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Abstract. We show that in any game that is continuous at in�nity, if a plan of action ai
is rationalizable for a type ti, then there are perturbations of ti for which following ai for an

arbitrarily long future is the only rationalizable plan. One can pick the perturbation from a

�nite type space with common prior. As an application we prove an unusual folk theorem:

Any individually rational and feasible payo¤ is the unique rationalizable payo¤ vector for

some perturbed type pro�le.

JEL Numbers: C72, C73.

1. Introduction

Virtually all economic models make a common-knowledge assumption. That is, they

assume that the payo¤ functions have a particular structure, every player knows this, every

player knows that every player knows this, and so on, ad in�nitum. Moreover, in the resulting

games there are often a large number of Nash equilibria and even more rationalizable strate-

gies. The sets of equilibrium strategies and rationalizable strategies are especially large in

dynamic games with in�nite horizon. For example, the literature on repeated games is �lled

with folk theorems, concluding that every individually rational payo¤ can be supported by

a subgame-perfect equilibrium. For a less prominent example, consider Rubinstein�s (1982)

bargaining game. Although there is a unique subgame-perfect equilibrium, in which there

is immediate agreement, many outcomes with long delays can be supported in Nash equi-

librium. In this game, virtually any outcome, including perpetual disagreement, can be

realized in ex ante rationalizable strategy pro�les. Moreover, some of these equilibria may

involve counterintuitive moves, such as sequentially irrational moves. For this reason, ex

ante rationalizability or Nash equilibrium are considered too permissive, and economists

usually focus on re�nements of equilibrium. For example, in the analysis of the bargaining

game, one focuses on the unique subgame-perfect equilibrium, and in the analysis of repeated
1
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games one makes a stricter re�nement by focusing on e¢ cient subgame-perfect equilibria.

This approach is so common that we rarely think about rationalizable strategies in many

extensively-analyzed dynamic games.

In this paper, building on existing theorems for �nite games, we prove a structure theorem

for rationalizability that questions the premises of the above approach. We consider an

arbitrary dynamic game that is continuous at in�nity, and has �nitely many moves at each

information set and a �nite type space. Note that virtually all of the games analyzed in

economics, such as repeated games with discounting and bargaining games, are continuous

at in�nity. For any type pro�le ti in this game, consider a rationalizable plan of action ai,

which is a complete contingent plan that determines which move the type ti will take at

any given information set of i.1 Fix some arbitrary integer L. We show that, by perturbing

the interim beliefs of type ti, we can �nd a new type t̂i who plays according to ai in the

�rst L information sets in any rationalizable action. The types ti and t̂i have similar beliefs

about the payo¤ functions, similar beliefs about the other players�beliefs about the payo¤

functions, similar beliefs about the other players�beliefs about the players�beliefs about the

payo¤ functions, and so on, up to an arbitrarily chosen �nite order. Moreover, we can pick

t̂i from a �nite model with a common prior, so that our perturbations do not rely on some

esoteric large type space or the failure of the common-prior assumption.

In Weinstein and Yildiz (2007) we showed this result for �nite-action games in normal

form, under the assumption that the space of payo¤s is rich enough so that any action can

be dominant under some payo¤ speci�cation. While this richness assumption holds when

one relaxes all common-knowledge assumptions on payo¤ functions in a static game, it fails if

one �xes a non-trivial dynamic game tree. This is because a plan of action cannot be strictly

dominant when some information sets may not be reached. Chen (2008) has nonetheless

extended the structure theorem to �nite dynamic games, showing that the same result holds

under the weaker assumption that all payo¤ functions on the terminal histories are possible.

1The usual notation in dynamic games and games of incomplete information clash; action ai stands for a

move in dynamic games but for an entire contingent plan in incomplete-information games; t stands for time

in dynamic games but type pro�le in incomplete-information games; hi stands for history in dynamic games

but hierarchy in incomplete-information games, etc. Following Chen, we will use the notation customary in

incomplete information games, so ai is a complete contingent plan of action. We will sometimes use �move�

to distinguish an action at a single node.
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This is an important extension, but the �nite-horizon assumption rules out many major

dynamic applications of game theory, such as repeated games and sequential bargaining.

Since the equilibrium strategies can discontinuously expand when one switches from �nite-

to in�nite-horizon, as in the repeated prisoners� dilemma game, it is not clear what the

structure theorem for �nite-horizon game implies in those applications. Here, we extend

Chen�s results further by allowing in�nite-horizon games that are continuous at in�nity, an

assumption that is made in almost all applications. There is a challenge in this extension,

because the construction employed by Weinstein and Yildiz (2007) and Chen (2008) relies

on the assumption that there are �nitely many actions. The �niteness (or countability) of

the action space is used in a technical but crucial step of ensuring that the constructed

type is well-de�ned, and there are counterexamples to that step when the action space is

uncountable. Unfortunately, in in�nite-horizon games, such as in�nitely-repeated prisoners

dilemma, there are uncountably many strategies, even in reduced form.

We now brie�y explain the implications of our structure theorem to the research agenda

at the beginning.2 Imagine a researcher who subscribes to an arbitrary re�nement of ratio-

nalizability, such as sequential equilibrium or proper equilibrium. Applying his re�nement,

he can make many predictions about the outcome of the game, describing which histories we

may observe. Let us con�ne ourselves to predictions about �nite-length (but arbitrarily long)

outcome paths. For example, in the repeated prisoners�dilemma game, �players cooperate

in the �rst round� and �player 1 plays tit-for-tat in the �rst 101;000;000 periods� are such

predictions, but �players always cooperate� and �players eventually defect� are not. Our

result implies that any such prediction that can be obtained by a re�nement, but not by

mere rationalizability, relies crucially on assumptions about the in�nite hierarchies of beliefs

embedded in the model. Therefore, re�nements cannot lead to any new prediction about

�nite-length outcome paths that is robust to speci�cation of interim beliefs.

One can formally derive this from our result by following the formulation in Weinstein

and Yildiz (2007). Here, we will informally illustrate the basic intuition. Suppose that the

above researcher observes a "noisy signal" about the players��rst-order beliefs (which are

2For a more detailed discussion of the ideas in this paragraph, we refer to Weinstein and Yildiz (2007). In

particular, there, we have extensively discussed the meaning of perturbing interim beliefs from the perspective

of economic modelling and compared alternative perturbations, such as the ex-ante perturbation of Kajii

and Morris (1997).
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about the payo¤ functions), the players�second-order beliefs (which are about the �rst-order

beliefs), . . . , up to a �nite order k, and does not have any information about the beliefs

at order higher than k. Here, the researcher�s information may be arbitrarily precise, in

the sense that the noise in his signal may be arbitrarily small and k may be arbitrarily

large. Suppose that he concludes that a particular type pro�le t = (t1; : : : ; tn) is consistent

with his information, in that the interim beliefs of each type ti could lead to a hierarchy of

beliefs that is consistent with his information. Suppose that for this particular speci�cation,

his re�nement leads to a sharper prediction about the �nite-length outcome paths than

rationalizability. That is, for type pro�le t, a particular path (or history) h of length L is

possible under rationalizability but not possible under his re�nement. But there are many

other type pro�les that are consistent with his information. In order to verify his prediction

that h will not be observed under his re�nement, he has to make sure that h is not possible

under his re�nement for any such type pro�le. Otherwise, his prediction would not follow

from his information or solution concept; it would rather be based on his modeling choice

of considering t but not the alternatives. Our result establishes that he cannot verify his

prediction, and his prediction is indeed based on his choice of modeling: there exist a type

pro�le t̂ that is also consistent with his information and, for t̂, h is the only rationalizable

outcome for the �rst L moves, in which case h is the only outcome for the �rst L moves

according to his re�nement as well.

