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Abstract

This paper considers identification and estimation of the Quantile Treatment Effect on the

Treated (QTET) under a straightforward distributional extension of the most commonly in-

voked Mean Difference in Differences assumption used for identifying the Average Treatment

Effect on the Treated (ATT). Identification of the QTET is more complicated than the ATT

though because it depends on the unknown dependence between the change in untreated po-

tential outcomes and the initial level of untreated potential outcomes for the treated group. To

address this issue, we introduce a new Copula Stability Assumption that says that the missing

dependence is constant over time. Under this assumption and when panel data is available,

the missing dependence can be recovered, and the QTET is identified. Second, we provide

identification results for the case when the identifying assumptions hold conditional on covari-

ates. Under slightly stronger versions of the conditional assumptions, we provide very simple

estimators based on propensity score re-weighting. We compare the performance of our method

to existing methods for estimating QTETs using Lalonde (1986)’s job training dataset. Using

this dataset, we find the performance of our method compares favorably to the performance of

existing methods.
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1 Introduction

Although most research using program evaluation techniques focuses on estimating the average

effect of participating in a program or treatment, in some cases a researcher may be interested in

understanding the distributional impacts of treatment participation. For example, for two labor

market policies with the same mean impact, policymakers are likely to prefer a policy that tends to

increase income in the lower tail of the income distribution to one that tends to increase income in

the middle or upper tail of the income distribution. In contrast to the standard linear model, the

treatment effects literature explicitly recognizes that the effect of treatment can be heterogeneous

across different individuals (Heckman and Robb, 1985; Heckman, Smith, and Clements, 1997). Re-

cently, many methods have been developed that identify distributional treatment effect parameters

under common identifying assumptions such as selection on observables (Firpo, 2007), access to

a an instrumental variable (Abadie, Angrist, and Imbens, 2002; Chernozhukov and Hansen, 2005;

Carneiro and Lee, 2009; Frölich and Melly, 2013), or access to repeated observations over time

(Athey and Imbens, 2006; Bonhomme and Sauder, 2011; Chernozhukov, Fernández-Val, Hahn,

and Newey, 2013). This paper focuses on identifying and estimating a particular distributional

treatment effect parameter called the Quantile Treatment Effect on the Treated (QTET) using a

Difference in Differences assumption for identification.

Empirical researchers commonly employ Difference in Differences assumptions to credibly iden-

tify the Average Treatment Effect on the Treated (ATT) (early examples include Card, 1990; Card

and Krueger, 1994; Meyer, Viscusi, and Durbin, 1995). The intuition underlying the Difference in

Differences approach is that, even after possibly controlling for some covariates, treated agents and

untreated agents may still differ from each other in unobserved ways that affect the outcome of

interest. These differences render cross-sectional comparisons between individuals with the same

covariates unable to identify the true effect of treatment. However, if the effect of these unobserved

differences on outcomes is constant over time (this is the so-called “parallel trends” assumption),

then the researcher can use the difference between the change in outcomes for the treated group

and the untreated group (rather than differences in the level of outcomes) to identify the ATT.

The first contribution of the current paper is to provide identification and estimation results for

the QTET under a straightforward extension of the most common Mean Difference in Differences

Assumption (Heckman and Robb, 1985; Heckman, Ichimura, Smith, and Todd, 1998; Abadie,

2005). In particular, we strengthen the assumption of mean independence between (i) the change

in untreated potential outcomes over time and (ii) whether or not an individual is treated to full

independence. We call this assumption the Distributional Difference in Differences Assumption.

Under this assumption, we are able to identify the entire counterfactual distribution of untreated

potential outcomes for the treated group and all of its quantiles.

For empirical researchers, methods developed under the Distributional Difference in Differences

Assumption are valuable precisely because the identifying assumptions are straightforward exten-

sions of the Mean Difference in Differences assumptions that are frequently employed in applied
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work. This means that almost all of the intuition for applying a Difference in Differences method

for the ATT will carry over to identifying the QTET using our method. This stands in contrast to

other available methods for identifying the QTET such as Quantile Difference in Differences and

Change in Changes (Athey and Imbens, 2006). Like the Distributional Difference in Differences

Assumption used in this paper, those models exploit having access to (i) both a treated and control

group and (ii) observations at different points in time; however, using these assumptions requires at

least somewhat different intuition regarding whether or not they are appropriate. The assumptions

used in this paper neither imply or are implied by the assumptions in those models. But the key

distinction is that to employ the assumptions requires familiar reasoning from applied researchers

in the case of our model and at least somewhat different reasoning in the case of existing models.

On the other hand, Quantile Difference in Differences and Change in Changes models are both

available when the researcher has only two periods of data that can be repeated cross sections or

panel. To use our method requires at least three periods of panel data.

Although applying a Mean Difference in Difference in Differences assumption leads straightfor-

wardly to identification of the ATT, using the Distributional Difference in Differences Assumption

to identify the QTET faces some additional challenges. The reason for the difference is that Mean

Difference in Differences is able to exploit the linearity of the expectation operator. In fact, with

only two periods of data (which can be either repeated cross sections or panel) and under the same

Distributional Difference in Differences assumption considered in the current paper, the QTET is

known to be partially identified (Fan and Yu, 2012) without further assumptions. In practice, these

bounds may be quite wide. Lack of point identification occurs because the dependence between

(i) the distribution of the change in untreated outcomes for the treated group and (ii) the initial

level of untreated potential outcomes for the treated group is unknown. For identifying the ATT,

knowledge of this dependence is not required and point identification results can be obtained.

To move from partial identification back to point identification, we introduce a new assumption

which we call the Copula Stability Assumption. This assumption says that the copula, which

captures the unknown dependence metioned above, does not change over time. For example, if the

change in untreated potential outcomes for the treated group is independent of the initial level of

untreated potential outcomes for the treated group, the Copula Stability Assumption says that they

will continue to be independent in the next period. Importantly, this does not place any restrictions

on the marginal distributions of outcomes over time allowing, for example, the outcomes to be non-

stationary. There are two additional requirements for invoking this assumption relative to the

Mean Difference in Differences Assumption: (i) access to panel data (repeated cross sections is not

enough) and (ii) access to at least three periods of data (rather than at least two periods of data)

where two of the periods must be pre-treatment periods and the third period is post-treatment.

We show that the additional requirements that the Copula Stability Assumption places on the type

of model that is consistent with the Distributional Difference in Differences Assumption are small.

The second contribution of the paper is to extend the results to the case where the identifying

assumptions hold conditional on covariates. There are many cases where observed characteristics
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may affect the path of the untreated outcomes. In this case, if the distribution of characteris-

tics differs between the treated and untreated groups, then the unconditional “parallel trends”

assumption is necessarily violated. One example of this phenomenom is the so-called Ashenfel-

ter’s dip (Ashenfelter, 1978) where individuals entering a job training program are likely to have

experienced a negative transitory shock to wages. Because the shock is transitory, a job training

participant’s wages are likely to recover even in the absence of job training which implies that

using an unconditional Difference in Differences assumption will tend to overstate the effect of

the job training program. Conditioning on lags of wages or unemployment histories could help

alleviate this problem (Heckman, Ichimura, Smith, and Todd, 1998; Heckman and Smith, 1999;

Abadie, 2005). Additionally, if other background characteristics such as education or experience

are distributed differently across the treated and untreated groups and the path of wages in the

absence of treatment differs by these background characteristics, then an unconditional Difference

in Differences assumption will be violated, but a conditional Difference in Differences assumption

will be valid.

We also show that a Conditional Copula Stability Assumption holds in a general model of the

type that is compatible with the Conditional Distributional Difference in Differences Assumption.

Estimation under the Conditional Distributional Difference in Differences Assumption and the

Conditional Copula Stability Assumption is challenging as it involves the nonparametric estimation

of several conditional distribution functions and conditional quantile functions for the conditional

QTET.1 To obtain the unconditional QTET additionally requires integrating out the covariates

in the identified counterfactual distribution of untreated potential outcomes for the treated group

before inverting for the QTET. Under a somewhat stronger set of assumptions – a combination of

the Conditional Distributional Difference in Differences Assumption and the Unconditional Copula

Stability Assumption – we develop very simple estimators based on a propensity score re-weigthing

approach (Hirano, Imbens, and Ridder, 2003; Abadie, 2005; Firpo, 2007). We provide a set of

sufficient conditions for this stronger set of assumptions to hold. This combination of assumptions

may provide the right balance between generality of assumptions and computational simplicity

for much applied work. We derive
√
n-consistency and asymptotic normality for estimation under

these assumptions and when the propensity score is estimated parametrically or nonparametrically

in a first step.

Having simple identification results when identification holds conditional on some covariates

stands in contrast to the existing methods for estimating QTETs. The methods are either (i)

unavailable or at least computationally challenging when the researcher desires to make the iden-

1We primarily focus on the unconditional QTET rather than the conditional QTET though the latter is identified
under the current setup. The interpretation of conditional and unconditional quantiles is different as observations at,
for example, the lower part of a conditional distribution may or may not be in the lower part of the unconditional
distribution. In the job training example in the paper, if policymakers are most concerned with the impact of job
training on individuals in the lower part of the unconditional income distribution, then the unconditional QTET is an
appropriate parameter for evaluating the program. In our setup, we are also able to estimate the unconditional QTET
at the parametric rate without functional form assumptions, but the conditional QTET could only be estimated at a
slower, nonparametric rate. See Firpo, Fortin, and Lemieux (2009) and Frölich and Melly (2013) for more discussion
of these issues.
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tifying assumptions conditional on covariates or (ii) require strong parametric assumptions on the

relationship between the covariates and outcomes. Because the ATT can be obtained by integrating

the QTET and is available under weaker assumptions, a researcher’s primary interest in studying

the QTET is likely to be in the shape of the QTET rather than the location of the QTET. In

this regard, the parametric assumptions required by other methods to accommodate covariates are

troubling because nonlinearities or misspecification of the parametric model could easily be con-

fused with the shape of the QTET. This difference between our method and other methods appears

to be fundamental. To our knowledge, there is no work on nonparametrically allowing for condi-

tioning on covariates in alternative methods; and, at the least, doing so would be computationally

challenging. Moreover, a similar propensity score re-weighting technique to the one used in the

current paper does not appear to be available for existing methods.

Based on our identification results, estimation of the QTET is straightforward and computa-

tionally fast. The estimate of the QTET is consistent and
√
n-asymptotically normal. Without

covariates, estimating the QTET relies only on estimating unconditional moments, empirical distri-

bution functions, and empirical quantiles. When the identifying assumptions require conditioning

on covariates, we estimate the propensity score in a first step. We discuss parametric, semipara-

metric, and nonparametric estimation of the propensity score which allows for some flexibility for

applied researchers in choosing how to implement the method. We show that under standard con-

ditions the speed of convergence of our estimate of the QTET is not affected by the method chosen

for the first stage estimation of the propensity score.

It should be noted that the quantile treatment effects studied in this paper do not correspond to

the distribution or quantile of the treatment effect itself. Because treated and untreated outcomes

are never simultaneously observed for any individual, the distribution of the treatment effect is not

directly identified. For the QTET, the distribution of treated outcomes for the treated group is

compared to the counterfactual distribution of untreated outcomes for the treated group. Even

when this counterfactual distribution is identified, unless there is some additional assumption on

the dependence between these two distributions (Heckman, Smith, and Clements, 1997; Fan and

Park, 2009) or some additional structure placed on the individual’s decision on whether or not to be

treated (Carneiro, Hansen, and Heckman, 2003; Abbring and Heckman, 2007) the distribution of the

treatment effect is not identified. In some cases, knowledge of the quantile treatment effect provides

all the information needed to evaluate a program. For example, for social welfare evaluations that

do not depend on the identity of the individual – the anonymity condition – quantile treatment

effects provide a complete summary of the welfare effects of a policy (Sen, 1997; Carneiro, Hansen,

and Heckman, 2001). On the other hand, parameters that depend on the joint distribution of

treated and untreated potential outcomes such as the fraction of the population that benefits from

treatment are not identified.

We conclude the paper by comparing the performance of our method with alternative estimators

of the QTET: the Quantile Difference in Differences model, the Change in Changes model, and a

model based on selection on observables (Firpo, 2007) in an application to estimating the QTET
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of participating in a job training program using a well known dataset from LaLonde (1986). This

dataset contains an experimental component where individuals were randomly assigned to a job

training program and an observational component from the Panel Study of Income Dynamics

(PSID). It has been used extensively in the literature to measure how well various observational

econometric techniques perform in estimating various treatment effect parameters.

Our method is also related to the work on quantile regression with panel data (Koenker, 2004;

Abrevaya and Dahl, 2008; Lamarche, 2010; Canay, 2011; Rosen, 2012; Chen, 2015) though our

method is distinct in several ways. First, because we do not impose a parametric model, our

method allows for the effet of treatment to vary across indiviudals with different covariates in an

unspecified way. Second, our method is consistent under fixed-T asymptotics while the papers

mentioned above generally require T → ∞.2 Third, we focus on an unconditional QTET whereas

the quantile treatment effects identified by these models are conditional. Moreover, even the condi-

tional quantiles identified using our method are subtly different from the conditional quantiles using

panel quantile regression.3 The difference is that those conditional quantiles are conditional on the

covariates X and the fixed effect; the conditional quantiles in the current paper are conditional only

on the covariates. Finally, of course our method only applies to the case where the researcher is

interested in the effect of a binary treatment; quantile regression methods can be employed in cases

where one is interested in the effect of a continuous variable on the conditional quantile whereas

our method is not available in this case.

Because we focus on nonparametric identifying assumptions, the current paper is also related

to the literature on nonseparable panel data models (Altonji and Matzkin, 2005; Evdokimov, 2010;

Bester and Hansen, 2012; Graham and Powell, 2012; Hoderlein and White, 2012; Chernozhukov,

Fernández-Val, Hahn, and Newey, 2013). The most similar of these is Chernozhukov, Fernández-

Val, Hahn, and Newey (2013) which considers a nonseparable model and, similarly to our paper,

obtains point identification for observations that are observed in both treated and untreated states.

In some ways, our paper is more general as (i) we allow for the time trend to be an unrestricted

function of the observed covariates that can change over time and (ii) we allow for conditioning

on both discrete and continuous regressors. In other ways, their model is more general than ours

as it allows for non-continuous outcomes and they also derive bounds on the treatment effect in a

dynamic model.

There are few empirical papers that have studied the QTET under a Difference in Differences

assumption. Meyer, Viscusi, and Durbin (1995) studies the effect of worker’s compensation laws

on time spent out of work. That paper invokes an unconditional Quantile Difference in Differences

assumption. To our knowledge, there are no empirical papers that invoke a conditional Difference

in Differences assumption to identify the QTET.

The outline of the paper is as follows. Section 2 provides some background on the notation and

2The two exceptions are Abrevaya and Dahl (2008) which uses a correlated random effects structure to obtain
identification without T →∞ and Rosen (2012) which deals with partial identification under quantile restrictions.

3Once again, the exception is Abrevaya and Dahl (2008) whose conditional quantiles should be interpreted in the
same manner as our conditional quantiles.
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setup most commonly used in the treatment effects literature and discusses the various distribu-

tional treatment effect parameters estimated in this paper. Section 3 provides our main identifica-

tion result in the case where the Distributional Difference in Differences assumption holds with no

covariates. Section 4 extends this result to the case with covariates and provides a propensity score

re-weighting procedure to make estimation more feasible. Section 5 details our estimation strategy

and the asymptotic properties of our estimation procedure. Section 6 is the empirical example

using the job training data. Section 7 concludes.

2 Background

This section begins by covering some background, notation, and issues in the treatment effects

literature. It then discusses the most commonly estimated treatment effects parameters paying

particular attention to distributional treatment effect parameters. Finally, we introduce some

background on Difference in Differences: (i) the most common parameters estimated using a Dif-

ference in Differences assumption and (ii) the reason why a similar assumption only leads to partial

identification of distributional treatment effects.

2.1 Treatment Effects Setup

The setup and notation used in this paper is common in the statistics and econometrics liter-

ature. We focus on the case of a binary treatment. Let Dt = 1 if an individual is treated at time

t (we suppress an individual subscript i throughout to minimize notation). We consider a panel

data case where the researcher has access to at least three periods of data for all agents in the

sample. We also focus, as is common in the Difference in Differences literature, on the case where

no one receives treatment before the final period which simplifies the exposition; a similar result for

a subpopulation of the treated group could be obtained with little modification in the more general

case. The researcher observes outcomes Yt, Yt−1, and Yt−2 for each individual in each time period.

The researcher also possibly observes some covariates X which, as is common in the Difference in

Differences setup, we assume are constant over time. This assumption could also be relaxed with

appropriate strict exogeneity conditions.

Following the treatment effects literature, we assume that individuals have potential outcomes

in the treated or untreated state: Y1t and Y0t, respectively. The fundamental problem is that

exactly one (never both) of these outcomes is observed for a particular individual. Using the above

notation, the observed outcome Yt can be expressed as follows:

Yt = DtY1t + (1−Dt)Y0t

For any particular individual, the unobserved potential outcome is called the counterfactual.

The individual’s treatment effect, Y1t − Y0t is therefore never available because only one of the

potential outcomes is observed for a particular individual. Instead, the literature has focused on
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identifying and estimating various functionals of treatment effects and the assumptions needed to

identify them. We discuss some of these treatment effect parameters next.

2.2 Common Treatment Effect Parameters and Identifying Assumptions

The most commonly estimated treatment effect parameters are the Average Treatment Effect

(ATE) and the Average Treatment Effect on the Treated (ATT).4 The unconditional on covariates

versions of these are given below:

ATE = E[Y1t − Y0t]

ATT = E[Y1t − Y0t|Dt = 1]

It is also common to estimate versions of ATE and ATT conditional on covariates X. The

unconditional ATE and ATT can then be obtained by integrating out X. The parameters provide

a summary measure of the average effect of treatment for a random individual in the population

(ATE) or for an individual from the subgroup of the population that is treated (ATT).

