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Abstract

This paper studies a dynamic model of a fee-for-service healthcare system in which

healthcare providers attract patients by prescribing antibiotics. Using antibiotics lim-

its antibiotic-treatable infections, but causes the development of antibiotic-resistant

infections. The focus of the paper is the optimal market structure of healthcare

providers given the competing, dynamic externalities from antibiotic use. The pa-

per demonstrates a ‘Goldilocks’ effect. A perfectly competitive market for providers

over-prescribes antibiotics relative to the planner because providers do not fully bear

the cost of antibiotic-resistant infections. At the other end of the industrial organi-

zation spectrum, a patient monopolist provider under-prescribes antibiotics in order

to increase the level of treatable infection. This is because while infection is a ‘bad’

for society, infection is a ‘good’ for a provider of antibiotics under a fee-for-service

regime. The main result of the paper is that due to more moderate antibiotic use than

perfect competition or monopoly, oligopolistic competition can be the optimal market

structure. The paper then turns to policy analysis and shows that a state-dependent

quota/subsidy scheme can incentivize a perfectly competitive market to implement the

planner’s solution. Should implementing the scheme be infeasible, the paper demon-

strates how the model can be used for constrained policy analysis.
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1 Introduction

Antibiotics have long been a boon to human well-being by fighting infection. However, us-

ing antibiotics also causes the development of antibiotic-resistant infections. (Levy, 1992;

Seppälä et al, 1995). While antibiotic use has tempered the current level of treatable

infection, antibiotic-resistant infections have grown to become a costly public health prob-

lem.1 The Center for Disease Control and Prevention goes so far as to say “antimicrobial

resistance is one of our most serious health threats.”2 Understanding how economic incen-

tives affect antibiotic use and the infection/resistance balance is a problem of first-order

importance.

This paper studies the incentives of healthcare providers who prescribe antibiotics in a

fee-for-service healthcare system. I propose a model in which providers attract patients to

pay a fee by prescribing antibiotics. This component of the provider-patient relationship is

a natural one to focus on, as numerous studies have found that patients frequently request

antibiotics from providers and that providers comply in order to keep patients satisfied

(Bauchner et al 1999; Stivers 2005).

The main purpose of the model is to investigate how competition among providers affects

social welfare. There is significant variation in the market concentration of healthcare

providers across counties in the United States (Schneider et al 2008). More concentrated

markets for providers have been linked empirically to more frequent antibiotic use than

less concentrated markets (Bennet et al 2014). However, given the competing, dynamic

effects of antibiotic use on treatable and resistant infection, the optimal market structure of

healthcare providers is an open question. This paper develops a framework to understand

the welfare implications of a fee-for-service healthcare system and provider competition

taking into account the dynamic epidemiological effects of antibiotic use.

The framework has an epidemiological component and an economic component. The epi-

demiological component describes how infection evolves in response to antibiotic use and

the economic component describes how provider and patient behavior determine antibiotic

use.

The epidemiological component is an off-the-shelf dynamic model of an infection that

has two strains: an antibiotic-treatable strain and an antibiotic-resistant strain. The two

strains compete for resources (healthy bodies) in the ecosystem. When a patient infected

1See, for example, Klevens et al (2007) and Roberts et al (2009).
2Antibiotics Resistance Threats in the United States, 2013 http://www.cdc.gov/drugresistance/threat-

report-2013/pdf/ar-threats-2013-508.pdf
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with treatable bacteria takes the antibiotic, the patient raises his probability of recovery.

The patient is then less likely to infect other healthy agents. However, by removing a

source of competition for the resistant bacteria, the patient’s use of the antibiotics allows

the resistant bacteria to grow and spread at a faster rate in the future.

Below I display the evolution of Penicillin-treatable and Penicillin-resistant invasive Strep-

toccocus Pneumoniae infections in Baltimore City, Maryland and the Nashville-Davidson

region of Tennessee from 2003-2009.3

Invasive Streptococcus Pneumoniae Dynamics

(a) Baltimore City (b) Nashville-Davidson

Baltimore City, featured on the left, displays patterns typical from antibiotic use: a de-

crease in the rate of treatable infections and an increase in the rate of resistant infections.

Nashville-Davidson, on the other hand, displays the opposite pattern: an increase in the

rate of treatable infections and a decrease in the rate of resistant infections. Interest-

ingly, in 2001, Nashville-Davidson started a social campaign to reduce antibiotic use.4 The

graphs highlight competition between the resistant and treatable infections for resources:

one strain of the infection grows at the expense of the other. It is this competition be-

tween the resistant and treatable infections, crucially affected by antibiotic use, that the

epidemiological component seeks to capture.

The economic component is a model of the provider-patient matching process. Providers

3I thank Dr. David Blythe and the Maryland Department of Health and Mental Hygiene for access to

the Baltimore City data. The Tennessee data is available online at: http://health.tn.gov/Ceds/WebAim/
4http://health.state.tn.us/ceds/Antibiotics/index.htm
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choose how frequently to prescribe antibiotics for their patients and patients choose whether

to see a provider and which provider to see. Patients gain utility from a provider’s antibiotic

prescription behavior, the current effectiveness of the antibiotic (i.e. the proportion of

treatable infection to total infection), and some idiosyncratic component related to the

quality of their match with a provider. Patients choose whether or not to pay a fixed

fee to see their most preferred provider, ignoring the external effects of their antibiotic

use on infection and resistance. Providers choose a prescription rate to maximize profits,

given the behavior of other providers and patients, internalizing their own effect on the

future levels of infection and resistance. Provider and patient behavior together determine

the aggregate amount of antibiotic use, which is then embedded into the epidemiological

model.

The fully fleshed model is a variant of the resource extraction “fish war” model, where

treatable infection is a scarce resource that gets extracted as providers treat patients with

antibiotics. In the classic extraction models a la Levhari and Mirman (1980), though,

the social objective is to extract the resource so as to maximize the lifetime utility from

consumption. In the set-up here, the social goal is to use antibiotics to extract the treatable

disease so as to minimize the lifetime disutility from total infection, taking into account

the effect that extracting the treatable infection accelerates the growth of the resistant

infection. A key feature of the model is that, due to the crowding out effect that the

treatable infection has on the resistant infection, the socially optimal level of the treatable

infection will not be zero. At the same time, due to the beneficial effects of antibiotic use,

the socially optimal level of the resistant infection will not be zero either.

Due to the idiosyncratic utility shocks, providers sell differentiated products to patients.

This allows for the model to study antibiotic provision under any number of providers.

I first study the case in which the number of providers tends to infinity, a perfectly com-

petitive market. When the market is competitive, providers have a negligible effect on

the evolution of the system and no incentive to conserve the treatable infection. This in-

centivizes providers to perpetually over-prescribe antibiotics in order to attract as many

patients in the current period as possible. While this can initially be a boon for society

as treatable infection quickly falls, the resistant infection grows at a quicker rate than is

socially optimal, eventually leading to a loss for society.

Interestingly, over-use by a competitive market does not always hold. This is because in

order to be prescribed antibiotics, a patient must be willing to pay the fee to be seen by a

healthcare provider. At low levels of antibiotic efficacy, depending on the parameter values

of the model, a patient may choose to forego purchasing healthcare because the expected
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private benefit is below the healthcare fee. However, purchasing healthcare would be

socially beneficial due to the potentially decreased spread of treatable infection.

At the other end of the industrial organization spectrum, I show that a patient monopolist

under-prescribes antibiotics relative to the planner. This increases profit along two margins

for the monopolist. First, the monopolist maintains a higher antibiotic effectiveness, which

increases the value of the monopolist’s product and, in the long run, induces more patients

to pay the fee. Second, the monopolist can maintain a perpetually higher total level of

infection than the social planner desires, which results in a larger pool of potential fee-

payers. The paper gives sufficient conditions for a monopolist to maintain a steady-state

characterized by an undesirably high level of infection.

Increasing the level of competition from monopoly to duopoly generates a steady-state

with a lower level of infection. Competition for patients induces the duopolist’s to pre-

scribe antibiotics more frequently than the monopolist, leading to a steady-state that yields

strictly lower treatable infection and higher welfare than the monopolist’s steady-state. As

the market structure becomes increasingly competitive, though, antibiotics can become

over-prescribed. Using numerical analysis, I show that social welfare as a function of the

number of providers can take on an inverted U-shape (illustrated below). That is, social

welfare can initially increase as the market becomes more competitive from monopoly, peak

at some level of oligopolistic competition, and then decrease as the market moves towards

perfect competition. Oligopolistic competition can thus be the optimal market structure.
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This “Goldilocks” effect - the concept that an intermediate value is preferable to either

of the extremes - arises because fee-for-service rewards patient volume. At low levels of

competition, this aspect of fee-for-service incentivizes providers to use their market power

to manipulate the states to increase the number of patients willing to pay the fee. This

is accomplished by under-prescribing antibiotics to prevent the growth of the resistant

infection and encourage the growth of the treatable infection.

At high levels of competition, the reward for patient volume incentives providers who lack

any market power to attract as many patients as possible in the current period. This

leads to over-prescribtion of antibiotics that, while it quickly limits the treatable infection,

encourages quick long-run growth of the resistant infection.

An intermediate level of competition creates a better incentive structure for providers to

trade off limiting the growth of the treatable infection in the current and limiting the growth

of the resistant infection in the future. This is because an intermediate level of competition

prevents providers from letting treatable infection grow as a monopolist would, but gives

enough of a stake in the future that providers would not drive down the treatable infection

as quickly as a perfectly competitive market would, thus slowing the growth of the resistant

infection.

The model has several policy implications. First, I show that a state-dependent quota/subsidy

scheme can incentivize a perfectly competitive market to implement the socially optimal

solution. The quota is a cap on providers’ prescription rates. The subsidy lowers the

price of the provider service for a patient. The state-dependent quota/subsidy puts a cap

on providers’ prescription rate, which prevents over-use, while ensuring that patients al-

ways find it individually rational to be seen by a provider. Second, if implementing the

state-dependent quota/subsidy is infeasible due to complexity or commitment problems,

the model can serve as a tool to evaluate second-best policy alternatives. I show how the

model can be used to compare two policies: a licensing regime and a state-invariant quota

on competitive providers’ prescription behavior.

The paper makes two primary contributions to the economics literature on antibiotic re-

sistance (which is discussed in detail in Section 2). First, it provides a novel dynamic

model of antibiotics provision under imperfect competition. The model illuminates new

results about the optimality of oligopolistic competition and generalizes results previously

discussed in the literature.