We conclude our discussion by explaining the implications of our result for repeated games,

assuming that (before our perturbations) there is complete information. Under appropriate

conditions on such games we have folk theorems, which conclude that for every individually

rational payo¤ pro�le v there exists a subgame-perfect equilibrium that leads to v as the

average discounted payo¤. The next step is often to �nd the structure and the implications

of the most e¢ cient subgame-perfect equilibria. This of course, in e¤ect, employs a further

re�nement by ruling out all the other equilibria, which span most of the payo¤ space. This

re�nement is the basis for most of the theoretical predictions in applications of repeated

games. Now, consider an uninteresting or unwanted pure-strategy equilibrium a� that leads

to a payo¤ v� and is disregarded by the re�nement which selects for e¢ ciency. Fix an

arbitrarily long L. Now, our result establishes that there is a perturbation of the original

model, represented by some type pro�le t̂, under which all players assign high probability to

the event that the payo¤s are close to the one as described in the original model, all players
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assign high probability to such beliefs, and so on, up to arbitrarily high orders, and yet all

rationalizable plans play according to a� for the �rst L periods. Hence, a fortiori, under

any re�nement of equilibrium, the actual behavior of the players will be almost exactly

that of the equilibrium which the re�nement tried to eliminate. Moreover, for large L,

the expected payo¤ of these types will be approximately v� in any rationalizable pro�le.

Therefore, our result has two implications. First, it implies a stronger folk theorem: any

individually rational payo¤ vector can be approximated as the unique rationalizable payo¤

under some perturbation. Second, although one may be disturbed by the large number of

possible outcomes in the original common-knowledge case, one cannot re�ne the solution

any further without making extremely speci�c assumptions on information structures.

2. Basic Definitions

We consider standard n-player extensive-form games with possibly in�nite horizon, as

modeled in Osborne and Rubinstein (1994). In particular, we �x an extensive game form

� =
�
N;H; (Ii)i2N

�
with perfect recall where N = f1; 2; : : : ; ng is a �nite set of players, H

is a set of histories, and Ii is the set of information sets at which player i 2 N moves. We

designate i 2 N and h 2 H as the generic player and history, respectively. We write Ii (h)

for the information set that contains history h, at which player i moves. Here, Ii (h) is the

set of histories i �nds possible when he moves. The set of available moves at Ii (h) is denoted

by Bi (h). We have Bi (h) = fbi : (h; bi) 2 Hg, where (h; bi) denotes the history in which h
is followed by bi. We assume that Bi (h) is �nite for each h. An action ai of i is de�ned

as any contingent plan that maps the information sets of i to the moves available at those

information sets; i.e. ai : Ii (h) 7! ai (h) 2 Bi (h). We write A = A1 � � � � � An for the set
of action pro�les a = (a1; : : : ; an).3 We write Z for the set of terminal nodes, at which no

player moves. We write z (a) for the terminal history that is reached by pro�le a. We say

that actions ai and a0i are equivalent if z (ai; a�i) = z (a
0
i; a�i) for all a�i 2 A�i.

3Notation: Given any list X1; : : : ; Xn of sets, write X = X1 � � � � �Xn with typical element x, X�i =Q
j 6=iXj with typical element x�i, and (xi; x�i) = (x1; : : : ; xi�1; xi; xi+1; : : : ; xn). Likewise, for any family

of functions fj : Xj ! Yj , we de�ne f�i : X�i ! X�i by f�i (x�i) = (fj (xj))j 6=i. This is with the

exception that h is a history as in dynamic games, rather than a pro�le of hierarchies (h1; : : : ; hn). Given

any topological space X, we write �(X) for the space of probability distributions on X, endowed with Borel

�-algebra and the weak topology.
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Given an extensive game form, a Bayesian game is de�ned by specifying the belief structure

about the payo¤s. To this end, we write � (z) = (�1 (z) ; : : : ; �n (z)) 2 [0; 1]n for the payo¤
vector at the terminal node z 2 Z and write �� for the set of all payo¤ functions � :

Z ! [0; 1]n. The payo¤ of i from an action pro�le a is denoted by ui (�; a). Note that

ui (�; a) = �i (z (a)). We endow �� with the product topology (i.e. the topology of pointwise

convergence). Note that �� is compact and ui is continuous in �. Note, however, that �� is

not a metric space. We will use only �nite type spaces, so by a model, we mean a �nite set

�� T1 � � � � � Tn associated with beliefs �ti 2 �(�� T�i) for each ti 2 Ti, where � � ��.
Here, ti is called a type and T = T1 � � � � � Tn is called a type space. A model (�; T; �) is
said to be a common-prior model (with full support) if and only if there exists a probability

distribution p 2 �(�� T ) with support �� T and such that �ti = p (�jti) for each ti 2 Ti.
Note that (�;�; T; �) de�nes a Bayesian game. In this paper, we consider games that vary

by their type spaces for a �xed game form �.

Given any type ti in a type space T , we can compute the �rst-order belief h1i (ti) 2 �(��)
of ti (about �), second-order belief h2i (ti) 2 �(�� ��(��)

n) of ti (about � and the �rst-

order beliefs), etc., using the joint distribution of the types and �. Using the mapping hi :

ti 7! (h1i (ti) ; h
2
i (ti) ; : : :), we can embed all such models in the universal type space, denoted

by T � = T �1 � � � � � T �n (Mertens and Zamir (1985) and Brandenburger and Dekel (1993)).
We endow the universal type space with the product topology of usual weak convergence.

We say that a sequence of types ti (m) converges to a type ti, denoted by ti (m)! ti, if and

only if hki (ti (m))! hki (ti) for each k, where the latter convergence is in weak topology, i.e.,

�convergence in distribution.�

For each i 2 N and for each belief � 2 �(�� A�i), we write BRi (�) for the set of actions
ai 2 Ai that maximize the expected value of ui (�; ai; a�i) under the probability distribution
�.

Interim Correlated Rationalizability. For each i and ti, set S0i [ti] = Ai, and de�ne sets

Ski [ti] for k > 0 iteratively, by letting ai 2 Ski [ti] if and only if ai 2 BRi
�
marg��A�i�

�
for some � 2 �(�� T�i � A�i) such that marg��T�i� = �ti and �

�
a�i 2 Sk�1�i [t�i]

�
= 1.

