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Abstract

We develop an estimator for the parameters of a utility function that has interactions be-

tween the unobserved demand error and observed factors including price. We show that the

Berry (1994)/Berry, Levinsohn, and Pakes (1995) inversion and contraction can still be used to

recover the mean utility term that now contains both the demand error and the interactions

with the error. However, the instrumental variable (IV) solution is no longer consistent because

the price interaction term is correlated with the instrumented price. We show that the stan-

dard conditional moment restrictions (CMRs) do not generally suffice for identification. We

supplement the standard CMRs with “generalized” control functions and we show together they

are sufficient for identification of all of the demand parameters. Our estimator extends (Berry,

Linton, and Pakes, 2004) to the case where there are estimated regressors. We run several

monte carlos that show our approach works when the standard IV approaches fail because of

non-separability. We also test and reject additive separability in the original Berry, Levinsohn,

and Pakes (1995) automobile data, and we show that demand becomes significantly more elastic

when the correction is applied.

∗We thank Arthur Lewbel, Rosa Matzkin, and numerous seminar participants for many helpful suggestions. This
paper previously circulated under the title “The Interaction of Observed and Unobserved Demand Factors in Discrete
Choice Demand Models.”
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1 Introduction

Demand estimation is a critical issue in many policy problems and correlation between unob-

served demand factors and prices arising from market equilibration can confound estimation. In

discrete choice settings the problem is complicated by the fact that the unobserved demand factor

enters non-linearly into the demand equation, making standard Instrumental Variables (IV) tech-

niques invalid. A major contribution of Berry (1994) and Berry, Levinsohn, and Pakes (1995) is to

show how to invert from market shares the mean utility term. As long as the unobserved demand

factor enters mean utility additively, standard IV techniques can be applied to recover the demand

parameters subsumed in it.

Restricting the unobserved demand factor to enter utility additively is not always innocuous.

Separability rules out several important aspects of economic behavior. For example, separability

does not allow unobserved advertising to affect the marginal utility derived from observed character-

istics or from the composite commodity index (typically given by residual income), even though this

is often the purpose of advertising. Similarly, if the demand error represents unobserved physical

characteristics, a separable setup does not allow the marginal utility derived from observed charac-

teristics or the composite commodity index to depend on the level of the unobserved characteristic.

Empirically, allowing for the possibility of a non-separable error may be important because the set

of product characteristics observed by the practitioner is often limited, leaving a large role for the

unobserved demand factor in explaining realized demand.

Our main contribution is to show how to consistently estimate demand parameters while allowing

for observed endogenous and exogenous variables to interact with the unobserved factor. We begin

by showing when endogenous variables interact with the demand error, the Berry (1994)/Berry,

Levinsohn, and Pakes (1995) inversion and contraction can still be used to recover the mean utility

term. However, the IV approach is no longer consistent for the parameters embedded in the mean

utility term. The instrumented price is correlated with the interaction term between price and the

unobserved demand factor, which is now in the estimation equation’s error.

We then show in Section 3 that the conditional moment restrictions (CMR) used in the Berry/BLP

setup are no longer sufficient for identification. While higher-order moments of the standard CMRs

solve the identification problem if only exogenous variables interact with the demand unobservable,

they do not help with identification when one (or more) endogenous variable interacts with the

demand unobservable. Our non-separable setup thus provides a simple example of the failure of

identification using CMRs in settings with non-separable errors (see Blundell and Powell (2003) and

Hahn and Ridder (2008)).

Our setup is closest to a model of multiplicative heteroskedasticity with both exogenous and en-

dogenous variables interacting with the error.1 We achieve identification by coupling the Berry/BLP

CMRs with generalized control functions based on insights from Kim and Petrin (2010d), who revisit

the early control function literature (see Section 4). We develop a control function that conditions

out the correlation between the unobserved demand factor and price. We then construct the new

1Our approach can be generalized somewhat (see Kim and Petrin (2010b)).
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moments conditions based on a specification that includes the control function as an additional

explanatory variable for mean utility. For identification the control function must not have argu-

ments that are perfectly collinear with price and other characteristics entering mean utility. We

show the CMR conditions from BLP put shape restrictions on the control function that ensure this

collinearity does not occur.

In Section 6 we provide a proof of consistency of a sieve estimator with estimated regressors

which have error that goes to zero as the sample size increases. The proof covers the case when

the asymptotics are the number of products, and a special case is when the asymptotics are in the

number of markets, as in Goolsbee and Petrin (2004). When the asymptotics are in the number

of products Berry, Linton, and Pakes (2004) argue against maintaining uniform convergence of the

objective function because shares and prices are equilibrium outcomes of strategically interacting

firms. This interdependence generates conditional dependence in the estimate of the demand error

when the parameter value is different from the truth, making it difficult to determine how the

objective function behaves away from the true parameter value.

Berry, Linton, and Pakes (2004) show how to achieve identification without maintaining uniform

convergence and we show how to extend the Berry, Linton, and Pakes (2004) consistency theorem to

the case of our estimator. Our estimator must allow for the new approximation errors arising from

pre-step estimators in addition to the sampling and simulation error present in Berry, Linton, and

Pakes (2004). A strength of our approach is that it does not require us to find more instruments

than are necessary in the separable setting. Just as in Berry/BLP, if price is the only endogenous

variable then we only require one variable that moves price around and is excluded from utility.

The cost of our approach is that we must be able to estimate the new control functions consistently.

An important difference between our approach and Berry, Linton, and Pakes (2004) is that we

can somewhat weaken the invertibility assumption. When the demand error is additively separable

inverting the market shares to recover mean utility is isomorphic to inverting the shares to recover

demand error. When it is not separable these inversions are no longer isomorphic. In our case

we only require invertibility of the vector of market shares in mean utility and not in the stronger

requirement of invertibility in demand error. One implication is that we only require monotonicity

in the own mean utility term for each product and not in the demand error, which means that we

do not need to place restrictions on the signs of the utility parameters related to the interaction

terms between the regressors and the demand error to ensure invertibility in the demand error.

Our estimation approach is straightforward. In a setting without random coefficients our esti-

mator inverts market shares to recover mean utility and then reduces to three simple steps, which

are at the least repeated least squares. With random coefficients for each evaluation of the objective

function we use the BLP contraction to solve for the mean utility term and then carry out the simple

steps where in the last step we use a minimum distance estimation instead of least squares.2

In Section 8 we run three sets of Monte Carlos to illustrate implementation of our estimator

and to show the possible impact of interaction terms on estimated demand elasticities. In all of the

Monte Carlos both ordinary least squares (OLS) and two-stage least squares (2SLS) are significantly

2Code is available from the authors for Stata.
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biased while our estimator is consistent.

We then return to the original Berry, Levinsohn, and Pakes (1995) automobile data to investigate

whether allowing for interaction terms changes the estimated demand elasticities (see Section 9).

In our most general specification where we include interactions terms and random coefficients, we

reject at the 5% level that the coefficients on all of the interaction terms are zero, and demand

elasticities increase on average by 60% relative to 2SLS.

We are aware of three other approaches that can allow for some form of non-separability with

endogenous prices in discrete choice settings.3 In the case where an observed characteristic exists

that is perfectly substitutable (i.e. separable) with the unobserved demand factor, Berry and Haile

(2010) show the Berry/BLP CMRs are sufficient for identification. Bajari and Benkard (2005) and

Kim and Petrin (2010a) - which are based on Imbens and Newey (2009) - invert out from the pricing

function a vector of controls that are exactly one-to-one functions with unobserved factors. The

benefit of inverting out the unobserved factors is they are then observed, and one can allow for

much more flexible non-separable settings than our setup. The drawback is that they require strong

conditions on the demand and supply setting to get existence of the inverse. We provide a more

detailed comparison with all three approaches in Section 4.

2 Utility Specification

We use a standard discrete choice model with conditional indirect utility uij given as a function

of observed and unobserved product j and consumer i characteristics. We decompose utility into

three components

uij = δj + µij + ǫij (1)

where first component, δj is a product-specific term common to all consumers, the µij term captures

heterogeneity in consumer tastes for observed product characteristics and can be a function of

demographics, and ǫij is a “love of variety” taste term that is assumed to be independent and

identically distributed across both products and consumers. Consumer i is assumed to choose the

product j out of J+1 choices that yields maximal utility, and market shares obtain from aggregating

over consumers.

The utility component common to all consumers, δj , is usually given as

δj = c+ β′xj − αpj + ξj,

where we normalize the mean utility derived from the outside good be zero (δ0 = 0), xj =

(xj1, . . . , xjK)′ and β are, respectively, the vector of observed (to the econometrician) product

characteristics and the population average taste parameters associated with those characteristics,

α is the marginal utility of income and pj denotes the price of good j, and ξj is the characteristic

observed to consumers and producers but unobserved to the econometrician. It may represent other

3Also see a recent nonparametric bounds (partial identification) approach by Chesher, Rosen, and Smolinski
(2011).
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physical attributes of the product or advertising that is not conditioned upon in the estimation, and

it is usually found to be positively correlated with price, biasing elasticities in the positive direction.

µij is parameterized as

µij =

K∑

k=1

xjk(

R∑

r=1

τrkdir) + σcνic +

K∑

k=1

σkνikxjk

where di = (di1, . . . , diR) is a vector of consumer specific demographics which may include income

and τk = (τ1k, . . . , τRk) with τrk the taste parameter associated with demographic characteristic

r and product characteristic k. τrkdir is then the marginal utility derived from a unit of the kth

characteristic for a consumer with demographic dir. νi = (νic, νi1, . . . , νiK) are mean-zero standard

normal idiosyncratic taste shocks for each consumer-characteristic pair and σ = (σc, σ1, . . . , σK) are

the standard deviation parameters associated with the taste shocks.

We write the vector of induced tastes for each product for individual i as µi = (µi1, . . . , µiJ ).

Letting F (µi) be the induced distribution function and assuming ǫij is independent and identically

distributed extreme value, the market share of product j is

sj(δ) =

∫
eδj+µij

J∑
k=0

eδk+µik

dF (µ).

Letting τ = (τ1, . . . , τK), Berry (1994) shows under certain conditions that a unique δ(σ, τ) =

(δ1,...,δJ ) exists that exactly matches observed to predicted markets shares,

s(σ, τ, δ(σ, τ)) = sData,

and Berry, Levinsohn, and Pakes (1995) provide a contraction mapping that locates it conditional

on any values of (σ, τ). Together these results are critical for addressing the endogeneity of price.

2.1 Non-Separable Demand

Our main contribution is to extend this utility framework to a setup where we allow the mean

utility term to include interactions between observed and unobserved product attributes

δj = c+ β′xj − αpj + ξj +

K∑

k=1

γkxjkξj + γp(ȳ − pj)ξj . (2)

(γ, γp) is the new vector of parameters, y is representative income, and the interaction terms between

the observed variables are included in xj . Theory readily accommodates this extension (e.g. see

McFadden (1981)). The γk’s allow unobserved advertising or an unobserved product characteristic

to impact the marginal utility from observed characteristics. Similarly, γp allows the marginal utility

of income to depend on the amount of unobserved quality or unobserved advertising. Thus if γp is

negative consumers become less price sensitive as the demand error increases.
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We can continue to use the same result from Berry (1994) to establish the existence and unique-

ness of a δ(σ, τ) = (δ1,...,δJ ) that exactly matches observed to predicted markets shares.4 However,

if γp 6= 0 the standard two stage least squares estimator (or GMM estimator) that recovers the

parameters contained in δ is inconsistent.

2.2 Standard 2SLS Inconsistent with Non-Separable Demand

Let the instrumented value of pj be given by p̂j and rewrite (2) as

δj = c+ β′xj − αp̂j + [ξj +

K∑

k=1

γkxjkξj + γp(ȳ − pj)ξj − α(pj − p̂j)] (3)

with the new error in brackets. There are several new components to the error but only (ȳ − pj)ξj

presents an econometric problem. ξj is not correlated with the fitted price, p̂j asymptotically and
∑K

k=1 γkxjkξj is also uncorrelated with p̂j asymptotically as long as the instrument(s) include xj

and they are valid. By construction (pj − p̂j) is uncorrelated with p̂j.

The problem arises because p̂j is correlated with ȳ − pj, leading to the possibility that p̂j and

γp(ȳ−pj)ξj are correlated conditional on xj. The sign of the bias depends on the sign of γp and the

sign of the conditional correlation of p̂j and (ȳ − pj)ξj. In the Berry, Levinsohn, and Pakes (1995)

automobile data our estimate of γp is negative and the standard IV estimate is biased down, which

would imply a negative correlation between p̂j and (ȳ − pj)ξj conditional on xj .

