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Abstract 

 

We propose a new concept of core for games in extensive form and label it the 𝛾-core of an 
extensive game. We show it to be a refinement of the core of the strategic form of the game in 
the same sense as the set of subgame-perfect Nash equilibria is of the set of Nash equilibria. We 
rationalize the 𝛾-core payoff vectors as credible contracts, establish additional properties of the 
𝛾-core, and study in detail its relationship with the other two concepts of cooperation in an 
extensive game: the strong and the coalition-proof subgame-perfect Nash equilibria. To further 
illustrate it and its properties, we introduce three applications: two and three player infinite 
bargaining games of alternating offers and a dynamic game of global public good provision.
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1. Introduction 

Core concepts in dynamic games have attracted the interest of economists for many years. Gale 

(1978) explores the issue of time consistency in the Arrow-Debreu model with dated 

commodities when agents distrust the forward contracts signed at the first date. Gale introduces 

the sequential core which consists of allocations that cannot be improved upon by anyone at any 

date. Similarly, Forges, Mertens, and Vohra (2002) propose the ex ante incentive compatible 

core. Becker and Chakrabarti (1995) propose the recursive core as an allocation such that no 

coalition can improve upon its consumption stream at any time, given its accumulation of assets 

up to that time.  These economic applications show that the bargaining power of coalitions may 

change as the game proceeds along a history.  

     In this paper, we propose a new solution concept for general extensive games that 

incorporates cooperation and also subgame perfection. This new concept, which we label the 𝛾-

core of an extensive game, is a refinement of the core of the strategic form of the game in the 

same sense as the set of subgame-perfect Nash equilibria is of the set of Nash equilibria. More 

specifically, the 𝛾-core of an extensive game is a subset of the intersection of the 𝛾-cores of a 

family of strategic games. From its definition and properties, our proposed new concept is a 

cooperative analog of the non-cooperative subgame-perfect Nash equilibrium. The concept is 

credible in a sense analogous to that of subgame-perfect equilibria in an extensive game. That is, 

the concept permits players, including coalitions of players, to take into account the fact that 

their bargaining power may change during a play of the game. 

     Fundamental to our notion of subgame perfect cooperation is the idea that a coalition 

becomes a single player; given a game in extensive form with player set 𝑁, when a coalition 𝑆 

forms, a new game is created in which the players in 𝑆 constitute one single player. Another 

fundamental idea of our approach is that, at any point in the extensive game, only those players 

who still have decisions to make can form coalitions and only they can coordinate their decisions 

from that point onwards.1 These two ideas are applied to define and study cooperation in 

                                                           
1 Since the player set of the original game does not include any player who has no decisions to make in the game, we 
treat a subgame analogously by not including players who no longer have decisions to make in the subgame. Not 
doing so would be inconsistent with the notion of subgame perfection.  
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extensive games. They can be applied to games of both perfect and imperfect information; in this 

paper we treat only games of perfect information and consider game solutions in pure strategies.2 

     An issue that arises in the treatment of cooperation within coalitions in a non-cooperative 

game is: Given a deviation by a coalition, what is the response of the players in the 

complementary set? In our approach, since a coalition is simply a player in a game derived from 

the original game, it is appealing to take the remaining set of players as singletons, especially 

since that leads to a core concept that relates and can be nicely compared with both the strong 

and the coalition-proof subgame-perfect Nash equilibria, in which also the remaining players are 

taken to be singletons.3 However, as we discuss further in our concluding section, our approach 

can still be applied even if the remaining players are not assumed to be singletons.   

     Our proposed new concept of subgame perfect cooperation takes into account interactions of 

coalitions through the solution concept, analogously to how Nash and subgame-perfect Nash 

equilibrium (SPNE) concepts take account of interactions of players. Recall that a payoff vector 

is in the 𝛾-core (Chander, 2010) of a strategic game if no coalition can improve upon its part of 

the payoff vector by deviating from any strategy profile that generates the payoff vector. The 

subgame-perfect 𝛾-core of an extensive game differs; a payoff vector is in the 𝛾-core if there is a 

history that leads to a terminal node for which the payoff vector is feasible and, along the 

decision nodes in the history, no coalition (including the grand coalition) can improve upon its 

part of the payoff vector by deviating.      

      For the game-theoretic results of this paper, introducing subgame-perfect cooperation, we 

assume transferable utility so that the utility of a coalition becomes the sum of the utilities of the 

coalition members. We conclude this introduction with some further discussion of the 𝛾-core, the 

main results, and applications. Further discussion of the concept and related literature is included 

in the final section of the paper.   

                                                           
2However, that is not entirely true as the paper includes an application to a dynamic game with simultaneous moves 
in which a similar strategic game is played at each date. In extensive games with perfect information it makes 
perfect sense to restrict to pure strategies, but for extension to a general extensive game of imperfect information, 
correlated strategies of players inside a coalition may have to be considered. 
3 See Chander (2010; 2007) which address this issue in the context of a strategic game. It is shown that forming 
singletons is a subgame-perfect Nash equilibrium strategy of the remaining players in a game in which the players 
choose whether to stay alone or to merge. In other words, the players in the complement may actually have 
incentives to break apart into singletons.  
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     Notice that in an extensive game with transferable utility a feasible payoff vector may involve 

side-payments and as a contract it can be fulfilled if and only if the game reaches the node for 

which it is feasible. Therefore, to rationalize the 𝛾-core payoff vectors as contracts we need to 

assume an environment in which players can write contracts at the beginning of the extensive 

game which are binding if and only if the game reaches the node for which the contract is 

feasible. Since a node of an extensive game is reached if and only if the players take a certain set 

of actions (in fact a unique set of actions), this form of contracting is equivalent to assuming that 

the contract is binding if and only if the players have taken those actions. In other words, the 

players are free to nullify a contract by deviating from those actions at any point and prevent the 

game from reaching the node for which the contract is feasible and binding. Accordingly, a 

contract is credible if the players do not have incentives to take actions that can prevent the game 

from reaching the node for which the contract is feasible and binding.4  

     By definition, the 𝛾-core payoff vectors are credible contracts, and the assumed contracting 

environment is common to many situations involving sequential trades. E.g., it is implicit in the 

Arrow-Debreu model with dated commodities in which all trades are agreed upon at date 0, but 

fulfilled later. Furthermore, as will be shown, our rationalization of the 𝛾-core payoff vectors as 

credible contracts can be extended to dynamic games in which payoffs occurs at each date and 

self-sufficient spot contracts are possible.  

     It is well-known that the conventional notion of the core is “credible” in the sense that if 

coalitional deviations are limited to those deviations which are immune to further deviations by 

subcoalitions, the core is unaffected (Ray, 1989). We show that the 𝛾-core of an extensive game 

is credible, i.e., the 𝛾-core of an extensive game is the same irrespective of whether or not 

coalitional deviations  are required to be immune to further coalitional deviations.   

     Rubinstein (1980) introduces a notion of “strong perfect equilibrium” for a super game in 

which a strategic game is played infinitely many times. However, we are not aware of any paper 

introducing a definition of strong subgame-perfect Nash equilibria (SSPNE) in a general 

extensive game. Using the conceptual framework developed in this paper, we propose such a 

                                                           
4 Alternatively, in some situations we might regard players as signing binding contracts at the 
beginning of the game that depend on the terminal node reached in a play of the game.  
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definition and verify that, as in a strategic game, every SSPNE of an extensive game is coalition-

proof. We identify a class of extensive games in which the 𝛾-core is a weaker concept than 

SSPNE in the sense that if a game in the class admits a SSPNE then it is unique and the 𝛾-core 

consists of the unique SSPNE payoff vector, but the 𝛾-core may be non-empty even if the game 

admits no SSPNE.   

     We illustrate the concept of SSPNE and its relationship with the 𝛾-core by applying these 

concepts to bargaining games of alternating offers with two and three players. Bargaining games 

of alternating offers have been proposed in the literature (Rubinstein, 1982) to derive non-

cooperative foundations of the Nash bargaining solution. It is well-known that the infinite 

bargaining game of alternating offers with two players admits a unique SPNE. We show that the 

unique SPNE is actually a SSPNE and, therefore, a 𝛾-core payoff vector and a credible contract. 

Furthermore, the same also holds in a three player bargaining game if the players are identical 

and can use only stationary strategies.  

     Bernheim, Peleg, and Whinston (1987) introduce the concept of coalition-proof subgame-

perfect Nash equilibrium (CPSPNE), which requires that any agreement to deviate must be “self-

enforcing”. Imposition of this requirement on coalitional deviations leads to a version of the 𝛾-

core which is self-enforcing and satisfies subgame perfection - the defining property of our core 

concept. We refer to this version as the self-enforcing 𝛾-core of an extensive game. Since a 

deviating coalition can always choose a self-enforcing agreement even if it is not required to do 

so, the coalitional payoffs are generally lower if only self-enforcing coalitional deviations are 

permitted. However, that does not necessarily imply a larger core, since the payoff of the grand 

coalition may also be lower as it too can choose only self-enforcing agreements. In fact, as will 

be made clear, the concept of self-enforcing 𝛾-core presumes that the game admits a CPSPNE. 

We identify a class of extensive games in which the two concepts are actually equivalent.  

     The 𝛾-core payoff vectors, by definition, are efficient outcomes of an extensive game, but the 

self-enforcing 𝛾-core payoff vectors may not be unless the game admits a unique SSPNE in 

which case the two cores are equal. In other cases they are disjoint, though both satisfy subgame 

perfection. Which one of the two versions of the 𝛾-core is the relevant solution concept depends 

on whether deviating coalitions can write binding agreements (as in a strong Nash equilibrium)  
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or they can write only self enforcing agreements (as in a coalition-proof Nash equilibrium). As 

noted, the bargaining games of alternating offers admit a unique SSPNE and, therefore, the 𝛾-

core and the self-enforcing 𝛾-core are equal. But the game in Example 1 does not admit a SSPNE 

and thus the two cores are disjoint.    

     Besides the application to bargaining games of alternating offers, we introduce an application 

to a dynamic game of global public good provision which further illustrates the 𝛾-core and its 

various properties. First, since this dynamic game involves simultaneous moves, it demonstrates 

that the 𝛾-core concept is not restricted to extensive games of perfect information alone. Second, 

since all players are active in each subgame and payoffs occur at every (decision or terminal) 

node of the game, self-sufficient spot contracts are possible. Thus, the game allows us to 

illustrate how our rationalization of the 𝛾-core payoff vectors as credible contracts can be 

extended to games in which self-sufficient spot contracts are possible. Third, it highlights the 

distinction between the two versions of the 𝛾-core and their relationship with CPSPNE. Though 

the game does not admit a SSPNE, both versions of the 𝛾-core are non-empty and the self-

enforcing 𝛾-core consists of the unique CPSPNE payoff vector. Fourth, it demonstrates that a 𝛾-

core payoff vector, like a SPNE, can be found by backward induction.        

     Before concluding this section, we remark that our work is distinct from research that seeks to 

unify cooperative and non-cooperative game theory through underpinning cooperative game 

theoretic solutions with noncooperative Nash equilibria, the “Nash Program”.5 Numerous papers 

have contributed to this program including Rubinstein (1982), Perry and Reny (1994), Pérez-

Castrillo (1994), Serrano (1995), Compte and Jehiel (2010) and Lehrer and Scarsini (2012), for 

example. These papers are fundamentally different from ours since they start with a given 

cooperative game and impose a dynamics or extensive form game whose outcomes are related to 

cooperative outcomes of the initial game. In contrast, we derive coalitional games from the 

extensive game as the primitive (Proposition 1). While we do not do so in this paper, instead of 

using the core as the solution concept for the derived cooperative game, it would be interesting to 

                                                           

5 See Serrano (2008) for a brief survey and Ray (2007) for a more extended discussion. 
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use the coalitional Nash bargaining solution, introduced by Compte and Jehiel for this purpose ; 

we leave this to future research.  

     The paper is organized as follows. Section 2 presents the definition of 𝛾-core of a strategic 

game. Section 3 motivates and introduces the definition of 𝛾-core of an extensive game of perfect 

information. It establishes its various properties, introduces the concept of an SSPNE of an 

extensive game, and studies how the 𝛾-core and SSPNE are related. It includes applications to 

infinite bargaining games of alternating offers with two or three players. It also introduces the 

self-enforcing 𝛾-core and notes its relationship with CPSPNE. Section 4 introduces a dynamic 

game of global public good provision and shows that if the payoff functions are quadratic, the 𝛾-

core is non-empty and a 𝛾-core payoff vector can be found by backward induction. Section 5 

further discusses the 𝛾-core and related literature.     

2. The 𝜸-core of a strategic game 

It is convenient to first take note of the concept of 𝛾-core of a general strategic game (Chander, 

2010).6 We denote a strategic game with transferable utility by (𝑁,𝑇,𝑢) where 𝑁 = {1, … ,𝑛}  is 

the player set, 𝑇 = 𝑇1 × ⋯× 𝑇𝑛  is the set of strategy profiles, 𝑇𝑖 is the strategy set of player 𝑖, 

𝑢 = (𝑢1, … ,𝑢𝑛) is the vector of payoff functions, and 𝑢𝑖 is the payoff function of player 𝑖. A 

strategy profile is denoted by 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ 𝑇. We denote a coalition by 𝑆 and its complement 

by 𝑁\𝑆.  Given 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ 𝑇, let 𝑡𝑆 ≡ (𝑡𝑖)𝑖∈𝑆, 𝑡−𝑆 ≡ (𝑡𝑗)𝑗∈𝑁\𝑆, and (𝑡𝑆, 𝑡−𝑆) ≡ 𝑡 =

(𝑡1, … , 𝑡𝑛).      

     Given a coalition 𝑆 ⊂ 𝑁, the induced strategic game (𝑁𝑆,𝑇𝑆,𝑢𝑆) is defined as follows: 

• The player set is 𝑁𝑆 = {𝑆, (𝑗)𝑗∈𝑁\𝑆}, i.e., coalition 𝑆 and all 𝑗 ∈ 𝑁\𝑆 are the players (thus 

the game has 𝑛 − 𝑠 + 1 players7); 

• The set of strategy profiles is 𝑇𝑆 = 𝑇𝑆 ×𝑗∈𝑁\𝑆 𝑇𝑗 where  𝑇𝑆 =×𝑖∈𝑆 𝑇𝑖 is the strategy set of 

player 𝑆 and  𝑇𝑗 is the strategy set of player 𝑗 ∈ 𝑁 − 𝑆; 

                                                           
6 In contrast, Maskin’s (2003) and Huang and Sjöström’s (2006) core concepts are based on a partition function and 
thereby their concepts abstract away from the strategic interactions that underlie the payoffs of coalitions. Similarly, 
the conventional 𝛼- and 𝛽- cores, by definition, rule out interesting strategic interactions between players. See 
Chander (2007, 2010) for a comparison of the 𝛼- 𝛽- and 𝛾- cores of a general strategic game and Chander and 
Tulkens (1997) for the same in the context of a specific strategic game.  
7 The small letters 𝑛 and  𝑠 denote the cardinality of sets 𝑁 and 𝑆, respectively. 
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• The vector of payoff functions is 𝑢𝑆 = (𝑢𝑆𝑆, �𝑢𝑗𝑆)𝑗∈𝑁\𝑆� where 𝑢𝑆𝑆(𝑡𝑆, 𝑡−𝑆) =

∑ 𝑢𝑖𝑖∈𝑆 (𝑡𝑆, 𝑡−𝑆) is the payoff function of player 𝑆 and 𝑢𝑗𝑆(𝑡𝑆, 𝑡−𝑆) = 𝑢𝑗(𝑡𝑆, 𝑡−𝑆 ) is the 

payoff function of player 𝑗 ∈ 𝑁\𝑆, for all 𝑡𝑆 ∈ 𝑇𝑆  and 𝑡−𝑆 ∈ ×𝑗∈𝑁\𝑆 𝑇𝑗. 