That is, ai is a best response to a belief of ti that puts positive probability only to the

actions that survive the elimination in round k� 1. We write Sk�1�i [t�i] =
Q
j 6=i S

k�1
j [tj] and
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Sk [t] = Sk1 [t1]� � � � � Skn [tn]. The set of all rationalizable actions for player i with type ti is

S1i [ti] =
1\
k=0

Ski [ti] :

This de�nition of interim correlated rationalizability (ICR) is due to Dekel, Fudenberg,

and Morris (2007) (see also Battigalli and Siniscalchi (2003) for a related concept). They

show that the ICR set for a given type is completely determined by its hierarchy of beliefs,

so we will sometimes refer to the ICR set of a hierarchy or �universal type.� ICR is the

weakest rationalizability concept, and hence our results remain true under other notions of

rationalizability.

Continuity at In�nity. We now turn to the details of the extensive game form. If a history

h =
�
bl
�L
l=1
is formed by L moves for some �nite L, then h is said to be �nite and have length

L. If h contains in�nitely many moves, then h is said to be in�nite. A game form is said to

have �nite horizon if for some L <1 all histories have length at most L; the game form is

said to have in�nite horizon otherwise. For any history h =
�
bl
�L
l=1
and any L0, we write hL

0

for the subhistory of h that is truncated at length L0; i.e. h =
�
bl
�minfL;L0g
l=1

. We say that � is

continuous at in�nity i¤ for any " > 0, there exists L <1, such that

(2.1)
����i (h)� �i(~h)��� < " whenever hL = ~hL

for all i 2 N and all terminal histories h; ~h 2 Z. We say that a game (�;�; T; �) is continuous
at in�nity if each � 2 � is continuous at in�nity.

We will con�ne ourselves to the games that are continuous at in�nity throughout, including

our perturbations. Note that most games analyzed in economics are continuous at in�nity.

This includes all �nite-horizon games, repeated games with discounting, games of sequential

bargaining, and so on. Of course, our assumption that Bi (h) is �nite restricts the games

to �nite stage games and �nite set of possible o¤ers in repeated games and bargaining,

respectively.

3. Structure Theorem

In this section we will present our main result, which shows that in a game that is contin-

uous at in�nity, if an action ai is rationalizable for a type ti, then there are perturbations of

ti for which following ai for arbitrarily long future is the only rationalizable plan.
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Weinstein and Yildiz (2007) have proven a version of this structure theorem for �nite

action games under a richness assumption on �� that is natural for static games but rules

out �xing a dynamic extensive game form. Chen (2008) has proven this result for �nite games

under a weaker richness assumption that is satis�ed in our formulation. The following result

is implied by Chen�s theorem.

Lemma 1 (Weinstein and Yildiz (2007) and Chen (2008)). For any �nite-horizon game

(�;�; T; �), for any type ti 2 Ti of any player i 2 N , any rationalizable action ai 2 S1i [ti] of
ti, and any neighborhood Ui of hi(ti) in the universal type space T �, there exists a hierarchy

hi
�
t̂i
�
2 U; such that for each a0i 2 S1i

�
t̂i
�
, a0i is equivalent to ai, and t̂i is a type in some

�nite, common-prior model.

That is, if the game has �nite horizon, then for any rationalizable action of a given type,

we can make the given action uniquely rationalizable (in the reduced game) by perturbing

the interim beliefs of the type. Moreover, we can do this by only considering perturbations

that come from �nite models with a common prior. In the constructions of Weinstein and

Yildiz (2007) and Chen (2008), �niteness (or countability) of action space A is used in

a technical but crucial step that ensures that the constructed type is indeed well-de�ned,

having well-de�ned beliefs. The assumption ensures that a particular mapping is measurable,

and there is no general condition that would ensure the measurability of the mapping when A

is uncountable. Unfortunately, in in�nite-horizon games, such as in�nitely repeated games,

there are uncountably many histories and actions. (Recall that an action here is a complete

contingent plan of a type, not a move.) Our main result in this section extends the above

structure theorem to in�nite-horizon games. Towards stating the result, we need to introduce

one more de�nition.

De�nition 1. An action ai is said to be L-equivalent to a0i i¤ z (ai; a�i)
L = z (a0i; a�i)

L for

all a�i 2 A�i.

That is, two actions are L-equivalent if both actions prescribe the same moves in the �rst

L moves on the path against every action pro�le a�i by others. For the �rst L moves ai and

a0i can di¤er only at the informations sets that they preclude. Of course this is the same as
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the usual equivalence when the game has a �nite horizon that is shorter than L. We are now

ready to state our main result.

Proposition 1. For any game (�;�; T; �) that is continuous at in�nity, for any type ti 2 Ti
of any player i 2 N , any rationalizable action ai 2 S1i [ti] of ti, any neighborhood Ui of hi(ti)
in the universal type space T �, and any L, there exists a hierarchy hi

�
t̂i
�
2 Ui; such that

for each a0i 2 S1i
�
t̂i
�
, a0i is L-equivalent to ai, and t̂i is a type in some �nite, common-prior

model.

Imagine a researcher who wants to model a strategic situation with genuine incomplete

information. He can somehow make some noisy observations about the players�(�rst-order)

beliefs about the payo¤s, their (second-order) beliefs about the other players�beliefs about

the payo¤s, . . . , upto a �nite order. The noise in his observation can be arbitrarily small,

and he can observe arbitrarily many orders of beliefs. Suppose that given his information,

he concludes that his information is consistent with a type pro�le t that comes from a

model that is continuous at in�nity. Note that the set of hierarchies that is consistent

with his information is an open subset U = U1 � � � � � Un of the universal type space, and
(h1 (t1) ; : : : ; hn (tn)) 2 U . Hence, our proposition concludes that for every rationalizable

action pro�le a 2 S1 [t] and any �nite length L, the researcher cannot rule out the possibility
that in the actual situation the �rst L moves have to be as in the outcome of a in any

rationalizable outcome. That is, rationalizable outcomes can di¤er from a only after L

moves. Since L is arbitrary, he cannot practically rule out any rationalizable outcome as the

unique solution.

Notice that Proposition 1 di¤ers from Lemma 1 only in two ways. First, instead of

assuming that the game has a �nite horizon, Proposition 1 assumes only that the game is

continuous at in�nity, allowing most games in economics. Second, it concludes that for the

perturbed types all rationalizable actions are equivalent to ai up to an arbitrarily long but

�nite horizon, instead of concluding that all rationalizable actions are equivalent to ai. These

two statements are, of course, equivalent in �nite-horizon games.

A main step in our proof is indeed Lemma 1. There are, however, many involved steps

that need to be spelled out carefully. Hence, we relegate the proof to the appendix. In order

to illustrate the main idea, we now sketch out the proof for a simple but important case.