Second, the paper provides a characterization of optimal policy in a dynamic model of

infection and resistance which has market provision of antibiotics. In case implementing

the optimal policy is infeasible, the paper gives a framework for constrained policy analysis.
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The rest of the paper will proceed as follows: Section 2 discusses the related literature.

Section 3 presents the epidemiological model of infection and antibiotic resistance and

the economic model of provider competition. Section 4 presents the results of the model.

Section 5 analyzes public policy. Section 6 concludes. For ease of exposition, all proofs can

be found in Appendix A.

2 Related Literature

There exists an economics literature on infection and antibiotic resistance. Layton and

Brown (1996) first formalize the competing externalities from antibiotic use. Laxminarayan

and Brown (2001) and Laxminarayan and Weitzman (2002) look at the optimal use of an-

tibiotics in a variety of settings. Recently, attention has turned to how markets allocate

antibiotics. Elbasha (2003) estimates a static model of market provision of antibiotics.

Tisdell (1982) is an early contribution of a stylized two period model in which a com-

petitive market over-uses an antibiotic-like good relative to the planner. Herrmann and

Gaudet (2009) extend the analysis to an infinite-horizon model of infection and resistance.

Mechoulan (2007) uses numerical simulations to show that a monopolist can settle into

a steady-state with a positive level of infection whereas a planner may prefer to use an-

tibiotics to achieve full eradication of the disease. Finally, Herrmann (2010) studies the

pricing behavior of a pharmaceutical company that produces an antibiotic that is tem-

porarily protected by a patent after which pharmaceutical companies have open-access to

the antibiotic.

Herrmann and Gaudet (2009) is the closest to the present paper. They study an environ-

ment with market demand for antibiotics given by a demand curve that gets supplied by

competitive pharmaceutical companies. The analysis here focuses on the patient-provider

matching process, which allows for the study of antibiotic provision under imperfect market

competition. This is an important gap to fill in the literature because, as the paper shows,

oligopolistic competition can be the optimal market structure. The paper also generalizes

results discussed in the aforementioned literature. For example, this paper finds conditions

for which a sufficiently patient monopolist has an undesirably high steady-state level of

infection, a broad extension of the results found in Mechoulan (2007).

The literature has started examining public policy responses to antibiotic resistance. El-

basha (2003) describes the optimal tax in a static model of market provision of antibiotics.

Herrmann et al (2014) study optimal tax schemes in a dynamic environment with mar-

ket provision of multiple antibiotic-like goods, but in which use of the good only causes
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a negative externality. This paper contributes to this strand of the literature by giving a

characterization of optimal policy in a dynamic model of infection and resistance.

3 The Model

The model is infinite-horizon and in discrete time. There are two components: an epi-

demiological component describing how disease evolves in response to antibiotic use and

an economic component describing how provider and patient behavior determine antibiotic

use. Each are considered in turn.

3.1 Epidemiological Component

The model of infection and antibiotic resistance is based on the Susceptible - Infected

- Susceptible model of disease transmission (Kermack and McKendrick 1927). Related

models of antibiotic resistance have appeared in the epidemiological literature such as

Bonhoeffer et al (1997), Débarre et al (2009), and Porco et al (2012) as well as in the

economics literature such as Herrmann and Gaudet (2009) and Laxminarayan and Brown

(2001).

Resistant and non-resistant bacteria compete for resources (healthy bodies) in the ecosys-

tem. When a patient infected with non-resistant bacteria takes the antibiotic, the patient

raises his probability of recovery. The patient is then less likely to infect other healthy peo-

ple. However, by removing a source of competition for the resistant bacteria, the patient’s

use of the antibiotics allows the resistant bacteria to grow and spread at a faster rate in

the future. This is referred to as the ‘natural selection’ effect in the literature.

There is a society of measure one. Agents in the society cycle between being susceptible to

an infection (S) and being infected (I). There is one class of infection and one antibiotic

available to treat the infection. Infected agents have a strain that is either treatable by

antibiotics or a strain of the infection that is resistant to antibiotics. Let ITt denote the

measure of agents infected with the treatable version of the infection and IRt denote the

measure of agents infected with the resistant version of the infection at time t.

Antibiotic effectiveness, E, is defined as the ratio of treatable disease to total disease in

society. This the probability that, conditional on being infected, an agent is infected with

the treatable strain of the infection.
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Et =
ITt

ITt + IRt
(1)

Both strains of the infection are equally contagious. The measure of new treatable infections

at time t+ 1 is given by βITt St. Similarly, the measure of new resistant infections at t+ 1

is given by βIRt St. The parameter β reflects the contagiousness of the disease.5

Patients recover naturally from the infection with some probability. Let pT denote the

probability that a patient infected with the treatable disease recovers. Let pR denote

the probability that a patient infected with the resistant disease recovers. If a patient is

infected with the treatable disease and takes the antibiotic, then they have an increase in

their recovery probability of pA, for a total recovery probability of pT + pA.

I assume that pT < pR < pT + pA. This means that patients who are infected with the

treatable disease and are treated with antibiotics are more likely to recover than patients

who are infected with the resistant disease or the treatable disease and are untreated.

Patients who are infected with the resistant version of the disease are more likely to recover

than patients who are infected with the treatable version and are not treated. I define

∆p ≡ pR−pT . ∆p captures what is referred to as the ‘fitness cost of resistance’. Pathogens

have resistance to antibiotics at some cost to the pathogen that allows non-resistant bacteria

to outcompete resistant bacteria “if the selective pressure from antibiotics is reduced”

(Anderson and Hughes 2010).

I denote the fraction of the infected population that is treated with antibiotics at time t

by Ft. The law of motion describing the evolution of treatable disease is given by:

ITt+1 = ITt [1 + βSt − pT − pAFt] (2)

The law of motion describing the evolution of resistant disease is similar, except that there

is no benefit of taking antibiotics.

IRt+1 = IRt [1 + βSt − pR] (3)

For simplicity, I impose a no-death condition. Because the population measure stays con-

stant, the change in the susceptible population is simply the inverse of the change in the

infected population:

5β can alternatively be thought of as capturing a matching process between susceptible and infected

agents.
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St+1 = St − (ITt+1 − ITt )− (IRt+1 − IRt ) (4)

The mechanism through which antibiotic use affects the evolution of the system can be

understood through the following sequence of diagrams:

The relative size of each segment in the box represents the proportion of society in that

state. There is some natural flow from the susceptible population into the infected states

and vice versa. Antibiotic use at time t increases the flow of agents moving from being

infected with the treatable strain to being susceptible in the following period (captured by

an increase St+1).

However, because there is now a larger susceptible population at t+1, the resistant infection
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will grow at a faster rate than if there was no antibiotic treatment. This is captured by an

increase in IRt+2.6

The driving assumption behind this mechanism is that an agent can be infected with either

the treatable or the resistant strain, but not both. This is known as ‘bacterial interference’

(Reid et al. 2001), a feature that has been observed in the data.7

Combining the definition of antibiotic effectiveness with the laws of motion governing

susceptibility and infection, the system can succinctly be written recursively as:

It+1 = It + It[β(1− It)− pR + Et(∆p− pAFt)] (5)

Et+1 = Et +
Et(1− Et)(∆p− pAFt)

1 + β(1− It)− pR + Et(∆p− pAFt)
(6)

Equation (5) describes the evolution of total infection. Equation (6) describes the evolution

of antibiotic effectiveness - the proportion of treatable to total infection. Notice that for

6Epidemiological models frequently include some period of immunity to becoming infected again after

recovery. In the set-up here, agents are immediately susceptible to the disease again after recovery. Were

the immune response to be included, the mechanism through which antibiotics affects the system would

fundamentally remain the same, only with a time lag.
7Though there is an epidemiological basis for this assumption, the assumption that patients can only

be infected with the treatable or resistant strain can be relaxed. In a more elaborate epidemiological

framework, patients could be colonized with both the treatable and resistant bacteria. Antibiotic use clears

the patient of treatable bacteria, which allows the resistant bacteria to grow at a quicker rate in the patient.

For simplicity, I focus on resistance evolving at the population level rather than the individual level.

11



Ft >
∆p
pA

, antibiotic effectiveness is decreasing. Effectiveness decreases at high levels of

antibiotic use because sufficiently high antibiotic use drives out the treatable infection at

a quicker rate than the resistant infection (the natural selection effect). For Ft <
∆p
pA

,

effectiveness is increasing. When there is sufficiently low antibiotic use, patients with the

resistant strain heal quicker on average than patients with the treatable strain (the fitness

cost effect), leading to an increase in antibiotic effectiveness. At Ft = ∆p
pA

, the two effects

exactly offset and effectiveness stays constant.

I assume two further conditions. First, that pR < β < 1. This ensures that both the

treatable and resistant infections are endemic (always exist in the population) but not

pandemic (spread over the entire population), a common feature of infectious disease.

Second, that ∆p
pA

< 1. This ensures that both the natural selection effect and fitness cost

effect referenced above exist within the model.

The relevant epidemiological parameters and variables are summarized in the following

table:

Parameter Interpretation

β Intensity of disease transmission

pR Natural recovery probability of those infected with resistant disease

pT Natural recovery probability of those infected with treatable disease

∆p Fitness cost of resistance: pR − pT

pA Increase in recovery probability from taking antibiotics if treatable

Variable Interpretation

It Measure of those infected at time t

Et Antibiotic effectiveness at time t

Ft Fraction of infected population treated with antibiotics at time t

A steady-state is a fixed point of Equations (5) and (6) - the laws of motion governing

infection and antibiotic effectiveness. For a constant treatment rate F , the dynamic system

tends to one of three possible steady-states described below.

(1) For F > ∆p
pA

, the treatable strain clears the system at a faster rate than the resistant

strain due to the natural selection effect. The system tends to a corner steady-state where

the treatable strain goes extinct and only the resistant strain remains. This steady-state

cannot be reached in finite time.
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(Ī , Ē) = (
β − pR

β
, 0) (7)

(2) For F < ∆p
pA

, the resistant strain clears the system faster than the treatable strain due

to the fitness cost effect. The system tends to a corner steady-state where the resistant

strain goes extinct and only the treatable strain remains. This steady-state also cannot be

reached in finite time. Note that this steady-state has a higher level of infection than the

other two steady-states.

(Ī , Ē) = (
β − pT − pAF

β
, 1) (8)

(3) For F = ∆p
pA

, the fitness cost effect and the natural selection effect exactly offset. The

system tends to an interior steady-state level of antibiotic effectiveness:

(Ī , Ē) = (
β − pR

β
,E) for E ∈ (0, 1) (9)

When applicable, the paper characterizes the steady-states of economic actors. However,

the time horizon of the paper is the human time-scale rather than the geological time-scale,

and so, particularly in the case of asymptotic steady-states, the analysis of the steady-

state is intended only as a point of reference. The ‘action’ in the paper occurs along the

transitional path.