     Observe that if (�̃�𝑆, �̃�−𝑆) = �̃� is a Nash equilibrium of the induced game  (𝑁𝑆 ,𝑇𝑆,𝑢𝑆), 

then 𝑢𝑆𝑆(�̃�𝑆, �̃�−𝑆) = ∑ 𝑢𝑖(�̃�𝑆, �̃�−𝑆)𝑖∈𝑆 ≥ ∑ 𝑢𝑖𝑖∈𝑆 (𝑡𝑆, �̃�−𝑆) for all 𝑡𝑆 ∈ 𝑇𝑆. Thus, for each 𝑆 ⊂ 𝑁, a 

Nash equilibrium of the induced game (𝑁𝑆,𝑇𝑆,𝑢𝑆) assigns a payoff to 𝑆 that it can obtain 

without cooperation from the remaining players. If the induced game (𝑁𝑆,𝑇𝑆, 𝑢𝑆) has multiple 

Nash equilibria, then any Nash equilibrium with highest payoff for 𝑆 is selected.8 In this way, a 

unique payoff can be assigned to the coalition. (Other selections in the case of multiple equilibria 

are possible. Our selection of Nash equilibrium with highest payoff makes the conditions for 

non-emptiness of the 𝛾-core more stringent.)                                                                                                                                                                                            

     Given a strategic game (𝑁,𝑇,𝑢), the corresponding game in characteristic form is the 

function 𝑤𝛾(𝑆) = ∑ 𝑢𝑖(�̃�𝑆, �̃�−𝑆)𝑖∈𝑆 , 𝑆 ⊂ 𝑁, where  (�̃�𝑆, �̃�−𝑆) ∈ 𝑇 is a Nash equilibrium of the 

induced game (𝑁𝑆,𝑇𝑆,𝑢𝑆) with highest payoff for coalition 𝑆. The 𝛾-core of a strategic game 

(𝑁,𝑇,𝑢) or, equivalently, the core of the corresponding game in characteristic function form 𝑤𝛾 

is the set of payoff vectors 𝑝 such that (i) for each 𝑆 ⊂ 𝑁,∑ 𝑝𝑖𝑖∈𝑆 ≥ 𝑤𝛾(𝑆) and (ii) ∑ 𝑝𝑖𝑖∈𝑁  

= 𝑤𝛾(𝑁). 9 

3. The 𝜸-core of an extensive game   

We denote an extensive game of perfect information by Γ = (𝑁,𝐾,𝑃,𝑢) where 𝑁 = {1, … ,𝑛} is 

the player set and 𝐾 is the game tree with origin denoted by 0. Let 𝑍 denote the set of terminal 

nodes of game tree 𝐾 and let  𝑋 denote the set of non-terminal nodes, i.e., the set of decision 

nodes. The player partition of 𝑋 is given by 𝑃 = {𝑋1, … ,𝑋𝑛}  where 𝑋𝑖 is the set of all decision 

nodes of player 𝑖 ∈ 𝑁. The payoff function is 𝑢:𝑍 → 𝑅𝑛 where 𝑢𝑖(𝑧) denotes the payoff of 

player 𝑖 at terminal node 𝑧. Since there is a one-one correspondence between the game tree and 

the strategy sets of the players, we do not explicitly state, as of now, the strategy sets.      

                                                           
8 Such a payoff will surely exist if the strategy sets are compact (or finite) and the payoff functions are continuous. 
9 Note that it is efficient for the grand coalition to form, since the grand coalition can choose at least the same 
strategies as the players in any coalition structure (i.e. any partition of the total player set into coalitions). 
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3.1 The induced extensive games  

Given an extensive game Γ = (𝑁,𝐾,𝑃,𝑢) and a coalition 𝑆 ⊂ 𝑁, the induced extensive game 

Γ𝑆 = (𝑁𝑆,𝐾𝑆,𝑃𝑆 ,𝑢𝑆) is defined as follows: 

• The player set is 𝑁𝑆 = {𝑆, (𝑖)𝑖∈𝑁\𝑆}, i.e., coalition 𝑆 and all 𝑗 ∈ 𝑁\𝑆 are the players (thus 

the game has 𝑛 − 𝑠 + 1 players); 

• The game tree is 𝐾𝑆 = 𝐾 (thus the set of decision nodes is 𝑋); 

• The player partition of 𝑋 is  𝑃𝑆 = {𝑋𝑆, �𝑋𝑖)𝑖∈𝑁\𝑆� where 𝑋𝑆 =∪𝑗∈𝑆 𝑋𝑗; 

• The profile of payoff functions is 𝑢𝑆 = (𝑢𝑆𝑆, �𝑢𝑖𝑆)𝑖∈𝑁\𝑆� where  𝑢𝑆𝑆(𝑧) = ∑ 𝑢𝑗𝑗∈𝑆 (𝑧) is the 

payoff function of 𝑆 and 𝑢𝑖𝑆(𝑧) = 𝑢𝑖(𝑧)  is the payoff function of 𝑖 ∈ 𝑁\𝑆, for all 𝑧 ∈ 𝑍. 

     Note that if 𝑆 is a singleton coalition, then Γ𝑆 = Γ. For each 𝑆 ⊂ 𝑁, the induced game 

Γ𝑆 = (𝑁𝑆,𝐾𝑆,𝑃𝑆 ,𝑢𝑆) represents the situation in which the players in 𝑆 have formed a coalition 

to coordinate their decisions in all their decision nodes. A vector 𝑝 = (𝑝1,𝑝2, … ,𝑝𝑛) is a feasible 

payoff vector for terminal node 𝑧 ∈ 𝑍 if ∑ 𝑝𝑖𝑖∈𝑁 = ∑ 𝑢𝑖𝑖∈𝑁 (𝑧) = 𝑢𝑁𝑁(𝑧). Example 1 below 

illustrates the definitions so far. 

Example 1 Let Γ denote the extensive game depicted in Fig.1. Then, 𝑥1 is the origin of the game 

tree 𝐾,𝑁 = {1,2},𝑍 = {𝑧1, 𝑧2, 𝑧3},𝑋 = {𝑥1, 𝑥2},𝑃 = {{𝑥1}, {𝑥2}}  and 𝑢:𝑍 → 𝑅2 is given by 

𝑢(𝑧1) = (2, 1),𝑢(𝑧2) = (4, 2), and 𝑢(𝑧3) = (1, 3). 

 

                                           𝑥1 

                              𝐿        1           𝑅 

                                                                 𝑥2 

                 𝑧1: (2, 1)                     𝑙          2         𝑟 

                                                 

     
                                         𝑧2: (4, 2))                           𝑧3: (1, 3)            

     
Figure 1                              
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     The extensive game Γ𝑁 when players 1 and 2 form a coalition to coordinate their decisions in 

all their decision nodes is depicted in Fig. 2. The game tree is the same, but now we have a one-

player game with player set {𝑁}. So 𝑃𝑁 = {{𝑥1, 𝑥2}}, 𝑢𝑁𝑁(𝑧1) = 3,𝑢𝑁𝑁(z2) = 6, and 𝑢𝑁𝑁(𝑧3) = 4. 

Notice that each strategy of player 𝑁 in game Γ𝑁 generates a history of game Γ.  

 

 

                                           𝑥1 

                              𝐿        𝑁           𝑅 

                                                                  𝑥2 

                     𝑧1: 3                         𝑙        𝑁         𝑟 

                               
    

                                         𝑧2: 6                                       𝑧3: 4            

 
Figure 2 

 

     In the following, we will often not distinguish between player 𝑖 and coalition {𝑖}. Given 

𝑥 ∈ 𝑋, let Γ𝑥 denote the subgame with origin at 𝑥. Since the origin of Γ is denoted by 0,  Γ0 = Γ 

and if 𝑥 ≠ 0, Γ𝑥 is a proper subgame of Γ. Notice that the player set of a proper subgame Γ𝑥 may 

be smaller than the set 𝑁 (but is not necessarily so). A player is active in subgame Γ𝑥 if some 

decision node in Γ𝑥 is a decision node of the player. Similarly, a coalition is active in subgame Γ𝑥 

if all its members are active in the subgame Γ𝑥. Let 𝑆 be an active coalition in subgame Γ𝑥. Then, 

the induced game Γ𝑥𝑆 is defined from Γ𝑥 in exactly the same way as the induced game Γ𝑆 is 

defined from Γ. Clearly, Γ0𝑆 = Γ𝑆. Since Γ is a game of perfect information, so is each game Γ𝑥𝑆, 

𝑥 ∈ 𝑋 and 𝑆 an active coalition in Γ𝑥. In what follows, it will be often convenient to refer to “a 

coalition that is active in the subgame with origin at 𝑥” simply as “an active coalition at 𝑥”. 

     A SPNE of an extensive game induces a Nash equilibrium in each subgame of the extensive 

game. Therefore, for each coalition 𝑆 which is active at 𝑥, a SPNE strategy of 𝑆 in the game Γ𝑥𝑆 

prescribes a play that is optimal for 𝑆 from point 𝑥 onwards, given the optimal strategies of the 
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remaining active players. Thus, a SPNE payoff of a coalition 𝑆 in the induced game Γ𝑥𝑆 is a 

payoff that it can credibly obtain if the game reaches node 𝑥.  

     The subgame-perfect Nash equilibria of the family of extensive games Γ𝑥𝑆, 𝑥 ∈ 𝑋 and 𝑆 an 

active coalition in Γ𝑥,  determine the payoffs that coalitions can credibly obtain at each decision 

node of the game Γ. If the induced game Γ𝑥𝑆 has more than one SPNE, then a SPNE with highest 

payoff for coalition 𝑆 is selected.10   

     We return to Example 1 to illustrate the additional definitions introduced. Since the game Γ in 

Example 1 has only two players, Γ𝑥1
{1} = Γ𝑥1

{2} = Γ. The SPNE payoff of coalition {1} in the 

induced game Γ𝑥1
{1} is 2 and its SPNE strategy is 𝐿. Similarly, the SPNE payoff of {2} in the 

induced game Γ𝑥1
{2} is 1 and its SPNE strategy is 𝑟𝑅 (≡  𝑟 if 1 plays 𝑅).  

    The SPNE payoff of player 𝑁 in the single player game Γ𝑁(= Γ𝑥1
𝑁 ) in Fig. 2 is 6 and its SPNE 

strategy is (𝑅, 𝑙𝑅)(≡ 𝑅; 𝑙 if 𝑁 plays 𝑅). Notice that the SPNE strategy (𝑅, 𝑙𝑅) of coalition 𝑁 is 

not compatible with the SPNE strategies 𝐿 and 𝑟𝑅 of coalitions {1} and {2}, respectively. This 

fact plays a crucial role in what follows. 

3.2 Subgame-perfect cooperation  

In order to highlight the basic idea underlying the 𝛾-core of an extensive game, we return again 

to Example 1 to show that the bargaining power of coalitions following their SPNE strategies 

may change as the game unfolds along a history.  

     If players 1 and 2 form a coalition, the payoff of the coalition is 6, as implied by the SPNE of  

Γ𝑥1
𝑁 . If coalition {1} decides to deviate in the beginning of the game, its resulting payoff is 2, as 

implied by the SPNE of Γ𝑥1
{1}. Similarly, if {2} decides to deviate in the beginning of the game, its 

resulting payoff is 1, as implied by the SPNE of Γ𝑥1
{2}. In sum, the coalitions {1}, {2} and 𝑁 which 

all are active at 𝑥1 can obtain payoffs of 2, 1 and 6, respectively. Thus, none of them can 

improve upon a payoff vector (𝑝1,𝑝2) such that 𝑝1 ≥ 2, 𝑝2 ≥ 1,𝑝1 + 𝑝2 = 6. E. g., given the 

                                                           
10 Obviously, this is not the only way to handle multiplicity of equilibria. Other selections are possible. As in a 
strategic game, our selection of equilibrium with highest payoff makes the conditions for non-emptiness of the 𝛾-
core of an extensive game more stringent. 
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payoff vector (3.5, 2.5), no coalition can obtain a higher payoff by deviating from the grand 

coalition’s strategy (𝑅, 𝑙𝑅) in the beginning of the game.  

      Yet, we claim that the strategy profile (𝑅, 𝑙𝑅) and the payoff vector (3.5, 2.5) are not a 

sensible prediction of the game. That is because if the strategy profile (𝑅, 𝑙𝑅) is followed, the 

game would reach node 𝑥2 and therefore the strategy profile (𝑅, 𝑙𝑅) and the payoff vector (3.5, 

2.5) should also be immune to deviations by all active coalitions at 𝑥2. However, it is not. The 

only active coalition at 𝑥2 is {2} and it can obviously obtain a higher payoff of 3 (> 2.5) by 

taking action 𝑟 once the game reaches 𝑥2. 11  Thus, the strategy profile (𝑅, 𝑙𝑅) is not immune to 

deviations by all active coalitions along the history generated by the strategy profile. 

     Note that the set of payoff vectors (𝑝1,𝑝2) which are in the 𝛾-core of the corresponding game 

in strategic form is given by 𝑝1 + 𝑝2 = 6,𝑝1 ≥ 2,𝑝2 ≥ 1  and the payoff vector (3.5, 2.5) is in 

the set. But it is not immune to coalitional deviations as the game unfolds along the history 

leading to the terminal node for which the payoff vector (3.5, 2.5) is feasible. The set of payoff 

vectors (𝑝1,𝑝2) which are immune to coalitional deviations along the history is smaller and 

given by 𝑝1 + 𝑝2 = 6,𝑝1 ≥ 2, and 𝑝2 ≥ 3. Furthermore, such payoff vectors can be interpreted 

as credible contracts.  Clearly, as contracts they can be fulfilled if and only if the game reaches 

terminal node 𝑧2 (for which they are feasible). Thus, in the context of an extensive game, the 

following form of contracting is sufficient to rationalize such payoff vectors as credible 

contracts: 

(a) Players can write contracts at the beginning of an extensive game. 

(b) A feasible payoff vector as a contract is binding if and only if the game reaches the 

terminal node for which it is feasible. 

(c) A feasible payoff vector as a contract is credible if the players do not have incentives to 

take actions that can prevent the game from reaching the terminal node for which it is 

feasible and binding. 

                                                           
11 Notice that action 𝑟 is consistent with the SPNE strategy of {2} in the game Γ𝑥1

{2}. Still the payoff that {2} can 
obtain at 𝑥2 is higher. That is because the node 𝑥2 is not reached in the history generated by the SPNE of the game 
Γ𝑥1

{2}. 
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     Since the game can reach terminal node 𝑧2 if and only if the players take a (unique) set of 

actions, restriction (b) implies that a contract is binding if and only if the players take those 

actions. In other words, players are free to nullify a contract by taking actions at any point of the 

game that can prevent the game from reaching terminal node 𝑧2.12 This form of contracting is 

common and often necessary in environments involving sequential trades. E.g., it is necessary if 

the Arrow-Debreu model with dated commodities is to make sense.   

