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Abstract

Biology places constraints on the form of neural computation that ul-
timately characterizes choice behaviour. We identify a canonical neural
computation, divisive normalization, which predicts that the composition
and size of the choice set will adversely influence choice behaviour, includ-
ing increased stochasticity, novel violations of the axiom of Independence
of Irrelevant Alternatives, and a decreased likelihood of choosing a higher
valued alternative. Evidence for such context-dependent choice behaviour
is provided from two behavioural experiments, and these violations of IIA
are more accurately captured by a choice model incorporating normal-
ization than alternative econometric specifications. Finally, we address
the normative implications of divisive normalization in choice behaviour.
We demonstrate that normalization implements an efficient means for the
brain to represent valuations given the constraints of a neural system,
yielding the fewest choice errors possible. These results emphasize both
the positive advances offered by developing choice models grounded in
neuroscience, and the normative role neurobiological constraints can play
in the study of decision-making.
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1 Introduction

The question of whether stochastic choice behaviour can be rationalized, and
how such behaviour depends on the choice set, has long been of interest in
economics. Block and Marschak (1960) first laid out a necessary regularity
condition for the existence of a random utility representation, under which the
probability of choosing an alternative must not increase as more alternatives are
added to a choice set. Similarly, an early sufficient condition held that relative
preferences (i.e. relative choice probabilities) between two alternatives should
not depend on other alternatives in the choice set, formally stated as the axiom
of Independence of Irrelevant Alternatives (IIA; Luce, 1959). However it was
quickly recognized that IIA places strong conditions on choice behaviour (De-
breu, 1960) and violations have been well-documented empirically, consisting of
patterns of substitution between alternatives as the composition of the choice set
is varied (Rieskamp, Busemeyer and Mellers, 2006). As a result, the structure
of these substitution patterns, namely how relative preferences depend on the
choice set, is of great interest in both the economic theory of the consumer (Mc-
Fadden, 2005) and evaluating responses to economic policy in applications like
transportation planning, energy usage, and consumer choice (McFadden, 1974;
Hausman and Wise, 1978; Ben-Akiva and Lerman, 1985; Revelt and Train, 1998;
Brownstone and Train, 1999; McFadden and Train, 2000; Train and Winston,
2007; Hess and Rose, 2009; see McFadden, 2001, for a review).

In this article, we examine novel forms of IIA violation that are necessarily
predicted by constraints known to be imposed by neurobiology. To establish this
point, we extend a Neural Random Utility Model (NRUM; Webb et al., 2013)
to directly incorporates these neurobiological constraints. This model predicts
patterns of substitution between alternatives that depend on the size and com-
position of the choice set, particularly a decrease in the likelihood of choosing a
higher valued alternative. Evidence for such context-dependent choice behaviour
is provided from two behavioural experiments, and we show that these viola-
tions of IIA are more accurately captured by an NRUM incorporating neurobi-
ological constraints than alternative econometric specifications. Finally, while
context-dependent choice behaviour might be considered irrational or anoma-
lous – particularly since the probability of choosing a higher valued alternative
is reduced – we demonstrate that this behaviour is in fact optimal given the
constraints faced by neural systems.

The observation that biology places constraints on choice behaviour, and
that these constraints should explain economic characteristics, is not novel in
the economic literature (Robson, 2001; Robson and Samuelson, 2010; Netzer,
2009). This includes the observation that a constrained decision process implies
behaviour we might strictly term irrational in the absence of the constraint
(Simon, 1979). In particular, the role of constraints on information processing
(Shannon, 1948) have been emphasized and shown to have important economic
implications (Sims, 2003; Woodford, 2012). For instance, Rayo and Becker
(2007) argue that the utility representation must be adaptive and depend on
the distribution of the domain of utility, given constraints on the representation
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similar to those we identify here. Our contribution is to provide a neural mech-
anism for how such dependence arises from neurobiological constraints, explore
its predictions for substitution patterns between choice alternatives, provide
behavioural evidence for its existence, and demonstrate that it implements the
normative solution to the neurobiological choice problem.

Just like constraints traditionally described in economics, neurobiological
constraints arise from scarcity: resources in the brain must be allocated to vari-
ous neural systems for various tasks. Moreover, there is some mechanism which
selects more efficient allocations and rejects less efficient ones. In the case of the
brain this mechanism is evolution, and we can identify a basic constraint that di-
rectly impacts how the decision-making process in the human brain has evolved.
Since neurons require energy, and energy resources in the human body are fi-
nite, this puts a limit both on the total number of neurons in the brain on the
number that can be allocated to any given task (since neurons are not perfectly
substitutable). This basic capacity constraint on information processing in neu-
ral systems has two implications that will be particularly relevant for choice
behaviour. First, the brain is forced (via the mechanism of evolution) to imple-
ment computational algorithms which compress the objective state of the world
into the activity of a finite number of neurons for subjective perception, compu-
tation, and ultimately, choice. Second, neural activity is universally observed to
be stochastic due to the small-scale, thermodynamic processes involved in the
synaptic transmission of information between neurons. While this randomness
can be partially mitigated through increasing the number (or size) of neurons
that participate in any task, this is both costly and limited: neurons are not
fully independent in their activity, therefore stochasticity remains. Ultimately,
this neural stochasticity results in stochastic choice behaviour (Glimcher, 2005).

From our perspective, these two constraints imply limitations on the form
of the decision-making process (i.e. the types of computations) the brain can
implement. In recent years, neuroeconomists have been studying this process
in detail, examining the structure and operation of the neural computations
underlying choice (Glimcher, 2011; Fehr and Rangel, 2011). In this article, we
focus on a pervasive computation in cortex, divisive normalization, in which the
inputs to the computation are scaled (divided) by the magnitude and number
of inputs. This computation therefore normalizes each input with respect to the
entire set of inputs, yielding a relative relationship between inputs. It is this
relative relationship that we will explore in the context of choice behaviour.

Originally observed in the cortical regions of visual perception (Heeger,
1992), divisive normalization has now been observed in multiple forms of sensory
processing and across species ranging from invertebrates to primates (Carandini
and Heeger, 2012). From a normative standpoint, it has also been shown to yield
an efficient coding of perceptual information in a constrained neural system.
Divisive normalization reduce the mutual information in a sensory stimulus,
eliminating the redundant information found in natural stimuli (Schwartz and
Simoncelli, 2001; Wainwright, Schwartz and Simoncelli, 2001; Sinz and Bethge,
2013). These results suggest normalization is a canonical neural computation,
and perhaps unsurprisingly it has recently been observed in value signals that
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are believed to implement a decision (Louie, Grattan and Glimcher, 2011). How-
ever, the normative implications for behaviour have remained unclear, particu-
larly because divisive normalization predicts a novel form of context-dependent
choice behaviour that can be strictly termed inefficient and inconsistent: it nec-
essarily leads to relative preferences that depend on the size and composition
of the choice set (Louie, Khaw and Glimcher, 2013). In this article, we show
that divisive normalization, when inserted into a neuroeconomic choice model,
predicts such context-dependent choice behaviour by implementing a normative
solution to the decision-making problem faced by constrained neural systems.

From an empirical standpoint, there is now growing evidence that the con-
text in which a decision is made has implications for economic behaviour. Of
particular relevance to our study, the size of the choice set has been shown to
alter relative preference, the consistency of preferences, and the likelihood of
making a purchase (Iyengar and Lepper, 2000; DeShazo and Fermo, 2002). The
model we present here captures such effects by focusing on normalization at the
level of choice alternatives. In doing so, it maintains an ordinal ranking over
alternatives. However it is often observed that adding an alternative to a choice
set which is either dominated, or similar, along the attribute dimension can
alter relative choice towards one alternative — sometimes referred to as asym-
metric dominance, or attractor effects, respectively (Huber, Payne and Puto,
1982; Tversky and Simonson, 1993; Rieskamp, Busemeyer and Mellers, 2006;
Soltani, De Martino and Camerer, 2012).1 To capture such phenomena, the
extension of a model with normalization to the attribute dimension is a natural
next step.

This article proceeds as follows. In section 2, we present a general theoretical
framework of decision-making in the brain, the Neural Random Utility Model
(Webb et al., 2013), that will allow us to investigate the role of neurobiological
constraints. We then introduce the divisive normalization computation, review
its positive and normative application in perceptual neuroscience, and review
the neural evidence in areas of the brain known to implement decision-making.
In section 3, we explore the positive predictions of divisive normalization, specif-
ically patterns in choice behaviour that depend on the composition and size of
the choice set. We then present behavioural evidence for normalization from two
laboratory experiments and propose a method for incorporating normalization
into an econometric specification.2 Finally, in section 4 we address the norma-
tive issue by describing the neurobiological constraints on decision-making, and
demonstrate that the divisive normalization computation implements choice be-
haviour that is optimal given these constraints. These results emphasize both
the positive advances offered by developing choice models grounded in neuro-

1Possible theoretical explanations of these “decoy” effects, and of the general relationship
between context and choice, have been raised (Thaler, 1985; Busemeyer and Townsend, 1993;
Thaler, 1999; Bordalo, Gennaioli and Shleifer, 2012, 2013).

