
WEAKLY DOMINATED STRATEGIES:

A MYSTERY CRACKED

DOV SAMET

Abstract. An informal argument shows that common knowledge of rational-
ity implies the iterative elimination of strongly dominated strategies. Rational-

ity here means that players do not play strategies that are strongly dominated
relative to their knowledge. We formalize and prove this claim. When by
rationality we mean that players do not play strategies that are weakly domi-

nated relative to their knowledge, then common knowledge of rationality does
not imply iterative elimination of weakly dominated strategies. We show that
it does imply an iterative elimination of weak-dominance bases. The iterative
elimination of strong-dominance bases coincides with the iterative elimination

of strongly dominated strategies.

1. Introduction

Iterative elimination of strongly dominated strategies is usually justified by the
assumption that it is common knowledge that players are strong-dominance ratio-
nal, by which we mean that they do not play strategies that are strongly dominated
given their knowledge about the opponents’ strategies.1 The argument for this in
the literature is informal, as knowledge, and a fortiori strong-dominance rationality
which is defined in terms of knowledge, are not fully formalized. We show that
the argument can be made rigorous by formally modeling knowledge and strong-
dominance rationality.

The picture changes when weakly dominated strategies are considered. Iterative
elimination of weakly dominated strategies fails to capture common knowledge of
weak-dominance rationality, which requires that players do not play strategies that
are weakly dominated given their knowledge about the opponents’ strategies. The
problem does not lie in the assumption of weak-dominance rationality, but in the
process of elimination. In a nutshell, the problem is that strategies that are elim-
inated in early stages of the process, given the knowledge of the players at these
stages, may not be weakly dominated given the knowledge at the end of the pro-
cess, which is the knowledge players have, according to this argument, under the
assumption of common knowledge of weak-dominance rationality.

Despite the awareness of this problem, no suggestion has been made how to
fix the process of iterated elimination of weakly dominated strategies in order to
capture common knowledge of weak-dominance rationality, due to the lack of for-
malization of weak-dominance rationality. Here, we formalize this notion analo-
gously to the notion of strong-dominance rationality, and show that it implies an
iterative process of elimination of dominance bases of weakly dominated strategies.
This process circumvents the problem of iterative elimination of weakly dominated

Date: Draft of August 29, 2013.
1See, for example, Myerson (1991, 57–61) and Binmore (1991, 149-150).
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strategies alluded above. A dominance base of a dominated strategy of a player is
a combination of this strategy with strategies of her opponents, which has a strong
inequality in the set of inequalities that describe the dominance relationship.

Iterative elimination of dominance bases is the process that expresses common
knowledge of both strong-dominance and weak-dominance rationality. When domi-
nance bases of strongly dominated strategies are eliminated iteratively, the result is
the same as the iterative elimination of strongly dominated strategies. In the case
of weak dominance, iterative elimination of dominance bases is different from the
iterative elimination of weakly dominated strategy, and unlike the latter, it reflects
common knowledge of weak-dominance rationality.

Hillas and Samet (2013) study strong-dominance and weak-dominance rational-
ity under the names weak rationality and strong rationality correspondingly, and
show their relation to correlated equilibrium. Here we use these notions to clarify
the nature of the age-old solutions of iterative elimination of dominated strategies.
We propose the iterative elimination of dominance bases which coincides with the
known solution for the strong dominance case, and provides an alternative, contra-
diction free, replacement of the solution for the weak dominance case.

2. Iterative elimination of dominated strategies

Let G be a game with a finite set of players I, and a finite set of strategies Si for
each player i. The set of strategy profiles is S = ×iSi, and the set of the profiles
of i’s opponents is S−i = ×j ̸=iSj . The set of mixed strategies of i is denoted by
∆(Si). The payoff function for i is hi : S → R. It is extended in the usual way to
×i∆(Si). In order to describe iterated elimination of dominated strategies we use
the following terminology.

Definition 1. (relative domination) Let T−i be a nonempty set of profiles of i’s
opponents. A mixed strategy σi ∈ Si strongly dominates si relative to T−i if
hi(σi, t−i) > hi(si, t−i) for all t−i ∈ T−i. We say in this case that si is strongly
dominated relative to T−i. The strategy σi weakly dominates si relative to T−i if
hi(σi, t−i) ≥ hi(si, t−i) for all t−i ∈ T−i, and at least one of these inequalities is
strict. We say in this case that si is weakly dominated relative to T−i.

Using this terminology we define the processes of elimination of dominated strate-
gies.

Definition 2. A process of iterated elimination of strongly dominated strategies
consists of sequences of strategy profile sets (S0, S1, . . . , Sm), where S0 = S, and

for k ≥ 1, Sk = ×iS
k
i , where Sk

i is obtained from Sk−1
i by eliminating some

strategies in the latter set which are strongly dominated relative to Sk−1
−i . In the

sets Sm
i there are no strongly dominated strategies relative to Sm

−i. A process of
iterated elimination of weakly dominated strategies is similarly defined, where in
each stage, weakly dominated strategies are eliminated.2

2A strategy is strongly dominated by a mixed strategy if and only if it is not a best response
against any probability distribution on the opponents profiles. Thus, it is possible to describe the

iterated elimination of strongly dominated strategies as the iterative elimination of strategies that
are not a best response (see Myerson, 1991, 88–89). Bernheim (1984) and Pearce (1984) suggested
an iterative process that terminates with rationalizable profiles. In their process, strategies are

eliminated when they are not a best response against probabilistic distribution over the opponents
profiles, where player’s strategies are drawn independently.
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There can be several processes of iterative elimination of strongly dominated
strategies. However, it is well known that all such processes end in the same set
of strategy profiles, to which we refer as the set of profiles that survive iterated
elimination of strongly dominated strategies. In contrast, different processes of
iterative elimination of weakly dominated strategies may end in different sets of
strategy profiles.

The property of relative strong dominance that explains why all processes of
iterative elimination of strongly dominated strategy terminate in the same set is
the following monotonicity property, which is straightforward to show.

Claim 1. (strong-dominance monotonicity) If a strategy of i is strongly dominated
relative to T−i ⊆ S−i then it is also strongly dominated relative to T ′

−i ⊆ T−i.

Relative weak dominance does not have this monotonicity property.

3. Strong dominance

3.1. Informal justification of the iterated process. The process of iterated
elimination of strongly dominated strategies, described above, can be justified by
assuming common knowledge of rationality. We consider this justification, which
is described below, informal, since the term knowledge is not formalized.

Rationality, here, means, or implies, that players do not play strongly dominated
strategies. Common knowledge of rationality is tantamount to saying that all play-
ers are rational, they all know it, they all know that they all know it and so on.
We can now justify the process of the strategy elimination in steps.

(1) All players are rational, and thus the strategy profile they play must be in
S1.

(2) Moreover, all players know that all players are rational, and thus they all
know that the profile played is in S1. Being rational, the strategy profile
they play must be in S2.

(3) Moreover, all players know that all players know that all players are ratio-
nal, and thus ... and so on.

Note, that in step k each player i knows that her opponents are playing a profile
in Sk−1

−i , and this is why dominance is considered only relative to this set. According
to this explanation of the process, a player is rational if she does not play a strongly
dominated strategy relative to the set of her opponents’ profiles that her knowledge
does not exclude. We call this kind of rationality, strong-dominance rationality,
and define it formally later.

This informal argument for justifying the iterative elimination of strongly domi-
nated strategies raises the following problem. By this argument, common knowledge
of rationality implies that each player i knows that her opponents are playing a pro-
file in Sm

−i. But, in the process we eliminate strongly dominated strategies given
that player i knows less than that. That is, we assume along the way that player
i knows that the other players play S0

−i and then S1
−i and so on. This seeming

contradiction is spurious because of the monotonicity of relative strong dominance
in Claim 1: if a strategy is eliminated in stage k when player i knows that her
opponents’ profile is in Sk−1

i , then it should be eliminated also when she knows
more than that, that is, when she knows that her opponents’ profile is in Sm

−i.
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3.2. The formal justification of the iterated process. We formalize the ar-
gument of the previous subsection by using a state space in which knowledge is
formally defined. Such a model enables us to directly capture common knowledge
of rationality as an event in the state space, without the hierarchy of knowledge.
We show that this modeling reaffirms the justification of the iterated process.3

Let Ω be a finite state space with a a partition Πi for each player i. At a state
ω player i knows all the events that contain Πi(ω), the element of i’s partition that
contains ω. For simplicity we assume that the meet of the partition consists of Ω.
Thus, in each state, Ω is the only event that is common knowledge (see Aumann,
1976). In order to define knowledge about strategy profiles, we assume that each
state determines the strategy profile played in the state . The strategies played in
each state are given by functions si : Ω → Si, such that si(ω) is the strategy i plays
at state ω. We further assume that each player knows which strategy she plays.
This means that si is measurable with respect to Πi, or in other words, in each
element of Πi, i plays the same strategy in all the states in the element.

We can now define the event that a player is rational, in agreement with the
informal definition of the previous subsection.

Definition 3. Player i is strong-dominance rational in state ω if the strategy she
plays in ω is not strongly dominated relative to the set of her opponents’ profiles
which are not excluded by her knowledge in ω. That is, there is no strategy of hers
that strongly dominates si(ω) relative to the set T−i(ω) = {s−i(ω

′) | ω′ ∈ Πi(ω)}.
The antecedent in the following proposition is that it is common knowledge that

all players are strong-dominance rational. By our assumption that Ω is the only
element of the meet, this is equivalent to saying that each of the players is strong-
dominance rational in each state.

Proposition 1. If it is common knowledge that the players are strong-dominance
rational, then the strategy profiles played survive the iterated elimination of strongly
dominated strategies.

Proof. The proof, not surprisingly, resembles the iterated elimination of strongly
dominated strategies, using the monotonicity property in Claim 1. Since strong-
dominance rationality of all players is common knowledge, players are strong-
dominance rational in each state. Therefore, for any state ω and player i, si(ω)
must be a strategy in S1

i . Otherwise, it is strongly dominated in the game and
therefore by monotonicity and the strong-dominance rationality of i, when i knows
T−i(ω) she cannot play it in ω. Thus, in all states the profiles played are in S1.
But then, for all ω and i, T−i(ω) ⊆ S1

−i, and by the same argument as above, all

the profiles played must be in S2, and so on. �

4. Weak dominance

The informal argument for iterated elimination of strongly dominated strategies
can be stated verbatim for the case of weakly dominated strategies by interpreting
rationality as weak-dominance rationality. That is, a player is weak-dominance ra-
tional if she does not play a weakly dominated strategy relative to the set of her

3As mentioned in footnote 1, eliminating dominated strategies is the same as eliminating
strategies that are not a best response. Tan and Werlang (1988) formalize the iterative elimina-

tion of non-best response strategies in probabilistic belief spaces. Their characterization can be
considered as dual to ours.
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L C R

T 1, 0 2, 0 3, 0

M 1, 2 3, 1 2, 1

B 1, 1 0, 3 4, 2

L C R

1, 0 2, 0 3, 0

1, 2 3, 1 2, 1

1, 1 0, 3

L C R

1, 0 2, 0 3, 0

1, 2 3, 1 2, 1

1, 1

L C R

1, 0 2, 0 3, 0

1, 2

1, 1

Figure 1. Common knowledge of weak-dominance rationality

opponent’ profiles that she does not exclude. However, the argument that common
knowledge of rationality implies iterative elimination of weakly dominated strate-
gies is flawed. Suppose that a process of iterative elimination of weakly dominated
strategies ends with a set of profiles Sm. If, as the argument goes, common knowl-
edge of weak-dominance rationality implies that the strategy profile must be in
Sm, then players know it. Thus, weak-dominance rationality requires only that
each player i does not play a strategy which is weakly dominated relative to Sm

−i.
However, along the process we eliminated strategies of i relative to sets of profiles
that reflect less knowledge. Since weak dominance does not have the monotonic-
ity property in Claim 1, these eliminated strategies may not be weakly dominated
relative to Sm

−i and thus their elimination is not justified in view of the player’s
knowledge.