Suppose that� =
�
��
	
and T = f�tg, so that we have a complete information game, and a� is a
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Nash equilibrium of this game. For eachm, perturb every history h at lengthm by assuming

that thereafter the play will be according to a�, which describes di¤erent continuations at

di¤erent histories. Call the resulting history hm;a
�
. This can also be described as a payo¤

perturbation: de�ne the perturbed payo¤ function �m by setting �m (h) = ��
�
hm;a

��
at every

terminal history h. Now consider the complete-information game with perturbed model
~�m = f�mg and Tm = f�tmg, where according to �tm it is common knowledge that the payo¤
function is �m (essentially, players are forced to play according to a� after themth information

set). We make three observations towards proving the proposition. We �rst observe that,

since �� is continuous at in�nity, by construction, �m ! ��, implying that hi (�tmi ) ! hi (�ti).

Hence, there exists �m > L such that hi (�t �mi ) 2 Ui. Second, there is a natural isomorphism
between the payo¤ functions that do not depend on the moves after length �m, such as

� �m, and the payo¤ functions for the �nite-horizon extensive game form that is created by

truncating the moves at length �m. In particular, there is an isomorphism ' that maps the

hierarchies in the universal type space T �m� for the truncated extensive game form to the

types in universal type space T � for the in�nite-horizon game form that make the common-

knowledge assumption that the moves after length �m are payo¤-irrelevant. Moreover, the

rationalizable moves for the �rst �m nodes do not change under the isomorphism, in that

ai 2 S1i [' (ti)] if and only if the restriction ami of ai to the truncated game is in S1i [ti]

for any ti 2 T �m�. We third observe that, since a� is a Nash equilibrium, it remains a Nash

equilibrium after the perturbation. This is because enforcing Nash equilibrium strategies

after some histories does not give a new incentive to deviate. Therefore, a�i is a rationalizable

strategy in the perturbed complete information game: a�i 2 S1i [�t
�m
i ]. Now, these three

observations together imply that the hierarchy '�1 (hi (�t �mi )) for the �nite-horizon game form

is in an open neighborhood '�1 (Ui) � T �m�
i and the restriction a� �mi of a�i to the truncated

game form is rationalizable for '�1 (hi (�t �mi )). Hence, by Lemma 1, there exists a type ~ti such

that (i) hi
�
~ti
�
2 '�1 (Ui) and (ii) all rationalizable actions of ~ti are �m-equivalent to a� �mi .

Now consider a type t̂i with hierarchy hi
�
t̂i
�
� '

�
hi
�
~ti
��
, where t̂i can be picked from a

�nite, common-prior model because the isomorphic type ~ti comes from such a type space.

Type t̂i has all the properties in the proposition. First, by (i), hi
�
t̂i
�
2 Ui because

hi
�
t̂i
�
= '

�
hi
�
~ti
��
2 '

�
'�1 (Ui)

�
� Ui:



STRUCTURE OF RATIONALIZABILITY 11

Second, by (ii) and the isomorphism in the second observation above, all rationalizable

actions of t̂i are �m-equivalent to a�i .

There are two limitations of Proposition 1. First, it is silent about the tails. Given a

rationalizable action ai, it does not ensure that that there is a perturbation under which ai
is the unique rationalizable plan� although it does ensure for an arbitrary L that there is

a perturbation under which following ai is the uniquely rationalizable plan up to L. The

second limitation, which equally applies to Chen�s (2008) result, is as follows. Given any ra-

tionalizable path z (a) and L, Proposition 1 establishes that there is a pro�le t = (t1; : : : ; tn)

of perturbed types for which zL (a) is the unique rationalizable path up to L. Neverthe-

less, these perturbed types may all �nd the path zL (a) unlikely, as the following example

illustrates.

Example 1. Consider a twice-repeated prisoners�dilemma game with complete information.

Recall that, in the stage game, the move Defect dominates the move Cooperate, although

(Cooperate, Cooperate) is better than (Defect, Defect). In the repeated game the following

"tit-for-tat" strategy is rationalizable:

aT4T : play Cooperate in the �rst round, and in the second round play what the other player

played in the �rst round.

By Chen (2008), there exists a perturbation tT4T of the common-knowledge type for which

aT4T is the unique rationalizable action. The unique rationalizable action pro�le
�
aT4T ; aT4T

�
of type pro�le

�
tT4T ; tT4T

�
leads to (Cooperate, Cooperate) in both rounds. Note that since

tT4T has a unique best reply, he does assign positive probability to the event that the other

player cooperates in the �rst round, leading him to cooperate in the last round. Hence,

it must be that the other player�s cooperation in the �rst round makes him update his

beliefs about the payo¤s in such a way that Cooperate becomes a better response than

Defect. Nevertheless, since his ex ante belief assigns high probability to the event that the

payo¤s are similar to those in repeated prisoner dilemma payo¤s, under which Defect is a

better response, it must be that tT4T �nds it unlikely that the other player will in fact play

Cooperate in the �rst round. Hence, he assigns nearly probability one on the paths in which

he plays Cooperate in the �rst round and Defect in the second round.
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Therefore, in the situation described by the perturbation that leads to a unique ratio-

nalizable outcome, the players may anticipate a quite di¤erent scenario. One may then

seek for perturbations in which the perturbed types assign high probability to the unique

rationalizable path.

Considering the Nash equilibria of complete information games, we next establish a version

of the structure theorem that does not have the limitations above. We �x a payo¤function ��,

and consider the game in which �� is common knowledge. This game is represented by type

pro�le tCK (��) in the universal type space. For any Nash equilibrium a� of this game, we �nd

a pro�le of perturbations under which a� is the unique rationalizable action and all players�

rationalizable beliefs assign high probability to the equilibrium outcome z (a�). In order to

state the result formally, we need to introduce some new formalism. We call a probability

distribution � 2 �(�� T�i � A�i) a rationalizable belief of type ti if marg��T�i� = �ti

and �
�
a�i 2 S1�i [t�i]

�
= 1. We write Pr (�j�; ai) and E [�j�; ai] for the resulting probability

measure and expectation operator from playing ai against belief �, respectively. With this

formalism, our result is stated as follows.

Proposition 2. Let
�
�; f��g ;

�
tCK (��)

	
; �
�
be a complete-information game that is con-

tinuous at in�nity, and a� be a Nash equilibrium of this game. For any i 2 N , for any

neighborhood Ui of hi(tCKi (��)) in the universal type space T �, and any " > 0, there exists a

hierarchy hi
�
t̂i
�
2 Ui; such that for every rationalizable belief � of t̂i,

(1) ai 2 S1i
�
t̂i
�
i¤ ai is equivalent to a�i ;

(2) Pr (z (a�) j�; a�i ) � 1� ", and
(3) jE [uj (�; a) j�; a�i ]� uj (��; a�)j � " for all j 2 N .

The �rst conclusion states that the equilibrium action a�i is the only rationalizable action

for the perturbed type in reduced form. Hence, the �rst limitation of Proposition 1 does

not apply. The second conclusion states that the perturbed type t̂i �nds it highly likely

that the equilibrium outcome prevails in any rationalizable strategy pro�le. Hence, the

second limitation of Proposition 1 does not apply, either. Finally, the last conclusion states

that the perturbed type t̂i expects that everybody enjoys nearly equilibrium payo¤s under

rationalizability. All in all, Proposition 2 establishes that no equilibrium outcome can be
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ruled out as the unique rationalizable outcome without knowledge of in�nite hierarch of

beliefs, both in terms of actual realization and in terms of players�ex-ante conjectures.

