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Abstract. This paper shows that a judiciously designed toll applied to a portion of the
lanes of a highway can be a Pareto improvement even before the revenue is spent. I
achieve this new result by extending a standard dynamic congestion model to reflect
an important additional traffic externality which transportation engineers have recently
identified: additional traffic does not simply increase travel times, but can also introduce
additional frictions that reduce throughput. By using a time varying toll to smooth the
rate that people depart for work it is possible to avoid these frictions, increasing speed and
throughput. Increasing throughput shortens rush hour, which directly helps all road users.
However, adding tolls changes the currency used to pay for use of the highway during
rush hour from time to money. This change hurts the inflexible poor and most of the time
will outweigh the benefit they reap from having a shorter rush hour. We can avoid hurting
the inflexible poor by only adding tolls to a portion of the lanes. Doing so preserves their
ability to pay with time instead of money. When there are two families of agents, one
rich and the other poor, then as long as some rich drivers use the highway at the peak of
rush hour then adding tolls to a portion of the lanes is a Pareto improvement. To confirm
the real world relevance of this theoretical possibility I use survey and travel time data to
estimate the effects of adding optimal time varying tolls. I find that adding tolls to a fourth
of the lanes is a Pareto improvement, and that social welfare gains of doing so are over a
thousand dollars per road user per year.

1. Introduction

In the ninety years since Arthur C. Pigou introduced the idea that tolls could be used to
alleviate traffic congestion, carts have given way to automobiles and congestion has grown
to consume 38 hours per commuter annually, nearly an entire work week (Schrank et al.,
2012). In addition to the 5.5 billion hours drivers lost to additional travel time in 2011,
congestion wasted 2.9 billion gallons of fuel (Schrank et al., 2012), releasing an additional
26 million metric tons of carbon dioxide into the atmosphere,1 as well as a host of other
pollutants. This additional pollution amounts to more than six times the annual emissions
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saved by the current fleet of hybrid and electric vehicles,2 and is responsible for up to
8,600 preterm births a year (Currie and Walker, 2011). Congestion also retards economic
growth; cutting congestion delay in half would raise employment growth by 1% per year
(Hymel, 2009).

Despite the significance of these costs, the vast majority of roads remain unpriced. A ma-
jor barrier to implementing congestion pricing is the received wisdom among economists,
policy makers, and the public that congestion pricing makes many, if not most, road
users worse off.3 Lindsey and Verhoef (2008) suggest that “most likely, these losses are
the root of the longstanding opposition to congestion tolling in road transport,” a view
echoed throughout the literature.4 Most politicians view it as politically toxic5 and polls
almost always find widespread opposition to congestion pricing.6 As one voter put it,
“Turkeys don’t vote for Christmas–and motorists won’t vote for more taxes to drive.”7 If
the median voter believes they will be worse off under congestion pricing, then perhaps it
is no surprise congestion pricing hasn’t been widely implemented.

Of course the toll revenue isn’t lost, and since the received wisdom is that congestion
pricing is a Kaldor-Hicks improvement, meaning the winners gain more than the losers

2The Environmental Protection Agency (2011) estimates that the typical passenger vehicle emits 5.1 metric
tons of carbon dioxide a year, so the additional pollution is equivalent to that of 5 million vehicles. Samaras
and Meisterling (2008) estimate that a plug-in hybrid reduces greenhouse gas emissions by 32% compared to
conventional vehicles while traditional hybrids reduce greenhouse gas emissions by 29%. The U.S. Energy
Information Administration (2013, table 58) estimates that by the end of 2013 there will be 2.73 million
hybrid and electric cars and trucks, of which 98.7% are traditional hybrids. While Samaras and Meisterling
(2008) estimate the reduction in greenhouse gas emissions over the vehicle lifetime, so these numbers are
not perfectly comparable, these numbers imply the current fleet of electric and hybrid cars is equivalent to
removing 0.8 million conventional vehicles from the road. Dividing 5 million by 0.8 million gives us the
result that we need 6.25 times the current number of electric and hybrid vehicles to counteract the additional
pollution due to congestion.
3Other barriers include the belief that it is unfair to let some pay with money to get faster travel times and
concern that since tolling brings in more revenue for the government it will lead to increased government
spending. For an example of the first belief see Malady, Matthew. 2013. “Want to Save Civilization? Get in
Line,” New York Times, May 31, 2013. When drivers in Southern California were asked why they oppose
congestion pricing, in the specific form of allowing solo drivers to pay to travel in carpool only lanes, 40%
responded that either the government will waste the money or it will increase government bureaucracy (Fall
1999 Commuter Survey from Sullivan (1999)).
4For example, see Starkie (1986); Cohen (1987); Giuliano (1992); Arnott et al. (1994); Lave (1994); Small et al.
(2005) and Small and Verhoef (2007).
5Ison (2000, 276) finds that in the United Kingdom 80% of local politicians with responsibility for transporta-
tion issues, academics who studied such issues, and transport interest groups “view urban road pricing as
being publicly unacceptable.”
6 For example, Jones (1991) reports on twelve polls in the United Kingdom and finds widespread opposition to
congestion pricing; Harrington et al. (2001) cites a number of surveys in the United States finding opposition
to congestion pricing as well as finding 57% of their survey respondents oppose congestion pricing; and
Podgorski and Kockelman (2006) find that 70% of Texans oppose pricing existing roads. The notable counter-
example is that after congestion pricing has been implemented it generally finds widespread support. For
example, in Stockholm they voted to keep congestion pricing after a seven month trial (Hårsman and Quigley,
2010).
7Sturcke, James. 2008. “Manchester Says No to Congestion Charging,” Guardian, December 12, 2008.
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lose, then there are transfers that will make all road users better off, thereby making
congestion pricing a Pareto improvement.8

Unfortunately, even when we can design transfers that make a policy a Pareto improve-
ment, it can still be difficult to implement. Stiglitz (1998) points out that it may not be
enough to identify Pareto improving transfers because the transfers are transparent, and
thus harder to defend, and the government cannot commit to maintaining the transfers.
This makes policies that naturally generate a Pareto improvement all the more valuable.

The main result of this paper is that, contrary to the received wisdom, a carefully
designed toll on a portion of the lanes of a highway can be a Pareto improvement, even
before the toll revenue is spent. This means that all road users will be better off regardless
of what is done with the revenue.

Before moving on to how I am able to get this new result and the intuition for it, let me
first make two clarifying points. First, to price a portion of the lanes we take a highway
and split it into two routes using some barrier, often pylons or simply a painted line,
and price one of the routes using electronic tolling as envisioned by Vickrey (1963) and
seen today in the form of E-ZPass in the Northeastern United States and similar systems
elsewhere. This practice is often called value pricing, since drivers have the option of
paying more for something of greater value. The priced lanes are called HOT Lanes when
solo drivers can pay to access high occupancy vehicle lanes. The acronym stands for High
Occupancy/Toll. The lanes have also been given the epitaph of Lexus Lanes to convey the
accusation that only those who can afford a Lexus can afford to drive in them.9

Second, obtaining a Pareto improvement comes at a cost. We are not pricing all of the
lanes and therefore leave some of the potential Kaldor-Hicks efficiency gains unrealized.
However, obtaining a Pareto improvement should make congestion pricing more accept-
able to the public and politicians and so allow for widespread adoption. Because of this,
what we are really doing is trading potential, but unrealized, efficiency gains for actual
efficiency gains.

I am able to get this new result by extending the bottleneck congestion model of Vickrey
(1969) and Arnott et al. (1990, 1993) to reflect an important additional traffic externality
that has been identified by the transportation engineering literature but that has largely
been ignored in the economics literature. Not only does each additional vehicle slow
others down, but in heavy enough traffic additional vehicles can create additional frictions
which reduce throughput. That is, the road will produce fewer trips per unit time.

To understand the two externalities better, consider a two-lane highway that merges
down to one lane at some point. The point where the lanes merge is a bottleneck. As a
standard highway lane has a capacity of roughly 40 vehicles per minute (Council, 2000)

8See Small (1983, 1992) for practical proposals of how to use the revenue to get close to a Pareto improvement.
9The empirical evidence is that those of all income levels use the priced lanes, though the rich use them more
frequently (Sullivan and Harake, 1998; Sullivan, 2002).
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let’s assume that at the start of rush hour more than 40 vehicles per minute start down
our hypothetical two lane highway. When these vehicles reach the bottleneck they will
find that they cannot all get through at once and so they must wait for their turn to use
the scarce road space; a queue will form. An additional car that travels during rush hour
lengthens the queue, increasing the travel time of all those behind him by 1.5 seconds, the
amount of time it takes him to go through the bottleneck. This lengthening of the queue
is the standard externality. However, what this simple externality fails to capture is the
fact that a queue creates additional frictions that reduce throughput. Rather than moving 40
vehicles per minute the bottleneck will only move 36, or even fewer, vehicles per minute.
What this means is that each car on the highway imposes two externalities, both of which
lead to longer travel times: they lengthen the queue and reduce throughput.10

Over fifty years ago economists conjectured that this second externality existed, that
too many cars on the road could reduce throughput (e.g., Walters, 1961; Johnson, 1964).
Vickrey (1987) even gave it a name, hypercongestion. This was before the transportation
engineering literature had identified the causal mechanisms and the economics literature
rejected the claim (e.g., Newell, 1988; Verhoef, 1999, 2001; Small and Chu, 2003).11

Tolls can prevent throughput from falling by smoothing the rate at which vehicles get
on the highway so that the queue stays below the length where throughput falls. Figure 1
gives a stylized example of how this can work.

When the road is unpriced drivers depart from home at rate r(t). At the start of rush
hour 48 vehicles per minute depart from home, but the highway’s maximum throughput
is only 40 vehicles per minute, so a queue forms and travel times start climbing. As the
queue gets longer the second externality takes effect and highway throughput falls to just
32 vehicles per minute. As we approach 8:30 the number of vehicles on the highway and
travel times climb to their peak. Eventually rush hour will end, so there must be a period
of time where more vehicles are getting off the highway than are getting on it. Starting at
8:30 only 8 vehicles per minute depart from home, allowing the length of the queue, and
thus travel times, to start falling, until eventually everyone has reached work and rush
hour ends at 9:20. This can be an equilibrium because drivers face a trade-off in leaving

10This is a bit of a simplification, as when there are just a few cars on the road adding an additional vehicle can
reduce speeds while increasing throughput, but will hold exactly in my model. An alternative way of viewing
the two externalities that is more accurate but doesn’t separate the two externalities as cleanly is to look at
the elasticity of speed with respect the number of vehicles on the road, or density. First note that throughput
(vehicles/hour) is the product of speed (miles/hour) times density (vehicles/mile); T = S× D. The standard
externality is that ∂S

∂D < 0. As long as the elasticity of speed with respect to density, εS,D = − ∂S
∂D

D
S , is less

than one, throughput will be increasing in density. However, when εS,D > 1 the additional externality is in
force and additional vehicles will reduce throughput.
11There is research arguing hypercongestion is possible for urban centers, which is the context in which
Vickrey (1987) defined it. See Small and Chu (2003); Arnott and Inci (2010) as well as Fosgerau and Small
(2013).
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Figure 1. Tolls can change when drivers depart and increase throughput

early to avoid traffic but getting to work earlier than desired versus leaving so as to arrive
right on-time but enduring a long commute in bad traffic.

Using time varying tolls we can induce drivers to depart at rate r′(t), reducing the
departure rate before 8:30 and increasing the rate thereafter. By preventing the queue
from forming we eliminate both externalities; there is no queue and throughput remains
high at 40 vehicles per minute. Since throughput is higher, rush hour does not need to be
as long. In our stylized example, rush hour can start 40 minutes later and end 4 minutes
earlier.

By considering the effect of pricing on the first driver to depart in the morning we can
take our first look at the welfare impacts of congestion pricing. When the road is free
this driver doesn’t face any congestion, but will get to work very early. When the road is
priced he will not need to leave as early, since rush hour is shorter, still doesn’t face any
congestion, and for reasons we will see later, pays no toll. This first driver is better off
since he has reduced how early he arrives at work.

If all drivers are identical then the first driver to depart being better off means all drivers
must be better off; we have obtained a Pareto improvement before spending the revenue.

Once we allow drivers to be heterogeneous then we can no longer use changes to the
first driver’s welfare as a sufficient statistic for all drivers’ welfare, and the analysis gets
more complicated. When we add tolls to roads, we change the currency drivers pay with
from time to money. However, not all drivers value their time at the same amount, and
changing the currency used can hurt some drivers. Consider, for example, a poor driver
who traveled at the peak when the road was free. He now faces three choices: he can
travel at the same time and pay the toll; travel at a different time when the toll is lower,
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increasing how early or late he is to work but avoiding most of the toll; or not travel on
this road at all. There are no guarantees he will be better off.

However, we likely can still price some of the lanes and make all road users better
off. Pricing some of the lanes allows us to increase total highway throughput, reducing
the length of rush hour. Reducing the length of rush hour directly helps all road users.
Leaving some of the lanes unpriced allows drivers who prefer to pay with their time to
do so. This allows us to avoid harming the poor. As long as some rich drivers are using
the highway at the peak of rush hour then we can price some of the highway while still
leaving enough unpriced capacity for all of the poor drivers who had been arriving during
the peak to still do so.

My main theoretical contribution is showing that it is possible for pricing a portion of
the lanes to make all road users better off, even before using the toll revenue. Specifically,
I find the set of parameter values for which pricing some or all of the lanes is a Pareto
improvement when there are two families of agents. A family is a set of agents with the
same value of time and inflexibility (a measure of drivers willingness to trade time early
at their destination for travel time) but members of the same family can differ in their
desired arrival time. I find an intuitive sufficient condition for value pricing to be a Pareto
improvement: as long as some rich drivers use the highway at the peak of rush hour then
adding tolls to a portion of the lanes is a Pareto improvement.

My main empirical contribution is to confirm the real world relevance of this theoretical
possibility. I allow for a continuum of families and estimate the joint distribution of agents
value of time, desired arrival time, and inflexibility for road users on California State
Route 91. To the best of my knowledge this is the first time the distribution of inflexibility
has been estimated, despite its importance in dynamic congestion models, as well as the
first time this joint distribution has been measured. I then use these estimates to evaluate
the effects of congestion pricing. I find that the welfare gains from congestion pricing are
large. Pricing all of the road increases social welfare by $2,300 per road user per year, but
at the cost of hurting some road users by more than $3,000 per year. However, by pricing
just a fourth of the lanes we obtain a Pareto improvement while still capturing 43% of the
social welfare gains.

I make three additional contributions. First, I introduce to the economics literature the
evidence on why throughput falls when roads are congested. Second, I show how the
bottleneck model’s implicit assumption that throughput is unaffected by pricing explains
the differences between the welfare effects of congestion pricing in the bottleneck model
relative to other models; differences that have been attributed to the bottleneck model
being dynamic. Finally, I extend the bottleneck model to allow for a continuum of desired
arrival times. This feature, with otherwise homogeneous agents, was in the initial papers
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using the bottleneck model (Vickrey, 1969; Hendrickson and Kocur, 1981), but was sub-
sequently dropped as it didn’t affect equilibrium outcomes.12 However, once agents are
heterogeneous along other dimensions then allowing for agents’ desired arrival time to
be continuously distributed has significant effects on equilibrium outcomes and is vital
for matching the model to the data.

In the following sections I will explain the evidence on why throughput falls when
roads are congested from the transportation engineering literature (Section 2), extend the
standard bottleneck model to allow for the second externality, a continuum of desired
arrival times, and multiple routes (Section 3), and work through the model with homo-
geneous agents both to build intuition for how the model works and to highlight how
the welfare effects of congestion pricing depend crucially on whether tolling increases
or decreases throughput (Section 5). Then, in order to better address the concerns about
the distributional impacts of congestion pricing, I show when pricing part or all of the
highway is a Pareto improvement when there are two families of agents (Section 6). I
then solve the model with a continuum of families (Section 7) and use those results to to
estimate the joint distribution of agent preferences (section 8) and evaluate what would
happen were we to price all or part of the road (Section 9).