3.2 Economic Component

I now introduce an economy with a provider-patient matching process and a fee-for-service

healthcare system. Infected patients search for healthcare providers, who are the gate-

keepers of antibiotics. Patients gain utility from a provider’s prescription rate, the current

effectiveness of the antibiotic (higher antibiotic quality increases the utility that agents get

from providers), and some idiosyncratic component related to the quality of their match

with a provider.

Patients choose whether or not to pay a fee to see their most preferred medical provider,

who in turn chooses whether or not to prescribe antibiotics. Providers prescribe antibiotics

to maximize their profits given the behavior of the other providers, patients, and the laws

of motion governing the system.
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Whether or not providers maximize profits is a debated issue in the literature. While

financial incentives affect providers’ treatment behavior (Clemens and Gottlieb 2014), many

models of the provider-patient interaction study environments in which providers maximize

a convex combination of profits and patient welfare (see Chonè and Ma 2011 or Jacobson

et al 2013 for two recent examples). It would be possible to build this feature or an ethical

constraint (e.g. the Hippocratic oath) into the model, but in order to both make the model

more tractable and not impose structure that could assume the problem away, I refrain

from doing so.

Patients are risk neutral. Each patient knows if he is infected, but does not know if he

is infected with the treatable or resistant version of the disease. Patients have common

knowledge of the states I and E. From a patient’s perspective, E represents the conditional

probability that if infected, the patient is infected with the treatable version of the disease.

Utility is comprised of a component related to their health status and a component related

to the medical care they may receive. The health status portion of utility is given by:

{
U if healthy

[Etp
T + (1− Et)pR]U if infected

(10)

Infected patients can choose to be seen by a provider and may possibly be prescribed

antibiotics. I assume that providers cannot diagnose whether patients have the treatable

or resistant version of the disease and that their prescription rates are public knowledge.

Patients pay the provider a fixed price p, regardless of whether or not an antibiotic is pre-

scribed. The price p is taken to be exogenous, but can be imagined to be set by an insurance

company or government. The exogoneity of the price reflects the fact that providers often

have limited price-setting capacity and instead compete based on the quantity of services

offered. I normalize p to be 1. Providers incur a constant marginal cost of c in adminis-

tering antibiotics. I assume that pAU > c. This assumption ensures that consumption of

the antibiotic is economically efficient for an individual consumer who is infected with the

treatable version of the disease.

When an infected patient takes the antibiotic, the patient has an expected increase in his

utility of Etp
AU . When provider i prescribes antibiotics at rate f it , the patient’s expected

utility gain from the provider’s healthcare is f itEtp
AU . Patients also gain idiosyncratic

utility from going to the provider. Patients randomly draw a valence utility for each

provider at time 0.8 This can be thought of as the degree to which a healthcare provider’s

8Although valence utility is fully persistent over time, this model is isomorphic to one in which valence

utility is periodically redrawn.
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non-medical features, e.g. bed-side manner, agree with a patient. I introduce this match-

specific utility component so that providers sell differentiated products.

Patient m’s valence utility for provider i is given by:

εim ∼ U [0, κ] (11)

I assume four additional conditions. First, that pAU ≤ 1. Second, that 1− pAU ≤ κ ≤ 1.

These assumptions are without loss of generality. I adopt it to ensure that patient demand

for provider care is elastic over the entire range of admissible values in the model. Third,

that U > (pT + pA)U − c+ κ. Fourth, U > pRU + κ. These latter two assumptions ensure

that from a social welfare perspective, being healthy is always preferred to being infected.

3.3 Social Planner’s Problem

To provide a benchmark for future analysis, I now describe the social planner’s problem.

The social planner treats a fraction of the infected population with antibiotics to solve the

problem:

max{Ft}∞t=0

∞∑
t=0

δt[(1− It)U + It
(
[Etp

T + (1− Et)pR + FtEtp
A]U + κ

)
− cFtIt)] (12)

s.t. (5), (6), I0, E0, Ft ∈ [0, 1]

The first term is the utility of healthy agents, the second is the utility of infected patients,

and the third is the cost of treating patients with antibiotics. Note that the utility of

infected patients is based on the expected recovery probability given the planner’s pre-

scription rate and the upper bound on the support of idiosyncratic utility.9 There is no

producer surplus because profits are a transfer from patients. Equations (5) and (6) are

the laws of motion describing the evolution of infection and antibiotic effectiveness. I0

and E0 are the initial levels of infection and effectiveness.

The planner’s objective is to minimize the disutility from total infection, taking into account

the cost of antibiotic use and the effect of treatment on the growth resistant infection.

9I assume that the planner is inherently able to provide the best service possible to each infected patient

and that there are no frictions that prevent the planner from providing this service to every infected patient.
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The planner’s solution can be characterized recursively through the Bellman equation:

V SP (I, E) = maxF

{
(1− I)U + I

(
[EpT + (1−E)pR+FEpA]U +κ

)
− cFI+ δV SP (I ′, E′)

}
(13)

st (5), (6), F ∈ [0, 1]

which, for a positive F , has the first-order condition:

EpAIU − cI + δ

[
∂V SP (I ′, E′)

∂I ′
∂I ′

∂F
|F=F ∗ +

∂V SP (I ′, E′)

∂E′
∂E′

∂F
|F=F ∗

]
≥ 0 (14)

The first-order condition reconciles the benefit of treating patients with antibiotics today

and the benefit from the future decrease in infection due to treatment today with the cost

of treating agents with antibiotics today and the cost of lower effectiveness in the future. I

use the notation FSP (I, E) to refer to the planner’s prescription rate when the states are

are (I, E).

I use value function iteration to numerically investigate the planner’s problem. I use

the parameter values δ = .9, U = 2, β = .4, pR = .25, pT = .15, pA = .5, c = .75, and

κ = 1. These parameter values for the remaining numerical analysis except where otherwise

specified.

The planner’s value function is displayed below:
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The value function is convex in both infection and effectiveness. Convexity in infection is

due to the non-linear spread of infection. Recall that new infections are given by Iβ(1−I).

The rate of increase is decreasing in I. Intuitively, increasing infection generates a larger

negative externality when there is a large susceptible population than when there is a small

susceptible population. Hence, while the planner’s value function is decreasing in infection,

it decreases at a less-than-linear rate.

The non-monotonicity in effectiveness stems from the cost of using antibiotics. As an

extreme example, consider the case in which effectiveness is zero, i.e. every infection is

resistant. Antibiotics would never be used because they are costly and have no effect.

Every infected patient recovers in each period with probability pR. Now suppose that

effectiveness E is in the interior. For a low enough effectiveness, using antibiotics is not

cost-justified. Initially, the average recovery probability is (1−E)pR+EpT < pR. Therefore,

initially, patients are infected for on average a longer time than when effectiveness is zero.

Due to this effect, the planner’s value function initially decreases in effectiveness. However,

as effectiveness increases, prescribing antibiotics eventually becomes worthwhile. Welfare

begins to increase as the average recovery time decreases and the spread of infection is

lessened.

The value function can be used to compute the optimal prescription rate:
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The optimal prescription rate tends to be either zero or one (however there are interme-

diate prescription rates along the boundary where prescription rates become positive). As

elaborated on below, this generates cycling behavior along the planner’s dynamic path.

Note that at low levels of antibiotic effectiveness, the optimal prescription rate is one when

infection is low but zero when infection is high. When infection is lower, the planner faces

a smaller marginal cost of antibiotic treatment and a higher marginal future benefit from

the decrease in infection than when infection is higher. The planner is therefore willing to

use antibiotics even when they are ineffective if the level of infection is low, but not when

the level of infection is high.

The policy function can be used to compute the dynamic path of infection and effectiveness.

For initial values, I use I0 = .6 and E0 = .85.
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Rather than settle into a steady-state, the planner cycles antibiotic use. Given the param-

eter values, the level of infection in an interior steady-state is β−pR
β = .375. By cycling

antibiotic use rather than prescribing at the constant steady-state fraction ∆p
pA

, the planner

is able to induce a level of infection that is on average lower than .375 at a cost that is on

average lower than the cost of maintaining the steady-state.

3.4 Market Payoffs

I now define the payoffs of healthcare providers and the solution concept, Markov Perfect

equilibrium.

When provider i prescribes antibiotics at rate f it , patient m’s net utility from seeing

provider i at time t is:

U im(f it , ε
i
m, Et) = f itEtp

AU + εim − 1 (15)

The first component is the utility related to a provider’s prescription behavior, the second

is the idiosyncratic utility gained from seeing a provider, and the third is the cost of seeing

the provider. If there are n total providers, then an infected patient m will be willing to

pay the fee to see provider i if:
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U im(f it , ε
i
m, Et) > U jm(f jt , ε

j
m, Et) j = 0, ..., i− 1, i+ 1, ..., n (16)

where j = 0 denotes the outside alternative of not seeing a provider and j > 0 denotes

provider i’s competitors. This condition means that m is willing to see provider i if provider

i is preferred to all other providers and provider i is preferred to not seeking treatment.

I assume that if patients are indifferent between their most preferred provider and the

outside option then they go to the provider with probability ∆p
pA

.

I denote provider i’s market share at time t by Ω(f it , f
−i
t , Et), where f it is provider i’s

prescription rate at time t and f−it is a vector of the other providers’ prescription rates at

time t. Market share can be written as:

Ω(f it , f
−i
t , Et) = Pr

(
U im(f it , ε

i
m, Et) > U jm(f jt , ε

j
m, Et) j = 0, ..., i− 1, i+ 1, ..., n

)
(17)

Provider i’s per period payoff is:

[1− cf it ]Ω(f it , f
−i
t , Et)It (18)

Provider and patient behavior determines an aggregate prescription rate

Ft =
n∑
i=1

f itΩ(f it , f
−i
t , Et) (19)

which can be inserted into Equations (5) and (6) to determine how infection and antibiotic

effectiveness evolve. Given a discount rate δ < 1 and a sequence of prescription rates,

lifetime profits of provider i are:

∞∑
t=0

δt
[
1− cf it

]
Ω(f it , f

−i
t , Et)It (20)

st (5), (6), Ft =
∑n

i=1 f
i
tΩ(f it , f

−i
t , Et), I0, E0

The paper focuses on symmetric Markov Perfect Equilibrium. A Markov strategy for

provider i is a mapping:
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σi : [0, 1]2 → [0, 1] (21)

where σi(I, E) = f i. The strategy function takes the level of infection and effectiveness

as inputs and gives a prescription rate as an output. Given a strategy function, lifetime

profits for provider i can be written recursively using the value function:

V i(I, E;σ) = [1− cσi(I, E)]Ω
(
σi(I, E), σ−i(I, E), E

)
I + δV i(I ′, E′;σ) (22)

st (5), (6), F =
∑n

i=1 σ
i(I, E)Ω(σi(I, E), σ−i(I, E), E)

A Markov strategy profile σ = (σ1, σ2, ..., σn) constitutes a Markov Perfect Equilibrium if

σ constitutes a sub-game perfect equilibrium in Markov Strategies. That is, σ is a Markov

Perfect Equilibrium if for all i = 1, ..., n:

V i(I, E;σ) ≥ V i(I, E; σ̂i, σ−i), ∀(I, E),∀σ̂i behavioral strategies (23)

The equilibrium is symmetric if every provider plays the same strategy function. Focusing

on symmetric equilibrium makes the analysis more tractable and yields intuitive insights.