4. Application: An Unusual Folk Theorem

In this section, we consider in�nitely repeated games with complete information. Under

the standard assumptions for the folk theorem, we prove an unusual folk theorem, which

concludes that for every individually rational and feasible payo¤ vector v, there exists a

perturbation of beliefs under which there is a unique rationalizable outcome and players

expect to enjoy approximately the payo¤ vector v under any rationalizable belief.

For simplicity, we consider a simultaneous-action stage game G = (N;B; g) where B =

B1 � � � � �Bn is the set of pro�les b = (b1; : : : ; bn) of moves and g : B ! [0; 1]n is the vector

of stage payo¤s. We have perfect monitoring. Hence, a history is a sequence h =
�
bl
�
l2N

of pro�les bl =
�
bl1; : : : ; b

l
n

�
. In the complete-information game, the players maximize the

average discounted stage payo¤s. That is, the payo¤ function is

��� (h) = (1� �)
nX
l=0

�lg
�
bl
� �

8h =
�
bl
�
l2N

�
where � 2 (0; 1) is the discount factor, which we will let vary. Denote the repeated game by
G� =

�
�; f���g ;

�
tCK (���)

	
; �
�
.

Let V = co (g (B)) be the set of feasible payo¤ vectors (from correlated mixed action

pro�les), where co takes the convex hull. De�ne also the pure-action min-max payo¤ as

vi = min
b�i2B�i

max
bi2Bi

g (b)

for each i 2 N . We de�ne the set of feasible and individually rational payo¤ vectors as

V � = fv 2 V jvi > vi for each i 2 Ng :

The following lemma states a typical folk theorem (see Proposition 9.3.1 in Mailath and

Samuelson (2006) and also Fudenberg and Maskin (1991)).

Lemma 2. Assume that V � has a non-empty interior intV �. Then, for every v 2 intV �,
there exists �� < 1 such that for all � 2

�
��; 1
�
, G� has a subgame-perfect equilibrium a� in

pure strategies, such that u (��� ; a
�) = v.
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Under a weak full-rank assumption, excluding the boundary, the lemma concludes that

every feasible and individually rational payo¤ vector can be supported as the subgame-

perfect equilibrium payo¤ when the players are su¢ ciently patient. Given such a large

multiplicity, both theoretical and applied researchers often focus on e¢ cient equilibria (or

extremal equilibria). Combining such a folk theorem with Proposition 2, our next result

establishes that the multiplicity is irreducible.

Proposition 3. Assume that V � has a non-empty interior intV �. Then, for all v 2 intV �

and " > 0, there exists �� < 1 such that for all � 2
�
��; 1
�
, every open neighborhood U of

tCK (���) contains a type t̂ 2 U such that

(1) each t̂i has a unique rationalizable action a�i in reduced form, and

(2) under every rationalizable belief � of t̂i, the expected payo¤s are all within " neigh-

borhood of v:

jE [uj (�; a) j�; a�i ]� uj (��; a�)j � " 8j 2 N:

Proof. Fix any v 2 intV � and " > 0. By Lemma 2, there exists �� < 1 such that for all � 2�
��; 1
�
, G� has a subgame-perfect equilibrium a� in pure strategies, such that u (��� ; a

�) = v.

Then, by Proposition 2, for any � 2
�
��; 1
�
and any open neighborhood U of tCK (���), there

exists a type pro�le t̂ 2 U such that each t̂i has a unique rationalizable action a�i in reduced
form (Part 1 of Proposition 2), and under every rationalizable belief � of t̂i, the expected

payo¤s are all within " neighborhood of u (��� ; a
�) = v (Part 3 of Proposition 2). �

Under the usual full-rank assumption for standard folk theorems, Proposition 3 establishes

an unusual folk theorem. It concludes that every individually rational and feasible payo¤ v

in the interior can be supported by the unique rationalizable outcome for some perturbation.

Moreover, in the actual situation described by the perturbation, all players play according to

the subgame-perfect equilibrium that supports v and all players anticipate that the payo¤s

are within " neighborhood of v. That is, the complete-information game is surrounded by

types with a unique solution, but the unique solution varies in such a way that it traces all

individually rational and feasible payo¤s. While the multiplicity in usual folk theorems may

suggest a need for a re�nement, the multiplicity in our unusual folk theorem emphasizes the

impossibility of a robust re�nement.
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Appendix A. Proof of Structure Theorem

We start with describing the notation we use in the appendix.

Notation 1. For any belief � 2 �(��A�i) and action ai and for any history h, write E [�jh; ai; �]
for the expectation operator induced by action ai and � conditional on reaching history h. For any

strategy pro�le s : T ! A and any type ti, we write � (�jti; s�i) 2 �(�� T�i �A�i) for the belief
induced by ti and s�i. Given any functions f : W ! X and g : Y ! Z, we write (f; g)�1 for the

preimage of the mapping (w; y) 7! (f (w) ; g (y)).

A.1. Preliminaries. We now de�ne some basic concepts and present some preliminary results. By

a Bayesian game in normal form, we mean a tuple (N;A; u;�; T; �) where N is the set of players, A

is the set of action pro�les, (�; T; �) is a model, and u : ��A! [0; 1]n is the payo¤ function. While

this notation is consistent with our formulation, we will also de�ne some auxiliary Bayesian games

with di¤erent action spaces, payo¤ functions and parameter spaces. For any G = (N;A; u;�; T; �),

we say that ai and a0i are G-equivalent if

u (�; ai; a�i) = u
�
�; a0i; a�i

�
(8� 2 �; a�i 2 A�i) :

By a reduced-form game, we mean a game GR =
�
N; �A; u;�; T; �

�
where �Ai contains at least one

representative action from each G-equivalence class for each i. Rationalizability depends only on

the reduced form:

Lemma 3. Given any game G and a reduced form GR for G, for any type ti, the set S1i [ti] of

rationalizable actions in G is the set of all actions that are G-equivalent to some rationalizable

action of ti in GR.

The lemma follows from the fact that in the elimination process, all members of an equivalence

class are eliminated at the same time; i.e. one eliminates, at each stage, a union of equivalence

classes. It implies the following isomorphism for rationalizability.

Lemma 4. Let G = (N;A; u;�; T; �) and G0 = (N;A0; u0;�0; T 0; �) be Bayesian games in normal

form, �i : Ai ! A0i, i 2 N , be onto mappings, and ' : � ! �0 and � i : Ti ! T 0i , i 2 N , be
bijections. Assume (i) �� i(ti) = �ti � ('; ��i)

�1 for all ti and (ii) u0 (' (�) ; � (a)) = u (�; a) for all

(�; a). Then, for any ti and ai,

(A.1) ai 2 S1i [ti] () �i (ai) 2 S1i [� i (ti)] :
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Note that the bijections ' and � are a renaming, and (i) ensures that the beliefs do not change

under the renaming. On the other hand, �i can map many actions to one action, but (ii) ensures

that all those actions are G-equivalent. The lemma concludes that rationalizability is invariant to

such a transformation.