2. Understanding traffic congestion

This paper depends critically on the claim that tolls can be used to increase highway
throughput. To understand this we must first understand the frictions that can occur at
bottlenecks that reduce highway throughput. Transportation engineers have identified two
causal mechanisms for why a queue behind a bottleneck can reduce highway throughput.

A bottleneck can occur at any place the capacity of a highway decreases, generally
because of a reduction in lanes. While the most noticeable bottlenecks are generally
the result of lane closures due to construction or an accident, far more common are
bottlenecks due to on-ramps. The typical on-ramp is a bottleneck since it is a lane that
joins the highway and then ends; it adds vehicles but not capacity.

2.1. Queue spillovers. The first additional friction occurs when the queue behind a bottle-
neck grows long enough that it blocks upstream exits. Drivers who wish to use these now
blocked exits are forced to wait in the line to use the bottleneck, even though they have
no need to pass through the bottleneck. Similarly, a queue can grow at a busy off-ramp,
spilling onto the mainline of the freeway and blocking through traffic. Vickrey (1969)
labeled the first situation a trigger neck and transportation engineers call both situations
a queue spillover.

12The one other paper to consider agents with a continuum of desired arrival times who are heterogeneous
in other dimensions is de Palma and Lindsey (2002), who numerically solve for equilibrium when there are
no tolls.
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Queue spillovers are the reason that beltways or ring roads that go around major cities,
such as I-495, which encircles Washington D.C., and Boulevard Périphérique, which encir-
cles Paris, are especially prone to crippling congestion (Vickrey, 1969; Daganzo, 1996).13

Muñoz and Daganzo (2002) find that queue spillovers frequently reduce throughput by
25% where I-238 diverges from I-880N outside of San Francisco.

2.2. Throughput drop at bottlenecks. In addition, throughput at the bottleneck itself
can fall once a queue forms, so that instead of 40 vehicles per minute getting through
the bottleneck only 36 or even fewer vehicles get through per minute. On our two lane
highway the vehicles in the right lane will need to change lanes before getting to the
bottleneck. When traffic is light this is easy, but when traffic is heavy it becomes difficult.
At some point a vehicle will come to a stop before merging and force its way over. This
is what transportation engineers call a destructive lane change. We can see the damage
in two ways. First, the vehicle that forced its way over will be moving very slowly and so
go through the bottleneck at a slow speed. Equivalently, he will open up a gap in front of
him; this will be a period of time that the bottleneck, the scarce resource on the highway,
is not being used. Notice how this contrasts with most queues; while a long line at the
grocery store means you will have to wait a while, it does not affect the rate at which
customers are served. In fact, most queues increase throughput by avoiding wasted time.

There is a large transportation engineering literature documenting that throughput at
bottlenecks drops once a queue forms, which they refer to as the two-capacity hypothesis.14

All of the papers in the literature have found evidence for the two-capacity hypothesis,
though Banks (1991) found at two sites that it only affected the merging lanes, not the
entire road. The estimates for the size of the drop range from 2–16%, and are presented
in Table 1.15 This phenomenon has also been modeled in the physics literature in Helbing
and Treiber (1998) and Treiber et al. (2000).

All of these papers follow the same basic procedure; they measure the capacity of the
bottleneck by identifying bottlenecks that are not constrained by a downstream bottleneck
and then measuring flows immediately before a queue forms and while there is a queue.
These papers’ data come either from video cameras or loop detectors. When using loop
detectors they identify when a bottleneck is active and has a queue using either sharp
increases in speed or sharp declines in occupancy, the fraction of time a loop detector has
a vehicle over it, between consecutive detectors.

13There is a animation on Daganzo’s website that illustrates this nicely at
www.its.berkeley.edu/volvocenter/gridlock/.
14The name, “two-capacity hypothesis,” refers to the idea that a road has one capacity, or throughput, when
there is no queue and a different capacity when there is a queue.
15There are papers not expressly testing the two-capacity hypothesis that present results that can be inter-
preted as evidence for or against the throughput drop at bottlenecks. These includes Hurdle and Datta (1983)
who find no capacity drop and Elefteriadou et al. (1995) and Leclercq et al. (2011) who do.
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Table 1. Findings of transportation engineering literature on throughput
drop at bottlenecks

Paper Throughput drop (%) Location

Banks (1990) 2.8 I-8, San Diego
Hall and Agyemang-Duah
(1991)

5.8 Queen Elizabeth Way, Toronto

Banks (1991) −1.2–3.2 4 sites in San Diego
Persaud et al. (1998) 10.6–15.3 3 site/time pairs on Toronto

Highway 401
Cassidy and Bertini (1999) 7.4–8.7 2 sites in Toronto
Bertini and Malik (2004) 4 US-169, Minneapolis
Zhang and Levinson (2004) 2–11 27 sites in Minneapolis–St.

Paul
Bertini and Leal (2005) 9.7 M4, London

12 I-494, Minneapolis
Cassidy and
Rudjanakanoknad (2005)

11.7 I-805, San Diego

Rudjanakanoknad (2005) 13.2 SR-22, Orange County,
California

Chung et al. (2007) 12.3 I-805, San Diego
6.2 SR-24, San Francisco
5.8 Gardiner Expressway, Toronto

Guan et al. (2009) 15 Fourth Ring Road, Beijing
Oh and Yeo (2012) 8.9–16.3 16 sites in California
Srivastava and Geroliminis
(2013)

15 US-169, Minneapolis

Figure 2 shows the relationship between speed and throughput for a bottleneck on I-
805N in San Diego. It was created using data from Cassidy and Rudjanakanoknad (2005),
who used video recordings of morning traffic to extract second-by-second throughput for
each lane at four locations, each 120 meters apart; as well as to measure how long it took
to traverse the entire 360 meters, which was measured every five seconds. From the video
they are able to verify that vehicle flows through the bottleneck are not constrained by
traffic further downstream.

What this means is that Figure 2 maps out a production possibility frontier (PPF). Notice
that the PPF bends backwards, that we can have a throughput of 9,000 vehicles per hour at
either 28 miles per hour, or 50, and that we can even have a throughput of 10,500 vehicles
per hour at a speed of fifty miles per hour.

This PPF bends backwards because throughput falls when a queue forms at the bottle-
neck. As a measure of whether a queue has formed we can look at the number of vehicles
in the rightmost lane, which is represented in Figure 2 by the color of each dot. The dot
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Figure 2. Production possibilities frontier implied by observations from I-
805N at Palm Avenue on September 17, 2002, 6:08–6:28 a.m. and September
18, 2002, 6:10-6:30 a.m. I take the 45 second moving average of 5 second
level data. Data from Cassidy and Rudjanakanoknad (2005).

is red when there are a large number of vehicles in the rightmost lane, and those points
invariably are those with low speed and throughput.

3. Model

It is by rearranging when people travel within rush hour that tolls can decrease travel
times and increase throughput. Because the primary margin on which drivers will adjust
is their choice of when to travel, we need to use a model that explicitly includes this choice.
The standard model used in the economics literature that does so is the bottleneck model
of Vickrey (1969), which was formalized by Arnott et al. (1990, 1993).16

This model corresponds to the transportation engineers much beloved hydrodynamic
theory of traffic flow (Lighthill and Whitham, 1955; Richards, 1956) when the left side
of the density-flow curve is linear, as well as the widely used cell transmission model
(Daganzo, 1994). The key difference is that the bottleneck model doesn’t consider what
happens within the queue or how long the queue grows, while the transportation en-
gineers’ models deal explicitly with those issues at the cost of greater complexity. The
models all make the same predictions for travel times (and so average speed) as a function
of the history of departures and so for the questions I will address in this paper the
simplifications the bottleneck model makes are innocuous.

16See Arnott et al. (1999) for a survey of the literature which uses this model.
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I will make three important modifications to the model. The first is to add the second
externality by allowing throughput to fall when a queue forms. This is a natural way to
model the throughput drop at bottlenecks and serves as shorthand for the effects of queue
spillovers.17 The second modification is to allow the social planner to choose the fraction
of the lanes that are priced; this goes beyond existing work, such as van den Berg and
Verhoef (2011), which considers the welfare implications of pricing a fixed portion of the
lanes. The final change is to allow agents’ desired arrival time at work to be continuously
distributed, as in Vickrey (1969); Hendrickson and Kocur (1981); de Palma and Lindsey
(2002).

Allowing for a continuum of desired arrival times is important because it allows drivers
to be inframarginal, meaning that if the cost of their chosen arrival time increases, they
do not change when they arrive. This matters primarily because it is necessary to match
the data. The evolution of travel times across the day suggests that the marginal driver
at any point it time is quite willing to change when they arrive in order to save just a
little travel time, which means the marginal driver cannot be a shift worker. A model that
does not allow for inframarginal drivers must either make ridiculous predictions about
the evolution of travel times or not contain agents with very inflexible schedules.

3.1. Congestion technology. There is a single road connecting where people live to where
they work; this road has two types of routes: tolled and free. The social planner chooses
the relative size of each route as well as a time varying toll schedule to maximize social
welfare taking total road capacity and consumer preferences as given. Let λtoll and λfree

denote the fraction of capacity devoted to each route, where λtoll + λfree = 1.18 Travel
along this road is uncongested, except for a single bottleneck through which at most s∗

cars can pass per unit time. Letting r denote the route and t the time of departure from
home, when the departure rate on a route, rr(t), exceeds its capacity, λr · s∗, a queue
develops. Once the queue is more than ε vehicles long the throughput of the bottleneck
for that route falls to λr · s = λr · s∗, where s ≤ s∗. Therefore, queue length, measured as
the number of vehicles in the queue, evolves according to
(1)

∂Qr(t)
∂t

=


0 if Qr(t) = 0 and rr(t) ≤ λr · s∗,
rr(t)− λr · s∗ if Qr (t) ≤ ε and rr (t) > λr · s∗,
rr(t)− λr · s if Qr (t) > ε;

r ∈ {free, toll}.

17Under some very specific assumptions about the structure of the road network (Y-shaped network) and
distribution of destinations (constant over time) a model of queue spillovers maps exactly into this model.
18Implicit in this is the assumption it is costless to split the road into two routes. In reality some separation
between the priced and unpriced lanes is required. The Federal Highway Administration recommends a three
to four foot buffer when a pylon barrier is used (Perez and Sciara, 2003, p. 39-40) and on I-394 in Minnesota
there is a two foot buffer without any barrier (Halvorson and Buckeye, 2006, p. 246). As federal standards
call for twelve foot lanes on interstates (AASHTO, 2005, p. 3), splitting the road into two routes could cost as
much as a third of a lane. This space can come from narrowing the existing lanes at the cost of reducing the
design speed of the highway or the highway could be widened by a few feet.
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We then simplify by taking the limit as ε → 0, so throughput on a congested route is
constant.19

It is in allowing s < s∗ that we add in the empirical finding of a throughput drop at
bottlenecks, and allowing λtoll to be any number between zero and one, rather than just
zero or one, allows us to consider pricing a portion of the lanes, rather than just all or
none.

Travel time along route r for an agent departing at t is

(2) Td,r(t) = T f + Tv
d,r(t) r ∈ {free, toll},

where T f is fixed travel time, the amount of time it takes to travel the road absent any
congestion, and Tv

d,r(t) is variable travel time for route r. Variable travel time is only due to
queuing and is the length of the queue divided by the rate at which cars leave the queue

(3) Tv
d,r(t) =

Qr(t)
λr · s

.

For simplicity, and without loss of generality, we will assume that T f = 0. Throughout
the rest of this paper when we discuss travel time we are only referring to the variable,
congestion related, travel time.

It will be simpler to focus on arrival times instead of departure times, so define Tr (t)
as the travel time on route r that an agent arriving at t. Because this model is deterministic
there is a one-to-one mapping between departure times and arrival times, and so doing
so is innocuous.20

The production possibilities frontier (PPF) of the bottleneck model is shown in Figure
3. The solid line is the PPF, while the dotted line shows speed-flow combinations that are
possible even though they are not on the PPF. The PPF is horizontal up to s∗ because up
till the point which the bottleneck is binding there is no congestion. Once the bottleneck
is binding, throughput falls to s and travel times climb as the queue grows. Since travel
time is simply total distance divided by average speed, this means average speed is falling.
For different queue lengths there will be different average speeds, all of which have
throughput of s. Thus the dotted line is vertical.

19This small bit of mathematical jiu jitsu allows us to keep the model simple while avoiding existence of
equilibrium problems which can occur when given that the route will be congested, the equilibrium departure
rate is too low to create congestion, but when the route is uncongested the equilibrium departure is high
enough to create congestion.
20If an agent departs at td then he will arrive at t = td + Td (td), and so f (td) = td + Td (td) is the function
that maps between departure and arrival times. As long as dTd/dtd 6= −1 then f will be one-to-one and so
invertible.
For dTd/dtd = −1 we would need there to be an interval where a queue exists but no agents depart. This will
not happen in equilibrium in this model, though could with more general preferences. However, even were
this to happen there is still a unique cost-minimizing departure time for each arrival time, as leaving at the
end of the interval yields the same arrival time as leaving at any point within it, but with lower travel time.
Should the departure rate have a point mass there will not be a one-to-one mapping between departure times
and arrival times. However, we will shortly make some assumptions that rule this out.
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Figure 3. Production possibility frontier for bottleneck model

Notice that there is a single point which maximizes speed and throughput, labeled on
Figure 3 as the optimal point. The bottleneck model does not have the traditional trade-off
between throughput and speed, where increasing one requires decreasing the other (cf.
Pigou, 1912; Knight, 1924; Walters, 1961).

3.2. Agent preferences. There are G families of agents; let i ∈ {1, . . . , G} = G denote
an arbitrary family. Agents choose when to arrive at work and which route to take to
minimize the cost of traveling. Agents dislike three aspects of traveling: travel time; tolls;
and schedule delay, i.e., arriving earlier or later than desired. These costs combine to form
the trip price; the trip price of arriving at time t on route r for an agent in family i with
desired arrival time t∗ is

(4) p (t, r; i, t∗) = αiTr (t) + τr (t) + Di (t∗ − t) ;

where α is the cost per unit time traveling, i.e., the agent’s value of time, and Di is family
i’s schedule delay cost function. Schedule delay costs are piecewise linear,

Di (t∗ − t) = (t∗ − t)

βi t ≤ t∗

−γi t > t∗
.

where β is the cost per unit time early to work, and γ is the cost per unit time late to
work. Each of these parameters is the agent’s willing to pay money to reduce travel time
or schedule delay by one unit of time. The ratios β/α and γ/α are the agent’s willingness
to pay in travel time to reduce schedule delay (early and late respectively) by one unit of
time.
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Figure 4. Agents’ indifference curves by route

I assume that βi < αi for all i. This means that agents would rather wait for work to
start at the office than wait in traffic and is needed to prevent the departure rate from
being infinite.21

To simplify the problem I assume γi = ξβi for all i. This means that those who dislike
being early also dislike being late, while those who don’t mind being early similarly don’t
mind being late.

We can define an agent’s indifference curve over arrival time, travel time, and tolls
using (4). Since on a free route there will be no toll, we can define the indifference curve
on a free route as

(5) T̆ (t; i, t∗, p) = α−1
i [p (t, free; i, t∗)− Di (t− t∗)] .

Similarly, since there is to congestion related travel time on a priced route, we can define
the indifference curve on a priced route as

(6) τ̆ (t; i, t∗, p) = p (t, toll; i, t∗)− Di (t− t∗) .

Figure 4a shows the indifference curve on a free route for three different trip prices.
It shows that an agent is indifferent between arriving early or late, say near t01 or t10,
and having little to no travel time, and arriving exactly on-time at t∗ but facing a long
commute. The slope of the indifference curve is the agent’s willingness to trade travel
time for schedule delay, so before t∗ the slope is β/α , and after it is −γ/α.

Figure 4b shows the indifference curve on a priced route, also for three different trip
prices. It shows how agents are indifferent between arriving early or late and paying
little to no toll, and arriving exactly on-time but paying a high toll. The slope of this
indifference curve is the agent’s willingness to trade money for schedule delay; before t∗

the slope is β and after it is −γ.

