but with linear controls, the results 

are identical. Given a five months or four months window the estimates increase to 0.06 and 

0.10. Given a three-month window, the estimate is again 0.04, and still highly statistically 

significant. 
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Appendix C: Aggregate model for Rome adapting Parry and Small (2009) 

 

Table C.1– Aggregate model, parameters and results  
  

   
Rail   Bus   

  
   

Peak Off- Peak Off- 
          Peak   Peak 
TRANSIT 

  
  

  
  

Annual passenger kms, millions 1 639 628 3 403 2 304 
Vehicle occupancy (pass-km/veh-km) 160 87 51 34 

Average operating cost, €/veh-km 
 

29 
 

 
17 

 

10 5 
Avg operating cost, €cents/pass-km 18 20 19 15 
Marginal supply cost, €cents/pass-km 11 12 13 10 
Fare. €cents/pass-km 

 
5 5 5 5 

Subsidy, % of average operating cost 74 76 75 69 
Cost of in-vehicle travel time, €cents/pass-km 13 10 19 12 
Wait cost, €cents/pass-km 

 
2 6 4 11 

Generalized price, €cents/pass-km 25 28 34 40 
Marginal scale economy, €cents/pass-km 1 4 2 7 
Marginal cost of occupancy, €cents/pass-km 2 0 1 0 
Marginal external cost, €cents/pass-km 0.4 0.2 3.5 2.6 
  Marg. congestion cost. €cents/pass-km 0.0 0.0 2.2 1.3 
  Pollution. climate & acc cost. €cents/pass-km 0.0 0.0 0.1 0.2 
  Marginal dwell cost. €cents/pass-km 0.4 0.2 1.3 1.1 
Elasticity of passenger demand wrt fare -0.22 -0.22 -0.22 -0.22 
Fraction of increased transit coming from   

  
  

  auto--same period 0.50 0.40 0.50 0.40 
  same transit mode--other period 0.10 0.10 0.10 0.10 
  other transit mode--same period 0.30 0.30 0.30 0.30 
  increased overall travel demand 0.10 0.20 0.10 0.20 
AUTO 

   
Peak Off- 

 
  

  
   

  Peak     
Annual passenger-kms, millions 8 623 12 837 

 
  

Occupancy 
  

1.41 1.52 
 

  
Marginal external cost, €cents/pass-km 21 7 

 
  

  Marg. congestion cost. €cents/pass-km 23 8 
 

  
  Poll. & acc. less fuel tax. €cents/pass-km -2 -1 

 
  

 