Various assumptions can be used to identify ATE and ATT. These include random treatment

assignment, selection on observables, instrumental variables, and Difference in Differences. Differ-

ence in Differences methods identify the ATT, but not the ATE. See Imbens and Wooldridge (2009)

for an extensive review.

2.3 Quantiles and Quantile Treatment Effects

In cases where (i) the effect of a treatment is thought to be heterogeneous across individuals

and (ii) understanding this heterogeneity is of interest to the researcher, estimating distributional

treatment effects such as quantile treatment effects is likely to be important. For example, the

empirical application in this paper considers the effect of a job training program on wages. If

the researcher is interested in the effect of participating in the job training program on low wage

individuals, studying the quantile treatment effect is more useful than studying the average effect

of the job training program. Our analysis is consistent with the idea that the effect of a job

training program on wages differs between relatively high wage individuals and relatively low wage

individuals.

For a random variable X, the τ -quantile, xτ , of X is defined as

xτ = G−1
X (τ) ≡ inf{x : FX(x) ≥ τ} (1)

When X is continuously distributed, xτ satisfies P (X ≤ xτ ) = τ . An example is the 0.5-quantile

4There are more treatment effect parameters such as the Local Average Treatment Effect (LATE) of Imbens and
Angrist (1994) and the Marginal Treatment Effect (MTE) and Policy Relevant Treatment Effect (PRTE) of Heckman
and Vytlacil (2005). Heckman, LaLonde, and Smith (1999) and Heckman and Vytlacil (2005) also discuss conditions
when various parameters are of interest.
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– the median.5 Researchers interested in program evaluation may be interested in other quantiles

as well. In the case of the job training program, researchers may be interested in the effect of job

training on low income individuals. In this case, they may study the 0.05 or 0.1-quantile. Similarly,

researchers studying the effect of a policy on high earners may look at the 0.99-quantile.

Let FY1t(y) and FY0t(y) denote the distributions of Y1t and Y0t, respectively. Then, the Quantile

Treatment Effect (QTE)6 is defined as

QTE(τ) = F−1
Y1t

(τ)− F−1
Y0t

(τ) (2)

Analogously to the case of identifying the ATE, QTE is not directly identified because the

researcher cannot simultaneously observe Y1t and Y0t for any individual. When treatment is ran-

domized, each distribution will be identified and the quantiles can be recoverd. Similarly, selection

on observables also identifies QTE because the marginal distributions of Y1t and Y0t are identified

(Firpo, 2007).7

Researchers may also be interested in identifying the Quantile Treatment Effect on the Treated

(QTET) defined by

QTET(τ) = F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ) (3)

The QTET is the parameter studied in this paper. Difference in Differences methods are useful

for studying treatment effect parameters for the treated group because they make use of observing

untreated outcomes for the treated group in a time period before they become treated.

2.4 Partial Identification of the Quantile Treatment Effect on the Treated under

a Distributional Difference in Differences Assumption

The most common nonparametric assumption used to identify the ATT in Difference in Differ-

ences models is the following:

Assumption 1 (Mean Difference in Differences).

E[∆Y0t|Dt = 1] = E[∆Y0t|Dt = 0]

This is the “parellel trends” assumptions common in applied research. It states that, on average,

the unobserved change in untreated potential outcomes for the treated group is equal to the observed

change in untreated outcomes for the untreated group. To study the QTET, Assumption 1 needs

to be strengthened because the QTET depends on the entire distribution of untreated outcomes

for the treated group rather than only the mean of this distribution.

5In this paper, we study Quantile Treatment Effects. A related topic is quantile regression. See Koenker (2005).
6The QTE was first studied by Doksum (1974) and Lehmann (1974)
7There are also several papers that identify versions of QTE when the researcher has an available instrument.

See Abadie, Angrist, and Imbens (2002), Chernozhukov and Hansen (2005), and Frölich and Melly (2013).
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The next assumption due to Fan and Yu (2012) strengthens Assumption 1 and this is the

assumption maintained throughout the paper.

Distributional Difference in Differences Assumption.

P(∆Y0t ≤ ∆y|Dt = 1) = P(∆Y0t ≤ ∆y|Dt = 0)

The Distributional Difference in Differences Assumption says that the distribution of the change

in potential untreated outcomes does not depend on whether or not the individual belongs to the

treatment or the control group. Intuitively, it generalizes the idea of “parallel trends” holding on

average to the entire distribution. In applied work, the validity of using a Difference in Differences

approach to estimate the ATT hinges on whether the unobserved trend for the treated group can be

replaced with the observed trend for the untreated group. This is exactly the same sort of thought

experiment that needs to be satisfied for the Distributional Difference in Differences Assumption to

hold. Being able to invoke a standard assumption to identify the QTET stands in contrast to the

existing literature on identifying the QTET in similar models which generally require less familiar

assumptions on the relationship between observed and unobserved outcomes.

Using statistical results on the distribution of the sum of two known marginal distributions, Fan

and Yu (2012) show that this assumption is not strong enough to point identify the counterfactual

distribution FY0t|Dt=1(y), but it does partially identify it.8 The resulting bounds are given by

FY0t|Dt=1(s) ≤ 1 + min

[
inf
y
F(Y0t−Y0t−1)|Dt=1(y) + FY0t−1|Dt=1(s− y)− 1, 0

]
FY0t|Dt=1(s) ≥ max

[
sup
y
F(Y0t−Y0t−1)|Dt=1(y) + FY0t−1|Dt=1(s− y)− 1, 0

] (4)

One can show that these bounds are sharp. In other words, there exist dependence stuctures

between the two marginal distributions so that the bounds FY0t|Dt=1(y) obtains either its upper

or lower bound. This also means that one cannot improve these bounds without additional as-

sumptions or restrictions on the data generating process. These bounds lead to bounds on the

counterfactual quantiles of untreated potential outcomes for the treated group; which, in turn,

leads to bounds on the QTET. In the next section, we provide one set of additional assumptions

(and data requirements) that point identifies QTET and may be plausible in many cases.

8More specifically, Fan and Yu (2012) write FY0t|Dt=1(y) = F∆Y0t+Y0t−1|Dt=1(y) = g(F∆Y0t,Y0t−1|Dt=1(∆y, y))
where g(·) is a known function of the joint distribution between the change in untreated potential outcomes and initial
untreated potential outcome for the treated group. Under the Distributional Difference in Differences Assumption, the
unknown distribution F∆Y0t|Dt=1(∆y) = F∆Y0t|Dt=0(∆y) which is identified, and FY0t−1|Dt=1(y) is identified directly
by the sampling process. This shows that FY0t|Dt=1(y) is function of an unknown joint distribution with known
marginals which leads to partial identification. In the case where a researcher is only interested in the counterfactual
mean, Abadie (2005) uses the fact that the sum of the two distributions does not depend on the joint distribution;
rather it depends only on each known marginal distribution, and therefore the counterfactual mean can be identified.
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3 Main Results: Identifying QTET in Difference in Differences

Models

The main results in this section deal with point identification of QTET under a Distributional

Difference in Differences assumption. Existing papers that point- or partially-identify the QTET

include Athey and Imbens (2006), Thuysbaert (2007), Bonhomme and Sauder (2011), and Fan

and Yu (2012). In general, these papers require stronger (or at least less intuitively familiar)

distributional assumptions than are made in the current paper while requiring access to only two

periods of repeated cross section data.

The main theoretical contribution of this paper is to impose a Distributional Difference in

Differences Assumption plus additional data requirements and an additional assumption that may

be plausible in many applications to identify the QTET. The additional data requirement is that the

researcher has access to at least three periods of panel data with two periods preceding the period

where individuals may first be treated. This data requirement is stronger than is typical in most

Difference in Differences setups which usually only require two periods of repeated cross-sections

(or panel) data. The additional assumption is that the dependence between (i) the distribution of

(∆Y0t|Dt = 1) (the change in the untreated potential outcomes for the treated group) and (ii) the

distribution of (Y0t−1|Dt = 1) (the initial untreated outcome for the treated group) is stable over

time. This assumption does not say that these distributions themselves are constant over time;

instead, only the dependence between the two marginal distributions is constant over time. We

discuss this assumption in more detail and show how it can be used to point identify the QTET

below.

Intuitively, the reason why a restriction on the dependence between the distribution of (∆Y0t|Dt =

1) and (Y0t−1|Dt = 1) is useful is the following. If the joint distribution (∆Y0t, Y0t−1|Dt = 1) were

known, then FY0t|Dt=1(y0t) (the distribution of interest) could be derived from it. The marginal

distributions F∆Y0t|Dt=1(∆y0t) (through the Distributional Difference in Differences assumption)

and FY0t−1|Dt=1(y0t−1) (from the data) are both identified. However, because observations are

observed separately for untreated and treated individuals, even though each of these marginal dis-

tributions are identified from the data, the joint distribution is not identified. Since, from Sklar’s

Theorem (Sklar, 1959), joint distributions can be expressed as the copula function (capturing the

dependence) of the two marginal distributions, the only piece of information that is missing is the

copula.9 We use the idea that the dependence is the same between period t and period (t − 1).

With this additional information, we can show that FY0t|Dt=1(y0t) is identified.

The time invariance of the dependence between F∆Y0t|Dt=1(∆y) and FY0t−1|Dt=1(y) can be ex-

pressed in the following way. Let F∆Y0t,Y0t−1|Dt=1(∆y, y) be the joint distribution of (∆Y0t|Dt = 1)

and (Y0t−1|Dt = 1). By Sklar’s Theorem

F∆Y0t,Y0t−1|Dt=1(∆y, y) = C∆Y0t,Y0t−1|Dt=1

(
F∆Y0t|Dt=1(∆y), FY0t−1|Dt=1(y)

)
9Joe (1997), Nelsen (2007), and Joe (2015) are useful references for more details on copulas.
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where C∆Y0t,Y0t−1|Dt=1(·, ·) is a copula function.10 Next, we state the second main assummption

which replaces the unknown copula with copula for the same outcomes but in the previous period

which is identified because no one is treated in the periods before t.

Copula Stability Assumption.

C∆Y0t,Y0t−1|Dt=1(·, ·) = C∆Y0t−1,Y0t−2|Dt=1(·, ·)

The Copula Stability Assumption says that the dependence between the marginal distribu-

tions F∆Y0t|Dt=1(∆y) and FY0t−1|Dt=1(y) is the same as the dependence between the distributions

F∆Y0t−1|Dt=1(∆y) and FY0t−2|Dt=1(y). It is important to note that this assumption does not require

any particular dependence structure between the marginal distributions; rather, it requires that

whatever the dependence structure is in the past, one can recover it and reuse it in the current

period. It also does not require choosing any parametric copula. However, it may be helpful to

consider a simple, more parametric example. If the copula of the distribution of (∆Y0t−1|Dt = 1)

and the distribution of (Y0t−2|Dt = 1) is Gaussian with parameter ρ, the Copula Stability Assump-

tion says that the copula continues to be Gaussian with parameter ρ in period t but the marginal

distributions are allowed to change in unrestricted ways. Likewise, if the copula is Archimedean,

the Copula Stability Assumption requires the generator function to be constant over time but the

marginal distributions can change in unrestricted ways.

One of the key insights of this paper is that, in some particular situations such as the panel

data case considered in the paper, we are able to observe the historical dependence between the

marginal distributions. There are many applications in economics where the missing piece of

information for identification is the dependence between two marginal distributions. In those cases,

previous research has resorted to (i) assuming some dependence structure such as independence or

perfect positive dependence or (ii) varying the copula function over some or all possible dependence

structures to recover bounds on the joint distribution of interest. To our knowledge, we are the first

to use historical observed outcomes to obtain a historical dependence structure and then assume

that the dependence structure is stable over time.

Before presenting the identification result, we need some additional assumptions.

Assumption 2. Let ∆Yt|Dt=0 denote the support of the change in untreated outcomes for the

untreated group. Let ∆Yt−1|Dt=1, Yt−1|Dt=1, and Yt−2|Dt=1 denote the support of the change in

untreated outcomes for the treated group in period (t−1), the support of untreated outcomes for the

treated group in period (t− 1), and the support of untreated outcomes for the treated goup in period

(t− 2), respectively. We assume that

(a) ∆Yt|Dt=0 ⊆ ∆Yt−1|Dt=1

(b) Yt−1|Dt=1 ⊆ Yt−2|Dt=1

10The bounds in Fan and Yu (2012) arise by replacing the unknown copula function C∆Y0t,Y0t−1|Dt=1(·, ·) with
those that make the upper bound the largest and lower bound the smallest.
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Assumption 3. Conditional on Dt = d, the observed data (Ydt,i, Yt−1,i, Yt−2,i, Xi) are indepen-

dently and identically distributed.

Assumption 4. (Distribution of Y )

Each of the random variables ∆Yt for the untreated group and ∆Yt−1, Yt−1, and Yt−2 for the

treated group are continuously distributed on a compact support with densities that are bounded

from above and bounded away from 0. The densities are also continuously differentiable and the

derivative of each of the densities is bounded.

Theorem 1. Under the Distributional Difference in Differences Assumption, the Copula Stability

Assumption, Assumption 2, Assumption 3, and Assumption 4

P(Y0t ≤ y|Dt = 1)

= E
[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))}|Dt = 1

]
(5)

and

QTET(τ) = F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ)

which is identified

Theorem 1 is the main identification result of the paper. It says that the counterfactual distribu-

tion of untreated outcomes for the treated group is identified. To provide some intuition, we provide

a short outline of the proof. First, notice that P(Y0t ≤ y|Dt = 1) = E[1{∆Y0t+Y0t−1 ≤ y}|Dt = 1]11

But ∆Y0t is not observed for the treated group because Y0t is not observed. The Copula Stabil-

ity Assumption effectively allows us to look at observed outcomes in the previous periods for the

treated group and “adjust” them forward. Finally, the Distributional Difference in Differences

Assumption allows us to replace F−1
∆Y0t|Dt=1(·) with F−1

∆Y0t|Dt=0(·) which is just the quantiles of the

distribution of the change in (observed) untreated outcomes for the untreated group.

It can be estimated by plugging in the sample counterparts of the terms on the right hand side

of Equation 5:

1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂
−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
(6)

This will be consistent and
√
n-asymptotically normal under straightforward conditions. Once

this distribution is identified, we can easily use it to estimate its quantiles. We discuss more details

of estimation in Section 6.

11Adding and substracting Y0t−1 is also the first step for showing that the Mean Difference in Differences Assump-
tion identifies E[Y0t|Dt = 1].
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Pre-Testing the Assumptions Neither the Distributional Difference in Differences Assumption

nor the Copula Stability Assumption are directly testable; however, the applied researcher can

provide some additional tests to provide some evidence that the assumptions are more or less likely

to hold.

The Copula Stability Assumption would be violated if the relationship between the change in

untreated potential outcomes and the initial untreated potential outcome is changing over time.

This is an untestable assumption. However, in the spirit of pre-testing in Difference in Differences

models, with four periods of data, one could use the first two periods to construct the copula

function for the third period; then one could compute the actual copula function for the third

period using the data and check if they are the same. This would provide some evidence that the

copula function is stable over time.

Additionally, the Distributional Difference in Differences Assumption is untestable though a

type of pre-testing can also be done for this assumption. Using data from the previous period, the

researcher can estimate both of the following distributions: F∆Y0t−1|Dt=1(∆y) and F∆Y0t−1|Dt=0(∆y).

Then, one can check if the distributions are equal using, for example, a Kolmogorov-Smirnoff type

test. This procedure does not provide a test that the Distributional Difference in Differences

Assumption is valid, but when the assumption holds in the previous period, it does provide some

evidence that that the assumption is valid in the period under consideration. Unlike the pre-test

for the Copula Stability Assumption mentioned above, this pre-test of the Distributional Difference

in Differences Assumption does not require access to additional data because three periods of data

are already required to implement the method.

4 Allowing for covariates

The results in the previous section can be extended to the case where both the Distributional

Difference in Differences Assumption and the Copula Stability Assumption hold conditional on

covariates. In many applications, this combination of assumptions is more likely to hold than the

preceding set of unconditional assumptions. First, for particular observations in the treated group,

the unobserved path of untreated potential outcomes may be better approximated using observa-

tions from the control group that have similar observed characteristics. Second, the dependence

between the change in untreated potential outcomes and the initial level of untreated potential

outcome for the treated group may be more likely to stay the same over time for observations that

have similar characteristics. For example, if the return to some observable characteristic changes

over time – a prominent example would be that the return to education has increased over time

– then, the Unconditional Copula Stability Assumption will not hold, but a conditional Copula

Stability Assumption can continue to hold.

This is a useful contribution as existing methods for estimating the QTET do allow for the

outcome distributions to depend on covariates for identification. Athey and Imbens (2006) suggest

specifying a parametric model and then performing a type of residualization to recover the QTET.
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Though this type of procedure is likely to be feasible in applications, using a linear model is likely

to be unsatisfactory for studying treatment effect heterogeneity because nonlinearities or model

misspecification are likely to be confused with the shape of the QTET.

Making assumptions conditional on covariates also means that one could estimate conditional

QTETs. One could obtain the unconditional QTETs, which we have been concerned with, by

first integrating the conditional distributions over the observed covariates to form unconditional

distributions and then inverting these unconditional distributions. Conditional QTETs could be

of interest in their own right as well though nonparametric estimation will suffer from the curse

of dimensionality. Finally, a researcher could be interested in the difference between QTETs for

different groups defined by some subset of the observed characteristics; one example would be the

QTET by gender. These could be obtained by integrating the conditional distributions over the

observed covariates that are not of interest only and then inverting these distributions.