2Results from one of these experiments, which varies the composition of the choice set,
have previously been reported in Louie, Khaw and Glimcher (2013). In this article, we bring
our econometric specification to this dataset in order to compare it to established econometric
methods, and investigate the prediction that some subjects should exhibit more normalization
behaviour than others depending on the construction of the choice set.
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science, and the normative role neurobiological constraints can play in the study
of decision-making.

2 Normalization in a Neural Choice Model

Over the past fifteen years, the empirical literature has pointed towards a basic
“two-stage” working hypothesis for decision-making in the primate brain (Glim-
cher, 2011; Fehr and Rangel, 2011). It is widely reported that brain regions in
the frontal cortex and basal ganglia carry information about the relative valu-
ations of choice alternatives.3 It is also reported that stochastic neural systems
located in regions of the frontal and parietal cortex implement a comparison
to determine which of these valuations is largest (Padoa-Schioppa and Assad,
2006; Gold and Shadlen, 2007; Louie and Glimcher, 2010), with the result of
this comparison passed to motor control regions for action.

These empirical results can be captured by an extension of the random utility
framework to neural systems termed the Neural Random Utility Model (Webb
et al., 2013). The NRUM is a reformulation of the traditional Random Utility
Model (RUM; Becker, DeGroot and Marschak, 1963; McFadden, 1974) in which
the unobservable latent variables are replaced with neural quantities.4 As such,
it attempts to capture the features of what is currently known about decision-
making in the brain in a familiar econometric framework, and can be shown to
be a reduced form of more structural, dynamic models found in neuroscience
(Webb, 2013).

Because the NRUM is designed to make empirical claims given neural quanti-
ties, it provides a convenient empirical framework for exploring the implications
of neural computation on choice behaviour and investigating the role of neu-
robiological constraints. In section 2.1, we begin by adapting the NRUM to a
multi-alternative choice environment which explicitly allows for the normaliza-
tion of value. In sections 2.2 and 2.3, we will describe in more detail the divisive
normalization computation, its origins in the sensory neuroscience literature,
and its extension to the domain of value and decision-making.

2.1 Neural Random Utility Model for Multi-Alternative
Choice

We begin by defining the observable neural quantity we call subjective value.
Subjective value is a measurement of neural activity in the frontal cortex of the
human brain, and has been demonstrated to carry cardinal information about
an individual’s valuation of choice alternatives (Webb et al., 2013). Two recent
meta-studies (Bartra, McGuire and Kable, 2013; Levy and Glimcher, 2011) now

3Elliott, Friston and Dolan (2000); Delgado et al. (2000); Knutson et al. (2001, 2003);
Padoa-Schioppa and Assad (2006); Kable and Glimcher (2007); Plassmann, O’Doherty and
Rangel (2007); Chib et al. (2009); Tusche, Bode and Haynes (2010); Levy et al. (2010, 2011);
Levy and Glimcher (2012)

4We discuss the relationship between the NRUM and the RUM in more detail in section
3, and in Webb et al. (2013).
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unambiguously indicate that this neural activity, particularly in the medial pre-
frontal cortex, is tightly correlated with every known economic method for esti-
mating the values subjects place on choice objects. This includes behaviourally
derived preferences over attributes (Tusche, Bode and Haynes, 2010; Levy et al.,
2011), risk and ambiguity (Levy and Glimcher, 2012; Levy et al., 2010), and
time (Kable and Glimcher, 2007, 2010). We denote the subjective value of each

item in a choice set N by the vector v = [v1, . . . , vN ] ∈ R‖N‖+ , with the valuation
of each item i denoted vi. Since subjective value is encoded by stochastic neural
activity, it is a random variable with distribution g(v).

Once subjective values v are instantiated in the activity of neurons in the
frontal cortex, they must be compared for a choice to be executed. The electro-
physiological evidence suggests that regions of the frontal and parietal cortex
receive subjective valuations as input and determine which of them is largest by
means of a competition between neural quantities (Sugrue, Corrado and New-
some, 2004; Louie and Glimcher, 2010).5 Importantly, this competition is both
stochastic and dynamic (Gold and Shadlen, 2007; Kiani, Hanks and Shadlen,
2008; Milosavljevic et al., 2010), and the structural models of this process found
in neuroscience (e.g. the drift diffusion model) can be captured by an additive
noise vector we denote η ∈ R‖N‖ (Webb, 2013). For now, we will assume a
general distribution f(η).

In this article, we hope to describe how the brain transforms subjective
valuations as they move to frontal/parietal regions for comparison. To allow for
this, we denote the transformation z = [z1, ..., zN ] = Z(v) : RN+ → RN+ with the
resulting distribution h(z). The function Z() allows for a relationship between
an alternative and the composition of the choice set. Specifically, it allows the
transformed valuation of an alternative, zi, to depend on the entire vector of
valuations for all alternatives v. Shortly, we will explore behavioural predictions
when Z(v) takes takes a particular form, namely that of divisive normalization.
All together, this yields the decision variable

u = Z(v) + η. (1)

The decision-maker chooses option i such that

ui > uj ∀j 6= i

zi + ηi > zj + ηj ∀j 6= i

5For instance, in the Lateral Intra-Parietal area (LIP) – a neural circuit that guides the
selection of eye movements (or saccades) in monkeys – groups of neurons each represent
a saccade to a particular region of visual space. A decision between two saccadic options is
instantiated as a competition between two groups of neurons representing the two possible eye
movements (Roitman and Shadlen, 2002; Kiani, Hanks and Shadlen, 2008). In the LIP, value
modulation biases the competition towards the better option and implements value-guided
decision making. Like frontal cortical areas, activity recorded in these areas varies with both
the magnitude and probability of reward associated with specific actions in lotteries (Platt
and Glimcher, 1999), in strategic games (Dorris and Glimcher, 2004), and with discounting
over time delays (Louie and Glimcher, 2010).
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yielding a probability of choosing i

Pi = P (zi − zj > ηj − ηi ∀j 6= i) (2)

=

∫ ∫
1 [zi − zj > ηj − ηi, ∀j 6= i]h(z)f(η) dv dη

assuming that v (therefore z) and η are independent, with 1[·] indicating the
statement in brackets holds.

To isolate the behavioural implications of normalization, we make two sim-
plifying assumptions. First, we are only modeling normalization that takes
place between cortical regions which encode subjective value and cortical re-
gions which compare subjective values, as represented by the function Z(). We
strongly suspect that normalization occurs in other stages of the decision mak-
ing process, for instance in the construction of subjective value v from objective
sensory attributes (Barron, Dolan and Behrens, 2013), but do not model it
here.6 Second, it will be useful to assume no stochasticity in subjective value v,
so the distribution h(z) is degenerate and the probability of choosing i is given
by

Pi =

∫
1 [zi − zj > ηj − ηi, ∀j 6= i] f(η) dη. (3)

In essence, we are assuming that we observe a particular realization of subjective
value v and we are tracing its evolution through the normalization Z() and the
stochastic process captured by η.

2.2 Divisive Normalization in Sensory Systems

To understand how divisive normalization influences choice behaviour, it will be
useful to understand its origins in the neuroscience literature. A fundamental
goal in systems neuroscience is to understand how the brain processes informa-
tion at the level of individual neurons. Much of this work has focused on the
sensory domain in which an environmental stimulus is transduced through the
sensory organs and passes through a series of processing layers (i.e. spatially
and functionally distinct circuits of neurons), each of which has a particular
role. In the visual system, for instance, light makes initial contact with pho-
toreceptors in the retina and passes through subsequent stages of hierarchical
neural processing in retinal ganglion cells, the thalamus, primary visual cortex,
and so on. Generally speaking, sensory neurons in these regions are “tuned” for
a particular stimulus, for instance the intensity of light in a particular region of
visual space, or a particular direction of motion.

At each of these levels, initial theories of neural processing hypothesized that
sensory neurons perform a linear computation: the activity of a neuron is simply
a weighted sum of the inputs to that neuron. However, it was soon discovered

6In fact, the existence of some form of normalization in these regions is virtually a necessity
considering the neural constraints we will highlight. This raises the possibility that attributes
may be independently normalized, yielding behavioural effects like asymmetric dominance.
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that sensory neurons display activity that cannot be solely explained by linear
models. One prominent non-linearity is the saturation of neural activity at high
input levels. A second is the phenomenon of suppression, where the neural
activity elicited by a stimulus (for which the neuron is tuned) is reduced in the
presence of a stimulus for which it is not tuned. The divisive normalization
model was proposed to explain such nonlinear phenomena in primary visual
cortex (Heeger, 1992). The critical feature of this model is a divisive rescaling
of the activity of a neuron by the total activity of a larger pool of neurons,
each receiving different inputs. The normalization model is defined, in its most
general form, by the equation:

Ri(x1, . . . , xN ) = κ
xαi

σ + (
∑
n ωnx

β
n)

1
γ

, (4)

where the response Ri(x1, . . . , xJ) of a neuron i is a function of both the driving
input xi to that neuron and the summed inputs to a large number of neurons
N termed the normalization pool. This general response function is governed
by a number of parameters: κ denotes the maximum possible activity level,
σ determines how responses saturate with increased driving input, ωn weights
each neuron in the normalization pool, and α, β and γ mediate the form of the
normalization. This model can be generalized to neural populations, so that for
each input i, the xi represent the aggregate activity of the neurons tuned for i.