In the following example we demonstrate, at this point still informally, how
common knowledge of weak-dominance rationality implies a process of elimination
different from iterative elimination of weakly dominated strategies.

Example 1. Consider the game on the left side of Figure 1, and assume that it
is common knowledge that the players are weak-dominance rational. There is a
unique dominated strategy in this game, strategy R, which is weakly dominated
by C. However, eliminating strategy R may be unjustified, as was pointed out in
explaining why the informal argument for iterative elimination of weakly dominated
strategies is flawed; It is possible that player 2 does play R if she knows that player
1 does not play B. Since we have not discovered at this stage what player 2 knows
about player 1’s strategy, we cannot eliminate the possibility that she plays R. But,
obviously, if player 2 is weak-dominance rational and she does play R it must be
because she knows that player 1 does not play B. Thus, the only thing we can
infer from player 2’s weak-dominance rationality is that the profile (B,R) cannot
possibly be played. We refer to this profile as a dominance base for the weakly
dominated strategy R. We eliminate this profile and get the set of profiles with
non-blank payoffs in the second table from the left, which we denote by T 1. We
conclude that when players are weak-dominance rational, the profile played should
be from this set.

Now, since the players know that they are weak-dominance rational, they know
that the profile played is in T 1. Thus, if player 1 plays B, she excludes the possibility
that player 2 plays R, and she knows that player 2 plays either L or C. Relative
to this knowledge, strategy B is weakly dominated by M. However, we cannot
eliminate strategy B since it is possible that player 1 knows that player 2 plays L
in which case B is not weakly dominated by M. But we can conclude by player
1’s weak-dominance rationality, that if she does plays B it must be the case that
she knows that the profile (B,C), the dominance base for B relative to player 1’s
knowledge, is not played. Hence, we eliminate this profile and the set T 2 of the
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remaining profiles is depicted in the third table from the left. We conclude that
when players know that they are weak-dominance rational then the profile they
play must be in T 2.

When players know that they know that they are weak-dominance rational, then
they know that the profile played is in T 2. If player 1 plays either C or R then,
being weak-dominance rational, it must be the case that she excludes the possibility
that player 1’s strategy is M, because in that case L is weakly dominant, given her
knowledge, which contradicts her weak-dominance rationality. Thus, we eliminate
(M,C) and (M,R), the dominance bases of M, and the remaining set of profiles, T 3,
is presented in the last table.

At this stage we cannot eliminate any profile from T 3 and we conclude that if
there is common knowledge of weak-dominance rationality, then the strategy profile
played should be in T 3.

Note that there exists a unique process of iterated elimination of weakly domi-
nated strategies, in which the order of elimination is R, B, C. The remaining profiles
are (T,L) and (M,L). Thus this process results in a smaller set of profiles than the
process described above. However, common knowledge of weak-dominance ratio-
nality does not imply that only one of these two profiles is played. Indeed, if this
were the case, then under the assumption of common knowledge of weak-dominance
rationality player 1 knows that player 2 is playing L. But, then B is not weakly
dominated given player 1’s knowledge. The elimination of B is justified only if C is
considered possible by player 1 when she plays B.

4.1. Eliminating dominance bases. We generalize the process described in Ex-
ample 1; it is not the weakly dominated strategy which is the culprit that has to
be eliminated, but rather the profile in which this strategy is played in which the
player is strictly worse off in comparison to the dominating strategy. We define it
formally.

Definition 4. The profile (si, t−i) is a weak-dominance base for si relative to T−i ⊆
S−i, if si is weakly dominated relative to T−i, t−i is in T−i, and hi(σi, t−i) >
hi(si, t−i) for some mixed strategy σi of i that weakly dominates si relative to
T−i. A strong-dominance base for si relative to T−i is similarly defined by changing
“weakly” to “strongly”.

It is straightforward to show that both weak and strong dominance bases have
the same monotonicity property that strongly dominated strategies have.

Claim 2. (monotonicity of dominance bases) If (si, t−i) is a weak-dominance
(strong-dominance) base for si relative to T−i then it is also a weak-dominance
(strong-dominance) base for si relative to T ′

−i ⊆ T−i.

A process of iterative elimination of weak-dominance bases consists of sequence
of strategy profile sets S0, S1, . . . , Sm, where S0 = S, and for each k, Sk is obtained
by eliminating from Sk−1 some profiles (si, t−i) for some players i, such that (si, t−i)
is a weak-dominance base for si relative to {t′−i | (si, t′−i) ∈ Sk−1}. A process of
iterative elimination of strong-dominance bases is defined mutatis mutandis.

Due to the monotonicty property in Claim 2, iterative elimination of dominance
bases has the desired property that all processes end in the same set of profiles.

Proposition 2. All processes of iterative elimination of weak-dominance bases
end at the same set of profiles, and all processes of iterative elimination of strong-
dominance bases end at the same set of profiles.
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Proof. Suppose that Ŝ is the last set of profiles in a process of iterative elimination
of weak-dominance bases. Consider another such process: S0, S1, . . . , Sm. We show
by induction on k that Ŝ ⊆ Sk. Thus, in particular, Ŝ ⊆ Sm which shows that any
two such processes end at the same set. As S0 = S, the claim for k = 0 is obvious.
Suppose that Ŝ ⊆ Sk, for k < m. If profile (si, t−i) was eliminated from Sk, then
it is a dominance base of si relative to {t′−i | (si, t′−i) ∈ Sk}. Suppose that this

profile is in Ŝ. As Ŝ ⊆ Sk, {t′−i | (si, t′−i) ∈ Ŝ} ⊆ {t′−i | (si, t′−i) ∈ Sk}, and thus by

Claim 2, (si, t−i) is a dominance base of si relative to {t′−i | (si, t′−i) ∈ Ŝ} contrary

to the assumption that no profiles can be eliminated from Ŝ. We conclude that
all the profiles that are eliminated from Sk are not elements of Ŝ, and therefore,
Ŝ ⊆ Sk+1. The proof for the case of strong-dominance bases is the same. �

Note, that if si is strongly dominated relative to T−i, then for all t−i ∈ T−i,
(si, t−i) is a strong-dominance base for si relative to T−i. Thus, a process of
elimination of strongly dominated strategies is in particular a process of elimination
of strong-dominance bases. Thus, in view of Proposition 2 we conclude:

Corollary 1. The set of profiles that survive iterative elimination of strongly dom-
inated strategies coincides with the set of profiles that survive iterative elimination
of strong-dominance bases.

However, as demonstrated in Example 1, the set of profiles that survive iterative
elimination of weak-dominance bases may differ from any set of profiles that end a
process of iterative elimination of weakly dominated strategies. It is the first process
that captures common knowledge of weak-dominance rationality, as we show it in
the next subsection.

4.2. Common knowledge of weak dominance rationality formalized. We
first define weak-dominance rationality analogously to strong-dominance rationality
in Definition 3, and then state our main result.

Definition 5. Player i is weak-dominance rational in state ω if the strategy she
plays at ω is not weakly dominated relative to the set of her opponents’ profiles
which are not excluded by her knowledge at ω. That is, there is no strategy of hers
that weakly dominates si(ω) relative to the set T−i(ω) = {s−i(ω

′) | ω′ ∈ Πi(ω)}.

Proposition 3. If it is common knowledge that the players are weak-dominance
rational, then the strategy profiles played survive the iterative elimination of weak-
dominance bases.

Proof. The proof, like that of Proposition 1, mimics the iterative process. Let
S0, . . . , Sm be a process of iterative elimination of weak dominance bases. Since
weak-dominance rationality of all players is common knowledge, players are weak-
dominance rational in each state. Therefore, for any state ω and player i, s(ω)
must be a strategy in S1. Otherwise, for some ω and i, s(ω) = (si, s−i) where
si is weakly dominated relative to S−i, and (si, s−i) is a weak-dominance base for
si relative to S−i. But, if so, then by Claim 2, si is also a weak-dominance base
for si relative to T−i(ω) = {s−i(ω

′) | ω′ ∈ Πi(ω)}. This implies that si is weakly
dominated with respect to this set, which contradicts our assumption.

Now, as s(ω) ∈ S1 for each ω, T−i(ω) = {s−i(ω
′) | ω′ ∈ Πi(ω)} ⊆ {s′−i |

(si, s
′
−i) ∈ S1}. Therefore, for each ω, s(ω) ∈ S2, or else, for some i, s(ω) =
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(si, s−i) is a weak-dominance base for si relative to {s′−i | (si, s′−i) ∈ S1} and hence,
by monotonicity, also relative to T−i(ω), which contradicts the weak-dominance
rationality of i at ω. The argument for the next stages is similar. �

In light of Corollary 1, Proposition 1 can be restated analogously to Proposition
3.

Proposition 4. If it is common knowledge that the players are strong-dominance
rational, then the strategy profiles played survive the iterative elimination of strong-
dominance bases.

We conclude that iterative elimination of dominance bases captures both the case
of common knowledge of strong-dominance rationality and common knowledge of
weak dominance rationality. Iterative elimination of dominated strategies in the
strong dominance case coincides with iterative elimination of strong-dominance
bases. This coincidence does not hold in the weak dominance case, and the iterative
elimination of weakly dominated strategies fails to capture common knowledge of
weak-dominance rationality.
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NON-PROBABILISTIC CORRELATED EQUILIBRIUM

AS AN EXPRESSION OF NON-BAYESIAN RATIONALITY

JOHN HILLAS AND DOV SAMET

Abstract. We define weak and strong rationality of players in terms of dom-
inance rather than expectation with respect to probabilistic beliefs. We also

define certain subsets of strategy profiles as weak or strong non-probabilistic
correlated equilibrium, analogously to correlated equilibrium. It is shown that
the set of profiles played when there is common knowledge of weak or strong

rationality is a weak or strong non-probabilistic correlated equilibrium, corre-
spondingly. The largest weak non-probabilistic correlated equilibrium is the
set of profiles that survive iterated elimination of strictly dominated strate-
gies. Rationality can be strengthened for games with perfect information by

considering rationality in subgames. A player is substantively rational if she is
rational in all subgames, and materially rational if she rational in subgames at
vertices that are reached. Aumann (1995, 1998) introduced and studied these
two notions for the case of weak rationality. We characterize the weak and the

strong versions of these notions of rationality in terms of non-probabilistic cor-
related equilibria. We show that non-probabilistic correlated equilibria can be
also characterized in terms of non-probabilistic belief rather than knowledge.