We next state the conditional versions of the key identifying assumptions.

Conditional Distributional Difference in Differences Assumption.

P(∆Y0t ≤ ∆y|X = x,Dt = 1) = P(∆Y0t ≤ ∆y|X = x,Dt = 0)

After conditioning on covariates X, the distribution of the change in untreated potential outcomes

for the treated group is equal to the change in untreated potential outcomes for the untreated group.

Conditional Copula Stability Assumption.

C∆Y0t,Y0t−1|X,Dt=1(·, ·|x) = C∆Y0t−1,Y0t−2|X,Dt=1(·, ·|x)

Theorem 2. Under the Conditional Distributional Difference in Differences Assumption, the Con-

ditional Copula Stability Assumption, Assumption 2, Assumption 3, and Assumption 4

P(Y0t ≤ y|X = x,Dt = 1)

= E
[
1{F−1

∆Y0t|X,Dt=0(F∆Y0t−1|X,Dt=1(∆Y0t−1|x))

≤ y − F−1
Y0t−1|X,Dt=1(FY0t−2|X,Dt=1(Y0t−2|x))}|X = x,Dt = 1

]
and

QTET(τ ;x) = F−1
Y1t|X,Dt=1(τ |x)− F−1

Y0t|X,Dt=1(τ |x)

which is identified, and

P(Y0t ≤ y|Dt = 1) =

∫
X

P(Y0t ≤ y|X = x,Dt = 1) dF(x|Dt = 1)
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and

QTET(τ) = F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ)

which is identified.

We show in the next section that the set of assumptions required for Theorem 2 is likely to

hold in many economic models. One drawback of this estimator, however, is that it is challenging

to implement. It requires nonparametric estimation of five conditional distributions or quantile

functions, and then requires integrating over X for a function of four of the conditional distributions

and quantile functions.

Next, we show that a somewhat stronger combination of assumptions – namely, a combination of

the Conditional Distributional Difference in Differences Assumption and the unconditional Copula

Stability Assumption – leads to a very simple estimator of the QTET while allowing the unobserved

path of untreated outcomes for the treated group to continue to depend on the observed covariates.

We propose a propensity score re-weighting estimator similar to Abadie (2005) in the case of

Mean Difference in Differences and to Firpo (2007) in the case of Quantile Treatment Effects under

selection on observables. This procedure allows the researcher to estimate the propensity score in

a first stage and then re-weight observations based on the propensity score as an intermediate step

to estimating the QTET. This type of propensity score re-weighting technique does not appear

to be available in the case of other available methods to estimate the QTET under some type of

Difference in Differences assumption.

Using a propensity score re-weighting technique also gives the researcher some flexibility in

choosing the best way implement our method. The propensity score can be specified parametrically

which requires strong functional form assumptions but is easy to compute and feasible in medium

sized samples. At the other extreme, the propensity score could be estimated nonparametrically

without invoking functional form assumptions but is more difficult to compute and may suffer

from slower convergence depending on the assumptions on the smoothness of the propensity score.

Finally, semiparametric methods are available such as Ichimura (1993) and Klein and Spady (1993)

that offer some additional flexibility relative to parametric models and computational advantages

relative to nonparametric methods.

It should be noted that interest still centers on the unconditional QTET rather than a QTET

conditional on X. The role of the covariates is to make the Distributional Difference in Differences

Assumption valid. One reason for this focus is that the unconditional QTET is easily interpreted

while a conditional QTET may be difficult to interpret and estimate especially when X contains a

large number of variables.

By invoking the Conditional Distributional Difference in Differences Assumption rather than

the Distributional Difference in Differences Assumption, it is important to note that, for the pur-

pose of identification, the only part of Theorem 1 that needs to be adjusted is the identification

of F∆Y0t|Dt=1(∆y). Under the Distributional Difference in Differences Assumption, this distribu-
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tion could be replaced directly by F∆Y0t|Dt=0(∆y); however, now we utilize a propensity score

re-weighting technique to replace this distribution with another object (discussed more below).

Importantly, all other objects in Theorem 1 can be handled in exactly the same way as they were

previously. Particularly, the Copula Stability Assumption continues to hold without needing any

adjustment such as conditioning on X. The Copula Stability Assumption is an assumption on the

dependence between FY0t−1|Dt=1(y) (which is observed) and F∆Y0t|Dt=1(∆y) which we next show

is identified under Conditional Distributional Difference in Differences Assumption. With these

two distributions in hand, which do not depend on X, we can once again invoke the same Copula

Stability Assumption to obtain identification in the same way as Theorem 1.

We also require several additional standard assumptions for identification. We state these first.

Assumption 5. p ≡ P (Dt = 1) > 0 and p(x) ≡ P (Dt = 1|X = x) < 1.

The first part of this assumption says that there is some positive probability that individuals

are treated. The second part says that for an individual with any possible value of covariates x,

there is some positive probability that he will be treated and a positive probability he will not be

treated. This is a standard overlap assumption used in the treatment effects literature.

Theorem 3. Under Conditional Distributional Difference in Differences Assumption, Copula Sta-

bility Assumption, Assumption 2, Assumption 3, and Assumption 4, and Assumption 5

P(Y0t ≤ y|Dt = 1)

= E
[
1{F−1

∆Y0t|Dt=1(F∆Y0t−1|Dt=1(∆Y0t−1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))}|Dt = 1

]
where

F∆Y0t|Dt=1(y) = E

[
1−Dt

p

p(X)

1− p(X)
1{∆Yt ≤ ∆y}|Dt = 0

]
(7)

and

QTET(τ) = F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ)

which is identified

This result is very similar to the main identification result in Theorem 1. The only difference

is that F∆Y0t|Dt=1(·) is no longer identified by the distribution of untreated potential outcomes

for the untreated group; instead, it is replaced by the re-weighted distribution in Equation 7.

Equation 7 can be understood in the following way. It is a weighted average of the distribution

of the change in outcomes experienced by the untreated group. The
p(X)

1− p(X)
term weights up

untreated observations that have covariates that make them more likely to be treated. Equation 7 is

almost exactly identical to the re-weighting estimators given in Hirano, Imbens, and Ridder (2003),

Abadie (2005), and Firpo (2007); the only difference is the term 1{∆Yt ≤ ∆y} in our case is given

by Yt, ∆Yt, and 1{Yt ≤ y} in each of the other cases, respectively.
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This moment can be easily estimated in two steps: (i) estimate the propensity score to obtain

p̂(x) and (ii) plug in the estimated propensity score into the sample analog of the moment:

P̂(∆Y0t ≤ ∆y|Dt = 1) =
1

n

n∑
i=1

[
(1−Dt)

p

p̂(Xi

1− p̂(Xi))
1{∆Yit ≤ ∆y}

]
(8)

This analog of the distribution of the change in untreated potential outcomes for the treated group

can then be combined with estimates of the other distributions in Theorem 3 to estimate the QTET.

One final thing to notice in this section is that we have written the Conditional Distribu-

tional Difference in Differences Assumption in terms of time invariant covariates X, but the as-

sumption can be extended to the case where covariates can change over time denoted Xit un-

der standard assumptions. In particular, this extension would require a strict exogeneity as-

sumption such as P(Y0it ≤ y|Xi, ci) = P(Y0it ≤ y|Xit, ci) where Xi = (Xit, Xit−1, Xit−2) is

the vector of covariates across all periods, and ci is an individual specific fixed effect. The

strict exogeneity assumption says that conditional on the individual fixed effect and current pe-

riod values of the covariates, the distribution of untreated potential outcomes does not depend

on the value of covariates in other periods. Under the strict exogeneity assumption, a nat-

ural version of the Conditional Distributional Difference in Differences Assumption would be

P(∆Y0it ≤ ∆|Xi, ci, Dt = 1) = P(∆Y0it ≤ ∆|Xit, Xit−1, Dt = 1). Then, in the subsequent analysis,

one should replace X with X̃ = (XC , Xit, Xit−1) where XC are the covariates that do not change

over time. The Conditional Copula Stability Assumption would need to condition on the full vector

of covariates (Xt, Xt−1, Xt−2) so that the dependence between the change in untreated potential

outcomes and the initial untreated potential outcome is the same for observations that have the

same value of observed covariates in all three periods. Under these assumptions, the proceeding

results continue to go through when time varying covariates are present that satisfy a strict exo-

geneity assumption. We proceed throughout the rest of the paper, however, using the notation for

time invariant X.

How to Interpret the Copula Stability Assumption

The Copula Stability Assumption is new to the treatment effect literature. As such, it is

important to understand what models are compatible with the assumption. In this section, we

show that a very general model of untreated potential outcomes for the treated group satisfies the

Copula Stability Assumption. Consider the model for untreated potential outcomes at time period

t.

Y0it = g(Xi, νit) + ht(Xi) +m(Xi, ςi) (9)

where g(·) is a nonseparable function of observable individual-specific covariates Xi and unobserv-

ables (ςi, νit) of which ςi is a vector of time invariant unobservables and νit is a vector of time

varying unobservables; ht(·) is a time varying function of the observed covariates; and m(·) is a
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group-specific function of observed covariates and time invariant unobservables that could capture

time invariant differences across groups in untreated potential outcomes. We do not put any re-

strictions on the relationship between Xi and ςi. And the distribution of ςi|Xi can differ between

the treated and untreated groups. We assume that for all t, νit|Xi, ςi ∼ Fν(·); that is, the time

varying unobservables are independent of the covariates and time invariant unobservables and their

distribution does not change over time. This assumption allows for serial correlation of νit.

Proposition 1. In the model of Equation 9, the Conditional Copula Stability Assumption is sat-

isfied and the Conditional Distributional Difference in Differences Assumption is satisfied.

Proposition 1 is an important result because it says that the Copula Stability Assumption will

hold in a wide variety of the most common econometric models.

This model generalizes many common econometric models. It allows for non-stationarity in

outcomes. For example, in the empirical application on job training, aggregate time effects such as

macroeconomic shocks are allowed in the model. Several other common models are special cases of

this model. For example, the result covers the two-way fixed effects models with individual specific

fixed effects and aggregate time fixed effects.

Y0it = ci + θt +Xiβ + νit

where ci is a time invariant fixed effect, θt is an aggregate time effect for the treated group, and

νit is white noise. This result also covers a special case of the random trend model (Heckman and

Hotz, 1989).12

Y0it = ci + git+Xiβ + νit

where we restrict the random coefficient on the trend gi to be a constant g across all individuals.

Other models are also covered by Proposition 1.

A few additional comments are also in order. The model in Equation 9 is quite general and

provides a case where both the Conditional Distributional Difference in Differences Assumption

and the Copula Stability Assumption hold. We have shown that estimation of the model is much

simpler when an unconditional copula stability assumption holds in place of the conditional on

covariates assumption we have made thus far. Equation 9 violates the unconditional copula stability

assumption. However, a sufficient condition for the unconditional copula stability assumpiton is

that ht(Xi) = h(Xi)γtt where γt is a scalar parameter so that ht(·) is linear in t. In this case, the

combination of an unconditional copula stability assumption and the Conditional Distributional

Difference in Differences Assumption are valid.

12The Copula Stability Assumption does not hold in the more general case where g is allowed to be individual
specific gi. To provide some intuition, consider the case where Yi = ci + git. In this case the distribution of the
change in outcomes is constant over time – it is just given by the distribution of gi, and an individual’s rank in the
distribution remains the same over time. However, individual’s with large values of gi will increase their rank in the
level of the outcome. This means dependence between the change in untreated potential outcomes and initial level
of untreated potential outcome will increase over time.
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Finally, Equation 9 allows us to formalize the restrictions on the model relative to Mean Differ-

ence in Differences that the Conditional Distributional Difference in Differences Assumption and

the Conditional Copula Stability Assumption require. First, one could consider the very general

model

Y0it = gt(Xi, ςi, νit)

In this situation, the model can change in every period and more structure is required to apply

even Mean Difference in Differences. The next model does exactly that.

Y0it = g(Xi, ςi, νit) + ht(Xi, νit)

The key restriction here is that time does not interact with the time invariant unobservables (which

are allowed to differ by group). This means that average change in outcomes for the untreated group

is equal to the average change in outcomes for the treated group. However, one can show that

neither the Conditional Distributional Difference in Differences Assumption nor the Conditional

Copula Stability Assumption holds in this case as additional restrictions are needed. Consider the

following model

Y0it = ht(Xi, νit) +m(Xi, ςi)

where in this model the Mean Difference in Differences Assumption and the Conditional Distribu-

tional Difference in Differences Assumption hold, but the Conditional Copula Stability Assumption

does not hold. The key extra requirement is to limit how time invariant unobservables (whose distri-

bution can differ across the treated and untreated group) interact with time varying unobservables.

In the case where only the Mean Difference in Differences Assumption held, when taking the dif-

ference of untreated potential outcomes and allowing for the interaction of ςi and νit, the difference

averages out to zero, but the distribution itself may not be the same for the treated and untreated

groups. In the current model, when considering the term involving time invariant unobservables,

the difference is exactly equal to zero. And then, the Conditional Distributional Difference in Dif-

ferences Assumption holds because νit has the same distribution in the treated group as in the

untreated group. Next, consider

Y0it = g(Xi, ςi, νit) + ht(Xi)

where in this model the Mean Difference in Differences Assumption and the Conditional Copula

Stability Assumption hold, but the Conditional Distributional Difference in Differences Assumption

does not hold. For the Conditional Copula Stability Assumption to hold, the key extra requirement

is to limit the interaction time and time-varying variables. Combining the last two models leads to

the result in Equation 9.

Finally, consider the case where there are time varying covariates and partition the covariates
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into Xit = (XiC , XiV t) where XiC are the covariates that are time constant and XiV t are the

covariates that are time varying. Then, one can show that the model given by

Y0it = g(XiC , νit) + ht(Xit) +m(XiC , ςi)

satisfies both the Conditional Distributional Difference in Differences Assumption and the Con-

ditional Copula Stability Assumption. Although this model severely restricts the way that time

varying observed covariates can interact with unobservables, it is still important because it implies

that the linear, two-way fixed effects model with time varying regressors and (possibly) time varying

coefficients

Y0it = ci + git+Xitβt + νit

satisfies both assumptions.

5 Estimation Details

In this section, we outline the estimation procedure. Then, we provide results on consistency

and asymptotic normality of the estimators.

We estimate

ˆQTET(τ) = F̂
−1
Y1t|Dt=1(τ)− F̂

−1
Y0t|Dt=1(τ)

The first term is estimated directly from the data using the order statistics of the treated

outcome for the treated group.

F̂
−1
Y1t|Dt=1(τ) = Yt|Dt=1(dnT τe)

where X(k) is the kth order statistic of X1,. . . ,Xn, nT is the number of treated observations, and

the notation dse rounds s up to the closest, larger integer.

The estimator for F̂
−1
Y0t|Dt=1(τ) is more complicated. The distribution F̂Y0t|Dt=1(y0t) is identi-

fied by Distributional Difference in Differences Assumption or as in Theorem 3 depending on the

situation. We use this result to provide an estimator of the quantiles of that distribution in the

following way:

F̂
−1
Y0t|Dt=1(τ) =

{
F̂
−1
∆Y0t|Dt=1

(
F̂∆Y0t−1|Dt=1(∆Y0t−1|Dt=1)

)
+F̂
−1
Y0t−1|Dt=1

(
F̂Y0t−2|Dt=1(Y0t−2|Dt=1)

)}
(dnT τe)

Here, once again, we compute the quantiles of (Y0t|Dt = 1) using order statistics, but now

they must be adjusted. We plug in estimates of the quantiles and distribution functions for the

distributions in Theorem 1. It should be noted the order statistics are taken for the treated group
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(after adjusting the values based on the sample quantiles and distributions noted above).

The sample quantiles that serve as an input into estimating F−1
Y0t|Dt=1(τ) are estimated with

the order statistics (with one exception mentioned below). The sample distributions are estimated

using the empirical distribution:

F̂X(x) =
1

n

n∑
i=1

1{Xi ≤ x}

The final issue is estimating F−1
∆Y0t|Dt=1(ν) when identification depends on covariates as in

Section 4. Using the identification result in Section 4, we can easily construct an estimator of the

distribution function

F̂∆Y0t|Dt=1(∆y0t) =
1

n

n∑
i=1

(1−Dit)

p

p̂(Xi)

(1− p̂(Xi))
1{∆Yt,i ≤ ∆y0t}

Then, an estimator of F−1
∆Y0t|Dt=1(ν) can be obtained in the following way. Let ∆Yt,i(n) denote

the ordered values of the change in outcomes from smallest to largest, and let ∆Yt,i(j) denote the

jth value of ∆Yt,i in the ordered sequence. Then, F̂
−1
∆Y0t|Dt=1(ν) = ∆Yt,i(J

∗) where J∗ = inf{J :
1
n

∑J
j=1

(1−Djt)
p

p̂(Xj)
(1−p̂(Xj)) ≥ ν}.

When identification depends on covariates X, then there must be a first step estimation of the

propensity score. In applied work, there are several possibilities for researchers to consider: (i) para-

metric propensity score, (ii) semi-parametric propensity score, and (iii) nonparametric propensity

score. The tradeoff between these three involves trading off stronger assumptions (the paramet-

ric case) for more challenging computational issues (the nonparametric case). Below we show

consistency and asymptotic normality for the parametric and nonparametric cases; additional re-

sults for the semiparametric case are available upon request. The estimator is
√
n-consistency and

asymptotically normal in each case even though the propensity score itself converges at a slower

than
√
n-rate when it is estimated nonparametrically. We also implement both approaches in the

empirical application.