     To see that, consider a simple Arrow-Debreu economy in which there are two agents, 𝑎 and 

𝑏, and two dates, 0 and 1. At each date there is one consumption good available. Each agent’s 

preferences are described by a Cobb-Douglas utility function with equal weights for the two 

consumption goods. Suppose that the endowments of the two agents are  (𝜖, 1 − 𝜖) and (1 −

𝜖, 𝜖), respectively, where 𝜖 is a small positive number. The agents can trade by writing contracts 

on date 0 which require agent 𝑏 to give agent 𝑎 a positive amount of the consumption good at 

date 0 and agent 𝑎 to give agent 𝑏 a positive amount of the consumption good at date 1. 

However, for such a contract to be effective it is necessary that it be  binding  if and only if on 

date 1 agent 𝑏 is found to have given agent 𝑎 the amount agreed upon on date 0. Only such a 

form of contracting can facilitate trades that lead to an efficient and individually rational 

allocation.13 

     Example 1 demonstrates that the relative bargaining power of coalitions following their SPNE 

strategies may change as the game unfolds along the history generated by a strategy profile. For 

instance, coalition {2}  can obtain a payoff of only 1 by deviating at 𝑥1, but a payoff of 3 by 

deviating at 𝑥2.  That is so, despite the fact that coalition {2} follows a SPNE strategy in the 

induced game Γ𝑥1
{2}, because 𝑥2 is not reached in the history generated by the SPNE of the 

induced game  Γ𝑥1
{2}.  In more general terms, that is so because a SPNE strategy of a coalition ({1 

2} in Example 1) is not necessarily a SPNE strategy of a proper subcoalition ({2} in Example 1).  

                                                           
12 Clearly, this form of contracting implicitly assumes that a mechanism to enforce contracts which are conditionally 
binding is in place. E. g., it can be a legal framework which allows imposition of penalties for not fulfilling a 
contract the conditions of which have been met by all agents concerned. Other enforcement mechanisms that have 
been considered in the literature include institution of money (Gale, 1978) or transfers of capital (Becker and 
Chakrabarti, 1995).   
13 It is easily seen that in this example only those contracts which lead to an efficient and individually rational 
allocation are credible.  
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     To conclude our discussion of Example 1, the relative bargaining power of coalitions 

following their SPNE strategies may change as the game unfolds along the history generated by 

a strategy profile and a core concept which takes account of this fact implies a smaller core. The 

payoff vectors that belong to the so-defined core are credible contracts. 

3.3 Definition of the 𝛾-core of an extensive game  

Given an extensive game Γ and the consequent family of extensive games Γ𝑥 and Γ𝑥𝑆, let Ω𝑥 and 

Ω𝑥𝑆 denote the corresponding games in strategic form. We shall conveniently denote Ω0 simply 

by Ω. Let 𝑤𝛾(𝑆; 𝑥) denote the highest SPNE payoff of coalition 𝑆 in the game Γ𝑥𝑆, in which it is 

active.14 Then, 𝑤𝛾(𝑆; 𝑥) is equal to the SPNE payoff of coalition 𝑆  in the induced strategic 

game Ω𝑥𝑆 . 16F

15 Thus, the function 𝑤𝛾(𝑆; 𝑥) is the characteristic function of the strategic game Ω𝑥 

and the core of the characteristic function game 𝑤𝛾(𝑆; 𝑥) is the 𝛾-core of the strategic game 

Ω𝑥.16 In particular, the function 𝑤𝛾(𝑆; 0), 𝑆 ⊂ 𝑁, is the characteristic function of the strategic 

game Ω and the core of the characteristic function game 𝑤𝛾(𝑆; 0) is the 𝛾-core of the strategic 

game Ω. 

     Given an extensive game Γ,  let 𝑧 denote the terminal node of the history generated by a 

strategy profile. Then, a vector (𝑝1, … ,𝑝𝑛) is a feasible payoff vector for the strategy profile if  

∑ 𝑝𝑖𝑖∈𝑁 = 𝑢𝑁𝑁(𝑧).  Notice that a payoff vector may be feasible for more than one strategy profile 

and the histories generated by these strategy profiles may be different. By a history leading to a 

payoff vector (𝑝1, … ,𝑝𝑛) we mean a history with a terminal node 𝑧 such that 𝑢𝑁𝑁(𝑧) = ∑ 𝑝𝑖𝑖∈𝑁 .  

      Notice that the history generated by any strategy profile begins at the origin of game Γ and all 

coalitions including coalition 𝑁 are active at least at the origin. Given the payoffs 𝑤𝛾(𝑆; 𝑥), 

𝑥 ∈ 𝑋 and 𝑆 an active coalition at 𝑥, the 𝛾-core of the extensive game Γ consists of all payoff 

vectors with the property that no coalition can improve upon its payoff by deviating not only at 

                                                           
14 Such a payoff can obviously be found by backward induction in the induced game Γ𝑥𝑆 , even with infinite strategy 
sets if the strategy sets are compact. 
15 Thus, 𝑤𝛾(𝑆; 𝑥) is the payoff that coalition 𝑆 can credibly obtain in the strategic game Ω𝑥

𝑆 . 
16 Notice that if coalition 𝑆 is active at 𝑥, then so is every coalition 𝑆 ′ ⊂ 𝑆, and therefore 𝑤𝛾(𝑆; 𝑥) meets the standard 
definition of a characteristic function. 
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the origin but also at any decision node along the histories leading to the terminal nodes for 

which the payoff vectors are  feasible.17   

Definition 1 The 𝛾-core of an extensive game Γ is the set of all payoff vectors (𝑝1, … ,𝑝𝑛) such 

that for each coalition 𝑆 ⊂ 𝑁,  𝑤𝛾(𝑆; 𝑥) ≤ ∑ 𝑝𝑖𝑖∈𝑆  at all decision nodes 𝑥 along the histories 

leading to the payoff vector (𝑝1, … ,𝑝𝑛).18            

     Let 𝑧∗ ∈ 𝑍 be a terminal node such that 𝑢𝑁𝑁(𝑧∗) ≥ 𝑢𝑁𝑁(𝑧) for all 𝑧 ∈ 𝑍. Such a terminal node 

exists if the extensive game Γ is finite or if the strategy sets are compact and the payoff functions 

are continuous.  Definition 1 implies that the 𝛾-core of the extensive game Γ must be a subset of 

the set of feasible payoff vectors (𝑝1, … ,𝑝𝑛) such that ∑ 𝑝𝑖𝑖∈𝑁 = 𝑢𝑁𝑁(𝑧∗). That is because the 

origin of the extensive game Γ is a decision node along every history of the game and coalition 𝑁 

is active at the origin. Thus, 𝑢𝑁𝑁(𝑧∗) = 𝑤𝛾(𝑁; 0) and there are no other feasible payoff vectors 

(𝑝1, … ,𝑝𝑛) which are immune to deviations by coalition 𝑁.   

     Notice that Definition 1 takes into account the possibility that the terminal node at which the 

total payoff  𝑢𝑁𝑁(𝑧) is highest may not be unique and that the payoffs that coalitions can obtain 

along the nodes of different histories leading to different terminal nodes with highest total payoff 

may be different. As we discuss below, this implies a concept which may be considered as “too 

strong” and the so-defined 𝛾-core may be empty. Therefore, we introduce later a weaker notion 

of the 𝛾-core such that the weaker 𝛾-core is non-empty if the 𝛾-core is, but the converse is not 

true.   

     Let 𝑍∗ ⊂ 𝑍  be such that if 𝑧∗ ∈ 𝑍∗, then 𝑢𝑁𝑁(𝑧∗) ≥ 𝑢𝑁𝑁(𝑧) for all 𝑧 ∈ 𝑍. Let 𝑋(𝑧∗) denote the 

set of decision nodes along the history that leads to the terminal node 𝑧∗.  Let 𝑋∗ = ∪ 𝑋(𝑧∗) 

where the union is taken over all 𝑧∗ ∈ 𝑍∗.   

     Definition 1 implies that the 𝛾-core of an extensive game Γ consists of payoff vectors from 

the set { (𝑝1, … ,𝑝𝑛): ∑ 𝑝𝑖𝑖∈𝑁 = 𝑢𝑁𝑁(𝑧∗)} which are immune to deviations by all coalitions which 

are active at the decision nodes in the set 𝑋∗. Since the origin 0 ∈ 𝑋∗ and all coalitions are active 

                                                           
17 As Example 1 illustrates, the subgame perfect equilibrium payoffs that a coalition can obtain as the game unfolds 
along the history generated by a strategy profile may be higher. 
18 Remember that for each coalition 𝑆, the function 𝑤𝛾(𝑆, 𝑥) is defined for only those decision nodes 𝑥 at which 
coalition 𝑆 is active. 
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at the origin, the payoff vectors must additionally satisfy at least 𝑤𝛾(𝑆; 0) ≤ ∑ 𝑝𝑖𝑖∈𝑆  for all 

𝑆 ⊂ 𝑁.   Thus, the 𝛾-core of an extensive game Γ is a subset of the 𝛾-core of the corresponding 

strategic game Ω. Taking account of the subgame perfect payoffs that active coalitions can obtain 

at decision nodes in the set  𝑋∗ leads to refinements of the 𝛾-core of the strategic game Ω.  

      Observe that in Example 1, the 𝛾-core of the strategic game Ω is the set of payoff vectors 

(𝑝1,𝑝2) such that 𝑝1 + 𝑝2 = 6,𝑝1 ≥ 2,𝑝2 ≥ 1, but the 𝛾-core of the extensive game Γ is a 

smaller set of payoff vectors (𝑝1,𝑝2) such that 𝑝1 + 𝑝2 = 6,𝑝1 ≥ 2, and  𝑝2 ≥ 3.  

3.4 Properties of the 𝛾-core 

We establish additional properties of the core concept introduced. One of the important 

properties is that the 𝛾-core of an extensive game is equivalent to the core of a characteristic 

function game. For each 𝑆 ⊂ 𝑁, let  

𝑤𝛾(𝑆) =  max
𝑥

 𝑤𝛾(𝑆; 𝑥) 

where the maximum is taken over all nodes 𝑥 ∈ 𝑋∗ at which 𝑆 is active. Since the origin 0 ∈ 𝑋∗, 

each coalition 𝑆 is active at least at some 𝑥 ∈ 𝑋∗. Clearly, 𝑤𝛾(𝑁) = 𝑢𝑁𝑁(𝑧∗),  for all 𝑧∗ ∈ 𝑍∗. We 

shall refer to the function 𝑤𝛾(𝑆) as the 𝛾-characteristic function of the extensive game Γ. 

Proposition 1 The 𝛾-core of the extensive game Γ is equal to the core of the 𝛾-characteristic 

function game 𝑤𝛾.  

Proof: Let (𝑝1, … ,𝑝𝑛) be a payoff vector which is in the core of the characteristic function game 

𝑤𝛾. Then, ∑ 𝑝𝑖𝑖∈𝑁 = 𝑤𝛾(𝑁) and  ∑ 𝑝𝑖𝑖∈𝑆 ≥  𝑤𝛾(𝑆), 𝑆 ⊂ 𝑁. By definition of the characteristic 

function 𝑤𝛾, for each 𝑆 ⊂ 𝑁,𝑤𝛾(𝑆) ≥ 𝑤𝛾(𝑆; 𝑥) at each decision node 𝑥 ∈ 𝑋∗ at which 𝑆 is 

active and 𝑤𝛾(𝑁) = 𝑢𝑁𝑁(𝑧∗), for all 𝑧∗ ∈ 𝑍∗. The above inequalities imply that for each  𝑆 ⊂

𝑁,∑ 𝑝𝑖𝑖∈𝑆  ≥ 𝑤𝛾(𝑆) ≥ 𝑤𝛾(𝑆; 𝑥) at each 𝑥 ∈ 𝑋∗ at which 𝑆 is active and the equalities imply  

∑ 𝑝𝑖𝑖∈𝑁 = 𝑢𝑁𝑁(𝑧∗) for all 𝑧∗ ∈ 𝑍∗, that is (𝑝1, … ,𝑝𝑛) is a feasible payoff vector for all terminal 

nodes 𝑧∗ with the highest payoff for coalition 𝑁. Hence,  (𝑝1, … ,𝑝𝑛) meets all conditions for a 

payoff vector to be in the 𝛾-core of the extensive game Γ.     
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     Conversely, let (𝑝1, … , 𝑝𝑛) be a payoff vector in the 𝛾-core of the extensive game Γ, then for 

each 𝑆 ⊂ 𝑁,  𝑤𝛾(𝑆; 𝑥) ≤ ∑ 𝑝𝑖𝑖∈𝑆  at each decision node 𝑥 along the history generated by any 

strategy profile for which the payoff vector (𝑝1, … ,𝑝𝑛) is feasible. Since the origin 0 is a 

decision node of the history generated by any strategy profile and coalition 𝑁 is active at the 

origin, ∑ 𝑝𝑖𝑖∈𝑁 ≥ 𝑤𝛾(𝑁; 0). Furthermore, since (𝑝1, … , 𝑝𝑛) is a feasible payoff vector, ∑ 𝑝𝑖𝑖∈𝑁 ≤

𝑤𝛾(𝑁, 0) = 𝑤𝛾(𝑁). Thus, ∑ 𝑝𝑖𝑖∈𝑁 = 𝑤𝛾(𝑁)  and (𝑝1, … ,𝑝𝑛) is a feasible payoff vector for any 

history of the game leading to a 𝑧∗ ∈ 𝑍∗. Therefore, for each 𝑆 ⊂ 𝑁,  𝑤𝛾(𝑆; 𝑥) ≤ ∑ 𝑝𝑖𝑖∈𝑆  at each 

𝑥 ∈ 𝑋∗. Thus, by definition, ∑ 𝑝𝑖𝑖∈𝑆 ≥  𝑤𝛾(𝑆) for each 𝑆 ⊂ 𝑁, and the payoff vector (𝑝1, … , 𝑝𝑛) 

is in the core of the characteristic function game 𝑤𝛾. This proves that the core of the 

characteristic function game 𝑤𝛾 is equal to the 𝛾-core of the extensive game Γ.     ∎ 

     Proposition 1 has important consequences. There is a vast literature on games in characteristic 

function form. Proposition 1 implies that the concepts and ideas from that literature can be 

applied to games in extensive form.19 However, the fact that the 𝛾-characteristic function is 

generated by an extensive game makes possible additional analysis. For instance, what is the 

relationship between the 𝛾-core of an extensive game Γ and the 𝛾-cores of the corresponding 

family of strategic games Ω𝑥, 𝑥 ∈ 𝑋∗? It was noted above that the former is a refinement of the 

𝛾-core of the strategic game Ω0(= Ω). We now make that more precise.  

    Notice that the family of strategic games Ω𝑥, 𝑥 ∈ 𝑋∗, includes at least one game with 𝑛 

players, namely, Ω (=Ω0). But it may include more. In fact, all games in the family may be 

games with 𝑛 players. For example, in a repeated strategic game or the games in the three 

applications introduced below. 

Proposition 2 The 𝛾-core of an extensive game Γ with 𝑛 players is a subset of the intersection of 

the 𝛾-cores of the strategic games with 𝑛 players in the corresponding family of games Ω𝑥, 

𝑥 ∈ 𝑋∗. If all games in the family have 𝑛 players then it is equal to the intersection and the 𝛾-

core of Γ is non-empty if and only if the 𝛾-core of each subgame Γ𝑥, 𝑥 ∈ 𝑋∗, is non-empty. 