1. Introduction

Rationality in economic theory and game theory is most commonly assumed to
be Bayesian. That is, each player has beliefs about the strategies adopted by her
opponents, and her strategy maximizes her utility with respect to these beliefs.
This is true in particular in most works in which the implications of rationality are
explicitly addressed. Bayesian rationality is the main building block of rational-
izability as defined by Bernheim (1984) and Pearce (1984), and in the studies of
its variants in Tan and Werlang (1988) and Brandenburger and Dekel (1987). In
a paper titled “Correlated equilibrium as an expression of Bayesian rationality,”
Aumann (1987) showed that common knowledge of players’ Bayesian rationality,
when players’ beliefs are derived from a common prior, implies that the prior prob-
ability of the strategy profiles played is a correlated equilibrium, a notion that he
introduced in 1974. We note that probabilistic beliefs are used even in cases where
they characterize solutions that are defined without resorting to probabilities of op-
ponents’ strategies. Tan and Werlang (1988) and Brandenburger and Dekel (1987)
characterize the set of strategies that survive iterated elimination of strictly domi-
nated strategies in terms of probabilistic beliefs although this set is defined without
using such beliefs. Similarly, Brandenburger et al. (2008) use lexicographic prob-
abilistic beliefs to characterize a set of admissible strategies, where again, the set
itself is defined without resorting to probabilistic beliefs.

Date: Draft of June 27, 2013.
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Here we study notions of rationality without making the very basic assumption of
Bayesianism that players form probabilistic beliefs about other players’ strategies.
Two notions of rationality defined in non-probabilistic terms were already studied
in Aumann (1995, 1998) for the analysis of games in extensive form. Our analysis
starts with games in strategic form, characterizes the solutions defined by common
knowledge of rationality, and shows how the theory for games in extensive form in
Aumann (1995, 1998) can be expressed in terms of these solutions and even reduced
to them.

We say that a player is weakly rational if there is no strategy of hers that she
knows yields her a higher payoff than the one she is playing. Equivalently, the player
is weakly rational if there is no strategy of hers that yields her a payoff higher than
yielded by her actual strategy, against any of her opponents’ strategy profiles that
she considers possible. A player is strongly rational if there is no strategy of hers
that she knows yields her at least as high payoff as yielded by the strategy she is
playing, unless she knows that this strategy yields her the same payoff as the one
she is playing. That is, there is no strategy of hers that yields her at least as high
payoff as her actual strategy against any of her opponents’ strategy profiles that
she considers possible, and a higher payoff at least against one such profile.

Strong rationality obviously implies weak rationality. In models of knowledge
and probabilistic belief both can be compared to Bayesian rationality. Bayesian
rationality implies weak rationality and may be, and typically is, strictly stronger.
But, in such models, strong rationality is incomparable with Bayesian rationality.
Clearly, a player can be strongly rational but not Bayesian rational. Conversely, a
player can be Bayesian rational, but fail to be strongly rational if there is a strategy
of hers that is equivalent to her Bayesian optimal strategy with probability one,
but dominates the Bayesian optimal strategy when states of probability zero are
considered. However, when strong rationality is defined in terms of belief with
probability 1, rather than knowledge, this cannot happen, and in this case Bayesian
rationality implies strong rationality. We discuss weak and strong rationality in
terms of belief later in this section and in Section 6.

Non-probabilistic correlated equilibria are defined similarly to probabilistic ones.
We think of a mediator who is choosing any strategy profile s from a given set of
strategy profiles C. She then suggests to each Player i to play si. The set C is a
weak non-probabilistic correlated equilibrium if there is no strategy of Player i that
yields a higher payoff than yielded by si against each of the opponents’ strategy
profiles that can be suggested to them when the suggestion to i is to play si. The
set C is a strong non-probabilistic correlated equilibrium if there is no strategy of
Player i that yields at least as high a payoff as yielded by si against each of the
opponents’ strategy profiles that can be suggested to them when the suggestion to
i is to play si, and a strictly higher payoff against at least one of these strategy
profiles.

We have called the concept we defined a non-probabilistic correlated equilib-
rium, in spite of the fact that it does not involve correlated probabilities and it is
not a Nash equilibrium of the game with the mediator. However, non-probabilistic
correlated equilibria have properties that are analogous to probabilistic correlation
and Nash equilibrium. A probability distribution over the set of strategy profiles
is said to be correlated when it is not the independent product of probability dis-
tributions on the strategy sets of the individual players. Similarly, we may call a
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set of profiles correlated when it is not the product of subsets of the strategy sets
of the individual players. Although the behavior of the players in the game with
the meditator is not a Nash equilibrium, it is in the spirit of equilibrium behavior,
since players maximize in the following sense. A player’s choice is a strategy which
is maximal in the partial order of strategies defined by domination relative to her
knowledge. Note, also, that the notion of non-probabilistic correlated equilibrium
extends the notion of Nash equilibrium: The support of the distribution over strat-
egy profiles induced by any Nash equilibrium, and hence any singleton consisting of
a pure strategy Nash equilibrium, is obviously a strong non-probabilistic correlated
equilibrium, and hence also a weak non-probabilistic correlated equilibrium.

We use a standard model of knowledge in order to translate simple statements in
natural language about rationality, knowledge, and common knowledge into subsets
(events) in the model. This is the approach used in Aumann (1987), but without
the extra feature that formalizes probabilistic beliefs. We can now state the charac-
terization of non-probabilistic correlated equilibria as an expression of non-Bayesian
rationality.

A non-empty set of strategy profiles is a weak (strong) non-probabilistic
correlated equilibrium, if and only if it is the set of strategy profiles
played when weak (strong) rationality is common knowledge.

The families of weak and strong non-probabilistic correlated equilibria are not
empty and have each a largest element. We describe a process of iterated elimina-
tion of profiles that results in the largest non-probabilistic correlated equilibrium.
The largest weak non-probabilistic correlated equilibrium is the set of profiles that
survive iterated elimination of strongly dominated strategies.1 This set has been
previously characterized in terms of Bayesian rationality. For two player games, this
is the set of rationalizable strategy profiles of Bernheim (1984) and Pearce (1984).
For more than two players, it was characterized by Tan and Werlang (1988) and by
Brandenburger and Dekel (1987). Our result provides a characterization in terms
of non-Bayesian weak rationality, which is weaker than Bayesian rationality. We
also characterize all the sets of profiles that may arise when weak rationality is
common knowledge.

Strong rationality is defined in terms of weak dominance, relative to a player’s
knowledge, and not surprisingly it is related to elimination of weakly dominated
strategies. Indeed, every set of profiles that survive iterated elimination of weakly
dominated strategies is a strong non-probabilistic correlated equilibrium. However
a strong non-probabilistic correlated equilibrium may contain other profiles as well.
For example, every singleton that consists of a pure strategy equilibrium profile is a
strong non-probabilistic correlated equilibrium, even when in this equilibrium some
of the players’ strategies are weakly dominated.

The centipede game can serve to demonstrate the difference between various
solutions. Since there are no strongly dominated strategies in this game, the largest
weak non-probabilistic correlated equilibrium is the set of all profiles. Iterated
elimination of weakly dominated strategies results in a unique profile, that of the
unique pure strategy equilibrium. The largest strong non-probabilistic correlated

1In the literature the notion we are calling strong dominance is referred to both as strict

dominance and as strong dominance, most commonly as strict dominance. Here, for the coherency
of terminology, we call it strong dominance.
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equilibrium lies between these two solutions. It contain all strategy profiles in which
the first player terminates the game immediately.

For games in extensive form of perfect information, it is possible to require that
a player is rational not only in the whole game, but also is some or all of its sub-
games. Aumann (1995) applied to games in general position the requirement of
substantive rationality, which in our terminology means that a player is weakly
rational in all the subgames. Aumann (1998) applied to the centipede game the
requirement of material rationality, which requires that a player is weakly rational
only in subgames at reached vertices. We explore here all four possible notions
of rationality with the attributes weak-strong and substantive-material, and define
the corresponding non-probabilistic correlated equilibria characterized by common
knowledge of these types of rationality. Indeed, there are only three notions of
rationality, as we show that material strong rationality is the same as strong ra-
tionality. Moreover, for games in general position, even material weak rationality
is the same as strong rationality. Thus, the result of Aumann (1998) which shows
that common knowledge of material weak rationality implies in the centipede game
that the first player terminates the game immediately, follows from the fact that
this holds for the strong non-probabilistic correlated equilibria of this game.

So far we defined rationality in terms of knowledge. The assumption that a player
has some knowledge about her opponents’ strategies, let alone their rationality,
and thus never errs, is a strong assumption. This is why we study rationality in
terms of (non-probabilistic) belief which has all the properties of knowledge, except
that, unlike knowledge, what is believed is not necessarily true. We show that the
difference between knowledge and belief is not crucial for the theory presented here,
which justifies the use of the simpler model of knowledge, despite its strength. We
describe as epistemic, matters of knowledge, and as doxastic, matters of belief.

Doxastic weak rationality is defined similarly to epistemic weak rationality with
belief replacing knowledge. Here there is no difference between knowledge and be-
lief, since weak non-probabilistic correlated equilibrium is characterized by common
belief of doxastic weak rationality in precisely the same way it is characterized by
common knowledge of epistemic weak rationality.

For the characterization of strong non-probabilistic correlated equilibrium by
doxastic strong rationality a consistency condition is required in much the same way
that a similar condition is required for the characterization of correlated equilibrium
in Aumann (1987). There, consistency means that players’ beliefs are derived from
a common prior.2 Here we require interpersonal consistency of non-probabilistic
beliefs, which was used by Bonanno and Nehring (1998) and Samet (2013) to de-
rive game theoretical results. It says that each player not only believes that her
beliefs are correct (which follows from the properties of belief) but also believes
that her opponents’ beliefs are correct. The notion of consistency of belief can be
compared to consistency of probabilistic beliefs in models of knowledge and prob-
abilistic belief. In such models, the existence of a common prior implies that belief
with probability 1 is consistent in the sense we defined here. Knowledge by this
definition is interpersonally consistent by virtue of being true.

2Although this seems to require a dynamic process of updating, consistency can be equiva-
lently defined in static terms as the impossibility of some absurd bets (Feinberg, 2000; Morris,

1994; Samet, 1998a) or the convergence of all possible iterated expectations to the same result
(Samet, 1998b). The notion of interpersonal consistency of non-probabilistic beliefs defined here
is straightforwardly static.
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We show that a set of profiles is a strong non-probabilistic correlated equilibrium
if and only if it is the set of profiles which are played when there is common belief
of doxastic strong rationality where players beliefs are interpersonally consistent.

2. Preliminaries

2.1. Games in strategic form. Let G be a game in strategic form with a finite
set of players I. The set of strategies for each i ∈ I is Si. We denote S = ×i∈ISi

and S−i = ×j∈I\{i}Sj . The elements of S are called strategy profiles or profiles for
short. The elements of S−i are the profiles of i’s opponents.

We let si denote both an element of Si, and the projection on Si of a profile
s ∈ S. Similarly, we let s−i denote both an element of S−i and the projection on
S−i of such a profile s ∈ S. For any finite set X, ∆(X) is the set of probability
distributions over X. The set ∆(Si) consists of the mixed strategy of Player i.
Player i’s payoff function is hi : S → R. We extend the definition of hi to profiles
of mixed strategies in the usual way by taking expectations.