3 Conditional Moment Restrictions Alone Insufficient for Identifi-

cation

We consider identification using the Berry, Levinsohn, and Pakes (1995) (BLP) conditional

moment restrictions (CMR). We collect the model parameters into θ and denote its true value by

θ0. A set of instruments zj is presumed to exist such that

E[ξj(θ0)|zj ] = 0.

We follow BLP and assume zj includes all observed product characteristics and income. Letting

ξj = ξj(θ0), the CMR restriction leads to the moments BLP use for identification, given as

E[ξj |zj ] = E[δj − (c0 + β′0Xj − α0pj)|zj ] = 0.

xj and the intercept are included in zj and thus are valid instruments for themselves. If a valid

instrument for price exists then E[pj |zj ] can replace pj and all parameters are identified.

4If we allow the interaction term with residual income - (yi − pj) instead of (y− pj) - Berry (1994)’s existence and
uniqueness result no longer hold. We are working to extend Gandhi (2009)’s inversion result to this setting. This
also requires us to develop a new contraction to locate δ(σ, τ ) = (δ1,...,δJ ). Once we have done so we can also allow
for random coefficients on both ξ and on the interactions between ξ and the observed characteristics and price. This
work is well beyond the scope of the current paper.
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Once we generalize the model to the non-separable setting the same CMR leads to the moments

E[ξj|zj ] = E[δj − (c0 + β′0Xj − α0pj + ξj(γ
′
0Xj + γp0(ȳ − pj)))|zj ] = 0. (4)

xj and pj can be treated as in the separable case, and since xj and ȳ are in the conditioning set

E[Xjξj |zj ] = xjE[ξj |zj ] = 0 and E[ȳξj |zj ] = ȳE[ξj |zj ] = 0. However, pj is not generally known

given zj , so E[pjξj|zj ] 6= pjE[ξj |zj ], and the CMR alone fails to identify any of the parameters.

(4) is an example of simple nonseparable setting that illustrates a more general point regarding

non-separable errors and the failure of identification using CMRs (see Blundell and Powell (2003)

and Hahn and Ridder (2008)). We have valid conditional moment restrictions and our setting is one

where we can explicitly solve for ξ for any candidate value of θ. However, these together are not be

sufficient for identification. One can see this by solving for ξj as a function of the other arguments

and expressing the CMR as

E[ξj |zj ] = E

[
δj − c0 − β′0Xj + α0pj
1 + γ′0Xj + γp0(ȳ − pj)

|zj
]

= 0. (5)

These moment conditions are satisfied for multiple values of the parameters (e.g. any γk0 = ∞)

and thus do not identify the model parameters. Objective functions constructed based on these

moment conditions (e.g. GMM) will violate the properness condition introduced by Palais (1959)

for identification. The properness condition requires the objective function should diverge to infinity

when each parameter tends to infinity. Objective functions based on (5) will tend to zero (e.g.) when

any γk0 is sent to infinity.

One approach is to add further restrictions that allow the practitioner to calculate and thus

control for E[pjξj|zj ]. However, calculating the value of this expectation with ξj unknown is virtu-

ally impossible without fully specifying how pj is determined in equilibrium. Researchers may be

reluctant to do so because pj may be a function of all observed and unobserved characteristics of

vehicles in the market, in addition to other cost and demand shifters. An advantage of our solution

is that we will add controls to the conditioning set zj such that price will be known, so we avoid

the problem of having to resolve this exact relationship between pj and ξj conditional on zj.

4 Removing Endogeneity with Control Functions

We add a control functions condition to the CMRs to solve this non-uniqueness problem. We

develop a control function that has as arguments new controls and zj which together condition out

the correlation between the demand error ξj and price. For identification the control function must

not have arguments that are perfectly collinear with (xj , pj). The CMR conditions from BLP put

shape restrictions on the control function that ensure this collinearity does not occur.

A major advantage of our approach is that our moments require nothing beyond the standard

conditions for identification with valid instruments. Specifically, just as in Berry (1994) and Berry,

Levinsohn, and Pakes (1995) we require no new instruments beyond those from their setup, and we
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only require - as they do - that the instruments shift price around while being excluded from the

utility function.

Each product j may have its own set of controls that we denote vj . The control function is the

conditional expectation of the error given zj and vj, which we write as

f(zj ,vj) = E[ξj |zj ,vj ].

It is well-defined and (almost surely) unique as long as the unconditional expectation E[ξj ] exists.

vj must satisfy the next condition in order to address the endogeneity problem.

Condition 1. (CF) Any bounded function of (zj , pj) is uncorrelated with ξj given f(zj,vj).

While vj = pj would trivially satisfy this condition, if we include prices in vj we will not be

identified because the controls will leave no variation to identify α0. We look for controls vj 6= pj

such that the control function f(zj ,vj) removes the dependence between pj and ξj and leaves some

remaining (causal) variation of pj. We formalize this argument in our proof of identification for the

logit case in Section 5.

In order to resolve the difficulty associated with E[pjξj|zj ] 6= pjE[ξj |zj ], we require that pj is

known conditional on (zj ,vj), which allows us to write E[pjξj|zj ,vj ] = pjE[ξj |zj ,vj ] and leads to

the CF condition being satisfied.

Theorem 1. If there exists control(s) vj such that pj is known conditional on (zj ,vj), then the

condition CF is satisfied.

Proof. For any bounded function of (zj , pj), say h(zj , pj), we have E[h(Zj , pj)(ξj − f(Zj,Vj))] = 0

due to the law of iterated expectation, because E[h(Zj , pj)(ξj − f(Zj,Vj))|zj ,vj ] = h(zj , pj)E[ξj −
f(Zj,Vj)|zj ,vj ] = 0 because pj is known given (zj ,vj) and f(zj ,vj) = E[ξj |zj ,vj ].

We propose two variants of controls that both satisfy the CF condition. Here we discuss using

vj = pj − E[pj|zj ] = pj − Π(zj), j = 1, . . . , J, (6)

with Π(zj) ≡ E[pj |zj ], the expected value of pj given zj . In subsection 4.3 we consider an idea pro-

posed in Matzkin (2003) (also see Florens, Heckman, Meghir, and Vytlacil (2008)) as an alternative

way to generate vj . The controls for good j are then given by vj = Vj(v1, . . . , vJ), for some known

(vector) function Vj(·) of (v1, . . . , vJ ) chosen by the researcher. vj satisfies the CF condition by

Theorem 1 as long as vj is an element of vj. In the simplest case vj = vj , which can be sufficient for

identification and consistency. However, since f(zj ,vj) is a new regressor in our setup, for efficiency

purposes one may want to include vk k 6= j as they may also “explain” ξj, leading to more variation

in f(zj ,vj).

Having determined vj = Vj(v1, . . . , vJ), we can then exploit the moment condition:

0 = E [δj − {c0 + β0Xj − α0pj + f(Zj,Vj)(1 + γ0Xj + γp0(ȳ − pj))}|zj ,vj ] , (7)
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where without loss of generality we let xj be scalar. Letting ξ̃j = (1 + γxj + γp(ȳ − pj)) ξj we now

obtain

E[ξ̃j|z,vj ] = E[ξj |zj ,vj ] + γE[xjξj|zj ,vj ] + γpE[(ȳ − pj)ξj |zj ,vj ]
= E[ξj |zj ,vj ](1 + γxj + γp(ȳ − pj))

= f(zj ,vj)(1 + γxj + γp(ȳ − pj)),

because xj ∈ zj and pj is also known conditional on zj and vj . The choice of the control function

coupled with (7) thus allows us to circumvent the problem of specifying the exact relationship

between pj and ξj.

In the logit case without random coefficients the structural parameters would all be identified

from (7) if no linear functional relationship existed between 1, xj , pj , f(zj ,vj), f(zj,vj)xj , and

f(zj,vj)(ȳ − pj). However, f(zj,vj) may contain linear functions of xj or be collinear with pj , in

which case one will not be able to separate the coefficients (c0, β0, α0) from the function f(zj,vj).

We reintroduce the conditional moment restrictions to rule out this possible collinearity. This is

our key point of departure from conventional control function approaches (e.g. Newey, Powell, and

Vella (1999) and Florens, Heckman, Meghir, and Vytlacil (2008)) that further assume

E[ξj |zj ,vj ] = E[ξj |vj ] = f(vj)

and therefore as long as vj is measurably separated from pj and zj , then identification holds (i.e.

there does not exist linear functional relationship between 1, xj, pj , f(vj), f(vj)xj , and f(vj)(ȳ −
pj)). However, we note that the assumption E[ξj |zj ,vj ] = E[ξj |vj ] can become very restrictive

because it essentially assumes we can recover the demand errors from pricing equations, which

means we should know the true pricing functions. Instead we resort to the instrumental variables

condition below for our identification while allowing E[ξj |zj ,vj ] can depend on zj , i.e. vj may not

be a perfect control as in conventional control function methods.

Condition 2 (CMR). E[ξj|zj ] = 0.

The CMR condition imposes

0 = E[ξj |zj ] = E[E[ξj |Zj,Vj ]|zj ] = E[f(Zj ,Vj)|zj ].

CMR imposes that the mean of f(zj,vj) is equal to zero for any value of zj . Thus while f(zj ,vj)

can depend on a function of vj and its interaction with zj , it cannot be a function of zj only,

so functions of xj only are also ruled out. Also, since vj 6= pj, as long as zj includes a variable

not included in xj , f(zj,vj) will not be perfectly collinear with (xj , pj). Thus the generalized

control function combined with the implied shape restrictions from CMR on f(zj,vj) will suffice for

identification of the structural parameters θ0. Section 4.1 provides a simple example and Section 5

proves identification formally in the logit case.
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Together CF and CMR can be written as a set of moment conditions

0 = E
[
δj − {c0 + β′0Xj − α0pj + f(Zj,Vj)(1 + γ′0Xj + γp0(ȳ − pj))}|zj ,vj

]
(8)

with f(zj,vj) restricted to satisfy

E[f(Zj ,Vj)|zj ] = 0. (9)

We use a multi-step least squares estimator (for the logit case) or minimum distance estimator (for

the random coefficient logit case, see Section 6) based on the moment conditions from (8) and (9)

to estimate θ0 and the nonparametric function f(zj,vj), which we approximate with sieves. In

the first-step we obtain consistent estimates of vj = Vj(v1, . . . , vJ) using a consistent estimator

for Π(zj) j = 1, . . . , J and vj = pj − Π(zj). In the second step we construct the approximation of

f(zj,vj) that it satisfies (9). For example, we can approximate f(zj ,vj) as

f(zj,vj) =

∞∑

l1=1

πl1,0(ϕl1(vj)−E[ϕl1(Vj)|zj ])+
∞∑

l=2

∑

l1≥1,l2≥1 s.t. l1+l2=l

πl1,l2φl2(zj)(ϕl1(vj)−E[ϕl1(Vj)|zj ])

where ϕl1(vj) and φl2(zj) denote approximating functions of vj and zj (e.g., tensor products polyno-

mials or splines), with plug-in consistent estimates of E[ϕl1(Vj)|zj ]. In the final step we estimate θ0

and f(zj ,vj) simultaneously using either non-linear least squares or minimum distance estimation.5

We formally develop this estimator in Section 6 (also see Appendix B for the logit case).

4.1 Example

While our general approach allows f(zj ,vj) to come from any class of functions that can be

consistently approximated by sieves, here we consider a simple example to illustrate how the CMR

restriction yields identification. For some parameter values π = (π0, π
′
1, π2, π

′
3)

′ we assume f(zj ,vj)

can be written as

f(zj ,vj) = π0 + π′1zj + π2vj + π′3zj vj

with zj = (xj , z2j)
′. Letting π′3zj = π31xj + π32z2j the CMR in this case implies

f(zj,vj) = f(zj,vj) − E[f(Zj,Vj)|zj ] (10)

= (π0 + π′1zj + π2vj + π′3zj vj) − (π0 + π′1zj + π2E[Vj |zj ] + π′3zjE[Vj |zj ])
= π2vj + π′3zj vj,

because vj = pj − Π(zj) so E[Vj |zj ] = 0. Thus f(zj ,vj) is a function of vj and its interaction with

5Alternatively one can estimate the model parameters in two steps using the unconstrained approximation
f̃(zj ,vj) =

P∞

l1=1 πl1,0ϕl1(vj) +
P∞

l=2

P

l1≥1,l2≥1 s.t. l1+l2=l πl1,l2φl2(zj)ϕl1(vj). If one wanted an estimate of

f(zj ,vj) one would use a standard estimator to approximate E[f̃(Zj ,Vj)|zj ] and then calculate f(zj ,vj) =
f̃(zj ,vj) − E[f̃(Zj ,Vj)|zj ].
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zj , but conditional on these terms is not an additive function of pj nor zj alone.