5.1 Inference

This section considers the asymptotic properties of the estimator. First, it focuses on the case

with no covariates and then extends the results to the case where the Distributional Difference in

Differences Assumption holds conditional on covariates. The proof for each of the theorems in this

section is given in the Appendix.

5.1.1 No Covariates Case

In the case with no covariates, the following result holds
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Theorem 4. Consistency under Distributional Difference in Differences Assumption

Under Assumption 2, Assumption 3, and Assumption 4

ˆQTET(τ) = F̂
−1
Y1t|Dt=1(τ)− F̂

−1
Y0t|Dt=1(τ)

p−→ F−1
Y1t|Dt=1(τ)− F−1

Y0t|Dt=1(τ) = QTET(τ)

To show asymptotic normality, we introduce some additional notation. Let

µ12(z; y) = EY0t−2|Dt=1

[(
1{z ≤ (y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))}

−F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))

)]
µ22(z; y) = EY0t−2|Dt=1

[(
1{z ≤ F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))))}

−F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))

)]

µ32(z; y) = EY0t−2|Dt=1

[(
f∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))

fY0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))

×
(
1{z ≤ F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))}

−FY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))

))]

µ42(z; y) = EY0t−2|Dt=1

[(
f∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))

fY0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))

×
(
1{z ≤ Y0t−2} − FY0t−2|Dt=1(Y0t−2)

))]
µ5(z1, z2; y) =

(
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(z1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z2))}

−E
[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(z1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z2))}

)
|Dt = 1

]
ψ(z; y) = (1{z ≤ y} − τ)

and

λ30(y, v) = y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(v))

λ10(y, v) = F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(λ30(y, v))), v)
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and

fY0t|Dt=1(y) =

∫
Y0t−2|Dt=1

f∆Y0t−1,Y0t−2|Dt=1(λ10(y, v), v)
f∆Y0t|Dt=0(λ30(y, v))

f∆Y0t−1|Dt=1(λ10(y, v))
dv

Theorem 5. Asymptotic Normality

Under the Distributional Difference in Differences Assumption, the Copula Stability Assump-

tion, Assumption 2, Assumption 3, and Assumption 4

√
n( ˆQTET(τ)−QTET(τ))

d−→ N(0, V )

where

V =
1{

fY0t|Dt=1(F−1
Y0t|Dt=1(τ))

}2V0

+
1{

fY1t|Dt=1(F−1
Y1t|Dt=1(τ))

}2V1

− 2

fY0t|Dt=1(F−1
Y0t|Dt=1(τ)) · fY1t|Dt=1(F−1

Y1t|Dt=1(τ))
V01

and

V0 =
1− p
p2

E
[
µ12(∆Yt;F

−1
Y0t|Dt=1(τ))2|Dt = 0

]
+

1

p
E
[(
µ22(∆Yt−1;F−1

Y0t|Dt=1(τ)) + µ32(Yt−1;F−1
Y0t|Dt=1(τ))

+µ42(Yt−2;F−1
Y0t|Dt=1(τ)) + µ5(∆Yt−1, Yt−2;F−1

Y0t|Dt=1(τ))
)2
|Dt = 1

]

V1 =
1

p
E
[
ψ(Y1t;F

−1
Y1t|Dt=1(τ))2|Dt = 1

]
V01 =

1

p
E
[
ψ(Y1t;F

−1
Y1t|Dt=1(τ))

(
µ22(∆Yt−1;F−1

Y0t|Dt=1(τ)) + µ32(Yt−1;F−1
Y0t|Dt=1(τ))

+µ42(Yt−2;F−1
Y0t|Dt=1(τ)) + µ5(∆Yt−1, Yt−2;F−1

Y0t|Dt=1(τ))
)
|Dt = 1

]
5.1.2 Distributional Difference in Differences Assumption holds conditional on co-

variates

This section shows consistency and asymptotic normality of our estimator in the case where

the Distributional Difference in Differences Assumption holds conditional on covariates. We first

show these results in the case where the propensity score is estimated nonparametrically by using

series logit methods. We also provide a result for the case where the propensity score is estimated
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parametrically using, for example, parametric logit or probit specifications. We make the following

additional assumptions

Assumption 6. E[1{∆Y0t ≤ y}|X,Dt = 0] is continuously differentiable for all x ∈ X .

Assumption 7. (Distribution of X)

(i) The support X of X is a Cartesian product of compact invtervals; that is, X =
∏r
j=1[xlj , xuj ]

where r is the dimension of X and xlj and xuj are the smallest and largest values in the support

of the j-th dimension of X.

(ii) The density of X, fX(·), is bounded away from 0 on X .

Assumption 8. (Assumptions on the propensity score)

(i) p(x) is continuously differentiable of order s ≥ 7r where r is the dimension of X.

(ii) There exist p and p̄ such that 0 < p ≤ p(x) ≤ p̄ < 1.

Assumption 9. (Series Logit Estimator)

For nonparametric estimation of the propensity score, p(x is estimated by series logit where the

power series of the order K = nν for some 1
4(s/r−1) < ν < 1

9 .

Note that the restriction on derivatives in Assumption 8 (i) guarantees the existence of ν that

satisfies the conditions of Assumption 9.

Theorem 6. Consistency under Conditional Distributional Difference in Differences Assumption

and when the propensity score is estimated nonparametrically

Under the Conditional Distributional Difference in Differences Assumption, the Copula Stabil-

ity Assumption, Assumption 2, Assumption 3, Assumption 4, Assumption 6, Assumption 7, and

Assumption 8

ˆQTET(τ) = F̂−1
Y1t|Dt=1(τ)− F̂−1

Y0t|Dt=1(τ)
p−→ F−1

Y1t|Dt=1(τ)− F−1
Y0t|Dt=1(τ) = QTET(τ)

We also introduce the following additional notation. In addition to µ22, µ32, µ42, µ5, and ψ

defined above, for z = (x,∆, d), let

ΨN12(z; y) = EY0t−2|Dt=1

{
p(x)

(1− p(x))
1{∆ ≤ y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=2(Y0t−2))} (10)

− EX,∆Yt|Dt=0

[
p(X)

(1− p(X))
1{∆Yt ≤ y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=2(Y0t−2))}
]}

(11)

ΨN22(z; y) = EY0t−2|Dt=1

[
E[1{∆Yt ≤ y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=2(Y0t−2))|X = x,Dt = 0}]
(1− p(x))

]
(12)

× (d− p(x)) (13)
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and also replace the definition of fY0t|Dt=1(y) above with the following

fY0t|Dt=1(y) =

∫
Y0t−2|Dt=1

f∆Y0t−1,Y0t−2|Dt=1(λ10(y, v), v)
f∆Y0t|Dt=1(λ30(y, v))

f∆Y0t−1|Dt=1(λ10(y, v))
dv

where the difference from the previous definition is that f∆Y0t|Dt=0(·) (which is identified directly

from the data) is replaced by f∆Y0t|Dt=1(∆) which is obtained from the propensity score reweighted

distribution derived above and is equal to

f∆Y0t|Dt=1(∆) = E

[
p(X)

1− p(X)
f∆Y0t|Dt=0(∆)|∆Y0t = ∆, Dt = 0

]
Theorem 7. Asymptotic Normality under Conditional Distributional Difference in Differences

Assumption and when the propensity score is estimated nonparametrically

Under the Conditional Distributional Difference in Differences Assumption, the Copula Stabil-

ity Assumption, Assumption 2, Assumption 3, Assumption 4, Assumption 6, Assumption 7, and

Assumption 8

√
n( ˆQTET(τ)−QTET(τ))

d−→ N(0, VN )

where

VN =
1{

fY0t|Dt=1(F−1
Y0t|Dt=1(τ))

}2V0N

+
1{

fY1t|Dt=1(F−1
Y1t|Dt=1(τ))

}2V1N

− 2

fY0t|Dt=1(F−1
Y0t|Dt=1(τ)) · fY1t|Dt=1(F−1

Y1t|Dt=1(τ))
V01N

and

V0N =
1

p2
E
[(

ΨN22(Zi;F
−1
Y0t|Dt=1(τ)) + (1−Dt)ΨN12(Zi;F

−1
Y0t|Dt=1(τ)

+Dtµ22(Yt−2;F−1
Y0t|Dt=1(τ)) +Dtµ32(Yt−2;F−1

Y0t|Dt=1(τ))

+Dtµ42(Yt−2;F−1
Y0t|Dt=1(τ)) +Dtµ5(∆Yt−1, Yt−2;F−1

Y0t|Dt=1(τ))
)2
]

V1N =
1

p
E
[
ψ(Y1t;F

−1
Y1t|Dt=1(τ))2|Dt = 1

]

V01N =
1

p2
E
[
Dtψ(Y1t;F

−1
Y1t|Dt=1(τ))

×
(

ΨN22(Zi;F
−1
Y0t|Dt=1(τ)) + µ22(Yt−2;F−1

Y0t|Dt=1(τ)) + µ32(Yt−2;F−1
Y0t|Dt=1(τ))
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+µ42(Yt−2;F−1
Y0t|Dt=1(τ)) + µ5(∆Yt−1, Yt−2;F−1

Y0t|Dt=1(τ))
)]

Remark. When the true propensity score is known up to a finite set of parameters so that p(x) =

G(x>γ0) and G(·) is a known function that is typically the cdf of the normal distribution or the

logistic function, then consistency and asymptotic normality continue to hold. The proof is identical

to the nonparametric case with the following exceptions. First, the propensity score p(x) should

be replaced everywhere by G(x>γ0). Second, the following assumption replaces Assumption 8 and

Assumption 9.

Assumption 10. (Parametric Propensity Score)

(i) γ0 is an interior point of a compact set Γ ⊂ Rd

(ii) E[XX>] is non-singular

(iii) Let υ = {x>γ : x ∈ X , γ ∈ Γ}. Then, for υ ∈ Υ, G(υ) is bounded away from 0 and 1,

strictly increasing, and continuously differentiable with derivative g(υ) that is bounded away from

zero and infinity.

Third, ΨP22(Zi; F−1
Y0t|Dt=1(τ)) replaces ΨN22(Zi; F−1

Y0t|Dt=1(τ)) where

ΨP22(z; y) = EY0t−2|Dt=1

{
EX,∆Yt|Dt=0

[
1

1−G(X>γ0)

(
1 +

G(X>γ0)

1−G(X>γ0)

)
× 1{∆Yt ≤ y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))}g(X>γ0)X>
]}

× EX,Dt

[(
Dt −G(X>γ0)

G(X>γ0)(1−G(X>γ0))

)2

g(X>γ0)2XX>

]−1

× d−G(x>γ0)

G(x>γ0)(1−G(x>γ0))
g(x>ζ0)x (14)

Remark. The key step in the the proof for the case without covariates is to show the counterfactual

distribution of untreated potential outcomes can be written in the following way

√
n(P̂(Y0t ≤ y|Dt = 1)− P(Y0t ≤ y|Dt = 1)) =

√
n(µ̂1 + µ̂2 + µ̂3 + µ̂4 + µ̂5) + op(1) (15)

where

µ̂1 =
1

nTnC

∑
i∈T

∑
j∈C

1{∆Y0t,j ≤ (y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))}

− F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

≡ 1

nTnC

∑
i∈T

∑
j∈C

µ1(Y0t−2,i,∆Y0t,j)

µ̂2 =
1

n2
T

∑
i∈T

∑
j∈T

1{∆Y0t−1,j ≤ F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1

(Y0t−2,i)))}
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− F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))))]

≡ 1

n2
T

∑
i∈T

∑
j∈T

µ2(Yt−2,i,∆Yt−1,j)

µ̂3 =
1

n2
T

∑
i∈T

∑
j∈T

f∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

fY0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))

×
(
1{Y0t−1,j ≤ F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

−FY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

)
≡ 1

n2
T

∑
i∈T

∑
j∈T

µ3(Yt−2,i, Yt−1,j)

µ̂4 =
1

n2
T

∑
i∈T

∑
j∈T

f∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

×
(
1{Y0t−2,j ≤ Y0t−2,i} − FY0t−2|Dt=1(Y0t−2,i)]

)
≡ 1

n2
T

∑
i∈T

∑
j∈T

µ4(Yt−2,i, Yt−2,j)

µ̂5 =
1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]
− E

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}|Dt = 1

]
≡ 1

nT

∑
i∈T

µ5(∆Yt−1,i, Y0t−2,i)

Then, using standard results on V-statistics, Equation 15 can be written as

√
n(P̂(Y0t ≤ y|Dt = 1)− P(Y0t ≤ y|Dt = 1))

=
√
n

(
1

n

n∑
i=1

{
(1−Dt)

(1− p)
µ12(∆Yt;F

−1
Y0t|Dt=1(τ))

+
Dt

p

[
µ22(∆Yt−1;F−1

Y0t|Dt=1(τ)) + µ32(Yt−1;F−1
Y0t|Dt=1(τ))

+µ42(Yt−2;F−1
Y0t|Dt=1(τ)) + µ5(∆Yt−1, Yt−2;F−1

Y0t|Dt=1(τ))
]})

+ op(1)

Then, the result follows by accounting for estimating quantiles instead of distribution functions

and the Central Limit Theorem.

In the case with covariates, the result follows from combining the results in the unconditional

case with the results on two step propensity score weighting where the prospensity score is estimated
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by Series Logit as in Hirano, Imbens, and Ridder (2003).

6 Empirical Exercise: Quantile Treatment Effects of a Job Train-

ing Program on Subsequent Wages

In this section, we use a well known dataset from LaLonde (1986) that consists of (i) data from

randomly assigning job training program applicants to a job training program and (ii) a second

dataset consisting of observational data consisting of some individuals who are treated and some

who are not treated. This dataset has been widely used in the program evaluation literature.

Having access to both a randomized control and an observational control group is a powerful tool

for evaluating the performance of observational methods in estimating the effect of treatment.

The original contribution of LaLonde (1986) is that many typically used methods (least squares

regression, Difference in Differences, and the Heckman selection model) did not perform very well in

estimating the average effect of participation in the job training program. An important subsequent

literature argued that observational methods can effectively estimate the effect of a job training

program, but the results are sensitive to the implementation (Heckman and Hotz, 1989; Heckman,

Ichimura, and Todd, 1997; Heckman, Ichimura, Smith, and Todd, 1998; Dehejia and Wahba, 1999;

Smith and Todd, 2005). Finally, Firpo (2007) has used this dataset to study the quantile treatment

effects of participating in the job training program under the selection on observables assumption.

One limitation of the dataset for estimating quantile treatment effects is that the 185 treated

observations form only a moderately sized dataset. A second well known issue is that properly

evaluating the training program, even with appropriate methods, may not be possible using the

Lalonde dataset because control observations do not come from the same local labor markets and

surveys for the control group do not use the same questionnaire (Heckman, Ichimura, and Todd,

1997) though some of these issues may be alleviated using Difference in Differences methods.

In the rest of this section, we implement the procedure outlined in this paper, and compare

the resulting QTET estimates to those from the randomized experiment and the various other

procedures available to estimate quantile treatment effects.

6.1 Data

The job training data is from the National Supported Work (NSW) Demonstration. The pro-

gram consisted of providing extensive training to individuals who were unemployed (or working

very few hours) immediately prior to participating in the program. Detailed descriptions of the

program are available in Hollister, Kemper, and Maynard (1984), LaLonde (1986), and Smith and

Todd (2005). Our analysis focuses on the all-male subset used in Dehejia and Wahba (1999). This

subset has been the most frequently studied. In particular, Firpo (2007) uses this subset. Impor-

tantly for applying the method presented in this paper, this subset contains data on participant
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earnings in 1974, 1975, and 1978.13

The experimental portion of the dataset contains 445 observations. Of these, 185 individuals

are randomly assigned to participate in the job training program. The observational control group

comes from the Panel Study of Income Dynamics (PSID). There are 2490 observations in the PSID

sample. Estimates using the observational data combine the 185 treated observations for the job

training program with the 2490 untreated observations from the PSID sample. The PSID sample

is a random sample from the U.S. population that is likely to be dissimilar to the treated group in

many observed and unobserved ways. For this reason, conditioning on observed factors that affect

whether or not an individual participates in the job training program and using a method that

adjusts for unobserved differences between the treated and control groups are likely to be important

steps to take to correctly understand the effects of the job training program.

Summary statistics for earnings by treatment status (treated, randomized controls, observa-

tional controls) are presented in Table 1. Average earnings are very similar between the treated

group and the randomized control group in the two years prior to treatment. After treatment,

average earnings are about $1700 higher for the treated group than the control group indicating

that treatment has, on average, a positive effect on earnings. Average earnings for the observational

control group are well above the earnings of the treated group in all periods (including the after

treatment period).

For the available covariates, no large differences exist between the treated group and the ran-

domized control group. The largest normalized difference is for high school degree status. The

treated group is about 13% more likely to have a high school degree. There are large differences

between the treated group and the observational control group. The observational control group is

much less likely to have been unemployed in either of the past two years. They are older, more ed-

ucated, more likely to be married, and less likely to be a minority. These large differences between

the two groups are likely to explain much of the large differences in earnings outcomes.

6.2 Results

The PanelQTET identification results require the underlying distributions to be continuous.

However, because participants in the job training program were very likely to have no earnings

during the period of study due to high rates of unemployment, we estimated the effect of job

training only for τ = (0.7, 0.8, 0.9). This strategy is similar to Buchinsky (1994, Footnote 22)

though we must focus on higher quantiles than in that paper. We plan future work on developing

identification or partial identification strategies when the outcomes have a mixed continuous and

discrete distribution.