2.2. Knowledge structures. A knowledge structure for the game G is a tuple
(Ω, (Πi)i∈I , s) which consists of a finite set of states Ω, a partition Πi of Ω for each
i, and a function s : Ω → S that describes the strategy profile at each state. We
assume that for each i, si is constant on each element of Πi, which means that i
always knows her strategy. Subsets of Ω are called events. The knowledge operator
Ki, that maps each event E to the event KiE that reads “i knows E”, is defined
by KiE = {ω | Πi(ω) ⊆ E}, where Πi(ω) is the element of Πi that contains ω.
The event that all know E is KE = ∩i∈IKiE. The event CKE, that E is common
knowledge, is the event that all know E, all know that all know E and so on. Thus,
CKE = ∩n≥1K

nE, where Kn is the nth power of K. The event CKE is a union of
elements of Πi for each i, and it is the largest event of this kind that is a subset of
E.

2.3. Games in extensive form with perfect information. For a game in ex-
tensive form with perfect information, we denote by V the set of nonterminal ver-
tices, which we refer to in the sequel as vertices. For each v ∈ V , we denote by Gv

the strategic form of the game that starts in vertex v. We write G for the whole
game, that starts at the root. The payoff functions in Gv are denoted by hv

i , the
strategy sets are Sv

i , S
v
−i and Sv. For any subset of strategies or profiles X in the

game G we write Xv for the restriction of profiles in X to vertices in the subtree
that starts at v. If i does not have vertices in this subtree, then Sv

i is a singleton.
Note that Sv

i denotes both the set of i’s strategies in Gv and the restriction of Si

to the subtree at v. No confusion results, as the two sets coincide. We can view
hv
i as a function defined on S, by setting hv

i (s) = hv
i (s

v). A knowledge structure
for G, (Ω, (Πi)i∈I , s) induces for each v a knowledge structure (Ω, (Πi)i∈I , s

v) for
Gv, where sv(ω) = (s(ω))v. Thus, we can view (Ω, (Πi)i∈I , s) as being a knowledge
structure for all the games Gv simultaneously. Every profile s ∈ S determines a
path in the game tree. We say that s reaches v ∈ V if v is on this path. A game is
in general position if the payoffs to each player at different leaves of the game tree
are different.
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3. Common knowledge of rationality

We introduce two notions of rationality for games in strategic form, and two
solutions for such games that are characterized by common knowledge of rationality.
We first define the notion of relative domination that is used in the sequel.

Definition 1. Let T−i ⊆ S−i be a non-empty set of strategy profiles of i’s oppo-
nents.

We say that a strategy si ∈ Si is strongly dominated relative to T−i, if there is
some σi ∈ ∆(Si) such that hi(σi, t−i) > hi(si, t−i) for each t−i ∈ T−i, in which case
we say that si is strongly dominated by σi, relative to T−i.

We say that a strategy si ∈ Si is weakly dominated relative to T−i, if there is
some σi ∈ ∆(Si) such that hi(σi, t−i) ≥ hi(si, t−i) for each t−i ∈ T−i, where at least
one of the inequalities is strict, in which case we say that si is weakly dominated
by σi, relative to T−i.

3.1. Rationality. We first define rationality of a player in a given state, and then
describe the event that a player is rational in terms of the player’s knowledge.

Definition 2. Player i is weakly rational at state ω if si(ω) is not strongly domi-
nated relative to {s−i(ω

′) | ω′ ∈ Πi(ω)}, that is, if there is no strategy σi ∈ ∆(Si)
such that hi((σi, s−i(ω

′))) > hi(s(ω
′)) for all ω′ ∈ Πi(ω).

Player i is strongly rational at state ω, if si(ω) is not weakly dominated relative
to {s−i(ω

′) | ω′ ∈ Πi(ω)}, that is, if there is no strategy σi ∈ ∆(Si) such that
hi((σi, s−i(ω

′))) ≥ hi(s(ω
′)) for all ω′ ∈ Πi(ω), with at least one of these inequalities

being strict.

We can describe the event that a player is rational, namely, the set of all states
in which the player is rational, in terms of her knowledge, as follows. Player i is
weakly rational if there is no strategy that she knows yields her a higher payoff
than her actual strategy. The player is strongly rational if at this state there is no
strategy that she knows yields her a payoff no lower than her actual payoff, unless
she knows that the strategy yields the same payoff as her actual payoff.

To state this more formally, let [σi ≻ si] be the event that σi yields higher payoffs
than the actual payoffs yielded by si. That is, [σi ≻ si] = {ω | hi(σi, s−i(ω)) >
hi(s(ω))}. Similarly, we define [σi ≽ si] = {ω | hi(σi, s−i(ω)) ≥ hi(s(ω))}, and
[σi ∼ si] = {ω | hi(σi, s−i(ω)) = hi(s(ω))}.

The following claim follows straightforwardly from Definition 2.

Claim 1. The event that Player i is weakly rational is

Rw
i = ∩σi∈∆(Si)¬Ki[σi ≻ si].

The event that Player i is strongly rational is

Rs
i = ∩σi∈∆(Si)(¬Ki[σi ≽ si]) ∪ (Ki[σi ∼ si]).

3.2. The equivalence theorem. We define two solutions for games in strategic
form that correspond to the two notions of rationality.

Definition 3. A non-empty set of strategy profiles C ⊆ S is a weak non-probabilistic
correlated equilibrium if for each s ∈ C and each player i, si is not strongly domi-
nated relative to {t−i | (si, t−i) ∈ C}. A non-empty set of strategy profiles C ⊆ S is
a strong non-probabilistic correlated equilibrium if for each s ∈ C and each player i,
si is not weakly dominated relative to {t−i | (si, t−i) ∈ C}.
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Our characterization theorem claims that the family of weak non-probabilistic
correlated equilibria is the same as the family of profile sets that are played when
there is common knowledge of weak rationality and that the family of strong non-
probabilistic correlated equilibria is the same as the family of profile sets that are
played when there is common knowledge of strong rationality. To state these results
formally, we denote by s(E) the set of profiles played at the event E, that is, the
set {s(ω) | ω ∈ E}. The set Rw = ∩i∈IR

w
i is the event that all players are weakly

rational and Rs = ∩i∈IR
s
i is the event that all players are strongly rational.

Theorem 1. Let C be a non-empty set of profiles. C is a weak non-probabilistic
correlated equilibrium if and only if C = s(CKRw) in some knowledge structure for
G. C is a strong non-probabilistic correlated equilibrium if and only if C = s(CKRs)
in some knowledge structure for G.

Proof. We prove the second part of the theorem. The proof of the first part is
similar. Let C be a non-empty set of profiles and assume that C = s(CKRs).
Suppose that for some s ∈ C and i, si is weakly dominated by σi relative to
{t−i | (si, t−i) ∈ C}. Thus for all ω ∈ CKRs such that si(ω) = si, hi(σi, s−i(ω)) ≥
hi(s(ω)), and for one such ω̄, strict inequality holds. Since si(ω̄) = si, si(ω

′) = si
for all ω′ ∈ Πi(ω̄). Since ω̄ ∈ CKRs, Πi(ω̄) ⊆ CKR, and thus the weak inequality
holds for all the states in Πi(ω̄). This, with the strong inequality for ω̄, imply
that Player i is not strongly rational at ω̄. However, ω̄ ∈ CKRs ⊆ Rs

i , which is a
contradiction.

Conversely, suppose that C is a strong non-probabilistic correlated equilibrium.
We construct a knowledge space for which s(CKRs) = C. The space Ω consists of
states ωs, one for each s ∈ C. The partitions Πi are defined by, Πi(ωs) = {ωs̄ | s̄ ∈
C, s̄i = si}. Finally, s(ωs) = s. Obviously, by the definition of C, each player i is
strongly rational in each state, and therefore, CKRs = Ω, and s(CKRs) = C. �

3.3. Domination by a pure strategy. We have up to this point dealt with a
model in which at each state players play a particular pure strategy. When we
considered definitions of rationality however we considered the payoff that would
result if a player deviated to some mixed strategy. One might well object that
if players can only play pure strategies, comparisons should be made only to the
result of playing other pure strategies and not mixed ones. There are two possible
responses to such an objection. One could develop the theory purely in terms of
domination by pure strategies. Or one could provide some justification for consid-
ering domination by mixed strategies, even in a model in which players play, in
each state, a pure strategy.

The first response would involve redoing the theory developed above, replacing
everywhere σi ∈ ∆(Si) with ti ∈ Si. We would thus obtain a theory for domination
by pure strategies. The notions of weak and strong rationality obtained in this
way are weaker than the corresponding notions defined above using domination
by mixed strategies. Any weak or strong non-probabilistic correlated equilibrium
defined using domination by mixed strategies is a weak or strong non-probabilistic
correlated equilibrium defined using domination by pure strategies, but there may
be others as well (see Example 4 below which demonstrates that this may happen
even for games in extensive form and perfect information). For Bayesian rationality
and probabilistic correlated equilibrium, it makes no difference whether players’
deviations are pure or mixed, because of the linearity of expectation.
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Although the theory for pure strategy domination has weaker predictions it has
the advantage that it can be applied to games in which only ordinal preferences
of outcomes are given. Assuming mixed strategy domination, and, a fortiori, also
assuming Bayesian rationality and correlated equilibrium, requires that payoffs are
in terms of a von Neumann Morgenstern utility function.

The second response would justify the theory developed above by showing that
nothing is gained if players are allowed to play mixed strategies rather than pure
strategies. We sketch this explanation in the next section.

3.4. Extended structures. In knowledge structures as defined here, and in knowl-
edge and belief structures used in Aumann (1987), the strategy profile in each state
is pure. We call a structure in which a profile of mixed strategies is specified in
each state, an extended structure. For the probabilistic case in Aumann (1987), the
theory remains the same for extended structures because of the linearity of expec-
tation. In our case too, despite the absence of linearity, extended models do not
add to the theory.

Consider an extended knowledge structure (Ω, (Πi)i∈I ,σ), where σ assigns a
profile of mixed strategies to each state such that σi is fixed on each element of Πi.
Weak and strong rationality in this extended model are defined in the same way
they are defined for knowledge structure with pure strategy function s. For the
purpose of this subsection we use Rw and Rs to denote the events that all players
are weakly or strongly rational in the extended model.

The support of a mixed strategy profile σ consists of all the pure strategy profiles
s, such that σi(si) > 0 for all i. The support of a set of mixed strategy profiles is
the union of the supports of the mixed strategy profiles in the set.

Proposition 1. Let C be a non-empty subset of pure strategy profiles. Then C is a
weak (strong) non-probabilistic correlated equilibrium if and only if it is the support
of σ(CKRw) (σ(CKRs)) in some extended knowledge structure of the game.

We give only a sketch of the proof. One direction is simple, as a knowledge
structure is, in particular, an extended one. For the converse, we construct for
a given extended knowledge structure a knowledge structure that describes the
realizations of the mixed profiles. Thus, each state of the extended structure is
replaced by a set of states that correspond to the possible realizations of pure
strategies in the state. We assume that each player knows the realizations of her
mixed strategy but does not know the realizations of her opponents. Obviously, the
set of strategies played in any event E of the knowledge structure is the support
of the mixed profiles played in the corresponding event in the extended structure
that gave rise to E. Also, if Player i is not rational in a state ω in which she plays
si = si(ω) that is dominated by σi in the knowledge structure, she could do better
in the extended structure in the state from which ω originated by replacing si in
her mixed strategy by σi.

3.5. Examples. In the following examples we examine the two notions of non-
probabilistic correlated equilibria in two player, 2 by 2 games. For such games
domination by pure and mixed strategies are the same.