In equilibrium, for example, patients will either match with the provider for whom they

have drawn the highest idiosyncratic utility for or they will not pay the fee to any provider.

Patient choice of provider in the model is therefore sticky, a feature that has been observed

in previous studies of patient-provider choice (Mold et al 2004).

The Markov Perfect equilibrium can be characterized through the Bellman Equation:

V i(I, E;σ) = maxf

{
[1− cf ]Ω(f i, f−i, E)I + δV i(I ′, E′;σ)

}
(24)

s.t. (5), (6), F =
∑n

j=1 f
jΩ(f j , f−j , E), f ∈ [0, 1]

When κ = 1, the first-order condition for a positive f∗ in the symmetric equilibrium is:
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[1− cf∗]EpAUI − c 1

n
[1− (1− EpAUf∗)n]I+

δ
∂V i(I ′, E′;σ)

∂I ′
(−EIpA)

( 1

n
[1− (1− EpAUf∗)n] + EpAUf∗(1− af∗)n−1

)
+

δ
∂V i(I ′, E′;σ)

∂E′
−E(1− E)pA[1 + β(1− I)− pR]

(
1
n [1− (1− EpAUf∗)n] + EpAUf∗(1− EpAUf∗)n−1

)[
1 + β(1− I)− pR + E

(
∆p− pA

(
f∗(1− (1− EpAUf∗)n)

))]2

≥ 0 (25)

The first-order condition reconciles the marginal benefit from increasing the prescription

rate and attracting more patients today with the cost of using more antibiotics and the

future effects from decreasing infection and effectiveness. The derivation of the equilibrium

first-order condition is presented in Appendix B.

4 Market Provision

I now turn to the market allocation of antibiotics. I first study the limit case as the number

of providers, n, tends towards infinity, a representation of a perfectly competitive market. I

then study the case in which n = 1, monopoly, before analyzing the model under arbitrary

n, oligopoly.

4.1 Perfect Competition

The equilibrium under perfect competition can be computed analytically.

Theorem 2

1. The unique symmetric equilibrium outcome under perfect competition is for every

provider to set σi(I, E) = 1 for all (I, E).

2. The aggregate antibiotic prescription rate is:

FPC(I, E) =


1 if EpAU + κ− 1 > 0
∆p
pA

if EpAU + κ− 1 = 0

0 if EpAU + κ− 1 < 0
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3. The steady-state level of antibiotic effectiveness is ĒPC = 1−κ
pAU

4. The steady-state level of infection is ĪPC = β−pR
β

Competition with other providers for patients induces providers to prescribe antibiotics at

rate one in all periods, i.e. every patient that the provider sees is prescribed antibiotics.

Intuitively, when other providers prescribe at rate one, provider i has no incentive to deviate

because he will not gain any patients in the current period and, due to the behavior of

others, his own behavior has a negligible effect on the evolution of the system. Under

perfect competition, providers have no incentive to preserve antibiotic effectiveness for

future use, and so they extract the treatable infection as quickly as the market will allow.

To analyze how infection and effectiveness evolve, it is necessary to understand patient

behavior as well. Recall that the upper bound on idiosyncratic utility that agents can get

from a provider is κ. Under perfect competition, patients can always find a provider that

gives them idiosyncratic utility arbitrarily close to κ. Given providers’ behavior, the utility

that a patient gets from his most preferred provider at time t is Etp
AU + κ − 1. If this

quantity is positive, then every patient will see a provider and be prescribed antibiotics.

Thus, while it is individually rational for a patient to see a provider, a perfectly competi-

tive market will over-use antibiotics relative to the social planner (because the maximum

amount of antibiotics are used under perfect-competition). This process can generate per-

petual over-use of antibiotics relative to the planner. Interestingly, though, individual

patients may choose to not purchase healthcare at antibiotic effectiveness levels for which

the planner would find antibiotic treatment beneficial. If the healthcare fee is high relative

to the idiosyncratic utility patients receive from providers, then at low levels of antibiotic

effectiveness, patients may become unwilling to pay for healthcare that would be socially

beneficial due to the decreased spread of infection.

I devote the remainder of the paper to studying the model when κ = 1 except where

otherwise specified.

Theorem 2

If κ = 1, then FPC(I, E) ≥ FSP (I, E) for all (I, E) and strictly greater for some (Ĩ , Ẽ).

When κ = 1, there is perpetual over-use of antibiotics by the perfectly competitive market.

The market converges to a steady-state in which the treatable infection is driven out of
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the system. The assumption that the upper bound on idiosyncratic utility is the same as

the provider fee (i.e. that κ = 1) is the weakest assumption needed so that the perfectly

competitive market over-uses antibiotics relative to a planner along the entire dynamic

path, regardless of parameter values or initial conditions. It amounts to agents in the

model being willing to purchase healthcare from their most preferred provider if there is

any chance of successful treatment. While it simplifies the remaining analysis, the key

results from the paper do not explicitly depend on on κ = 1.

I display the dynamic path of infection and antibiotic resistance under perfect competition

below.

The competitive market extracts the treatable infection as quickly as possible. Total in-

fection initially falls, but then rebounds towards the steady-state level as the resistant

infection grows to fill the void left by the treatable infection.

4.2 Monopolist

Here I turn to monopolist provision of antibiotics. In contrast to provision under perfect

competition, under monopoly, the provider completely controls the flow of antibiotics to

patients. The monopolist therefore has a large effect on the evolution of the system, which

he fully internalizes as he chooses his prescription rate.
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Before characterizing the monopolist’s steady-state, I introduce two assumptions.

First, that ∆p
pA

< pAU . If this assumption did not hold, then regardless of the monopolist’s

prescription behavior, the resistant infection would clear the system at a faster rate than

the treatable infection and the system would tend towards the corner steady-state in which

effectiveness equals one. I use this assumption to ensure that, if such behavior arises, then

it is due in part to economic considerations rather than purely biological constraints.

Second, that ( ∆p
pA2U

)1/2 /∈ argmax
x∈[0,( ∆p

pA2U
)1/2]

[1 − cx]β−p
T−x2pAU
β xpAU . This expression

is the monopolist’s per-period payoff in the steady-state in which effectiveness equals one.

x ∈ [0, ( ∆p
pA2U

)1/2] are the range of prescription rates that can maintain such a steady-

state - any higher prescription rate would generate a steady-state with an interior level

of effectiveness. This assumption means that the monopolist’s per-period payoff is not

maximized on the boundary of allowable prescription rates. I refer to this assumption in

later text as Assumption ?.

Theorem 3

1. The monopolist’s steady-state level of effectiveness ĒM → 1 as δ → 1.

2. A sufficiently patient monopolist has a steady-state level of infection ĪM > β−pR
β .

The monopolist has a steady-state with an inefficiently high level of infection: any steady-

state with infection I such that ĪM > I > β−pR
β generates strictly higher welfare than the

monopolist’s steady-state. Three reasons compel a monopolist provider to under-prescribe

antibiotics in the steady-state. These effects can be understood through the monopolist’s

first-order condition:

[1− 2f∗Mc]Ep
AUI︸ ︷︷ ︸

positive marginal payoff requirement

+ δ

[ infection a good︷ ︸︸ ︷
∂VM (I ′, E′;σ)

∂I ′
∂I ′

∂f
|f=f∗M

+
∂VM (I ′, E′, σ)

∂E′︸ ︷︷ ︸
demand-inducement effect

∂E′

∂f
|f=f∗M

]
≥ 0

(26)

First, the monopolist’s steady-state payoff is strictly increasing in antibiotic effectiveness.

This is because of a demand-inducement effect: at higher levels of antibiotic effectiveness,

more patients are willing to pay the fee to see the monopolist. As the monopolist becomes

patient, his steady-state level of antibiotic effectiveness tends towards one because of this

effect. Interestingly, although more patients are willing to pay the monopolist when the
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steady-state level of antibiotic efficacy is one, patients are not, on net, better off because

of the higher antibiotic efficacy. This is because the monopolist’s under-use of antibiotics

causes patients to be sick in expectation for a longer time.

Second, under fee-for-service, infection is a good for a healthcare provider. A monopolist

can under-prescribe antibiotics so that there is a higher level of infection - resulting in a

greater amount of potential fee-payers - than is socially optimal. In the steady-state in

which antibiotic effectiveness is one, lowering the prescription rate has three effects on the

monopolist’s profits. First, by treating a smaller proportion of his patients with antibiotics,

the monopolist raises his marginal profit per patient. Second, by using fewer antibiotics,

the monopolist generates a steady-state with a strictly higher level of infection. Third, due

to the decrease in antibiotic use, patients at the margin are less willing to pay the fee to

the monopolist. Assumption ? gives conditions in which the first two factors can trump

the third factor.

The third reason that can cause a monopolist to under-use antibiotics is a positive current

period marginal payoff requirement. Since increases in infection and effectiveness are a

benefit for the monopolist, and since increasing the prescription rate decreases both, the

latter two terms in Equation (26) - the monopolist’s first-order condition - are negative in

the steady-state. This means that in order to satisfy the first-order for a positive f̄M , the

monopolist requires that his steady-state current period marginal payoff is positive. This

implies that:

1

2c
≥ f̄M (27)

This positive current period marginal payoff requirement puts an upper bound on the

monopolist’s prescription rate. If the upper bound is low enough, then the aggregate

steady-state prescription rate will be less than the critical threshold ∆p
pA

, which implies

a steady-state antibiotic effectiveness of one (note this also implies a steady-state with a

strictly higher level of infection than is desirable). The positive current period marginal

payoff requirement is another sufficient cause for under-prescription of antibiotics by a

monopolist.