Identification in the logit case follows from plugging (10) in (8) and rearranging to obtain

0 = E[δj − {c0 + β0Xj − α0pj + π2Vj + (π2γ0 + π31)XjVj + π2γp0Vj(ȳ − pj)

+π31γ0X
2
j Vj + π31γp0XjVj(ȳ − pj) + π32Z2jVj + π32γ0Z2jXjVj + π32γp0Z2jVj(ȳ − pj)}|zj ,vj ].

The unconstrained regression of δj on 1, xj , pj , vj , xjvj, vj(ȳ− pj), x
2
jvj, xjvj(ȳ− pj), z2jvj, z2jxjvj ,

and z2jvj(ȳ−pj) then identifies the coefficients (c0, β0, α0, π2) and the composite coefficients (π2γ0+

π31, π2γp0, π31γ0, π31γp0, π32, π32γ0, π32γp0) unless the regressors are “multicollinear”. (γ0, γp0, π31, π32)

are then identified from the composite coefficients.

4.2 Identification and Higher-order CMRs

If γp 6= 0 then the higher order moments of ξj conditional on zj do not help with identifica-

tion. The problem is the same as that encountered with the conditional mean, where moment

conditions are satisfied for multiple values of the parameters. For example, consider the conditional

homoskedasticity assumption where E[ξ2j |zj ] = σ2. Rewritten we have

E[ξ2j |zj ] − σ2 = E

[
(
δj − c0 − β′0Xj + α0pj
1 + γ′0Xj + γp0(ȳ − pj)

)2|zj
]
− σ2 = 0,

which is satisfied for any γk0 = ∞ and σ = 0.

If γp = 0 then only exogenous variables interact with the demand error. The conditional moment

restrictions E[ξj |zj ] = 0 are sufficient to identify the demand parameters except the interaction

parameters γ’s because the CMR implies

E[ξj +
K∑

k=1

γkXjkξj | zj ] = E[δj − (c0 + β′0Xj − α0pj)|zj ] = 0.

Given the identified demand parameters, the entire multiplicative heteroskedastic error ξ̃j = ξj +∑K
k=1 γkxjkξj is identified. The ξ̃j can be used with a higher-order moment restriction on ξj condi-

tional on zj to identify γ.

We illustrate assuming conditional homoskedasticity holds and (without loss of generality) there

is only one exogenous characteristic, so the entire identified error is ξ̃j = ξj(1 + γxj). Taking the

conditional expectation of this squared error yields

E[ξ̃2j |zj ] = σ2 + 2σ2γxj + σ2γ2x2
j .

If we consider the regression model

ξ̃2j = π0 + π1xj + π2x
2
j + ηj

with E[ηj |zj ] = 0 by construction, then γ is overidentified because γ2 = π2/π0 and γ = π1/2π0.

4.3 Matzkin (2003) Controls

We can also use the controls proposed in Matzkin (2003), as done in Florens, Heckman, Meghir,
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and Vytlacil (2008) and Imbens and Newey (2003). Assuming pj is continuous, we can always

rewrite pj as a function of zj and a continuous single error term ṽj - pj = h̃(zj , ṽj) - such that ṽj

is independent of zj and h̃(zj , ṽj) is increasing in ṽj .
6 Normalizing ṽj to be uniform over the unit

interval [0, 1] we obtain the new control

ṽj = Fpj |zj
(pj |zj)

where Fpj |zj
denotes the conditional cumulative distribution function of pj given zj. The control ṽj

satisfies the requirement in Theorem 1 because conditional on (zj , ṽj), pj is known, given as pj =

F−1
pj |zj

(ṽj |zj) ≡ h̃(zj , ṽj). One can then proceed as described above constructing ṽj = Ṽj(Ṽ1, . . . , ṼJ ).

Identification also holds for this ṽj (see Kim and Petrin (2010c) for the latter case).

4.4 Alternative Approaches

We are aware of three other approaches that allow for some form of non-separable demands with

endogenous prices in discrete choice settings. Bajari and Benkard (2005) and Kim and Petrin (2010a)

use the structure from Imbens and Newey (2009) and place restrictions on demand and supply such

that it is possible to invert out from the pricing equations the demand errors. Once the demand

errors have been recovered from the inversion, they can enter utility in any non-separable fashion

that the practitioner desires because the variable is now observed. The tradeoff is that they require

the controls (v1, . . . , vJ) to be one-to-one with ξ = (ξ1, . . . , ξJ) conditional on Z = (z1, . . . , zJ), and

they also need full independence of ξ and Z, two important features of the econometric setup from

Imbens and Newey (2009). We require neither assumption but our non-separable setup is not fully

general.

In the case where a special type of characteristic exists, Berry and Haile (2010) show how to

use it in conjunction with conditional moment restrictions to achieve identification in differentiated

products models with market level data. This special characteristic - call it x
(1)
j - must be perfectly

substitutable with ξj , and the coefficient on the special characteristic must be known.7 The approach

allows for non-parametric identification in the variables ((x
(1)
j + ξj), x

(2)
j , pj).

We show how in our parametric setup from (2) identification using the CMRs is achieved when

this special characteristic exists. Substituting in the special characteristic to the mean utility we

have

δj = c0 + x
(1)
j + β

(2)′
0 x

(2)
j − α0pj + ξj + γ′0x

(2)
j (x

(1)
j + ξj) + γp0(ȳ − pj)(x

(1)
j + ξj),

with the other regressors given as x
(2)
j and where for transparency we suppress interactions between

x
(2)
j and (ȳ − pj). Solving for ξj and taking expectations conditional on zj , we obtain

0 = E[ξj |zj ] = −x(1)
j + E[

δj − c0 − β
(2)′
0 X

(2)
j + α0pj

1 + γ′0X
(2)
j + γp0(ȳ − pj)

|zj ],

6This does not imply that pj and ξj are independent given ṽj nor that pj and ξj are independent given (ṽ1, . . . , ṽJ )
even if ξj is independent of zj .

7This characteristic is related to but not the same as the special regressor from Lewbel (2000).
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so this setup rules out any γk0 = ±∞ unless x
(1)
j = 0. Note that if we did not know the coefficient

on the special characteristic we would have to estimate it and the moment condition would become

0 = E[ξj |zj ] = −β(1)
0 x

(1)
j + E[

δj − c0 − β
(2)′
0 X

(2)
j + α0pj

1 + γ′0X
(2)
j + γp0(ȳ − pj)

|zj ],

which is satisfied for β
(1)
0 = 0 and any γk0 = ±∞ , leading to failure of identification.

5 Identification in the Simple Logit Model

In this section we show global identification for the model with the simple logit error only to

convey the intuition for this base case. An Appendix provides the proof of consistency for the sieve

estimator in the simple logit case. In Section 6 we consider identification and estimation for the

random coefficients setup, providing conditions under which our sieve estimator is consistent.

We study identification using the moment conditions (8) and (9). We use controls vj that both

satisfy the CF condition and are possibly a function of (pj − Π(zj)) for j = 1, . . . , J. We write this

function vj = Vj(p1 − Π(z1), . . . , pJ − Π(zJ)) = Vj(v1, . . . , vJ) and also write vj = Vj(vj , v−j)

where v−j denotes a vector obtained by removing vj from (v1, . . . , vJ).
8

vj is identified from the

first step regression of (6), and we treat Π(zj) and vj as known throughout the discussion.9

Indeed our identification argument below is not specific to a particular functional form like (2)

but still holds when the linear utility term c0+β′0xj−α0pj is replaced with a nonparametric function

of xj and pj , say φ0(xj , pj). Below we present our identification result for this nonparametric case

for possible generalizations.

For our identification result the key assumption we require is that a control function exists,

which satisfies the property that even conditional on this functional, price still has variation. Let

zj = (x′j , z
′
2j)

′.
Assumption 1. [CF2] E [ξj | zj ,vj ] = f (zj ,vj) ≡ f (ṽj (zi,vj)) where the control function vari-

ables ṽj (assumed to be smooth) satisfies the property that for any (z∗j , v
∗
j , v

∗
−j) in the support of

(zj , vj , v−j), (assume the support is an open set) there exists an implicit function v∗−j (z2j) such that

ṽj

(
x∗j , z2j ,Vj(v

∗
j , v

∗
−j(z2j))

)
= ṽj

(
x∗j , z

∗
2j ,Vj(v

∗
j , v

∗
−j)

)
for all z2j in a neighborhood of z∗2j .

Note that this assumption (that strengthens CF condition) on the existence of a control function

strictly generalizes the standard control function condition required by Newey, Powell, and Vella

(1999) for the case of separable models and Florens, Heckman, Meghir, and Vytlacil (2008) for

non-separable models, which is that E [ξj | xj, pj ,vj ] = E [ξj | zj ,vj ] = f (vj). Observe that the

standard control function restriction that zj “drops out” of f conditional on vj would trivially satisfy

our more general condition (i.e. we take ṽj = vj). We only require that the control function depend

on a subset of the full information contained in (zj , vj , v−j).

8It is possible to modify this proof to allow for more general vj as defined in Matzkin (2003) (see Kim and Petrin
(2010c)).

9While we proceed assuming price pj is endogenous this is not necessary. We can allow for settings where the
practitioner does not know whether the variable is exogenous or endogenous (see Kim and Petrin (2010b)).
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The next assumption we make, which closes the gap caused by our generalization, is the instru-

mental variable assumption (CMR) used for identification of nonparametric separable models with

endogeneity (see e.g. Newey and Powell (2003) and Hall and Horowitz (2005) among many others).

Assumption 2. [CMR2] E [ξj | zj ] = 0 and (pj , zj) satisfy the completeness condition that for all

functions B(pj, xj) with finite expectation, E[B(pj,Xj)|zj ] = 0 a.s. implies B(pj, xj) = 0 a.s.

Below we can use these assumptions to prove identification of the parameters θ0 = (φ0, γ0, γp0)

and f0. Note that if θ0 and f0 are identified they must be the unique solution to

0 = E
[
δj − {φ0(Xj , pj) + f(Zj,Vj)(1 + γ′0Xj + γp0(ȳ − pj))}|zj ,vj

]
(11)

and (9). The conditional expectation E [δj |zj ,vj ] is unique with probability one, which implies if

there exists any other function θ̄ and f̄ that satisfies (11) and (9) it must be that

Pr{φ0(xj , pj)+ f0(zj ,vj)(1+ γ′0xj + γp0(ȳ− pj)) = φ̄(xj , pj)+ f̄(zj ,vj)(1+ γ̄′xj + γ̄p(ȳ− pj))} = 1.

(12)

Therefore, identification means we must have φ0 = φ̄, γ0 = γ̄, γp0 = γ̄p, f0 = f̄ with proba-

bility one whenever (12) holds. Then working with differences ψ(xj , pj) = φ̄(xj , pj) − φ0(xj , pj),

κ(zj ,vj) = f̄(zj ,vj)−f0(zj ,vj), κx(zj ,vj) = γ̄f̄(zj ,vj)−γ0f0(zj ,vj), and κp(zj ,vj) = γ̄pf̄(zj ,vj)−
γp0f0(zj ,vj) we can write (12) as

Pr{ψ(xj , pj) + κ(zj ,vj) + κ′x(zj ,vj)xj + κp(zj ,vj)(ȳ − pj) = 0} = 1. (13)

If (13) holds, for identification we must have ψ(xj , pj) = 0, κ(zj ,vj) = 0, κx(zj ,vj) = 0, and

κp(zj ,vj) = 0 with probability one. We formalize this identification statement in Theorem 2.

Theorem 2 (Identification). Let

Ψ(ψ, κ, κx, κp) = ψ(xj , pj) + κ(zj ,vj) + κ′x(zj ,vj)xj + κp(zj ,vj)(ȳ − pj),

and assume the CF condition holds. If (xj , pj) and (zj ,vj) does not have a functional relationship

of the form

Pr {Ψ(ψ, κ, κx, κp) = 0} = 1 (14)

then the structural parameters θ0 = (φ0, γ0, γp0) and f0 are identified.

Proof. The CF condition allows one to have the moment condition (11) (and thus equation (14)).