Example 1. Let C be a strong non-probabilistic correlated equilibrium of the game
in Figure 1. Strategy r is weakly dominated by l, and against b, l yields a higher
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payoff to Player 2 than r. Thus, r is weakly dominated by l relative to any subset
of Player’s 2 strategies that includes b. We conclude that (b, r) ̸∈ C.

Player 1

Player 2

l r

t 2, 0 0, 0

b 0, 2 2, 1

Figure 1. Comparing weak and strong non-probabilistic
correlated equilibria.

Assume, now, that (b, l) ∈ C. As (b, r) ̸∈ C, the only strategy s of Player 2 for
which (b, s) ∈ C is s = l, and (t, l) yields a higher payoff to 1 than (b, l). Thus, b is
weakly dominated by t relative to {l}. Hence, (b, l) ̸∈ C.

Thus C ⊆ {(t, l), (t, r)}. It is impossible that C = {(t, r)}, because then t
is dominated by b relative to {r}. However, C = {(t, l), (t, r)} is a strong non-
probabilistic correlated equilibrium as t is not weakly dominated by b relative to
{r, l}, and also r and l are not dominated relative to {t}. It is easy to see that
C = {(t, l)} is also a strong non-probabilistic correlated equilibrium.

Obviously, each of the two strong non-probabilistic correlated equilibria is also a
weak non-probabilistic correlated equilibrium. However, the set of all four strategy
profiles is also a weak non-probabilistic correlated equilibrium, as there are no
strongly dominated strategy in this game.

Note, that (t, l) is the only strategy profile that survives iterated elimination
of weakly dominated strategy. Thus, strong non-probabilistic correlated equilibria
may contain profiles that do not survive iterated elimination of weakly dominated
strategy.

In this game both non-probabilistic correlated equilibria are products of subsets
of each player’s strategies. The following example shows that this is not always the
case.

Example 2. Consider the game of Figure 2. This game shows that strong non-
probabilistic correlated equilibria may not have a product structure and that this
is true even for the largest non-probabilistic correlated equilibrium.

Player 1

Player 2

l r

t 1, 1 1, 1

b 1, 1 0, 0

Figure 2. A game with a non-product strong non-probabilistic
correlated equilibrium.
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The profile (b, r) cannot be a member of any strong non-probabilistic correlated
equilibrium. The argument can be taken verbatim from the previous example. It
is easy to see that any non-empty subset of profiles that does not contain (b, r) is
a strong non-probabilistic correlated equilibrium.

Each one of the strong non-probabilistic correlated equilibria is a fortiori a weak
non-probabilistic correlated equilibrium. However, the set of all four profiles is also
a weak non-probabilistic correlated equilibrium, as there are no strongly dominated
strategies in this game. This is the only weak non-probabilistic correlated equilib-
rium that contains (b, r). In any other set of profiles C, that contains (b, r), either
b or r will be strongly dominated relative to the other player’s strategies in C.

There are three sets of profiles that arise as a result of eliminating weakly dom-
inated strategies: {(t, l), (t, r)}, {(t, l), (b, l)}, and {(t, l)}. Each of these sets is a
strong non-probabilistic correlated equilibrium, however the family of strong non-
probabilistic correlated equilibria has four additional members.

As this example demonstrates, weak and strong non-probabilistic correlated equi-
libria are not necessarily product of sets of players’ strategies. But the largest weak
non-probabilistic correlated equilibrium in this example is a product, which as we
show later holds true for all games. In contrast, the largest strong non-probabilistic
correlated equilibrium in this game is not a product. Nevertheless, it contains all
the product sets obtained by iterated elimination of weakly dominated strategies.
This also holds true for all games, as we show later.

4. Properties of non-probabilistic correlated equilibria

4.1. The largest non-probabilistic correlated equilibrium. We show that
the families of weak and strong non-probabilistic correlated equilibrium have each
a largest element with respect to the partial order of set inclusion. This is done
by constructing these largest sets, which also proves the existence of weak and
strong non-probabilistic correlated equilibria. The largest non-probabilistic corre-
lated equilibrium is reached by iterated elimination of profiles which we call flaws,
and is independent of the order of elimination.

Definition 4. A profile s in a set T ⊆ S is said to be a strong flaw in T if for some
i, si is strongly dominated relative to {t−i | (si, t−i) ∈ T}. The profile s is said to
be a weak flaw in T , if for some i and σi, si is weakly dominated by σi relative to
{t−i | (si, t−i) ∈ T}, and hi(σi, s−i) > hi(s).

The following two lemmata are used in showing that iterated elimination of flaws
results in the largest non-probabilistic correlated equilibria.

Lemma 1. A non-empty set T ⊆ S is a weak (strong) non-probabilistic correlated
equilibrium if and only if there are no strong (weak) flaws in T .

Proof. This is straightforward for weak non-probabilistic correlated equilibrium and
strong flaws. If s is a weak flaw in T , then obviously T is not a strong non-
probabilistic correlated equilibrium. If T is not a weak non-probabilistic correlated
equilibrium, then for some s ∈ T , i and σi, si is weakly dominated by σi relative to
{t−i | (si, t−i) ∈ T}. Thus, for some t−i in this set, hi(σi, t−i) > hi(s). The profile
(si, t−i) is a weak flaw in T . �
Lemma 2. If s ∈ T ⊆ T ′ ⊆ S is a weak (strong) flaw in T ′ it is also a weak
(strong) flaw in T .
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Proof. Indeed, if s is a strong flaw in T ′, then for some i, si is strongly dominated
relative to {t−i | (si, t−i) ∈ T ′}, and therefore it is also strongly dominated relative
to {t−i | (si, t−i) ∈ T} which is a subset of the former set. Thus s is a strong flaw
in T . If si is weak flaw in T ′ then for some i and σi, si is weakly dominated by σi

relative to {t−i | (si, t−i) ∈ T ′}, and hi(σi, s−i) > hi(s). Since {t−i | (si, t−i) ∈ T}
is a subset of {t−i | (si, t−i) ∈ T ′}, and s, that contributes the strict inequality, is
in T , it follows that s is a weak flaw in T . �

Theorem 2. Consider a sequence of m > 0 subsets of profiles, S = S0 ⊃ S1 ⊃
· · · ⊃ Sm, where for 0 < k ≤ m, Sk is obtained by eliminating from Sk−1 some
profiles which are weak (strong) flaws in Sk−1, and where Sm has no weak (strong)
flaws in it. Then, Sm is the largest strong (weak) non-probabilistic correlated equi-
librium.

Proof. We show by induction on k that if C is a strong (weak) non-probabilistic
correlated equilibrium, then C ⊆ Sk for k = 0, . . . ,m. This obviously holds for
k = 0. Suppose C ⊆ Sk. If s ∈ C, then it cannot be a strong (weak) flaw in
Sk because in that case it would be, by Lemma 2, a strong (weak) flaw in C, and
by Lemma 1 there are no flaws in C. Therefore, C ⊆ Sk+1. Since Sm has no
strong (weak) flaw it is a weak (strong) non-probabilistic correlated equilibrium, by
Lemma 1. As Sm contains all weak (strong) non-probabilistic correlated equilibria,
it is the largest. �

The family of correlated equilibria is a convex set. It follows that the family of
supports of correlated equilibria is closed under unions. This property holds also for
non-probabilistic correlated equilibrium and in particular serves as another proof
of the existence of a largest non-probabilistic correlated equilibrium.

Proposition 2. Each of the families of weak and strong non-probabilistic correlated
equilibria is closed under unions.

Proof. We prove the contrapositive. Let C1 and C2 be two subsets of S. Suppose
that C1 ∪ C2 is not a weak non-probabilistic correlated equilibrium. Thus there is
some s ∈ C1 ∪C2, some i, and some σi ∈ ∆(Si) such that si is strongly dominated
by σi relative to {t−i | (si, t−i) ∈ C1 ∪ C2}. Without loss of generality suppose
s ∈ C1. Then si is strongly dominated by σi relative to {t−i | (si, t−i) ∈ C1} and
so C1 is not a weak non-probabilistic correlated equilibrium.

Suppose that C1 ∪ C2 is not a strong non-probabilistic correlated equilibrium.
Thus there is some s ∈ C1 ∪ C2, some i, and some σi ∈ ∆(Si) such that si is
weakly dominated by σi relative to {t−i | (si, t−i) ∈ C1 ∪ C2}. Let t̄i be such that
hi(σi, t̄i) > hi(si, t̄i). Without loss of generality suppose (si, t̄i) ∈ C1. Then si is
weakly dominated by σi relative to {t−i | (si, t−i) ∈ C1} and so C1 is not a strong
non-probabilistic correlated equilibrium. �

4.2. Iterated elimination of dominated strategies. By Theorem 2, any iter-
ated elimination of flaws results in the maximal non-probabilistic correlated equi-
librium, independently of the order of elimination. For the case of elimination of
strong flaws we can choose an order that results in sequence of sets that are prod-
ucts. That is, for k = 0, . . . ,m, Sk = ×i∈IS

k
i . In step k + 1 we eliminate for each

i all strong flaws s such that si is strongly dominated relative to Sk
−i. Note, that

in this case, all profiles (si, s−i), where s−i ∈ Sk
−i are strong flaws. Thus, Sk+1 is
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the product resulted from elimination of strongly dominated strategies in Sk. We
conclude:

Theorem 3. The largest weak non-probabilistic correlated equilibrium is the set of
profiles that survive iterated elimination of strongly dominated strategies.

While iterated elimination of strongly dominated strategies results in the same
set of profiles, independently of the order of elimination, the result of iterated
elimination of weakly dominated strategies may depend on the order of elimination
(see, for example, Myerson, 1991, 57–61). Thus, we cannot expect a claim similar
to Theorem 3 for strong non-probabilistic correlated equilibrium. Observe also that
in the iterated elimination of weak flaws, as opposed to the case of strong flaws,
whole strategies are not necessarily eliminated. Thus, the end result, the largest
strong non-probabilistic correlated equilibrium, can be a set which is not a product,
as demonstrated by Example 2. However, we can state the following relationship
of iterated elimination of weakly dominated strategies and strong non-probabilistic
correlated equilibrium.

Theorem 4. Any set of profiles that survive iterated elimination of weakly domi-
nated strategies is a strong non-probabilistic correlated equilibrium.

We shall prove this theorem using the following lemma.

Lemma 3. If a strategy σi ∈ ∆(Si) is weakly dominated, then it is weakly domi-
nated by a strategy σ′

i ∈ ∆(Su
i ), where Su

i is the set of strategies in Si which are
not weakly dominated.