Proof. First note that (ii) implies that for any ai; a0i 2 Ai,

(A.2) ai is G-equivalent to a0i () �i (ai) is G
0-equivalent to �i

�
a0i
�
:

In particular, if �i (ai) = �i (a
0
i), then ai is G-equivalent to a

0
i. Hence, there exists a reduced-form

game GR =
�
N; �A; u;�; T; �

�
for G, such that � is a bijection on �A, which is formed by picking a

unique representative from each ��1 (� (a)). Then, by (A.2) again, G0R =
�
N;�

�
�A
�
; u0;�0; T 0; �

�
is a reduced form for G0.4 Note that GR and G0R are isomorphic up to the renaming of actions,

parameters, and types by �, ', and � , respectively. Therefore, for any a0i 2 �Ai and ti, a0i is

rationalizable for ti in GR i¤ �i (a
0
i) is rationalizable for � i (ti) in G

0
R. Then, Lemma 3 and (A.2)

immediately yields (A.1). �

We will also apply a Lemma from Mertens-Zamir (1985) stating that the mapping from types in

any type space to their hierarchies is continuous, provided the belief mapping � de�ning the type

space is continuous.

Lemma 5 (Mertens and Zamir (1985)). Let (�; T; �) be any model, endowed with any topology,

such that �� T is compact and �ti is a continuous function of ti. Then, h is continuous.

A.2. Truncated Games. We now formally introduce an equivalence between �nitely-truncated

games and payo¤ functions that implicitly assume such a truncation. For any positive integer m,

de�ne a truncated extensive game form �m =
�
N;Hm; (Ii)i2N

�
by

Hm = fhmjh 2 Hg :

The set of terminal histories in Hm is

Zm = fzmjz 2 Zg :

We de�ne
��m =

�
[0; 1]Z

m
�n

4Proof: Since �i is onto, A
0
i = �i (Ai). Moreover, for any �i (ai) 2 A0i, there exists a

0
i 2 �Ai that is

G-equivalent to ai. By (A.2), �i (ai) is G
0-equivalent to �i (a

0
i) 2 �i

�
�Ai
�
.
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as the set of payo¤ functions for truncated game forms. Since Zm is not necessarily a subset of Z,
��m is not necessarily a subset of ��. We will now embed ��m into �� through an isomorphism to

a subset of ��. De�ne the subset

�̂m =
�
� 2 ��j� (h) = �

�
�h
�
for all h and �h with hm = �hm

	
:

This is the set of payo¤ functions for which moves after period m are irrelevant. Games with such

payo¤s are nominally in�nite but inherently �nite, as we formalize via the isomorphism 'm : ��
m !

�̂m de�ned by setting

(A.3) 'm (�) (h) = � (h
m)

for all � 2 ��m and h 2 Z, where hm 2 Hm is the truncation of h at length m. Clearly, under the

product topologies, 'm is an isomorphism, in the sense that it is one-to-one, onto, and both 'm
and '�1m are continuous. For each ai 2 Ai, let ami be the restriction of action ai to the histories with
length less than or equal tom. The set of actions in the truncated game form is Ami = fami jai 2 Aig.

Lemma 6. Let G = (�;�; T; �) and Gm = (�m;�m; Tm; �) be such that (i) �m � ��m, (ii) � =

'm (�
m) and (iii) Ti = � i (Tmi ) for some bijection �

m
i and such that ��mi (tmi )

= �tmi �
�
'm; �

m
�i
��1

for each tmi 2 Tmi . Then, the set of rationalizable actions are m-equivalent in G and Gm:

ai 2 S1i [�mi (tmi )] () ami 2 S1i [tmi ] (8i; tmi ; ai) :

Proof. In Lemma 4, take ' = '�1m , � i = (�mi )
�1, and � : ai 7! ami . We only need to check that

um
�
'�1m (�) ; am

�
= u (�; a) for all (�; a) where um denotes the utility function in the truncated

game Gm. Indeed, writing zm (am) for the outcome of am in Gm, we obtain

um
�
'�1m (�) ; am

�
= '�1m (�) (zm (am)) = '�1m (�) (z (a)m)

= 'm
�
'�1m (�)

�
(z (a)) = � (z (a)) = u (�; a) :

Here, the �rst and the last equalities are by de�nition; the second equality is by de�nition of am,

and the third equality is by de�nition (A.3) of 'm. �

Let T �m be the ��m-based universal type space, which is the universal type space generated by

the truncated extensive game form. This space is distinct from the universal type space, T �, for

the original in�nite-horizon extensive form. We will now de�ne an embedding between the two

type spaces, which will be continuous and one-to-one and preserve the rationalizable actions in the

sense of Lemma 6.

Lemma 7. For any m, there exists a continuous, one-to-one mapping �m : T �m ! T � with

�m (t) = (�m1 (t1) ; : : : ; �
m
n (tn)) such that for all i 2 N and ti 2 T �mi ,
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(1) ti is a hierarchy for a type from a �nite model if and only if �mi (ti) is a hierarchy for a

type from a �nite model;

(2) ti is a hierarchy for a type from a common-prior model if and only if �mi (ti) is a hierarchy

for a type from a common-prior model, and

(3) for all ai, ai 2 S1i [�mi (ti)] if and only if ami 2 S1i [ti].

Proof. Since T �m and T � do not have any redundant type, by the analysis of Mertens and Zamir

(1985), there exists a continuous and one-to-one mapping �m such that

(A.4) ��mi (ti) = �ti �
�
'm; �

m
�i
��1

for all i and ti 2 T �mi .5 First two statements immediately follow from (A.4). Part 3 follows from

(A.4) and Lemma 6. �

A.3. Proof of Proposition 1. We will prove the proposition in several steps.

Step 1 . Fix any positive integer m. We will construct a perturbed incomplete information game

with an enriched type space and truncated time horizon at m under which each rationalizable

action of each original type remains rationalizable for some perturbed type. For each rationalizable

action ai 2 S1i [ti], let

X [ai; ti] =
�
a0i 2 S1i [ti] ja0i is m-equivalent to ai

	
and pick a representative action rti (ai) from each set X [ai; ti]. We will consider the type space
~Tm = ~Tm1 � � � � � ~Tmn with

~Tmi = f(ti; rti (ai) ;m) jti 2 Ti; ai 2 S1i [ti]g :

Note that each type here has two dimensions, one corresponding to the original type the second

corresponding to an action. Note also that ~Tm is �nite because there are �nitely many equivalence

classes X [ai; ti], allowing only �nitely many representative actions rti (ai). Towards de�ning the

beliefs, recall that for each (ti; rti (ai) ;m), since rti (ai) 2 S1i [ti], there exists a belief �ti;rti (ai) 2
�(�� T�i �A�i) under which rti (ai) is a best reply for ti and marg��T�i(�ti;rti (ai)) = �ti . De�ne
a mapping �ti;rti (ai);m : �

� ! �� between the payo¤ functions by setting

(A.5) �ti;rti (ai);m
(�) (h) = E

h
� (h) jhm; rti (ai) ; �ti;rti (ai)

i
5If one writes ti =

�
t1i ; t

2
i ; : : :

�
and �mi (ti) =

�
�m;1i

�
t1i
�
; �m;2i

�
t2i
�
; : : :

�
as a hierarchies, we de�ne �mi

inductively by setting �m;1i

�
t1i
�
= t1i � '�1m and �m;ki

�
tki
�
= tki �

�
'm; �

m;1
�i ; : : : ; �

m;k�1
�i

��1
for k > 1.