If there exists an additive functional relationship between ψ(xj , pj), κ(zj ,vj), xj1κx1(zj ,vj), . . .,

xjKκxK
(zj ,vj), and (ȳ − pj)κp(zj ,vj) then (14) must be satisfied. The contrapositive argument

proves the statement.

We now use Theorem 2 to show identification under Assumptions CF2 and CMR2 when Π(zj)

and f(zj,vj) are differentiable.10

10We also maintain that the one-sided derivatives of Ψ(ψ,κ, κx, κp) are continuous at the boundary of the support
of (zj ,vj), although instead one may alternatively assume that the boundary of the support of (zj ,vj) has zero
probability (this may require a trimming device to deal with the boundary of the support in the estimation).
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Theorem 3. Assume Π(zj) and f(zj,vj) are differentiable and the one-sided derivatives are con-

tinuous at the boundary of the support of (zj ,vj). Assume the CF2 and CMR2 conditions hold.

Then θ0 and f0 are identified.

Proof. Suppose two sets of parameters (φ0, γ0, γp0, f0) and (φ, γ, γp, f) both explain the same con-

ditional expectation (11). Then we must have that

ψ(xj , pj) + κ(zj ,vj) + κ′x(zj ,vj)xj + κp(zj ,vj)(ȳ − pj) = 0 (15)

a.e., (zj , vj , v−j). For identification we need to show only ψ(xj , pj) = 0, γ = γ0, γp = γ0
p and

κ(zj ,vj) = 0 satisfies (15).

In particular then from (15) we must have that for each (z∗j , v
∗
j , v

∗
−j) in the support,

∂

∂z2j

[
φ

(
x∗j , p

∗
j

)
+ f(x∗j , z2j ,Vj(v

∗
j , v

∗
−j(z2j))){1 + γ′x∗j + γp(ȳ − p∗j)}

] ∣∣∣∣
z2j=z∗2j

=

∂

∂z2j

[
φ0

(
x∗j , p

∗
j

)
+ f0(x

∗
j , z2j ,Vj(v

∗
j , v

∗
−j(z2j))){1 + γ′0x

∗
j + γp0(ȳ − p∗j)}

] ∣∣∣∣
z2j=z∗2j

,

where v∗−j is the implicit function satisfying the property stated in Assumption CF2. Taking the

derivative through the expression gives (by the chain rule)

∂Π(z∗j )

∂z2j
{
∂ψ(x∗j , p

∗
j)

∂pj
− κp(z

∗
j ,Vj(v

∗
j , v

∗
−j))} = 0

because
∂f(x∗j ,z2j ,Vj(v∗j ,v

∗
−j(z2j)))

∂z2j
= 0 in the neighborhood of z∗2j by Assumption CF2 (i.e. we can

fix ṽj while z2j varies around z∗2j) and because pj = Π(zj) + vj . Then because
∂Π(z∗j )

∂z2j
6= 0 by the

completeness condition (i.e. instruments should satisfy the rank condition), we also have
∂ψ(x∗j ,p∗j)

∂pj
−

κp(z
∗
j ,Vj(v

∗
j , v

∗
−j)) = 0. Then since the above equality holds for all (z∗j , v

∗
j , v

∗
−j), we thus have for

all (zj , vj , v−j) that
∂

∂pj
ψ (xj , pj) − κp (zj ,Vj(vj , v−j)) = 0. (16)

Note that E[κp (zj ,vj) |zj ] = 0 because we can restrict our attention to candidate functions f and

f0 that satisfies E[f(zj ,vj)|zj ] = 0 and E[f0(zj ,vj)|zj ] = 0 due to the law of iterated expectation

and Assumption CMR2:

0 = E[ξj |zj ] = E[E[ξj |Zj , Vj , V−j ]|zj ] = E[f (Zj,Vj) |zj ].

Then taking the conditional expectation to (16) observe that we can exploit the CMR to trans-

form the equality as

E

[
∂

∂pj
ψ (xj , pj)

∣∣zj
]

= 0

and thus by the completeness condition we have ∂
∂pj

ψ (xj , pj) = 0. This implies by (16) that
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κp = γpf − γp0f0 = 0. This in turn implies by (15) that

ψ (xj, pj) + κ(zj ,vj) + κ′x(zj ,vj)xj = 0. (17)

Then taking the conditional expectation to the above and applying the CMR condition, we find

E[ψ(xj , pj)|zj ] = 0

and thus by the completeness condition now we have φ(xj , pj) = φ0(xj , pj). This in turn implies

by (17) κ(zj ,vj) +κ′x(zj ,vj)xj = 0, which implies (after dividing it by f0 and multiplying it by γp)

that γp0 − γp + (γp0γ − γpγ0)
′xj = 0 a.e. in xj. Then it must be that γp0 = γp and γ0 = γ, which

also implies with κp(zj ,vj) = 0, κ(zj ,vj) = 0 and κx(zj ,vj) = 0.

We therefore have shown there do not exist two distinct tuples of (φ, γ, γp, f) that solves (11),

hence identification.

6 Identification and Estimation in the Random Coefficients Model

In this section we formally develop our estimator as a sieve estimator and provide a proof of

its consistency. The proof covers the case when the asymptotics are the number of products, as

in Berry, Linton, and Pakes (2004) and the automobile data from Berry, Levinsohn, and Pakes

(1995).11 A special case is when the asymptotics are in the number of markets, as in Goolsbee and

Petrin (2004) or Chintagunta, Dube, and Goh (2005).12

When the asymptotics are in the number of products Berry, Linton, and Pakes (2004) argue

against maintaining uniform convergence of the objective function. The issue is that shares and

prices are equilibrium outcomes of strategically interacting firms who observe the characteristics of

all products in the market. This interdependence generates conditional dependence in the estimate

of ξ when the parameter value is different from the truth, making it difficult to determine how the

objective function behaves away from the true parameter value.

Berry, Linton, and Pakes (2004) show how to achieve identification without maintaining uniform

convergence and we show how to extend the Berry, Linton, and Pakes (2004) consistency theorem

to the case of our estimator. Our estimator must allow for the new approximation errors arising

from pre-step estimators in addition to the sampling and simulation error present in Berry, Linton,

and Pakes (2004). With the asymptotics in products it is no longer possible to allow the control

function to vary by product, although it can vary by (e.g.) product type (stylish or not, large or

small) or any other observed factor that is fixed as the number of products increases.

When the asymptotics are in the number of markets our consistency proof extends Chen (2007)

(Section 3.1) to a setting with pre-step estimators. Under standard regularity conditions the sample

objective function converges uniformly to its population counterpart making consistency straight-

forward to establish. The control functions can vary by product, or by product-season (e.g.), or by

11In the BLP data the number of products per market is over 100 and the number of markets is 20.
12In the former paper there are four television viewing options in every market and over 300 television markets

determining by the cable providers. In the latter there are a small number of orange juices or margarines for whom
sales are observed at a particular supermarket over 100 weeks, with the week being the market.
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other observed factors as long as the number of control functions is not increasing as the sample

size increases.

An important difference between our approach and Berry, Linton, and Pakes (2004) is that we

can weaken the invertibility assumption. When the demand error is additively separable inverting

the market shares to recover δ is isomorphic to inverting the shares to recover ξ. When it is not

separable these inversions are no longer isomorphic. In our case we only require invertibility of the

vector of market shares in δ and not in the stronger requirement of invertibility in ξ. One implication

is that we only require monotonicity in the own mean utility term δj and not in demand error ξj,

which means that we do not need to place restrictions on the signs of the utility parameters related

to the interaction terms between the regressors and ξj to ensure ξ is unique and thus invertible.

6.1 Setup and Estimation

For transparency we assume the data is from a single market M = 1. We let ν(x, p, ξ, λ, θ, θλ)

be a J × 1 share function specific to a household type λ and let P (λ) be the distribution of λ where

θ denotes the mean utility parameters and θλ denotes the distribution parameters. Given a choice

set with characteristics (x,p, ξ) the vector of aggregate market shares at values of (θ, θλ) is given by

σ(δ(x, p, ξ, θ), x, p, θλ, P ) =

∫
ν(x, p, ξ, λ, θ, θλ)dP (λ)

where ξ appears only in mean utility because it does not have a random coefficient.13 The function

σ(·) maps the appropriate product space to the J + 1 dimensional unit simplex for shares,

SJ = {(s0, . . . , sJ)′|0 ≤ sj ≤ 1 for j = 0, . . . , J, and

J∑

j=0

sj = 1}.

The population market shares s0 are given by evaluating σ(δ(·, θ), θλ, P ) at (θ0,θλ0,P
0), the true

values of θ,θλ, and P . Also under Assumption 4 below the share equation is invertible, so there

exists unique δ∗ = δ∗(θλ0, s
0, P 0) (J × 1 vector) that solves the share equation

s0 = σ(δ∗, θλ0, P
0).

Berry, Linton, and Pakes (2004) treat two sources of error and we follow their approach. One

source of error arises because of the use of simulation to approximate P 0 with PR, the empirical

measure of some i.i.d. sample λ1, . . . , λR from P (λ):

σ(δ(·, θ), θλ, PR) =

∫
ν(x, p, ξ, λ, θ, θλ)dP

R(λ) =
1

R

R∑

r=1

ν(x, p, ξ, λr, θ, θλ).

The second source of error is the sampling error in observed market shares sn which are constructed

from n i.i.d. draws from the population of consumers.

13Allowing for a random coefficient on ξ is an unresolved problem to date.
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Our estimation approach is as follows. In the first stage we estimate Π(zj) and obtain v̂j =

pj − Π̂(zj) for j = 1, . . . , J and construct v̂j = Vj(v̂1, . . . , v̂J) where how to construct control

variates, Vj(·) is up to researchers (so treated as known). In the second step, we construct approxi-

mating basis functions using v̂j and zj , where we subtract out conditional means of underlying basis

functions (conditional on zj) to approximate f(·) that satisfies (9). In the final step we estimate

(θ0, θλ0) and f0(·) using a sieve estimation.

We incorporate the pre-step estimation error by letting F denote a space of functions that

includes the true function f0, endowed with ‖·‖F a pseudo-metric on F . We write the basis functions

for f(·) as

ϕ̃l(zj ,vj) = ϕl(zj ,vj) − ϕ̄l(zj)

where ϕ̄l(zj) = E[ϕl(Zj ,Vj)|zj ] and {ϕl(zj ,vj), l = 1, 2, . . .} denotes a sequence of approximating

basis functions of (vj , zj) such as power series or splines. Subtracting out the conditional means

from the underlying basis functions ensures that any function f(·) in the sieve space satisfies the

conditional moment restrictions from (9).

Define the (infeasible) sieve space FJ as the collection of functions

FJ = {f : f =
∑

l≤L(J)

alϕ̃l(zj ,vj), ‖f‖F < C̄}

for some bounded positive constant C̄ and coefficients (a1, . . . , aL(J)), with L(J) → ∞ and L(J)/J →
0 such that FJ ⊆ FJ+1 ⊆ . . . ⊆ F , so we use more flexible approximations as the sample size grows.

We replace the sequence of the basis functions ϕ̃l(zj ,vj) with their estimates ˆ̃ϕl(zj , v̂j) =

ϕl(zj , v̂j) − ˆ̄ϕl(zj) (defined below) and then define the sieve space constructed using the estimated

basis functions as

F̂J = {f : f =
∑

l≤L(J)

al ˆ̃ϕl(·, ·), ‖f‖F < C̄}. (18)

Note that under mild regularity conditions with specific series estimations considered below, F̂J
well approximates FJ (in a metric defined on the metric space (F , ‖·‖F )) in the sense that for any

f ∈ FJ we can find a sequence f̂ ∈ F̂J such that
∥∥∥f̂ − f

∥∥∥
F
→ 0 as Π̂(·) → Π(·) and ˆ̄ϕl(·) → ϕ̄l(·)

(in a pseudo-metric ‖·‖s).
To provide details in estimation suppose triangular array of data of the tuple {pj , xj , zj}Jj=1 are

available. Let {ϕl(Z), l = 1, 2, . . .} denote a sequence of approximating basis functions (e.g. or-

thonormal polynomials or splines) of Z . Let ϕk(J)(Z) = (ϕ1(Z), . . . , ϕk(J)(Z))′, P = (ϕk(J)(Z1), . . .

, ϕk(J)(ZJ ))′ and (P′
P)− denote the Moore-Penrose generalized inverse where k(J) tends to infinity

but k(J)/J → 0. In our asymptotics later we assume ϕk(J)(Z) is orthonormalized (see Lemma L1 in

Appendix) and hence assume P
′
P/J is nonsingular with probability approaching to one (w.p.a.1).