Proof. Let S0
i be a minimal set of strategies in Si such that each weakly dominated

strategy in ∆(Si) is weakly dominated by a strategy in ∆(S0
i ). Suppose that a

weakly dominated strategy ti is in S0
i . Then, ti is weakly dominated by some

strategy αti + (1 − α)σi, where σi ∈ ∆(S0
i \ {ti}). This implies that ti is weakly

dominated by σi. Now, for any strategy which is weakly dominated there is strategy
αti+(1−α)σ′

i, where σ
′
i ∈ ∆(S0

i \{ti}), that weakly dominates it. But this strategy
is weakly dominated by ασi +(1−α)σ′

i, which is a contradiction to the minimality
of S0

i . �

Proof of Theorem 4. Let S′ = ×i∈IS
′
i be a subset of S obtained by one round of

elimination of weakly dominated strategies in S, and let G′ be the game whose
set of strategy profiles is S′. We show that if C ⊆ S′ is a strong non-probabilistic
correlated equilibrium in the game G′ it is also a strong non-probabilistic correlated
equilibrium in G. If this is not the case, then for some s ∈ C and player i, si is
weakly dominated by some σi ∈ ∆(Si) relative to {t−i | (si, t−i) ∈ C}. Now, any
σi ∈ ∆(Si) either belongs to ∆(S′

i), or else it is weakly dominated, and hence, by
Lemma 3, it is weakly dominated by some σ′

i ∈ ∆(Su
i ) ⊆ ∆(S′

i). In either case, si
is weakly dominated relative to the said set by a strategy in ∆(S′

i), contrary to our
assumption that C is a non-probabilistic correlated equilibrium in G′.

Obviously, if a set of profiles C is obtained by iterated elimination of weakly
dominated strategies, then C is a strong non-probabilistic correlated equilibrium
in the game whose set of strategy profiles is C. Thus, applying the previous claim
iteratively we reach the desired conclusion. �
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4.3. The centipede game. We consider a centipede game with n stages. Player 1
chooses in the odd stages between going down and terminating the game, or across,
and Player 2, in the even stages. We denote the player who chooses at stage k as
i(k), the other player as j(k), the outcome or terminal vertex after i(k) chooses
down as zk, and the terminal vertex reached if no player chooses down as zn+1.
The payoffs at zk are k + 2 to i(k) and k to j(k), that is, the payoffs are (k + 2, k)
if k is odd and (k, k + 2) if k is even. The game tree is given in Figure 3.

s s s s sq q qA A A A A

D D D D D

1 12 j(n) i(n)

z1
(3, 1)

z2
(2, 4)

z3
(5, 3)

zn−1 zn

zn+1

Figure 3. The n Stage Centipede Game in extensive form.

If n is even then each player has n/2 + 1 classes of Kuhn-equivalent strategies
that we label 1, 3, 5, . . . , n+1 for Player 1 and 2, 4, 6, . . . , n+2 for Player 2. If n is
odd then Player 1 has (n+1)/2+1 classes of Kuhn-equivalent strategies and Player
2 has (n+1)/2 classes of Kuhn-equivalent strategies that we label 1, 3, 5, . . . , n+2
for Player 1 and 2, 4, 6, . . . , n+1 for Player 2. The class k, for k = 1, · · · , n, contains
all strategies in which a player i(k) chooses down for the first time at stage k. The
classes n+1 and n+2 consist of the strategy of always playing across. We refer to
these classes as strategies. The strategy pair (s1, s2) induces the outcome zk where
k = min{s1, s2}.

The strategic form of the game for the case of is given in Figure 4.

Player 1

Player 2

2 4 6 · · · n n+ 2

1
z1

(3, 1)
z1

(3, 1)
z1

(3, 1)
z1

(3, 1)
z1

(3, 1)

3
z2

(2, 4)
z3

(5, 3)
z3

(5, 3)
z3

(5, 3)
z3

(5, 3)

5
z2

(2, 4)
z4

(4, 6)
z5

(7, 5)
z5

(7, 5)
z5

(7, 5)

...

n− 1
z2

(2, 4)
z4

(4, 6)
z6

(6, 8)
zn−1 zn−1

n+ 1
z2

(2, 4)
z4

(4, 6)
z6

(6, 8)
zn zn+1

Figure 4. The n Stage Centipede Game in strategic form for even n.
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Proposition 3. In the centipede game, a set C of profiles is a strong non-probabilistic
correlated equilibrium if and only if (1, 2) ∈ C and C contains only profiles of the
form (1, k).

Proof. Let C be a strong non-probabilistic correlated equilibrium. There is a k̄
such that all profiles in C induce an outcome zk with k ≤ k̄, namely k̄ = n+1. Let
k be the smallest such k̄. We claim that k = 1. Suppose that k > 1. There is some
profile (s1, s2) in C that induces the outcome zk. This profile must have si(k) = k
and sj(k) > k. (Otherwise the outcome would not be zk.) Also there are no profiles
(t1, t2) in C with tj(k) = sj(k) and ti(k) > k, since then there would be a profile
inducing an outcome zk with k > k. But now strategy sj(k) is weakly dominated
by k − 1 relative to {ti(k) | (t1, t2) ∈ C, tj(k) = sj(k)} contradicting the assumption
that C is a strong non-probabilistic correlated equilibrium.

Thus all members of C must induce the outcome z1 and so Player 1’s strategy
must be 1 in all profiles in C. When Player 1’s strategy is 1, Player 2’s payoff is
fixed, and thus no strategy of hers is dominated relative to strategy 1. If (1, 2) ∈ C
then, since in this profile Player 1 strictly prefers 1 to any other strategy his strategy
is not dominated relative to any subset of Player 2’s strategies. However if (1, 2)
is not in C then 1 is strictly dominated by 3 for Player 1 and so C is not a non-
probabilistic correlated equilibrium. �

There are no strongly dominated strategies in the centipede game, and thus the
set of all profiles is a weak non-probabilistic correlated equilibrium. Thus, com-
mon knowledge of weak rationality does not imply much for this game. Strong
non-probabilistic correlated equilibria are more restricted and predict immediate
termination of the game by Player 1. An iterated elimination of weakly dominated
strategies is even more restrictive than strong non-probabilistic correlated equi-
librium: it results in a single profile (1, 2) which, unlike strong non-probabilistic
correlated equilibrium, determines not only Player 1’s strategy, but also Player 2’s
strategy.

4.4. Probabilistic and non-probabilistic correlated equilibria. A (proba-
bilistic) correlated equilibrium of the game G is a probability distribution p ∈ ∆(S)
such that for all i, and all si and ti in Si,∑

s−i∈S−i

p(si, s−i)hi(si, s−i) ≥
∑

s−i∈S−i

p(si, s−i)hi(ti, s−i).

Observe that by the linearity of expectation, these inequalities hold also if we change
ti to a mixed strategy σi ∈ ∆(Si).

Proposition 4. The support of a correlated equilibrium is a strong non-probabilistic
correlated equilibrium.

Proof. Let p ∈ ∆(S) be a correlated equilibrium, the support of which is C. Sup-
pose that for s ∈ C, si is weakly dominated by σi relative to R = {t−i | (si, t−i) ∈
C}. Then, for all t−i ∈ R, hi(si, t−i) ≥ hi(σi, t−i) with at lease one strict inequality.
By the definition of C, p(si, t−i) > 0 if and only if t−i ∈ R. Therefore,
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∑
t−i∈S−i

p(si, t−i)hi(si, t−i) =
∑

t−i∈R

p(si, t−i)hi(si, t−i)

>
∑

t−i∈R

p(si, t−i)hi(σi, t−i)

=
∑

t−i∈S−i

p(si, t−i)hi(σi, t−i),

contrary to our assumption that p is a correlated equilibrium. �

The converse of Proposition 4 does not hold. That is, a non-probabilistic corre-
lated equilibrium is not necessarily the support of a correlated equilibrium. More-
over, a non-probabilistic correlated equilibrium can be disjoint from the largest
support of a correlated equilibrium, as we show in the next example.

Example 3. The game in Figure 5 is a two person zero sum game. Therefore,
for a correlated equilibrium, the conditional probability in each column, when the
column has a positive probability, is an optimal strategy of Player 1 (see Forges,
1990). The value of the game is 1, and the only optimal strategy of player 1 is B.
Thus, the support of any correlated equilibrium is in {(B,H), (B, T )} . Indeed,
any probability distribution on this set is a correlated equilibrium. However, it is
easy to see that the set of the four top profiles is a non-probabilistic correlated
equilibrium.

Player 1

Player 2

H T

H 4,−4 −4, 4

T −4, 4 4,−4

B 1,−1 1,−1

Figure 5. Non-probabilistic and probabilistic correlated equilibria.

5. Games with perfect information

In this section the game G is the strategic form of a game in extensive form
with perfect information. For such games the notions of rationality in Definition 2
can be strengthened by requiring rationality in subgames Gv that start at vertices
v. It might seem that in games with perfect information it makes no difference
whether one defines the concepts using domination by pure strategies or by mixed
strategies. This is, however, not true, as the next example shows.

Example 4. Consider the extensive form game with perfect information given in
Figure 6 with the associated strategic form given in Figure 7.

Consider the set C = {(B,HH), (B, TT )}. Relative to {B} all of Player 2’s
strategies are equivalent so none are dominated relative to {B}. And for Player 1, B
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−1, 1

4,−4−4, 4−4, 44,−4

Figure 6. Domination by pure or mixed strategies in a game
with perfect information. Extensive Form.

Player 1

Player 2

HH HT TH TT

H 4,−4 4,−4 −4, 4 −4, 4

T −4, 4 4,−4 −4, 4 4,−4

B −1, 1 −1, 1 −1, 1 −1, 1

Figure 7. Domination by pure or mixed strategies in a game
with perfect information. Strategic Form.

is not weakly dominated by either H or T relative to {HH,TT}; so if dominance is
defined as domination by a pure strategy C is a strong non-probabilistic correlated
equilibrium. However, B is (even strongly) dominated relative to {HH,TT} by
the mixed strategy that puts weight a half on each of H and T ; so if dominance
is defined as domination by a mixed strategy C is not a strong non-probabilistic
correlated equilibrium. It is worth pointing out that, even with dominance defined
as domination by a mixed strategy there is a strong non-probabilistic correlated
equilibrium in which Player 1 plays B, namely {(B, TH)}. It is straightforward to
see this is a strong non-probabilistic correlated equilibrium. In fact, (B, TH) is a
pure strategy Nash equilibrium.

Aumann (1995) and Aumann (1998) studied two notions of rationality, substan-
tive and material rationality, correspondingly. Rationality is defined in these papers
by pure strategy domination. The results reported there cannot be strengthen by
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assuming mixed strategy domination. Following these papers we assume in this sec-
tion that weak and strong rationality, as well as weak and strong non-probabilistic
correlated equilibria are defined in terms of pure strategy domination.

5.1. Substantive rationality. We recall that a knowledge structure for G is a
knowledge structure for the games Gv for all vertices v.

Definition 5. Player i is substantively weakly (strongly) rational in a knowledge
structure for G if for each vertex v, i is weakly (strongly) rational when it is viewed
as a knowledge structure for the game Gv.

We denote by [tvi ≻ svi ] the event that i’s strategy in Gv, tvi , yields higher
payoffs than yielded by svi in this game. That is, [tvi ≻ svi ] = {ω | hv

i (t
v
i , s

v
−i(ω)) >

hv
i (s

v(ω))}. The events [tvi ≽ svi ] and [tvi ∼ svi ] are similarly defined. Then, the
event that i is substantively weakly rational is

Rsw
i = ∩v∈V ∩tvi ∈Sv

i
¬Ki[t

v
i ≻ svi ],

and the event that i is substantively strongly rational is

Rss
i = ∩v∈V ∩tvi ∈Sv

i
(¬Ki[t

v
i ≽ svi ]) ∪ (Ki[t

v
i ∼ svi ]).

3

To describe the set of strategy profiles played when there is common knowledge of
substantive rationality, we define the following solution.

Definition 6. A set of strategy profiles C ⊆ S is a non-probabilistic substantive
weak (strong) correlated equilibrium, if for each v, Cv is a non-probabilistic corre-
lated equilibrium for the game Gv.