Proof:  Let (𝑝1, … ,𝑝𝑛) be a payoff vector in the 𝛾-core of Γ. Then, by definition, for each 

coalition 𝑆 ⊂ 𝑁,  𝑤𝛾(𝑆) ≤ ∑ 𝑝𝑖𝑖∈𝑆  and 𝑤𝛾(𝑆; 𝑥) ≤ 𝑤𝛾(𝑆) for all  𝑥 ∈ 𝑋∗. Therefore, for 
                                                           
19 One immediate implication is that an extensive game admits a non-empty 𝛾-core if and only if the derived 
characteristic function game 𝑤𝛾 is balanced.   
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each 𝑥 ∈ 𝑋∗, 𝑤𝛾(𝑆; 𝑥) ≤ ∑ 𝑝𝑖𝑖∈𝑆  for all 𝑆 ⊂ 𝑁. Furthermore, let Ω𝑥, 𝑥 ∈ 𝑋∗, be a game with 𝑛 

players, then 𝑥 is a decision node at which coalition 𝑁 is active. Therefore, 𝑤𝛾(𝑁; 𝑥) = 𝑤𝛾(𝑁) = 

∑ 𝑝𝑖𝑖∈𝑁 . This shows that (𝑝1, … , 𝑝𝑛) belongs to the 𝛾-core of each strategic game with 𝑛 players 

in the family of strategic games Ω𝑥, 𝑥 ∈ 𝑋∗. Conversely, suppose contrary to the assertion that a 

payoff vector (𝑝1, … ,𝑝𝑛) is in the 𝛾-core of Γ, but not in the 𝛾-core of some strategic game 

Ω𝑥, 𝑥 ∈ 𝑋∗, with 𝑛 players. Then, 𝑤𝛾(𝑆; 𝑥) > ∑ 𝑝𝑖𝑖∈𝑆  for some 𝑆 ⊂ 𝑁. But that implies 𝑤𝛾(𝑆) >

∑ 𝑝𝑖𝑖∈𝑆  for some 𝑆 ⊂ 𝑁, since by definition 𝑤𝛾(𝑆; 𝑥) ≤ 𝑤𝛾(𝑆) for all 𝑥 ∈ 𝑋∗. Thus, our 

supposition is wrong and the  𝛾-core of Γ is a subset of the intersection of the 𝛾-cores of the 

strategic games with 𝑛 players in the family of strategic games Ω𝑥, 𝑥 ∈ 𝑋∗. 

     If (𝑝1, … ,𝑝𝑛) is a payoff vector in the 𝛾-core of Γ, then, by definition, it must satisfy the 

constraints 𝑤𝛾(𝑆; 𝑥) ≤ ∑ 𝑝𝑖𝑖∈𝑆  also at all decision nodes 𝑥 ∈ 𝑋∗ such that not all 𝑛 players are 

active at 𝑥. Therefore, the set of payoff vectors in the 𝛾-core of Γ is a subset of the intersection of 

the 𝛾-cores of the strategic games with 𝑛 players in the family Ω𝑥, 𝑥 ∈ 𝑋∗, but equal to the 

intersection if no game in the family has fewer than 𝑛 players. 

     If all games in the family Ω𝑥, 𝑥 ∈ 𝑋∗ have 𝑛 players, then the set of decision nodes along any 

history generated by any strategy profile that maximizes the payoff of coalition 𝑁  in a subgame 

Γ�̅�, �̅� ∈ 𝑋∗, is a subset of the set 𝑋∗. Therefore, the 𝛾-core of the subgame Γ�̅� is equal the 

intersection of the 𝛾-cores of a subset of games in the family of games Ω𝑥, 𝑥 ∈ 𝑋∗. If this 

intersection is empty, then the intersection of all strategic games in the family Ω𝑥, 𝑥 ∈ 𝑋∗ is also 

empty. Therefore, the 𝛾-core of Γ is non-empty, only if the 𝛾-core of each subgame Γ�̅�, �̅� ∈ 𝑋∗, is 

non-empty. Conversely, since Γ = Γ0 and 0 ∈ 𝑋∗, 𝛾-core of Γ is non-empty if the 𝛾-cores of all 

subgames Γ𝑥, 𝑥 ∈ 𝑋∗, are non-empty.     ■ 

     For each coalition 𝑆 ⊂ 𝑁, the functions 𝑤𝛾(𝑆; 𝑥), 𝑥 ∈ 𝑋∗, determine the lower bounds on the 

𝛾-characteristic function 𝑤𝛾(𝑆). Since these lower bounds may be attained for different 

coalitions at different decision nodes 𝑥,  the 𝛾-characteristic function 𝑤𝛾(𝑆) may not inherit all 

properties of the functions 𝑤𝛾(𝑆; 𝑥) unless the bounds are all attained at the same decision node 
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𝑥 ∈ 𝑋∗.20 Indeed, if the family of strategic games Ω𝑥, 𝑥 ∈ 𝑋∗, includes  a game with 𝑛 players, 

say Ω𝑥∗ such that for each 𝑆 ⊂ 𝑁, 𝑤𝛾(𝑆) = 𝑤𝛾(𝑆; 𝑥∗), then the extensive game Γ  and the 

strategic game Ω𝑥∗ have the same properties, since the corresponding characteristic functions of 

the two games are equal. If 𝑥∗ = 0, the 𝛾-cores of the extensive game Γ and the strategic game 

Ω (= Ω0) are equal and the 𝛾-core of the strategic game does not go through any refinement as 

the game unfolds along the nodes in the set 𝑥 ∈ 𝑋∗. But if 𝑥∗ ≠ 0, the 𝛾-core of the extensive 

game Γ is smaller than the 𝛾-core of the strategic game Ω. 

     Ray (1989) shows that the standard core is credible in the sense that if one limits coalitional 

deviations to those deviations that are immune to further deviations by subcoalitions, the core is 

unaffected. The 𝛾-core of an extensive game satisfies the same property, i.e., the 𝛾-core of an 

extensive game is the same whether or not one requires coalitional deviations to be immune to 

further coalitional deviations. 

     We need the following definitions. Given a characteristic function game 𝑤, deviations by 

singleton coalitions are credible as no further deviations by subcoalitions are possible. 

Proceeding recursively, a deviation (𝑝1, … ,𝑝𝑛) by a coalition 𝑆 of size 𝑘, 1≤ 𝑘 ≤ 𝑛 is credible if 

∑ 𝑝𝑖𝑖∈𝑆 = 𝑤(𝑆) and there is no proper subcoalition 𝑆′ ⊂ 𝑆 and a credible deviation 𝑞 by 𝑆′ such 

that ∑ 𝑞𝑖𝑖∈𝑆′ = 𝑤(𝑆′) and 𝑞𝑖 > 𝑝𝑖 for all 𝑖 ∈ 𝑆′.  

     The core of a characteristic function game 𝑤 is credible if for each core payoff vector 𝑝,  

there is no coalition 𝑆 and a credible deviation 𝑞 by 𝑆 such that  ∑ 𝑞𝑖𝑖∈𝑆 = 𝑤(𝑆) and 𝑞𝑖 > 𝑝𝑖 for 

all 𝑖 ∈ 𝑆. 

Proposition 3 The 𝛾-core of an extensive game Γ is credible. 

Proof: In view of Proposition 1, we need to only show that the core of the corresponding game in 

characteristic function form 𝑤𝛾 is credible. If coalitions can choose only credible deviations, 

then the so-defined core cannot be smaller than the usual core of the characteristic function game 

𝑤𝛾. Suppose, contrary to the assertion, that it is larger and not identical. Accordingly, suppose 
                                                           

20 However, that is not peculiar to the 𝛾-core of an extensive game. The same is also true for the SPNE of an 
extensive game which may not have the same properties as the SPNE of proper subgames unless the extensive game 
has additional structure in place.  
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that a payoff vector 𝑞 belongs to the larger core, but not to the usual core of the characteristic 

function game 𝑤𝛾. Thus, there is a coalition 𝑆 ⊂ 𝑁 and a deviation 𝑝 which is not credible and 

such that ∑ 𝑝𝑖𝑖∈𝑆 = 𝑤𝛾(𝑆) and 𝑝𝑖 > 𝑞𝑖 for all 𝑖 ∈ 𝑆. Since 𝑝 is not credible, there is a coalition 

𝑆′ ⊂ 𝑆 and a credible deviation 𝑝′ by coalition 𝑆′ such that ∑ 𝑝𝑖′𝑖∈𝑆′ = 𝑤𝛾(𝑆′) and 𝑝𝑖′ > 𝑝𝑖 for all 

𝑖 ∈ 𝑆′. But that implies there is a coalition 𝑆′ ⊂ 𝑁 and a credible deviation 𝑝′ by 𝑆′ such that  

∑ 𝑝𝑖′𝑖∈𝑆′ = 𝑤𝛾(𝑆′)  and 𝑝𝑖′ > 𝑞𝑖 which contradicts our supposition that 𝑞 belongs to the larger 

core. This proves the proposition.     ■ 

3.5 An alternative equivalent definition and a weaker 𝛾-core concept 

To motivate the weaker notion of the 𝛾-core, we introduce first an alternative, but equivalent 

definition of the 𝛾-core of an extensive game. 

      For each 𝑧∗ ∈ 𝑍∗, let 𝑤𝑧∗
𝛾 (𝑆) = max𝑥 𝑤𝛾 (𝑆; 𝑥), 𝑆 ⊂ 𝑁, where the maximum is taken over all 

nodes 𝑥 ∈ 𝑋(𝑧∗) at which 𝑆 is active. Since the origin of the game 0 ∈ 𝑋(𝑧∗), each coalition 𝑆 is 

active at least at some 𝑥 ∈ 𝑋(𝑧∗), and 𝑤𝑧∗
𝛾 (𝑁) = 𝑢𝑁𝑁(𝑧∗). We shall refer to the function 

𝑤𝑧∗
𝛾 (𝑆),𝑆 ⊂ 𝑁, the  𝛾-characteristic function corresponding to the terminal node 𝑧∗, and the core 

of the characteristic function game 𝑤𝑧∗
𝛾  as the  𝛾-core corresponding to the terminal node 

𝑧∗ ∈ 𝑍∗. Since 𝑤𝛾(𝑆) = max𝑧∗ 𝑤𝑧∗
𝛾 (𝑆) where the maximum is taken over all 𝑧∗ ∈ 𝑍∗, the  𝛾-core 

of an extensive game in terms of Definition 1 is equal to the intersection of the  𝛾-cores 

corresponding to the terminal nodes 𝑧∗ ∈ 𝑍∗. 

     This equivalence suggests an additional interpretation of the 𝛾-core of an extensive game, 

namely that the 𝛾-core is a refinement of the set of 𝛾-cores corresponding to the terminal nodes 

with highest payoff for the grand coalition. However, this refinement, like most others in game 

theory, though intuitive leads to a concept which in a sense is “too strong”, since it implies that 

the 𝛾-core of an extensive game is empty if the 𝛾-core corresponding to some terminal node with 

highest payoff for the grand coalition is empty.21 Since we regard the 𝛾-core as the rule for the 

distribution of gains from coalitional choices, we assume that the grand coalition will not choose 

a strategy that leads to a terminal node for which the corresponding 𝛾-core is empty; thus, we 
                                                           
21 Many selection procedures in game theory are motivated by intuitive criteria. However, they can sometimes lead 
to an empty solution set even though the game has a natural solution. E.g. a strategic game with a unique Nash 
equilibrium may have no strong Nash equilibrium. 
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restrict the intersection only to those 𝛾-cores corresponding to terminal nodes which are non-

empty.  We shall refer to the so-defined weaker notion as the weak 𝛾-core of an extensive game. 

In most applications there is no difference between the two notions because either the set of 

terminal nodes 𝑍∗ with highest payoff for the grand coalition is a singleton or the 𝛾-core 

corresponding to each terminal node 𝑧∗ ∈ 𝑍∗ is non-empty.22 However, in some instances in 

which the 𝛾-core is empty, the weak 𝛾-core may be non-empty. 

     It is easily verified that the weak 𝛾-core satisfies the same properties as in propositions 1, 2, 

and 3. However, it is not really an alternative core concept. It is, in fact, a complementary 

concept which differs and can be useful only in extensive games in which the 𝛾-core is empty.   

3.6 Strong subgame-perfect Nash equilibrium and the 𝛾-core 

Rubinstein (1980) introduces a notion of “strong perfect equilibrium” for a super game in which 

a strategic game is played infinitely many times. Using the conceptual framework developed in 

the present paper, we introduce a notion of strong subgame-perfect Nash equilibrium (SSPNE) of 

a general extensive game.23 We need some additional notation. 

     Given game Γ in extensive form, we denote, with some notational inconsistency, the 

corresponding strategic game Ω by [{𝑢𝑖}𝑖∈𝑁, {𝑇𝑖}𝑖∈𝑁], where  𝑇𝑖 is the strategy set of player 𝑖, 

𝑇 = 𝑇1 × ⋯× 𝑇𝑛  is the set of strategy profiles, 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ 𝑇 is a strategy profile, and 

𝑢𝑖(𝑡1, … , 𝑡𝑛) is the payoff function of player 𝑖. 25F

24 Given 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ 𝑇, let 𝑡𝑆 ≡

(𝑡𝑖)𝑖∈𝑆, 𝑡−𝑆 ≡ (𝑡𝑗)𝑗∈𝑁\𝑆, and (𝑡𝑆, 𝑡−𝑆) ≡ 𝑡 = (𝑡1, … , 𝑡𝑛). Similarly, let 𝑇𝑆 ≡×𝑖∈𝑆 𝑇𝑖 and  𝑇−𝑆 ≡

×𝑖∈𝑁\𝑆 𝑇𝑖. Finally, for each 𝑡�̅� ∈ 𝑇𝑆, let Γ/𝑡−̅𝑆 denote the game restricted to the players in 𝑆 by 

the strategies 𝑡−̅𝑆 for the players in 𝑁\𝑆 and let Ω/𝑡−̅𝑆 = [{𝑢�𝑖}𝑖∈𝑆, {𝑇𝑖}𝑖∈𝑆], where 𝑢�𝑖(𝑡𝑆) =

𝑢𝑖(𝑡𝑆, 𝑡−̅𝑆) for all 𝑖 ∈ 𝑆 and 𝑡𝑆 ∈ 𝑇𝑆, denote the corresponding restricted strategic game. 

                                                           
22 An extensive game admits a unique SPNE if no player has the same payoff at two terminal nodes whereas it 
admits a unique 𝛾-core if the grand coalition does not have the same payoff at two terminal nodes. 
23 Aumann (1959) introduces the notion of strong Nash equilibrium of a strategic game. 
24 In terms of the earlier notation, 𝑢𝑖(𝑡1, … , 𝑡𝑛) = 𝑢𝑖(𝑧) where 𝑧 is the terminal node generated by the strategy 
profile (𝑡1, … , 𝑡𝑛). 
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Definition 2 Given an extensive game Γ, a strategy profile 𝑡̅ = (𝑡1̅, … , 𝑡�̅�) ∈ 𝑇 is a strong 

subgame perfect Nash equilibrium of Γ, if (𝑡�̅�, 𝑡−̅𝑆) = 𝑡̅ is a subgame perfect Nash equilibrium of 

every induced game Γ𝑆, 𝑆 ⊂ 𝑁.  

     Unlike the 𝛾-core of an extensive game, a SSPNE requires the same strategy 𝑡̅ to be a SPNE 

of every induced game. Notice that for each coalition 𝑆 ⊂ 𝑁,  if 𝑡̅ = (𝑡�̅�, 𝑡−̅𝑆) is a SSPNE of an 

extensive game Γ, then it is also a SSPNE of every restricted game Γ/𝑡−̅𝑆. This suggests the 

following recursive but equivalent definition of SSPNE which is sometimes more convenient to 

use. 