Then in the first stage we estimate the controls

Π̂(z) = ϕk(J)(z)′(P′
P)−

∑J

j=1
ϕk(J)(zj)pj, v̂j = pj − Π̂(zj), and v̂j = Vj(v̂1, . . . , v̂J )
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and in the second stage we obtain the approximation of f(z,v) as

f̂L(J)(zj , v̂j) =
∑L(J)

l=1
al{ϕl(zj , v̂j) − ˆ̄ϕl(zj)} =

∑L(J)

l=1
al{ϕl(zj , v̂j) − Ê[ϕl(Zj , V̂j)|Z = zj ]}

=
∑L(J)

l=1
al{ϕl(zj , v̂j) − pk(J)(zj)

′(P′
P)−

∑J

j′=1
pk(J)(zj′)ϕl(zj′ , v̂j′)}

where {ϕl(z,v), l = 1, 2, . . .} denote a sequence of approximating basis functions generated using

(z,v). We can use different sieves (e.g., power series, splines of different lengths) to approximate

ϕ̄l(zj) = E[ϕl(Zj ,Vj)|Zj = zj] and Π(zj) depending on their smoothness but we assume one uses

the same sieves for ease of notation.

Let ϕL(zj ,vj) = (ϕ1(zj ,vj), . . . , ϕL(zi,vj))
′, ϕL(zj , v̂j) = ϕL(zj ,vj)|vj=v̂j

, and define for some

dj its empirical conditional mean on (zj ,vj) as

Ê[dj |zj ,vj ] = ϕL(zj ,vj)
′(

J∑

j=1

ϕL(zj ,vj)ϕ
L(zj ,vj)

′)−1
J∑

j=1

ϕL(zj ,vj)dj

and similarly Ê[dj |zj , v̂j ] where we replace vj with v̂j.

Then based on the moment condition like (7, in the case of fixed coefficients)

0 = E
[
δ∗j (θλ0, s

0, P 0) − {c0 + β0xj − α0pj + f(zj,Vj)(1 + γ0xj + γp0(ȳ − pj))}|zj ,Vj

]
,

in the last stage we can estimate the demand parameters using (e.g.) a sieve MD-estimation:14

(θ̂,θ̂λ, f̂) = arg inf
(θ,θλ,f̂L(J))∈Θ×Θλ×F̂J

1

J

J∑

j=1

{Ê[δ∗j (θλ, s
n, PR)|zj , v̂j ] (19)

−(c+ β′xj − αpj + f̂L(J)(zj , v̂j)(1 + γ′xj + γp(ȳ − pj)))}2

where δ∗j (θλ, s
n, Pn) denotes the mean utility of the product j, which is the j-th element of δ∗ that

solves the share equation

sn = σ(δ∗, θλ, P
R).

Being abstract from the simulation and the sampling error to approximate the true δ∗, for the

consistency of this sieve estimation we need to promise k(J),L(J) → ∞ as J → ∞, so as the sample

size gets larger, we need to use more flexible specifications for Π̂(·) and f̂L(J)(·). In practice, one

can proceed estimation and inference with fixed k = k(J) and L = L(J).

Even though the asymptotics will be different under two different scenarios: parametric model

(fixed k(J) and L(J)) and semiparametric model (increasing k(J) and L(J)), the computed standard

errors under two different cases can be numerically identical or equivalent. This equivalence has been

established in Ackerberg, Chen, and Hahn (2009) for a class of sieve multi-stage estimators. This

suggests that we can ignore the semiparametric nature of the model and proceed both estimation

and inference (e.g. calculating standard errors) as if the parametric model is the true model.

Therefore one can calculate standard errors using the standard formula for the parametric multi-

14One can easily add a weighting function in the objective function to gain efficiency (see e.g. Ai and Chen 2003)
but we are abstract from it for ease of notation.
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step estimation (e.g. Murphy and Topel (1985) and Newey (1984)) when the simulation and the

sampling error are negligible.

In the following sections we establish the consistency of the sieve estimation and the asymptotic

normality of the demand parameter estimates in the presence of the simulation and the sampling

errors. We now turn to the assumptions.

6.2 Assumptions

Our approach closely follows Berry, Linton, and Pakes (2004). Their Assumption A1 regulates

the simulation and sampling errors and we rewrite it replacing ξ with δ throughout.

Assumption 3. The market shares snj = 1
n

∑n
i=1 1(Ci = j), where Ci is the choice of the i-th

consumer, and Ci are i.i.d. across i. For any fixed (δ(x, p, ξ, θ),θλ),

σj(δ(·, θ), θλ, PR) − σj(δ(·, θ), θλ, P 0) =
1

R

R∑

r=1

εj,r(δ(·, θ), θλ),

where εj,r(δ(·, θ), θλ) is bounded, continuous, and differentiable in δ(·) and θλ. Define the J × J

matrices V2 = nE∗[(sn − s0)(sn − s0)′] = diag[s0] − s0s0′ and V3 = RE∗[{σ(δ(·, ξ, θ0), θλ0, P
R) −

σ(δ(·, ξ, θ0), θλ0, P
0)}{σ(δ(·, ξ, θ0), θλ0, P

R) − σ(δ(·, ξ, θ0), θλ0, P
0)}′], where ξ here are the true val-

ues.

Here we let diag[s] denote a diagonal matrix with s on the principal diagonal and E∗ denotes

expectations w.r.t. the sampling and/or simulation disturbances conditional on product character-

istics (x, p, ξ). Their Assumption A2 puts regularity conditions on the market share function that

ensure its invertibility in ξ. Our market share function is written in terms of δ(·, θ) as σ(δ(·, θ), θλ, P )

so our Assumption 2 requires that similar conditions hold in terms of the mean utility .15

Assumption 4. (i) For every finite J , for all finite δ and θλ ∈ Θλ, and for all P in a neighborhood

of P 0,
∂σj(δ,θλ,P )

∂δk
exists, and is continuously differentiable in both δ and θλ, with

∂σj(δ,θλ,P )
∂δj

> 0, and

for k 6= j,
∂σj(δ,θλ,P )

∂δk
≤ 0. The matrix ∂σ(δ,θλ,P )

∂δ′ is invertible for all J ; (ii) s0j > 0 for all j; (iii) For

every finite J , for all θ ∈ Θ, δ(·, θ) is continuously differentiable in θ.

Under Assumption 2 the mean utility δ∗ = δ∗(θλ, s, P ) that solves

s− σ(δ∗, θλ, P ) = 0 (20)

is unique so s and δ∗ are one-to-one for any θλ and P . The true value of δ∗ is given as δ∗0 =

δ∗(θλ0, s
0, P 0). By the implicit function theorem, Dieudonne (1969)(Theorem 10.2.1), and As-

sumption 3 the mapping δ∗(θλ, s, P ) is continuously differentiable in (θλ,s, P ) in some neighbor-

hood. Here note that δ∗(θλ, s, P ) denotes the mean utility inverted from the share equations,

which depends on the parameter θλ but not on θ while we use δ(·, θ) to denote the specification

of the mean utility as a function of (x, p, ξ) with θ the parameter vector such as in our estimation

δj(·, θ) = c0 + β′0xj − α0pj + ξj(1 + γ′0xj + γp0(ȳ − pj)).

15Note that we only consider the random coefficients logit model while Berry, Linton, and Pakes (2004) is applicable
to other models like (e.g.) the vertical model.
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As in Berry, Linton, and Pakes (2004) we use Assumption 4 to expand the inverse mapping from

(θλ, s
n, P ) to δ∗(·) around s0 to control the sampling error (they do the expansion around ξ∗). We

then add a condition that restricts the rate at which s0j approaches zero. It is identical to Condition

S in Berry, Linton, and Pakes (2004):

Condition 3 (S). There exist positive finite constants c and c such that with probability one

c/J ≤ s0j ≤ c/J, j = 0, 1, . . . , J.

We turn to developing an analog to Assumption A3 in Berry, Linton, and Pakes (2004). This

amounts to controlling the way sn approaches s0 and σ(δ∗(·), θλ, PR) approaches to σ(δ∗(·), θλ, P 0).

We work on the parameter space Θ × Θλ ×F ×SJ ×P where P is the set of probability measures

and endow the marginal spaces with (pseudo) metrics: ρP (P, P̃ ) = supB∈B |P (B) − P̃ (B)|, where

B is the class of all Borel sets on R
dim(λ), the Euclidean metric ρE(·, ·) on Θ and Θλ, the pseudo

metric || · ||F on F , and a metric ρs0 on SJ , defined by

ρs0(s, s̃) = max
0≤j≤J

∣∣∣∣∣
sj − s̃j
s0j

∣∣∣∣∣ .

The same metric is used for σj(·) in place of sj. All metrics are in terms of δ instead of ξ. We use

the metric ρδ(δ
∗, δ̃∗) = J−1

∑J
j=1(δ

∗
j − δ̃∗j )

2 and define for each ǫ > 0, the following neighborhoods

of θ0, θλ0, f0, P
0, and s0: Nθ0(ǫ) = {θ : ρE(θ, θ0) < ǫ}, Nθλ0

(ǫ) = {θλ : ρE(θλ, θλ0) < ǫ},
NP 0(ǫ) = {P : ρP (P,P 0) < ǫ}, and Ns0(ǫ) = {s : ρs0(s, s

0) < ǫ}. Also for each θλ and ǫ > 0, define

Nδ∗0(θλ, ǫ) = {δ∗ : ρδ(δ
∗, δ∗(θλ, s0, P 0)) < ǫ}. Assumption 5 is then given as

Assumption 5. The random sequences sn and σR(θλ) are consistent with respect to the correspond-

ing metrics,

(a) ρs0(s
n, s0) →p 0; (b) sup

θλ∈Θλ

ρσ(θλ)(σ
R(θλ), σ(θλ)) →p 0

where σR(θλ) = σ(δ∗(θλ, s0, P 0), θλ, P
R) and σ(θλ) = σ(δ∗(θλ, s0, P 0), θλ, P

0). Furthermore suppose

that the true market shares and the predicted shares satisfy

(c)
ζϕ(L)2

nJ

J∑

j=0

s0j (1 − s0j)

(s0j)
2

→p 0; (d) sup
θλ∈Θλ

ζϕ(L)2

RJ

J∑

j=0

σj(θλ)(1 − σj(θλ))

(σj(θλ))2
→p 0

where ζϕ(L) = supz,v ||ϕL(z,v)||.

Note that here “L” refers to a size of sieve, so in parametric models (where L is finite) the term

ζϕ(L) in the condition (c) and (d) does not play any role but in semi-nonparametric models like

ours (where L grows) the condition (c) and (d) controls the growth of the size of sieve relative to

the size of sampling and simulation draws.

For general use of our consistency results that can be applied to other estimation methods, we

define our estimator (θ̂, θ̂λ, f̂(·)) as the value of parameters that minimize a generic sample criterion
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function

(θ̂,θ̂λ, f̂) = arginf(θ,θλ,f)∈Θ×Θλ×F̂J
QJ(δ

∗(θλ, s
n, PR), z, p, v̂; θ, f) + op(1) (21)

and develop consistency results under this generic criterion function.

For the case of the MD estimation as our leading case it is given as

QJ(δ
∗(θλ, s, P ), ·,v; θ, f) ≡ (22)

1

J

J∑

j=1

{Ê[δ∗j (θλ, s, P )|zj ,vj ] − (c+ β′xj − αpj + f(zj,vj)(1 + γ′xj + γp(ȳ − pj)))}2

although we emphasize that the approach can be applied to more flexible utility specifications. Also

define the population criterion function

Q0
J(δ

∗(θλ, s, P ), ·,v; θ, f)

= E[
1

J

J∑

j=1

{E[δ∗j (θλ, s, P )|zj ,vj ] − (c+ β′xj − αpj + f(zj,vj)(1 + γ′xj + γp(ȳ − pj)))}2].

By construction our estimator is an extremum estimator that satisfies

Assumption 6. QJ(δ
∗(θ̂λ, sn, PR), ·, v̂; θ̂, f̂) ≤ inf(θ,θλ,f)∈Θ×Θλ×F̂J

QJ(δ
∗(θλ, sn, PR), ·, v̂; θ, f) +

op(1).