Denote by Rsw and Rss the events that all players are substantively weakly and
strongly rational, correspondingly. The following theorem follows straightforwardly
from the definitions and from Theorem 1, and the proof is omitted.

Theorem 5. Let C be a non-empty set of profiles. Then, C is a non-probabilistic
substantive weak (strong) correlated equilibrium if and only if C = s(CKRsw) (C =
s(CKRss)) in some knowledge structure for G.

Of interest are games in extensive form in general position. For such games it is
straightforward to see:

Claim 2. A game in extensive form with perfect information in a general position
has a unique non-probabilistic substantive weak (and a fortiori, a unique strong)
correlated equilibrium, which is the singleton that consists of the unique backward
induction profile.

Aumann (1995) has shown that common knowledge of substantive weak ratio-
nality implies the backward induction outcome. This follows from the general
characterization in Theorem 5 and the observation in Claim 2.

3The intersections in Rsw
i and Rss

i are taken over all vertices v ∈ V . However, it is easy to see

that taking intersections over i’s vertices only, results in the same events. This is how the event
Rsw

i is defined (under the name rationality) in Aumann (1995).
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5.2. Material rationality. Substantive rationality has a weird feature. It is tested
by comparing payoffs in each game Gv, even if the payoffs are not incurred in the
game G because v is not reached. Thus, to be substantively rational in a state
ω, Player i’s strategy in Πi(ω) should not be dominated relative to i’s opponents’
profiles in all the states in Πi(ω), even those at which v is not reached. It is even
possible, for example, that i knows that v is not reached and cannot be reached
by her, and still be considered not rational in virtue of her strategy in Gv that she
knows is payoff irrelevant.4

This feature of substantive rationality is fixed in material rationality by requiring
that a player’s strategy in Gv is not dominated relative to the player’s opponents
profiles i’s only in states in which v is reached, if this set is not empty. For the
formal definition, let Ωv be the event that vertex v is reached. That is, Ωv is the
set of all states ω such that v is on the path generated by s(ω).

Definition 7. Player i is materially weakly (strongly) rational at ω, if for each
v ∈ V , either Πi(ω) ⊆ ¬Ωv or else, svi is not strongly (weakly) dominated relative
to Πi(ω) ∩ Ωv.

Thus, Player i is materially weakly rational if for each v either i knows that v is
not reached, or else, there is no strategy in Gv that she knows yields her a higher
payoff when v is reached. Material strong rational is similarly defined. Formally,

Claim 3. The event that i is materially weakly rational is

Rmw
i =

∩
v∈V

Ki(¬Ωv) ∪
(
∩tvi ∈Sv

i
(¬Ki¬Ωv ∪ [tvi ≻ svi ])

)
.

The event that i is materially strongly rational is

Rms
i =

∩
v∈V

(Ki¬Ωv) ∪
(
∩tvi ∈Sv

i
¬Ki(¬Ωv ∪ [tvi ≽ svi ]) ∪Ki(¬Ωv ∪ [tvi ∼ svi ])

)
.

Note that for the root vertex r, Ωr = Ω. Thus, the event that i is weakly
(strongly) rational is a superset of the event that she is materially weakly (strongly)
rational. That is, material weak (strong) rationality implies weak (strong) ratio-
nality. However, for the strong rationality the inverse implication also holds, and
therefore:

Proposition 5. A player is materially strongly rational if and only if the player is
strongly rational.

Proof. If i is materially strongly rational, then she is strongly rational. Suppose,
now, that i is not materially strongly rational at ω. Then for some v, there exists
tvi ∈ Sv

i such that hv
i (t

v
i , s

v
−i(ω

′)) ≥ hv
i (s

v(ω′)) for all states ω′ ∈ Πi(ω)∩Ωv, and at
least for one such ω′ the inequality is strict. The strategy ti obtained by changing
si(ω) to be tvi in the subtree that starts at v, yield’s i payoffs that are as high as
s in all states in Πi(ω), and at least in one state in Πi(ω), a higher payoff. This
means that i is not strongly rational at ω. �

4To justify this feature of substantive rationality, one can argue that payoff in Gv when v is
not reached are taken into account counterfactually. This could justify claims like “had v been
reached, strategy svi would have been a rational choice”. However, such a statement cannot be
formalized in this model. Substantive rationality states instead “i is rational because have v

been reached, she would have chosen strategy svi ”. For a rigorous formulation of strategies as

counterfactual statement see Samet (1996) and Di Tillio et al. (2012).
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Thus, for games with perfect information we have three notions of rationality
with comparable strength, as follows:

material material

strong ⇔ strong ⇒ weak ⇒ weak

rationality rationality rationality rationality

In light of Proposition 5 we need to study common knowledge of material weak
rationality only. We show that it characterizes the following solution.

Definition 8. A non-empty set of strategy profile C is a materially weak non-
probabilistic correlated equilibrium, if for each vertex v ∈ V that is reached by some
profile in C, the subset of profiles in C that reach v is a weak non-probabilistic
correlated equilibrium in the game Gv.

The event that all players are materially weakly rational is Rmw = ∩i∈IR
mw
i .

Theorem 6. A non-empty set of profiles C is materially weak non-probabilistic
correlated equilibrium if and only if for some knowledge structure of the game,
C = s(CKRmw).

Proof. Let C be a non-empty set of profiles such that C = s(CKRmw). Suppose
that C is not a materially weak non-probabilistic correlated equilibrium. Then,
for some vertex v ∈ V that is reached by a profile in C, the subset of profiles in
C that reach v, denoted D, is not a weak non-probabilistic correlated equilibrium
in the game Gv. Thus, for some i, s ∈ D, and ti ∈ Si, tvi weakly dominates
svi relative to {tv−i | (si, t−i) ∈ D}, and hv

i (ti, s−i) > hv
i (s). There exist a state

ω such that s = s(ω). As ω ∈ Ωv, Πi(ω) is not a subset of ¬Ωv. Moreover,
sv−i(Πi(ω)∩Ωv) ⊆ {tv−i | (si, t−i) ∈ D}. Therefore, svi = svi (ω) is weakly dominated
by tvi relative to Πi(ω)∩Ωv. Hence, each of the two conditions that make imaterially
strongly rational at ω fail, contrary to our assumption.

Conversely, suppose that C is a materially strong non-probabilistic correlated
equilibrium. We construct a knowledge space the states of which are the profiles in
C, exactly as in the proof of Theorem 1. It is easy to check that each state of this
space all players are materially weakly rational. Thus, the whole space is the event
CKRmw. By construction, the set of profiles played in the space is C. �

For games with perfect information in general position there are only two notions
of rationality, as the first three notions collapse into one:

Proposition 6. In a game with perfect information in general position, a player
is materially weakly rational if and only if the player is strongly rational.

Proof. By Proposition 5, strong rationality implies material weak rationality. Con-
versely, suppose that Player i is not strongly rational at ω in a knowledge structure
of such a game. Then for some ti, hi(ti, s−i(ω

′)) ≥ hi(s(ω
′)) for all ω′ ∈ Πi(ω),

and hi(ti, s−i(ω̄)) > hi(s(ω̄)) for some ω̄ ∈ Πi(ω). The last inequality implies
that at some v reached by s(ω̄), the strategies si(ω̄) and ti choose a different
action at v. The set Πi(ω) ∩ Ωv is not empty, and for all states ω̂ in this set,
hi(ti, s−i(ω̂)) ≥ hi(s(ω̂)). However, hi(s(ω̂)) and hi(ti, s−i(ω̂)) are incurred in a
different subtrees, and thus strong inequality must hold. This means that i is not
materially weakly rational at ω. �

The following is a corollary of Theorem 1, and Proposition 6.
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Corollary 1. In a game with perfect information in general position, the set of
profiles played when materially weakly rationality is common knowledge is a strong
non-probabilistic correlated equilibrium.

The centipede game is a game in a general position. Thus, we can conclude from
Corollary 1 and Proposition 3, that in this game common knowledge of material
weak rationality implies that the first player terminates the game immediately.
This is the main result of Aumann (1998). However, the immediate termination
of the game by Player 1, which is the outcome of the unique Nash equilibrium,
and the outcome that holds with probability 1 in all the correlated equilibria of
the game, is described there as the outcome of backward induction. Since strong
non-probabilistic correlated equilibrium reflects equilibrium rather than backward
induction considerations, we conclude by Corollary 1, that backward induction is
not an essential feature of common knowledge of material weak rationality. The
fact that it implies the backward induction in the centipede game is the result of
the coincidence of the backward induction outcome with the outcome in all the
profiles in the strong non-probabilistic correlated equilibria of this game.

The notion of ex post material rationality defined in Aumann (1998) differs
slightly and insignificantly from material weak rationality. Denote by Repm

i the
event that i is ex post materially rational. This event differs from Rmw

i in that
the term Ki(¬Ωv), in the definition of the latter event, is replaced by ¬Ωv. There-
fore, Rmw

i = KiR
epm
i . Since we are interested in common knowledge of rationality,

the difference between ex post material rationality and material weak rationality is
insignificant: common knowledge of both is one and the same event.5

6. When players err

We examine now models in which rationality is defined in terms of players’ beliefs,
rather than knowledge, which enables them to err, and where common knowledge
of rationality is replaced by common belief of rationality.

We first introduce contexts of the game G in which non-probabilistic belief can
be expressed. A belief structure for G is a tuple (Ω, (Πi)i∈I , (bi)i∈I , s), where Πi is a
partition of Ω, bi is a function, bi : Ω → 2Ω \{∅}, which is constant on each element
of Πi and for each ω, bi(ω) ⊆ Πi(ω), and s : Ω → S. We think of bi(ω) as the
set of states that are considered possible by i at ω. By the constancy assumption,
this set of states is considered possible in all the states in Πi(ω). At each state in
Πi(ω) \ bi(ω), i is wrong thinking that the state lies in bi(ω).

For each i the belief operators Bi is defined by BiE = {ω | bi(ω) ⊆ E}. The
common belief operator is defined similarly to the common knowledge operator as
follows. We denote by BE the event that all believe E, that is, BE = ∩iBiE,
and by Bn, the nth power of B. The common belief operator is defined by CBE =
∩n≥1B

nE. Unlike the event CKE which is a union of elements of Πi for each i, CBE
is not such a union. However, for each i, CBE ⊆ BiCBE (see, Monderer and Samet,
1989, Proposition 3).6

5The event Repm
i is defined in Aumann (1998) in terms of ex-post knowledge operators Kv

i for

each v. However, for each E, Kv
i E =

(
Ωv ∩Ki(¬Ωv ∪E)

)
∪
(
¬Ωv ∩Ki(Ω

v ∪E)
)
, and thus, Repm

i
can be defined in terms of the operator Ki alone. Replacing Kv

i with the equivalent term, in the

definition in Aumann (1998), results in the definition given here. See Samet (2011).
6Monderer and Samet (1989) show this for p-belief operators Bp

i . However, it is easy to check
that the properties required to prove the claim are satisfied by the operators Bi. Alternatively,
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A belief structure gives rise also to knowledge operators Ki, defined by the
partitions Πi. It is easy to see that for each i and E, KiE ⊆ BiE, and BiE ⊆ KiBiE.
Thus, knowledge implies belief, and belief implies the knowledge of the belief. If for
each ω, bi(ω) = Πi(ω), then Bi = Ki.