The divisive nature of the normalization implements several features consis-
tent with the physiology of visual cortex. First, because the input to a given
neuron is also included in the normalization pool, the model produces a saturat-
ing response to increases in driving input. This is consistent with the observation
that neurons are biologically constrained to maximum firing rates. Second, divi-
sion expresses the quantity encoded by a single neuron in relative terms, scaled
to the pooled activity of other inputs. This relative representation of informa-
tion is a general feature of sensory coding. In the retina, for example, light
intensity is encoded relative to the average ambient illumination; this process
of light adaptation is why black type on white newspaper appears the same in
a darkened room and under bright sunlight.

Originally proposed to explain non-linearities in primary visual cortex, nor-
malization has been identified in multiple stages of visual processing from the
retina to downstream visual areas, and in species ranging from the fly to pri-
mates. In addition to vision, normalization characterizes neural responses in
multiple modalities such as audition and olfaction, and extends to higher-order
cognitive processes including attention and multi-sensory integration (Carandini
and Heeger, 2012). This ubiquity suggests that normalization may be a general
feature of information processing in cortical systems.7

7We should note that the normalization model describes a computational algorithm rather
than a specific biophysical implementation. Researchers have identified a number of potential
neural mechanisms for normalization and it is likely that the normalization computation is
mediated by different processes in different species and systems. Moreover, since evolution
selects on the fitness of the output of a particular neural system, the parametrization of the

8



2.2.1 Normative Implications in Sensory Systems

Given the ubiquity of divisive normalization in sensory systems, the question of
its normative role in neural coding has been raised. In systems neuroscience, the
benchmark normative framework for information processing is the efficient cod-
ing hypothesis (Barlow, 1961) based on Shannon’s work on information trans-
mission via finite capacity channels. Because neural systems face necessary
biological constraints (e.g. maximum firing rates or numbers of neurons), sen-
sory stimuli should be represented in a manner that minimizes the redundancy
in encoded information; that is, neural responses should be statistically inde-
pendent. Crucially, the statistics of the natural environment are decidedly not
independent. For instance, regions of visual space with intense light occur in
clusters, unlike the random “snow” displayed on an untuned analog television
set. Under the efficient coding hypothesis, sensory systems should account for
such dependencies and transform this information into a less redundant repre-
sentation.

While linear weighting functions can remove some redundancies, the statis-
tics of natural images are too complex for linear models to produce completely
independent responses. However, the non-linear divisive normalization model
markedly reduces higher-order correlations in responses to both natural images
and sounds (Schwartz and Simoncelli, 2001; Lyu, 2011; Sinz and Bethge, 2013).
Thus, normalization serves a specific normative role in implementing efficient
information coding in sensory systems.

2.3 Divisive Normalization in Value Systems

Given the pervasive observation of divisive normalization in sensory cortex, and
the general similarity of information processing in cortical systems, this has
raised the question of whether a form of normalization is also taking place in
decision-related cortical regions. Specifically, are the values of alternatives in a
choice set represented in a normalized form relative to the valuation of available
choice alternatives?

Recent neural evidence from primates suggests that this is the case (Rorie
et al., 2010; Louie, Grattan and Glimcher, 2011; Pastor-Bernier and Cisek,
2011). For example, Louie, Grattan and Glimcher (2011) examined the activity
of LIP neurons responsible for a particular region of visual space, termed the
receptive field (RF). In this experiment, two targets were displayed on a screen,
and the value of the RF target (in ml of water) was held constant while the value
of the extra-RF target was varied. In the absence of normalization, varying the
extra-RF target should elicit no change in activity from the recorded neuron.
Nonetheless, the measured neural activity varied inversely with the value of the
alternative target, consistent with model in which the neural activity coding the

normalization equation will depend on the role of the particular system and statistical features
of its input. The widespread occurrence and varying implementations indicate that it is the
normalization computation, rather than the specific mechanism and parameterization, which
is critical to neural systems.
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value of a specific action is suppressed by the value of alternative actions.
Further experiments show that this relative value representation is imple-

mented via a divisive normalization computation. Returning to our model in
section 2.1, we suggested that the cortical regions involved in decision-making
transform subjective valuations according to the function Z(v). Analogous to
normalization in sensory processing, a general form of value normalization by
the function Z(v) can be written,

zi = κ
vαi

σ + (
∑
n ωnv

β
n)

1
γ

, (5)

where the activity zi is a nonlinear function of the value vi and the values of the
other possible actions. To test this hypothesis, Louie, Grattan and Glimcher
(2011) implemented a three-target task and systematically varied the number
of targets and their values, allowing a test of various relative value coding algo-
rithms. Monkeys fixated on a central cue and were presented with either one,
two, or three targets, each of which was associated with a different magnitude
of water reward. Each randomized target array provided a unique combination
of values associated with the targets in and out of the RF. The authors demon-
strate that a restricted form of the above equation in which α = β = γ = 1,

zi = κ
(ml of water)i

σ +
∑
n(ml of water)n

, (6)

captured the activity of LIP neurons better than either a simple linear form or
other potential models (e.g. the difference in value).

Normalization in value regions has implications for both both positive and
normative theories of choice behaviour because it transforms the neural activity
that drives choice. Since the value of alternatives in a choice set are scaled by
an identical term, ordinality is preserved, however the precise activity level cor-
responding to a given alternative depends on the other alternatives in the choice
set. Given variability in value representation, this rescaling can have interesting
implications for choice behaviour. The prevalence of divisive normalization in
cortical regions also suggests a normative role related to efficient coding in the
face of neurobiological constraints, but we will hold this question for section 4
and begin with the positive predictions.

3 Behavioural Implications of Normalization

The normalization of subjective valuations in cortex yields a number of be-
havioural predictions. In this section, we will incorporate normalization into
the NRUM and explore its implications for context-dependent choice behaviour.
In order to validate these predictions empirically within a standard behavioural
framework, we then replace the neural variables in the model with behavioural
correlates, namely the BDM bids of choice alternatives, and present evidence
from two laboratory experiments: one which varies the composition of the choice
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set, and another which varies the size of the choice set. We demonstrate that
the observed behaviour is accurately captured by the NRUM incorporating nor-
malization and compare its performance to existing econometric techniques.

3.1 Substitution Patterns and Violations of IIA in Trinary
Choice

The behavioural predictions from normalization stem from the interaction be-
tween scale and stochasticity. Consider the NRUM for a trinary choice set,
depicted in Figure 1, and described formally by incorporating a restricted ver-
sion of the divisive normalization equation (5),

zi = κ
vi

σ + ω(
∑
n v

β
n)

1
β

, (7)

directly in the NRUM from section 2.1. This yields a probability of choosing
alternative i given by

Pi =

∫
1 [zi − zj > ηj − ηi, ∀j 6= i] f(η) dη. (3)

∫
1

[
κ

vi − vj
σ + ω(

∑
n v

β
n)

1
β

> ηj − ηi, ∀j 6= i

]
f(η)dη. (8)

In a trinary choice set, normalization introduces a particular pattern of sub-
stitution between alternatives because it scales valuations by a function of all

alternatives in the choice set, (
∑
n v

β
n)

1
β . As the value of the lowest alternative

is increased, the valuations of the two highest items are scaled down; but the
highest alternative is scaled more, in absolute terms, than the second-highest.
Given a constant variance for the distribution f(η), this increases the likelihood
that the decision-maker will choose the second alternative relative to the first,
yielding a relationship between relative choice probabilities and the choice set.

To understand the substitution patterns induced by normalization, it will
be useful to return, for the moment, to the NRUM without normalization (i.e.
zi = vi in equation 3). The substitution patterns induced in this model depend
on the distribution of the error term ηi. For instance, if we assume that ηi
is distributed extreme value (type 1), then the NRUM takes the form of the
familiar multinomial logit model (McFadden, 1978),

Pi =
evi∑
n e

vn
.

The multinomial logit model has the property that the ratio Pi
Pj

= evi

evj
does

not depend on the additional alternatives k 6= i, j in the choice set, and this
defines the axiom of Independence of Irrelevant Alternatives (IIA; Luce, 1959).8

8There is a weaker notion of IIA in which only the order of choice probabilities for op-
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Figure 1: Divisive normalization in an NRUM for trinary choice. An increase
in the value of alternative 3 affects the relative likelihood of choosing between
alternatives 1 and 2.