Up to this point we have extended several assumptions from Berry, Linton, and Pakes (2004)

to our setting but we have not yet added assumptions which ensure consistency in the presence of

pre-step estimators. We denote the true functions of Π(·) and ϕ̄l(·) as Π0(·) and ϕ̄0l(·), respectively,

and assume Π(·) and ϕ̄l(·) are endowed with a pseudo-metric ‖·‖s. The next two assumptions are

sufficient for the pre-step estimators to be consistent.

Assumption 7.

∥∥∥Π̂(·) − Π0(·)
∥∥∥
s

= op(1) and
∥∥ ˆ̄ϕl(·) − ϕ̄0l(·)

∥∥
s

= op(1) for all l.

Assumption 7 says that both Π0(·) and ϕ̄0l(·) can be approximated by the first stage and the

middle stage series approximations. For example, this is known to be satisfied for power series and

spline approximations if Π0(·)’s and ϕ̄0l(·)’s are smooth and their derivatives are bounded (e.g.,

belong to a Hölder class of functions). We also provide primitive conditions for Assumption 7:

consistency and convergence rates of the pre-step estimators in the appendix for both power series

and spline approximations (see Assumptions L1).

Assumption 8. (i) E[|δ∗j (θλ0, s, P )|2|zj ,vj ] is bounded and δ∗j (θλ, s, P ) satisfies a Lipschitz condi-

tion such that for a constant κδ ∈ (0, 1] and a measurable function c(s, P ) with a bounded second

moment E[c(s, P )2|zj ,vj ] <∞,

E[|δ∗j (θ1
λ, s, P ) − δ∗j (θ

2
λ, s, P )|] ≤ c(s, P )||θ1

λ − θ2
λ||κδ

for all s, P and θ1
λ, θ

2
λ ∈ Θλ and (ii) ϕL(zj ,vj) is orthonormalized such that there exists a C(ǫ) such

that Pr(||∑J
j=1 ϕ

L(zj ,vj)ϕ
L(zj ,vj)

′/J − I|| > C(ǫ)) < ǫ.
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Under Assumption 8 the conditional mean function of δ∗j (θλ, s, P ) on (zj ,vj) is well approx-

imated by the sieves and a similar condition is imposed in Ai and Chen (2003) and Newey and

Powell (2003). Therefore under Assumptions 7 and 8 we can verify

1

J

J∑

j=1

{Ê[δ∗j (θλ, s
0, P 0)|zj , v̂j ] − E[δ∗j (θλ, s

0, P 0)|zj ,vj ]}2

≤ 2
1

J

J∑

j=1

{Ê[δ∗j (θλ, s
0, P 0)|zj , v̂j ] − E[δ∗j (θλ, s

0, P 0)|zj , v̂j ]}2

+2
1

J

J∑

j=1

{E[δ∗j (θλ, s
0, P 0)|zj , v̂j ] − E[δ∗j (θλ, s

0, P 0)|zj ,vj ]}2 = op(1)

and also 1
J

∑J
j=1{Ê[δ∗j (θλ, s

n, PR)|zj , v̂j ] − Ê[δ∗j (θλ, s
0, P 0)|zj , v̂j ]}2 = op(1) under Assumptions 5,

7, 8, and 14 below (see Appendix A.1). Therefore it follows that under Assumptions 5, 7, 8, and

14, E[δ∗j (θλ, s
0, P 0)|zj ,vj ] is well approximated by Ê[δ∗j (θλ, s

n, PR)|zj , v̂j ], which is necessary to

make the distance between the sample objective QJ(δ
∗(θλ, sn, PR), z, p, v̂; θ, f) and the population

objective Q0
J(δ

∗(θλ, s0, P 0), ·,v; θ, f) small enough when J, n, and R are large enough.

Assumption 9. The sieve space FJ satisfies FJ ⊆ FJ+1 ⊆ . . . ⊆ F for all J ≥ 1; and for any

f ∈ F there exists πJf ∈ FJ such that ‖f − πJf‖F → 0 as J → ∞.

Assumption 9 says any f in F is well approximated by the sieves and this assumption is also

known to hold if F is a set of a class of smooth functions such as Hölder class.

The next assumption ensures that in the small neighborhoods of Π0(·) and ϕ̄0l(·), the difference

between the sample criterion function and the population criterion function is small enough when

J is large. For this we need to define the neighborhoods Nf0,J(ǫ) = {f : ||f − f0||F < ǫ, f ∈
FJ},NΠ0(ǫ) = {Π : ‖Π − Π0‖s < ǫ} and Nϕ̄0l

(ǫ) = {ϕ̄l : ‖ϕ̄l − ϕ̄0l‖s < ǫ} for the pseudo metric

|| · ||s.

Assumption 10. For any C > 0 there exists ǫ > 0 such that

lim
J→∞

Pr{ sup
(θ,θλ,f)∈Θ×Θλ×FJ ,Π∈NΠ0

(ǫ),ϕ̄0l∈Nϕ̄0l
(ǫ)∀l

|QJ(δ∗(θλ, s0, P 0), ·,v; θ, f)

−Q0
J(δ

∗(θλ, s
0, P 0), ·,v; θ, f)| > C} = 0

where vj = Vj(p1 − Π(z1), . . . , pJ − Π(zJ )).

The assumptions we have made so far allow us to focus on the behavior of the population

objective function on (θ, θλ, f) ∈ Θ × Θλ ×F . Our last set of assumptions establish identification.

Berry, Linton, and Pakes (2004) Assumption A6 - their identification assumption - requires the

objective function evaluated at the true parameter value to be less than the objective function

value evaluated at any other parameter value. They show for the Simple Logit model identification

reduces to a standard rank condition on the matrix of instrument-regressor moments. We have

an analogous result for our setting. For the Random Coefficients Logit case they simply maintain
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identification as they note further intuition into when identification holds is complicated by the

equilibrium nature of the data generating process. We do not have anything to add on the intuition

dimension. We do provide a set of conditions under which our estimator satisfies our analogue of

their high-level identification condition and is thus consistent as long as Assumptions 3-10 hold.

We start with two assumptions on continuity which are often easy to verify in specific examples.

Assumption 11. Q0
J(δ

∗(θλ, s, P ), ·,v; θ, f) is continuous in (θ, θλ, f) ∈ Θ × Θλ ×F .

In our example (22) above Assumption 11 is satisfied because Q0
J(δ

∗(θλ, s, P ), ·,V; θ, f) is evi-

dently continuous in (θ, f). Assumption 3 coupled with the implicit function theorem (Dieudonne

(1969) Theorem 10.2.1) implies that the mapping δ∗(θλ, s, P ) is continuous in θλ, and by inspection

Q0
J(δ

∗(θλ, s, P ), ·,v; θ, f) is continuous in δ∗(θλ, s, P ) so the objective function is also continuous in

θλ.

Assumption 12. Q0
J(δ

∗(θλ, s, P ), ·,v; θ, fJ ) is continuous in Π(·) and ϕ̄l(·) uniformly for all (θ, θλ, fJ) ∈
Θ × Θλ ×FJ .

Assumption 12 is also satisfied in our example because any fJ ∈ FJ is continuous in Π(·) and

ϕ̄l(·) by construction of FJ and because Π(·) and ϕ̄l(·) enter Q0
J(δ

∗(θλ, s, P ), ·,v; θ, fJ ) through fJ .

We also maintain the standard regularity condition that our parameter space is compact and

we add an assumption that the sieve space for the control function is also compact.

Assumption 13. The parameter space Θ × Θλ is compact and the sieve space, FJ , is compact

under the pseudo-metric || · ||F .

A sufficient condition for compactness is that the sieve space is based on power series or splines

as in our construction (see Chen (2007)).

The next condition ensures that we can, at least asymptotically, distinguish the δ∗ that sets the

models predictions for shares equal to the actual shares from other values of δ∗. Assumption 14 below

corresponds to Assumption A5 in Berry, Linton, and Pakes (2004) for the logit like case. Therefore

this condition combined with Assumption 5 also ensures that δ∗(θλ, s0, P 0) is well approximated by

δ∗(θλ, sn, PR) (see discussion in Berry, Linton, and Pakes (2004) p.647 for their proof of their A.2).

Assumption 14. For all ǫ, there exists C(ǫ) > 0 such that

lim
J→∞

Pr{ inf
θλ∈Θλ

inf
δ∗ /∈Nδ∗0 (θλ,ǫ)

||J−1/2 log σ(δ∗, θλ, P
0)−J−1/2 log σ(δ∗(θλ, s

0, P 0), θλ, P
0)|| > C(ǫ)} = 1.

The last assumption is our version of their identification assumption and it regulates the behavior

of the population criterion function as a function of (θ, θλ, f) outside a neighborhood of (θ0, θλ0, f0),

stating the values must differ by a positive amount in the limit. Note that Assumption 15 below

does not require the limit to exist.
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Assumption 15. (i) Q0
J(δ

∗(θλ0, s
0, P 0), ·,v; θ0, f0) < ∞; (ii) For all ǫ > 0, there exists C(ǫ) > 0

such that for all J ≥ ∃J0 large enough

inf
θ/∈Nθ0

(ǫ),θλ /∈Nθλ0
(ǫ),f /∈Nf0,J(ǫ)

Q0
J(δ

∗(θλ, s
0, P 0), ·,v; θ, f) −Q0

J(δ
∗(θλ0, s

0, P 0), ·,v; θ0, f0) ≥ C(ǫ).

We now state our consistency theorem.

Theorem 4. Suppose Condition S and Assumptions 3-15 hold for some n(J), R(J) → ∞. Then

θ̂ →p θ0 and θ̂λ →p θλ0.

7 Asymptotic Normality

We turn to the asymptotic normality. The variance of the estimator can be obtained as the sum

of two variance components. One is the variance in the absence of the sampling error in observed

shares and simulation error in predicted shares. The second is the variances due to the sampling

and simulation error that affect the estimator through the inverted mean utility.

To analyze effects of the sampling error and the simulation error on the variance of the estimator,

consider

δ∗(θλ, s
n, PR) = δ∗(θλ, s

0, P 0) (23)

+{δ∗(θλ, sn, PR) − δ∗(θλ, s
0, PR)} + {δ∗(θλ, s0, PR) − δ∗(θλ, s

0, P 0)}

and will find expressions for the last two terms in terms of the sampling and simulation errors.

Define the sampling and simulation errors by the J × 1 vectors

εn = sn − s0 and εR(θλ) = σR(θλ) − σ(θλ)

where σR(θλ) = σ(δ∗(θλ, s0, P 0), θλ, P
R) and σ(θλ) = σ(δ∗(θλ, s0, P 0), θλ, P

0). By Assumption 3

both εn and εR(θλ) are sums of i.i.d. mean zero random vectors with known covariance matrix.

By the definition of εn and εR(θλ) and from (20), we have

s0 + εn − εR(θλ) = σ(δ∗(θλ, s
n, PR), θλ, P

0)

and therefore we can expand the inverse map from (θλ, s
n, P ) to δ∗(θλ, sn, P ) around s0. Assumption

4 ensures that for each J , almost every P , almost all δ∗, and every θλ ∈ Θλ, the function σ(δ∗, θλ, P )

is differentiable in δ∗, and its derivative has an inverse

H−1
δ (δ∗, θλ, P ) =

{
∂σ(δ∗, θλ, P )

∂δ∗′

}−1

.

To save notation define σ(θλ, s, P ) = σ(δ∗(θλ, s, P ), θλ, P ), Hδ(θλ, s, P ) = Hδ(δ
∗(θλ, s, P ), θλ, P ),

and Hδ0 = Hδ(θλ0, s
0, P 0). Then applying Taylor expansions to the last two terms in (23) we can

obtain

δ∗(θλ, s
n, PR) ≃ δ∗(θλ, s

0, P 0) +H−1
δ0 {εn − εR(θλ0)} (24)
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for θλ approaching to θλ0 and the last term enters the influence function for the sampling and

simulation errors in the asymptotic expansion to obtain the asymptotic normality. The asymptotic

variance in the absence of the sampling and simulation errors are obtained as the variance at

δ∗(θλ, s0, P 0).

In deriving the asymptotic distribution for a specific estimator we focus on the sieve MD es-

timator in (19). We obtain the convergence rate and the asymptotic normality of the parameter

estimates (θ̂, θ̂λ) building on Newey, Powell, and Vella (1999) and Chen (2007). But we have a few

added complications to their problem. First we have additional nonparametric estimation in the

middle step of estimation and second our estimator is a sieve MD estimator. Because we estimate

(θ0, θλ0) and f0 simultaneously at the main estimation and also because of the middle step esti-

mation, we cannot directly apply Chen, Linton, and van Keilegom (2003) to our problem either.