21See Small (1982) for empirical evidence that this is true for the morning commute. It holds in most of his
specifications. Note that this is not the result of a statistical test but just comparing point estimates. See his
Table 3 for the clearest evidence; the first column is essentially β/α.
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On both routes the agent’s bliss point is at (t∗, 0), arriving right on-time, paying no toll,
and dealing with no congestion. The lower the trip price p, the lower the indifference
curve.

Agents can differ in their value of time, schedule delay costs, and desired arrival time.
I define a family of agents as the set of agents with the same value-of-time and schedule
delay costs.

The primary source of heterogeneity in drivers’ value of time is variation in their income,
and so if αi > αj then family i is richer than family j. While there are other sources of
heterogeneity in drivers’ value of time,22 by using α as a proxy for income we can directly
discuss the primary concern with congestion pricing, that it helps the rich and hurts
everyone else.

The ratio of an agent’s schedule delay costs and value of time is a measure of how
inflexible his schedule is, and so if βi/αi > β j/αj then family i is more inflexible than family
j. The main source of heterogeneity in drivers’ flexibility is differences in occupation, as
the opportunity cost of time early or late is different for those with different types of jobs.
If a shift worker is late he generally face penalties and when he is early he passes the time
talking with co-workers. Since for the shift worker there is not much difference between
spending time traveling or being at work early, his β/α will be close to one. Similarly due
to the penalty when late, γ/α will be large. In contrast, an academic can just start working
whenever he gets to the office and so will have a very low marginal disutility from being
early or late and so his β/α and γ/α will be closer to zero. Thus variation in β/α will be
driven by in schedule flexibility, where jobs that are more flexible lead to a lower β/α.23

Within each family agent’s desired arrival times are uniformly distributed over [ts, te].24

Let ni denote the density of agents of family i who desired to arrive at any given time in
[ts, te] and Ni = (te − ts) ni be the total mass of agents in family i. Demand is perfectly
inelastic. Were demand not perfectly inelastic then the distribution of desired arrival times
would no longer be uniform once tolls were added to the highway and different agents
saw their trip prices change by different amounts. Furthermore, ∑ ni > s∗ so that it is
impossible for all agents to arrive at their desired arrival time; thus some will need to
arrive early or late.

It may seem more natural to assume an agent’s desired arrival time falls into some
discrete set, such as 7:00, 7:30, 8:00, 8:30, or 9:00 in the morning. However, what we care

22A driver’s value of time reflects his marginal disutility of travel time and so can be driven by how com-
fortable his vehicle is or his taste for driving in congestion in addition to the standard labor-leisure trade-off.
Other empirically important sources of heterogeneity are trip purpose, distance, and mode, with the last
likely driven by selection (Small and Verhoef, 2007; Abrantes and Wardman, 2011).
23How flexible a worker’s personal life is will also affect the ratio, as leaving early for work means leaving
home earlier and going to bed earlier; and similarly leaving late for work likely implies working later to make
up for lost time.
24In section 8 I will provide evidence that this is a reasonable approximation to the truth.
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most about is when agents want to reach the end of the highway. Because the distribution
of distances between the end of the highway and work will be continuous, the distribution
of desired arrival times at the end of the highway is continuous.

Let {r, t} = σ (i, t∗) be the strategy of an agent in family i with desired arrival time t∗;
σ : G × [ts, te]→ {free, toll} × [0, 24].

3.3. Definition of equilibrium. We are looking for a perfect information, pure strategy
Nash equilibrium. No agent will be able to reduce his trip cost by changing his arrival
time or route choice.25

4. Finding Equilibrium

The fundamental scarcity is that there are times where more agents who want to arrive
than are able. Since not everyone can arrive at their desired arrival time, some agents
must arrive early or late. For agents to be indifferent between arriving at different times
and thus facing different schedule delay costs, they must also face different travel time
costs or tolls.

Since on a free route no toll is charged, travel times must vary. The only way to have
non-zero travel time is for there to be queuing, and so there will always be congestion
on the free route during rush hour, except for at the very start and end, a zero measure
set. Note that congestion doesn’t necessarily mean long travel times, just that there is
additional travel time due to congestion. Because a queue will form, throughput will fall
and the arrival rate on the free route is λfree · s for all of rush hour.

On the priced route the toll can vary to keep agents indifferent. One virtue of the PPF
implied by the bottleneck model is that it has a unique optimal point that maximizes
speed and throughput (see Figure 3) and so the optimal toll is the one that keeps us at this
point. Were we to restrict throughput to less than s∗, i.e., move to the right along the PPF,
we would have unnecessary schedule delay. Were we to allow more that s∗ vehicles to
depart, thereby allowing allow queuing, we would move to the dotted portion of the PPF
which would waste time and decrease throughput. This means the toll is set to eliminate
queuing and maximize throughput. Agents depart at the rate the priced route can handle
except possibly on a set of measure zero, and there is no variable travel time. Since a
queue never forms, the arrival rate on the tolled route is λtoll · s∗ for all of rush hour.

These observations allow me to simplify the notation. Since there is no travel time on
the priced route and no toll on the free route I will drop the route specific subscripts for τ

and T. Further, define

sr =

s r = free

s∗ r = toll
.

25This is similar Wardop’s first principle of equilibrium which requires that no agent can unilaterally reduce
his travel costs by changing to another route (Wardrop, 1952).
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With these results we can simplify think of solving for equilibrium as assigning agents
to arrival times. On a free route we can assign λfree · s agents to each arrival time and on
a priced route we can assign λtoll · s∗. Once we know which agents arrive when, we can
back out the travel time profile or toll schedule necessary to implement it.

Framed this way, the bottleneck model when the road is completely free or priced
is very similar to the Hotelling (1929) differentiated goods model. We have continuum
of differentiated goods (arrival times), and agents have unit demand and bear a cost of
purchasing a good different from the one they prefer (schedule delay costs). The key
difference is that each good is “provided” by firms in a perfectly competitive market who
in aggregate inelastically supply sr units of the good.

It is also very much like the von Thünen (1930) model of land use. Instead of land
use we are modeling the use of arrival times, and we replace transportation costs with
schedule delay costs. When all agents have the same desired arrival time and the cost of
being late is the same as the cost of being early the models are identical.

4.1. Free route. The ability to arrive at the most desirable times is allocated to those who
are willing to pay the most for it. For a free route the currency that is used is travel time,
while on a priced route it is dollars. Thus on a free route those willing to bear long travel
times get to arrive on-time, while on a priced route those willing to pay the most get to
do so.

An agents’ inflexibility is his willingness to pay in travel time to reduce schedule delay,
or in other words, his willingness to pay in travel time to arrive at the peak. Thus on a
free route those who are very inflexible will arrive at the peak. This is formalized in the
following lemma. The proof, along with all other omitted proofs, is in appendix A.

Lemma 1. If family i is more inflexible than family j (i.e., βi/αi > β j/αj) then if an agent from
family i with desired arrival time t∗ arrives at t on a free route then no agent from family j arrives
between t∗ and t on a free route.

Assume for now that the travel time profile has a single local maximum, tmax. This is
the peak of rush hour and an agent who arrives at tmax faces the longest commute of any
agent. We will prove that there is a single peak later in proposition 12.

Define tmax
i as the time such that the agent in family i with desired arrival time tmax

i is
indifferent between arriving early or late. When the travel time profile has a single local
maximum, any agent from family i who has desired arrival time t∗ < tmax

i will strictly
prefer to arrive early or on-time, and similarly if t∗ > tmax

i then they will strictly prefer
to arrive late or on-time. I use the superscript max for two reasons, first, the agent from
family i with desired arrival time tmax

i will have the largest trip price of any agent in family
i, second, the peak of rush hour, tmax, will occur at at least one families tmax

i .
We assign agents to arrival times as follows. First, assume we know tmax and tmax

i for
all i ∈ G. Then starting at tmax and working our way backward, we assign to each arrival
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time t the most inflexible agents of those who want to arrive early or on-time at t and are
not yet assigned an arrival time until we have filled the available capacity. Likewise we
start at tmax and work forward, assigning the most inflexible agents who want to arrive
late or on-time at t. We break ties by allowing those with an earlier desired arrival time to
arrive earlier.

Once we have assigned agents to arrival times we can back out what the travel time
profile is from agents’ preferences. If an agent arrives early or late on a free route it must
be true that his indifference curve is tangent to the “budget line” so the marginal rate
of substitution between schedule delay and travel time is equal to the marginal rate of
substitution the equilibrium travel time profile offers; i.e., the slope of the travel time
profile at the time he arrives must equal his inflexibility if he is early and −ξ times his
inflexibility if he is late. If an agent arrives exactly at his desired arrival time all we know
is that his schedule delay costs are such that he is unwilling to accept schedule delay given
the travel time profile. I formalize these results in the following lemma.26

Lemma 2.

{t, free} ∈ σ (i, t∗)⇒

 dT
dt (t) = α−1

i
dDi
dt (t) if t 6= t∗,

−γi
αi
≤ dT

dt (t
∗) ≤ βi

αi
if t = t∗.

To finish defining the travel time profile we add the initial condition that the travel time
at the start of rush hour is zero.

Now that we know the travel time profile as a function of tmax and tmax
i for all i ∈ G

we can pin down what these variables are in equilibrium. We pin down tmax from the
requirement that there be no travel time at the end of rush hour, and require that for each
family i ∈ G the agent with desired arrival time tmax

i is indifferent between arriving early
or late, as required by its definition.

4.2. Priced route. We can find equilibrium on a priced route in much the same way as
on a free route. The key difference is that now travel times are allocated by willingness
to pay in money, rather than by willingness to pay in travel time. An agent’s willingness
to pay in money to reduce schedule delay is his β, and so on a priced route those with a
high β will arrive at the peak; which I formalize in the following lemma.

Lemma 3. If βi > β j then if an agent from family i with desired arrival time t∗ arrives at t on the
priced route then no agent from family j arrives between t∗ and t on the priced route.

26This lemma also implies that the presence of a kink in the schedule delay cost function is necessary in order
to have inframarginal agents. As long as the travel time profile has continuous first derivatives, which it will
almost everywhere, then by the intermediate value theorem the marginal rate of substitution between arrival
time and schedule delay cannot go from very positive to very negative without at some point being tangent
to the travel time profile. If there is a point of tangency then we have an interior solution and so agents would
never be inframarginal. On a priced route the logic will be the same, just replace the travel time profile with
the toll schedule.
It is not important that the kink in the schedule delay cost function is at the agent’s desired arrival time, just
that there is a kink and so the intermediate value theorem doesn’t apply.
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We assign agents to arrival times in the same manner as on a free route, except the we
prioritize agents based on their β instead of their inflexibility. Assuming we know tmax

(now the time with the highest toll) and tmax
i for all i ∈ G we start at tmax and work our

way backwards. We assign to each arrival time t the agents with the highest β of those
who want to arrive early or on-time at t and are not yet assigned an arrival time until we
have filled the available capacity. Likewise we start at tmax and work forward, assigning
the agents with the highest β who want to arrive late or on-time at t. As before, we break
ties by allowing those with an earlier desired arrival time to arrive earlier.

In similar fashion to before, we can back out the toll schedule from agents’ preferences.
If an agent from family i arrives early or late on a priced route it must be true that his
indifference curve is tangent to the “budget line” so his marginal rate of substitution
between schedule delay and money is equal to the marginal rate of substitution the toll
schedule offers. Thus the slope of the toll schedule at the time he arrives must equal βi if
he is early and −ξβi if he is late. If an agent arrives exactly at his desired arrival time all
we know is that his schedule delay costs are such that he is unwilling to accept schedule
delay given the toll schedule and so γi ≤ dτ/dt (t∗) ≤ βi. We formalize these results in
the following lemma.

Lemma 4.

{t, toll} ∈ σ (i, t∗)⇒

 dτ
dt (t) = α−1

i
dDi
dt (t) if t 6= t∗,

−γi ≤ dτ
dt (t

∗) ≤ βi if t = t∗.

To finish defining the toll schedule I make the reasonable, but arbitrary, assumption
that the toll is zero when the road is uncongested and so is zero at the start of rush hour.
Allowing negative tolls is an effective way to “spend” the revenue raised by congestion
pricing to improve congestion pricing’s distributional impacts, but ruling negative tolls
out we make it harder to find a Pareto improvement.

Since we can write the toll schedule as a function of tmax and tmax
i for all i ∈ G we can

solve for these remaining variables by requiring the toll at the end of rush hour be zero
and imposing that tmax

i match its definition.

4.3. Value pricing. When we have both a free route and a priced route we need to assign
agents to routes, and then we can use the methods above to assign them to travel times on
their routes. Agents will travel on the route that gives them to lowest cost. I will save most
of the details for how we do this until later, as we will use approach it differently when
there are two families than when there are an arbitrary number of families; but want to
make one point now.

The start and end of rush hour will be the same on each route. If not, then there would
be a time where there was congestion on the free route, but no toll on the priced route,
and so an agent arriving at this time on the free route would deviate and arrive at the
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same time on the priced route. Similarly there cannot be a positive toll on the priced route
while there is no congestion on the free route.

5. Homogeneous Agents

Let’s start by considering when every agent is identical; i.e., there is one family and all
agents have the same desired arrival time t∗.27 This is the canonical case worked out by
Arnott et al. (1990, 1993). We will start by looking at what implications agents’ preferences
have for equilibrium. When agents’ are homogeneous many of these implications will
hold regardless of how we model congestion.

When agents are homogeneous we can use their indifference curves to solve for equi-
librium. In equilibrium all agents will be indifferent between arriving at any point during
rush hour, and so must be on the same indifference curve. To solve all we need to do
is find the indifference curve which is above the x-axis for long enough for all agents to
arrive at work. That is, for a given trip price the indifference curve tells us the length
of rush hour and hence the supply of trips, and so we are finding the price that equates
supply and demand. The indifference curves directly give us the equilibrium travel time
profile on a free route and the equilibrium toll schedule on a priced route.28

This general point of using an indifference curve to find the length of rush hour and
thus the supply of travel times holds regardless of how we model congestion. For a free
route the ability to back out travel times from the indifference curve generalizes as well;
however for a priced route things are more complicated. This is because it will no longer
be true that there is no variable travel time on a priced route. When the PPF is convex
you can increase throughput at the cost of slower speeds, and so travel times will not be
constant.29 Fortunately, when agents all have the same value of time we can convert the
cost of travel time into dollars and put it on the same axis as the cost of the toll, so the
general point about using indifference curves to find equilibrium holds.

In any congestion model with continuous time the first agent to arrive on either route
pays no toll and faces no congestion. This must be true since the first agent could shift
his arrival time forward by an infinitesimal amount and would then be arriving outside
of rush hour. He would then face no travel time and pay no toll.30 The only cost this first
agent to arrive bears are the schedule delay costs from arriving so early.

27So ts = te and n1 is a point mass.
28This is the same answer that lemmas 2 and 4 give us.
29This is because the marginal social benefit of having an agent arrive near the peak is higher than having
him arrive further from the peak, and so in equilibrium the marginal social cost will be higher near the peak
than further from the peak. An easy way to understand this is to consider a proposed equilibrium where
travel time is constant over rush hour. If you need to add one more agent, at what time do you assign him to
travel? If the cost is the same everywhere, then you assign him to arrive right at his desired time. Since you
are not indifferent this cannot be an equilibrium.
30When there is no one else on the road a driver imposes no externality on others and so the socially optimal
toll is zero.
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This means we can use changes in the start of rush hour as a sufficient statistic for
whether congestion pricing helps all road users when all agents are homogeneous. If
congestion pricing leads rush hour being longer, so rush hour starts earlier, then conges-
tion pricing hurts the first agent to arrive because he now has more schedule delay. Since
all agents are identical, they must all have the same equilibrium trip price regardless of
when they arrive, and so if congestion pricing hurts the first agent to arrive, it must hurt
all agents. Likewise, if congestion pricing leads to rush hour being shorter, so rush hour
starts later, then congestion pricing helps the first agent to arrive because he now has less
schedule delay. Since all agents are identical, if the first agent is better off then all agents
are better off.