Definition 3 (1) In a single player extensive game Γ, 𝑡̅ ∈ 𝑇 is a SSPNE if and only if 𝑡̅ is a SPNE 

of Γ. (2) Let 𝑛 > 1 and assume that SSPNE has been defined for extensive games with fewer 

than 𝑛 players. For any extensive game Γ with 𝑛 players, 𝑡̅ ∈ 𝑇 is a SSPNE of Γ if for all proper 

subsets 𝑆 ⊂ 𝑁, 𝑡�̅� is a SSPNE of the restricted game Γ/𝑡−̅𝑆 and if there does not exist a strategy 

𝑡 ∈ 𝑇 such that ∑ 𝑢𝑖(𝑡 ) > ∑ 𝑢𝑖(𝑡 ̅).𝑖∈𝑁  𝑖∈𝑁  

Proposition 4 In the class of extensive games Γ such that each induced game Γ𝑆, 𝑆 ⊂ 𝑁 , admits 

a unique SPNE, if a game admits a SSPNE, then the SSPNE is unique and the set of 𝛾-core 

payoff vectors is equal to the unique SSPNE payoff vector. But if the game admits no SSPNE, 

the 𝛾-core of the game may still be non-empty.  

Proof:  If Γ admits a SSPNE, then it must be unique. That is because if not, then some induced 

games Γ𝑆 must admit more than one SPNE, which contradicts our supposition that each induced 

game Γ𝑆 admits a unique SPNE. Therefore, let  𝑡̅ ∈ 𝑇 denote the unique SSPNE. Then,  𝑡̅ =

(𝑡�̅�, 𝑡−̅𝑆)  is a unique SPNE of every induced game Γ𝑆, 𝑆 ⊂ 𝑁. and therefore it also induces a 

unique SPNE in each induced game Γ𝑥𝑆, 𝑆 ⊂ 𝑁, 𝑥 ∈ 𝑋.  

     Since, by supposition, Γ𝑁 admits a unique SPNE, the terminal node with highest payoff for 

coalition 𝑁 is unique. Since 𝑡̅ is the unique SPNE of every induced game Γ𝑆, 𝑆 ⊂ 𝑁,  the SPNE 

of each  induced game Γ𝑆, 𝑆 ⊂ 𝑁, generates a history which is identical to the history leading to 

the terminal node with the highest payoff for coalition 𝑁. Let 𝑋∗ denote the set of decision nodes 

along the history leading to the terminal node with the highest payoff for 𝑁. Then, for each  

𝑥 ∈ 𝑋∗,  𝑤𝛾(𝑆; 𝑥) = 𝑤𝛾(𝑆; 0) = ∑ 𝑢𝑖(𝑡̅ ),𝑖∈𝑆 𝑆 ⊂ 𝑁,  since 𝑋∗ is the set of decision nodes along 
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the history generated by the unique SPNE of Γ𝑆, 𝑆 ⊂ 𝑁. Thus, 𝑤𝛾(𝑆) = 𝑤𝛾(𝑆; 0), 𝑆 ⊂ 𝑁. 

Therefore, if (𝑝1, … ,𝑝𝑛) is a 𝛾-core payoff vector, then it must satisfy ∑ 𝑝𝑖 = 𝑤𝛾(𝑁)𝑖∈𝑁 =

∑ 𝑢𝑖(𝑡)̅𝑖∈𝑁  and  ∑ 𝑝𝑖 ≥ 𝑤𝛾(𝑆)𝑖∈𝑆 = ∑ 𝑢𝑖(𝑡̅).𝑖∈𝑆  Which implies that the SSPNE payoff vector 

(𝑢1(𝑡 ̅), … ,𝑢𝑛(𝑡 ̅)) is the unique 𝛾-core payoff vector. This proves the first part of the 

proposition. 

     For the second part of the proposition, note that the extensive game in Example 1 belongs to 

the class of games such that every induced game has a unique SPNE. It does not admit a SSPNE, 

but, as noted earlier, the 𝛾-core of this game is non-empty.     ■   

     Proposition 4 implies that in the class of extensive games in which each induced game admits 

a unique SPNE, the 𝛾-core of an extensive game is a weaker concept than SSPNE. Proof of the 

proposition also illustrates the point made earlier that the 𝛾-characteristic function 𝑤𝛾(𝑆) and the 

functions  𝑤𝛾(𝑆; 𝑥), 𝑥 ∈ 𝑋,  may be closely related if the extensive game has additional structure. 

      Any extensive game which admits a unique SPNE and such that the induced games also have 

the same structure as the original game belongs to the class of games in Proposition 4. Only in a 

subset of these games the SPNE may be strong, and the 𝛾-core payoffs may be equal to the 

SSPNE payoffs. But the subset of games which admit nonempty 𝛾-cores is larger.25 A more 

general comparison between SSPNE and the 𝛾-core does not seem possible, but the equivalence 

between the SSPNE and the 𝛾-core payoffs is not restricted to the class of games in Proposition 4 

alone. It can be shown to hold in any extensive game such that the payoff of each coalition 

𝑆 ⊂ 𝑁 is highest under the same SPNE strategy 𝑡̅ than under any other SPNE of the induced 

game Γ𝑆. We consider two applications of the proposition.  

Example 2 Two-player bargaining game of alternating offers (Rubinstein, 1982): Two players, 1 

and 2, bargain to split 1 dollar. The rules are as follows: The game denoted by Γ begins in period 

1 in which player 1 makes an offer of a split (a real number between 0 and 1) to player 2, which 

player 2 either accepts or rejects. Acceptance by player 2 ends the game and the proposed split is 

immediately implemented. If player 2 rejects, nothing happens until period 2. In period 2, the 

                                                           
25 The game in Example 1 belongs to the class of games in Proposition 4 and admits a nonempty 𝛾-core, but no 
SSPNE. Similarly the dynamic game in Section 4 belongs to the class and, as will be shown, admits a nonempty 𝛾-
core, but no SSPNE. 
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players’ roles are reversed with player 2 making an offer of split to player 1 and player 1 then 

accepting or rejecting it. The bargaining can potentially go on forever. If that indeed happens, 

both players get zero. Each player 𝑖 “discounts” the future using the discount factor 𝛿𝑖 ∈ (0 1). 

That is, a dollar received by player 𝑖 in period 𝑡 is worth only 𝛿𝑖𝑡−1 in period 1 dollars.  

     As is well-known, this game has a unique SPNE, in which 

• Player 1 always offers 𝑝∗ and accepts an offer if and only if 𝑞1 ≥ 𝑞1∗ 

• Player 2 always offers 𝑞∗ and accepts a proposal 𝑝 if and only if 𝑝2 ≥ 𝑝2∗, 

where  

𝑝∗ = � 1−𝛿2
1−𝛿1𝛿2

, 𝛿2(1−𝛿1)
1−𝛿1𝛿2

�  

𝑞∗ = �𝛿1(1−𝛿2)
1−𝛿1𝛿2

, 1−𝛿1
1−𝛿1𝛿2

�.  

The outcome of this equilibrium strategy profile is that player 1 offers 𝑝∗ at the start of the game, 

and player 2 immediately accepts this proposal. Therefore, 𝑝∗  is a unique SPNE payoff vector of 

game Γ and since there are only two players the unique SPNE of Γ is also a unique SPNE of both 

the induced games Γ{1} and Γ{2}. Observe that 𝑝1∗ + 𝑝2∗ = 1 and thus the unique SPNE is actually 

a unique SSPNE of Γ. Therefore, by Proposition 4, 𝑝∗ is a unique 𝛾-core payoff vector of the 

extensive game Γ.  

     The example makes use of the fact that there are only two players and therefore the unique 

SPNE of the game is also a unique SPNE of the two induced games. We now extend this 

equivalence between the 𝛾-core payoff vectors and the equilibrium payoffs in two-player 

bargaining game  to a three player bargaining game by assuming that the players are identical 

and can use only stationary strategies.   

Example 3 Three-player bargaining game of alternating offers: The players are identical, i.e., 

the discount factors 𝛿1 = 𝛿2 = 𝛿3 = 𝛿. An offer 𝑝𝑖 = (𝑝𝑖1.𝑝𝑖2,𝑝𝑖3) by player 𝑖 in period 𝑡 is first 

considered by player  𝑖 + 1 (mod 3), who may accept or reject it. If he accepts it, then player 

𝑖 + 2 (mod) may accept or reject it. If both accept it, then the game ends and 𝑝𝑖 is implemented. 

Otherwise, player 𝑖 + 1 (mod 3) makes the next offer, in period 𝑡 + 1.  
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    Each player can only use stationary strategies, in which he makes the same offer whenever it 

is his turn to make an offer and uses the same criterion to accept or reject offers whenever he is 

the responder. We denote this three-player bargaining game by Γ.     

      As in the two-player bargaining game, it is easily seen that the three-player bargaining game 

Γ has a unique SPNE in stationary strategies in which  

• Player 𝑖 always offers 𝑝𝑖∗ and accepts a proposal 𝑝𝑖+1 or 𝑝𝑖+2 if and only if 𝑝(𝑖+1)𝑖 ≥

𝑝(𝑖+1)𝑖
∗  or 𝑝(𝑖+2)𝑖 ≥ 𝑝(𝑖+2)𝑖

∗ , where 

𝑝1∗ = � 1
1+𝛿+𝛿2

, 𝛿
1+𝛿+𝛿2

, 𝛿2

1+𝛿+𝛿2
�  

𝑝2∗ = � 𝛿2

1+𝛿+𝛿2
, 1
1+𝛿+𝛿2

, 𝛿
1+𝛿+𝛿2

�  

𝑝3∗ = � 𝛿
1+𝛿+𝛿2

, 𝛿2

1+𝛿+𝛿2
, 1
1+𝛿+𝛿2

�.  

The outcome of this equilibrium strategy is that player 1 offers 𝑝1∗ and players 2 and 3  

immediately accept it. To verify that the unique SPNE is actually a SSPNE, we need to check 

that given the strategy of one of the players, say 3, the other two players cannot obtain higher 

payoffs. Now given the strategy of player 3, unless the stationary strategies 𝑝1 and 𝑝2 of players 

1 and 2 offer at least  𝛿2

1+𝛿+𝛿2
  and  𝛿

1+𝛿+𝛿2
 , respectively, to player 3, the game will continue 

forever resulting in payoff of 0 to each. This means that given the strategy of player 3, players 1 

and 2 together cannot obtain payoffs which are higher than their current equilibrium payoffs. 

Hence the unique SPNE of Γ is a SSPNE and the 𝛾-core of the extensive game consists of the 

unique SPNE payoff vector. 

3.6 Coalition-proof subgame-perfect equilibrium and the 𝛾-core    

The concepts of 𝛾-core and strong Nash equilibrium of an extensive game introduced above 

assume implicitly that players can make binding commitments. In contrast, Bernheim, Peleg, and 

Whinston (1987) are concerned with cooperation in situations in which the players cannot make 

binding agreements. They propose a concept in which the equilibrium strategy profile is immune 

to “self-enforcing” coalitional deviations. Imposing the same requirement on deviations leads to 



25 
 

an alternative version of the 𝛾-core which is self-enforcing and subgame perfect. We shall refer 

to it as the self-enforcing 𝛾-core of an extensive game. We first note the definition of CPSPNE. 

Definition 4 (1) In a single player extensive game Γ, 𝑡̅ ∈ 𝑇 is a CPSPNE if and only if 𝑡̅ is a 

SPNE of Γ. (2) Let 𝑛 > 1 and assume that CPSPNE has been defined for extensive games with 

fewer than 𝑛 players. For any extensive game Γ with 𝑛 players, 𝑡̅ ∈ 𝑇 is self-enforcing if for all 

proper subsets 𝑆 ⊂ 𝑁, 𝑡�̅� is a CPSPNE of the restricted game Γ/𝑡−̅𝑆.  For any extensive game 

Γ with 𝑛 players, 𝑡̅ ∈ 𝑇 is a CPSPNE if it is self-enforcing and if there does not exist another 

self-enforcing 𝑡 ∈ 𝑇 such that ∑ 𝑢𝑖(𝑡 ) > ∑ 𝑢𝑖(𝑡 ̅).𝑖∈𝑁  𝑖∈𝑁 26 

     Observe that if 𝑡̅ is a CPSPNE of Γ, then  𝑡̅ is a SPNE of Γ and for every 𝑆 ⊂ 𝑁, 𝑡�̅� is a 

CPSPNE of the restricted extensive game Γ/𝑡−̅𝑆.  We show that, as in strategic games,  a SSPNE 

of an extensive game is a CPSPNE.27 

Proposition 5 Every SSPNE of an extensive game Γ is a CPSPNE of Γ. 

Proof: The proof is by induction. The proposition is true for games with a single player. Suppose 

the proposition is true for games with 𝑘 players 1 ≤ 𝑘 < 𝑛. We show that then it is also true for 

games with  𝑘 + 1 players. Let 𝑡̅ ∈ 𝑇 be a SSPNE of a game Γ with 𝑘 + 1 players. Then, as 

noted earlier, 𝑡�̅� is a SSPNE of Γ/𝑡−̅S for each proper subset 𝑆 of players, and , by definition, 

there is no 𝑡 ∈ 𝑇 such that ∑ 𝑢𝑖(𝑡) > ∑ 𝑢𝑖(𝑡̅).𝑘+1
𝑖=1

𝑘+1
𝑖=1   Since the proposition is true for games with 

𝑘 players, 𝑡�̅� is a CPSPNE of Γ/𝑡−̅S for each proper subset 𝑆 of players. Furthermore, there is no 

self-enforcing 𝑡 ∈ 𝑇 such that ∑ 𝑢𝑖(𝑡) > ∑ 𝑢𝑖(𝑡̅).𝑘+1
𝑖=1

𝑘+1
𝑖=1  Hence, 𝑡̅ ∈ 𝑇 is a CPSPNE of game Γ 

with 𝑘 + 1 players.     ■ 

      Given an extensive game Γ and a coalition 𝑆 ⊂ 𝑁, a strategy 𝑡̅ = (𝑡�̅�, 𝑡−̅𝑆) ∈ 𝑇 is a self-

enforcing SPNE of the induced game Γ𝑆 if (𝑡�̅�, 𝑡−̅𝑆) is a SPNE of  Γ and  𝑡�̅� is a CPSPNE of the 

restricted game Γ/𝑡−̅𝑆. We can similarly define a self-enforcing SPNE for each of the induced 

games Γ𝑥𝑆, 𝑥 ∈ 𝑋 and 𝑆 an active coalition at 𝑥. Let 𝑣𝛾(𝑆; 𝑥) denote the self-enforcing SPNE 

payoff of coalition 𝑆 in the induced game Γ𝑥𝑆  in which 𝑆 is active. If a induced game Γ𝑥𝑆 admits 

                                                           
26 This definition, which uses the conceptual framework of our paper, is equivalent to the original definition of 
CPSPNE in Bernheim, Peleg, and Whinston (1987, p. 10). But it is, we believe, less cumbersome. 
27 The converse is obviously not true; the CPSPNE of the game in Example 1 is clearly not a SSPNE. 
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more than one self-enforcing SPNE, then any one with highest payoff for the coalition is selected 

to define  𝑣𝛾(𝑆; 𝑥).  

Definition 5 The self-enforcing 𝛾-core of an extensive game Γ is the set of all payoff vectors 

(𝑝1, … ,𝑝𝑛) such that for each coalition 𝑆 ⊂ 𝑁,  𝑣𝛾(𝑆; 𝑥) ≤ ∑ 𝑝𝑖𝑖∈𝑆  for all decision nodes 𝑥 along 

the histories generated by the strategy profiles leading to the terminal nodes for which the payoff 

vector (𝑝1, … ,𝑝𝑛) is feasible.  