Finally we also need to account for the sampling and simulation error in the asymptotic distribution.

Our inference will focus on the finite dimensional parameter (θ0, θλ0) and we view f0 as a nuisance

parameter.

7.1 Asymptotic Normality that Does Not Account for the Sampling and Sim-

ulation Errors

We first derive the asymptotic normality of (θ̂, θ̂λ) and a consistent estimator for the variance term

when the contribution of the sampling and the simulation errors to the variance is negligible and

will add variances due to these errors later. The asymptotic variance that does not account for the

sampling and the simulation errors is obtained by ignoring the term

{δ∗(θλ, sn, PR) − δ∗(θλ, s
0, PR)} + {δ∗(θλ, s0, PR) − δ∗(θλ, s

0, P 0)}

in (23) or equivalently ignoring H−1
δ0 {εn − εR(θλ0)} in (24) in the stochastic expansion.

Our asymptotics builds on results from the asymptotic normality of series estimators with gen-

erated regressors and that of sieve estimators (see e.g., Newey, Powell, and Vella (1999) and Chen

(2007)). Define

g(zj ,vj ; θ, f) = c+ β′xj − αpj + f(zj,vj)(1 + γ′xj + γp(ȳ − pj), g0j = g(zj ,vj ; θ0, f0),

Ψθ(zj ,vj) =
∂g(·)
∂θ

= (1, x′j ,−pj, x′jf(zj ,vj), (ȳ − pj)f(zj ,vj))
′, Ψθ0,j =

∂g(·)
∂θ

|f=f0 ,

and let

∆θλ,j(s, P ) =
∂δ∗j (θλ, s, P )

∂θλ
, ∆θλ0,j =

∂δ∗j (θλ, s
0, P 0)

∂θλ

∣∣∣∣∣
θλ=θλ0

.

Below with possible abuse of notation ∂g(z,v)
∂f f will denote the pathwise (functional) derivative

dg(z,v)
df [f ] as defined in Chen (2007). We use this notation because this derivative is well-defined as

the usual derivative in our problem. We will use this notation to denote ∂g(z,v)
∂f = (1+γ′x+γp(ȳ−p))

and similar notation is used for others.

The
√
J-consistency and the asymptotic normality in the form of

√
J((θ̂′λ, θ̂

′)′ − (θ′λ0, θ
′
0)

′) →d N(0,Ω)
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depends on the existence of the representation such that for a functional b(θλ, θ, f), we have

√
J(θ′λ − θ′λ0, θ

′ − θ′0)
′ =

√
Jb(θλ − θλ0, θ − θ0, f)

≃
√
JE[ω∗J(Zj ,Vj){E[∆′

θλ0,j
|Zj ,Vj](θλ − θλ0) − Ψθ(Zj ,Vj)

′(θ − θ0) +C
∂g(Zj ,Vj)

∂f
f(Zj,Vj)}]

for some constant C and the second moment of the Riesz representer like term ω∗(Zj ,Vj) is bounded.

In this case
√
J((θ̂′λ, θ̂

′)′ − (θ′λ0, θ
′
0)

′) is asymptotically normal and ω∗J(zj ,vj) has the form of

ω∗J(zj ,vj) =




J∑

j=1

E[r0(Zj ,Vj)r0(Zj ,Vj)
′]/J




−1

r0(zj ,vj)

where r0(zj ,vj) is the mean-squared projection residual of E[(Ψ′
θλ0,j

,−Ψ′
θ0,j

)′|Zj ,Vj ] on the func-

tions of the form
∂g(zj ,vj)

∂f f(zj,vj) that satisfies E[f(Zj ,Vj)|Zj ] = 0.16

Moreover the existence of the above representation implies that the asymptotic variance Ω has

an explicit form. To obtain the explicit form of the asymptotic variance. Let

Σ0j(zj ,vj) = Var(δ∗j (θλ0, s
0, P 0) − g0j |zj ,vj)

and let ρv(zj) = E[ω∗J (Zj ,Vj)
∂g0j

∂f0
(
∂f0(Zj ,Vj)

∂Vj
− E[

∂f0(Zj ,Vj)
∂Vj

|Zj ])|zj ] and

ρϕ̄l
(zj) = E[alω

∗J(Zj ,Vj)
∂g0j
∂f0

|zj ].

Then the asymptotic variance of the estimator (θ̂λ, θ̂) is given by

Ω = lim
J→∞

J∑

j=1

Ωj/J

where

Ωj = E[ω∗J (Zj ,Vj)Σ0j(Zj ,Vj)ω
∗J (Zj ,Vj)

′] + E[ρv(Zj)var(pj |Zj)ρv(Zj)′] (25)

+
∑

l

E[ρϕ̄l
(Zj)var(ϕl(Zj ,Vj)|Z)ρϕ̄l

(Zj)
′].

The first term in the variance accounts for the main estimation, the second term accounts for the

estimation of the control (V ), and the last term accounts for the middle step estimation.

Next we focus on obtaining correct standard errors for (θ̂λ, θ̂) and providing a consistent es-

timator for the standard errors. To derive a consistent estimator of Ω we introduce additional

notation. From here we let xj be one dimensional for notational simplicity but without loss of gener-

16Let (∆′
θλ0,j ,−Ψ′

θ0,j)
′
l denote the l-th element of (∆′

θλ0,j ,−Ψ′
θ0,j)

′ and define

fl
∗ = argminfl∈F

1

J

J
X

j=1

E

"



E[(∆′
θλ0,j ,−Ψ′

θ0,j)
′
l|Zj ,Vj ] −

∂g0(Zj ,Vj)

∂f
fl

ff2
#

.

Then we obtain r0(zj ,vj) = E[(∆′
θλ0,j ,−Ψ′

θ0,j)
′|zj ,vj ] −

∂g0(zj ,vj)

∂f
(f∗

1 , · · · , f
∗
dim(θλ)+dim(θ))

′.
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ality. Define ΨL
θ0,j

= (1, xj ,−pj, xjf0(zj ,vj), (ȳ − pj)f0(zj ,vj),
∂g0j

∂f0
ϕ̃L(zj ,vj)

′)′ where ϕ̃L(zj ,vj) =

(ϕ̃1(zj ,vj), . . . , ϕ̃L(zj ,vj))
′ and

∂g0j

∂f0
≡ (1 + γ0xj + γp0(ȳ − pj)) and let

A = (

J∑

j=1

E[r0jr
′
0j]/J)−1

J∑

j=1

E[r0jE[(∆′
θλ0,j

,ΨL′
θ0,j)|Zj ,Vj ]/J ]

where we abbreviate r0j ≡ r0(zj ,vj).

Then note that we have

(θ′λ0, θ
′
0)

′ = Aϑ0, (θ̂′λ, θ̂
′)′ = Aϑ̂

where ϑ = (θ′λ, c, β, α, γ, γp, a
′
L)′ and we let aL = (a1, . . . , aL)′ with abuse of notation. Moreover

observe that A = (Idim(θλ,θ),0dim(θλ,θ)×L) where Idim(θλ,θ) is the dim(θλ, θ) × dim(θλ, θ) identity

matrix and 0dim(θλ,θ)×L is the dim(θλ, θ) × L zero matrix because the projection of the variable

being projected on the mean-squared projection residual is the residual itself and the projection of

the projection variable on the mean-squared projection residual is equal to zero. We can practically

view A as a selection matrix that selects the parameter of interest (θ′λ0, θ
′
0) from the whole parameter

vector ϑ. Other linear combinations of θ0 or θλ0 is also easily obtained by choosing different A’s

(see Newey, Powell, and Vella (1999) and Chen (2007)).

To obtain a consistent variance estimator, further let ĝ(zj , v̂j) = ĉ+β̂xj−α̂pj+f̂(zj , v̂j)(1+γ̂xj+

γ̂p(ȳ−pj)) and
ˆ̂
ĝj = ĝ(zj , v̂j). Let Ψ̂θ̂λ,j

= Ê[
∂δ∗j (θλ,s

n,PR)

∂θλ
|zj , v̂j ]|θλ=θ̂λ

and Ψ̂L
θ,j = (1, xj ,−pj, xj f̂(zj , v̂j), (ȳ−

pj)f̂(zj , v̂j),
∂
ˆ̂
ĝj

∂f̂
ˆ̃ϕL(zj , v̂j)

′)′ where ˆ̃ϕL(zj ,vj) = ( ˆ̃ϕ1(zj ,vj), . . . , ˆ̃ϕL(zj ,vj))
′ and let Ψ̂L

j = (Ψ̂′
θ̂λ,j

,−Ψ̂L′
θ,j)

′.
Then define the followings:

T̂ =
∑J

j=1
Ψ̂L
j Ψ̂L′

j /J, Σ̂ =
∑J

j=1
(δ∗j (θ̂λ, s

n, PR) − ĝ(zj , v̂j))
2Ψ̂L

j Ψ̂L′
j /J (26)

T̂1 = P
′
P/J, Σ̂1 =

J∑

j=1

v̂2
jϕ

k(zj)ϕ
k(zj)

′/J, Σ̂2,l =

J∑

j=1

(ϕl(zj , v̂j) − ˆ̄ϕl(zj))
2ϕk(zj)ϕ

k(zj)
′/J

Ĥ11 =

J∑

j=1

∂
ˆ̂
ĝj

∂f̂

L∑

l=1

âl
∂ϕl(zj , v̂j)

∂vj
Ψ̂L
j ϕ

k(zj)
′/J,

Ĥ12 =

J∑

j=1

∂
ˆ̂
ĝj

∂f̂
ϕk(zj)

′


(P′

P)−
J∑

j′=1

ϕk(zj′)
∂

∑L
l=1 âlϕl(zj′ , v̂j′)

∂vj′


 Ψ̂L

j ϕ
k(zj)

′/J,

Ĥ2,l =

J∑

j=1

âl
∂
ˆ̂
ĝj

∂f̂
Ψ̂L
j ϕ

k(zj)
′/J, Ĥ1 = Ĥ11 − Ĥ12.

Then, we can estimate Ω consistently with

Ω̂ = AT̂ −1

[
Σ̂ + Ĥ1T̂ −1

1 Σ̂1T̂ −1
1 Ĥ ′

1 +
∑L

l=1
Ĥ2,lT̂ −1

1 Σ̂2,lT̂ −1
1 Ĥ ′

2,l

]
T̂ −1A′. (27)

This is the heteroskedasticity robust variance estimator that accounts for the first and the middle

step estimations. The first variance term AT̂ −1Σ̂T̂ −1A′ corresponds to the variance estimator

without pre-step estimations. The second variance term (that accounts for the estimation of V )
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corresponds to the second term in (25) and the third variance term (that accounts for the estimation

of ϕ̄l(·)’s) corresponds to the third term in (25). If we view our model as a parametric one with

fixed k(J) and L(J), the same variance estimator Ω̂ can be used as the estimator of the variance

for the parametric model (e.g, Newey (1984), Murphy and Topel (1985)).

To present the theorem, we need additional notation and assumptions. For any differentiable

function c(w), let |µ| =
∑dim(w)

l=1 µl and define ∂µc(w) = ∂|µ|c(w)/∂w1 · · · ∂wdim(w). Also define

|c(w)|ι = max|µ|≤ι supw∈W ||∂µc(w)|| and others are defined similarly.