Main Results Table 3 provides estimates of the 0.7-, 0.8-, and 0.9-QTET using the method

of this paper (which we hereafter term PanelQTET), the conditional independence (CI) method

13Dehejia and Wahba (1999) showed that conditioning on two periods of lagged earning was important for correctly
estimating the average treatment effect on the treated using propensity score matching techniques.
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(Firpo, 2007), the Change in Changes method (Athey and Imbens, 2006), the Quantile Difference

in Differences (QDiD) method, and the Mean Difference in Differences (MDiD) method. It also

compares the resulting estimates using each of these methods with the experimental results.

For each type of estimation, results are presented using three sets of covariates: (i) the first

row includes age, education, black dummy variable, hispanic dummy variable, married dummy

variable, and no high school degree dummy variable (call this COV below) – this represents the set

of covariates that are likely to be available with cross sectional data; (ii) the second row includes the

same covariates plus two dummy variables indicating whether or not the individual was unemployed

in 1974 or 1975 (call this UNEM below) – this represents the set of covariates that may be available

with panel data or when the dataset contains some retrospective questions; and (iii) the third row

includes no covariates (call this NO COV below) – including this set of covariates allows us to

judge the relative importance of adjust for both observable differences across individuals and time

invariant unobserved differences across individuals.

The PanelQTET method and the CI method admit estimation based on a first step estimate of

the propensity score. For both of these methods, we estimate parametric versions of the propensity

score using the three specifications mentioned above. Additionally, we also include an additional

set of results based on nonparametric estimate of the propensity score using a series logit method.

In practice, the PanelQTET method and the CI method use slightly different series logit estimates.

For the PanelQTET method, we select the number of approximating terms using a cross-validation

method. We use only covariates available from the UNEM covariate set as it would not be appro-

priate to condition on lags of the dependent variable. We do condition on lags of unemployment.

For the CI method, we use the series logit specification used in Firpo (2007). The key difference

between the two is that the CI method can condition on lags of the dependent variable real earnings

in addition to all the other available covariates.

For CiC, QDiD, and MDiD, propensity score re-weighting techniques are not available. One

could potentially attempt to nonparametrically implement these estimators, but the resulting es-

timators are likely to be quite computationally challenging. Instead, we follow the idea of Athey

and Imbens (2006) and residualize the earnings outcome by regressing earnings on a dummy vari-

able indicating whether or not the observations belongs to one of the four groups: (treated, 1978),

(untreated, 1978), (treated, 1975), (untreated, 1975) and the available covariates. The residuals re-

move the effect of the covariates but not the group (See Athey and Imbens (2006) for more details).

Then, we perform each method on the residualized outcome. We discuss the estimation results for

each method in turn.

The first section of Table 2 reports estimates of the QTET using the PanelQTET method.

The first row provides results where the propensity score is estimated nonparametrically using

series logit. The estimated QTET is positive and statistically significant at each of the 0.7, 0.8,

and 0.9-quantiles though the estimates tend to be larger than the experimental results. These

estimates are statistically different from the experimental results at the 0.8 and 0.9-quantiles.

These results also indicate that the QTET is increasing at larger quantiles which is in line with
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the experimental results. The second row provides results using the COV conditioning set. In

our view, this specification is likely to be what an empirical researcher would estimate given the

available data and if he were to use the PanelQTET method. Out of all 16 method-covariate set

estimates presented in Table 2, the QTETs come closest to matching the experimental results using

the PanelQTET method and the COV conditioning set. The point estimate for each of the 0.7, 0.8,

and 0.9-quantiles are somewhat smaller than the ATT indicating that the gain from the job training

program was either similar across quantiles or slightly at lower income parts of the distribution than

at higher income parts of the distribution. The experimental dataset gives precisely the opposite

conclusion though: gains at the higher income part of the distribution were somewhat larger than

average gains. The difference in conclusions results mainly from a large difference in the estimated

ATT14 and the experimental ATT. When using the UNEM conditioning set, the estimates of the

QTET are very similar to the nonparametric specification. Finally, the NO COV conditioning set

tends to perform the most poorly. The QTET is estimated to be close to zero at each quantile and

is statistically different from the experimental results for the 0.7 and 0.9-quantile.

The second section presents results using cross sectional data. The results in the first row come

from estimating the propensity score nonparametrically using series logit where the conditioning

set can include lags of the dependent variable real earnings. If we had imposed linearity (and

momentarily ignoring the nonparametric estimation of the propensity score), the difference between

the CI and the PanelQTET model is that the CI model would include lags of the dependent variable

but no fixed effect while the PanelQTET model would include a fixed effect but no lags of the

dependent variable. Just as in the case of the linear model, the choice of which model to use

depends on the application and the decision of the researcher. Not surprisingly then, the results

that include dynamics under the CI assumption are much better than those that do not include

dynamics. The results are, in fact, quite similar to the results using the PanelQTET method

with the propensity score estimated nonparametrically; particularly, the estimated effect have the

right sign but tend to be overestimated. The results in the second row come from conditioning

on the COV conditioning set. The COV conditioning set contain only the values of the covariates

that would be available in a strictly cross sectional dataset. These results are very poor. The

QTET and ATT are estimated to be large and negative indicating that participating in the job

training program tended to strongly decrease wages. In fact, the CI procedure using purely cross

sectional data performs much worse than any of the other methods that take into account having

multiple periods of data (notably, this includes specifications that include no covariates at all).

The third specifications uses the UNEM conditioning set, and the performance is similar to the

nonparametric estimation of the propensity score. Finally, the fourth row considers estimates that

invoke CI without the need to condition on covariates. This assumption is highly unlikely to be

true as individuals in the treated group differ in many observed ways from untreated individuals.

This method would attribute higher earnings among untreated individuals to not being in the job

14The ATT is estimated under the same assumptions as the QTET. In this case, however, the same assumptions
imply that the propensity score re-weighting technique of Abadie (2005) should be used.
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training program despite the fact that they tended to have much larger earnings before anyone

entered job training as well as more education and more experience.

The final three sections of Table 3 provide results using CiC, QDiD, and MDiD. We briefly

summarize these results. Broadly speaking, each of these three methods, regardless of conditioning

set, performs better than invoking the CI assumption using covariates that are available only in

the same period as the outcome (CI-COV results). Between the three methods, the QDiD method

performs slightly better than the CiC and MDiD model. Comparing the results of these three

models to the results from the PanelQTET method, the PanelQTET method performs slightly

better than the CiC and MDiD model. With the COV specification, it performs evenly with the

QDiD method. With the UNEM specification, it performs slightly worse than the QDiD method.

7 Conclusion

This paper has considered identification and estimation of the QTET under a distributional

extension of the most common Mean Difference in Differences Assumption used to identify the

ATT. Even under this Distributional Difference in Differences Assumption, the QTET is still only

partially identified because it depends on the unknown dependence between the change in untreated

potential outcomes and the initial level of untreated potential outcomes for the treated group. We

introduced the Copula Stability Assumption which says that the missing dependence is constant

over time. Under this assumption and when panel data is available, the QTET is point identified.

We show that the Copula Stability Assumption is likely to hold in exactly the type of models that

are typically estimated using Difference in Differences techniques.

In many applications it is important to invoke identifying assumptions that hold only after

conditioning on some covariates. We show that under conditional versions of both of the main

assumptions, the QTET is still identified. Moreover, under the somewhat stronger assumption

that the Distributional Difference in Differences Assumption holds conditional on covariates and

the Copula Stability Assumption holds unconditionally, we provide very simple estimators of the

QTET using propensity score re-weighting. In an application where we compare the results using

several available methods to estimate the QTET on observational data to results obtained from an

experiment, we find that our method performs at least as well as other available methods.

In ongoing work, we are using similar ideas about the time invariance of a copula function

to study the joint distribution of treated and untreated potential outcomes when panel data is

available. Also, we are working on using the same type of assumption to identify the QTET in

more complicated situations such as when outcomes are censored or in dynamic panel data models.

The idea of a time invariant copula may also be valuable in other areas of microeconometric research

especially when a researcher has access to panel data.
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[9] Bonhomme, Stéphane and Ulrich Sauder. “Recovering distributions in difference-in-differences

models: A comparison of selective and comprehensive schooling”. Review of Economics and

Statistics 93.2 (2011), pp. 479–494.

[10] Buchinsky, Moshe. “Changes in the US wage structure 1963-1987: Application of quantile

regression”. Econometrica: Journal of the Econometric Society (1994), pp. 405–458.

[11] Canay, Ivan. “A simple approach to quantile regression for panel data”. The Econometrics

Journal 14.3 (2011), pp. 368–386.

[12] Card, David. “The impact of the Mariel boatlift on the Miami labor market”. Industrial &

Labor Relations Review 43.2 (1990), pp. 245–257.

[13] Card, David and Alan Krueger. “Minimum wages and employment: A case study of the fast-

food industry in New Jersey and Pennsylvania”. The American Economic Review 84.4 (1994),

p. 772.

[14] Carneiro, Pedro, Karsten Hansen, and James Heckman. “Removing the Veil of Ignorance in

assessing the distributional impacts of social policies”. Swedish Economic Policy Review 8

(2001), pp. 273–301.

34



[15] Carneiro, Pedro, Karsten Hansen, and James Heckman. “Estimating distributions of treat-

ment effects with an application to the returns to schooling and measurement of the effects

of uncertainty on college choice”. International Economic Review 44.2 (2003), pp. 361–422.

[16] Carneiro, Pedro and Sokbae Lee. “Estimating distributions of potential outcomes using lo-

cal instrumental variables with an application to changes in college enrollment and wage

inequality”. Journal of Econometrics 149.2 (2009), pp. 191–208.

[17] Chen, Heng. “Within-group Estimators for Fixed Effects Quantile Models with Large N and

Large T”. Working Paper, Bank of Canada. 2015.

[18] Chernozhukov, Victor, Iván Fernández-Val, Jinyong Hahn, and Whitney Newey. “Average

and quantile effects in nonseparable panel models”. Econometrica 81.2 (2013), pp. 535–580.

[19] Chernozhukov, Victor and Christian Hansen. “An IV model of quantile treatment effects”.

Econometrica 73.1 (2005), pp. 245–261.

[20] Dehejia, Rajeev and Sadek Wahba. “Causal effects in nonexperimental studies: Reevaluating

the evaluation of training programs”. Journal of the American Statistical Association 94.448

(1999), pp. 1053–1062.

[21] Doksum, Kjell. “Empirical probability plots and statistical inference for nonlinear models in

the two-sample case”. The annals of statistics (1974), pp. 267–277.

[22] Evdokimov, Kirill. “Identification and estimation of a nonparametric panel data model with

unobserved heterogeneity”. Working Paper, Princeton University. 2010.

[23] Fan, Yanqin and Sang Soo Park. “Partial identification of the distribution of treatment effects

and its confidence sets”. Advances in Econometrics 25 (2009), pp. 3–70.

[24] Fan, Yanqin and Zhengfei Yu. “Partial identification of distributional and quantile treatment

effects in difference-in-differences models”. Economics Letters 115.3 (2012), pp. 511–515.

[25] Firpo, Sergio. “Efficient semiparametric estimation of quantile treatment effects”. Economet-

rica 75.1 (2007), pp. 259–276.

[26] Firpo, Sergio, Nicole M Fortin, and Thomas Lemieux. “Unconditional Quantile Regressions”.

Econometrica (2009), pp. 953–973.
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A Proofs

A.1 Identification

A.1.1 Identification without covariates

In this section, we prove Theorem 1. Namely, we show that the counterfactual distribution of

untreated outcome FY0t|Dt=1(y) is identified. First, we state two well known results without proof

used below that come directly from Sklar’s Theorem.

Lemma 1. The joint density in terms of the copula pdf

f(x, y) = c(FX(x), FY (y))fX(x)fY (y)

Lemma 2. The copula pdf in terms of the joint density

c(u, v) = f(F−1
X (u), F−1

Y (u))
1

fX(F−1
X (u))

1

fY (F−1
Y (u))

Proof of Theorem 1. To minimize notation, let ϕt(·, ·) = ϕ∆Y0t,Y0t−1|Dt=1(·, ·) be the joint pdf of the

change in untreated potential outcome and the initial untreated potential outcome for the treated

group, and let ϕt−1(·, ·) = ϕ∆Y0t−1,Y0t−2|Dt=1(·, ·) be the joint pdf in the previous period. Similarly,

let ct(·, ·) = c∆Y0t,Y0t−1|Dt=0(·, ·) and ct−1(·, ·) = c∆Y0t−1,Y0t−2(·, ·) be the copula pdfs for the change

in untreated potential outcomes and initial level of untreated outcomes for the treated group at

period t and t− 1, respectively. Then,

P (Y0t ≤ y|Dt = 1) = P (∆Y0t + Y0t−1 ≤ y|Dt = 1)

= E[1{∆Y0t ≤ y − Y0t−1}|Dt = 1)

=

∫
Yt−1|Dt=1

∫
∆Yt|Dt=1

1{∆y0t ≤ y − y0t−1}ϕt(∆y0t, y0t−1|Dt = 1)d∆y0tdy0t−1

=

∫
Yt−1|Dt=1

∫
∆Yt|Dt=1

1{∆y0t ≤ y − y0t−1} (16)

× ct(F∆Y0t|Dt=1(∆y0t), FY0t−1|Dt=1(y0t−1))

× f∆Y0t|Dt=1(∆y0t)fY0t−1|Dt=1(y0t−1)d∆y0tdy0t−1

=

∫
Yt−1|Dt=1

∫
∆Yt|Dt=1

1{∆y0t ≤ y − y0t−1} (17)

× ct−1(F∆Y0t|Dt=1(∆y0t), FY0t−1|Dt=1(y0t−1))

× f∆Y0t|Dt=1(∆y0t)fY0t−1|Dt=1(y0t−1)d∆y0tdy0t−1
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=

∫
Yt−1|Dt=1

∫
∆Yt|Dt=1

1{∆y0t ≤ y − y0t−1} (18)

× ϕt−1

{
F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=1(∆y0t)), F
−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y0t−1))

}
×

f∆Y0t|Dt=1(∆y0t)

f∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=1(∆y0t)))

×
fY0t−1|Dt=1(y0t−1)

fY0t−2|Dt=1(F−1
Y0t−2|Dt=1(FY0t−1|Dt=1(y0t−1)))

d∆y0tdy0t−1

Equation 16 rewrites the joint distribution in terms of the copula pdf using Lemma 1; Equation 17

uses the copula stability assumption; Equation 18 rewrites the copula pdf as the joint distribution

(now in period t− 1) using Lemma 2.

Now, make a change of variables: u = F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=1(∆y0t)) and v = F−1

Y0t−2|Dt=1(FY0t−1|Dt=1(y0t−1)).

This implies the following:

1. ∆y0t = F−1
∆Y0t|Dt=1(F∆Y0t−1|Dt=1(u))

2. y0t−1 = F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(v))

3. d∆y0t =
f∆Y0t−1|Dt=1(u)

f∆Y0t|Dt=1(F−1
∆Y0t|Dt=1(F∆Y0t−1|Dt=1(u)))

du

4. dy0t−1 =
fY0t−2|Dt=1(v)

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(v)))

dv

Plugging in (1)-(4) in Equation 18 and noticing that the substitutions for d∆y0t and dy0t−1 cancel

out the fractional terms in the third and fourth lines of Equation 18 implies

Equation 18 =

∫
Yt−2|Dt=1

∫
∆Yt−1|Dt=1

1{F−1
∆Y0t|Dt=1(F∆Y0t−1|Dt=1(u)) ≤ y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(v))}

(19)

× ϕt−1 (u, v) dudv

= E
[
1{F−1

∆Y0t|Dt=1(F∆Y0t−1|Dt=1(∆Y0t−1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))}|Dt = 1

]
(20)

= E
[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))}|Dt = 1

]
(21)

where Equation 19 follows from the discussion above, Equation 20 follows by the definition of

expectation, and Equation 21 follows from the Distributional Difference in Differences Assumption.
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A.1.2 Identification with covariates

In this section, we prove Theorem 3.

Proof. All of the results from the proof of Theorem 1 are still valid. Therefore, all that needs to

be shown is that Equation 7 holds. Notice,

P(∆Y0t ≤ ∆y|Dt = 1) =
P(∆Y0t ≤ ∆y,Dt = 1)

p

= E

[
P(∆Y0t ≤ ∆y,Dt = 1|X)

p

]

= E

[
p(X)

p
P(∆Y0t ≤ ∆y|X,Dt = 1)

]

= E

[
p(X)

p
P(∆Y0t ≤ ∆y|X,Dt = 0)

]
(22)

= E

[
p(X)

p
E[(1−Dt)1{∆Yt ≤ ∆y)}|X,Dt = 0]

]
(23)

= E

[
p(X)

p(1− p(X))
E[(1−Dt)1{∆Yt ≤ ∆y)}|X]

]

= E

[
1−Dt

1− p(X)

p(X)

p
1{∆Yt ≤ ∆y}

]
(24)

where Equation 22 holds by Conditional Distributional Difference in Differences Assumption. Equa-

tion 23 holds by replacing P (·) with E(1{·}) and then multiplying by (1−Dt) which is permitted

because the expectation conditions on Dt = 0. Additionally, conditioning on Dt = 0 allows us to re-

place the potential outcome ∆Y0t with the actual outcome ∆Yt because ∆Yt is the observed change

in potential untreated outcomes for the untreated group. Finally, Equation 24 simply applies the

Law of Iterated Expectations to conclude the proof.

A.2 Proof of Proposition 1

Proof. We are interested in showing that the Copula Stability Assumption holds in the case of

the model in Equation 9 in Proposition 1. First, recall the definition of the copula for the change

in untreated potential outcomes for the treated group and the initial level of untreated potential

outcomes for the treated group.