STRUCTURE OF RATIONALIZABILITY 19

at each � 2 �� and h 2 Z. De�ne a joint mapping

(A.6) ��ti;rti (ai);m
: (�; t�i; a�i) 7!

�
�ti;rti (ai);m

(�) ; (t�i; rt�i (a�i) ;m)
�

on tuples for which a�i 2 S1�i [t�i]. We de�ne the belief of each type (ti; rti (ai) ;m) by

(A.7) �ti;rti (ai);m = �
ti;rti (ai) � ���1ti;rti (ai);m:

Note that �ti;rti (ai);m has a natural meaning. Imagine a type ti who wants to play rti (ai) under

a belief �ti;rti (ai) about (�; t�i; a�i). Suppose he assumes that payo¤s are �xed as if after m the

continuation will be according to him playing rti (ai) and the others playing according to what is

implied by his belief �ti;rti (ai). Now he considers the outcome paths up to length m in conjunction

with (�; t�i). His belief is then �ti;rti (ai);m. Let ~�m = [ti;rti (ai)�ti;rti (ai);m (�). The perturbed
model is

�
~�m; ~Tm; �

�
. We write ~Gm =

�
�; ~�m; ~Tm; �

�
for the resulting Bayesian game, which we

will sometimes refer to as a normal-form game.

Step 2 . For each ti and ai 2 S1i [ti], the hierarchies hi (ti; rti (ai) ;m) converge to hi (ti).

Proof: Let ~T1 =
1[
m=1

~Tm [ T be a type space with beliefs as in each component of the union,

and topology de�ned by the basic open sets being singletons f(ti; rti (ai) ;m)g together with sets
f(ti; rti (ai) ;m) : ai 2 S1i [ti] ;m > kg [ ftig for each ti 2 T and integer k. That is, the topology

is almost discrete, except that there is non-trivial convergence of sequences (ti; rti (ai) ;m) ! ti.

Since ~T1 is compact under this topology, Lemma 5 will now give the desired result, once we prove

that the map � from types to beliefs is continuous. This continuity is the substance of the proof

�if not for the need to prove this, our de�nition of the topology would have made the result true

by �at.

At types (ti; rti (ai) ;m) the topology is discrete and continuity is trivial, so it su¢ ces to shows

continuity at types ti. Since � is �nite, by continuity at in�nity, for any " we can pick an m such

that for all � 2 �,
����i (h)� �i(~h)��� < " whenever hm = ~hm. Hence, by (A.5),����ti;rti (ai);m (�) (h)� �(h)��� =

���E h� �~h� j~hm = hm; rti (ai) ; �ti;rti (ai)i� �(h)���
� E

h���� �~h�� �(h)��� j~hm = hm; rti (ai) ; �ti;rti (ai)i < ":
Thus, �ti;rti (ai);m (�) (h) ! �(h) for each h, showing that �ti;rti (ai);m (�) ! �. From the de�n-

ition (A.6) we see that this implies ��ti;rti (ai);m (�; t�i; a�i) ! (�; t�i) as m ! 1. (Recall that�
t�i; rt�i (a�i) ;m

�
! t�i.) Therefore, by (A.7), as m!1,

�ti;rti (ai);m ! �ti;rti (ai) � proj�1��T�i = marg��T�i(�
ti;rti (ai)) = �ti ;
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which is the desired result.

Step 3 . The strategy pro�le s� : ~Tm ! A with s�i (ti; rti (ai) ;m) = rti (ai) is a Bayesian Nash

equilibrium in ~Gm.

Proof : Towards de�ning the belief of a type (ti; rti (ai) ;m) under s
�
�i, de�ne mapping

 :
�
�; t�i; rt�i (a�i) ;m

�
7!
�
�; t�i; rt�i (a�i) ;m; rt�i (a�i)

�
;

which describes s��i. Then, given s
�
�i, his beliefs about �� ~T�i �A�i is

�
�
�jti; rti (ai) ;m; s��i

�
= �ti;rti (ai);m � 

�1 = �ti;rti (ai) � ���1ti;rti (ai);m � 
�1;

where the second equality is by (A.7). His induced belief about ��A�i is

marg��A�i�
�
�jti; rti (ai) ;m; s��i

�
= �ti;rti (ai) � ���1ti;rti (ai);m � 

�1 � proj�1��A�i

= �ti;rti (ai) �
�
�ti;rti (ai);m

; r�i
��1

(A.8)

where r�i : (t�i; a�i) 7! rt�i (a�i). To see this, note that

proj��A�i �  � ��ti;rti (ai);m : (�; t�i; a�i) 7!
�
�ti;rti (ai);m

(�) ; rt�i (a�i)
�
:

Now consider any deviation a0i such that a
0
i (h) = rti (ai) (h) for every history longer than m. It

su¢ ces to focus on such deviations because the moves after length m are payo¤-irrelevant under
~�m by (A.5). The expected payo¤ vector from any such a0i is

E
h
u
�
�; a0i; s

�
�i
�
j�ti;rti (ai);m

i
= E

h
u
�
�ti;rti (ai);m

(�) ; a0i; rt�i (a�i)
�
j�ti;rti (ai)

i
= E

h
�ti;rti (ai);m

(�)
�
z
�
a0i; rt�i (a�i)

��
j�ti;rti (ai)

i
= E

h
E
h
�
�
z
�
a0i; rt�i (a�i)

��
jz
�
a0i; rt�i (a�i)

�m
; rti (ai) ; �

ti;rti (ai)
i
j�ti;rti (ai)

i
= E

h
E
h
�
�
z
�
a0i; rt�i (a�i)

��
jz
�
a0i; rt�i (a�i)

�m
; a0i; �

ti;rti (ai)
i
j�ti;rti (ai)

i
= E

h
�
�
z
�
a0i; rt�i (a�i)

��
j�ti;rti (ai)

i
;

where the �rst equality is by (A.8); the second equality is by de�nition of u; the third equality

is by de�nition of �ti;rti (ai);m, which is (A.5); the fourth equality is by the fact that a
0
i is equal

to rti (ai) conditional on history z
�
a0i; rt�i (a�i)

�m, and the �fth equality is by the law of iterated
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expectations. Hence, for any such a0i,

E
h
ui
�
�; rti (ai) ; s

�
�i
�
j�ti;rti (ai);m

i
= E

h
�i
�
z
�
rti (ai) ; rt�i (a�i)

��
j�ti;rti (ai)

i
� E

h
�i
�
z
�
a0i; rt�i (a�i)

��
j�ti;rti (ai)

i
= E

h
ui
�
�; a0i; s

�
�i
�
j�ti;rti (ai);m

i
;

where the inequality is by the fact that rti (ai) is a best reply to �
ti;rti (ai), by de�nition of �ti;rti (ai).