     Observe that a self-enforcing SPNE of the induced game Γ𝑁 is, by definition, a CPSPNE of Γ. 

Thus, requiring coalitional deviations to be self-enforcing results in a 𝛾-core concept which, by 

definition, presumes that the game admits a CPSPNE. Let 𝑡̅ ∈ 𝑇 be a CPSPNE of Γ. Then, the 

self-enforcing 𝛾-core of the extensive game Γ must be a subset of the set of feasible payoff 

vectors (𝑝1, … ,𝑝𝑛) such that ∑ 𝑝𝑖𝑖∈𝑁 = ∑ 𝑢𝑖𝑖∈𝑁 (𝑡)̅. That is so because the origin of the extensive 

game Γ is a decision node along every history of the game and there is no other feasible payoff 

vector that is immune to self-enforcing deviations by coalition 𝑁, which is active at least at the 

origin.   In addition, the self-enforcing 𝛾-core must take into account opportunities for higher 

coalitional payoffs along the histories generated by CPSPNE. Thus, the concept of self-enforcing 

𝛾-core is “rather strong” and its existence is restricted to games which admit a CPSPNE. We 

identify a class of games in which the concepts of self-enforcing 𝛾-core and CPSPNE are 

equivalent.  

Proposition 6 In the class of extensive games Γ such that every induced game Γ𝑆, 𝑆 ⊂ 𝑁 , admits 

a unique self-enforcing SPNE, if a game admits a CPSPNE, then it is unique and the set of self-

enforcing 𝛾-core payoff vectors is equal to the unique CPSPNE payoff vector. 

Proof: As in the proof of Proposition 4, if Γ admits a CPSPNE, then it must be unique. Let 𝑡̅ ∈ 𝑇 

denote the unique CPSPNE. Then, 𝑡̅ = (𝑡�̅�, 𝑡−̅𝑆)  is a unique self-enforcing CPSPNE of every 

induced game Γ𝑆, 𝑆 ⊂ 𝑁.  Since, by supposition, Γ𝑁 admits a self-enforcing SPNE which is 

unique, the terminal node with highest self-enforcing SPNE payoff for coalition 𝑁 is unique. 

Since 𝑡̅ is the unique self-enforcing  SPNE of every induced game Γ𝑆, 𝑆 ⊂ 𝑁,  the self-enforcing 

SPNE of each  induced game Γ𝑆, 𝑆 ⊂ 𝑁, generates a history which is identical to the history 

leading to the terminal node with the highest self-enforcing payoff for coalition 𝑁. Let 𝑋∗ denote 

the set of decision nodes along the history leading to the terminal node with the highest self-
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enforcing payoff for 𝑁. Then, for each  𝑥 ∈ 𝑋∗,  𝑣𝛾(𝑆; 𝑥) = 𝑣𝛾(𝑆; 0) = ∑ 𝑢𝑖(𝑡̅ ),𝑖∈𝑆 𝑆 ⊂ 𝑁,  

since 𝑋∗ is the set of decision nodes along the history generated by the unique self-enforcing 

SPNE of Γ𝑆, 𝑆 ⊂ 𝑁. Thus, 𝑣𝛾(𝑆) = 𝑣𝛾(𝑆; 0), 𝑆 ⊂ 𝑁, and the CPSPNE payoff vector 

(𝑢1(𝑡 ̅), … ,𝑢𝑛(𝑡 ̅)) is the unique self-enforcing 𝛾-core payoff vector.     ■     

     Since, as shown, a SSPNE is a CPSPNE, the subset of games in Proposition 4 which admit a 

(unique) SSPNE also belongs to the class of games in Proposition 6 and the two cores for this 

subset of games are equal and equivalent to the CPSPNE/SSPNE.  But since a CPSPNE is not 

necessarily a SSPNE, the subset of games in Proposition 6 for which the self-enforcing 𝛾-core is 

equivalent to the CPSPNE is larger.28 Since the payoff of the grand coalition in a CPSPNE may 

be lower, the two cores are disjoint unless the payoff of the grand coalition in the CPSPNE is 

equal to that in the SSPNE. In the latter case the self-enforcing 𝛾-core may be larger than the 𝛾-

core, since the payoffs that deviating coalitions can achieve may be lower if they have to follow 

self-enforcing strategies.  A more general comparison between the two core concepts does not 

seem possible. Which of them is relevant depends on whether or not the players can write 

binding agreements.  

     In Example 1, the self-enforcing 𝛾-core consists of the unique CPSPNE payoff vector 

(𝑝1,𝑝2) = (2, 1) and disjoint with the 𝛾-core. Since, as shown, a SSPNE of an extensive game is 

also a CPSPNE, examples 2 and 3 also can be viewed as applications of the self-enforcing 𝛾-

core. However, the dynamic games in examples 2 and 3 end “too soon” and the full force of the 

𝛾-core of an extensive game does not really come into play. Thus, we consider next a dynamic 

game of global public good provision in which it does.29  

4. A dynamic game of global public good provision 

There are 𝑛 countries, indexed by 𝑖 = 1, … ,𝑛. Time is treated as discrete and indexed 𝑡 =

1, … ,𝑇, where 𝑇 is finite. The variables 𝑥𝑖𝑡 ≥ 0 and 𝑦𝑖𝑡 ≥ 0 denote the consumption and 

production, respectively, of a composite private good in country 𝑖 at time 𝑡. Similarly 𝑒𝑖𝑡 ≥ 0  and 

                                                           
28 The dynamic game in Section 4 belongs to the class of games in Proposition 6 (as well as in Proposition 4) and 
admits no SSPNE, but, as will be shown, the self-enforcing 𝛾-core of this game is equivalent to the CPSPNE. 
29Dynamic games of global public good provision have been studied previously by Biran and Forges (2010), Dutta 
and Radner (2005), and Dockner and Long (1993) among others. Reinganum and Stokey (1985) study a dynamic 
game of resource extraction with a similar structure.  
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 𝑧𝑡 ≥ 0 denote, respectively, the level of emissions and the amount of ambient pollution at time t. 

While 𝑥𝑖𝑡 ,𝑦𝑖𝑡 , and 𝑒𝑖𝑡 are flow variables, 𝑧𝑡 is a stock variable as formally defined below. 

 Production and utility at time t are specified as 𝑦𝑖𝑡 = 𝑔𝑖(𝑒𝑖𝑡) and 𝑢𝑖(𝑥𝑖𝑡, 𝑧𝑡) = 𝑥𝑖𝑡 − 𝑣𝑖(𝑧𝑡),    

respectively. The function 𝑔𝑖(𝑒𝑖𝑡) is the production function and 𝑣𝑖(𝑧𝑡)  is the damage function. 

A consumption stream (𝑥1𝑡, … , 𝑥𝑛𝑡; 𝑧𝑡)𝑡=1𝑇  is feasible for an emission profile (𝑒1𝑡, … , 𝑒𝑛𝑡)𝑡=1𝑇   if 

for every 𝑡 = 1, … ,𝑇,                                                                                      

                                                              ∑ 𝑥𝑖𝑡𝑖∈𝑁 = ∑ 𝑔𝑖(𝑒𝑖𝑡)𝑖∈𝑁                                                             (1) 

     

                                                    𝑧𝑡 = (1 − 𝛿)𝑧𝑡−1 + ∑ 𝑒𝑖𝑡𝑖∈𝑁 ,  𝑧0 > 0 given.                             (2) 

 
Here 0 ≤ 𝛿 < 1 is the natural rate of decay of the stock 𝑧𝑡. Notice that transfers of the composite 

private good are allowed across the countries in each period 𝑡, but not across the periods. Given 

the quasi-linearity of the utility functions 𝑢𝑖(𝑥𝑖𝑡, 𝑧𝑡),  this is not really an assumption as there is 

no gain from postponing consumption and there is no possibility of borrowing against future 

consumption. A feasible consumption vector(𝑥1𝑡, … , 𝑥𝑛𝑡; 𝑧𝑡)𝑡=1𝑇  from an emission profile 

(𝑒1𝑡, … , 𝑒𝑛𝑡)𝑡=1𝑇   uniquely determines the aggregate utility ∑ 𝛽𝑡−1𝑇
𝑡=1 𝑢𝑖(𝑥𝑖𝑡, 𝑧𝑡) =                                     

∑ 𝛽𝑡−1𝑇
𝑡=1 [𝑥𝑖𝑡 − 𝑣𝑖(𝑧𝑡)] of each country 𝑖 where 0 < 𝛽 ≤ 1 is the discount factor.  

     In the optimal control literature, the emissions 

 

ei = (eit )t=1
T  are called control variables and the 

resulting stocks 𝑧𝑡, 𝑡 = 1, … ,𝑇, are the state variables. While the latter are not strategies in the 

dynamic game, they are induced by the former and appear in the payoff functions. In game 

theoretic terms, 𝑧𝑡 is a decision node of the dynamic game and 𝑒𝑖 = (𝑒𝑖𝑡)𝑖=1𝑇  is a strategy of 

player 𝑖.  

     In what follows the production functions, 𝑔𝑖(𝑒𝑖𝑡) are assumed to be strictly increasing and 

strictly concave, and the damage functions, 𝑣𝑖(𝑧𝑡), strictly increasing and convex. In addition we 

assume that there exists an 𝑒0 > 0 such that 𝑔𝑖′(𝑒0) < 𝑣𝑖′(𝑒0) for each 𝑖 ∈ 𝑁, 𝑔𝑖′(𝑒𝑖) → ∞ as 

𝑒𝑖 → 0, and 𝑣𝑖′(𝑧0 + 𝑛𝑒0𝑇) < ∞. These assumptions ensure that the emissions 𝑒𝑖𝑡 chosen by each 

country 𝑖 are such that  0 ≤ 𝑒𝑖𝑡 ≤ 𝑒0, 𝑡 = 1, … ,𝑇.  
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            Given z0 > 0 and 𝑇 > 1, the dynamic game of global public good provision, to be denoted by 

Γ ≡ Γz0 ,  or alternatively the corresponding game is strategic form, to be denoted by Ω ≡

Ωz0 , is the strategic game (𝑁,𝐸,𝑢) where  

 
• N = {i = 1, 2 ,…, n} is the set of players, 

• 

 

E = E1 × E2 × ... × En  is the set of joint strategies and 𝐸𝑖 = {𝑒𝑖 ≡ (𝑒𝑖𝑡)𝑡=1𝑇 : 0 ≤ 𝑒𝑖𝑡 ≤ 𝑒0} is the 

set of strategies of player 𝑖. 

• 𝑢 = (𝑢1, … , 𝑢𝑛) is the vector of payoff functions such that for each 

𝑒 = ((𝑒1𝑡)𝑡=1𝑇 , … , (𝑒𝑛𝑡)𝑡=1𝑇 ) ∈ 𝐸,  𝑢𝑖(𝑒) = ∑ 𝛽𝑡−1[𝑔𝑖(𝑒𝑖𝑡) − 𝑣𝑖𝑇
𝑡=1 (𝑧𝑡)],  where 𝑧𝑡 =

(1 − 𝛿)𝑧𝑡−1 + ∑ 𝑒𝑗𝑡 ,𝑗∈𝑁 𝑡 = 1, … ,𝑇.                                                                         

     A subgame of the dynamic game is denoted by Γzt−1 , 𝑡 = 1, …𝑇, and the corresponding game 

in strategic form by Ωzt−1 = (𝑁,𝐸𝑡 ,𝑢𝑡)  where    

• N = {i = 1, 2 ,…, n} is the set of players, 

• 𝐸𝑡 = 𝐸1𝑡 × ⋯× 𝐸𝑛𝑡  is the set of joint strategies and 𝐸𝑖𝑡 = {𝑒𝑖𝑡 ≡ (𝑒𝑖𝜏)𝜏=𝑡𝑇 : 0 ≤ 𝑒𝑖𝜏 ≤ 𝑒0} is the 

set of strategies of player 𝑖. 

• 𝑢𝑡 = (𝑢1𝑡 , … ,𝑢𝑛𝑡 ) is the vector of payoff functions such that for each  

𝑒𝑡 = ((𝑒1𝜏)𝜏=𝑡𝑇 , … , (𝑒𝑛𝜏)𝜏=𝑡𝑇 ) ∈ 𝐸𝑡, 𝑢𝑖𝑡(𝑒𝑡) = ∑ 𝛽𝜏−1[𝑔𝑖(𝑒𝑖𝜏) − 𝑣𝑖𝑇
𝜏=𝑡 (𝑧𝜏)],  where 𝑧𝜏 =

(1 − 𝛿)𝑧𝜏−1 + ∑ 𝑒𝑗𝜏 ,𝑗∈𝑁 𝜏 = 𝑡, … ,𝑇.  

Notice that the subgame  Γzt−1 , 𝑡 = 1, …𝑇, depends only on 𝑧𝑡−1 and not on how the game 

reached the point 𝑧𝑡−1. The “statistic” 𝑧𝑡−1 summarizes all that has happened before the game 

reaches the point 𝑧𝑡−1.                                                             

     By definition, a SPNE of the induced game Γ𝑁 leads to a terminal node with highest payoff 

for coalition 𝑁. Therefore, it is a solution of the optimization problem  

                              max((𝑒𝑖𝑡)𝑡=1𝑇 )𝑖=1
𝑛 [ ∑ 𝛽𝑡−1 ∑ (𝑔𝑖(𝑒𝑖𝑡) − 𝑣𝑖(𝑧𝑡))𝑛

𝑖=1
𝑇
𝑡=1 ]                                       (3)          

subject to 𝑧𝑡 = (1 − 𝛿)𝑧𝑡−1 + ∑ 𝑒𝑖𝑡, 𝑡 = 1, … ,𝑇,𝑖∈𝑁   𝑧0 > 0 given.  
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Lemma Optimization problem (3) has a unique solution ((𝑒1𝑡∗ )𝑡=1𝑇 , … , (𝑒𝑛𝑡∗ )𝑡=1𝑇 ) which is 

characterized by the equations 𝑔𝑖′(𝑒𝑖𝑡∗ ) = ∑ [𝛽(1 − 𝛿)]𝜏−𝑡 ∑ 𝑣𝑗′(𝑧𝜏∗)𝑗∈𝑁 , 𝑧𝑡∗ = (1 − 𝛿)𝑧𝑡−1∗ +𝑇
𝜏=𝑡

𝑖∈𝑁𝑒𝑖𝑡∗,  𝑖∈𝑁,𝑡=1,…,𝑇, and 𝑧0∗=𝑧0. 

 
      Proof of the lemma is relegated to the appendix to the paper. The lemma implies that the 

induced game Γ𝑁 admits a unique SPNE and the unique SPNE is characterized by a system of 

(𝑛 + 1)𝑇 equations. On closer examination, these equations also imply that 

((𝑒1𝜏∗ )𝜏=𝑡𝑇 , … , (𝑒𝑛𝜏∗ )𝜏=𝑡𝑇 ) is the unique SPNE of every induced game Γ𝑧𝑡−1∗
𝑁 , 𝑡 = 1, … ,𝑇, as it 

should be.  