C∆Y0t,Y0t−1|X,Dt=1(v, w|x) = P
(
F∆Y0t|X,Dt=1(∆Y0t|x) ≤ v,FY0t−1|X|Dt=1(Y0t−1|x) ≤ w|X = x,Dt = 1

)
(25)
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The model that we consider is the following

Y0it = g(Xi, νit) + ht(Xi) +m(Xi, ςi)

which we assume holds for all time periods. We assume that νit|Xi, ςi ∼ Fν(·); we place no

restrictions on the relationship between Xi and ςi, and we allow for the distribution of ςi|Xi to

differ across treated and untreated groups. This implies

FY0t−1|X,Dt=1(y|x) = P(Y0t−1 ≤ y|X = x,Dt = 1)

= P(g(x, νit−1) + ht(x) +m(x, ςi) ≤ y|X = x,Dt = 1)

= Eς,νt−1|X,Dt=1[1{g(x, νt−1) + ht(x) +m(x, ς) ≤ y}|X = x,Dt = 1]

This also implies

FY0t−1|X,Dt=1(Ỹ0t−1|x) = Eς,νt−1|X,Dt=1[1{g(x, νt−1) +m(x, ς) ≤ g(x, ν̃t−1) +m(x, ς̃)}|X = x,Dt = 1]

(26)

and this distribution does not depend on time because the distribution of νt−1 does not change

over time, x does not change over time and the functions g(·) and m(·) do not change over time.

Similarly,

F∆Y0t|X,Dt=1(∆|x) = P(∆Y0t ≤ ∆|X = x,Dt = 1)

= P(g(x, νit)− g(x, νit−1) + ht(x)− ht−1(x) ≤ ∆|X = x,Dt = 1) (27)

= Eς,νt,νt−1|X,Dt=1[1{g(x, νt)− g(x, νt−1) + ht(x)− ht−1(x)} ≤ ∆}|X = x,Dt = 1)]

This implies

F∆Y0t|X(∆Ỹ0t|x) = Eς,νt,νt−1|X,Dt=1[1{g(x, νt)− g(x, νt−1) ≤ g(x, ν̃t)− g(x, ν̃t−1)}|X = x,Dt = 1)]

(28)

which does not depend on time because the conditional distribution of νt does not change over time.

Since neither Equation 26 nor Equation 28 change over time, the Conditional Copula Stability

Assumption holds.

Finally, one can show that

P(∆Y0t ≤ ∆|X = x,Dt = 0) = P(g(x, νit)− g(x, νit−1) + ht(x)− ht−1(x) ≤ ∆|X = x,Dt = 0)

which is equal to Equation 27 because the distribution of (νit, νit−1) is independent of whether or not

an individual is treated or untreated. This implies that the Conditional Distributional Difference

in Differences Assumption holds.

41



A.3 Consistency

Before proving consistency, we state several well known results that are used in the proof.

Lemma 3. Pointwise convergence of empirical distribution function

F̂X(x)
p−→ FX(x)

Lemma 4. Pointwise convergence of empirical quantiles

F̂−1
X (τ)

p−→ F−1
X (τ)

Lemma 5. Uniform convergence of empirical distribution function

sup
x∈X
|F̂X(x)− FX(x)| p−→ 0

Lemma 6. Uniform convergence of empirical quantiles

sup
τ∈[0,1]

|F̂−1
X (τ)− F−1

X (τ)| p−→ 0

Proof. See Athey and Imbens (2006, Lemma A.3)

Lemma 7 and Lemma 8 are helpful to work with empirical distributions and empirical quantiles.

They are used both in the proof of consistency and in the proof of asymptotic normality.

Lemma 7.

√
n

(
1

n

n∑
i=1

1{F̂Y (Xi) ≤ q} −
1

n

n∑
i=1

1{Xi ≤ F̂−1
Y (q)}

)
p−→ 0

Proof. Because Y is continuously distributed,

1

n

n∑
i=1

(
1{F̂Y (Xi) ≤ q} − 1{Xi ≤ F̂−1

Y (q)}
)

=

0 if q ∈ Range(F̂Y )

− 1
n otherwise

which implies the result.

Lemma 8.

√
n

(
1

n

n∑
i=1

1{F̂−1
Z (F̂Y (Xi)) ≤ z} −

1

n

n∑
i=1

1{Xi ≤ F̂−1
Y (F̂Z(z))}

)
p−→ 0
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Proof. F̂−1
Z (F̂Y (Xi)) ≤ z ⇔ F̂Y (Xi) ≤ F̂Z(z) which holds by Van der Vaart (2000, Lemma 21.1(i)).

Then, an application of Lemma 7 implies the result.

Proof of Theorem 1. First, F̂−1
Y1t|Dt=1(τ)

p−→ F−1
Y1t|Dt=1(τ) which follows immediately from Lemma 4.

Second, we show that F̂−1
Y0t|Dt=1(τ)

p−→ F−1
Y0t|Dt=1(τ) separately for the cases when there are

covariates and no covariates.

Case 1: No covariates As a first step, we show that supy |F̂Y0t|Dt=1(y)−FY0t|Dt=1(y)| p−→ 0. To

show this, notice that

sup
y
|F̂Y0t|Dt=1(y)− FY0t|Dt=1(y)| (29)

= sup
y

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
(30)

−E
[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]∣∣∣
≤ sup

y

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
(31)

− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]∣∣∣∣∣
+ sup

y

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
(32)

− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]∣∣∣∣∣
+ sup

y

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
(33)

− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]∣∣∣∣∣
+ sup

y

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
(34)

− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]∣∣∣∣∣
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+ sup
y

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]
(35)

−E
[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]∣∣∣
Next, we show that each of the numbered equations above converges to 0.

Equation 31

sup
y

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
(36)

− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]∣∣∣∣∣
≤ sup

z

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ z}
]

(37)

− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ z}
]∣∣∣∣∣

≤ sup
z
|F̂∆Y0t|Dt=0(z)− F∆Y0t|Dt=0(z)|+ op(1) (38)

where Equation 38 holds by applying Lemma 7, Lemma 8, and Lemma 15 (below), and the result

holds by uniform convergence of empirical distributions as in Lemma 5.

Equation 32

sup
y

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
(39)

− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]∣∣∣∣∣
≤ sup

q∈[0,1]

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(q)}
]
− 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F−1

∆Y0t−1|Dt=1(q)}
]∣∣∣∣∣+ op(1)

(40)

= sup
q∈[0,1]

∣∣∣F∆Y0t−1|Dt=1(F̂−1
∆Y0t−1|Dt=1

(q))− F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(q))
∣∣∣+ op(1) (41)

= sup
q∈[0,1]

∣∣∣f∆Y0t−1|Dt=1(F−1
∆Y0t−1

(q))(F̂−1
∆Y0t−1|Dt=1

(q)− F̂−1
∆Y0t−1|Dt=1

(q))
∣∣∣+ op(1) (42)

≤ sup
q∈[0,1]

∣∣∣f∆Y0t−1|Dt=1(F−1
∆Y0t−1

(q))
∣∣∣ sup
q∈[0,1]

∣∣∣F̂−1
∆Y0t−1|Dt=1

(q)− F̂−1
∆Y0t−1|Dt=1

(q)
∣∣∣+ op(1) (43)

where Equation 42 holds by a Taylor Expansion Equation 43 applies the Cauchy-Schwarz inequality.
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The first term in Equation 43 is bounded from above by assumption while the second term converges

to 0 by Lemma 6.

Equation 33

sup
y

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
(44)

− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]∣∣∣∣∣
≤ sup

y,q∈[0,1]

∣∣∣F̂∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F̂−1

Y0t−1|Dt=1(q)))) (45)

−F̂∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(q))))
∣∣∣

= sup
y,q∈[0,1]

∣∣∣F∆Y0t|Dt=0(y − F̂−1
Y0t−1|Dt=1(q))− F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(q))
∣∣∣+ op(1) (46)

= sup
y,q∈[0,1]

∣∣∣f∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(q))(F̂−1

Y0t−1|Dt=1(q)− F−1
Y0t−1|Dt=1(q))

∣∣∣+ op(1) (47)

≤ sup
∆

∣∣f∆Y0t|Dt=0(∆)
∣∣ sup
q∈[0,1]

∣∣∣F̂−1
Y0t−1|Dt=1(q)− F−1

Y0t−1|Dt=1(q)
∣∣∣+ op(1) (48)

where Equation 46 follows from Lemma 15 (below); Equation 47 is a Taylor expansion of Equa-

tion 46; and Equation 48 follows from an application of the Cauchy-Schwarz inequality. The first

term in Equation 48 is bounded because f∆Y0t|Dt=1(·) is bounded; the second term converges to 0

by Lemma 6.

Equation 34

sup
y

∣∣∣∣ 1n∑1{F−1
∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Yt−1,i)) ≤ y − F−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Yt−2, i))}

− 1

n

∑
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Yt−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Yt−2, i))}

∣∣∣∣
≤ sup

y,z
|F̂∆Y0t−1|Dt=1(F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z))))) (49)

− F̂∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))))|

= sup
y,z
|F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))− F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))|+ op(1)

(50)

= sup
y,z

∣∣∣∣∣−f∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

(F̂Y0t−2|Dt=1(z)− FY0t−2|Dt=1(z))

∣∣∣∣∣+ op(1)

(51)

≤ sup
∆,z

∣∣∣∣∣ f∆Y0t|Dt=0(∆)

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

∣∣∣∣∣ sup
z

∣∣∣F̂Y0t−2|Dt=1(z)− FY0t−2|Dt=1(z)
∣∣∣ (52)
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where Equation 50 holds by an application of Lemma 15 (below). Equation 51 is a Taylor expansion

of Equation 50. Equation 52 applies the Cauchy-Schwarz inequality. The first term is bounded

because f∆Y0t|Dt=0(·) is bounded from above and fY0t−1|Dt=1(·) is bounded away from 0; and the

second term converges to 0 by Lemma 5.

Equation 35

sup
y

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]
−E

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]∣∣∣
converges to 0 by the uniform law of large numbers.

Next, F̂Y0t|Dt=1(y) converges to FY0t|Dt=1(y) uniformly in y implies

F̂Y0t|Dt=1(y)
a.s.−−→ FY0t|Dt=1(y)

for all y. Let V ∼ Φ(·) ≡ N(0, 1). This implies that for q ∈ (0, 1),

Φ(F̂−1
Y0t|Dt=1(q)) = P(F̂Y0t|Dt=1(V ) ≤ q) (53)

Moreover, because F̂Y0t|Dt=1(y)
a.s.−−→ FY0t|Dt=1(y),

P(F̂Y0t|Dt=1(V ) ≤ q) a.s.−−→ P(FY0t|Dt=1(V ) ≤ q) (54)

Then, applying the continuous transformation Φ−1(·) to the left hand side of Equation 53 and to

the right hand side of Equation 54 implies F̂−1
Y0t|Dt=1(τ)

a.s.−−→ F−1
Y0t|Dt=1(τ). The result then follows

by the convergence of F̂−1
Y1t|Dt=1(τ) and Slutsky’s Lemma.

Case 2: Covariates The preceding results will continue to go through provided we show two

additional things (i) sup∆ |F̂∆Y0t|Dt=1(∆)−F∆Y0t|Dt=1(∆)| p−→ 0 and (ii) a result similar to Lemma 8

that allows us to move the empirical quantiles of this distribution to the other side of the inequality

inside of an indicator function.

For (i), notice that

sup
∆
|F̂∆Y0t|Dt=1(∆)− F∆Y0t|Dt=1(∆)|

≤ sup
∆

∣∣∣∣∣ 1n
n∑
i=1

1−Dit

p

p̂(Xi)

1− p̂(Xi)
1{∆Yit ≤ ∆} − 1

n

n∑
i=1

1−Dit

p

p(Xi)

1− p(Xi)
1{∆Yit ≤ ∆}

∣∣∣∣∣ (55)

+ sup
∆

∣∣∣∣∣ 1n
n∑
i=1

1−Dit

p

p(Xi)

1− p(Xi)
1{∆Yit ≤ ∆} − E

[
1−Dt

p

p(X)

1− p(X)
1{∆Yt ≤ ∆}

]∣∣∣∣∣
(56)

46



Notice that Equation 55 is equal to

sup
∆

∣∣∣∣∣ 1n
n∑
i=1

1−Dit

p

(
p̂(Xi)− p(Xi)

(1− p̂(Xi))(1− p(Xi))

)
1{∆Yit ≤ ∆}

∣∣∣∣∣
≤ C sup

x
|p̂(x)− p(x)| p−→ 0

which follows because of the uniform convergence of the estimated propensity score, p is bounded

away from 0 by Assumption 8 , p(·) is bounded away from 1 by Assumption 8, and p̂(·) is bounded

away from 1 with probability 1 by the uniform convergence of the of the estimated propensity

score. The uniform convergence of the propensity score estimated by series logit under identical

conditions to those in the current paper is established in Hirano, Imbens, and Ridder (2003, Lemma

1). Uniform convergence of the propensity score when it is estimated parametrically is guaranteed

by the conditions of Assumption 10.

Equation 56 converges to 0 by the uniform law of large numbers.

For (ii), we first show that

√
n

(
1

n

∑
i=1

1{F̂∆Y0t|Dt=1(Xi) ≤ q} −
1

n

n∑
i=1

1{Xi ≤ F̂−1
∆Y0t|Dt=1(q)}

)
p−→ 0

This follows because∣∣∣∣∣ 1n
n∑
i=1

(
1{F̂∆Y0t|Dt=1(Xi) ≤ q} − 1{Xi ≤ F̂−1

∆Y0t|Dt=1(q)}
)∣∣∣∣∣ ≤ C

n

where C is an arbitrary constant and the result holds because the difference is equal to 0 if q ∈
Range(F̂∆Y0t|Dt=1) and is less than or equal to 1

np ×max
{

p̂(Xi)
1−p̂(Xi)

}
which is less than or equal to C

n

because p̂(·) is bounded away from 0 and 1 with probability 1 and p is greater than 0. This implies

the first part. The main result holds by exactly the same reasoning as Lemma 8.

A.4 Asymptotic Normality

In this section we derive the asymptotic distribution of ˆQTET. We make use of several lemmas

in this section and state these first.

Lemma 9. (i)
√
n(F̂X(x) − FX(x))

d−→ N(0, p(1 − p)) where p = FX(x), and (ii)
√
n(F̂X(x) −

FX(x)) =
√
n
(

1
n

∑n
i=1 1{Xi ≤ x} − E[1{Xi ≤ x}]

)
.

Lemma 10. For 0 ≤ τ ≤ 1, (i)
√
n(F̂−1

X (τ)−F−1
X (τ))

d−→ N
(

0, τ(1−τ)

f2
X(F−1

X (τ))

)
, and (ii)

√
n(F̂−1

X (τ)−

F−1
X (τ)) = 1

fX(F−1
X (τ))

√
n
(

1
n

∑n
i=1 1{Xi ≤ F−1

X (τ)} − E[1{Xi ≤ F−1
X (τ)}]

)
+ op(1)

Proof. See Van der Vaart (2000, pp. 307-308)

Lemma 11. Uniform Convergence of empricial distribution For 0 ≤ δ < 1/2, supx n
δ|F̂X(x) −

FX(x)| p−→ 0
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Lemma 12. Uniform Convergence of empricial quantiles For 0 ≤ δ < 1/2, supq∈(0,1) n
δ|F̂−1

X (q)−
F−1
X (q)| p−→ 0

Lemma 13.
√
n(F̂X(F̂−1

X (τ))− τ)
p−→ 0

Proof. From the definitions of empirical distributions and empirical quantiles, it is easy to see that

0 ≤ F̂X(F̂−1
X (τ))− τ ≤ 1

n which implies the result.

Lemma 14. supx
√
n|F̂X(x)− FX(x)− fX(x)(F̂−1

X (FX(x))− x)| p−→ 0

Proof. The result holds because

F̂−1
X (FX(x))− x = F̂−1

X (FX(x))− F−1
X (FX(x))

=
1

fX(F−1
X (FX(x)))

(
F̂X(F−1

X (FX(x)))− FX(F−1
X (FX(x)))

)
+ op(1/

√
n)

=
1

fX(x)

(
F̂X(x)− FX(x)

)
+ op(1/

√
n)

where the second equality uses Lemma 4.

Lemma 15. For δ > 1/2, y ∈ Y, (y + x) ∈ Y, supx≤n−δ
√
n|F̂Y (y + x) − F̂Y (y) − (FY (y + x) −

FY (y))| p−→ 0.