If we believe that highway traffic is always on the PPF, then we cannot escape the
conclusion that congestion pricing, while Kaldor-Hicks efficient, hurts road users before
the revenue is redistributed.31

Proposition 5 (Prior literature). If agents are homogeneous then in any congestion model with a
strictly negative relationship between flow and speeds, congestion pricing makes all agents worse
off before the revenue is redistributed.

When traffic is on the PPF the goal of congestion pricing is to reduce throughput so
that the remaining agents can travel faster.32 It is this logic that leads the U.S. Department
of Transportation to teach that “congestion pricing works by shifting purely discretionary
rush hour highway travel to other transportation modes or to off-peak periods” (2006,
1). But reducing throughput means rush hour must be longer, and so when agents are
homogeneous this means all are harmed.

The standard bottleneck model (s = s∗) assumes away the traditional trade-off between
throughput and speed. Making this assumption is justified because it makes it tractable
to model the dynamics of rush hour and doing so is important because congestion is
inherently dynamic: what happens on the road at 6 a.m. affects traffic at 7 a.m.33 As an
unanticipated and unappreciated side effect, however, it also changes the welfare effects
of congestion pricing.

Proposition 6 (Vickrey, 1969). If agents are homogeneous then in the bottleneck model with
s = s∗, congestion pricing does not change consumer welfare prior to revenue redistribution.

31Those familiar with the literature on congestion pricing may wonder how the result is consistent with
Henderson (1974) who finds that “per person costs of traveling including the toll may decline with the
imposition of tolls” (346). As Chu (1995) shows, in Henderson’s proposed equilibrium a agent would be
better off by leaving after the end of rush hour and so it is not an equilibrium. Chu reformulates the model
to avoid this problem and finds that “the optimal toll increases the equilibrium private trip cost” (336).
32More precisely stated, the strategic goal of congestion pricing is to maximize social welfare, but when traffic
is on the PPF the tactical goal becomes reducing throughput.
33See Arnott and Kraus (1993); Arnott et al. (1993) for additional arguments on the importance of using a
dynamic model.
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Because reducing the rate at which vehicles pass through the bottleneck doesn’t increase
speeds, the goal of pricing is no longer to reduce throughput, but rather to prevent a queue
from forming. We set prices to reduce the departure rate at the beginning of rush hour
and increase it at the end. This helps because it eliminates variable travel time, but because
the length of rush hour is unchanged it does not affect consumer welfare.

The literature has not recognized the importance of assuming away the traditional trade-
off between throughput and speed for explaining the differences between the welfare
effects of congestion pricing in the bottleneck and other models. For example, Arnott et al.
(1993) and van den Berg and Verhoef (2011) both use the bottleneck model and find that
that the welfare impacts of congestion pricing are much more favorable than previous
research reported, but attribute the difference to using a dynamic model rather than the
assumption about how pricing affects throughput. Chu (1995) compares the bottleneck
model to a different dynamic model and finds results consistent with propositions 5
and 6, but does not attribute it to different assumptions about the relationship between
throughput and speed.

If, however, the traffic engineers are right, and queuing creates additional frictions that
reduce throughput, then congestion pricing will be a Pareto improvement when agents
are identical.

Proposition 7. If all agents are homogeneous then in the bottleneck model with s < s∗, congestion
pricing helps all agents before the revenue is redistributed.

When queues reduce throughput the goal of pricing is to increase throughput by elim-
inating the queue and its attending frictions. We are able to decrease travel times while
increasing throughput. Because rush hour is shorter, all agents are better off.

When agents are heterogeneous we can no longer use changes in the first agent’s
welfare as a sufficient statistic for changes in all agents welfare, and so changes in the
length of rush hour don’t map directly into whether or not all agents are better off.
With heterogeneous agents congestion pricing can help some agents while hurting others
regardless of the relationship between throughput and travel times. However, the results
of propositions 5–7 will hold, at a minimum, for the first and last agent to depart when
the road is free. Because the results hold for at least one agent, we can conclude that
if increasing speeds requires reducing throughput then it is impossible for congestion
pricing to be a Pareto improvement before spending the revenue. If, however, congestion
pricing can increase throughput while increasing speeds, then it is possible for congestion
pricing to be a Pareto improvement regardless of how the revenue is spent.

When agents are homogeneous there is no reason to price only some of the lanes.
Leaving some lanes unpriced means leaving them congested and with lower throughput.
Homogeneous agents will be indifferent between traveling on either route at any point
in rush hour, and so there is no benefit to allowing some to pay with their time instead
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of their money. By pricing all of the lanes we maximize total highway throughput which
maximizes the reduction in the length of rush hour which maximizes the welfare gains.

However, when agents are heterogeneous it may be necessary to pricing only some of
the lanes if we wish to congestion pricing to be a Pareto improvement. As a preview of
our future results, consider what would happen if there was a small group of poor agents
who also used the road, so small that they don’t affect equilibrium. Were we to price all
of the road there would be no guarantee they are not worse off; however were we to price
just a portion of the lanes we can know that they are better off.

Proposition 8. If all agents, except for a zero measure family, are homogeneous, then in the
bottleneck model with s < s∗, pricing a portion, but not all, of the lanes will help all agents before
the revenue is redistributed.

Proof. Since the zero measure family of agents has no impact on equilibrium, we know by
proposition 7 that all agents in the family with positive measure are better off. For those
agents in the positive measure family who are on the free lanes to be better off, travel
times must have fallen at each point in time. Thus if the zero measure agents travel on the
free lanes at the same time they traveled before, then they will have shorter travel times
and be better off. Since they have an option that gives them a lower trip price than before,
whatever they choose must make them better off. Thus all agents are better off. �

The intuition behind this proof also leads to a nice empirical test for whether pricing
a portion of the lanes was a Pareto improvement; we can check if travel times on the free
lanes fell for every point in time. If so, pricing must have helped every road user.

6. Two Families

Since the thesis of this paper is that value pricing can lead to a Pareto improvement for
all users of the road, we need to explicitly allow for heterogeneous preferences. As the
primary concern with value pricing is that it hurts the poor and middle class, the main
distinction we will make is between high and low income agents.

We will now consider when there are two families of agents, and will define family 1
as rich and family 2 as poor, i.e., α1 > α2. First we will solve for equilibrium when the
road is completely free or priced, and use those results to determine when pricing all of
the road is a Pareto improvement. Then we will solve for equilibrium when just a portion
of the road is priced, and use those results to determine when value pricing is a Pareto
improvement.

6.1. Road is completely free or priced. For simplicity, define family A as the family that
will arrive off-peak, and family B as the family that arrives on-peak. This will reduce the
number of cases we need to solve and we can map A and B into rich and poor as needed.
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Lemma 1 implies that on a free route βA/αA < βB/αB and lemma 3 implies that on a
priced βA < βB.

When the entire road is either free or priced one of two subcases will apply, either
nB ≤ s or nB > s. We will consider each case in turn. We will use subscripts to distinguish
which case equilibrium trip prices, travel times, and tolls pertain to. We will use the
subscript I, free when the agents arriving at the peak are inframarginal and the highway
is free, the subscript M, toll when they are the marginal driver when they arrive and the
highway is priced, and the permutations of these subscripts.34

6.1.1. Equilibrium when family B is inframarginal. When nB ≤ s there is enough capacity for
the inflexible agents to all arrive exactly at their desired arrival time. This means that only
flexible agents arrive early or late. We can use lemma 2 to define the equilibrium travel
time profile as the solution to

dTI

dt
(t) =


βA/αA t0A ≤ t < tmax

A

−γA/αA tmax
A ≤ t < tA0

0 otherwise

, and(7)

TI (t0A) = 0.(8)

This allows us to write equilibrium travel times as a function of t0A, tA0, and tmax
A . The

requirements of equilibrium give us three equations that allow us to solve for these three
unknowns.

The first equation requires that the demand for early arrivals by agents in family A
equals the supply. The supply for early arrivals is the capacity available between start of
rush hour and the peak. In this period of time (tmax

A − t0A) s agents can arrive. However,
we need to account for the capacity used by the agents in family B with a desired arrival
time in this period of time. Since all agents in family B will arrive on-time, (tmax

A − ts) nB

of the capacity available for early arrivals is used by agents of family B. All agents in
family A with a desired arrival time before tmax

A will arrive early, and so demand for early
arrivals by agents in family A is (tmax

A − ts) nA. Thus in equilibrium

(9) (tmax
A − t0A) s− (tmax

A − ts) nB = (tmax
A − ts) nA.

The second equation is similar to the first, and requires that that the demand for
late arrivals by agents in family A equals the supply. By similar reasoning as above, in
equilibrium we need

(10) (tA0 − tmax
A ) s− (te − tmax

A ) nB = (te − tmax
A ) nA.

34To be precise, an agent is the marginal driver at time t if increasing the travel time or toll by a small amount
would cause him to choose a different arrival time, he is inframarginal if it would not affect his choice of
arrival time.
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The final equation comes from requiring that travel time at the end of rush hour be
zero,

(11) TI (tA0) = 0.

The way we find equilibrium when the road is priced is essentially the same. As nB ≤ s
there is enough capacity for all agents in family B to arrive on-time, and since βB ≥ βA

they are willing to pay to do so. Using lemma 4 we can define the equilibrium toll
schedule as the solution to

dτI

dt
(t) =


βA t0A ≤ t < tmax

A

−γA tmax
A ≤ t < tA0

0 otherwise

, and(12)

τI (t0A) = 0.(13)

Again we have three variables still to determine, and the equations that define them
are similar. Because capacity on a priced route increases to s∗, we replace s with s∗ in (9)
and (10), as well as changing subscripts to denote that we are considering a priced route.
Finally, we replace (11) with

(14) τI (tA0) = 0.

We now know enough to find equilibrium trip prices. By solving (9), (10), and (11), or
the equivalent equations for a priced route, we can determine the equilibrium travel time
profile or toll schedule. We can then find each types’ equilibrium trip price p̄ (i, t∗) =

mint,r p (t, r; i, t∗). The equilibrium trip prices for agents in family A for r ∈ {free, toll} are

p̄I,r (A, tmax
A ) = βA (NA + NB)

1
sr

ξ

1 + ξ
, and(15)

p̄I,r (A, t∗) = p̄I,r (tmax
A )− (tmax

A − t∗)

βA t∗ ≤ tmax
A

−ξβA t∗ > tmax
A

.(16)

For family B agents on a free route equilibrium trip prices are

p̄I,free (B, t∗) =
αB

αA
p̄I (A, t∗) ,(17)

while on a priced route they are

p̄I,toll (B, t∗) = p̄I (A, t∗) .(18)

While (16)–(18) can be calculated directly, and are, along with (15), in appendix C.1,
they are also fairly intuitive. First, note that due to the slope of the travel time profile and
toll schedule every agent in family A who arrives early is indifferent between arriving
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at their desired arrival time or earlier, and likewise those who are late are indifferent
between arriving at their desired arrival time or later.

To see the intuition behind (16) consider two agents in family A, one with desired
arrival time of tmax

A and the other of t∗. They are both willing to arrive at t∗, and were they
to do so the only difference in their trip price would be the difference in their schedule
delay costs at t∗. This means we can write the trip price of the second as the trip price of
the first minus the difference in their schedule delay costs at t∗.

The see the intuition for (17) and (18) now consider two agents with desired arrival
time t∗, one from each family. Both are all willing to arrive at t∗. When arriving at t∗ on
a free route neither of them have any schedule delay costs and they face the same travel
time, and so the only difference in their trip price is due to the difference in their value
of time. By dividing the family A agent’s trip price by his value of time we recover the
travel time at t∗, which we then multiply by the family B agent’s value of time to obtain
the family B agent’s trip price. Similarly, on a tolled route they face the same toll and have
no schedule delay or travel time, and so their trip prices are identical.

When one family is inframarginal their preferences do not affect equilibrium or the
marginal family’s trip price. Equation (15) is the same as (15) in Arnott et al. (1993), with
N = NA + NB. Further, travel times and tolls are the same. This is our first clue that the
intuition of proposition 8 and so value pricing will be a Pareto improvement when will
hold when wB < s.

6.1.2. Equilibrium when family B is marginal. When nB > s there is no longer enough
capacity for the inflexible agents to all arrive exactly at their desired arrival time, and so
they must also arrive early or late. Family B agents will use all of the capacity near the
peak, and family A agents will use all of the capacity off-peak. We can use lemma 2 and
the requirement that the travel time at the end of rush hour to define the equilibrium
travel time profile as the solution to

dTM

dt
(t) =



βA/αA t0A ≤ t < tAB

βB/αB tAB ≤ t < tmax
B

−γB/αB tmax
B ≤ t < tBA

−γA/αA tBA ≤ t < tA0

0 otherwise

, and(19)

TM (t0A) = TM (tA0) = 0.(20)

Now we have three additional variables to solve for in order to find equilibrium travel
times. As before, we will use the requirement that supply equals demand for early and
late arrivals, but now we will do so for both types, as well as the requirement that there be
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no travel time at the end of rush hour. These requirements give us the following equations.

(tAB − t0A) s = (tmax
A − ts) nA,(21)

(tA0 − tBA) s = (te − tmax
A ) nA,(22)

(tmax
B − tAB) s = (tmax

B − ts) nB,(23)

(tBA − tmax
B ) s = (te − tmax

B ) nB, and(24)

When the inflexible types were all able to arrive exactly at their desired arrival time
tmax

B was not defined and so we didn’t need to solve for it, now that they are unable to
arrive on-time we do. The requirement that travel time at the end of rush hour be zero
now pins down tmax

B rather than tmax
A and so we need to add an equation imposing the

definition of tmax
A ,

(25) p (tAB, free; A, tmax
A ) = p (tBA, free; A, tmax

A ) .

What matters is that the cost of arriving early equals the cost of arriving late for the agent
in family A with desired arrival time tmax

A , so the exact times we evaluate this equation at
don’t matter as long as one is in [t0A, tAB] and the other is in [tBA, tA0] .

As when nB ≤ s, the equations which define the equilibrium toll schedule are essentially
the same as those that define the equilibrium travel time profile. By lemma 4 and the
requirement that the toll at the end of rush hour be zero we know

dτM

dt
(t) =



βA t0A ≤ t < tAB

βB tAB ≤ t < tmax
B

−γB tmax
B ≤ t < tBA

−γA tBA ≤ t < tA0

0 otherwise

, and(26)

τM (t0A) = τM (tA0) = 0.(27)

As before, we replace s with s∗ in (21)–(24) and change subscripts. Finally, we update the
definition of tmax

A for a priced route by replacing “free” with “toll” throughout (25).
We now know enough to find equilibrium trip prices. By solving (21)–(25), or the equiv-

alent equations for a priced route, we can determine the equilibrium travel time profile or
toll schedule. We can then find each types’ equilibrium trip price. The equilibrium trip
prices for the agents with desired arrival time tmax

i in each family are

p̄M,free (A, tmax
A ) = p̄M,toll (A, tmax

A ) = βA (NA + NB)
1
sr

ξ

1 + ξ
,(28)
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and for family B on a free route

p̄M,free (B, tmax
B ) = αB

(
NA

βA

αA
+ NB

βB

αB

)
1
s

ξ

1 + ξ
,(29)

and for family B on a priced route

p̄M,toll (B, tmax
B ) = (NAβA + NBβB)

1
s∗

ξ

1 + ξ
.(30)

We can then define the trip price for all the other agents in reference to (28)–(30),

(31) p̄M,r (i, t∗) = p̄M,r (i, tmax
i )− (tmax

i − t∗)

βi t∗ ≤ tmax
i

−ξβi t∗ > tmax
i

for i ∈ {A, B} .

These are derived in appendix C.1.35

The intuition behind (31) is that an agent with desired arrival time tmax
i is willing to

arrive at the same time as an agent in his family with desired arrival time t∗, let t be the
time they arrive. Should they both arrive at t then the only difference in their trip price
is the difference in their schedule delay costs at t. Thus, the difference in their schedule
delay costs of arriving at t will be the difference in their equilibrium trip prices, regardless
of when they actually arrive.