Though it is now well documented that IIA is violated in a variety of choice
environments (Rieskamp, Busemeyer and Mellers, 2006), it still provides a use-
ful benchmark for exploring the implications of the choice set on substitution
patterns. In particular, incorporating normalization in the NRUM predicts a re-
lationship between relative choice probabilities and the choice set which violate
IIA. This pattern of substitution is present even when the error distributions
are extreme value, and can be seen clearly via simulation in Figure 2A: the ratio
of P1

P2
declines as the subjective value of the third alternative increases.9

If we instead assume a normal distribution for the stochastic elements, the
pattern of IIA violation predicted by normalization changes in an important
way (Figure 2B). As the value of the third alternative increases, the ratio P1

P2

declines until the third alternative starts capturing significant choice probability
from the first and second alternatives. Then the ratio P1

P2
increases and the first

alternative is chosen relatively more often (Figure 2B).10 Intuition for this result

tions i and j must remain constant in the presence of alternative options k. Violation of this
condition has been observed in laboratory experiments (Rieskamp, Busemeyer and Mellers,
2006), notably the asymmetric dominance effect. Divisive normalization does not display this
prediction since it preserves the ordinal ranking of the alternatives. To capture this property,
an NRUM would have to include an explicit model of how attributes are (asymmetrically)
weighted in the construction of subjective value (Simonson and Tversky, 1992; Bordalo, Gen-
naioli and Shleifer, 2013).

9Formally,
∂
Pi
Pj

∂vk
= ∂e

vi−vj∑
n vn

∂vk
< 0,∀k 6= i, j.

10This is observed with both the linear form of divisive normalization (α = β = γ = 1) and
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can be found in Figure 1. As the distribution for the third alternative rises, it
overlaps with the second alternative before the first. This pulls more probability
from the second alternative being chosen relative to the first, and sends the
probability of choosing the second alternative to zero faster. This results in
a pattern of substitution between alternatives which has a characteristic “u-
shape.”

3.2 Alternative RUM specifications and their relationship
with normalization

Many adaptations of the RUM framework have been proposed in order to relax
the IIA axiom, all working through the specification of the error distribution,
and it is interesting to consider whether these specifications can capture the
substitution patterns predicted by normalization. For instance, if the stochastic
elements of a RUM (without normalization) are distributed multivariate normal,
yielding the multinomial probit model (Hausman and Wise, 1978), particular
patterns of IIA violation are observed. If the distribution is independent, the
ratio P1

P2
increases as the subjective value of the third alternative increases (Fig-

ure 2C). The assumption of independence between items in the choice set can
be relaxed, allowing for a wider variety of IIA violations. For example, the sim-
ulation in Figure 2D allows correlation in the stochastic terms for the first and
third alternative, yielding a ratio P1

P2
which decreases to zero as the value of the

third alternative increases.
The fact that the multinomial probit model has a fully parameterized co-

variance matrix has led to the assertion that the model can “represent any
substitution pattern” (Meyer, 1991). While it is true that this model relaxes
substitution patterns, extensive simulations suggest that even a fully parameter-
ized covariance matrix of the multivariate normal distribution can not capture
the patterns of IIA violations predicted by cortical normalization.11 This sug-
gests that the multinomial probit model, without normalization, will not yield
the pattern of relative choice probabilities in Figure 2B. In the trinary choice ex-
periment which follows, we will indeed verify that the multinomial probit model
performs worse than a model with normalization.

There is one additional observation to make about the relationship between
the NRUM with normalization and current RUMs. The regularity condition,
which states that the probability of choosing an alternative cannot increase as
more alternatives are added to a choice set, is a necessary condition for a random
utility representation. We find that some parameterizations of the NRUM with
normalization (namely the variance of η) violate regularity, and we provide
a proof in Appendix A for the case of the extreme value distribution. Some
intuition for this result can be garnered from the trinary choice simulations in
Figures 2A and 2B. Note that for very low valuations of the third alternative
(where the probability of it being chosen is virtually zero), the probability of

less restrictive forms (e.g. α = 1, β = γ = 2, see section 4.1.1)
11A proof is elusive in the absence of a closed form for the normal distribution.
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choosing the second alternative increases in absolute terms. We will examine this
prediction in more detail in section 3.4 when we present our experiment which
increases the size of the choice set, but for now let us address the implications
of this observation.

Since an NRUM with normalization violates regularity, it means that, tech-
nically, it is no longer a RUM. An even more general class of empirical model,
referred to as mixed logit models (McFadden and Train, 2000), has been shown
to approximate both any random utility model as well as some models which
violate regularity. At this time we do not know if the mixed logit approach can
approximate the NRUM with normalization. We do note that an independent
multivariate normal distribution, together with the normalization equation, in-
duces some distribution over the utility vector u. It is possible that some mixture
of distributions can approximate it. However the mixed logit (or any mixture
model) still requires a particular specification for the mixing distribution. As
noted by Train (2009), “the researcher’s task is simply to find variables and a
mixing distribution that capture the [non-idiosyncratic] parts of utility, namely
the parts that are correlated over alternative or heteroskedastic”.

By incorporating divisive normalization in an NRUM, we accomplish this
task by imposing a direct specification on the relationship between alternatives.
We constrain the model by grounding it in the neural constraints underlying
decision, and let these constraints induce patterns of substitution between al-
ternatives. We find these patterns are modulated by a combination of at least
two factors: the distribution of the stochastic terms (including its covariances),
and the presence of normalization. The predictions of an NRUM with and with-
out normalization therefore allow observed substitution patterns to distinguish
between these factors in an empirical specification.

3.3 Trinary Choice Experiment

We have just seen that divisive normalization predicts particular violations of
IIA when the value of a third “irrelevant” alternative is manipulated. In order
to test this prediction in a familiar behavioural setting, Louie, Khaw and Glim-
cher (2013) developed a two-stage valuation and trinary choice task involving
common snack-food items. The first stage elicited the valuation of each good
(in isolation) using an incentive-compatible auction mechanism (Becker, DeG-
root and Marschak, 1964). The second stage of the experiment varied the value
composition of trinary choice sets, and had subjects choose a single alterna-
tive from these sets. In our analysis, we will use the behavioural measures of
value recorded in the first stage in place of the neural measures proposed in
the NRUM. Empirical evidence that subjective value activity correlates with
BDM bids can be found in (Plassmann, O’Doherty and Rangel, 2007). This
will allow us to fit the normalized model to the trinary choice dataset, compare
it to the multinomial probit model, and examine subject-specific differences in
normalization behaviour.
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Figure 3: Top: The two bids for each snack food alternative from the first stage
of the experiment, for all subjects. Bottom: The correlation coefficient for each
subject.

3.3.1 The Trinary Choice Task

In the first stage of the experiment, 40 subjects performed 60 bid trials to
establish subject-specific valuations for the array of experimental goods. In
each bid trial, subjects viewed a picture of a single snack food item and reported
their maximum willingness-to-pay for that item ($0-$4 in $0.01 increments). To
implement incentive compatibility, if a bid trial was chosen for realization at
the end of the session, the outcome was determined via an auction mechanism
(Becker, DeGroot and Marschak, 1964). Each of 30 items was shown twice
in a randomized order, and items were ranked for each subject according to
their mean bids. We denote the mean bid for each item bi, and repeated bids
for the same item were highly correlated (ρ = 0.9105, p < 0.001, Figure 3).
The 10 highest-valued items (ranks 1-10) were termed targets and 10 items
sampled evenly from the 20 lowest-valued items (ranks 12, 14, ..., 30) were
termed distracters.

In the second stage of the experiment, subjects performed 250 choice trials.
In each choice trial, subjects selected their preferred option from a trinary choice
set. To investigate the effect of the composition of the choice set, each trinary
choice grouped two target items and one distracter item. Choice sets were
constructed to include varying target value differences and distracter values;
each presented triplet was unique and not repeated. If a choice trial was chosen
for realization, subjects received whichever good they selected in that trial.

Subjects were requested to fast for four hours before the experiment and
required to stay in the lab one hour after completion of the session, during
which time the only food they could consume was any item received from the
experiment. Along with a possible snack item, each subject received a $40 show-
up fee and was additionally endowed with $4 for use in the bid trials. At the
conclusion of the experiment, a single trial from the session (bid or choice) was
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randomly selected for realization.

3.3.2 Trinary Choice – Pooled Analysis

We begin by reviewing a result reported in Louie, Khaw and Glimcher (2013),
namely whether relative preference between the two high-valued targets varied
as a function of the distracter value. In their analysis, distracter value was
normalized to the mean value of the presented targets on each trial; this metric
ranges from 0 (small value) to 1 (high value) and facilitated comparison across
subjects with differing value ranges.