     A payoff vector (𝑝1, … ,𝑝𝑛) = ( ∑ 𝛽𝑡−1𝑇
𝑡=1  ((𝑥1𝑡 − 𝑣1(𝑧𝑡∗), … ,∑ 𝛽𝑡−1𝑇

𝑡=1  ((𝑥𝑛𝑡 − 𝑣𝑛(𝑧𝑡∗)) is 

feasible for the strategy profile((𝑒1𝑡∗ )𝑡=1𝑇 , … , (𝑒𝑛𝑡∗ )𝑡=1𝑇 ), if (𝑥1𝑡, … , 𝑥𝑛𝑡; 𝑧𝑡∗)𝑡=1𝑇  is a feasible 

consumption stream for ((𝑒1𝑡∗ )𝑡=1𝑇 , … , (𝑒𝑛𝑡∗ )𝑡=1𝑇 ). Notice that if (𝑝1, … ,𝑝𝑛) is a feasible payoff 

vector for the strategy profile ((𝑒1𝑡∗ )𝑡=1𝑇 , … , (𝑒𝑛𝑡∗ )𝑡=1𝑇 ) of the extensive game Γ, then for each 

𝑡 = 1, … ,𝑇, (𝑝1𝑡, …, 𝑝𝑛𝑡) = ( ∑ 𝛽𝜏−1𝑇
𝜏=𝑡  ((𝑥1𝜏 − 𝑣1(𝑧𝜏∗), … ,∑ 𝛽𝜏−1𝑇

𝜏=𝑡  ((𝑥𝑛𝜏 − 𝑣𝑛(𝑧𝜏∗)) is a 

feasible payoff vector for the strategy profile ((𝑒1𝜏∗ )𝜏=𝑡𝑇 , … , (𝑒𝑛𝜏∗ )𝜏=𝑡𝑇 ) of the extensive game 

Γ𝑧𝑡−1∗ . By definition, (𝑝11, …, 𝑝𝑛1) = (𝑝1, … ,𝑝𝑛). 30 

    Let 𝑋∗ denote the set {𝑧0, 𝑧1∗, … , 𝑧𝑇−1∗ }. The 𝛾-core of the dynamic game Γ is the set of payoff 

vectors (𝑝1, … ,𝑝𝑛) which are feasible for the strategy profile((𝑒1𝑡∗ )𝑡=1𝑇 , … , (𝑒𝑛𝑡∗ )𝑡=1𝑇 ) and such 

that the vector (𝑝1𝑡, …, 𝑝𝑛𝑡) is a 𝛾-core payoff vector of the subgame game Γ𝑧𝑡−1∗ , 𝑡 = 1, … ,𝑇. 

Such a payoff vector clearly meets the requirement that no coalition can be better off by 

deviating at any decision node along the history generated by the strategy profile for which the 

payoff vector (𝑝1, … ,𝑝𝑛) is feasible. 

     Observe that two alternative consumption streams(𝑥1𝑡′ , … , 𝑥𝑛𝑡′ ; 𝑧𝑡∗)𝑡=1𝑇  and (𝑥1𝑡′′ , … , 𝑥𝑛𝑡′′ ; 𝑧𝑡∗)𝑡=1𝑇  

which are feasible for the strategy profile ((𝑒1𝑡∗ )𝑡=1𝑇 , … , (𝑒𝑛𝑡∗ )𝑡=1𝑇 ) can be such that they lead to 

the same total payoff summed over all periods for each player, i.e.,,  ∑ 𝛽𝑡−1𝑇
𝑡=1  ((𝑥1𝑡′ −

𝑣1(𝑧𝑡∗), … ,∑ 𝛽𝑡−1𝑇
𝑡=1  (�𝑥𝑛𝑡′ − 𝑣𝑛(𝑧𝑡∗)� =  ∑ 𝛽𝑡−1𝑇

𝑡=1  ((𝑥1𝑡′′ − 𝑣1(𝑧𝑡∗), … ,∑ 𝛽𝑡−1𝑇
𝑡=1  ((𝑥𝑛𝑡′′ −

                                                           
30 If a consumption stream (𝑥1𝑡 , … , 𝑥𝑛𝑡; 𝑧𝑡∗)𝑡=1𝑇  is feasible for ((𝑒1𝑡∗ )𝑡=1𝑇 , … , (𝑒𝑛𝑡∗ )𝑡=1𝑇 ), then it is Pareto efficient and 
𝑧1∗, …, 𝑧𝑇∗   is the Pareto efficient sequence of ambient pollution. 
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𝑣𝑛(𝑧𝑡∗)), but for some coalition 𝑆 ⊂ 𝑁 and 𝑡 = 𝑡̅ , ( ∑ ∑ 𝛽𝜏−1𝑇
𝜏=�̅�  ((𝑥𝑖𝜏′ − 𝑣𝑖(𝑧𝜏∗)𝑖∈𝑆 <  

∑ ∑ 𝛽𝜏−1𝑇
𝜏=�̅�  ((𝑥𝑖𝜏′′ − 𝑣𝑖(𝑧𝜏∗)𝑖∈𝑆 . In words, the consumption stream (𝑥1𝑡′ , … , 𝑥𝑛𝑡′ ; 𝑧𝑡∗)𝑡=1𝑇  assigns 

higher amounts of the private good to coalition 𝑆 in the early periods, but lower amounts in the 

later periods though the total payoff is the same. Therefore, coalition 𝑆 may deviate in later 

periods if the consumption stream is (𝑥1𝑡′ , … , 𝑥𝑛𝑡′ ; 𝑧𝑡∗)𝑡=1𝑇  instead of  (𝑥1𝑡′′ , … , 𝑥𝑛𝑡′′ ; 𝑧𝑡∗)𝑡=1𝑇 . The 𝛾-

core payoff vectors are such that no coalition will have incentive to deviate in any period. 

     In order to keep the derivations simple, we assume henceforth that 𝛽 = 1 and 𝛿 = 0.  The 

proof for 𝛽 ≤ 1 and  𝛿 ≥ 0 is analogous. 

Proposition 7 The dynamic game Γ and each induced game Γ𝑆, 𝑆 ⊂ 𝑁, admit a unique SPNE if 

𝑔𝑖′′′ = 𝑣𝑖′′′ = 0 for each 𝑖 = 1, …𝑛. 

Proof: We show that backward induction leads to a unique SPNE. Begin with a subgame in 

period 𝑇. A strategy profile (𝑒1𝑇, … , 𝑒𝑛𝑇) is a SPNE of a subgame Γ𝑧𝑇−1if each 𝑒𝑖𝑇 maximizes 

𝑔𝑖(𝑒𝑖𝑇) − 𝑣𝑖�𝑧𝑇−1 + ∑ 𝑒𝑗𝑇𝑗∈𝑁 �, given 𝑒𝑗𝑇 , 𝑗 ≠ 𝑖. Therefore, by the first order conditions for 

optimization, 

                                           𝑔𝑖′(𝑒𝑖𝑇) = 𝑣𝑖′�𝑧𝑇−1 + ∑ 𝑒𝑗𝑇𝑗∈𝑁 �, 𝑖 = 1, … ,𝑛.                                    (4) 

We claim these equations have a unique solution. Suppose not and let (�̅�1𝑇 , … , �̅�𝑛𝑇) and 

(�̿�1𝑇, … �̿�𝑛𝑇) be two different solutions such that ∑ �̅�𝑖𝑇𝑖∈𝑁 = (>)∑ �̿�𝑖𝑇𝑖∈𝑁 . Then, since each 𝑣𝑖 is 

convex and 𝑔𝑖 is strictly concave, (4) implies �̅�𝑖𝑇 = (<)�̿�𝑖𝑇 for 𝑖 = 1, … ,𝑛, which contradicts our 

supposition. Hence, Γ𝑧𝑇−1 admits a unique SPNE. Let (𝑒1𝑇(𝑧𝑇−1), … , 𝑒𝑛𝑇(𝑧𝑇−1)) denote the 

unique SPNE of Γ𝑧𝑇−1 . By differentiating (4), 

  𝑔𝑖′′�𝑒𝑖𝑇(𝑧𝑇−1)�𝑒𝑖𝑇′ (𝑧𝑇−1) = 𝑣𝑖′′(𝑧𝑇−1 + ∑ 𝑒𝑗𝑇(𝑧𝑇−1))(1 + ∑ 𝑒𝑗𝑇′ (𝑧𝑇−1)𝑗∈𝑁𝑗∈𝑁 , 𝑖 = 1, … , 𝑛.      (5) 

Since 𝑔𝑖′′ < 0 and 𝑣𝑖′′ ≥ 0, equations (5) imply 𝑒𝑖𝑇′ (𝑧𝑇−1) ≤ 0 and (1 + ∑ 𝑒𝑗𝑇′ (𝑧𝑇−1)𝑗∈𝑁 ≥ 0. By 

differentiating (5), 𝑔𝑖′′′�𝑒𝑖𝑇(𝑧𝑇−1)�(𝑒𝑖𝑇′ (𝑧𝑇−1)2 + 𝑔𝑖′′�𝑒𝑖𝑇(𝑧𝑇−1)�𝑒𝑖𝑇′′ (𝑧𝑇−1) = 

 𝑣𝑖′′′(𝑧𝑇−1 + ∑ 𝑒𝑗𝑇(𝑧𝑇−1))(1 + ∑ 𝑒𝑗𝑇′ )2𝑗∈𝑁𝑗∈𝑁 + 𝑣𝑖′′(𝑧𝑇−1 + ∑ 𝑒𝑗𝑇(𝑧𝑇−1))∑ 𝑒𝑗𝑇′′ (𝑧𝑇−1)𝑗∈𝑁𝑗∈𝑁 , 𝑖 =

1, … , 𝑛. Therefore,  
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     𝑔𝑖′′�𝑒𝑖𝑇(𝑧𝑇−1)�𝑒𝑖𝑇′′ (𝑧𝑇−1)=  𝑣𝑖′′(𝑧𝑇−1 + ∑ 𝑒𝑗𝑇(𝑧𝑇−1))∑ 𝑒𝑗𝑇′′ (𝑧𝑇−1)𝑗∈𝑁𝑗∈𝑁 , 𝑖 = 1, … ,𝑛,            (6) 

since 𝑔𝑖′′′ = 𝑣𝑖′′′ = 0, 𝑖 = 1, …𝑛. Since 𝑔𝑖′′ < 0 and 𝑣𝑖′′ ≥ 0, equations (6) imply 𝑒𝑖𝑇′′ (𝑧𝑇−1) = 0. 

     Let 𝑞𝑖𝑇(𝑧𝑇−1) ≡ 𝑔𝑖�𝑒𝑖𝑇(𝑧𝑇−1)� − 𝑣𝑖�𝑧𝑇−1 + ∑ 𝑒𝑗𝑇(𝑧𝑇−1)𝑗∈𝑁 �, 𝑖 = 1, … , 𝑛.   Then,  

𝑞𝑖𝑇′ (𝑧𝑇−1) = 𝑔𝑖′�𝑒𝑖𝑇(𝑧𝑇−1)�𝑒𝑗𝑇′ (𝑧𝑇−1) − 𝑣𝑖′(𝑧𝑇−1 + ∑ 𝑒𝑗𝑇(𝑧𝑇−1))(1 + ∑ 𝑒𝑗𝑇′ (𝑧𝑇−1)𝑗∈𝑁𝑗∈𝑁 ≤ 0,  

since 𝑔𝑖′ > 0, 𝑣𝑖′ > 0,  and, as shown, 𝑒𝑗𝑇′ (𝑧𝑇−1) ≤ 0 and (1 + ∑ 𝑒𝑗𝑇′ (𝑧𝑇−1)𝑗∈𝑁 ≥ 0. Furthermore,  

𝑞𝑖𝑇′′ (𝑧𝑇−1) = 𝑔𝑖′′�𝑒𝑖𝑇(𝑧𝑇−1)�(𝑒𝑖𝑇′ (𝑧𝑇−1))2 − 𝑣𝑖′′(𝑧𝑇−1 + ∑ 𝑒𝑗𝑇(𝑧𝑇−1))(1 + ∑ 𝑒𝑗𝑇′ (𝑧𝑇−1))2𝑗∈𝑁𝑗∈𝑁 + 

𝑔𝑖′�𝑒𝑖𝑇(𝑧𝑇−1)�𝑒𝑖𝑇′′ (𝑧𝑇−1) − 𝑣𝑖′(𝑧𝑇−1 + ∑ 𝑒𝑗𝑇(𝑧𝑇−1))∑ 𝑒𝑗𝑇′′ (𝑧𝑇−1)𝑗∈𝑁𝑗∈𝑁  

= 𝑔𝑖′′�𝑒𝑖𝑇(𝑧𝑇−1)�(𝑒𝑖𝑇′ (𝑧𝑇−1))2 − 𝑣𝑖′′(𝑧𝑇−1 + ∑ 𝑒𝑗𝑇(𝑧𝑇−1))(1 + ∑ 𝑒𝑗𝑇′ (𝑧𝑇−1))2𝑗∈𝑁𝑗∈𝑁 ≤ 0, 

since, as shown, 𝑒𝑖𝑇′′ (𝑧𝑇−1) = 0, 𝑖 = 1, … ,𝑛. 

      Thus, each 𝑞𝑖𝑇(𝑧𝑇−1), 𝑖 = 1, … ,𝑛, is a non-increasing concave function of 𝑧𝑇−1. Using 

backward induction, a strategy profile ((𝑒1𝑇−1, 𝑒𝑖𝑇) … , (𝑒𝑛𝑇−1, 𝑒𝑛𝑇) is a SPNE of the subgame 

Γ𝑧𝑇−2if each 𝑒𝑖𝑇−1 maximizes 𝑔𝑖(𝑒𝑖𝑇−1) − [𝑣𝑖�𝑧𝑇−2 + ∑ 𝑒𝑗𝑇−1𝑗∈𝑁 � − 𝑞𝑖𝑇�𝑧𝑇−2 + ∑ 𝑒𝑗𝑇−1𝑗∈𝑁 �] . 

Since 𝑞𝑖𝑇(𝑧𝑇−1), 𝑖 = 1, … ,𝑛, is a non-increasing concave function of 𝑧𝑇−1, the subgame Γ𝑧𝑇−2has 

essentially the same structure as the game Γ𝑧𝑇−1 . Therefore, Γ𝑧𝑇−2 admits a unique SPNE and the 

SPNE payoffs 𝑞𝑖𝑇−1(𝑧𝑇−2), 𝑖 = 1, … ,𝑛, are similarly non-increasing and concave functions of 

𝑧𝑇−2. Continuing in this manner, the backward induction leads to a unique SPNE of the 

extensive game Γ. 