Proof. This is a special case of Lemma A.5 in Athey and Imbens (2006)

Lemma 16. If fZ(z), fY (y), and ∂fZ
∂z (z) are bounded, then

sup
x

√
n
∣∣∣FZ(F̂−1

Y (F̂X(x)))− FZ(F−1
Y (F̂X(x)))−

{
FZ(F̂−1

Y (FX(x)))− FZ(F−1
Y (FX(x)))

}∣∣∣ p−→ 0

Proof. First, note that by Taylor expansions

FZ(F̂−1
Y (F̂X(x)))− FZ(F−1

Y (F̂X(x))) = fZ(F−1
Y (F̂X(x)))(F̂−1

Y (F̂X(x))− F−1
Y (F̂X(x))) + op(1)

(57)

and

FZ(F̂−1
Y (FX(x)))− FZ(F−1

Y (FX(x))) = fZ(F−1
Y (FX(x)))(F̂−1

Y (FX(x))− F−1
Y (FX(x))) + op(1)

=
(
fZ(F−1

Y (FX(x)))− fZ(F−1
Y (F̂X(x)))

)
(F̂−1

Y (FX(x))− F−1
Y (FX(x)))

+ fZ(F−1
Y (F̂X(x)))(F̂−1

Y (FX(x))− F−1
Y (FX(x)))) + op(1)

(58)
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This implies that

sup
x

√
n
∣∣∣FZ(F̂−1

Y (F̂X(x)))− FZ(F−1
Y (F̂X(x)))−

{
FZ(F̂−1

Y (FX(x)))− FZ(F−1
Y (FX(x)))

}∣∣∣
≤ sup

x

√
n
∣∣∣fZ(F−1

Y (F̂X(x)))
(
F̂−1
Y (F̂X(x))− F−1

Y (F̂X(x)))−
{
F̂−1
Y (FX(x))− F−1

Y (FX(x)))
})∣∣∣

+ sup
x

√
n
∣∣∣(fZ(F−1

Y (FX(x)))− fZ(F−1
Y (F̂X(x)))

)
(F̂−1

Y (FX(x))− F−1
Y (FX(x)))

∣∣∣+ op(1)

(59)

p−→ 0

The first term in Equation 59 converges to 0 because fZ(F−1
Y (F̂X(x))) is bounded by assumption

and Lemma 15 implies
√
n
(
F̂−1
Y (F̂X(x))− F−1

Y (F̂X(x)))−
{
F̂−1
Y (FX(x))− F−1

Y (FX(x)))
})

con-

verges to 0. For the second term, (F̂−1
Y (FX(x)) − F−1

Y (FX(x))) is clearly Op(1/
√
n). The term(

fZ(F−1
Y (FX(x)))− fZ(F−1

Y (F̂X(x)))
)

is also Op(1/
√
n) which can be seen by taking a Taylor

approximation and using the assumptions that fY (y) and ∂fZ
∂z (z) are bounded. This implies the

result.

√
n
(
F̂−1
Y (F̂X(x))− F−1

Y (F̂X(x)))−
{
F̂−1
Y (FX(x))− F−1

Y (FX(x)))
})

=
1

fY (F−1
Y (F̂X(x)))

{
F̂Y (F−1

Y (F̂X(x)))− FY (F−1
Y (F̂X(x)))

}
− 1

fY (F−1
Y (FX(x)))

{
F̂Y (F−1

Y (FX(x)))− FY (F−1
Y (FX(x)))

}

Lemma 17. One Sample V-Statistic

1

n2

n∑
i=1

n∑
j=1

g(Xi, Yj) =
1

n

n∑
i=1

g1(Xi) +
1

n

n∑
i=1

g2(Yi)− µ+ op(1)

where g1(x) = E[g(x, Y )], g2(y) = E[g(X, y)], and µ = E[g(X,Y )].

Lemma 18. Two Sample V-Statistic

1

n1n2

n∑
i∈G1

n∑
j∈G2

g(Xi, Yj) =
1

n1

n1∑
i=1

g1(Xi) +
1

n2

n2∑
i=1

g2(Yi)− µ+ op(1)

where g1(x) = E[g(x, Y )], g2(y) = E[g(X, y)], and µ = E[g(X,Y )].

Proof. The proofs of Lemma 17 and Lemma 18 are omitted as these are well known results. Useful

references are Newey and McFadden (1994, p. 2200), Lee (1990), and Van der Vaart (2000).

Lemma 19. Asymptotic Representation of
√
n
(
P̂ (Y0t ≤ y|Dt = 1)− P (Y0t ≤ y|Dt = 1)

)

49



Let µ̂1, µ̂2, µ̂3, µ̂4, and µ̂5 be defined as in the main text and restated here:15

µ̂1 =
1

nTnC

∑
i∈T

∑
j∈C

1{∆Y0t,j ≤ (y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))}

− F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

≡ 1

nTnC

∑
i∈T

∑
j∈C

φ1(Y0t−2,i,∆Y0t,j)

µ̂2 =
1

n2
T

∑
i∈T

∑
j∈T

1{∆Y0t−1,j ≤ F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1

(Y0t−2,i)))}

− F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))))]

≡ 1

n2
T

∑
i∈T

∑
j∈T

φ2(Yt−2,i,∆Yt−1,j)

µ̂3 =
1

n2
T

∑
i∈T

∑
j∈T

f∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

fY0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))

×
(
1{Y0t−1,j ≤ F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

−FY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

)
≡ 1

n2
T

∑
i∈T

∑
j∈T

φ3(Yt−1,i, Yt−2,j)

µ̂4 =
1

n2
T

∑
i∈T

∑
j∈T

f∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

×
(
1{Y0t−2, j ≤ Y0t−2,i} − FY0t−2|Dt=1(Y0t−2,i)]

)
≡ 1

n2
T

∑
i∈T

∑
j∈T

φ4(Yt−2,i, Yt−2,j)

µ̂5 =
1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]
− E

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}|Dt = 1

]
≡ 1

nT

∑
i∈T

φ5(∆Yt−1,i, Y0t−2,i)

15It should be noted that each µ̂ and µj(·) depends on the value of y. We suppress this dependence throughout
each of the Lemmas
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Then,

√
n
(
P̂ (Y0t ≤ y|Dt = 1)− P (Y0t ≤ y|Dt = 1)− µ̂1 − µ̂2 − µ̂3 − µ̂4 − µ̂5

)
p−→ 0

Proof. To prove the lemma, we add and subtract a number of terms and then show that each term

converges in probability to 0.

√
n
(
P̂ (Y0t ≤ y|Dt = 1)− P (Y0t ≤ y|Dt = 1)− µ̂1 − µ̂2 − µ̂3 − µ̂4 − µ̂5

)
=
√
n

(
1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− E

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}|Dt = 1

]
−µ̂1 − µ̂2 − µ̂3 − µ̂4 − µ̂5) (60)

=
√
n

(
1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− µ̂1

)
(61)

+
√
n

(
1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− µ̂2

)
(62)

+
√
n

(
1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− µ̂3

)
(63)

+
√
n

(
1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]
− µ̂4

)
(64)

+
√
n

(
1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]
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− E
[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}|Dt = 1

]
− µ̂5

)
(65)

Next, we show that Equation 61, Equation 62, Equation 63, and Equation 64 each converge to

0. We analyze each equation in turn.

Equation 61:

Recall

µ̂1 =
1

nTnC

∑
i∈T

∑
j∈C

1{∆Y0t,j ≤ (y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))}

− F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

Next, notice that

=
√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− µ̂1

∣∣∣∣∣
(66)

=
√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ g(Y0t−2,i)}
]

− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ g(Y0t−2,i)}
]
− µ̂1

∣∣∣∣∣ (67)

≤
√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ g(Y0t−2,i)}
]

− 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F̂∆Y0t|Dt=0(g(Y0t−2,i)))}
]∣∣∣∣∣ (68)

+
√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(g(Y0t−2,i)))}
]

− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ g(Y0t−2,i)}
]∣∣∣∣∣ (69)

+
√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F̂∆Y0t|Dt=0(g(Y0t−2,i)))}
]

− 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(g(Y0t−2,i)))}
]
− µ̂1

∣∣∣∣∣ (70)

≤ sup
z

√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ g(z)}
]
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− 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F̂∆Y0t|Dt=0(g(z)))}
]∣∣∣∣∣ (71)

+ sup
z

√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(g(z)))}
]

− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ g(z)}
]∣∣∣∣∣ (72)

+
√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F̂∆Y0t|Dt=0(g(Y0t−2,i)))}
]

− 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(g(Y0t−2,i)))}
]
− µ̂1

∣∣∣∣∣ (73)

≤
√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F̂∆Y0t|Dt=0(g(Y0t−2,i)))}
]

− 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(g(Y0t−2,i)))}
]

− 1

nTnC

∑
i∈T

∑
j∈C

1{∆Y0t,j ≤ g(Y0t−2,i)} − F∆Y0t|Dt=0(g(Y0t−2,i))

∣∣∣∣∣∣ (74)

+
√
n

∣∣∣∣∣∣ 1

nTnC

∑
i∈T

∑
j∈C

[
1{∆Y0t,j ≤ y − F̂−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−1,i))}

−F∆Y0t|Dt=0(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−1,i)))

]
− 1

nTnC

∑
i∈T

∑
j∈C

[
1{∆Y0t,j ≤ y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−1,i))}

−F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−1,i)))

]∣∣∣+ op(1) (75)

≤ sup
z

√
n
∣∣∣F̂∆Y0t−1|Dt=1(F̂−1

∆Y0t−1|Dt=1(F̂∆Y0t|Dt=0(g(z))))

− F̂∆Y0t−1|Dt=1(F̂−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(g(z))))

−
{
F̂∆Y0t|Dt=0(g(z))− F∆Y0t|Dt=0(g(z))

}∣∣∣ (76)

+ sup
z

√
n
∣∣∣F̂∆Y0t|Dt=0(y − F̂−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))

− F∆Y0t|Dt=0(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))

− F̂∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

−F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

∣∣∣+ op(1) (77)

p−→ 0

Equation 71 and Equation 72 converge to 0 by Lemma 7 and Lemma 8, respectively. Equation 76
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converges to 0 by an application of Lemma 13 followed by some simple cancellations. Equation 77

converges to 0 by Lemma 15.

Equation 62: First, recall that

µ̂2 =
1

n2
T

∑
i∈T

∑
j∈T

1{∆Y0t−1,j ≤ F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))}

− F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))))]

Then,

√
n

(
1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− µ̂2

)

≤
√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))))}

]∣∣∣∣∣
−

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))))}

]
− 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))))}

]
− µ̂2

∣∣∣∣∣
(78)

≤ sup
z

√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(g(z)))
]

− 1

nT

∑
i∈T

[
∆Y0t−1,i ≤ F−1

∆Y0t−1|Dt=1
(F∆Y0t|Dt=0(g(z)))

]
− 1

n2
T

∑
i∈T

∑
j∈T

1{∆Y0t−1,j ≤ F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))}

−F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z))))]

∣∣∣+ op(1)

(79)

≤ sup
z

√
n
∣∣∣F̂∆Y0t−1|Dt=1(F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(g(z))))

− F̂∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(g(z))))

−
(
F∆Y0t−1|Dt=1(F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(g(z))))

− F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(g(z))))
)∣∣∣ (80)
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+ sup
z

√
n
∣∣∣F∆Y0t−1|Dt=1(F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(g(z))))

− F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(g(z))))
)

−
(
F∆Y0t−1|Dt=1(F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z))))))

− F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z))))))

)∣∣∣
(81)

+ sup
z

√
n
∣∣∣F∆Y0t−1|Dt=1(F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z))))))

− F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z))))))

)
− F∆Y0t−1|Dt=1(F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

−F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z))))]

∣∣∣+ op(1)

(82)

p−→ 0

where Equation 80 converges to 0 by Lemma 15, Equation 81 converges to 0 by several Taylor

expansions (the result is similar to the proof of Lemma 16), and Equation 82 converges to 0 by

first noticing the following Taylor expansion

√
n
(
F∆Y0t−1|Dt=1(F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))))

−F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))))

)
= f∆Y0t−1|Dt=1(F−1

∆Y0t−1|Dt=1
(F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))))

×
√
n
(
F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z))))

−F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z))))
)

+ op(1)

(83)

and then noting that

√
n
(
F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z))))

−F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z))))
)

=
1

f∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1

(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))))

×
√
n
(
F̂∆Y0t−1|Dt=1(F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))))

−F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

)
(84)

which holds by Lemma 10. Combining Equation 83 and Equation 84 completes the result.
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Equation 63: Recall that

µ̂3 =
1

n2
T

∑
i∈T

∑
j∈T

f∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

fY0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))

×
(
1{Y0t−1,j ≤ F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

−FY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

)
Then,

√
n

(
1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− µ̂3

)

≤
√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))))}

]
− 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))))}

]
− µ̂3

∣∣∣∣∣
≤ sup

z

√
n
∣∣∣F̂∆Y0t−1|Dt=1(F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))))

− F̂∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))))

−
f∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

fY0t−1|Dt=1(FY0t−2|Dt=1(z))

×
(
F̂Y0t−1|Dt=1

(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

−FY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

)∣∣∣ (85)

≤ sup
z

√
n
∣∣∣F̂∆Y0t−1|Dt=1(F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))))

− F̂∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))))

−
(
F∆Y0t−1|Dt=1(F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))))

− F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))))
)∣∣∣

(86)

+ sup
z

√
n
∣∣∣F∆Y0t|Dt=0(y − F̂−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))

− F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))

−
(
F∆Y0t|Dt=0(y − F̂−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

− F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

)∣∣∣ (87)
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+ sup
z

√
n
∣∣∣F∆Y0t|Dt=0(y − F̂−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

− F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

−
f∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

fY0t−1|Dt=1(FY0t−2|Dt=1(z))

×
(
F̂Y0t−1|Dt=1

(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

−FY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

)∣∣∣ (88)

p−→ 0

Equation 88 converges to 0 by Lemma 15. Equation 80 converges to 0 by Lemma 16. For Equa-

tion 87, by a Taylor Expansion,

√
n
(
F∆Y0t|Dt=0(y − F̂−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))− F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

)
= f∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))
√
n
(
F̂−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z))

−F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z))

)
+ op(1) (89)

The result is then obtained by using Lemma 10 on the term

√
n
(
F̂−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z))− F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z))
)

in Equation 89.

Equation 64 Recall that:

µ̂4 =
1

n2
T

∑
i∈T

∑
j∈T

f∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2, i)))

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i)))

×
(
1{Y0t−2, j ≤ Y0t−2,i} − FY0t−2|Dt=1(Y0t−2,i)]

)
Then,

√
n

(
1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]
− µ̂4

)
(90)

≤ sup
z

√
n
∣∣∣F̂∆Y0t−1|Dt=1(F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=1(y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))))

− F̂∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=1(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))))
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−
f∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

×
(
F̂Y0t−2|Dt=1(z)− FY0t−2|Dt=1(z)]

)∣∣∣ (91)

≤ sup
z

√
n
∣∣∣F̂∆Y0t−1|Dt=1(F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=1(y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))))

− F̂∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=1(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))))

−
(
F∆Y0t−1|Dt=1(F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=1(y − F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))))

− F∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=1(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))))
)∣∣∣

(92)

+ sup
z

√
n
∣∣∣F∆Y0t|Dt=1(y − F−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))

− F∆Y0t|Dt=1(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

−
f∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

×
(
F̂Y0t−2|Dt=1(z)− FY0t−2|Dt=1(z)]

)∣∣∣ (93)

p−→ 0

Equation 92 converges to 0 by Lemma 15. For Equation 93, notice that by a Taylor expansion,

√
n
(
F∆Y0t|Dt=1(y − F−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))− F∆Y0t|Dt=1(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

)
= f∆Y0t|Dt=1(y − F−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))

×
√
n
(
F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z))− F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z))
)

+ op(1) (94)

Then, by a second Taylor expansion,

√
n
(
F−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z))− F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z))
)

=
1

fY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

√
n
(
F̂Y0t−2|Dt=1(z)− FY0t−2|Dt=1(z)

)
+ op(1)

(95)

and combining Equation 94 and Equation 95 implies the result.

Equation 72 Since

µ̂5 =

(
1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}

]
−E

[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,i))}|Dt = 1

])
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Equation 72 is equal to 0.

Based on the result of Lemma 19, we need only consider the asymptotic distribution of
√
n(µ̂1 +

µ̂2+µ̂3+µ̂4+µ̂5). Without needing adjustment, the Central Limit Theorem can easily be applied to

µ̂5. µ̂1, µ̂2, µ̂3, and µ̂4 are V-statistics. It is helpful to re-express each of these in an asymptotically

equivalent form using the results of Lemma 17 and Lemma 18.

Lemma 20. Asymptotic Representations of µ̂1, µ̂2, µ̂3, and µ̂4.

Here we use Lemma 17 and Lemma 18 to write the V-statistics µ̂1, µ̂2, µ̂3, and µ̂4 in forms

that the Central Limit Theorem can easily be applied to. Let µj1(x) = E[µj(x, Z)] and µj2(z) =

E[µj(X, z)].
16 Then,

µ̂1 =
1

nC

∑
i∈C

µ12(∆Yt,i) + op(1)

µ̂2 =
1

nT

∑
i∈T

µ22(Yt−2,i) + op(1)

µ̂3 =
1

nT

∑
i∈T

µ31(Yt−1,i) + op(1)

µ̂4 =
1

nT

∑
i∈T

µ42(Yt−2,i) + op(1)

Proof. We show that the result holds for µ̂1. The derivations of the result for µ̂2, µ̂3, and µ̂4 proceed

similarly and are omitted.

µ̂1 =
1

nTnC

∑
i∈T

∑
j∈C

µ1(Y0t−2,i,∆Y0t,j) (96)

=
1

nT

∑
i∈T

µ11(Y0t−2,i) +
1

nC

∑
i∈C

µ12(∆Y0t,i)− E[µ1(Y0t−2,∆Y0t)] + op(1) (97)

=
1

nC

∑
i∈C

µ12(∆Y0t,i) + op(1) (98)

Equation 97 uses Lemma 17. It is easy to show that µ11(x) = 0 and E[µ1(Y0t−2,∆Y0t)] = 0.

Proof of Theorem 5. Let µj(·; y) be the µj(·) used in the previous lemmas with the dependence on

the value of y in P(Y0t < y|Dt = 1) explicit, and likewise for µjk(·; y).