As discussed in the previous section, an NRUM with normalization predicts
a particular bi-phasic relationship between relative target preference P1

P2
and

distracter value (Figure 2B): relative choice probabilities decrease when b3 is
small, but then increase as b3 approaches the value of b1 and b2. To quantify
choice behaviour, the small number of trials in which the distractor was chosen
were dropped and a logistic choice model fit to the data segregated by distracter
value; this approach models relative preference as a binary choice between the
two targets, restricted to regimes with similar distracter values. As shown in
Figure 4, this analysis revealed a “u-shape” in relative choice probabilities: the
logistic slope parameter initially decreases as the value of the distracter grows,
decreasing the probability of selecting the largest alternative by ∼ 15% (from
0.67 to 0.57) at the mean of b1 − b2. However the logistic parameter increases
back to 0.68 at sufficiently large distracter values. As noted in section 3.1,
this pattern likely can not be captured by the multinomial probit model with a
fully parameterized covariance matrix. Instead, divisive normalization must be
explicitly accounted for in an empirical specification.
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Figure 4: Logistic fit of binary choice between targets, for the range of distracter
value segregated into five bins. The relative preference between two items in a
choice set is given by the ratio of the probabilities for a given b1 − b2 (e.g. the
mean of b1− b2, dashed line). The bi-phasic effect on relative choice probability
can be observed in the estimates of the logistic parameter for the five distracter
values.

To fully address this claim, we estimate the model in equation 8 for our
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pooled sample in an effort to compare it to the multinomial Probit model. The
pooled sample consisted of 250 trials from 40 subjects, for a total of 10000
observations. In our specification, the parameter ω measures the influence of
the choice set on the the overall variance in the model (the denominator) and
the relative choice probabilities. This yields the choice probability on each trial
given by,

Pi,t =

∫
1

[
κ(bi,t − bj,t)

σ + ω(
∑3
n=1 b

β
n,t)

1
β

> ηj,t − ηi,t, ∀j 6= i

]
f(ηt)dηt. (9)

The parameters σ and ω were restricted to be positive, and following stan-
dard practice the distribution f() and the parameter κ were appropriately nor-
malized so that f(ηj − ηi) was the standard normal distribution. The resulting
maximum likelihood estimates for the entire pooled sample are reported in Ta-
ble 1 for three nested specifications. We also report the cholesky factorization
of the independent normal covariance matrix, differenced with respect to the
third alternative,

(
1 0
l2,1 l2,2

)
.

Table 1: Maximum likelihood estimates of the normalization model and the
Multinomial Probit model for the pooled sample of the trinary choice experi-
ment.

Probit Normalization Multinomial Probit
κ̂ 1 1 1 0.702 0.670

(0.023) (0.024)
σ̂ 0.996 0.114 0.012 1 1

(0.004) (0.002) (0.001)
ω̂ 0 0.177 0.412 0 0

(0.034) (0.001)

β̂ 1 1 511.5 1 1
(0.001)

l̂1,1 1 1 1 1 1

l̂2,2 0.866 0.866 0.866 0.526 0.792
(0.016) (0.033)

l̂2,1 0.5 0.5 0.5 0.5 0.431
(0.022)

LL -8153.55 -7944.39 -7881.21 -7995.36 -7969.81

In the unrestricted specification, the estimate of ω is significantly different
from zero (p < 0.001) and the Log-Likelihood decreases significantly compared
to the restricted specifications, particularly the model without normalization
(p < 0.001). This suggests that, at the pooled level, we are observing behaviour
in which the composition of the choice set affects the degree of variance in the

18



model, and therefore the relative probabilities.12

To gauge whether an alternate econometric specification could capture the
substitution patterns we observe in this dataset, we also estimated a multinomial
probit model with a full covariance matrix, for a total of three parameters (κ,
l2,1, and l2,2). The log-likelihood from this model was lower than even our
restricted normalization model. Clearly, the behaviour we are observing is more
accurately captured by an NRUM which includes normalization.

3.3.3 Trinary Choice – Subject Analysis

The normalization model can also be applied at the level of each subject to gauge
heterogeneity in context-dependent choice behaviour. Our hypothesis – that
divisive normalization is a canonical computation in value cortex – essentially
requires that all human brains exhibit normalization. But divisive normalization
does yield a prediction about how much context-dependent choice behaviour we
should observe for a given range of choice sets. For instance, if trinary choice
sets were composed of a Porsche, a Ferrari, and some lowly snackfood, we should
not expect to see much substitution as the snack food item is varied. Therefore
the heterogeneity in the preferences of subjects for the various snack food items
in our sample can be used as an additional test of the model.

The resulting maximum likelihood estimates for each subject are in Figure
5.A, in which the estimate ω̂ is multiplied by the average value of the choice set
to give a sense of scale relative to σ̂. The statistical significance of the estimate
ω̂ is calculated via a likelihood ratio test from the restricted model where ω = 0.

For each subject, the estimated model either proportions variance to σ or to
the normalization term governed by ω. This division of our subject pool can also
be observed if we repeat the logistic analysis from Louie, Khaw and Glimcher
(2013) on just those subjects for which ω̂ is significant, and those for which it is
not, reported in Figure 5.B. The subset of subjects which yield a significant ω̂
exhibit a strong contextual effect on the choice probabilities, in contrast to the
remaining subjects (who still exhibit the characteristic increase induced by the
multivariate normal distribution).

So what to make of the observation that some subjects appear to be ex-
hibiting contextual effects while others are not? Recall that the behavioural
predictions from the divisive normalization equation arise because the differ-
ence in value between items b1− b2 is scaled down by the valuation of the third
item, b3, in the denominator. If there is little exogenous variation of b3 in our
choice sets, or if the magnitude of b1− b2 is small to begin with, then we should
not observe much effect on the relative choice probabilities. For instance, in Fig-
ure 5.C we highlight the item set composition of three subjects, two of which (in
red) the model identifies as not normalizing. One of these subjects has a small
range of valuations of distractor items (b3), while the other has a small range of

12Since our estimation specification replaces the variance parameter in a standard RUM with
the parameters σ and ω in the denominator, a positive and significant relationship between
Pi and bi − bj occurs when the denominator approaches zero from above. This means that
the larger our estimates of ω and σ, the more stochastic is choice behaviour.
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Figure 5: (A) The estimates of σ vs. ω for each subject. Heterogeneity in the
sample is clearly present, with some subjects demonstrating more normalization
in their choice probabilities (in blue) than others (in red). (B) The logistic fit
re-estimated for each sub-sample of subjects. (C) Heterogeneity is predicted by
a normalization model depending on a subject’s range of valuations over the
content of the item set (shown for the 3 subjects denoted with an ‘×’).

valuations of target items (b1, b2), relative to the normalizing subject (in blue).
Note that the bid spectrum of the normalizing subject has roughly equal range
for both distractors and targets, therefore is roughly linear compared to the
non-normalizing subjects.

To test this possible explanation for the discrepancy in our subject sample,
we constructed a measurement of how much variation is present in valuations of
the item set. For each item, we calculated the square of the difference between
the rank-ordered valuations and a line which ranges from the minimum bid to
the maximum bid. A subject for which the target and distractor set shared a
similar range would exhibit a small measurement of variation and a large amount
of normalization. A subject for which either the distractor items or target items
yielded differing ranges of valuations would exhibit a large measurement and
little normalization. We then averaged this metric over the two subsets of
subjects defined by our regression results, and found it was significantly larger
(p < 0.05) for those subjects which did not exhibit normalization. This suggests
that the lack of normalization observed in a subset of our subjects resulted from
our experiment presenting a set of choice alternatives which were not conducive
to generating contextual behaviour in those subjects.

3.4 Set Size Experiment

The behavioural predictions of divisive normalization naturally extend to larger
choice sets. Increasing the number of choice alternatives changes the total value
of the choice set, and increases the scaling of the model (Figure 6). As in trinary
choice, the relative probabilities shift and choice becomes more stochastic, in
particular, the likelihood of choosing the highest ranked item again decreases.
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Figure 6: Increasing the size of the choice set shifts the relative probability of
choosing the highest ranked item.

Of course, any stochastic choice model which obeys regularity will predict that
choice becomes more stochastic as the number of choice alternatives increases.
But divisive normalization predicts that we will observe more stochasticity than
a model with a constant variance: as more alternatives are added, valuations are
scaled downward and the variance in the model increases. In sections 3.4.1 and
3.4.2, we present a behavioural experiment designed to test these predictions.

As mentioned in section 3.2, normalization also predicts violations of regular-
ity under some parameterizations of the model and for some sets of alternatives.
The difference between the decision variables for the highest and second highest
ranked alternative (u1 and u2) can decrease quite quickly when multiple low
value alternatives are added to the choice set. With a small variance for the
stochastic elements η, and low-enough value alternatives added to the set, this
can generate an absolute increase in the probability of choosing the second al-
ternative (Appendix A). In section 3.4.3 we will try and observe this prediction
in the data.

3.4.1 The Set Size Task

To try and capture the behavioural effects of increasing set size, we developed
a two-stage experimental setup based on the trinary choice experiment. In the
initial valuation stage, 30 subjects performed 60 bid trials where they reported
their maximum willingess-to-pay for 30 individual snack food items. For each
subject, items were then ranked according to their mean bid value, and the 10
highest-valued and 10 lowest-valued items were denoted targets and distracters,
respectively.