These distortions arise because of the linear payment structure of fee-for-service. By tying

revenue to the volume of patients, fee-for-service incentivizes the monopolist to use his

market power to manipulate the epidemiological states so as to increase the total number

of patients willing to see the monopolist. The monopolist does this by under-prescribing

antibiotics to increase antibiotic efficacy, which makes patients at the margin more willing
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to pay the fee. Under-prescription of antibiotics also increases the total stock of infection,

which increases the size of potential fee-payers.

I use numerical analysis to study the behavior of the monopolist outside of the steady-state.

Below I display the monopolist’s value function given the assumed parameter values.

Note that the value function is strictly increasing in both infection and antibiotic effective-

ness. This reflects the fact that fee-for-service makes infection and antibiotic effectiveness

‘goods’ for the monopolist. The value function can be used to derive the monopolist’s

optimal policy rule, which is displayed below.
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Note that this is not the aggregate prescription rate, but rather the rate that the monop-

olist prescribes antibiotics to patients who pay the fee. The policy rule can be used to

simulate the evolution of infection and antibiotic effectiveness under the monopolist, which

is displayed below.
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The monopolist uses his market power to let infection and effectiveness grow towards a

corner steady-state with a higher level of infection than is socially optimal.

4.3 Oligopoly

I now turn to imperfectly competitive provision of antibiotics. Critically, unlike in the

case of monopoly or perfectly competitive provision, providers now act strategically. The

strategic interaction affects providers in several ways. First, whereas a patient would pay

the fee to the monopolist if his individual rationality constraint was met, a patient will only

pay the fee to the oligopolist if his individual rationality constraint is met and the oligopolist

is preferred to all other providers. The oligopolist’s prescription behavior thus affects his

competitors’ market share (and similarly, the oligopolist’s market share is affected by his

competitors’ prescription behavior). Second, whereas the monopolist fully internalizes the

effects of his prescription behavior, the oligopolist only partially internalizes the effects of

his prescription behavior. The oligopolist’s prescription behavior affects his competitors by

changing the levels of infection and effectiveness in the future (and similarly, the oligopolist

is affected by his competitors in this fashion).

The paper’s next result contrasts the steady-state conditions of the monopolist and duopolist.

Theorem 4

A sufficiently patient duopolist has a strictly lower steady-state level of infection than the

equally patient monopolist, i.e. ĪD < ĪM .

When there is competitive pressure in the market, the higher levels of infection that a mo-

nopolist can maintain in the steady-state are unsustainable. The presence of a competitor

lowers an individual provider’s benefit from withholding antibiotic treatment to generate

more favorable states in the future. This forces more weight on attracting patients in the

current period, which leads to higher antibiotic use.

I use numerical analysis to compute the Markov Perfect Equilibrium. The numerical algo-

rithm used is described below.

Computational Algorithm

Step 1. Start an initial value function v0(I, E) = 0.

Step 2. Plug the proposed valued function into the oligopolist’s first-order condition.

Solve for the optimal symmetric prescription rate f∗.
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Step 3. Use f∗ to update the value function. Specifically, vk+1(I, E) = [1−cf∗]Ω(f∗, f−i∗, E)+

δvk(I ′, E′).

Step 4. Iterate until the difference between vk+1(I, E) and vk(I, E) becomes small.

The algorithm computes the Markov Perfect Equilibrium of a finite horizon game and takes

the limit as the time horizon tends to infinity.

I display the duopolist’s symmetric equilibrium value function below:

As is the case with the monopolist, the duopolist’s value function is strictly increasing in

infection. Interestingly, the value function is not strictly increasing in effectiveness. This is

because when one duopolist prescribes antibiotics, he imposes an externality on the other

duopolist by lowering the future level of infection. The more effective the antibiotic, the

more strongly this externality effect is felt. While high efficacy is initially a boon for the

duopolist because it draws in more patients in the current period, the future loss to the

duopolist from the decrease in infection negates the initial benefit.

The value function can be used to derive the policy function, displayed below:
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The duopolist prescribes at a strictly higher rate than the monopolist for all values of in-

fection and antibiotic effectiveness. The presence of another provider cuts into a provider’s

market share, as well as diminishes the marginal effect of one’s own prescription behav-

ior on the future levels of infection and resistance relative to monopoly provision. These

factors encourage greater antibiotic use under duopoly than monopoly.

The policy rule can be used to simulate the dynamic path of infection and effectiveness

under the duopolist:
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Notice that the duopolist has a strictly lower level of infection and effectiveness than the

monopolist along the entire dynamic path. While fee-for-service still incentives infection

as a good for the duopolist, competition for patients with the other provider prevents a

provider from letting infection grow as a monopolist would prefer.

Intuitively, increasing the level of competition increases antibiotic use as providers focus

less on maintaining favorable states in the future and more on attracting patients in the

present. Below, I show the evolution of antibiotic effectiveness under increasing levels of

competition.
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When there is more competition, antibiotic effectiveness decreases at a quicker rate and

reaches a lower steady-state level than when there is less competition. This is because

higher antibiotic use in more competitive markets results in quicker and more prolonged

extraction of the treatable infection. The effect of competition on total infection is shown

below.
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Due to the increased antibiotic use, more competitive market structures generate a quicker

initial decrease in total infection than less competitive markets as the treatable strain

is cleared from the system. However, this also allows the resistant strain to grow at a

faster rate. In fact, the resistant strain can grow sufficiently faster that the total level of

infection in more competitive markets can eventually exceed the total level of infection

in less competitive markets. This effect can be seen on the graph above by following the

dynamic path of infection for n = 10. In period 10, n = 10 generates a lower total level of

infection than the other market structures, but in period 35, a higher total level of infection

than the other market structures.

4.4 Optimal Number of Providers

The central question of the paper asks about the welfare effects of provider competition.

The picture below gives an answer for the parameter values δ = 0.99, V = 3, β = 0.4, pR =

0.3, pT = 0.1, pA = 0.3, c = 0.89, I0 = 0.05, and E0 = 0.5.

This graph plots social welfare as a function of the number of providers in a 200 period

model. The key takeaway from this paper is that the graph can take on an inverted

U-shape. That is, social welfare can initially increase as the market structure becomes

more competitive from monopoly, peak at some level of oligopolistic competition, and then

decrease as the market structure becomes perfectly competitive.
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Intuitively, welfare initially increases as competition increases from monopoly because this

generates lower steady-state level of infection. The reason that welfare can decrease at high

levels of competition is more nuanced. As the market becomes more competitive, treatable

infection decreases at a quicker rate, which initially generates higher welfare for society

since the level of total infection becomes lower. However, the future loss from the increase

in resistant infections becomes sufficiently high so as to negate that benefit.

The paper thus captures a ‘Goldilocks’ effect: to a rough approximation, low levels of com-

petition use too few antibiotics and high levels of competition use too much antibiotics.

The optimal number of providers in the simulation is n∗ = 190. While n∗ does not im-

plement the planner’s solution, n∗ better treads the balance between limiting the current

growth of the treatable infection and the future growth of the resistant infection given the

economic constraints in the model than other market structures.

5 Public Policy

A natural question to ask is whether public policy can incentivize a decentralized market

structure to optimally supply antibiotics in the model. The next result answers that

question in the affirmative.

Theorem 5

For all κ, a state-dependent quota on providers’ prescription rate and subsidy to patients

can induce a perfectly competitive market to implement the first-best solution.

The intuition behind the result can be described as follows. In a competitive market,

providers will always prescribe with the highest allowable rate. By capping the allowable

prescription rate in each state by what the planner would choose, the quota prevents

over-use of antibiotics.10 The subsidy to patients ensures that it is always individually

rational to purchase healthcare, which prevents under-use of antibiotics. By combining the

quota/subsidy, the policy-maker can precisely pin down the aggregate prescription rate,

ensuring that it equals the planner’s.

The key takeaway from Theorem 5 is that in general, policy instruments (e.g. quotas

or taxes) that only target providers’ prescription rates will be unable to implement the

first-best solution. The first-best policy must take into account the fact that patients can

10This can equivalently be achieved through a graduated tax on prescription rates.
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become unwilling to purchase socially beneficial healthcare and therefore subsidize care

accordingly.

Implementing this scheme may be infeasible. The policy is complex and requires commit-

ment on the part of the policy-maker. In case a state-dependent tax is infeasible, the model

can serve as a tool for second-best policy analysis. As two examples, I show how the model

can be used to compare licensing restrictions and a time-invariant prescription quota with

a competitive market. I use the parameter values from Section 4.5.

Licensing restricts the number of providers. The optimal licensing regime implements the

optimal decentralized market structure. Given the parameter values used for the simu-

lation, the optimal number of providers is 190 and this generates total social welfare of

227.192. The optimal prescription quota with competitive provision is the optimal cap on

providers’ prescription rates. Since competitive providers will always prescribe with the

highest frequency allowable and, because κ = 1, all infected patients will see a provider,

picking the optimal prescription quota is equivalent to picking the optimal time-invariant

aggregate prescription rate.

The optimal time-invariant prescription quota is the solution to the following problem:

maxF

∞∑
t=0

δt[(1− It)U + It[Etp
T + (1− Et)pR + FEtp

A]U − cFIt + It] (28)

s.t. (1), (2), I0, E0, F ∈ [0, 1]

Given the parameter values, the optimal prescription quota sets F = 0.7181 and generates

social welfare of 230.093. The model thus predicts that for the given parameter values, the

optimal prescription quota with a competitive market is a better policy than the optimal

licensing regime.

6 Conclusion

This paper studies the welfare effects of a fee-for-service healthcare system and provider

competition embedded within a dynamic epidemiological model of infection and antibiotic

resistance. The key finding is that oligopolistic competition can be the optimal decentral-

ized market structure. This is because a perfectly competitive market over-uses antibiotics

because providers do not bear the cost of antibiotic resistance and a monopolist under-uses

antibiotics to increase infection and antibiotic efficacy. An interior level of competition has
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more moderate antibiotic use which generates higher welfare. The paper also develops a

framework for policy analysis.

A precise determination of the optimal market structure or public policy depends on the

parameter values of the model. This is an important empirical exercise for future work.

Other extensions of the model include incorporating innovation of new antibiotics by phar-

maceutical companies, incorporating diagnostics procedures, and extending the analysis to

a global setting.

7 Appendix A

Proof of Theorem 1

First I show that prescribing at rate one for all states is a symmetric Markov Perfect

equilibrium and then I show it is unique. Suppose that all providers prescribe at rate

one for all states. I show that defecting and prescribing at a rate less than one can never

increase a provider’s payoff.