As a first step, notice that

16It should be noted that each of the µjk(·) also depends on the value of y for which P (Y0t ≤ y|Dt = 1) is being
estimated. We suppress this notation here though.
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√
n
(
F̂−1
Y 1t|Dt=1(τ)− F−1

Y1t|Dt=1(τ)
)

=
1

fY1t|Dt=1(F−1
Y1t|Dt=1(τ))

√
n

(
1

nT

∑
i∈T

1{Y1t ≤ F−1
Y1t|Dt=1(τ)} − τ

)
(99)

≡ 1

fY1t|Dt=1(F−1
Y1t|Dt=1(τ))

√
n

(
1

nT

∑
i∈T

ψ(Y1t,i;F
−1
Y1t|Dt=1(τ))

)
(100)

Second, based on Lemma 19 and Lemma 2017

√
n
(
F̂−1
Y0t|Dt=1(τ)− F−1

Y0t|Dt=1(τ)
)

=
1

fY0t|Dt=1(F−1
Y0t|Dt=1(τ))

√
n
(
F̂Y0t|Dt=1(F−1

Y0t|Dt=1(τ))− FY0t|Dt=1(F−1
Y0t|Dt=1(τ))

)
+ op(1)

=
1

fY0t|Dt=1(F−1
Y0t|Dt=1(τ))

√
n

(
1

nC

∑
i∈C

µ12(∆Yt,i;F
−1
Y0t|Dt=1(τ))

+
1

nT

∑
i∈T

µ22(∆Yt−1,i;F
−1
Y0t|Dt=1(τ)) +

1

nT

∑
i∈T

µ32(Yt−1,i;F
−1
Y0t|Dt=1(τ))

+
1

nT

∑
i∈T

µ42(Yt−2,i;F
−1
Y0t|Dt=1(τ)) +

1

nT

∑
i∈T

µ5(∆Yt−1,i, Y0t−2,i;F
−1
Y0t|Dt=1(τ))

)
+ op(1)

(101)

where, as defined in the text,

µ12(z; y) = E
[
1{z ≤ (y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))}

−F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))|Dt = 1

]
µ22(z; y) = E

[
1{z ≤ F−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))))}

−F∆Y0t|Dt=0(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))|Dt = 1

]
µ32(z; y) = E

[
f∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))

fY0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))
×
(
1{z ≤ F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))}

−FY0t−1|Dt=1(F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))

)
|Dt = 1

]
µ42(z; y) = E

[
f∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))

fY0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))
×
(
1{z ≤ Y0t−2} − FY0t−2|Dt=1(Y0t−2)

)
|Dt = 1

]
µ5(z1, z2; y) = 1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(z1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z2))}

− E
[
1{F−1

∆Y0t|Dt=0(F∆Y0t−1|Dt=1(z1)) ≤ y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z2))}|Dt = 1

]
17It should be noted that fY0t|Dt=1(y) and F−1

Y0t|Dt=1(τ) are identified because FY0t|Dt=1(y) is identified.
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and

fY0t|Dt=1(y) =

∫
Y0t−2|Dt=1

f∆Y0t−1,Y0t−2|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(v)))), v)

×
f∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(v)))

f∆Y0t−1|Dt=1(F−1
∆Y0t−1|Dt=1(F∆Y0t|Dt=0(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2)))))
dv

Since

√
n
(

ˆQTET(τ)−QTET(τ)
)

=
√
n
(
F̂−1
Y1t|Dt=1(τ)− F−1

Y1t|Dt=1(τ)
)
−
√
n
(
F̂−1
Y0t|Dt=1(τ)− F−1

Y0t|Dt=1(τ)
)

=
√
n

{
1

fY1t|Dt=1(F−1
Y1t|Dt=1(τ))

1

p

1

n

n∑
i=1

Dtψ(Y1t,i;F
−1
Y1t|Dt=1(τ))

+
1

fY0t|Dt=1(F−1
Y0t|Dt=1(τ))

1

1− p
1

n

n∑
i=1

(1−Dt)µ12(∆Yt,i;F
−1
Y0t|Dt=1(τ))

+
1

fY0t|Dt=1(F−1
Y0t|Dt=1(τ))

1

p

1

n

n∑
i=1

Dt

(
µ22(∆Yt−1,i;F

−1
Y0t|Dt=1(τ))

+µ32(Yt−1,i;F
−1
Y0t|Dt=1(τ)) + µ42(Yt−2,i;F

−1
Y0t|Dt=1(τ))

+µ5(∆Yt−1,i, Y0t−2,i;F
−1
Y0t|Dt=1(τ))

)}
the result then follows from an application of the Central Limit Theorem.

Asymptotic Normality of propensity score reweighted estimator This section shows that

the estimate of the QTET is still
√
n-asymptotically normal when the Distributional Difference in

Differences assumption is made conditional on covariates. Under this variation, the only distribution

that changes is F∆Y0t|Dt=1(∆y) which is now given by E
[

1−Dt
1−p(X)

p(X)
P (Dt=1)1{∆Yt ≤ ∆y}

]
instead of

replaced directly by the distribution of the change in untreated outcomes for the untreated group.

We provide an asymptotically linear representation of this distribution which can easily be combined

with the previous results to show asymptotic normality.

We consider two cases that are likely to be most useful to empirical researchers: (i) when the

propensity score is known up to a finite number of parameters, and (ii) when the propensity score is

estimated nonparametrically using a series logit estimator as in Hirano, Imbens, and Ridder (2003).

We also have results (available upon request) that provides the conditions and proof of asymptotic

normality when the propensity score is semiparametrically using the method of Klein and Spady

(1993).

Proof of Theorem 7. At a high level, almost all of the proof of Theorem 5 carries over to Theorem 7).
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Only Equation 61 and µ̂1 need to be changed. As a first step, we find an asymptotically linear

representation of
√
n(F̂∆Y0t|Dt=1(∆) − F∆Y0t|Dt=1(∆)). Then, we show how this result can be

combined with previous results to show asymptotic normality of the estimate of the QTET. When

the propensity score is estimated nonparametrically,

√
n(F̂∆Y0t|Dt=1(∆y)− F∆Y0t|Dt=1(∆y))

=
√
n

(
1

nC

(1− p)
p

∑
i∈C

p(Xi)

(1− p(Xi))
1{∆Yti ≤ ∆y} − E

[
(1− p)
p

p(X)

(1− p(X))
1{∆Yt ≤ ∆y}|Dt = 0

])

+
√
n

(
1

n

n∑
i=1

E[1{∆Yit ≤ ∆y|X = Xi, Dt = 0}]
p(1− p(Xi))

(Dti − p(Xi))

)
+ op(1)

≡
√
n

(
1

nC

(1− p)
p

∑
i∈C

ΨN1(Zi; ∆y) +
1

n

n∑
i=1

ΨN2(Zi; ∆y)

)

which follows using the results in Hirano, Imbens, and Ridder (2003) with 1{∆Yt ≤ ∆} replacing

Yt in their model. The first line is the variance that would obtain if p(x) were known. The second

line gives the additional variance that comes from estimating p(x).

When the propensity score is estimated parametrically,

√
n(F̂∆Y0t|Dt=1(∆y)− F∆Y0t|Dt=1(∆y))

=
√
n

(
1

nC

(1− p)
p

∑
i∈C

G(X>i ζ0)

(1−G(X>i ζ0))
1{∆Yti ≤ ∆y} − E

[
(1− p)
p

G(X>ζ0

(1−G(X>ζ0)
1{∆Yt ≤ ∆y}|Dt = 0

])

+
√
n

(
1

n

n∑
i=1

EY0t−2|Dt=1

{
E

[
1

1−G(X>ζ0)

(
1 +

G(X>ζ0)

1−G(X>ζ0)

)
×1{∆Yt ≤ y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=2(Y0t−2))}g(X>ζ0)X>|Dt = 0
]

×E

[(
D −G(X>ζ0)

G(X>ζ0)(1−G(X>ζ0))

)2

g(X>ζ0)2XX>

]

× Dit −G(X>i ζ0)

G(Xi, ζ0)(1−G(X>i ζ0))
g(X>i ζ0)

})
≡
√
n

(
1

nC

(1− p)
p

∑
i∈C

ΨP1(Zi; ∆y) +
1

n

n∑
i=1

ΨP2(Zi; ∆y)

)

Let18

µ̂1N =
√
n

1

nCnT

(1− p)
p

∑
i∈C

∑
j∈T

ΨN1(Zi; y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,j)))

+
√
n

1

n2

n∑
i=1

n∑
j=1

Dtj

p
ΨN2(Zi; y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,j)))

18We show the remainder of the proof only for the nonparametric case; the argument for the parametric case is
the same with ΨP1(·, ·) replacing ΨN1(·, ·) and ΨP2(·, ·) replacing ΨN2(·, ·).
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where ΨN1 and ΨN2 are defined above.

Starting from Equation 61 except with F̂
−1
∆Y0t|Dt=0(·) replaced by the propensity score reweighted

F̂
−1
∆Y0t|Dt=1(·),

√
n

(
1

nT

∑
i∈T

[
1{F̂−1

∆Y0t|Dt=1(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− 1

nT

∑
i∈T

[
1{F−1

∆Y0t|Dt=1(F̂∆Y0t−1|Dt=1(∆Y0t−1,i)) ≤ y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(Y0t−2,i))}

]
− µ̂1N

)

≤ sup
z

√
n

∣∣∣∣∣ 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F̂∆Y0t|Dt=1(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z))))}

]
− 1

nT

∑
i∈T

[
1{∆Y0t−1,i ≤ F̂−1

∆Y0t−1|Dt=1(F∆Y0t|Dt=1(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z))))}

]
− 1

nC

(1− p)
p

∑
i∈C

ΨN1(Zi; y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

+
1

n

n∑
i=1

ΨN2(Zi; y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

∣∣∣∣∣+ op(1)

≤ sup
z

√
n
∣∣∣F̂∆Y0t|Dt=1(y − F̂−1

Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))

− F∆Y0t|Dt=1(y − F̂−1
Y0t−1|Dt=1(F̂Y0t−2|Dt=1(z)))

−
(
F̂∆Y0t|Dt=1(y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

− F∆Y0t|Dt=1(y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(z)))

)∣∣∣+ op(1)

which converges to 0 based on Lemma 15.

Finally, working with µ̂1N , and using the result of Lemma 17 and Lemma 18, one can show that

1

nCnT

(1− p)
p

∑
i∈C

∑
j∈T

ΨN1(Zi; y − F−1
Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,j)))

=
1

nC

(1− p)
p

∑
i∈C

EY0t−2|Dt=1

[
ΨN2(Zi; y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))
]

+ op(1)

≡ µ̂1Ca + op(1)

1

n2

n∑
i=1

n∑
j=1

Dtj

p
ΨP2(Zi; y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2,j)))

=
1

n

n∑
i=1

EY0t−2|Dt=1

[
ΨP2(Zi; y − F−1

Y0t−1|Dt=1(FY0t−2|Dt=1(Y0t−2))
]

+ op(1)

≡ µ̂1Cb + op(1)
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This implies that
√
n(F̂Y0t|Dt=1(y) − FY0t|Dt=1(y)) =

√
n (µ̂1Ca + µ̂1Cb + µ̂2 + µ̂3 + µ̂4 + µ̂5) +

op(1). And the result follows using the same ideas of the case with no covariates but with µ̂1Ca+µ̂1Cb

substituted for µ̂1.
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B Tables

Table 1: Summary Statistics

Treated Randomized Observational
mean sd mean sd nd mean sd nd

RE 1978 6.35 7.87 4.55 5.48 0.19 21.55 15.56 − 0.87
RE 1975 1.53 3.22 1.27 3.10 0.06 19.06 13.60 − 1.25
RE 1974 2.10 4.89 2.11 5.69 0.00 19.43 13.41 − 1.21
Age 25.82 7.16 25.05 7.06 0.08 34.85 10.44 − 0.71
Education 10.35 2.01 10.09 1.61 0.10 12.12 3.08 − 0.48
Black 0.84 0.36 0.83 0.38 0.03 0.25 0.43 1.05
Hispanic 0.06 0.24 0.11 0.31 − 0.12 0.03 0.18 0.09
Married 0.19 0.39 0.15 0.36 0.07 0.87 0.34 − 1.30
No Degree 0.71 0.46 0.83 0.37 − 0.21 0.31 0.46 0.62
Unemployed in 1975 0.60 0.49 0.68 0.47 − 0.13 0.10 0.30 0.87
Unemployed in 1974 0.71 0.46 0.75 0.43 − 0.07 0.09 0.28 1.16

Notes: RE are real earnings in a given year in thousands of dollars. ND denotes the normal-
ized difference between the Treated group and the Randomized group or Observational group,
respectively.
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Table 2: QTET Estimates for Job Training Program

0.7 Diff 0.8 Diff 0.9 Diff ATT Diff

PanelQTET Method

PanelQTET SL 3.21∗ 1.40 5.80∗ 3.53∗ 7.25∗ 4.05∗ 2.96∗ 1.16
(1.35) (1.34) (1.11) (1.23) (2.40) (1.75) (1.02) (0.97)

PanelQTET Cov 1.46 −0.34 2.59∗ 0.32 2.45 −0.74 3.09∗ 1.29∗

(1.44) (1.22) (1.22) (1.43) (2.28) (1.51) (0.72) (0.55)

PanelQTET UNEM 3.32∗ 1.51 5.80∗ 3.53∗ 7.92∗ 4.72∗ 3.23∗ 1.44
(1.43) (1.37) (1.17) (1.24) (2.15) (1.54) (0.96) (0.83)

PanelQTET No Cov −0.77 −2.57∗ 0.58 −1.69 −0.25 −3.45∗ 2.33∗ 0.53
(1.27) (0.98) (0.99) (1.10) (2.09) (1.24) (0.70) (0.44)

Conditional Independence Method

CI SL 4.52∗ 2.71∗ 6.03∗ 3.76∗ 4.98 1.78 1.16 −0.63
(1.47) (1.19) (1.92) (1.84) (4.00) (3.25) (1.13) (1.04)

CI Cov −5.13∗ −6.93∗ −6.97∗ −9.25∗ −10.54∗ −13.74∗ −4.70∗ −6.50∗

(1.23) (1.14) (1.40) (1.48) (2.64) (2.02) (0.94) (0.77)

CI UNEM 3.45∗ 1.64 5.14∗ 2.87 4.24 1.04 0.02 −1.77
(1.40) (1.22) (1.54) (1.53) (3.22) (2.48) (1.16) (0.99)

CI No Cov −19.19∗ −20.99∗ −20.86∗ −23.14∗ −23.87∗ −27.07∗ −15.20∗ −17.00∗

(0.89) (0.75) (0.92) (1.08) (1.92) (1.12) (0.69) (0.49)

Change in Changes

CiC Cov 3.74∗ 1.94 4.32∗ 2.04 5.03∗ 1.84 3.84∗ 2.05∗

(0.88) (1.01) (1.02) (1.23) (1.54) (1.76) (0.81) (0.53)

CiC UNEM 0.37 −1.44 1.84 −0.43 2.09 −1.10 1.92∗ 0.13
(1.31) (1.35) (1.43) (1.45) (2.02) (1.96) (0.76) (0.49)

CiC No Cov 8.16∗ 6.36∗ 9.83∗ 7.56∗ 10.07∗ 6.87∗ 5.08∗ 3.29∗

(0.80) (0.60) (1.04) (1.08) (2.57) (1.97) (0.69) (0.40)

Quantile D-i-D

QDiD Cov 2.18∗ 0.37 2.85∗ 0.58 2.45 −0.75 2.48∗ 0.69
(0.71) (0.91) (0.97) (1.23) (1.59) (1.77) (0.75) (0.56)

QDiD UNEM 1.10 −0.70 2.66∗ 0.39 2.35 −0.84 2.40∗ 0.60
(1.13) (1.21) (1.26) (1.34) (1.87) (1.92) (0.74) (0.56)

QDiD No Cov 4.21∗ 2.41∗ 4.65∗ 2.38∗ 4.90∗ 1.70 1.68∗ −0.11
(0.97) (0.87) (1.09) (1.04) (2.05) (1.31) (0.79) (0.61)

Mean D-i-D

MDiD Cov 3.09∗ 1.29 3.74∗ 1.47 4.80∗ 1.60 2.33∗ 0.53
(0.67) (0.85) (0.94) (1.20) (1.46) (1.66) (0.70) (0.44)

MDiD UNEM 2.41∗ 0.61 4.17∗ 1.90 4.85∗ 1.65 2.33∗ 0.53
(1.14) (1.21) (1.22) (1.30) (1.78) (1.79) (0.70) (0.44)

MDiD No Cov 4.47∗ 2.67∗ 5.58∗ 3.31∗ 6.65∗ 3.46∗ 2.33∗ 0.53
(0.88) (0.74) (0.90) (0.94) (2.01) (1.11) (0.70) (0.44)

Experimental 1.80 2.27∗ 3.20 1.79∗

(0.93) (1.13) (2.04) (0.69)

Notes: This table provides estimates of the QTET for τ = c(0.7, 0.8, 0.9) using a variety of methods on the observational dataset.
The reported estimates are in real terms and in 1000s of dollars. The columns labeled ‘Diff’ provide the difference between
the estimated QTET and the QTET obtained from the experimental portion of the dataset. The columns identify the method
(PanelQTET, CI, CiC, QDiD, or MDiD) and the set of covariates ((i) SL: Series Logit estimates of the propensity score (these
specifications are slightly different as the CI method can condition on lags of real earnings while the PanelQTET does not include
lags of real earnings as covariates; more details of method in text) (ii) COV: Age, Education, Black dummy, Hispanic dummy,
Married dummy, and No HS Degree dummy; (iii) UNEM: all covariates in COV plus Unemployed in 1975 dummy and Unemployed
in 1974 dummy (iv) NO COV: no covariates). The PanelQTET model and the CI model use propensity score re-weighting
techniques based on the covariate set. The CiC, QDiD, and MDiD method “residualize” (as outlined in the text) the outcomes
based on the covariate set; the estimates come from using the no covariate method on the “residualized” outcome. Standard errors
are produced using 100 bootstrap iterations. The significance level is 5%.
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