In the second stage of the experiment, subjects performed 270 choice trials.
In each trial, subjects selected their preferred option from a choice set consisting
of two target items and a variable number of randomly chosen distracter items
for set sizes totalling Nt ∈ {2, 4, 6, 8, 10, 12} items on choice trial t. Choice sets
were constructed to include varying target value differences, with 45 different
trials in each set size condition.
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After completion of the session, subjects were required to stay in the lab,
during which time the only food they could consume was any item received
from the experiment. A single experimental trial was chosen for realization. If
a bid trial was selected, the outcome was determined via BDM auction; if a
choice trial was selected, subjects received whichever good was selected in that
trial. Payment consisted of a $40 showup fee, a $4 endowment for use in bid
trial realization, and a possible snack food item. In the analysis that follows,
the bids for each subject were normalized by the subject’s mean bid over all
alternatives to facilitate pooling the data.

3.4.2 Set Size Results

As one might expect, increasing the size of the choice set decreases the prob-
ability that the highest ranked item is chosen. In our largest set size of 12
alternatives, the decrease in probability is as high as 20% (Figure 7). In order
to determine if this decrease was larger than predicted by the standard RUM,
we estimated our normalized NRUM from equation (8) with the only difference
lying in the number of choice elements Nt now varying over trials. This yields
the choice probabilities on trial t,

Pi,t =

∫
1

[
κ(bi,t − bj,t)

σ + ω(
∑
n∈Nt b

β
n,t)

1
β

> ηj,t − ηi,t, ∀j 6= i

]
f(ηt)dηt. (10)

As in the trinary case, the distribution f() was assumed independent normal,
κ was appropriately normalized to 1, and both the parameters σ and ω were
restricted to be positive. The resulting maximum likelihood estimates for the
entire pooled sample are reported in Table 2 for three nested specifications.13

Table 2: Maximum likelihood estimates for set size experiment.

Probit Normalization
σ̂ 0.924 0.924 0.001

(0.025) (0.002) (0.040)
ω̂ 0 0.001 0.442

(0.010) (0.022)

β̂ 1 1 18.85
(1.961)

LL -9969.76 -9969.76 -9723.77

Again, we observe that in the unrestricted specification, the estimate of ω is
significant (p < 0.001) and the Log-Likelihood decreases significantly compared

13Since our estimation specification replaces the variance parameter in a standard RUM with
the parameters σ and ω in the denominator, a positive and significant relationship between
Pi and bi − bj occurs when the denominator approaches zero from above. This means that
the larger our estimate of ω from 0, the more stochastic is choice behaviour.
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Figure 7: The probability of choosing first, second, and third ranked item, and
the fitted probabilities derived from model estimates. The probabilities are
evaluated at the average bids in each choice set.

to the unrestricted specification (p < 0.001). This suggests that, at the pooled
level, we are observing choice behaviour in which the size of the choice set affects
the degree of variance in the model, and therefore the relative probabilities.

In order to quantify the effect of set size, we have reported the fitted prob-
abilities from our estimates in Figure 7 evaluated at the average bid values of
the choice sets. The specification which allows normalization does a remarkable
job of capturing the relative choice probabilities in the data, with the slight ex-
ception of under-predicting the probability of choosing the third ranked item in
large set sizes.14 This is in contrast to the RUM without normalization (i.e. Pro-
bit). In order to match the choice probabilities (for all items) with a constant
variance over all sets, it over-predicts the probability of choosing the highest

14The increase in the predicted probability of choosing the 3rd ranked item arises from the
construction of our choice set. Our ”distractor sets” were randomly sampled from a set of
10 items, which means that smaller choice sets were more likely to have a larger disparity
between the third item and the remaining distractors. Notice in Figure 7 that the difference
between average bid values for each distractor item is initially large, but shrinks as set size
increases.
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Table 3: Probability of choosing highest ranked item (evaluated at average bids
in each choice set)

PN=2 PN=12 PN=12 - PN=2

Data 0.67 0.47 0.20
Without normalization

0.72 0.57 0.15
(σ̂ = 0.924)

With normalization
0.69 0.49 0.20

(σ̂ = 0.001, ω̂ = 0.442, β̂ = 18.85)

ranked item in the choice set and under-predicts the probability of choosing the
lower ranked items. From these fitted probabilities, we can observe that for a
set size of 12 items, the highest ranked item is chosen 10% less than predicted
by a RUM with a constant variance.

3.4.3 Observing Regularity Violations

As noted earlier, the NRUM with normalization (for some parameter values)
predicts violations of regularity. Specifically, the probability of choosing the
second ranked alternative should increase when the number of alternatives added
to a choice set are of low value and the variance in the model is small.

To investigate this prediction, we report the probability of choosing the
second ranked alternative for four subsets of the data (in blue) in Figure 8.
The subsets are generated by selecting the trials (from each subject) in which
all of the distracters were in the 50th, 55th, 60th, and 70th of bids for that
subject. Ideally, we would examine subsets lower than this range since this
is where we would expect the largest number of violations, but unfortunately
the design of our experiment severely underweights sampling from this range of
alternatives. This significantly reduces the number of trials which fall into these
subsets and limits the power of our dataset to identify the type of regularity
violations predicted by normalization. As can be observed in Figure 8, there
are some cases in which the average probability of choosing the second item
increases as the set size grows, but these results are not statistically significant.

4 Neurobiological Constraints and Optimal Decision-
Making

We have just observed that the ability of subjects to select their highest ranked
alternative degrades as both the composition and the size of the choice set
is altered. Additionally, we saw that a choice model which incorporates divi-
sive normalization is able to capture these behavioural patterns which violate
seemingly normative choice behaviour. Given that we observe these effects in
behaviour, this raises the natural question of why a neural system – selected
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Figure 8: The probability of choosing the second ranked alternative for four
subsets of the data (in blue) for choice sets of increasing size. Each subset is
composed of all trials for each subject in which the distracters were less than
the 50th, 55th, 60th, and 70th percentile of the distracter bids for that subject.
The number of trials (over all subjects) in the subset are reported, and the
probabilities calculated from the remaining trials are depicted (in black).

over tens of millions of years of evolution for the human brain alone – would
exhibit adverse choice performance?

To provide some insight, we consider a neural system which is tasked with
representing the subjective value of each element in the choice set for the purpose
of ultimately determining which of them is largest. This refocuses our inquiry
onto the question of how the brain should represent possible valuations given a
set of neurobiological constraints on the precision and resolution with which it
can encode quantities. Our discussion of optimality will essentially amount to
an argument that divisive normalization leads to as few choice errors as possible
given these neurobiological constraints.15

The argument assumes that evolutionary processes have allocated a neural
resource of bounded size to decision-making, leaving open only the question of
how decision-making is implemented given this bound. This assumption rests
on the empirical observation that the resources allocated to decision-making

15Our focus on choice errors arises from the economic literature which has previously used
errors as a metric of optimality (Robson, 2001; Rayo and Becker, 2007; Robson and Samuelson,
2010). While we do not argue explicitly in terms of the evolutionary criteria of “expected loss”
(Netzer, 2009), which incorporates the magnitude of a choice error, we will see that the general
divisive normalization form does enable a degree of monotonicity in the transformation of
subjective values, such that “more valuable” choice sets lead to fewer errors than less valuable
choice sets.
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cannot be endogenously controlled by the decision-maker. Some background on
the structure of the brain might be helpful in justifying this approach.

The total pool of neurons that make up the cortex of the brain can be
divided into non-overlapping subsets of neurons, called Broadmann areas, and
each of these areas is distinct in structure and organization. Empirical evidence
suggests that any given Broadmann area serves a limited set of functional roles
– which are the same across individuals – and a small subset of these areas have
been identified as having a role in decision-making. It is essentially required
by this logic that the amount of brain devoted to these decision-making areas
must balance the advantages of devoting more neural resources to decision-
making against the costs of that allocation to other functions, such as processing
incoming sensory information or managing the heartbeat.

So why is a decision-maker limited in its ability to recruit more resources,
even if it might be momentarily advantageous? The reason is that Broadmann
areas are distinct in their connections with the rest of the brain, distinct in their
cellular structure, and distinct in many of their biophysical properties. These
specializations which distinguish the Broadmann areas and make them appro-
priate for particular functions develop over years, often over the first 20 years
of life, and cannot be changed quickly. This imposes a significant constraint on
the ability of the decision-maker to endogenously control the allocation of neural
resources to a task. For these reasons, we take the allocation of neural resources
to be effectively fixed at a particular moment in time, at least for the time
horizon in which decisions are typically made by an individual.16 Of course,
a full normative treatment of the resource allocation problem would require a
complete accounting of the costs of decision-related errors to the chooser and
the metabolic costs of relaxing the constraints we identify — on an evolutionary
timescale.

Now that we have set the stage, we will begin by considering the general
normalization equation

zi = κ
vi

σ +
∑
n(vβn)

1
β

(11)

under the assumption that σ = 0 to aid exposition. We will introduce two neu-
robiological constraints in section 4.1 and demonstrate that the normalization
equation implements the normative solution to these constraints under partic-
ular parameterizations. We will then relax our assumption on σ in section 4.2
and explore its implications.