Notice that (25) is the same as (15), and that (31) matches (16). The equilibrium trip price
for an agent who is willing to arrive at the start or end of rush hour is pinned down by
the length of rush hour. It doesn’t matter whether or not the other families agents are all
able to arrive at their desired arrival time and it doesn’t matter whether the road is priced
or free, except indirectly through the effect of pricing on road capacity. Furthermore, the
preferences of the family arriving at the peak doesn’t effect the equilibrium trip prices of
those arriving off-peak.

Now that we know what equilibrium trip prices are when the road is free as well as
when it is priced we can find when pricing the entire road helps all agents.

6.1.3. When is pricing the entire road a Pareto improvement? While charging time varying tolls
can increase throughput by preventing the destructive effects of queuing, it also requires

35Note that the equilibrium travel time profile, toll schedule, and trip prices for and trip prices for the agents
who desire to arrive at tmax

i are the same as they would be if all agents desired to arrive at tmax
i (cf. Arnott

et al., 1994).
Actually, as long as every agent is on the margin of trading schedule delay for travel time (or toll), i.e.,
every agent is either early or late, and rush hour has a single peak, the equilibrium travel time profile
and toll schedule will be the same as the equations defining equilibrium are unchanged. Thus the result
of Hendrickson and Kocur (1981) that equilibrium travel times and tolls are invariant to changes in the
distribution of desired arrival time as long as agents are homogeneous except for their desired arrival time
and rush hour has a single peak generalizes only when all agents are either early or late.
However, this is unlikely to hold unless we strongly restrict the number of families because it requires that
for each time t the density of agents from most inflexible family who desire to arrive at that time be greater
than highway capacity.
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changing the currency used to allocate arrival times from time to money. Although both
of these effects are Kaldor-Hicks efficiency enhancing, changing the currency used hurts
poorer drivers. Whether pricing is a Pareto improvement will depend on whether the
gains in throughput outweigh the harm from changing the currency.

The direct effect of changing the currency is that it makes desirable arrival times rela-
tively cheaper for richer agents. This means a poor agent who had been traveling at the
peak will either need to pay more to outbid the rich agent to continue to travel at the peak,
or travel further off-peak, thereby increasing his schedule delay.

Changing the currency also can hurt the poor indirectly; because congestion pricing
will lower the cost for richer agents it will induce more rich agents to travel. This will
counteract some of the benefit to existing drivers of increasing throughput. If demand for
trips by the rich is sufficiently elastic it is even possible that rush hour will be longer once
congestion pricing is implemented. 36

To find when pricing the entire road is a Pareto improvement we need to find when
equilibrium trip prices when the road is tolled are weakly lower than equilibrium trip
prices when the road is free for all agents in both families, with at least one agent’s trip
price strictly lower. Because equilibrium trip prices take a different form depending on
what family is traveling at the peak and whether that family is marginal or inframarginal,
we end up with ten different cases to check.37 The results of doing so are reported in
the following proposition, with the proof relegated to appendix A, and shown visually in
Figure 5.

Proposition 9. If there are two families, with uniformly distributed desired arrival time over a
common support, and perfectly inelastic demand, then pricing the entire road never hurts the rich
and is a Pareto improvement prior to spending the toll revenue if and only if

β1/α1

β2/α2
≥ min

{
1,

β1

β2

}
s
s∗
− n2

n1


0 if n2 ≤ s,

1−min
{

1, β1
β2

}
s
s∗ if s∗ ≥ n2 > s

1− s
s∗ if n2 > s∗;

.(32)

It will be easier to understand the intuition of (32) if we first simplify it by replacing
the right hand side with its maximum value, and then later add back in the nuance of
the entire expression. Doing so allows us to say that pricing the entire road is a Pareto

36For a more detailed discussion of how these three effects can hurt the poor, as well as illustrations of how
they manifest themselves in the bottleneck model, see Hall (2012).
37A case is (1) the type that arrives at the peak when the road is free, (2) whether they are marginal or
inframarginal, (3) the type that travels at the peak when the road is priced, and (4) whether they are marginal
or inframarginal. This would suggest there are sixteen possible cases, but a number of the cases are logically
impossible. For example, the poor cannot arrive off-peak when the road is free but on-peak when it is priced
because this would imply α2 > α1. Similarly, if the poor always travel at the peak then they cannot be
inframarginal when the road is free but marginal when it is priced.
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Can always price all

Can only price all if α1/α2 ≤ s∗/s

1
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4
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β2/α2

(a) n2 < s

Can always price all

Can sometimes price all

α1/α2 ≤ 4 2 4 2
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4
8
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Fraction of agents who are rich
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β2/α2

(b) n2 ≥ s

Figure 5. Parameter values where pricing leads to a Pareto improvement.
In the areas we can only sometimes price our ability to achieve a Pareto
improvement depends on whether α1/α2 is small enough. Several thresh-
old levels of α1/α2 are drawn with dotted lines for when s ≤ n2 ≤ s∗ or
dashed lines for when n2 > s∗. Figures drawn with s/s∗ = 0.9.

improvement if

(33)
β1/α1

β2/α2
≥ s

s∗
.

It is no great surprise to find that pricing the entire road never hurts the rich, while
only in some situations does it help the poor. This occurs because the rich find it easier
to outbid the poor for desirable arrival times when the currency used is money rather
than travel time. The question then becomes whether the increase in capacity is enough
to overcome this harm.

It is always possible for the increase in capacity to be large enough for pricing all of
the road to be a Pareto improvement, regardless of the other parameters. As the left-hand
side of (33) is strictly positive we can always find an s/s∗ such that (33) holds.

How much the poor drivers are harmed by the change in currency depends on how
their preferences compare to those of the rich. If the poor are less inflexible then the
rich, so that the left-hand side of (33) is greater than one and we are in the top half
of figures 5a and 5b, then they are not harmed at all and so pricing all of the road is
a Pareto improvement. This holds even if there is no throughput drop at bottlenecks.
Mathematically this follows because s ≤ s∗. The intuition behind this is that when the
poor arrive off-peak regardless of whether or not the road is priced then pricing cannot
displace them nor require them to outbid the rich in a currency that they hold more dear.

When the poor are more inflexible than the rich then we are in the bottom half of figures
5a and 5b, and it is difficult for pricing all of the road to be a Pareto improvement. It
becomes easier the more similar are the poor and rich families’ level of inflexibility, i.e.,
the closer the left-hand side of (33) is to one. This is because the more similar agents are in
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their willingness to pay with travel time to avoid schedule delay, the more alike the slope
of the travel time profile at any point in time during rush hour, and so the less agents
prefer their actual arrival time to any other during rush hour. Because agents only slightly
prefer their actual arrival time, the harm to an agent of changing their arrival time to be
further from the peak is small and so it is easier for the benefit from shrinking rush hour
to outweigh this harm.38

Returning to (32) we see that the right-hand side is reduced, and so it becomes easier
obtain a Pareto improvement, when β1/β2 is less than one and small, n2/n1 is large,
n2 > s, and s∗ ≥ n2 > s. Note that these effects only matter when the poor are more
inflexible than the rich, so that they arrive at the peak when the road is free.

Lowering β1/β2 reduces the damage pricing does to the poor. Notice that

β1

β2
=

β1/α1

β2/α2
× α1

α2
,

and so when we lower β1/β2 while holding fixed each families inflexibility we are actually
lowering α1/α2. In other words, we are reducing the degree of income inequality, and so
reducing the difference in the two families’ exchange rates between travel time and money.
Hence, pricing gives less of an advantage to the rich and so is more likely to lead to a
Pareto improvement. The ratio β1/β2 is inside of a min operator because if β1 > β2 then
the rich are willing to pay more in money to reduce schedule delay than the poor and so
the poor don’t care how much more the rich are willing to pay, just that they are willing
to do so. If, however, β1 < β2, then the poor are affected by the actual amount the rich are
willing to pay since they must pay more than that amount.

When n2/n1 is large there are not many rich agents relative to the number of poor
agents. Should the rich displace the poor from the peak, the amount of displacement is
small. If the rich don’t displace the poor then the tolls the poor face are higher due to
their presence, but when there are not many rich agents the tolls are not much higher. The
harm done to the poor from tolling is less when there are not many rich, and so when
n2/n1 is large it is easier for pricing to be a Pareto improvement.

It is easier to get a Pareto improvement when n2 > s because it means that the poor
were not getting the advantage of being inframarginal when the road was free. When
an agent is inframarginal they are able to arrive at the time they want while paying a
price that reflects the preferences of those who don’t value being on-time as much as they
do. Should the poor be inframarginal when the road is free then pricing does them great
harm by taking this advantage away from them and it becomes difficult for pricing to be
a Pareto improvement. Even if they are still inframarginal when the road is priced they

38Note that the harm from being displaced is an upper bound on how much pricing all of the road hurts the
poor because the poor may prefer to respond to pricing by paying higher tolls and arriving at the peak to
arriving off-peak.
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are hurt because the difference between their own willingness to pay to avoid schedule
delay and that of the rich shrunk when the currency changed.

When the poor are more inflexible than the rich the best case for being able to price all
of the road is when s < n2 < s∗ and β2 > β1. In this case pricing helps the poor in an
additional way, it allows them to become the inframarginal driver and thus pay a price
based on the preferences of those who don’t value being on-time as much as they do. This
additional benefit makes it more likely that the gains from pricing will outweigh the harm
it does.

If our only option is to price all of the road or none of it, then it is difficult to obtain a
Pareto improvement unless the rich are more inflexible than the poor. If, however, we can
price just part of the road, then it becomes significantly easier to do so.

6.2. Value pricing. Solving for equilibrium with two routes becomes more complicated
because now agents choose which route they take as well as their arrival time. There are
two results that will make assigning agents to routes simpler. First, the same family will
arrive off-peak on both routes, or at least be indifferent about doing so. This is because
for all agents the cost of arriving at the very start or end of rush hour is the same on
both routes because at the start and end of rush hour there is no toll or travel time, just
schedule delay. The second result formalizes the intuition that the rich prefer to be on the
priced route and the poor prefer the free route and is given in the following lemma.

Lemma 10. If there are two families and two routes, one priced and one free, then in equilibrium
the rich will never be on the free route unless the poor are too and the poor will never be on the
priced route unless the rich are too.

Equilibrium can fall in one of eight cases depending on the parameters and we will use
subscripts to denote which case equilibrium trip prices, travel times, and tolls belong to.
The three dimensions the cases differ on are (1) which family is not arriving off-peak, (2)
whether they are on one or two routes, and (3) whether some agents in this family are
inframarginal or if they are all marginal. We will use the subscript 2R, I, poor when the
poor family does not arrive off-peak, some poor agents are inframarginal, and agents in
the poor family travel on both routes; the subscript 1R, M, rich when the rich family does
not arrive off-peak, all rich agents are marginal, and agents in the rich family only travel
on one route, and the permutations of these subscripts for remaining six cases. Some
equilibrium objects will not depend on which family is not arriving off-peak, and for
those objects we will omit the third part of the subscript.

As we did when solving for equilibrium when the road is completely free or completely
priced, define A as the family arriving off-peak, but let’s now define B simply as the other



PARETO IMPROVEMENTS FROM LEXUS LANES 33

family. Let C and D denote families A and B preferred routes, that is

C (A) =

toll if A = 1

free if A = 2
and

D (B) =

toll if B = 1

free if B = 2
.

Using this notation we can write down four sets of equations that define equilibrium for
all eight possible cases.

We will leave all but the two simplest and most important cases; 1R, I, poor and
1R, I, rich; for appendix C.2.39

6.2.1. One family on just one route, and this family is inframarginal (1R, I). In this case family
A travels on both routes and is always marginal while family B travels only on route D
and is inframarginal. For this to be possible there must be enough capacity on D for all of
the members of family B to arrive on-time, i.e., nB ≤ λDsD.

Tolls and travel times are the same as when the entire road is free or priced and family
B is inframarginal. The travel time profile is defined by (7), (8), and (11), and the toll
schedule is defined by (12)–(14).

We then require that for family A the supply for arrival times equals the demand,
both for early and late arrivals. This gives us the final two equations we need to define
equilibrium.

(tmax
A − t0A) (λtolls∗ + (1− λtoll) s)− (tmax

A − ts) nB = (tmax
A − ts) nA, and

(tA0 − tmax
A ) (λtolls∗ + (1− λtoll) s)− (te − tmax

A ) nB = (te − tmax
A ) nA.

Solving this system of equations gives us the equilibrium travel time profile and toll
schedule. We can then follow the same steps as in section C.1.1 to find the trip prices,
which are

39In two of the cases left for the appendix; 2R, I, poor and 2R, I, rich; the toll schedule or travel time profile
is not completely defined by lemmas 2 and 4 and so I use another indifference relation to characterize part
of the toll schedule or travel time profile. I believe the need to do so goes away if there is a continuum of
families.
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p̄1R,I (A, tmax
A ) = βA

NA + NB

λtolls∗ + (1− λtoll) s
ξ

1 + ξ
,(34)

p̄1R,I (A, t) = p̄1R,I (A, tmax
A )− (tmax

A − t)

βA t ≤ tmax
A

−ξβA t > tmax
A

,(35)

p̄1R,I,poor (B, t) =
αB

αA
p̄1,RI (A, t) , and(36)

p̄1,RI,rich (B, t) = p̄1,RI (A, t) .(37)

The only difference between these prices and those when the entire road is free or
priced is that the highway capacity is different. Compared to when the highway is free,
capacity is higher, and so every agents trip price is lower. Thus when the one of the
families is inframarginal when the road is free, pricing a portion of the road is a Pareto
improvement.

The intuition is simple, as long as we keep the poor inframarginal, then their preferences
do not effect equilibrium tolls or travel times. By only pricing a portion of the lanes we
preserve the ability of the poor to pay with their time instead of money. As a result,
when we price some of the lanes and reverse the destructive effects of queuing for those
lanes, we increase total highway capacity. This allows rush hour to be shorter on all lanes,
reducing all road users trip prices.

If the rich travel at the peak, meaning they are more inflexible than the poor, then as
we have already seen, we can price the entire road and so it isn’t a surprise that we can
also price part of it.

6.2.2. When else is pricing part of the road a Pareto improvement? By comparing equilibrium
trip prices in the remaining six cases that equilibrium can fall into when value pricing to
the four cases that can apply when the road is free we can find the rest of the parameter
values for which pricing part of the road is a Pareto improvement; these are summarized
in the following proposition and shown in Figure 6.

Proposition 11. If there are two families, with uniformly distributed demand over a common
support, and perfectly inelastic demand, then there exists a λtoll ∈ (0, 1) such that pricing λtoll of
the road is a Pareto improvement if and only if one of the following is true:

n2 < s,(38)

β1/α1

β2/α2
>

(s/s∗) (n2/n1)

(1− s/s∗) + n2/n1
,(39)

or if (32) holds strictly.
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Can always price all
and value price

Can always value price
but can only price all if α1/α2 ≤ s∗/s

1
2
4
8

1/8

1/4

1/2

0
Fraction of agents who are rich

1

β1/α1
β2/α2

(a) n2 < s

Can always price all
and value price

Can sometimes price all
and value price

Can always value price
and sometimes price all

α1/α2 ≤ 4 2 4 2

1
2
4
8

1/8

1/4

1/2

s/s∗0
Fraction of agents who are rich

1

β1/α1
β2/α2

(b) n2 ≥ s

Figure 6. Parameter values where pricing leads to a Pareto improvement.
In the areas we can only sometimes price our ability to achieve a Pareto
improvement depends on whether α1/α2 is small enough. Several thresh-
old levels of α1/α2 are drawn with dotted lines for when s ≤ n2 ≤ s∗ or
dashed lines for when n2 > s∗. Figures drawn with s/s∗ = 0.9.