Let N denote the set of providers. Without loss of generality, I will show that when

provider 1 prescribes at rate f1 < 1 and all j ∈ {2, ..., N} prescribe at rate one, then in

the limit as N gets large, no agent prefers going to provider 1. An agent prefers provider

1 to provider j if:

ε1 − εj ≥ EtpAU(1− f1) (29)

Since the right-hand side is positive, I can show that agent m prefers provider j over

provider 1 if there is a j for which εj > ε1. Since

lim
N→∞

Pr[max εj > ε1 for j ∈ {2, ..., N}] = 1 (30)

there is always another provider that m prefers to 1. Hence, provider 1 gets zero patients

and has a current period payoff of zero.

Next I show that the future states are the same when provider 1 prescribes at rate one

or a rate less than one. This means that the continuation payoffs for provider 1 are the

same regardless of his behavior. Specifically, this entails showing that every patient that

would have been treated by provider 1 when 1 prescribes at rate one is treated by another

provider when 1 prescribes at a rate less than one.
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If a patient m is willing to see provider 1 when he prescribes at rate one, then ε1 ≥
p − EtpAU . Since all providers prescribe at probability one, m would be willing to see

another provider j if εj > ε1. By (30), the existence of such a j is ensured. Hence,

provider 1’s behavior has no impact on the evolution of the state variables and therefore

his continuation payoff. Therefore, when every provider prescribes at rate one, defecting

and prescribing at a rate less than one gives the provider a current period payoff of zero

and does not increase his continuation payoff. Therefore there is no incentive to defect

from prescribing at rate one.

To show uniqueness, suppose by contradiction that there existed another symmetric equi-

librium in which providers prescribed at a rate less than one. Profits from adhering to the

equilibrium strategy are zero, but deviating and prescribing with a higher rate would gen-

erate positive profits (because the provider would now attract a measurable set of patients).

Hence the equilibrium in which providers prescribe at rate one is unique.

Recall that the price to see a provider is 1 and that the upper bound on the idiosyncratic

utility that a patient can receive from the provider is κ. Under perfect competition, a

patient can find a provider that gives idiosyncratic utility arbitrarily close to κ. If infected

then, the patient will be willing to be seen by their most preferred provider EpAU+κ−1 >

0, which would generate an aggregate prescription rate of 1. If EpAU + κ− 1 < 0, then no

patient is willing to see their provider in which case the aggregate prescription rate is 0. If

EpAU + κ − 1 = 0, then patients see their provider with probability ∆p
pA

, which generates

an aggregate prescription rate of ∆p
pA

.

The only steady-state level of antibiotic effectiveness consistent with these aggregate pre-

scription rates is ĒPC = 1−κ
pAU

. Given this level of effectiveness, the steady-state level of

infection is ĪPC = β−pR
β .

�

Proof of Theorem 2

By Theorem 1, when κ = 1, FPC(I, E) = 1 for all (I, E). It suffices to show that the the

social planner does not prescribe at rate one for all state variables.

The planner’s first-order condition for a positive FSP∗ is:

EpAUI − cI + δ

[
∂V SP (I ′, E′)

∂I ′
∂I ′

∂F
|F=FSP∗ +

∂V SP (I ′, E′)

∂E′
∂E′

∂F
|F=FSP∗

]
≥ 0 (31)

By (5) and (6), we have that:
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∂I ′

∂F
= −EIpA (32)

and

∂E′

∂F
= − E(1− E)pA[1 + β(1− I)− pR][

1 + β(1− I)− pR + E[∆p− pAF ]

]2 (33)

Assuming differentiability of the value function, the envelope conditions are:

∂V SP (I, E)

∂I
= [−1+EpT+(1−E)pR+FSP∗EpA]U+κ−cFSP∗+δ ∂V

SP (I ′, E′)

∂I ′
∂I ′

∂I
+δ

∂V SP (I ′, E′)

∂E′
∂E′

∂I
(34)

and

∂V SP (I, E)

∂E
= I[pT − pR + FSP∗pA]U + δ

∂V SP (I ′, E′)

∂E′
∂E′

∂E
+ δ

∂V SP (I ′, E′)

∂I ′
∂I ′

∂E
(35)

where

∂I ′

∂I
= 1 + β(1− I)− pR + E(∆p− pAF )− βI (36)

∂E′

∂I
=

E(1− E)(∆p− pAF )β

[1 + β(1− I)− pR + E(∆p− pAF )]2
(37)

∂I ′

∂E
= (∆p− pAF )I (38)

∂E′

∂E
= 1 +

(∆p− pAF )[(1− 2E)(1 + β(1− I)− pR)− (∆p− pAF )E2]

[1 + β(1− I)− pR + E(∆p− pAF )]2
(39)

Suppose by contradiction that the planner prescribes at rate one for all state variables.

Then, I → β−pR
β and E → 0. Notice that ∂I′

∂F → 0 and ∂E′

∂F → 0 as well, and that the

derivatives of the value function are obviously finite in the limit.
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The planner’s first-order condition converges to:

(31)→ −cβ − p
R

β
< 0 (40)

which is incompatible with a positive F , hence a contradiction.

�

Proof of Theorem 3

The monopolist’s Bellman equation is:

VM (I, E;σ) = maxf

{
[1− cf ]fEpAUI + δVM (I ′, E′;σ)

}
(41)

s.t. (5), (6), f ∈ [0, 1], F = f2EpAU

The monopolist will never have a steady-state in which he sets f = 0, since that is strictly

dominated by prescribing any positive quantity. The first-order condition for a positive f

is:

[1− 2f∗Mc]Ep
AUI + δ

[
∂VM (I ′, E′;σ)

∂I ′
∂I ′

∂f
|f=f∗M

+
∂VM (I ′, E′, σ)

∂E′
∂E′

∂f
|f=f∗M

]
≥ 0 (42)

The effect of the monopolist’s prescription rate on the states is:

∂I ′

∂f
= −EIpA(2fEpAU) (43)

∂E′

∂f
= − E(1− E)pA[1 + β(1− I)− pR][

1 + β(1− I)− pR + E[∆p− pAf(fEpAU)]

]2 (2fEpAU) (44)

Assuming differentiability of the value function, the envelope conditions are:
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∂VM (I, E;σ)

∂I
= [1− cf∗M ]f∗MEp

AU + δ
∂VM (I ′, E′;σ)

∂I ′
∂I ′

∂I
+ δ

∂VM (I ′, E′;σ)

∂E′
∂E′

∂I
(45)

and

∂VM (I, E;σ)

∂E
= [1− cf∗M ]f∗Mp

AUI + δ
∂VM (I ′, E′;σ)

∂E′
∂E′

∂E
+ δ

∂VM (I ′, E′;σ)

∂I ′
∂I ′

∂E
(46)

In an interior steady-state, ∂I′

∂I = 1 − (β − pr), ∂E
′

∂I = 0, ∂I
′

∂E = 0, and ∂E′

∂E = 1. The

steady-state envelope conditions are:

∂VM (ĪM , ĒM ;σ)

∂I
=

[1− cf̄M ]f̄M ĒMp
AU

1− δ[1− (β − pr)]
(47)

∂VM (ĪM , ĒM )

∂E
=

[1− cf̄M ]β−p
r

β f̄Mp
AU

1− δ
(48)

The steady-state first-order condition can be written as:

[1− 2cf̄M ]ĒMp
AU

β − pr

β
+
δ[1− cf̄M ]f̄M ĒMp

AU

1− δ[1− (β − pr)]
(−ĒM

β − pr

β
pA)(2f̄M ĒMp

AU)+

δ[1− cf̄M ]β−p
r

β f̄Mp
AU

1− δ
(−ĒM (1− ĒM )pA)(2f̄M ĒMp

AU) ≥ 0 (49)

Using the fact that in an interior steady-state, f̄2
M ĒMp

AU = ∆p
pA

, the steady-state first-

order condition can be further simplified to:

ĒMp
AU

β − pr

β(
[1−2c[

∆p

ĒMpA2U
]

1
2 ]−

δ[1− c[ ∆p
ĒMpA2U

]
1
2 ]

1− δ[1− (β − pr)]
2

∆p

pA
ĒMp

A−
δ[1− c[ ∆p

ĒMpA2U
]

1
2 ]

1− δ
2

∆p

pA
(1−ĒM )pA

)
≥ 0

(50)
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s.t. f̄M ∈ ([ ∆p
pA2U

]
1
2 , 1], f̄2

M ĒMp
AU = ∆p

pA

Note that Equation (50) may not admit an interior ĒM as a feasible solution. In this

case, the monopolist will have a steady-state level antibiotic effectiveness of one. When

ĒM = 1, ∂E
′

∂f = 0. Note also that in this steady-state, ∂E′

∂I = 0 and so the steady-state

envelope condition governing infection is:

∂VM (ĪM , ĒM ;σ)

∂I
=

[1− cf̄M ]f̄Mp
AU

1− δ(1− (β − pT − f̄2
Mp

A2U))
(51)

The monopolist’s steady-state first-order condition when effectiveness is one can be written

as:

[1− 2cf̄M ]ĪMp
AU − δ [1− cf̄M ][f̄Mp

AU ][ĪMp
A2U2f̄M ]

1− δ(1− (β − pT − f̄2
Mp

A2U))
= 0 (52)

s.t. f̄M ∈ [0, ∆p
pA2U

]
1
2 ], ĪM =

β−pT−f̄2
MpA2U
β

Note that either Equation (50) or Equation (52) admits a solution, ensuring the existence

of a steady-state.

I now argue that the monopolist’s steady-state level of effectiveness ĒM (δ)→ 1 as δ → 1.

Suppose by contradiction that ĒM is bounded away from 1 for all δ. Let ÊM denote the

maximum value of effectiveness. Note that if the monopolist prescribed with probability

one, then the steady-state value of effectiveness would be ∆p
pA2U

. This is the smallest possible

steady-state value of effectiveness.

Notice that for all values of effectiveness between the bounds and all values of δ, the

first two terms in the monopolist’s first-order condition (50) are finite. However, because

effectiveness is bounded from 1, the third term of the monopolist’s first-order condition

becomes arbitrarily small as δ → 1. Hence for high enough δ, the monopolist’s first-order

condition becomes negative, a contradiction.

Therefore, the monopolist’s steady-state level of antibiotic effectiveness tends towards one

as the monopolist becomes patient.

In order for steady-state level of effectiveness to equal one and for the steady-state level

of infection to be greater than β−pR
β , an extra condition is needed. That condition is

assumption ?:

( ∆p
pA2U

)1/2 /∈ argmax
x∈[0,( ∆p

pA2U
)1/2]

[1− cx]β−p
T−x2pAU
β xpAU
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This assumption is necessary because the steady-state in which effectiveness equals one

is never reached in finite time. This assumption ensures that there exists a path to the

steady-state that in finite time yields a higher payoff than any interior steady-state.