7 Belief structures are discussed, axiomatically
defined, and game theoretically applied in Bonanno and Nehring (1998) and Samet
(2013).

The events Rwb
i and Rsb

i , that Player i is doxastically weakly rational, or dox-
astically strongly rational, correspondingly, are defined by replacing Ki with Bi in
the events Rw

i and Rs
i that i is (epistemically) weakly or strongly rational.

Rwb
i = ∩σi∈∆(Si)¬Bi[σi ≻ si].

Rsb
i = ∩σi∈∆(Si)¬Bi[σi ≽ si] ∪ Bi[σi ∼ si].

We now give equivalent descriptions of these types of rationality in terms of the
belief functions bi. Player i is doxastically weakly (strongly) rational at ω if si(ω) is
not strongly (weakly) dominated relative to the opponents’ strategies in the states
of bi(ω). Note, that as knowledge implies belief, Rwb

i ⊆ Rw
i , that is, doxastic weak

rationality implies epistemic weak rationality. However, Rsb
i is incomparable to Rs

i .
The characterization of weak non-probabilistic correlated equilibrium in terms

of epistemic weak rationality, in Theorem 1, holds mutatis mutandis for doxastic
weak rationality.

Theorem 7. Let C be a non-empty set of profiles. Then, C is a weak non-
probabilistic correlated equilibrium if and only if C = s(CBRwb) in some belief
space for G.

Proof. For each i, CBRwb ⊆ BiR
wb ⊆ BiR

wb
i , where the first inclusion follows from

the definition of common belief, and the second by the monotonicity of Bi. If ω ∈
BiR

wb
i , then bi(ω) ⊆ Rwb

i and thus for ω′ ∈ bi(ω), si(ω
′) is not strongly dominated

relative to the profiles of the players other than i in bi(ω). As si(ω) = si(ω
′), it

follows that i is doxastically weakly rational at ω. Thus, CBRwb ⊆ Rwb
i .

Suppose that a non-empty set C satisfies, C = s(CBRwb) and let Ω̂ = CKRwb.

Then, by Monderer and Samet (1989), Ω̂ ⊆ Bi(Ω̂) for each i. Thus, for each ω ∈ Ω̂,

and each i, bi(ω) ⊆ Ω̂. Consider the reduced belief space (Ω̂, (Π̂i)i∈I , (b̂i)i∈I , ŝ),

where for each i and ω ∈ Ω̂, Π̂i(ω) = Πi(ω) ∩ Ω̂, ŝ(ω) = s(ω), and b̂i(ω) = bi(ω).

Since for each ω ∈ Ω̂, bi(ω) ⊆ Ω̂, it follows that i is doxastically weakly rational
in the reduced belief space. Thus i is a fortior epistemically weakly rational at
ω. This is true in each state of Ω̂ and therefore epistemic weak rationality of all
players is common knowledge in the reduced space. Thus, by Theorem 1, C is a
non-probabilistic correlated equilibrium.

Suppose now that C is a non-probabilistic correlated equilibrium, then, by The-
orem 1, there exists a knowledge space for which C = s(CKRw). The knowledge
space can be made a belief space by defining for each ω, bi(ω) = Πi(ω). In this
belief space, Bi = Ki, and thus CK = CB. �

we can add probabilistic beliefs to a belief structure, such that bi(ω) is the support of the beliefs
of i in Πi(ω), and then Bi = B1

i .
7The requirement that si is constant on each element of Πi means that i knows that she is

playing the strategy she is actually playing. However, it is easy to see that even if we require

that the player only believes that she is playing what she is actually playing, then she necessarily
knows it (see, Samet, 2013, Proposition 2).
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We cannot make a claim analogous to Theorem 7 for strong rationality, as the
following example demonstrates.

Example 5. Consider the 2 by 2 game of Figure 8.

Player 1

Player 2

α β

α 1, 1 0, 0

β 0, 0 0, 0

Figure 8. A game showing the weakness of a doxastic definition.

We consider a state space with a state ωs for each of the four profiles of the
game, and s(ωs) = s. The partition Π1 splits the state space according to Player
1’s strategy, and Π2 splits the state space according to Player 2’s strategy. We
set b1(ω(β,α)) = b1(ω(β,β)) = {(β, β)}, b2(ω(α,β)) = b1(ω(β,β)) = {(β, β)}, and
bi(ω) = Πi(ω) for all other i and ω. Each player, when playing β believes that the
opponent is playing β too. Thus a player is doxastically strongly rational when
playing β, as β is not weakly dominated by α relative to the opponent’s strategy β.
Obviously the players are doxastically strongly rational when they play α. Thus,
Rsb = Ω, and it is commonly believed that the players are doxastically strongly
rational in all states. Hence the profiles played in the event that there is common
belief of doxastic strong rationality are all four profiles. However, the largest strong
non-probabilistic correlated equilibrium consists of (α, α) and (β, β) only.

In order to relate doxastic strong rationality to strong non-probabilistic corre-
lated equilibrium, we need to make an assumption about the consistency of players’
beliefs, much the same consistency of beliefs is required in the characterization of
correlated equilibrium by Bayesian rationality. We define and explain this consis-
tency next.

Knowledge satisfies the truth axiom, namely, for each E, KiE ⊆ E. This can
be written also as ¬KiE ∪ E = Ω. The event ¬KiE ∪ E stands for the claim that
either i does not know E, or E, which is equivalent to saying that if i knows E,
then E. Thus, the truth axiom says that it is always true that if i knows E, then
E. Belief does not satisfy the axiom of truth, namely, it is not always true that
if i believes E, then E. However, it is easy to see that it is always true that i
believes that if she believes E, then E. This claim is expressed in terms of events
by Bi(¬BiE ∪ E) = Ω.

Interpersonal belief consistency holds when each player believes not only that
her beliefs are true, but also that the beliefs of others are true. That is when
for each i and j, Bi(¬BjE ∪ E) = Ω. Obviously, the corresponding event for
knowledge Ki(¬KjE∪E) = Ω trivially holds, as ¬KjE∪E = Ω. Thus, consistency
of knowledge is guaranteed, as whatever is known must be true. It is shown in
Samet (2013) that interpersonal belief consistency holds if and only if ∪ω∈Ωbi(ω) =
∪ω∈Ωbj(ω) for all i and j.
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Theorem 8. Let C be a non-empty set of profiles. Then, C is a strong non-
probabilistic correlated equilibrium if and only if C = s(CBRsb) in some belief
structure for G in which beliefs are interpersonally consistent.

Proof. Suppose that a non-empty set C satisfies C = s(CBRsb) in a belief space
for G in which beliefs are interpersonally consistent. As we proved in Theorem 7,
for each ω ∈ CBRsb and i, bi(ω) ⊆ Rsb

i and bi(ω) ⊆ CBRsb. We claim that For
each i and j, ∪ω∈CBRsb bi(ω) = ∪ω∈CBRsb bj(ω). Indeed, let ω′ ∈ ∪ω∈CBRsb bi(ω).
By interpersonal consistency there exist some ω̄ ∈ Ω such that ω′ ∈ bj(ω̄). As
bj(ω̄) = bj(ω

′), and since ω′ ∈ CBRsb, it follows that bj(ω
′) ⊆ CBRsb. Hence,

ω′ ∈ ∪ω∈CBRsb bj(ω).

Therefore, there exists a non-empty subset Ω̂ ⊆ CBRsb, such that Ω̂ = ∪ω∈CBRsb bi(ω)

for each i, and since for ω′ ∈ bi(ω), bi(ω
′) = bi(ω), Ω̂ = ∪ω∈Ω̂ bi(ω), for each i.

Thus, the family of sets {bi(ω) | ω ∈ Ω̂} is a partition of Ω̂ for each i. This makes

(Ω̂, (bi)i∈I , ŝ), where ŝ is the restriction of s to Ω̂, a knowledge structure. Since for

ω ∈ Ω̂ and i, bi(ω) ⊆ Rsb, it follows that ŝi(= si) is undominated relative to the
set of i’s opponents profiles in bi(ω). This means that i is epistemically strongly

rational at ω in the space Ω̂ = ∪ω∈CBRsb bi(ω). Since this is true for each i and

ω ∈ Ω̂, it follows that epistemic strong rationality is common knowledge in this
structure. Hence, by Theorem 1, the set of profiles played in Ω̂ is a strong non-
probabilistic correlated equilibrium. But this set is the same as the set of profiles
played in CBRsb.

If C is a strong non-probabilistic correlated equilibrium, then, by Theorem 1
C = s(CKRs) for some knowledge structure. This structure can be considered
as a belief structure with Bi = Ki. Thus, C = s(CBRsb). Moreover, as Bi is a
knowledge operator, it follows that interpersonal consistency holds in this space. �

7. Final Comments

The theory of non-Bayesian rationality presented here fills a gap between Aumann
(1987) and Aumann (1995, 1998). While the first paper presents a model for
Bayesian rationality in games in strategic form, the other two study non Bayesian
rationality in games in extensive form. This paper provides the missing link of non-
Bayesian rationality in games in strategic form which characterizes non-probabilistic
correlated equilibria. We have shown how the notions of substantive and material
rationality can be fully characterized and expressed in terms of non-probabilistic
correlated equilibria, and even reduced to it.

Our results simply and extend the theory of rationalizability. The set of strategies
that survive iterated elimination of strongly dominated strategies was characterized
by Tan and Werlang (1988) in terms of common knowledge of Bayesian rationality
when there is no common prior. Here, in Theorem 3, we characterize this set in
terms of the notion of weak rationality which is simpler and weaker than Bayesian
rationality. Moreover, the analysis in Tan and Werlang (1988) is only local, while
we provide both local and global analysis of the implications of common knowl-
edge or rationality. Tan and Werlang (1988) characterized the profiles that can be
played locally, that is, in a state where common knowledge of Bayesian rationality
holds. We also provide the characterization of the same profiles by saying that a
profile played in a state where common knowledge of weak rationality holds must be
an element of the largest weak non-probabilistic correlated equilibrium, and hence
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a profile that survives the iterated elimination of strongly dominated strategies.
We also give in Theorem 1 a global characterization of common knowledge of weak
rationality that has no counterpart in Tan and Werlang (1988). That is, we char-
acterize the sets of profiles that can be played in the event that weak rationality is
common knowledge, namely, the weak non-probabilistic correlated equilibria.8

A global characterization of common knowledge of Bayesian rationality, which
was not addressed in Tan and Werlang (1988), results in exactly the same solution
that is characterized by common knowledge of weak rationality: The family of the
sets of profiles that can be played in the event that Bayesian rationality is common
knowledge is the family of weak non-probabilistic correlated equilibria. Since we
did not describe the formal model of probabilistic beliefs we don’t prove the claim
formally but sketch it briefly. Obviously, the set of profiles that are played in
the event that Bayesian rationality is common knowledge is a non-probabilistic
correlated equilibrium, since Bayesian rationality implies weak rationality. For
the other direction we show that a knowledge structure can be augmented with
probabilistic beliefs in such a way that when a player is weakly rational, she is
Bayesian rational according to these beliefs. This is a simple separation argument
such as has been used in many places in the literature. We can conclude that
the version of rationalizability studied in Tan and Werlang (1988) requires only the
notion of weak rationality rather than the strong notion of Bayesian rationality, for
both the local and global perspectives.
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