First, if pricing all of the road helps every single agent, then pricing almost all of the
road will too, and so if (32) holds strictly then pricing part of the road will be a Pareto
improvement.

By only pricing a portion of the road we are able to further expand when we are able
to obtain a Pareto improvement to when (39) holds. As with (32) it is easier to price the
greater the ratio of the inflexibility of the rich to the poor and the greater the size of the
throughput drop. In (39) it is easier to greater the fraction of drivers who are rich, this is
the opposite of (32). The new area that (39) allows us to price is in the bottom right area
of Figure 6b.

The intuition for why value pricing can be Pareto improving when most drivers are
rich is as follows. When we price a portion of the road the road we increase the measure
of arrival times the poor need on the free route. This hurts the poor. But we also reduce
the length of rush hour, which directly helps the rich, reducing travel times at any point
when the rich are traveling. Because the rich are better off, the poor don’t need to pay
as much in travel time to outbid them for the desirable arrival times. The first effect is
proportional to the number of agents who are poor, while the second is proportional to
the total number of agents. The greater the fraction of agents who are rich, the more
likely the second effect dominates the first. Should that happen, both the rich and poor
are better off and value pricing is a Pareto improvement.

We can approximate the conditions for being able to obtain a Pareto improvement from
value pricing as follows, we can price part of the road if there are rich agents arriving at
the peak when the road is free. Should there be rich agents arriving at the peak, one of
two things must be true: either the rich are more inflexible than the poor or the poor are
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inframarginal. In both of these cases pricing part of the road is a Pareto improvement.
The only area of the parameter space we miss is the bottom half of Figure 6b; for most
of that area we are unable to price. The intuition for this approximation is that when the
rich are arriving at the peak we can price part of the highway while still allowing the poor
agents who were arriving at the peak to travel on an unpriced route. This condition is
likely to hold; casual empiricism says that Lexus and Kias regularly share the road.

7. Continuum of Families

Now let’s turn to solving the model with a continuum of families; which we will use
to estimate the distribution of agent preferences and evaluate the impact of pricing all or
part of the highway.

Working with a continuum of types will be easier if we adjust our notation slightly.
We can still index families by i, but it will often be easier to directly refer to a family by
their value of time and inflexibility.40 Let tmax (α, δ) denote the arrival time of the agent in
family {α, δ} who is indifferent between arriving early or late. Let n (α, δ, t∗) be the density
of agents with value of time α, inflexibility δ = β/α, and desired arrival time t∗. Let nδ (δ)

be the marginal distribution of inflexibility, and nα (α) be the marginal distribution of
value of time.

7.1. All free. We can find equilibrium travel times by first assigning agents to arrival
times using the algorithm from section 4 and then using lemma 2 to find travel times. To
do so, we first need to confirm rush hour has a single peak, which I do in the following
proposition.

Proposition 12 (Rush hour has single peak). If there is a continuum of families, the support of
their distribution is a connected set, and there is a single δ or β that is marginal over the support
of desired arrivals then rush hour has a single peak.

First we assign agents to arrival times. Starting at the, as of yet unknown, peak of rush
hour tmax and working backwards, we assign to each arrival time t the s most inflexible
agents of those who want to arrive early or on-time at t and are not yet assigned an arrival
time. We then work forwards assigning the most inflexible agents of those who want
to arrive on-time or late. Problematically, in order to know which agents want to arrive
early or on-time at t and are not yet assigned an arrival time we need to know which
agents with desired arrival times later than the peak of rush hour tmax but who want to
arrive early or on-time will not be able to arrive on-time and so should be considered for

40Now the set of families G will be the set of non-negative real numbers. We can use a real number to index
a tuple of real numbers by interleaving the digits of each number in the tuple. We do this separately for the
integer and decimal parts; that is, we interleave the decimal parts of the numbers in the tuple to form the
decimal part of the index, and we interleave the integer parts of the numbers in the tuple to form the integer
part of the index.
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assignment to t. That is, we need to solve the assignment problem simultaneously for
early and late arrivals.

We are able to make the assignment problem much easier by assuming that desired
arrival times are uniformly distributed and independent of value of time and inflexibility.
If we only consider those who want to arrive on-time at t, then the problem of finding the
lowest inflexibility to arrive at t amounts to finding the δ̂ such that

(40)
ˆ 1

δ̂

ˆ ∞

0
n (α, δ, t) dαdδ = s.

Because of the assumptions we made about the distribution of desired arrival times the
solution to this equation is the same for all t ∈ [ts, te]. If we assign all agents with δ ≥ δ̂

to arrive on-time then we will fill the road to capacity during [ts, te] and will satisfy our
algorithm and avoid violating lemma 1. At each time t ∈ [ts, tmax] the set of agents who
want to arrive early at t only contains agents with δ < δ̂ and so the s most inflexible agents
of those who want to arrive early or on-time are those who want to arrive on-time and
have δ ≥ δ̂. Similarly, for each time t ∈ [tmax, ts] the set of agents who want to arrive late
at t only contains agents with δ < δ̂ and so the s most inflexible agents of those who want
to arrive on-time or late are those who want to arrive on-time and have δ ≥ δ̂.

Once we have filled all of the arrival times in [ts, te] we can use the algorithm to assign
arrivals before ts and after te. All of the remaining agents to be assigned are either early
or late, and for arrivals before ts we can just work backwards assigning the most inflexible
remaining agents who want to be early to each arrival time. Likewise, for arrivals after te

we can just work forwards assigning the most inflexible remaining agents who want to be
late to each arrival time.

With a few definitions we can write down when an agent arrives. The mass of agents
who arrive prior to the peak of rush hour is the sum of the mass who arrive early and the
mass who arrives on time prior to the peak:

me =

ˆ δ̂

0

ˆ ∞

0

ˆ tmax(α,δ)

ts

n (α, δ, t∗) dt∗dαdδ +

ˆ 1

δ̂

ˆ ∞

0

ˆ tmax

ts

n (α, δ, t∗) dt∗dαdδ.

The mass of agents arriving after the peak ml = 1−me, where the subscripts e and l stand
for early and late. The cumulative distribution function of inflexibility for those arriving
before the peak is

Nδ,e (δ) = m−1
e


´ δ

0

´ ∞
0

´ tmax(α,δ′)
ts

n (α, δ′, t∗) dt∗dαdδ′ δ ≤ δ̂

Nδ,e
(
δ̂
)
+
´ δ

δ̂

´ ∞
0

´ tmax

ts
n (α, δ, t∗) dt∗dαdδ δ > δ̂

.

By lemma 1 an agent with inflexibility δ < δ̂ arrives before everyone who is more
inflexible and after those who are less inflexible. This implies an agent whom arrives
before the peak and has inflexibility δ and desired arrival time t∗ arrives at
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(41) Ae (δ, t∗) =

tmax − [1− Nδ,e (δ)]me/s δ < δ̂

t∗ δ ≥ δ̂

The top line (41) is the peak of rush hour minus the amount of time it will take everyone
who is more inflexible to arrive. This implies the start of rush hour is at

t01 = tmax −me/s.(42)

We can use lemma 2 to derive travel times, but first we need to know the marginal type
arriving at each time. The marginal type is the type whose preferences determine the
slope of the travel time profile. We can then integrate over the slope at each arrival time
before t to find the travel time at t.

We can find the marginal type at each arrival time by finding the least inflexible agent
to arrive at each arrival time. For t ∈ [ts, te] the marginal type has inflexibility δ̂. For
t ∈ [t01, ts) we can find the marginal type by inverting Ae (δ, t∗) for δ < δ̂. Doing so and
using (42) to simplify, we find the marginal type is at t is

Be (t) =

N−1
δ,e

(
t−t01

tmax−t01

)
t01 ≤ t < ts

δ̂ ts ≤ t ≤ tmax
.

By lemma (2) the travel time at t < ts is

T (t) =
ˆ t

t01

Be
(
t′
)

dt′

=


0 t < t01´ t

t01
N−1

δ,e

(
t′−t01

tmax−t01

)
dt t01 ≤ t < ts

T (ts) + (t− ts) δ̂ ts ≤ t ≤ tmax

.

We can rewrite the middle line in a way that will make it easier to interpret later. Let’s do a
change of variables with δ′ = N−1

δ,e ([t′ − t01] / [tmax − t01]) , so that (t′ − t01) / (tmax − t01) =

Nδ,e (δ) and dt = (tmax − t01) nδ,e (δ) dδ, which gives us

T (t) = (tmax − t01)

ˆ N−1
δ,e

(
t−t01

tmax−t01

)
0

δ′nδ,e
(
δ′
)

dδ′.

The amount of schedule delay an agent has is the difference between his desired arrival
time and when he actually arrives,

Ce (δ, t∗) = t∗ − Ae (δ, t∗) .

Combining the travel time costs and schedule delay costs gives us an agent’s trip price:

p̄e (α, δ, t∗) = αT ◦ Ae (δ, t∗) + αδCe (δ, t∗)
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for δ < δ̂

= α (tmax − t01)

ˆ δ

0
δ′nδ,e

(
δ′
)

dδ′ + αδ
{

t∗ −
[
tmax − me

s
(1− Nδ,e (δ))

]}
= α

me

s

[ˆ δ

0
δ′nδ,e

(
δ′
)

dδ′ + δ (1− Nδ,e (δ))

]
+ αδ (t∗ − tmax)

= α
me

s

[ˆ 1

0
min

{
δ′, δ

}
nδ,e

(
δ′
)

dδ′
]
+ αδ (t∗ − tmax)(43)

for δ ≥ δ̂

= α

[
(tmax − t01)

ˆ δ̂

0
δ′nδ,e

(
δ′
)

dδ′ + (t∗ − ts) δ̂

]

substituting ts = tmax −
[
1− Nδ,e

(
δ̂
)]

me/syields

= α

[
me

s

ˆ δ̂

0
δ′nδ,e

(
δ′
)

dδ′ + (t∗ − tmax) δ̂ +
me

s
[
1− Nδ,e

(
δ̂
)]

δ̂

]

= α
me

s

[ˆ 1

0
min

{
δ′, δ̂

}
nδ,e

(
δ′
)

dδ′
]
+ αδ̂ (t∗ − tmax) .(44)

We can summarize (43) and (44) as

p̄e (α, δ, t∗) = α
me

s

[ˆ 1

0
min

{
δ′, δ, δ̂

}
nδ,e

(
δ′
)

dδ′
]
+ α min

{
δ, δ̂
}
(t∗ − tmax) .

Repeating all of these steps for late arrivals give us

p̄l (α, δ, t∗) = α
ml

s
ξ

[ˆ 1

0
min

{
δ′, δ, δ̂

}
nδ,l
(
δ′
)

dδ′
]
− αξ min

{
δ, δ̂
}
(t∗ − tmax) .

Everything we have done so far in this section has taken tmax (α, δ) as given; now
we need to solve for it by finding the desired arrival time for each family {α, δ} that
is indifferent between arriving early or late. Recall that tmax (α, δ) is only defined for
δ ≤ δ̂ since those with δ > δ̂ will arrive on time.41 This gives us the following functional
equation:

p̄e (α, δ, tmax (α, δ)) = p̄l (α, δ, tmax (α, δ))

⇒ tmax (α, δ) = tmax + (δ + ξδ)−1
ˆ 1

0
min

{
δ′, δ

} [
ξ

ml

s
nδ,l
(
δ′
)
− me

s
nδ,e

(
δ′
)]

dδ′(45)

41The families with inflexibility δ̂ will arrive on-time and be indifferent between arriving a little earlier or
later, depending on whether they are arriving before or after the peak. The agent with inflexibility δ̂ who
arrives exactly at the peak will be indifferent between arriving early or late.
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Problematically, nδ,l and nδ,e are functions of tmax (α, δ); however, we can solve (45) with
a lucky guess. When there are just two families tmax

i = (ts + ξte) / (1 + ξ) for i ∈ {1, 2}.42

Let’s guess that this result holds even with a continuum of types.
If tmax (α, δ) is a constant then Nδ,e (δ) = Nδ,l (δ) = Nδ (δ). Furthermore, if tmax (α, δ) =

(ts + ξte) / (1 + ξ) then me = ξ/ (1 + ξ) and ml = 1/ (1 + ξ). Plugging these results into
(45) we find that the final factor in the integral is zero and so the entire second term is
zero. Thus we find tmax (α, β) = tmax = (ts + ξte) / (1 + ξ) and so this is indeed a solution.

Plugging these results into our formulas for equilibrium trip price we find

p̄free (α, δ, t∗) = α
1
s

ξ

1 + ξ

[ˆ 1

0
min

{
δ′, δ, δ̂

}
nδ

(
δ′
)

dδ′
]

(46)

− (tmax − t∗) α min
{

δ, δ̂
}1 t∗ ≤ tmax

−ξ t∗ > tmax
.

7.2. All toll. To find the equilibrium trip prices when the entire road is priced we follow
the same steps as when it is free. The only difference is that we replace δ with β. So
instead of finding δ̂ we find β̂, and instead of finding the marginal distribution of δ, we
find the marginal distribution of β = αδ, etc. Doing so yields

p̄toll (α, δ, t∗) =
1
s∗

ξ

1 + ξ

[ˆ ∞

0
min

{
β′, αδ, β̂

}
nβ

(
β′
)

dβ′
]

(47)

− (tmax − t∗)min
{

αδ, β̂
}1 t∗ ≤ tmax

−ξ t∗ > tmax
.

We have a closed form solution for each agents trip price on a completely free or priced
route, up to the possible need to solve the integrals numerically.

There is some nice intuition behind (46) and (47). We can write the equilibrium trip
price generically as
(48)

trip price =
ξ

1 + ξ
× length rush hour× censored mean of

willingness to pay −
adjustment for

desired arrival time .

Let’s work through each term of (48).
The ratio ξ/ (1 + ξ) is a measure of how the cost of being late compares to the cost

of being early and, as we saw above, is equivalent to the fraction of agents who arrive
before the peak of rush hour. If ξ is zero then it is costless to be late, as a result agents can
wait to travel until there is no traffic or toll; everyone will be late and have a trip price of
zero. As ξ increases the costs of being late increases and so a larger share of agents arrive
before the peak. Because drivers care more about arriving on-time, travel times (or tolls)
are higher and everyone’s trip price increases.

42This is shown in appendix C.
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The next factor in the first term is the length of rush hour, which on a free route is s−1

and on a priced route is s∗−1 because we normalized the mass of agents to one. A longer
rush hour means more schedule delay and higher travel times or tolls, and so increases
trip prices.

The final factor of the first term is the most interesting; the integral in (46) and (47) is the
censored mean of an agent’s willingness to pay in whatever currency the route requires.
So on a free route it is the censored mean of the agent’s inflexibility, or willingness to pay
in travel time to reduce schedule delay, while on the priced route it is the censored mean
of the agent’s willingness to pay in dollars to reduce schedule delay. On the free route we
then multiply this by the agent’s value of time to convert from travel time to dollars.

The censoring occurs at the willingness to pay of the marginal agent who arrives at
the same time as the agent whose trip price we are considering. For an agent with δ < δ̂

on a free route or β < β̂ on a priced route this is his own willingness to pay. This
means he doesn’t care about the actual preferences of those with a higher willingness
to pay; whether they are willing to pay a cent more or a thousand dollars more for the
most desirable arrival times doesn’t matter, either way they will outbid him for the most
desirable arrival times and so all that matters is how much of the desirable arrival time
they will use. In contrast, he cares very much about the preferences of those whom he
must outbid, since he must actually outbid them.

If an agent is inframarginal, so δ > δ̂ on a free route or β > β̂ on a priced route, then
the censoring occurs at the marginal willingness to pay of the marginal agent at the time
they arrive. This has similar to what we see in models of perfectly competitive markets,
where prices are based on the preferences of the marginal agent.

The final term is an adjustment for differences in desired arrival times. Those who want
to arrive at the peak of rush hour will pay the highest prices, while those who prefer to
arrive further from the peak will pay lower prices.