In an interior steady-state, the monopolist’s per-period payoff is:

Π̄M (ĒM ) = [1− cf̄M ]
β − pr

β
f̄M ĒMp

AU (53)

From earlier work we know that in an interior steady-state, f̄M = [ ∆p
ĒMpA2U

]
1
2 , so the

monopolist’s per-period payoff can be re-written as:

[1− c[ ∆p

ĒMpA2U
]

1
2 ]
β − pr

β
[

∆p

ĒMpA2U
]

1
2 ĒMp

AU (54)

Note that this is strictly increasing in antibiotic effectiveness (this is the demand-inducement

effect). Let f̂ be defined as:

f̂ = [
∆p

pA2U
]

1
2 (55)

That is, f̂ is the monopolist prescription rate that implements an aggregate prescription

rate of ∆p
pA

when antibiotic efficacy is one. By assumption ?, there exists an ε > 0 such

that:

[1−c(f̂−ε)]β − p
T − (f̂ − ε)2pA2U

β
(f̂−ε)pAU > [1−c[ ∆p

ĒMpA2U
]

1
2 ]
β − pr

β
[

∆p

ĒMpA2U
]

1
2 ĒMp

AU

(56)

for all interior ĒM . That is, if the monopolist prescribes at rate f̂ − ε, then that leads to a

steady-state that yields a strictly higher payoff than the payoff in any interior steady-state.

While this steady-state payoff is never reached in finite time, I show that implementing

a constant prescription rate of f̂ − ε generates a strictly higher payoff than any interior

steady-state in finite time. By (56), there exists an η > 0 such that:

[1−c(f̂−ε)]β − p
T − (f̂ − ε)2pA2U

β
(f̂−ε)pAU−η > [1−c[ ∆p

ĒMpA2U
]

1
2 ]
β − pr

β
[

∆p

ĒMpA2U
]

1
2 ĒMp

AU

(57)
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for all interior ĒM . Suppose that the monopolist is currently at a steady-state with an

interior level of antibiotic effectiveness. Let πt(It, Et, f̂ − ε) denote the monopolist’s time

t payoff when he prescribes at constant rate f̂ − ε. Given the constant prescription rate of

f̂ − ε, It → β−pT−(f̂−ε)2pA2U
β and Et → 1. Because of that, πt(It, Et, f̂ − ε) → [1 − c(f̂ −

ε)]β−p
T−(f̂−ε)2pA2U

β (f̂ − ε)pAU .

This implies that for t large enough,

πt(It, Et, f̂ − ε) > [1− c(f̂ − ε)]β − p
T − (f̂ − ε)2pA2U

β
(f̂ − ε)pAU − η (58)

which means that in finite time, this path generates a per period payoff that is strictly

than the payoff in any interior steady-state. Hence, a sufficiently patient monopolist would

prefer the path realized by prescribing at rate f̂ − ε to remaining at an internal steady-

state. Hence, the only feasible steady-state is one in which antibiotic effectiveness equals

one. This steady-state necessarily has a higher level of infection than β−pR
β .

�

Lemma 1

I now state and prove a lemma that will be used in proving Theorem 4.

Lemma 2: Suppose that the equation characterizing the monopolist’s steady-state first-

order condition is negative for some f ∈ [0, 1]. Then, the the equation is negative for all

f̂ ≥ f .

Proof:

Re-write (52) as:

I(f)pAU

(
[1− 2cf ]− δ [1− cf ][2f2pA2U ]

1− δ(1− βI(f))

)
(59)

where I(f) denotes the steady-state level of infection when effectiveness is one and the

monopolist prescribes at rate f . Suppose that the expression is negative at f . I will show

that the entire expression either decreases as f increases or that the term [1−2cf ] becomes

negative, thus proving the claim.

Clearly, I(f) is decreasing in f . Focusing on the interior term and differentiating with

respect to f gives:
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−2c−
4fpA2U [1− 6

4cf ](1− δ(1− βI(f)))− (1− cf)2fpA2Uδβ ∂I∂f
(1− δ(1− βI(f)))2

(60)

which is negative unless [1 − 6
4cf ](1 − δ(1 − βI(f))) is sufficiently negative. However, if

[1− 6
4cf ] < 0, then [1− 2cf ] < 0, which means that Equation (59) is negative anyway.

�

Proof of Theorem 4

By the analysis in Appendix B, the duopolist’s first-order condition is:

[1−2cf∗D]EpAUI+
1

2
c(EpAUf∗D)2I+δ

∂V D(I ′, E′;σ)

∂I ′
(−EIpA)(2EpAUf∗D−

3

2
(EpAUf∗D)2)+

δ
∂V D(I ′, E′;σ)

∂E′
−E(1− E)pA[1 + β(1− I)− pR][

1 + β(1− I)− pR + E

(
∆p− pA

(
f∗D(1− (1− EpAUf∗D)2)

))]2 (2EpAUf∗D−
3

2
(EpAUf∗D)2)

≥ 0 (61)

The envelope condition governing infection is:

∂V D(I, E;σ)

∂I
= [1−cf∗D]

1

2
[1−(1−EpAUf∗D)2]+δ

∂V D(I ′, E′;σ)

∂I ′
∂I ′

∂I
+δ

∂V D(I ′, E′;σ)

∂E′
∂E′

∂I
(62)

The envelope condition governing effectiveness is:

∂V (I, E;σ)

∂E
= [1− cf∗D]I[1−EpAUf∗D]pAUf∗D + δ

∂V D(I ′, E′;σ)

∂I ′
∂I ′

∂E
+ δ

∂V D(I ′, E′;σ)

∂E′
∂E′

∂E
(63)

In an interior steady-state, (62) and (63) can be re-written as:

∂V D(ĪD, ĒD;σ)

∂I
=

[1− cf̄D]1
2 [1− (1− ĒDpAUf̄D)2]

1− δ(1− (β − pR))
(64)

and
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∂V D(ĪD, ĒD;σ)

∂E
=

[1− cf̄D]β−p
R

β [1− ĒDpAUf̄D]pAUf̄D

1− δ
(65)

The first-order condition governing an interior steady-state level of antibiotic efficacy is:

[1− 2cf̄D]ĒDp
AU

β − pR

β
+

1

2
c(ĒDp

AUf̄D)2β − pR

β
+

δ
[1− cf̄D]1

2 [1− (1− ĒDpAUf̄D)2]

1− δ(1− (β − pR))
(−ĒD

β − pR

β
pA)(2ĒDp

AUf̄D −
3

2
(ĒDp

AUf̄D)2)+

δ
[1− cf̄D]β−p

R

β [1− ĒDpAUf̄D]pAUf̄D

1− δ
(−ĒD(1− ĒD)pA)(2ĒDp

AUf̄D −
3

2
(ĒDp

AUf̄D)2)

≥ 0 (66)

s.t.
(
f̄D(2ĒDp

AUf̄D − (ĒDp
AUf̄D)2)

)
= ∆p

pA
, f̄D ∈ [0, 1]

For notational convenience, let a = pAU . The steady-state first-order condition in which

antibiotic effectiveness is one can be written as:

[1−2cf̄D]aĪD+
1

2
c(af̄D)2ĪD+δ

[1− cf̄D][af̄D − (af̄D)2

2 ]

1− δ(1− βĪD)
(−I∗DpA)(2af̄D−

3

2
(af̄D)2) ≥ 0 (67)

s.t.
(
f̄D(2af̄D − (af̄D)2)

)
< ∆p

pA
, f̄D ∈ [0, 1]

Note that a solution exists to either (66) or (67), ensuring the existence of a steady-state.

Given assumption ?, for a sufficiently high δ, the monopolist has a steady-state level of

infection ĪM > β−pR
β .

Let δ be sufficiently high. Clearly, if the duopolist has an interior steady-state level of

effectiveness, the duopolist’s steady-state level of infection will be lower than the monopo-

list’s. I will show that if the duopolist has a steady-state level effectiveness of one, then the

duopolist has a lower steady-state level of infection than the monopolist. I will show this by

assuming that an equally patient duopolist has a higher steady-state level of infection than

the monopolist and showing that this implies that the monopolist’s first-order condition is

negative, a contradiction.

I will show that if the monopolist were to implement the duopolist’s steady-state level of

infection, then his first-order condition would be negative. The aggregate prescription rate
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in the duopolist’s steady-state is F = f̄D(2af̄D−(af̄D)2). For the monopolist to implement

the duopolist’s steady-state level of infection, the aggregate prescription rate must be the

same.

In order for the aggregate prescription rate to be the same, the monopolist must set f2
Ma =

f̄D(2af̄D − (af̄D)2), or fM = f̄D(2 − af̄D)1/2. The monopolist’s steady-state first-order

condition evaluated at the duopolist’s steady-state level of infection is:

[1− 2cf̄D(2− af̄D)1/2]aĪD − δ
(1− cf̄D(2− af̄D)1/2)2a2f̄2

D(2− af̄D)ĪDp
A

1− δ(1− βĪD)
(68)

Recall the positive current period marginal payoff requirement. In order for the monopo-

list’s first-order condition to be non-negative, it is required that:

[1− 2cf̄D(2− af̄D)1/2] > 0 (69)

In order for the duopolist to have a higher steady-state level of infection than the monop-

olist, the duopolist must prescribe at an interior rate (if the duopolist prescribed at rate

one, then that necessarily would cause a lower steady-state level of infection than under

the monopolist). This implies that the duopolist’s first-order condition holds with equality,

and therefore:

[1− 2cf̄D]aĪD +
1

2
c(af̄D)2ĪD = δ

[1− cf̄D][af̄D − (af̄D)2

2 ]

1− δ[1− βĪD]
(ĪDp

A)(2af̄D −
3

2
(af̄D)2) (70)

Because [1− 2cf̄D]aĪD + 1
2c(af̄D)2ĪD > [1− 2cf̄D(2− af̄D)1/2]aĪD, the monopolist’s first-

order condition (Equation (68)) is less than:

(68) < δ
[1− cf̄D][af̄D − (af̄D)2

2 ]

1− δ[1− βĪD]
(ĪDp

A)(2af̄D−
3

2
(af̄D)2)−δ

(1− cf̄D(2− af̄D)1/2)2a2f̄2
D(2− af̄D)ĪDp

A

1− δ(1− βĪD)
(71)

It suffices to show that:

(1− cf̄D(2− af̄D)1/2)2a2f̄2
D(2− af̄D) > [1− cf̄D][af̄D −

(af̄D)2

2
](2af̄D −

3

2
(af̄D)2) (72)
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which, if true, would mean that the monopolist’s first-order condition evaluated at the

duopolist’s steady-state level of infection is negative.