Therefore, rti (ai) is a best reply for type (ti; rti (ai) ;m), and hence s
� is a Bayesian Nash equilib-

rium.

Step 4 . Referring back to the statement of the proposition, by Step 2, pick m, ti, and ai such that

m > L and hi((ti; rti (ai) ;m)) 2 Ui. By Step 3, ai is rationalizable for type (ti; rti (ai) ;m).

Proof : Since hi((ti; rti (ai) ;m))! hi(ti) and Ui is an open neighborhood of ti, hi((ti; rti (ai) ;m)) 2
Ui for su¢ ciently large m. Hence, we can pick m as in the statement. Moreover, by Step 3, rti (ai)

is rationalizable for type (ti; rti (ai) ;m) (because it is played in an equilibrium). This implies also

that ai is rationalizable for type (ti; rti (ai) ;m), because m-equivalent actions are payo¤-equivalent

for type (ti; rti (ai) ;m).

The remaining steps will show that a further perturbation makes ai uniquely rationalizable.

Step 5 . De�ne hierarchy hi
�
~ti
�
2 T �mi for the �nite-horizon game form �m by

hi
�
~ti
�
= (�mi )

�1 (hi((ti; rti (ai) ;m))) ;

where �mi is as de�ned in Lemma 7 of Section A.2. Type ~ti comes from a �nite game Gm =

(�m;�m; Tm; �) and ami 2 S1i
�
~ti
�
.

Proof : By Lemma 7, since type (ti; rti (ai) ;m) is from a �nite model, so is ~ti. Since ai is

rationalizable for type (ti; rti (ai) ;m), by Lemma 7, a
m
i is rationalizable for hi

�
~ti
�
and hence for

type ~ti in Gm.

Step 6 . By Step 5 and Lemma 1, there exists a hierarchy hi (�tmi ) in open neighborhood (�
m
i )

�1 (Ui)

of hi
�
~ti
�
such that each element of S1i [�t

m
i ] is m-equivalent to a

m
i , and �t

m
i is a type in a �nite,

common-prior model.

Proof : By the de�nition of hi
�
~ti
�
in Step 5, hi

�
~ti
�
2 (�mi )

�1 (Ui). Since Ui is open and �mi is

continuous, (�mi )
�1 (Ui) is open. Moreover, ~ti comes from a �nite game, and ami is rationalizable

for ~ti. Therefore, by Lemma 1, there exists a hierarchy hi (�tmi ) in (�
m
i )

�1 (Ui) as in the statement

above.
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Step 7 . De�ne the hierarchy hi
�
t̂i
�
by

hi
�
t̂i
�
= �mi (hi (�t

m
i )) :

The conclusion of the proposition is satis�ed by t̂i.

Proof : Since hi (�tmi ) 2 (�mi )
�1 (Ui),

hi
�
t̂i
�
= �mi (hi (�t

m
i )) 2 �mi

�
(�mi )

�1 (Ui)
�
� Ui:

Since �tmi is a type from a �nite, common-prior model, by Lemma 7, t̂i can also be picked from a

�nite, common-prior model. Finally, take any âi 2 S1i
�
t̂i
�
. By Lemma 7, âmi 2 S1i

�
t̂i
�
. Hence, by

Step 6, âmi is m-equivalent to ami . It then follows that âi is and m-equivalent to ai. Since m > L,

âi is also L-equivalent to ai.

Appendix B. Proof of Proposition 2

Using Proposition 1, we �rst establish that every action can be made rationalizable for some type.

This extend the lemma of Chen from equivalence at histories of bounded length to equivalence at

histories of unbounded length.

Lemma 8. For all plans of action ai;there is a type tai of player i such that ai is the unique

rationalizable action for tai, up to reduced-form equivalence.

Proof. The set of non-terminal histories is countable, as each of them has �nite length. Index the

set of histories where it is i�s move and the history thus far is consistent with ai as fhk : k 2 Z+g.
By Proposition 1, for each k there is a type tk�i whose rationalizable actions are always consistent

with history hk. We construct type tai as follows: his belief about t�i assigns probability 2�k to

type tk�i. His belief about � is a point-mass on the function �ai , de�ned as 1 if all of i�s actions

were consistent with ai and 1 � 2�k if his �rst inconsistent move was at history hk. Now, if type
tai plays action ai he receives a certain payo¤ of 1. If his plan bi is not reduced-form equivalent to

ai, let hk be the shortest history in the set fhk : k 2 Z+g where bi(hk) 6= ai(hk). By construction,
there is probability at least 2�k of reaching this history if he believes the other player�s action is

rationalizable, so his expected payo¤ is at most 1� 2�2k. This completes the proof. �

Proof of Proposition 2. Construct a family of types tj;m;�, j 2 N , m 2 N, � 2 [0; 1], by

tj;0;� = ta
�
j ;

�tj;m;� = ��
t
a�
j
+ (1� �) �(��;t�i;m�1;�) 8m > 0;
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where �(��;t�i;m�1;�) is the Dirac measure at (�
�; t�i;m�1;�). For large m and small �, ti;m;� satis�es

all the properties of t̂i, as we establish below.

First note that for � = 0, under ti;m;0, it is mth-order mutual knowledge that � = ��. Hence, as

m ! 1, ti;m;0 ! tCKi (��). Therefore, there exists �m > 0 such that hi (ti; �m;0) 2 Ui. Moreover, for
j 2 N , m � �m, and � 2 [0; 1], beliefs of tj;m;� are continuous in �. Hence, by Lemma 5,6 as �! 0,

hi (ti; �m;�)! hi (ti; �m;0). Thus, there exists �� > 0 such that hi (ti; �m;�) 2 Ui for all � < ��.

Next, we use mathematical induction on m to show that for all � > 0 and for all m and j,

aj 2 S1j [tj;m;�] if and only if aj is equivalent to a�j , establishing the �rst conclusion. This statement
is true for m = 0 by de�nition of tj;0;� and Lemma 8. Now assume that it is true up to some m�1.
Consider the type tj;m;�. Under any rationalizable belief, with probability � his belief is the same

as that of ta
�
j to which a�j is the unique best response in reduced form actions, and with probability

1�� the true state is �� and the other players play an action that is equivalent to a��j , in which case
a�j is a best reply, as a

� is a Nash equilibrium under ��. Therefore, a�j is the unique best response

to any of his rationalizable belief in reduced form, proving the statement.

Now, for any m > 0 and any rationalizable belief � of ti;m;�, observe that by the previous state-

ment and the de�nition of ti;m;�, the type ti;m;� assigns at least probability 1 � � on
�
��; a��i

�
.

Hence, Pr (z (a�) j�; a�i ) � 1 � �. Since the payo¤s are all in [0; 1], this further implies that

E [ui (�; a) j�; a�i ] � ui (��; a�) 2 [��; �]. Hence, t̂i = ti; �m;� for � 2
�
0;min

�
��; "
	�

satis�es all

the desired properties. �
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