7.3. Value pricing. When we price part of the road we give agents an additional choice
to make: which route to take. While when there were just two families we were able to
solve for the value pricing equilibrium analytically, we will no longer be able to do so, and
so will need to solve equilibrium numerically. Fundamentally, we first assign agents to
routes and then solve for equilibrium on each route. Solving numerically will require me
to use several approximations and I will choose them such that we can used the closed
form solutions above for a completely free or priced highway to find equilibrium on a
route given the agents who are on it.

The assignment of agents to routes is made simpler by the following lemma, which
allows us to divide the space of agents’ preference parameters into those on the free route
and those on the priced route using a continuous function.
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Lemma 13. For a given flexibility and desired arrival time there is a value of time, α̂ (δ, t∗) such
that all agents with a higher value of time travel on the priced route and all agents with a lower
value of time travel on the free route. Furthermore, α̂ is a continuous function if the travel time
profile and toll schedule are continuous.

This is not as strong as lemma 10 but still nicely reflects our intuition that the rich will
be on the priced route and the poor will be on the free route.

It is unlikely that after conditioning on route choice the distribution of desired arrival
times will be uniform and independent of α and δ. This means that the marginal type will
not be constant over [ts, te], however, I will approximate it with a constant. This will allow
us to apply (46) and (47) to each route individually, adjusting for route capacity and the
distribution of agents on the route, to find the trip prices:

p̄free (α, δ, t∗) = α
1

(1− λ) s
ξ

1 + ξ

[ˆ te

ts

ˆ 1

0

ˆ α̂(δ′,t′)

0
min

{
δ′, δ, δ̂

}
n
(
α′, δ′, t′

)
dα′dδ′dt′

]
(49)

− α min
{

δ, δ̂
}
(tmax − t∗)

1 t∗ ≤ tmax

−ξ t∗ > tmax
,

p̄toll (α, δ, t∗) =
1

λs∗
ξ

1 + ξ

[ˆ te

ts

ˆ 1

0

ˆ ∞

α̂(δ′,t′)
min

{
β′, αδ, β̂

}
n
(
α′, δ′, t′

)
dα′dδ′dt′

]
(50)

−min
{

αδ, β̂
}
(tmax − t∗)

1 t∗ ≤ tmax

−ξ t∗ > tmax
.

Without making this assumption we would not have a closed form solution for trip prices.
In my main specification the largest error in the marginal type less than 0.2%. Given the
small size of the approximation error and how much it helps in solving for equilibrium,
this approximation seems a reasonable approach.

The intuition for (46) and (47) also apply to (49) and (50); we just need to multiply and
divide the first term by the mass of agents on that route. The mass of agents divided by
the route’s capacity gives the length of rush hour on that route, and dividing the integral
by the mass of agents on that route turns it back into a censored mean, this time using the
distribution of agents on the route.

I will use projection methods to solve for α̂ (δ, t∗), specifically Chebyshev collocation.
Given our approximation of the marginal type over [ts, te] we can further simplify α̂ using
the next lemma, which shows that α̂ is often flat in one dimension.

Lemma 14. All agents in a family that is not inframarginal regardless of which route they are
on will travel on the same route or be indifferent between both routes. Similarly, all agents who
are inframarginal regardless of which route they are on and who have the same value of time and
desired arrival time will travel on the same route or be indifferent between both routes.
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The intuition for the first claim is that when an agent is not inframarginal his desired
arrival time does not determine his actual arrival time, except for whether he is early or
late, and so his trip price differs from the other agents in his family only by the adjustment
for desired arrival time. This adjustment is the same on both routes and so cancels out
looking at the difference between trip prices on either route, and so if one route is preferred
by one agent in a family, it must be preferred by all agents.

The proof for the second claim is that if an agent is inframarginal regardless of which
route he chooses, then he arrives on-time regardless of the route he chooses. This means
his cost on the free route is αT (t∗) and his cost on the priced route is τ (t∗), and he will
chose whichever route has the lowest cost. This holds for any agent who is inframarginal
regardless of which route he chooses and who has the same value of time and desired
arrival time, and so all of these agents will make the same choice.

Given the approximation of a constant marginal type over the support of the distribution
of desired arrivals, lemma 14 implies

δ < δ̂ and αδ < β̂⇒ ∂α̂ (δ, t∗)
∂t∗

= 0, and

δ > δ̂ and αδ > β̂⇒ ∂α̂ (δ, t∗)
∂δ

= 0.

Because of this I approximate α̂ (δ, t∗) as

(51) α̂ (δ, t∗) =

α̂M (δ) δ < δ̂

α̂I (t∗) δ ≥ δ̂
,

where α̂M (δ) and α̂I (t∗) are solved for using Chebyshev collocation. This approximation
is wrong over the small area where

(
δ− δ̂

) (
α̂ (δ, t∗) δ− β̂

)
< 0, and in contrast to the two

dimensional Chebyshev approximation of α̂ (δ, t∗), it will not converge to the true α̂ (δ, t∗)
regardless of the degree of the Chebyshev polynomial.

However, using (51) has significantly better small sample performance. In my baseline
model the approximation error, measured as the largest welfare loss from traveling on the
route assigned by α̂ (δ, t∗) instead of the route that actually minimizes trip price, is less
than a tenth of a cent using (51) with tenth degree Chebyshev polynomials, for twenty
nodes total, while the approximation error is nearly a dollar using the tensor product of
two tenth degree Chebyshev polynomials, for one hundred nodes in total.
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Formally, solving for equilibrium is finding the β̂, δ̂, and α̂ such that
ˆ te

ts

ˆ δ̂

0

ˆ α̂(δ,t∗)

0
n
(
α′, δ′, t′

)
dα′dδ′dt′ = (1− λ) s (te − ts) ,

ˆ te

ts

ˆ 1

0

ˆ ∞

max{α̂(δ,t∗),δ−1 β̂}
n
(
α′, δ′, t′

)
dα′dδ′dt′ = λs∗ (te − ts) , and

p̄free (α̂ (δ, t∗) , δ, t∗) = p̄toll (α̂ (δ, t∗) , δ, t∗) for all {δ, t∗} ∈ C.

where C is the set of Chebyshev collocation nodes.

8. Estimating Distribution of Consumer Preferences

As we saw when there were just two families, whether value pricing can make all road
users better off depends on agents’ preferences. We now turn to estimating the distribution
of agents’ preferences, along with a few other parameters, so we can determine the
distribution and size of the welfare gains from congestion pricing.

The main structural object we need to estimate is the joint distribution of agents’ inflex-
ibility, value of time, and desired arrival time. My general approach will be to estimate
the joint distribution of agents’ preferences separately for two broad categories of agents,
those who are able to choose when they arrive at their destination and those who can’t,
and I will call them the inflexible and flexible categories. I will assume that within each
category, inflexibility, value of time, and desired arrival time are independent, but that the
marginal distributions can differ across categories.43

8.1. Data. We will estimate this joint distribution for drivers on a segment of California
State Route 91 (SR-91). The segment we will focus on is thirty-three miles long and runs
from the center of Corona to the junction of SR-91 and I-605. The primary reason to focus
on SR-91 is that good data is available on those who use SR-91 because SR-91 was the
first highway to have a portion of its lanes priced and so it has been extensively studied. I
choose this specific segment because is roughly represents a median commute for those
living in Corona who use SR-91.

I use data from three sources. The first, California Polytechnic State University’s State
Route 91 Impact Study (SR-91 IS) (Sullivan, 1999), is a series of surveys conducted between
1995 and 1999 of drivers who use SR-91 The second data set, the 2009 National Household
Travel Survey (NHTS) (U.S. Department of Transportation, 2009), is a national survey. The
SR-91 IS allows us to measure variables specifically for those who use SR-91, while the
NHTS allows us to confirm that these results are representative of other large metropolitan
statical areas (MSA) and how they compare to rest of the nation.44

43This is necessary in part because I cannot observe the inflexibility of those in the inflexible category or the
desired arrival time of those in the flexible category. For evidence that the desired arrival times of those in
the inflexible category are not strongly correlated with income see appendix D.1.
44I define a large MSA as one with a population above three million.
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Table 2. Fraction of drivers and trips that are flexible

NHTS

Fraction of . . . SR-91 IS Large MSAs All

Drivers who leave early .57
or late to avoid traffic [.55, .60]

Workers who commute .50 .47 .44
via interstate who can [.47, .53] [.45, .49] [.43, .45]
choose work arrival time

Trips on interstate during .43 .35–.60 .30–.59
morning that are flexible [.40, .47] [.32, .62] [.29, .60]

Notes: 95% confidence intervals in brackets. For second and third column
confidence intervals calculated using Jackknife-2 replicate weights. A
trip is flexible if the driver and all passengers can choose when to
arrive at their destination, unless the destination is the driver’s home,
in which case they must be able to choose their departure time. A trip
is a series of trip segments which ends when the driver stays at one
destination for more than thirty minutes.

The final data set is the California Department of Transportation’s Performance Mea-
surement System (PeMS) (California Department of Transportation, 1999). PeMS includes
road detector data from almost all of the highways in California. From this database I can
calculate travel times for each arrival time for every non-holiday weekday in 2004.45 I do
this for the start of every five minute interval between 4:00 a.m. and 10:00 a.m.

8.2. Fraction of drivers who are flexible. The first task is to estimate the relative sizes of
the two categories of agents using surveys of road users from the SR-91 IS and NHTS.
Table 2 reports three different measures how many on the highway are flexible for road
users from three samples.

The main result is that roughly half of all road users are flexible and can adjust when
they travel. The first row is a revealed preference measure of flexibility; fully 57% of road
users on SR-91 reported that in their typical peak period travel they left early or late to
avoid traffic congestion. Furthermore, about half of the workers who commute to work
using the interstate are able to choose what time they arrive at work.46

However, the interstate gets used for more than just traveling to and from work, and
including these other trips during the morning reduces my estimate the relative sizes of

45I define holidays as the ten United States Federal Holidays.
46The NHTS asks whether a worker can set or change when he starts work. Problematically for my purposes
this means that a worker who can start work whenever he wants but who must drop his children off at school
at a specific time would look flexible to me, even though he is not. The SR-91 IS does not have this problem
as it asks directly whether the respondent could set their arrival time for the trip.
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the two categories of agents.47 I report a range of values for the fraction of trips that
are flexible for the NHTS because it only reports if arrival times can be chosen for work
trips, and so I need to make assumptions about what kind of non-work trips are flexible.
Assuming that only work trips can be flexible leads to estimates that thirty percent of trips
are flexible, while assuming that other trips where the driver probably has control over
when it begins, such as shopping, doctors appointments, and visiting friends, are flexible
almost doubles the percentage of trips that are flexible.

I will use the fraction of trips in the morning that are flexible from the SR-91 IS as the
primary measure of the fraction of agents who are flexible.

8.3. Distribution of value of time. To estimate the distribution of the value of time I
first map household income into an individual value of time and then fit a log-normal
distribution to the data using maximum likelihood. I do this separately for the flexible and
inflexible drivers. To map household income to value of time I use the U.S. Department
of Transportation’s formula for local personal travel: an individual’s value of time is half
their hourly household income, which is their annual household income divided by 2,080
hours per year (Belenky, 2011, p. 12).48

The results of doing so are in Table 3. In every case but the first the median value of
time of the flexible drivers is higher than that of the inflexible drivers, as shown by the
positive and statistically significant Goodman and Kruskal’s rank correlation. The first
definition of flexibility is a measure of whether the agent is flexible while the third is a
measure of whether the trip is flexible. Thus we find that higher income people have more
flexible trips, but due to other factors in their lives are not actually any more flexible than
the poor. These results are consistent with the intuition that better paid jobs tend to be
more flexible, but that better paid workers tend to be older and have more constraints in
their personal lives, such as needing to take care of their children. By using the second
column as our main specification we make it harder to find a Pareto improvement.

Using the definition of flexibility based on whether the trip was flexible, the SR-91 IS
results are similar to those for large MSAs in the NHTS, except that the interquartile range
is much larger in the NHTS data. Likely this is due to selection into living in Riverside
County and commuting on SR-91. This smaller group is likely to be more similar that the
larger group of those who live in a large MSA.

47The morning is defined in the SR-91 IS as 4–10 a.m. and so for consistency I maintain that definition with
the NHTS.
48The U.S. Department of Transportation uses this formula to estimate a median value of time based on
median household income, I am going further in using it by applying it to individuals.
There is a large literature estimating the mean or median value of time, which generally finds it is half the
mean or median wage, though it is higher when roads are congested. There is a much smaller and much
more recent literature that looks at the distribution of the value of time. See Small and Verhoef (2007, p. 53)
for a literature review.
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Table 3. Distribution of value of time for morning
highway users

SR-91 IS NHTS

All All Large MSAs All

Definition of flexibility† 1 3 3 3
Flexible

Median 22.12 25.95 26.05 20.41
(0.64) (0.88) (0.34) (0.13)

Interquartile range 16.4 20.0 32.21 25.41
(1.0) (1.8) (0.89) (0.35)

N 413 303 7,059 21,342
Inflexible

Median 22.71 22.16 22.52 19.02
(0.73) (0.56) (0.27) (0.11)

Interquartile range 16.4 15.19 24.55 18.95
(1.3) (0.88) (0.59) (0.19)

N 292 433 4,270 12,995
Rank correlation‡ -0.053 0.20∗∗∗ 0.157∗∗∗ 0.108∗∗∗

(0.059) (0.057) (0.037) (0.028)
Notes: Standard errors in parentheses. Standard errors in columns one and two

are calculated by bootstrapping. The data for columns three and four are
weighted using individual weights and their standard errors calculated
using Jackknife-2 replicate weights.

† Refers to the row of table 2 that is used to define who is flexible. I use the
most generous numbers for definition 3 and the NHTS data.

‡ Goodman and Kruskal’s γ between income and flexibility.
∗∗∗ p < .001

The SR-91 IS results are fairly similar to those of Small et al. (2005), which uses revealed
and stated preference data to measure the distribution of value of time for road users on
SR-91. While they do not estimate the distribution separately for flexible and inflexible
agents, I can compare how my more crude method compares when applied to the entire
population. Adjusting for inflation, they find that the median value of time is $29.54 and
the interquartile range is $10.47, while I find a median of 23.58 and an interquartile range
of 17.06. The lower median means I will undervalue the time savings while the larger
interquartile range means I will have increased inequality and make it harder to find a
Pareto improvement.

8.4. Distribution of desired arrival time. We now want to measure the distribution of
desired arrival times. What we care about is when agents want to arrive at the highway
exit, rather than when they want to arrive at their destinations. Unfortunately, the data
reports the second instead of the first and so I have actual arrival times rather than desired,
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Figure 7. Cumulative distribution function of arrival time for agents who
cannot choose when they arrive at their destination and arrive before noon.
Data from SR-91 IS.

and the arrival time at the destination rather than at the highway exit. I can avoid the
first problem by focusing on those who are unable to choose their arrival time, and so are
in the inflexible category. For them their actual arrival time is their desired arrival time.
While I only observe the distribution of desired arrival times for those who are inflexible, I
will assume the distribution is the same for both categories. I will fix the second problem
by estimating the first desired arrival time at the highway exit as part of estimating the
distribution of inflexibility.

Using the SR-91 IS I can estimate the distribution of desired arrival times for these
inflexible agents; the CDF of this distribution is shown in Figure 7a. If the distribution was
uniform then the CDF would lie along the 45 degree line; it is clear that the distribution
of desired arrival times is not uniform, contrary to what we have assumed throughout
this paper. However, when we remove the first and last ten percent of drivers to arrive, as
in Figure 7b, then the distribution is close to being uniform. This is a robust finding and
holds within the NHTS data as well; in appendix D I redo Figure 7 using the NHTS for
several MSAs as well as the entire sample.

The distribution of when agents want to arrive at the end of the highway will be a
smoothed version of the distribution of when agents want to arrive at their destination.
This is because the distance from the end of the highway to their destinations will vary,
and so among those who want to reach their destination at 7:00 a.m. there will be some
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who want to reach the end of the highway at 6:40 a.m. and others who want to reach it at
6:55 a.m. Thus, while Figure 7 has a few times when a significant number of all drivers
want to arrive, as seen by when the CDF is vertical, such as at 7:00 and 8:00 a.m., it is
unlikely the distribution of desired arrival times at the highway exit has the same mass
points.