     Furthermore, each induced game Γ𝑆, 𝑆 ⊂ 𝑁, has essentially the same mathematical structure 

as the game Γ. Beginning with the game in period 𝑇,  a strategy profile (𝑒1𝑇, … , 𝑒𝑛𝑇) is a SPNE 

of the subgame Γ𝑧𝑇−1
𝑆 if  

                                           𝑔𝑖′(𝑒𝑖𝑇) = ∑ 𝑣𝑗𝑇′ �𝑧𝑇−1 + ∑ 𝑒𝑗𝑇𝑗∈𝑁 �𝑗∈𝑆 , 𝑖 ∈ 𝑆,                                  

and  

                                        𝑔𝑗′ �𝑒𝑗𝑇� = 𝑣𝑗𝑇′ (𝑧𝑇−1 + ∑ 𝑒𝑖𝑇𝑖∈𝑁 ), 𝑗 ∈ 𝑁\𝑆.                                           (7) 
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Since the sum of increasing and convex functions is increasing and convex, these equations have 

the same essential properties as equations (4). The rest of the proof is analogous and hence 

omitted.     ■ 

     Since  Γ admits a unique SPNE, the SPNE is a CPSPNE as there is no room for cooperation 

which is self-enforcing. Therefore, as Proposition 6 shows, the self-enforcing 𝛾-core of the 

extensive game Γ is non-empty and consists of the unique CPSPNE payoff vector. Let 

((�̅�1𝑡)𝑡=1𝑇 , … , (�̅�𝑛𝑡)𝑡=1𝑇 ) denote the unique CPSPNE, and let  𝑧�̅� = 𝑧�̅�−1 + ∑ �̅�𝑖𝑡, 𝑡 = 1, … ,𝑇.𝑖∈𝑁  

As the lemma shows, 𝑔𝑖′(𝑒𝑖𝑇∗ ) = ∑ 𝑣𝑗′(𝑧𝑇∗)𝑗∈𝑁 , 𝑧𝑇∗ = 𝑧𝑇−1∗ + ∑ 𝑒𝑖𝑇∗ ,𝑖∈𝑁 𝑖 = 1, … ,𝑛.  Comparing 

with (4) after substituting 𝑒𝑖𝑇 = �̅�𝑖𝑇, implies that either 𝑧�̅�−1 ≠ 𝑧𝑇−1∗  or �̅�𝑖𝑇 ≠ 𝑒𝑖𝑇∗ , 𝑖 = 1, … ,𝑛, 

which implies that the public good provision is not Pareto efficient under the CPSPNE.  

     The 𝛾-core of the dynamic game of public good provision can be shown to be non-empty in a 

variety of cases. To mention a few, the 𝛾-core of the dynamic game is generally non-empty if the 

players are identical or if the damage functions are linear. Given restrictions on space, it is not 

possible to discuss all these cases here. But the one below illustrates more simply how a 𝛾-core 

payoff vector, like a SPNE, of an extensive game can be found by backward induction.  We 

assume that the production functions 𝑔𝑖(𝑒𝑖𝑡) are quadratic, 

                                          𝑔𝑖(𝑒𝑖𝑡) = 𝑐𝑖𝑒𝑖𝑡 −
1
2
𝑒𝑖𝑡2 ,                                                               (8) 

where 𝑐𝑖 > 0 is sufficiently large, and the damage functions  

                                                   𝑣𝑖(𝑧𝑡) = 1
2
𝑧𝑡2.                                                                             (9) 

Proposition 7 shows that for these specific production and damage functions, the dynamic game 

Γ and each induced game Γ𝑆, 𝑆 ⊂ 𝑁, admit a unique SPNE.                                                   

Proposition 8 The dynamic game Γ admits a non-empty 𝛾-core if the production and damage 

functions are quadratic as in (8) and (9).  

Proof: In view of Proposition 2, it is sufficient to show that the 𝛾-core of each subgame 

Γ𝑧𝑡−1∗ , 𝑡 = 1, … . ,𝑇 is non-empty. We begin with the subgame Γ 𝑧𝑇−1∗ in the last period 𝑇. Since the 

one stage game  Γ 𝑧𝑇−1∗  is essentially a strategic game, a result in Chander and Tulkens (1997; 
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Theorem 2) implies that a specific payoff vector (𝑝1𝑇 , … ,𝑝𝑛𝑇) such that  𝑝𝑖𝑇 = 𝑥𝑖𝑇 − 𝑣𝑖(𝑧𝑇−1∗ +

∑ 𝑒𝑗𝑇∗𝑗∈𝑁 ) where (𝑒1𝑇∗ , … , 𝑒𝑛𝑇∗ ) satisfy equations (1) and (2) and (𝑒1𝑇∗ , … , 𝑒𝑛𝑇∗ ) are as defined in 

the lemma (after substituting 𝛽 = 1 and 𝛿 = 0) belongs to the 𝛾-core of Γ 𝑧𝑇−1∗ . The 𝛾-core of 

Γ 𝑧𝑇−1∗ is therefore non-empty. The payoff vector (𝑝1𝑇 , … ,𝑝𝑛𝑇) depends on 𝑧𝑇−1∗  in the following 

manner. Given an arbitrary 𝑧𝑇−1, the unique SPNE of the subgame Γ 𝑧𝑇−1 and the induced game 

Γ 𝑧𝑇−1
𝑁  are given by the first order condition  𝑐𝑖 − 𝑒𝑖𝑇 = 𝑧𝑡−1 + ∑ 𝑒𝑗𝑡𝑗∈𝑁    and  𝑐𝑖 − 𝑒𝑖𝑡 =

𝑛(𝑧𝑡−1 + ∑ 𝑒𝑗𝑡𝑗∈𝑁 ), respectively. Therefore, the SPNE of  Γ 𝑧𝑇−1 and Γ 𝑧𝑇−1
𝑁 are 

      �̅�𝑖𝑇(𝑧𝑇−1) = 𝑐𝑖 −
1

1+𝑛
(∑ 𝑐𝑗𝑗∈𝑁 + 𝑧𝑇−1)  and 𝑒∗𝑖𝑇(𝑧𝑇−1) = 𝑐𝑖 −

𝑛
1+𝑛2

(∑ 𝑐𝑗𝑗∈𝑁 +  𝑧𝑇−1), 

respectively. Then, as in Chander and Tulkens (1997; Theorem 2), the payoff vector 

 𝑝𝑖𝑇(𝑧𝑇−1) = 𝑔𝑖��̅�𝑖𝑇(𝑧𝑇−1)� − 𝑣𝑖
′

∑ 𝑣𝑗
′ 

𝑗∈𝑁
 (∑ 𝑔𝑗��̅�𝑖𝑇(𝑧𝑇−1)�𝑗∈𝑁 − ∑ 𝑔𝑗𝑗∈𝑁 (𝑒𝑖𝑇∗ (𝑧𝑇−1)) − 𝑣𝑖(𝑧𝑇−1 +

∑ 𝑒𝑗𝑇∗ (𝑧𝑇−1))𝑗∈𝑁 , 𝑖 = 1, … ,𝑛, belongs to the 𝛾-core of  Γ 𝑧𝑇−1 . Using (8) and (9) and after 

substitution one obtains 

𝑝𝑖𝑇(𝑧𝑇−1) = 1
2
𝑐𝑖2 −

1
1+𝑛2

�1 + 1
2

𝑛2

1+𝑛2
� (𝑧𝑇−1 + ∑ 𝑐𝑗)2𝑗∈𝑁 , 𝑖 ∈ 𝑁.    

Given the 𝛾-core payoff vector (𝑝1𝑇(𝑧𝑇−1), … , 𝑝𝑛𝑇(𝑧𝑇−1) of Γ 𝑧𝑇−1 , consider the reduced form 

of the subgame Γ𝑧𝑇−2∗  in which the payoff of player 𝑖 is given by  

          𝑐𝑖𝑒𝑖𝑇−1 −
1
2
𝑒𝑖𝑇−12 − 1

2
(𝑧𝑇−2∗ + ∑ 𝑒𝑗𝑇−1)2𝑗∈𝑁 + 𝑝𝑖𝑇(𝑧𝑇−2∗ + ∑ 𝑒𝑗𝑇−1).𝑗∈𝑁                             

Since each 𝑝𝑖𝑇(𝑧𝑇−1), 𝑖 ∈ 𝑁, is quadratic in 𝑧𝑇−1, the payoff functions in this reduced subgame 

have essentially the same functional form as the payoff functions in the game Γ𝑧𝑇−1∗ . Therefore, 

the reduced form of the game Γ 𝑧𝑇−2∗  has a non-empty 𝛾-core. Let Γ�𝑧𝑇−2∗  denote the reduced form 

of the game Γ𝑧𝑇−2∗ . Then,  (𝑒1𝑇−1∗ , … , 𝑒𝑛𝑇−1∗ ) as defined in the lemma (after substituting 𝛽 = 1 

and 𝛿 = 0) is the unique SPNE of the induced game Γ�𝑧𝑇−2∗
𝑁 and 𝑧𝑇−2∗ + ∑ 𝑒𝑗𝑇−1∗

𝑗∈𝑁 = 𝑧𝑇−1∗ . That is 

because only the unique strategy (𝑒1𝑇−1∗ , … , 𝑒𝑛𝑇−1∗ ) leads to the highest payoff for coalition 𝑁. 

Thus, the 𝛾-core of both Γ𝑧𝑇−1∗  and Γ𝑧𝑇−2∗ are non-empty. We can similarly prove that the 𝛾-core 

of the subgame Γ𝑧𝑇−3∗  is non–empty and so on.     ■ 
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5. Concluding remarks 

This paper brings together two of the most important solution concepts of game theory: 

subgame-perfect Nash equilibrium of a non-cooperative game and the core of a cooperative 

game.31  Our approach can be extended to the case in which when a coalition deviates the 

remaining players may form one or more non-trivial coalitions. Papers taking this approach 

include Ray and Vohra (1997) and Maskin (2003).  Ray and Vohra address the question of what 

properties might be expected of binding agreements but treat strategic rather than extensive 

games; thus subgame perfection plays no role. Maskin (2003) proposes a core concept in which 

if a coalition deviates, the remaining players form one single coalition. Our approach can be used 

to extend the idea underlying Maskin’s core concept to extensive games. More specifically, the 

induced subgames will now have only two players: if 𝑆 is the set of all active players at a 

decision node 𝑥,  then for each 𝑆 ′ ⊂ 𝑆,  the player set of the induced subgame with origin at 𝑥 

consists of {𝑆 ′, 𝑆 − 𝑆 ′}.  As in the case of 𝛾-core, the highest SPNE payoffs of the induced 

subgame can be used to assign payoffs to all coalitions 𝑆 ′ ⊂ 𝑆 . However, unlike the 𝛾-core, it 

does not seem possible to relate the so-defined Maskin’s core to SSPNE and CPSPNE.32       

     Our approach differs from that in Chander (2007; 2010) and other literature in that we 

consider extensive games and subgame perfection. Our approach rests on two fundamental ideas 

discussed in the introduction: coalitions become players and, at the origin of any subgame, only 

those players who still have decisions to make can become part of a coalition. Possibilities for 

coalition actions are taken into account through the equilibrium notion – in this, paper, the 𝛾-

core.    

 

 

                                                           
31 A link between the two is apparently missing in the current literature. 
32 Maskin introduces his core concept in the primitive framework of a partition function. Our approach can be 
extended to derive a partition function from the extensive game. For each partition of the total player set, consider 
the induced games in which each coalition in the partition becomes one single player. Then, the payoff of a coalition 
in a partition is equal to its highest subgame-perfect Nash equilibrium payoff in the game induced by the partition. 
Maskin’s core of the so derived partition function, however, may not be equal to the one proposed above unless the 
game is such that all players are active at each decision node. 
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Appendix 

Proof of the lemma: First note that the optimum is in the interior of the interval 0 ≤ 𝑒𝑖𝑡 ≤ 𝑒0 

for each 𝑖 ∈ 𝑁 and 𝑡 = 1, … ,𝑇.  If 𝑒𝑖𝑡 ≥ 𝑒0, equation (2) implies 𝑧𝑡 ≥ 𝑒0. Since, by assumption, 

𝑣𝑖′(𝑧) is non-decreasing and 𝑔𝑖′(𝑒𝑖𝑡) in non-increasing,  𝑔𝑖′(𝑒𝑖𝑡) < 𝑣𝑖′(𝑧𝑡) if 𝑔𝑖′(𝑒0) < 𝑣𝑖′(𝑒0). 

Thus, decreasing 𝑒𝑖𝑡 can increase the value of the objective function. This proves that 𝑒𝑖𝑡 < 𝑒0 

for each 𝑖 ∈ 𝑁 and 𝑡 = 1, … ,𝑇; which also implies 𝑧𝑡 ≤ 𝑧0 + 𝑛𝑒0𝑇 and, therefore, 𝑣𝑖′(𝑧𝑡) <

∞, 𝑡 = 1, … ,𝑇. Since 𝑔𝑖′(𝑒𝑖𝑡) → ∞ as 𝑒𝑖𝑡 → 0,   𝑔𝑖′(0) > ∑ 𝑣𝑖′(𝑧𝑡)𝑖∈𝑁 . Thus, increasing 𝑒𝑖𝑡 if it is 

sufficiently close to zero increases the value of the objective function. Hence, 0 < 𝑒𝑖𝑡 < 𝑒0,  

𝑖 ∈ 𝑁, 𝑡 = 1, … ,𝑇. The Langrangian associated with the optimization problem is given by 

       𝐿 = ∑ 𝛽𝑡−1 ∑ (𝑔𝑖(𝑒𝑖𝑡) − 𝑣𝑖(𝑧𝑡))𝑛
𝑖=1

𝑇
𝑡=1 + ∑ 𝜆𝑡[𝑧𝑡 − (1 − 𝛿)𝑧𝑡−1 − ∑ 𝑒𝑖𝑡𝑖∈𝑁

𝑇
𝑡=1 ]  

where the variables 𝜆𝑡 are the Lagrange multipliers associated with the T constraints. Since as 

shown the solution is interior, the first order conditions for  (𝑒𝑖𝑡∗ )𝑡=1𝑇 , (𝑧𝑡∗)𝑡=1𝑇  and (𝜆𝑡∗)𝑡𝑇 to be an 

optimum are: 

                     𝜕𝐿
𝜕𝑒𝑖𝑡

= 𝛽𝑡−1𝑔𝑖′(𝑒𝑖𝑡∗ ) − 𝜆𝑡∗ = 0, 𝑡 = 1, … ,𝑇, 𝑖 ∈ 𝑁,                                   

                𝜕𝐿
𝜕𝑧𝑡

= −𝛽𝑡−1  ∑ 𝑣𝑖′(𝑧𝑡∗)𝑖∈𝑁 + 𝜆𝑡∗ − 𝜆𝑡+1∗ (1− 𝛿) = 0, 𝑡 = 1, … ,𝑇 − 1,        

                𝜕𝐿
𝜕𝑧𝑇

= −𝛽𝑇−1  ∑ 𝑣𝑖′(𝑧𝑇∗)𝑖∈𝑁 + 𝜆𝑇∗ = 0,                                                         

                𝑧𝑡 = (1 − 𝛿)𝑧𝑡−1 + ∑ 𝑒𝑖𝑡, 𝑡 = 1, … ,𝑇,𝑖∈𝑁 𝑧0 = 𝑧0∗.                                                 

After substitution, one obtains 𝑔𝑖′(𝑒𝑖𝑡∗ ) − 𝛽(1 − 𝛿)𝑔𝑖′(𝑒𝑖𝑡+1∗ ) = ∑ 𝑣𝑗′(𝑧𝑡∗)𝑗∈𝑁 , 𝑧𝑡∗ = (1 − 𝛿)𝑧𝑡−1∗ +

∑ 𝑒𝑖𝑡∗ ,𝑖∈𝑁 𝑖 ∈ 𝑁, 𝑡 = 1, … ,𝑇. These equations can be rewritten as  

𝑔𝑖′(𝑒𝑖𝑡∗ ) = ∑ [𝛽(1 − 𝛿)]𝜏−𝑡 ∑ 𝑣𝑗′(𝑧𝜏∗)𝑗∈𝑁 , 𝑧𝑡∗ = (1 − 𝛿)𝑧𝑡−1∗ + ∑ 𝑒𝑖𝑡∗ ,𝑖∈𝑁 𝑖 ∈ 𝑁, 𝑡 = 1𝑇
𝜏=𝑡 , … ,𝑇. 

These are (𝑛 + 1)𝑇 equations in (𝑛 + 1)𝑇 variables. The solution is unique because the 

objective function is strictly concave and the constraints are linear.    ■ 
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