4.1 Neurobiological Constraints

Since neurons require energy, and energy resources in the human body are finite,
there is a limit on the total number of neurons in the brain, the size of these

16There is a large literature in neuroscience and psychology which looks at the time spent on
a decision and the prevalence of errors, known as the speed/accuracy tradeoff. This literature
finds that one can improve accuracy with longer decision times, but that this increase in
accuracy is bounded. The fact that increasing the time devoted to a decision cannot overcome
this resource limitation problem has been both widely observed and biologically explained.
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neurons, and on the number that can be allocated to any given task. This basic
observation has two neurobiological implications that we can incorporate into
our choice model through two constraints.

Our first constraint arises from the stochasticity of neural systems. As noted
in section 2.1, the dynamic neural process which compares valuations is stochas-
tic, and this system yields more errors when valuations are close together. This
can be visualized for a binary choice set in Figure 9. When two alternatives are
close together in value (i.e. close to the 45◦ line), this system is more likely to
choose the lower valued item.

vB

vA

v1

v2

Figure 9: A binary choice for two different choice sets, A and B. Stochasticity
in the comparison between v1 and v2 means the lower alternative (alternative
2) might be deemed highest, and this is more likely in choice set B.

Our second constraint amounts to a resource constraint on neural activity.
As mentioned, we take the size of the brain area, and the number of neurons
allocated to the representation of value, as fixed. We also impose a maximal
firing rate for a neuron due to its refractory period. Together, this implies that
the neural activity for the neurons allocated to representing zi is bounded above
at some level z̄. Since increasing neural activity up to this boundary requires
rivalrous resources, we initially impose the strong assumption that average fir-
ing rate within the brain area where valuations are represented is bounded, or
equivalently,

∑
i zi ≤ z̄. We explore this constraint in greater detail and con-

sider weaker versions in section 4.1.1. Relaxing this assumption will not change
the general result of our argument, only its magnitude.

Now we can observe the effect of normalization in our neural system. Our
assumption that the average firing rate is bounded can be implemented through
a particular form of the divisive normalization equation (Figure 10). If β = 1,
then the normalization function Z(v) scales the vector v to the vector z along
a ray to the origin by means of the transformation:

zi = κ
vi∑
n vn

. (12)

27



v1

v2

M◆vA

M◆zA

vB

zA

zB

vA



P
i z

i =


Figure 10: Divisive normalization scales v to the resource constraint. This
scaling can lead to more choice errors (relative to v) if the distance between z
and the 45◦ line is smaller.

By re-interpreting the gain control parameter κ as the maximum neural ac-
tivity z̄, divisive normalization effectively proportions neural resources between
the alternatives along the resource constraint

∑

i

zi =
∑

i

κvi∑
n vn

= κ

∑
i vi∑
n vn

= κ. (13)

The rescaling implemented by divisive normalization has important impli-
cations for choice behaviour. Let Mιv = v − ι·v

ι·ι ι denote the image of the pro-
jection of the vector v to the unit vector ι (the 45◦ line). Therefore the length
of the vector ‖Mιv‖, relative to the variance of the noise η in the argmax oper-
ation, determines the probability of choosing a lower valued alternative in the
absence of normalization.

What is the effect of normalization on this error probability? Since normal-
ization scales all vectors v to the boundary of the firing rate budget, the length
‖Mιz‖ is made as large as possible given the constraint on neural activity. If
v is inside this constraint, normalization amplifies the relative magnitudes and
‖Mιz‖ > ‖Mιv‖, therefore an error is made with lower probability. If v is above
the neural resource constraint, normalization scales these quantities down to
the boundary of the resource constraint. While this results in ‖Mιz‖ < ‖Mιv‖,
therefore a larger probability of error, this probability is made as small as pos-
sible since z does not lie in the interior of the constraint.

To summarize, divisive normalization rescales valuations to lie along a re-
source constraint which bounds the activity of neural systems, and this re-scaling
can lead to seemingly sub-optimal choice behaviour (i.e. intransitivities due to
stochastic choice). This phenomenon is magnified in cases where normalization
scales quantities down, leading to more choice errors than would otherwise be
observed. As more choice alternatives are added, or the value of some choice
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alternatives are modulated, this adverse effect on choice behaviour is amplified.
However we should emphasize that these errors are optimal given the neural
constraints facing the system (in particular a fixed resource κ), since divisive
normalization makes ‖Mιz‖ as large as possible given the constraints, limiting
choice errors as much as possible.

4.1.1 Congested Resource Constraints in Neural Systems

In constructing our original resource constraint, we imposed the strong assump-
tion that average neural activity is bounded within a brain area. Under this
assumption, an increase in the neural activity of one alternative necessitates an
equivalent decrease in the activity of the other alternative(s), yielding a linear
constraint. While we should emphasize that the metabolic resources of neu-
rons are rivalrous (i.e. oxygen consumed by one neuron cannot be consumed by
another), we believe that the assumption of pure rivalry and a linear resource
constraint is too strong for a neural system, primarily due to the spatial organi-
zation of a neural substrate. Moreover, our empirical analysis found estimates
of β much larger then required by a linear constraint (β = 1). To account for
these facts, we propose that a degree of non-rivalry in neural resources can be
well-modelled by a relaxed constraint which incorporates congestion.

Consider the following thought experiment depicted in Figure 11. There are
two neurons A and B, and each neuron requires one unit of a resource in order to
produce one output (action potential) at a given point in time. Each neuron is
located at a distinct location of neural substrate, and can only collect resources
from within some radius of this location. The grid denotes the locations at which
metabolic resources are available, and the small black squares denote resources
that are available for collection by at least one neuron.

In this thought experiment, the spatial organization of the neurons deter-
mines the degree to which metabolic resources are rivalrous. If the neurons are
organized so that the area in which they can collect resources do not overlap,
then each neuron is free to collect the maximum amount and discharge at its
maximum firing rate at a given point in time. In this case, the resources are
non-rivalrous and the resource constraint only binds at the maximum output.

At the other extreme, if the two collection areas completely overlap then
the neurons compete for the same, rivalrous, resources. Here, the resource
constraint takes the familiar linear form in which an increase of activity for one
neuron necessitates a decrease for the other. This is the restrictive constraint
we originally assumed.

We believe the appropriate constraint lies between these two extremes. If
the neurons are close enough so that their “collectable areas” only partially
overlap, some of the neural resources are rivalrous, and some are not. This
leads to a kink in the resource constraint. A simple extension to incorporate
random motion of resource location, or a probability of collection that varies
inversely with distance, will smooth the resource constraint to lie interior of the
two extremes. This yields a constraint akin to a congested resource in the public
goods literature.
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Figure 12: Three possible neural resource constraints that vary in their degree
of rivalry. If neural resources are perfectly rivalrous, the constraint is linear. At
the other extreme, if resources were non-rivalrous all neurons could be maxi-
mally active simultaneously. The intermediate case of a congested resource lies
between the two. The paramterization of the normalization equation (β) which
implements each constraint is depicted.
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Just as in the linear case, the divisive normalization equation can map sub-
jective values to a congested resource constraint if β > 1 (i.e. the denominator
is a norm of order larger than one17). Normalization then maps v to a geometric
figure known as a super-ellipse (Figure 12). For instance, if we maintain σ = 0
and set β = 2, the divisive normalization equation scales v to the circle with
radius κ, as in Figure 12. Setting β = 3 maps to a hyperellipse, while β = ∞
maps to the square of size κ. Since this family of curves lies outside the original
linear constraint, we can verify that ‖Mιz‖ is now larger. This yields fewer
choice errors than in the case of the overly-restrictive linear constraint, and
still reduces choice errors as much as possible. Therefore the adverse normative
implications are in a similar direction, but less pronounced, than the linear case.

The congested resource constraint has a number of nice features. First, it
captures the idea that metabolic resources are rivalrous, but not perfectly so.
Second, when the valuations are closer together, average neural activity is higher
than when the difference between them is easier to distinguish. This captures
the intuition that the total neural activity increases for decisions that are more
difficult. Finally, it provides a normative account for our empirical estimates of
relatively large values for β.

4.2 Relaxing σ

We now relax the assumption that σ = 0. This re-introduces monotonicity
into the transformed values (Figure 13), but in a form which does not improve
choice performance. For a given σ > 0, choice sets with lower total valuations
are mapped to a line which intercepts lower than κ.

∑

i

zi =
∑

i

κvi
σ +

∑
n vn

= κ

∑
i vi

σ +
∑
n vn

< κ. (14)

With a positive σ, the length of the vector z now depends monotonically
on the length of the vector v. This yields the prediction that choice errors are
reduced for more valuable choice sets than for less valuable chose sets. However,
choice errors increase relative to the case in which σ = 0, therefore it seems that
a neural system for decision-making in static choice environments should not
have a positive σ. This is confirmed in our empirical results, in which our
estimates of σ were near zero.18

5 Conclusion

In the study of the human brain and its functional relationship to behaviour, it
has long been recognized that the biology of neural systems places constraints

17A norm of order p, or p-norm, is defined as ‖x‖p ≡
(∑N

n=1 |xn|p
)1/p

18There is reason to believe this might not be the case in dynamic choice environments in
which an average estimate of the choice set, or reference point, can prove useful for achiev-
ing optimal choice, suggesting that σ may in fact be a dynamic variable which varies with
expectations.