Subtracting the right-hand side of (72) from the left-hand side yields:

2a2f̄2
D − 2a3f̄3

D − 2a2f̄3
Dc(2− af̄D)3/2 + 2a2f̄2

D −
5

2
a3f̄3

D +
3

4
a4f̄4

Dc (73)

Dividing by 2a2f̄2
D yields:

1 +
1

4
af̄D − cf̄D(2− af̄D)3/2 +

3

8
a2f̄2

Dc+
c

2
(2− af̄D) (74)

Recall the current period positive marginal payoff requirement (i.e. [1−2cf̄D(2−af̄D)1/2] >

0. This implies that:

(74) > 2cf̄D(2− af̄D)1/2 +
1

4
af̄D − cf̄D(2− af̄D)3/2 +

3

8
a2f̄2

Dc+
c

2
(2− af̄D) (75)

Since the right-hand side is strictly positive (divide through by f̄D(2 − af̄D)1/2 and it

becomes immediately clear), that implies that Equation (75) is positive and that the in-

equality in Equation (72) is true.

Therefore, if the monopolist chose the prescription rate that implemented the duopolist’s

steady-state level of infection, then the monopolist’s first-order condition would be negative.

By Lemma 1, the monopolist’s first-order condition is negative for all higher prescription

rates, and so to reconcile the first-order condition, the monopolist must have a strictly

lower steady-state level of infection than the duopolist.

�

Proof of Theorem 5

Let FSP (I, E) denote the planner’s prescription rate when the states are (I, E). Let this

value be the highest allowable prescription rate for a provider under the state-dependent

quota when the states are (I, E). By the same argument as presented in Theorem 2, all

perfectly competitive providers will prescribe at the highest allowable prescription rate. A

subsidy to patients of 1 − κ ensures that all infected patients will be seen by a provider.

Therefore the aggregate prescription rate will be FSP (I, E).

�
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8 Appendix B

In this appendix, I derive the oligopolist’s equilibrium first-order condition. The oligopolist’s

Bellman equation when there are n total providers is:

V (I, E;σ) = maxf i
{

[1− cf i]Ω(f i, f−i, E)I + δV (I ′, E′;σ)
}

(76)

st (5), (6), F =
∑n

i=1 f
iΩ(f i, f−i, E), f i ∈ [0, 1]

The first-order condition for a positive f i∗ is:

[1− cf i∗]∂Ω(f i, f−i∗, E)

∂f i
|f i=f i∗I − cΩ(f i∗, f−i∗, E)I+

δ
∂V (I ′, E′;σ)

∂I ′
∂I ′

∂F

∂F

∂f i
|f i=f i∗ + δ

∂V (I ′, E′;σ)

∂E′
∂E′

∂F

∂F

∂f i
|f i=f i∗ ≥ 0 (77)

To calculate the first-order condition, I need the equations that describe the marginal effect

of the oligopolist increasing his prescription rate on his market share, the equilibrium

market share, the aggregate prescription rate, and the marginal effect of the oligopolist

increasing his prescription rate on the aggregate prescription rate.

Let N denote the set of doctors and suppose there are n total doctors. Consider doctor i

who prescribes antibiotics with probability f i. Let the remaining n − 1 doctors prescribe

antibiotics with the symmetric probability f . Then the probability that a consumer is

willing to pay the fee to see provider i is:

Ω(f i, f−i, E) = Pr

(
U i(f i, εi, E) ≥ U j(f, εj , E) for j = 0, ..., i− 1, i+ 1, ..., n

)
(78)

This is the probability that a patient prefers provider i to all other providers and is preferred

to the outside option. Since the other n − 1 providers prescribe at the symmetric rate f ,

this can be written as:
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Ω(f i, f−i, E) = Pr

(
f iEpAU + εi− 1 ≥ 0

⋂
f iEpAU + εi ≥ fEpAU +maxj∈N\iε

j

)
(79)

To ease notation, let a = EpAU . Using the Law of Conditional Probability,

Ω(f i, f−i, E) = Pr(εi > 1− f ia)Pr
(
εi −maxj∈N\iεj > (f − f i)a

∣∣εi > 1− f ia
)

(80)

since εi ∼ U [0, 1] Equation (80) can be re-written as:

Ω(f i, f−i, E) = f iaPr
(
εi −maxj∈N\iεj > (f − f i)a

∣∣εi > 1− f ia
)

(81)

I now focus on the latter term of Equation (81). This is the probability that provider i is

preferred to all other providers conditional on i being preferred to the outside option. Note

that since there are n total providers including i, the distribution governing the maximum

idiosyncratic utility a patient receives from the other (n− 1) providers is

maxj∈N\iε
j ∼ β(n− 1, 1) (82)

which has pdf f(x) = (n− 1)xn−2.

I illustrate graphically the probability that provider i is preferred to all other providers

conditional on i being preferred to the outside option below.
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εi runs along the x-axis and maxj∈N\iε
j runs along the y-axis. We are conditioning on the

fact that εi > 1−f ia, which restricts the range of admissible values for εi. The iso-difference

line εi −maxj∈N\iεj = (f − f i)a gives the value of εi that makes the patient indifferent

between seeing provider i and the next best provider, given prescription rates and a value

for maxj∈N\iε
j . The region below (above) the iso-difference line are the parameter values

for which provider i is preferred (not preferred) to the best of the other providers.

The probability that provider i is preferred to all other providers conditional on being

preferred to the outside option is the weighted region of admissible values under the iso-

difference line divided by the weighted region of all admissible values. The region of

admissible values has weight af i.

The probability - and hence Equation (81) - is a piecewise function. I derive this expression

for f i ≥ f . In equilibrium, all providers will prescribe antibiotics at the same rate, but

this more general derivation is necessary to describe the marginal effect of the oligopolist

increasing his prescription rate on his market share. It can easily be verified by performing

the equivalent exercise for f i ≤ f that the derivative at f i = f exists.

For simplicity, I calculate the weighted region of values for which i is not preferred, divide
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by the weight of admissible values af i, and then subtract from one. The region for which

i is not preferred is the triangle demarcated by the vertical line at εi = 1 − af i, the

corresponding the iso-difference line, and the top of the graph.

Pr

(
εi−maxj∈N\iεj ≥ a(f − f i)

∣∣∣∣εi ≥ 1−af i
)

= 1−

1+a(f−f i)∫
1−af i

1∫
x−a(f−f i)

(n− 1)y(n−2)dydx

af i

(83)

= 1− f
f i
− (1−af)n−1

naf i

For f i ≥ f provider i’s market share is:

Pr

(
εi −maxj∈N\iεj ≥ a(f − f i)

⋂
εi ≥ 1− af i

)
= af i

(
1− f

f i
− (1− af)n − 1

naf i

)
(84)

To calculate the marginal effect of the oligopolist increasing his prescription rate on his

market share, differentiate (84) with respect to f i to get:

∂Ω(f i, f−i, E)

∂f i
|f i=f = a (85)

To calculate i’s equilibrium market share, set f i = f to get

Ω(f, f−i, E) =
1

n

(
1− (1− af)n

)
(86)

The equilibrium aggregate prescription rate is:

F = fPr(maxj∈Nε
j ≥ 1− af) = f

(
1− (1− af)n

)
(87)

To calculate an individual oligopolist’s equilibrium marginal effect on the aggregate pre-

scription rate, consider the more general formulation,
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F = f iΩ(f i, f−i, E)+fPr

(
maxj∈N\iε

j−εi ≥ a(f i−f)
⋂
maxj∈N\iε

j ≥ 1−af
)

(88)

This expression is to be differentiated with respect to f i and evaluated at f i = f . The first

part of this expression is derived using Equations (85) and (86). Focusing on the second

part of the expression and using the Law of Conditional Probability,

fPr

(
maxj∈N\iε

j − εi ≥ a(f i − f)
⋂
maxj∈N\iε

j ≥ 1− af
)

=

fPr

(
maxj∈N\iε

j ≥ 1− af
)
Pr

(
maxj∈N\iε

j − εi ≥ a(f i − f)

∣∣∣∣maxj∈N\iεj ≥ 1− af
)
(89)

Note that

Pr

(
maxj∈N\iε

j ≥ 1− af
)

=

1∫
1−af

(n− 1)xn−2dx = 1− [1− af ]n−1 (90)

The last component then is a closed-form expression for

Pr

(
maxj∈N\iε

j − εi ≥ a(f i − f)

∣∣∣∣maxj∈N\iεj ≥ 1− af
)

(91)

I derive this for f ≥ f i using a similar process as before, which can then be differentiated

and evaluated at the symmetric equilibrium in which f = f i.

For f ≥ f i,

Pr

(
maxj∈N\iε

j−εi ≥ a(f i−f)

∣∣∣∣maxj∈N\iεj ≥ 1−af
)

= 1−

1+a(f i−f)∫
1−af

1∫
x−a(f i−f)

(n− 1)x(n−2)dydx

1− [1− af ]n−1

(92)

= 1−
1
n

[1+a(f i−f)]n+n−1
n

[1−af ]n−[1−af ]n−1[1+a(f i−f)]

1−[1−af ]n−1
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For f ≥ f i, Equation (89) can be re-written as:

fPr

(
maxj∈N\iε

j − εi ≥ a(f i − f)
⋂
maxj∈N\iε

j ≥ 1− af
)

=

f

((
1−[1−af ]n−1

)(
1−

1
n [1 + a(f i − f)]n + n−1

n [1− af ]n − [1− af ]n−1[1 + a(f i − f)]

1− [1− af ]n−1

))
(93)

Using Equations (85), (86), and (93), we can calculate the marginal effect that increasing

an oligopolist’s prescription rate has on the aggregate prescription rate in the symmetric

equilibrium.

∂F

∂f i

∣∣∣∣
f i=f

= Ω(f, f−i, E)+fa−fa+af(1−af)n−1 =
1

n
[1−(1−af)n]+af(1−af)n−1 (94)

We can now write the first-order condition that governs the oligopolist’s symmetric Markov

Perfect equilibrium. Incorporating Equations (85), (86), and (94) into the first-order con-

dition for a positive f∗ gives:

[1−cf∗]aI−c 1

n
[1−(1−af∗)n]I+δ

∂V (I ′, E′;σ)

∂I ′
(−EIpA)

( 1

n
[1−(1−af∗)n]+af∗(1−af∗)n−1

)
+

δ
∂V (I ′, E′;σ)

∂E′
−E(1− E)pA[1 + β(1− I)− pR][

1 + β(1− I)− pR + E

(
∆p− pA

(
f∗(1− (1− af∗)n)

))]2

( 1

n
[1−(1−af∗)n]+af∗(1−af∗)n−1

)

≥ 0 (95)
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