The distribution of desired arrival times of the inflexible agents is not uniform, however,
assuming it is uniform is a reasonable approximation and is relatively innocuous. By
truncating the extreme deciles I am ignoring those who want to arrive extremely early or
late. Some of these workers are arriving outside of rush hour, and so they are not relevant
for my analysis, and the others are among those who are least harmed by congestion
pricing. They are already traveling off-peak, and so cannot be displaced by rich drivers
who decide to travel at the peak once the road is tolled, and because congestion pricing
can reduce the length of rush hour they may find that after pricing they are traveling
outside of rush hour and so pay no toll. Should congestion pricing help those who want
to arrive at the peak of rush hour it almost certainly also helps those who want to arrive
at the tails.

The assumption that the distribution of desired arrival times is the same for both
categories of agents is somewhat harmless. If an agent is never inframarginal then his
desired arrival time does not affect when he travels, other than whether he is early or late;
he arrives off-peak and when he arrives is determined by his δ or β depending on whether
the route is free or priced. Ascribing the wrong desired arrival time to these agents will
not affect equilibrium or the change in the agents’ trip prices.49 However, this will not be
true for agents who would be inframarginal on one or both routes. Then by assuming
an agent has a different desired arrival time then he actually does I miscalculate which
agents are inframarginal, and so miscalculate the slope of the travel time profile or toll
schedule.

I estimate the endpoints of the distribution of desired arrivals times by matching the
largest and smallest remaining observation to the expected value of their order statistics.
Doing so gives me an unbiased estimate of the endpoints and length of the uniform
distribution which would generate the truncated distribution in Figure 7b.50 Following
this procedure gives me an estimate of 4.41 hours for the length of desired arrivals, as is
reported in Table 4.

8.5. Distribution of inflexibility. The bottleneck model provides a mapping between
model parameters and the travel time profile. By inverting this mapping we can estimate
our remaining parameters: the distribution of inflexibility; the ratio of the cost of being
early to late, ξ; and the length of rush hour on a free route, 1/s.

49It will affect the level of their trip prices, but in a consistent way so that it differences out.
50See appendix D.2 for a proof.
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I will only be able to estimate the distribution of inflexibility for those drivers who do
not arrive on-time. For all other drivers I will only have a lower bound. This follows
from lemma 2 and is because the travel time profile does not reflect the preferences of the
inframarginal drivers.

I estimate the distribution of inflexibility in two ways; my primary approach is to
use GMM to chose the model parameters to best fit the empirical travel time profile.
Specifically, my moment conditions are that the model predicted travel times matches the
sample average travel times. My second approach is to non-parametrically fit the model,
this second approach is only partially identified and its value is in allowing us to check
the restrictiveness of our functional form assumptions.

For the GMM estimator I assume that the distribution of inflexibility for those agents
who are in the flexible category is uniform on

[
0, δ̃
]
, where δ̃ is unknown and must be

estimated. In order to map the model to the data I also estimate the earliest time that
agents want to reach the intersection of SR-91 and I-605, ts, as well as free flow travel
times, T f . I use the estimates of the fraction of agents who are flexible and the length of
desired arrivals from above in fitting the model; I estimate them separately because I have
natural measures of them and so want to match those particular “moments” exactly.

When non-parametrically fitting the model I choose the travel time at the start of each
interval as well as when the peak of rush hour occurs to minimize the GMM criterion
subject to three sets of constraints imposed by the theory:

(1) Travel times are positive
(2) Travel times are increasing before the peak and decreasing after
(3) Travel times are convex before the peak and convex after the peak

The first constraint is never binding and the third constraint makes the second constraint
redundant for all but the first and last arrival times.

The empirical travel time profile along with the predicted travel time profiles from
both methods are shown in Figure 8. The two predicted travel time profiles are very
similar, and the root GMM criterion is only 7.7% higher when assuming inflexibility is
uniformly distributed. The two predicted travel time profiles differ the most at 5:00 and
10:00 a.m. The difference at 10:00 largely results from not imposing the assumption that
γi = ξβi for all families i in the non-parametric estimation. The small difference in the root
GMM criterion of the non-parametric and GMM estimates suggests that it is innocuous
to assume the distribution of inflexibility for those agents who are flexible is uniform and
γi = ξβi for all families i.

The results from the GMM estimation are reported in Table 4. I estimate that the
inflexibility of those in the flexible category is uniformly distributed on [0, 0.228] and then
assume that the inflexibility of those in the inflexible category has a beta(5, 0.5) distribution
transformed to have support [0.228, 1]. I choose the parameters of the beta distribution
to put most of the weight near one and have the mode be at one. The mixture of these
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Figure 8. Actual vs predicted travel times

Table 4. Remaining base case parameter values

Parameter Point estimate Standard error

Maximum inflexibility of flexible agents 0.228 (0.045)
Ratio of schedule delay costs late to early 0.411 (0.031)
Length of rush hour on free route (hours) 7.73 (0.39)
Length of desired arrivals (hours) 4.40 (0.23)
Note: Standard errors calculated by bootstrapping. The first three rows report the GMM

estimates (N = 250), the final row comes from fitting the largest and smallest
observations of the trimmed sample of desired arrival times to the expected value of
their order statistics (N = 489).

distributions, weighted by the fraction of agents in each category, gives the marginal
distribution of inflexibility and is plotted in Figure 9. While we would probably expect
a smoother distribution than Figure 9 shows, by pushing most of the inflexible agents
towards one I make it harder to find a Pareto improvement.

I find that the cost of being late is less than the cost of being early. This contrasts
with our intuition and with previous research, however, it is largely a result of how I
estimate the ratio of the cost of being late to early.51 I only observe β/α for the marginal
drivers arriving before the peak of rush hour and γ/α for the marginal drivers arriving
after the peak. I assume a functional form for the distribution of β/α and assume that
for each agent the cost of being late is just some constant multiple of the cost of being
early (γi = ξβi). My finding that the cost of being late is less than the cost of being early

51cf. Small (1982); Hendrickson and Plank (1984); Parthasarathi et al. (2010).
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Figure 9. Marginal distribution of inflexibility

is best interpreted as being that the marginal driver who is late pays less of a cost then
the marginal driver who is early; there is nothing unreasonable about this. Furthermore,
being late doesn’t necessarily mean literally arriving late to an appointment, but can be
that you would prefer to go to the doctor at 9 a.m. but instead schedule the appointment
for 11 a.m. to avoid traffic. You arrive exactly on-time to your 11 a.m. appointment, but
still have schedule delay costs.

I estimate that rush hour is more than seven and a half hours long; starting before five
in the morning and not ending until a little after noon. While this sounds extreme, it
follows from my definition of rush hour as the period when travel times are higher than
they would be in free flow conditions, rather just when travel times are terrible.

9. Counterfactuals

Given the estimates of the distribution of driver preferences we can use the results of
section 7 to solve for equilibrium under counterfactual congestion pricing regimes. This
allows us to predict what would happen if we added time varying tolls to the highway,
either all or some of the lanes.

The final parameter we need to construct counterfactuals is the amount that throughput
falls once a queue forms. Based on the transportation engineering literature summarized
in Table 1 I assume throughput falls ten percent once the queue forms.

Table 5 reports measures of the aggregate effects of pricing all or a fourth of the highway.
The headline result is that pricing a fourth of the lanes helps all road users, while pricing
all of it only helps 75% of them. Pricing a portion of the lanes is a Pareto improvement,
while pricing all of the road is not.
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Table 5. Aggregate effects of congestion pricing

All free All tolled Pricing 1/4th of lanes

Fraction agents better off 0.73 1
Toll revenue ($ per capita) 3.78 1.45
Largest increase in cost ($) 6.81 0
Annual welfare gains ($ per capita)†

Social 2384 1037
Private 491 309

Excess travel times (min)
Average 9.73 0 9.85
Peak 24.18 0 23.92

Toll ($)
Average 0 3.79 5.39
Peak 0 9.49 13.10

† I assume two trips per working day and 250 working days per year.

Pricing all of the road raises about two and a half times the revenue that pricing just a
fourth does. The decrease in revenue is not proportional to the decrease in the fraction of
the road priced because the tolls are higher when just a fourth of the road is priced. Tolls
are higher because when fewer lanes are priced there are fewer agents in the priced lanes,
and so the marginal agent has a higher value of time. The tolls reflect the marginal agents
preferences and so are higher.

While pricing all of the road raises significant revenue, it is not enough for a lump
sum rebate to make pricing the entire road a Pareto improvement. The worst off agent is
almost seven dollars worse off each trip, approaching twice the revenue raised per agent
per trip. This means that if we want to use the revenue to make pricing the entire road a
Pareto improvement we will need to spend it in a way that targets those who are harmed.

By only pricing a fourth of the lanes we are able to get a Pareto improvement even
before using the revenue, however, this Pareto improvement comes at a cost. To obtain
a Pareto improvement we need to give up more than half of the social welfare gains
available from congestion pricing. That said, if by making congestion pricing a Pareto
improvement we are able to actually implement congestion pricing then we are trading
$2384 per person per year of potential, unrealized, welfare gains for $1037 per person per
year of actual welfare gains. This is a good trade.

The magnitude of the welfare gains available from congestion pricing are large, over a
thousand dollars per road user per year. Pricing a fourth of the lanes would be equivalent
to increasing the median income of these agents by almost 1.5%, and pricing all of the
road would increase median income by over 3%. Most of the welfare gain comes from
changing the currency used to pay for desired arrival times from time to money. The
time spent in traffic is a social loss while the money spent on tolls is just a transfer. This
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portion of the welfare gains accrues to whomever gets to keep the toll revenue. However,
a significant amount of the welfare gains go to the road users themselves. Even if the toll
revenue is burned the average road user will be $309 better off each year due to value
pricing.

Value pricing captures a large portion of the welfare gains available, even though we
are pricing only a fourth of the lanes. This contrasts with Verhoef et al. (1996) as well as
Liu and McDonald (1998, 1999) who find that pricing part of the highway only yields a
small portion of the welfare gains available from congestion pricing. They find this result
because if congestion pricing requires reducing throughput, then when we price only part
of the road we need to take into account that by pricing drivers out of the priced lanes
we make traffic worse in the free lanes. This leads to lower tolls and more congestion on
the priced route, and so a smaller share of the welfare gains. In contrast, when pricing
increases throughput we do not have this additional concern.

Pricing a fourth of the lanes reduces travel times at every point in time, on average by
1.5%, and so we pass the simple test for a Pareto improvement we constructed at the end
of section 5. However, because agents arrive over a smaller period of time, pricing a fourth
of the lanes increases the average travel time agents experience.52

Figure 10 shows how congestion pricing affects different families of agents. The left
panel of Figure 10 shows the change in trip price due to pricing the entire road for each
inflexibility and all values of time below fifty dollars an hour, averaged over all desired
arrival times. 53 The agents harmed the most by pricing all of the road are the inflexible
poor, those who need to arrive to work exactly on-time and who would strongly prefer
to pay with their time to do so instead of their money. The curve of darkest red in the
lower right of Figure 10 lies along the curve α = β̂ · δ; these are the agents who were
able to arrive exactly on time when the road is free, but when the road is priced they are
displaced from the peak of rush hour by flexible rich drivers who start arriving during
the peak. The inflexible rich are the best off, when the road is free they arrive on-time but
bear large travel time costs, and they are thrilled to be able to pay with money to avoid
the travel time costs. The flexible are not much affected by adding tolls to the highway,
they avoided paying with travel time by arriving off-peak and they will avoid paying
with money by continuing to arrive on peak. They are better off since they will have less
schedule delay, but as they have a low cost of schedule delay the improvement in their
welfare is slight.

52Put differently, there are now times on the free route when travel times are zero, but as one one travels at
these times they are not included in the average.
53Because the right panel of Figure 10 shows the change in trip price averaged over desired arrival times
it shows that the worse off family is hurt by three dollars while Table 5 reports the agent most harmed by
pricing the entire road is almost seven dollars worse off.
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Figure 10. Average change in trip price by family. The black lines in the
right panel are the maximum and minimum values of α̂ (δ, t∗) for each δ.

By pricing just a fourth of the lanes we preserve the ability of the poor to pay with their
time, and so as the right panel of Figure 10 shows, avoid hurting the inflexible poor. We
reduce the benefits to the inflexible rich, but we have a Pareto improvement.

The right panel of Figure 10 also shows which agents are on which road. The black
lines are the maximum and minimum values of α̂ (δ, t∗) for each δ, and so separate the
space of families into those on the priced route and those on the free route. Those above
both lines are on the priced route, those below both are on the free route, and for those
families whose parameters are between the two lines the route an agent is on depends on
his desired arrival time.

In both panels of 10 the change in trip price is constant for a given value of time across
a range of high levels of inflexibility. This occurs for the same reason α̂ (δ, t∗) is flat for
δ > δ̂ and α̂ (δ, t∗) > β̂/δ̂: if an agent is inframarginal regardless of whether the road is
free or priced then he arrives exactly on time and so his actually inflexibility doesn’t affect
his trip price or the change in his trip price.

If we are willing to relax the requirement that pricing be a Pareto improvement and
instead put some bound on the maximum harm done then we can enjoy a greater portion
of the potential welfare gains. Figure 11 shows this trade off. The largest drop in the
maximum harm comes from leaving at least some of the lanes unpriced, because the
inflexible poor would prefer to have a more congested free option where they can pay
with their time to needing to pay with their money. By pricing 75% of the road we can
reap 80% of the social welfare gains while inflicting only 50% of the maximum harm.
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Figure 11. Trade-off between maximum harm and social efficiency gains

10. Conclusion

Our current understanding is that the goal of congestion pricing is to reduce the rate at
which drivers arrive at their destination so that they can travel there faster, and that doing
so, while efficient, creates winners and losers. However, recent research by transportation
engineers shows that when too many vehicles are on the highway, fewer get through; this
implies that time varying tolls can actually increase the rate at which drivers arrive. By in-
creasing the arrival rate congestion pricing can reduce the length of rush hour, potentially
making all road users better off. Unfortunately, because doing so requires changing the
currency used to allocate desirable arrival times from time to money, congestion pricing
will likely harm the poor. By leaving some of the lanes free we can preserve the ability of
poor to pay with their time instead of their money. As long some rich drivers are using
the highway at the peak, we can price some of the lanes while still allowing all of the poor
drivers who had been traveling at the peak to continue to do so without paying a toll. We
will have priced some of the lanes without hurting and road users, we will have a Pareto
improvement.

There are at least two ways to strengthen the case I have made for value pricing being
a Pareto improvement. First, we can strengthen the case for value pricing by using the
revenue to help those whom congestion pricing harms; so far I explicitly ignored what
was done with the revenue. Options include cutting regressive taxes or directly rebating
the revenue by having negative tolls off-peak on both routes. On the priced route this
would lower tolls at every point in time and on the free route it would eliminate travel
time due to congestion off-peak and reduce travel times at the peak.
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Second, we can include in our analysis alternate ways for the poor to pay with time
instead of money for use of the highway during rush hour. Car pooling takes extra time
but allows those doing so to split the cost of the tolls; a discount can even be offered to
reduce the cost further. Likewise, buses that use the priced lanes will offer better travel
times than were available before there were priced lanes, be cheaper than driving alone,
but take addition time in getting to the stop, waiting for the bus, etc.

Because of the simplicity of the production possibility frontier implied by the bottleneck
model we miss out learning more about how to set optimal tolls. In the standard models
where we have a convex PPF we need to know agents’ preferences in order to find the
right point on the PPF, and this informational burden has rightly been considered an
impediment to pricing. However, the speed that maximizes throughput is high, perhaps
50–60 mph (see Figure 2 for some evidence), and so finding the optimal point on the
upper portion of the PPF is of second order concern compared to getting back on the PPF.
This means we can forget about needing detailed measurements of consumer preferences
when setting tolls; just find the toll schedule that maximizes throughput.
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