31



v1

v2

vA

vB

zA
zB



P
i z

i =


Figure 13: Divisive normaliztion when σ > 0.

on the form of neural computation. To abide by these resource constraints,
information about the objective world is approximated, compressed, and trans-
formed into quantities that can be represented in finite neural activity. It is
only natural to examine what these constraints imply for choice, and whether
theories of economic behaviour need incorporate these insights. In this article,
we pursue this goal directly. We establish that a canonical neural computation,
divisive normalization, predicts context-dependent choice behaviour. We verify
these predictions empirically in two behavioural laboratory experiments, and
demonstrate normalization should be considered optimal given the neurobiolog-
ical constraints on the decision problem implemented by neural systems.

It is now established that measurements of neural quantities in the frontal
cortex of the human brain (which we term subjective value) correlate with all
known incentive-compatible methods for measuring value and predicting choice
behaviour (Bartra, McGuire and Kable, 2013; Levy and Glimcher, 2011). This
has led to the development of neuroeconomic models which take neural quan-
tities as their primitives, and allow for neural constraints to be imposed on a
model of economic behaviour (Webb et al., 2013; Fehr and Rangel, 2011). In
this article, we identify a particular neural computation, divisive normalization,
which is a canonical feature of cortex observed across all sensory modalities, a
vast range of species, and recently in decision-making areas of the primate brain
(Carandini and Heeger, 2012; Louie, Grattan and Glimcher, 2011). In sensory
processing, this computation has been demonstrated to be normative (Schwartz
and Simoncelli, 2001), however in the domain of decision-making the norma-
tive question has remained unclear because divisive normalization can lead to
adverse choice performance.

The key insight of divisive normalization is that the subjective value of a
particular choice alternative is suppressed, or normalized, by the total value
of the choice set. This creates a relationship between the variables used to
predict choice behaviour and the composition and size of the choice set, yield-
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ing context-dependent choice. The effects of this relationship include increased
stochasticity, particular patterns of violation of the Independence of Irrelevant
Alternatives axiom, and a decreased likelihood of choosing a higher valued al-
ternative. We present evidence for such behaviour from two laboratory experi-
ments, one which varies the composition of the choice set and one which varies
its size, and demonstrate that a model which incorporates divisive normalization
more accurately captures the patterns of substitution that we observe compared
to existing econometric methods.

The fact that normalization predicts such adverse choice behaviour, and that
we observe it in our two choice experiments, returns us to the normative question
of why such behaviour is observed. Our answer is that the neural system which
implements decision-making operates under a neurobiological constraint with
two implications: neural systems are stochastic, and there is a bound (resource
constraint) on neural activity. We demonstrate that a neuroeconomic choice
model employing normalization scales valuations to the resource constraint, pro-
viding an efficient means for the brain to represent valuations because it yields
the fewest possible choice errors.

All together, our results speak to the role of incorporating insights from
biology into economic discourse. While developing an understanding of the
brain is intriguing in its own right, the goal of neuroeconomic research should
be predicting novel patterns in choice behaviour and producing a normative
explanation for the behaviour we observe. This challenge to neuroeconomics is
stated explicitly by Bernheim (2009):

“Provide an example of a novel economic model derived originally
from neuroeconomic research that improves our measurement of the
causal relationship between a standard exogenous environmental con-
dition – one with which economists have been historically concerned
– and a standard economic choice.”

We would argue that divisive normalization does just this. Our results em-
phasize both the positive advances offered by choice models grounded in neuro-
science, and the normative role neurobiological constraints can play in the study
of decision-making.

A Divisive Normalization and Regularity

We prove that the NRUM with divisive normalization will technically violate the
regularity condition for some, but not all, scalings of the model (i.e. variance)
and values. Our proof focuses on the extreme value distribution since it has
closed-form probabilities. We have not yet characterized the entire range of
distributions and range of valuations for which regularity fails, but extensive
simulation suggests it is small.

We begin with a definition of Random Utility. Let Pi,N denote the proba-
bility that a subject chooses alternative i from a finite set N .
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Definition 1. (Random Utilities) There exists a random vector U=(U1, . . . , Un),
unique up to an increasing monotone transformation such that for any i ∈M ⊆
N ,

Pr{Ui ≥ Uj ,∀j ∈M} = Pi,M .

A necessary condition for a random utility representation states that the
probability of choosing an alternative decreases as more alternatives are added
to the choice set (Block and Marschak, 1960), often referred to as a regularity
condition.

Definition 2. (Regularity) If L ⊆M ⊆ N ,

Pi,M ≤ Pi,L.

We now show that a model with normalization violates the regularity condi-
tion for some parameter values, therefore cannot be rationalized by a Random
Utility model. We consider two choice sets of different sizes, the three alterna-
tive choice set {1,2,3}, with corresponding valuations v1 ≥ v2 ≥ v3 ≥ 0, and the
two alternative subset {1,2}. Since we are assuming an extreme value distribu-
tion, the choice probabilities of the normalized model are given by the closed
form equation,

Pi,M =
e
κ

vi∑
n∈M vn

∑
m∈M e

κ vm∑
n∈M vn

.

We will focus on the probability of choosing the second (ranked) item from
the set. For our simple choice sets, these probabilities can be re-written

P2,{1,2,3} =
1

e
κ(v1−v2)
v1+v2+v3 + e

κ(v3−v2)
v1+v2+v3 + 1

,

and

P2,{1,2} =
1

e
κ(v1−v2)
v1+v2 + 1

.

We will show regularity is violated as the choice set is expanded from two
to three alternatives.

Result 1. An NRUM which includes divisive normalization is not Regular
for some parameter values, therefore cannot be represent by Random Utilities.
Specifically, there exists some κ > 0 such that P2,{1,2,3} > P2,{1,2}.

Proof. We proceed by contradiction. Suppose P2,{1,2} > P2,{1,2,3} for all κ.
Therefore,

e
κ(v1−v2)
v1+v2+v3 + e

κ(v3−v2)
v1+v2+v3 + 1 > e

κ(v1−v2)
v1+v2 + 1

e
κ(v1−v2)
v1+v2+v3

−κ(v1−v2)
v1+v2 + e

κ(v3−v2)
v1+v2+v3

−κ(v1−v2)
v1+v2 > 1.
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Now we must find values for κ, v1, v2, and v3 for which this statement is
false. Choose κ = v1 + v2, and v3 = v2 = 1

2v1. The above statement reduces to

e
(v1+v2)(v1−v2)

v1+v2+v3
−(v1−v2) + e

(v1+v2)(v3−v2)
v1+v2+v3

−(v1−v2) > 1

e
(v1+v2)(v1−v2)

v1+2v2
−(v1−v2) + e−(v1−v2) > 1

e−
1
8v1 + e−

1
2 v1 > 1

As v1 grows, both elements on the left-hand side tend to zero, and we have a
contradiction.
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B Estimation of Divisive Normalization

We report monte-carlo simulations of our estimates from equation 10, restated
here.

Pi,t =

∫
1

[
vi,t − vj,t

σ + ω(
∑
n∈Nt v

β
n,t)

1
β

> ηj,t − ηi,t, ∀j 6= i

]
f(ηt)dηt. (10)

This multi-dimensional integral is reduced to a single dimension through the
assumption of an independent normal distribution for f(), and is approximated
via Gaussian quadrature (Genz and Betz, 2009).

Mean parameter estimates from a simulated model with and without nor-
malization are reported in Table 4. There are 2000 trials per choice set size,
for a total of T = 12000. Note than under the null hypothesis (ω = 0), the
parameter β is not identified, and the log-likelihood does not decrease as the
specification is relaxed. This is in contrast to the log-likelihood of the fully
normalized specification. It decreases significantly relative to a model in which
the variance is restricted to be constant and not normalized (ω = 0).

Table 4: Mean parameter estimates from 100 choice simulations with and with-
out normalization. Mean squared errors are reported.

True Simulation Without Normalization

¯̂σ 1 1.001 1 0.497
(0.001) (0.258)

¯̂ω 0 0 0.001 0.126
(0.001) (0.016)

¯̂
β 1 1 286.74 295.72

(81648.4) (88834.05)

LL -9926.71 -9926.71 -9926.71

True Simulation With Normalization

¯̂σ 1 18.09 1.026 1 1.745
(1473.60) (0.113) (4.642)

¯̂ω 1 0 1 1.002 0.892
(0.099) (0.118)

¯̂
β 1 1 1 1.000 0.948

(0.003) (0.026)

LL -20731.94 -20629.54 -20629.00 -20628.68
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