Assumption 16 (C1). (i) {δ∗j (θλ, s, P ), pj , zj : j ≤ J, J ≥ 1} is a triangular array of random

variables on a probability space for all (θλ, s, P ) in a small neighborhood of (θλ0, s
0, P 0) ; var(pj |zj)

and var(δ∗j (θλ, s, P )|zj ,vj) (for all (θλ, s, P ) in a small neighborhood of (θλ0, P
0, s0)) are bounded

for all j, and var(ϕl(Zj ,Vj)|zj) are bounded for all l and all j; (ii) (pj , zj) are continuously dis-

tributed with densities that are bounded away from zero on their supports, respectively and their

supports are compact; (iii) Π0(z) is continuously differentiable of order sΠ and all the derivatives

of order sΠ are bounded on the support of Z; (iv) ϕ̄0l(Z) is continuously differentiable of order

sϕ and all the derivatives of order sϕ are bounded for all l on the support of Z; (v) f0(zj ,vj) is

Lipschitz in vj and is continuously differentiable of order sf and all the derivatives of order sf are

bounded on the support of (zj ,vj); (vi) ϕl(zj ,vj) is Lipschitz and is twice continuously differen-

tiable in vj and its first and second derivatives are bounded for all l; (vii)
∂δ∗j (θλ,s,P )

∂θλ
is continu-

ous at (θλ0, s
0, P 0) and ||∂δ

∗
j (θλ,s,P )

∂θλ
|| < C for some C < ∞ for all j in a small neighborhood of

(θλ0, s
0, P 0); (viii) E[

∂δ∗j (θλ,s,P )

∂θλ
|zj ,vj ] is Lipschitz in vj and is continuously differentiable of order

sδ and all the derivatives of order sδ are bounded on the support of (zj ,vj) in the neighborhood of

(θλ0, s
0, P 0); (ix) Let a metric be ρ̄δ(δ

∗, δ̃∗) = max{J−1
∑J

j=1(δ
∗
j − δ̃∗j )2, J−1

∑J
j=1(

∂δ∗j
∂θλ

− ∂δ̃∗j
∂θλ

)2} and

let N̄δ∗0(θλ, ǫ) = {δ∗ : ρ̄δ(δ
∗, δ∗(θλ, s0, P 0)) < ǫ}. Then For all ǫ, there exists C(ǫ) > 0 such that

lim
J→∞

Pr{ inf
θλ∈Θλ0

inf
δ∗ /∈N̄δ∗0(θλ,ǫ)

||J−1/2 log σ(δ∗, θλ, P
0)−J−1/2 log σ(δ∗(θλ, s

0, P 0), θλ, P
0)|| > C(ǫ)} = 1

where Θλ0 denotes a neighborhood of θλ0.

Assumption C1 (i) is about nature of the data and other conditions in Assumption C1 are

standards in sieve estimations. Assumptions C1 (iii), (iv), and (v) let the unknown functions

Π0(z), ϕ̄0l(z), and f0(z,v) belong to a Hölder class of functions, respectively and they can be

approximated up to the orders of O(k(J)−sΠ/dim(z)), O(k(J)−sϕ/dim(z)), and O(L(J)−sf /dim(z,v)),

respectively when we approximate them using polynomials or splines (see Timan (1963), Schumaker

(1981), Newey (1997), and Chen (2007)) where dim(z) and dim(z,v) denote the dimension of Z and

(Z,V), respectively. Assumption C1 (viii) implies the conditional expectation E[
∂δ∗j (θλ,s,P )

∂θλ
|zj ,vj ]

is well approximated up to the orders of O(L(J)−sδ/dim(z,v)) as well. We focus on polynomials

(i.e., power series) and spline approximations in this paper. Assumption C1 (vi) is satisfied for

the approximating polynomials and splines with appropriate orders. The assumption that Z is

continuous is not essential when a subset of Z is discrete, we can condition on those discrete

variables and the model becomes parametric in regard to those variables. Assumption C1 (vii)

enables us to apply the mean value expansion of δ∗j (θλ, ·) w.r.t. θλ in a small neighborhood of

(θλ0, s
0, P 0). Assumption C1 (ix) strengthens Assumption 14 but only in a neighborhood of θλ0.
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This condition ensures that at least asymptotically we can distinguish the δ∗ as a function of θλ
that sets the models predictions for shares equal to the actual shares from other function δ 6= δ∗ as

a function of θλ, at least up to its first derivative. This condition ensures that ∂δ∗(θλ,s
0,P 0)

∂θλ
is also

well approximated by ∂δ∗(θλ,s
n,PR)

∂θλ
as well as δ∗(θλ, sn, PR) approximates δ∗(θλ, s0, P 0).

Assumption 17 (N1). (i) (a) r0(zj ,vj) is continuously differentiable with order sr and E[||r0(Zj,Vj)||4]
is bounded; (b)

∑J
j=1E[r0(Zj ,Vj)r0(Zj ,Vj)

′]/J has smallest eigenvalues that are bounded away

from zero for all J large enough; (ii) there exist ι, ̺, and aL such that |f0(z,v) − a′Lϕ̃
L(z,v)|ι ≤

CL−̺; (iii) Σ0j(zj ,vj) is bounded away from zero, E[(δ∗j (θλ0)−g0j)4|zj ,vj ] and E[V 4
j |zj ] are bounded

for all j and E[ϕ̃l(Zj ,Vj)
4|zj ] is bounded for all l and j.

Next we impose the rate conditions that restrict the growth of k(J) and L(J) as J tends to

infinity.

Assumption 18 (N2). Let △J,1 = k(J)1/2/
√
J+k(J)−sΠ/ dim(z), △J,2 = k(J)1/2/

√
J+k(J)−sϕ/dim(z),

and ∆J = max{∆J,1,∆J,2} → 0 and △δ = L(J)1/2/
√
J + L(J)−sδ/dim(z,v) → 0.

Let
√
Jk(J)−sΠ/dim(z),

√
Jk(J)−s̺/dim(z),

√
Jk(J)1/2L(J)−sf/dim(z,v) → 0 and they are sufficiently

small. For the polynomial approximations L(J)5k(J)1/2+L(J)9/2k(J)3/2
√
J

→ 0 and for the spline approx-

imations L(J)7/2k(J)1/2+L(J)3k(J)+L(J)2k(J)3/2
√
J

→ 0.

Theorem 5 (AN1). Suppose Assumptions 3-6, 9-10, and 13-15 hold. Suppose Condition S, As-

sumption C1, N1-N2 are satisfied. Then

√
J((θ̂′λ, θ̂

′)′ − (θ′λ0, θ
′
0)

′) →d N(0,Ω) and Ω̂ →p Ω.

7.2 Accounting for the Sampling and the Simulation Errors

We derive variance terms due to the sampling and the simulation errors. As in Berry, Linton, and

Pakes (2004) the challenge here is to control the behavior of J × J matrix H−1
δ (δ∗(θλ, s, P ), θλ, P )

when the number of products J grows. H−1
δ (·) is the inverse of ∂σ(·)/∂δ, so when the model implies

diffuse substitution patterns such as the random coefficient logit models, the partial ∂σ(·)/∂δ tends

to zero as J grows and it makes the inverse H−1
δ (·) grow large. This means when J is large the

inverted δ∗ (so ξ) becomes very sensitive to even small sampling or simulation error.

In this section following Berry, Linton, and Pakes (2004) we obtain relevant variance terms for

our estimation problem. Let r0(z,v)′ = (r0(z1,v1), . . . , r0(zJ ,vJ)) and define the stochastic process

in (δ∗, θλ, P )

υJ(δ
∗, θλ, P ) =

1√
J
r0(z,v)′H−1

δ (δ∗, θλ, P )(εn − εR(θλ)). (28)

We obtain the influence functions due to the sampling and the simulations errors (see Appendix D)

as
1√
J
ω∗JJ ′Hδ0

−1(εn − εR(θλ0)) = (ΞJ)−1υJ(δ
∗0, θλ0, P

0)

where ω∗JJ ′ = (ω∗
J(z1,v1), . . . , ω

∗
J(zJ ,vJ)) and ΞJ ≡ ∑J

j=1E[r0(Zj ,Vj)r0(Zj ,Vj)
′]/J . There-

fore analyzing the stochastic process υJ(δ
∗, θλ, P ) is necessary to derive variance terms. Write

r0(z,v)′H−1
δ (δ∗, θλ, P ) ≡ (c1(δ

∗, θλ, P ), . . . , cJ(δ
∗, θλ, P )).
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Then we can rewrite υJ(δ
∗, θλ, P ) as two sums of independent random variables from a triangular

array

υJ(δ
∗, θλ, P ) =

n∑

i=1

YJi(δ
∗, θλ, P ) −

R∑

r=1

Y ∗
Jr(δ

∗, θλ, P )

where

YJi(δ
∗, θλ, P ) =

1

n
√
J

J∑

j=1

cj(δ
∗, θλ, P )εji

Y ∗
Jr(δ

∗, θλ, P ) =
1

R
√
J

J∑

j=1

cj(δ
∗, θλ, P )εjr(θλ).

Note that YJi and Y ∗
Jr are i.i.d across i and r respectively and their distributions depend on J. We

then provide conditions that the process υJ(δ
∗, θλ, P ) has limit distribution at (θλ0, s

0, P 0) and we

add the resulting asymptotic variance terms due to the sampling and the simulation errors to the

asymptotic variance Ω to obtain the full asymptotic variance of
√
J((θ̂′λ, θ̂

′) − (θ′λ0, θ
′
0)).

Assumption N3 below replace Assumptions B4 in Berry, Linton, and Pakes (2004) and we argue

below our model specifications with and without random coefficients satisfy this Assumption N3.

Assumption 19 (N3). Let YJi = YJi(δ
∗(θ0

λ, s
0, P 0), θλ0, P

0) and Y ∗
Jr = Y ∗

Jr(δ
∗(θ0

λ, s
0, P 0), θλ0, P

0).

With probability one (i) limJ→∞ nE∗[YJiY ′
Ji] = Φ2 and (ii) limJ→∞RE∗[Y ∗

JrY
∗′
Jr] = Φ3 for finite

positive definite non-random matrices Φ2 and Φ3. Also for some τ > 0 with probability one (iii)

nE∗[||YJi||2+τ ] = o(1) and (iv) RE∗[||Y ∗
Rr||2+τ ] = o(1).

In the original BLP specification ξ is additive in δ. Therefore our Hδ(·) is equivalent to their

H(·), derivative of σ(·) with respect to ξ. In the logit case without random coefficients we have

Hδ(·, s, ·) = S − ss′ and H−1
δ (·, s, ·) = S−1 + ii

′/s0,

where S = diag[s] and i = (1, . . . , 1)′. Then by the essentially same argument in Berry, Linton, and

Pakes (2004) (page 636-637) when the model is logit without random coefficients we obtain

Φ2(J) =
1

nJ
r0(z,v)′H−1

δ0 r0(z,v) =
J

n
×


 1

J

J∑

j=1

E[r0(zj ,vj)r0(zj ,vj)
′](Jsj)−1




+
J2

n
×

[
1
J

∑J
j=1E[r0(zj ,vj)]

1
J

∑J
j=1E[r0(zj ,vj)

′]

(Js0)

]

= Op(J/n) +Op(J
2/n) = Op(J

2/n)

by Condition S and Assumption N1 (i) and then we have

Φ2 = lim
J→∞

J2

n
×

[
limJ→∞ 1

J

∑J
j=1E[r0(zj ,vj)] limJ→∞ 1

J

∑J
j=1E[r0(zj ,vj)

′]

limJ→∞(Js0)

]
.

Therefore the logit model with our mean utility specification allowing for interactions satisfies

Assumption N3 (i).
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Also in the case of the random coefficient model by the essentially same argument in Berry,

Linton, and Pakes (2004) (page 637-638), we have

H−1
δ = [E[Hδ(λ)]]−1 ≤ E[Hδ(λ)−1]

where Hδ(λ) = S(λ) − s(λ)s(λ)′, s(λ) = (s1(λ), . . . , sJ(λ))′, and S(λ) = diag(s(λ)). If we assume

sj(λ) ≥ sj for all θλ ∈ Θλ and j = 0, 1, . . . , J for some non-random sequence of constants sj that

satisfy condition S we obtain

H−1
δ ≤ S−1 +

ii
′

s0
≡ H−1

δ and H−1
δ V2H

−1′
δ ≤ H−1

δ V2H
−1
δ

′
and H−1

δ V3H
−1′
δ ≤ H−1

δ V3H
−1
δ

′
(29)

where S = diag(s1, . . . , sJ). We then obtain under Condition S and Assumption N1 (i),

Φ2 = lim
J→∞

1

nJ
r0(z,v)′H−1

δ0 V2H
−1′
δ0 r0(z,v) (30)

= lim
J→∞

J2

n
×

limJ→∞ 1
J

∑J
j=1E[r0(zj ,vj)]

1
J

∑J
j=1E[r0(zj ,vj)

′]

limJ→∞(J
∫
s0(λ)dP (λ))

Φ3 = lim
J→∞

1

RJ
r0(z,v)′H−1

δ0 V3H
−1′
δ0 r0(z,v) (31)

≤ lim
J→∞

J2

R
×

limJ→∞ 1
J

∑J
j=1E[r0(zj ,vj)]

1
J

∑J
j=1E[r0(zj ,vj)

′]

limJ→∞(J
∫
s0(λ)dP (λ))

and therefore Assumption N3 is also satisfied in this case too. Note that (30) and (31) respectively

correspond to (38) and (39) in Berry, Linton, and Pakes (2004) (page 638). The proof only requires

to replace their H(·) with Hδ(·) and also their z with r0(z,v), so is essentially identical. By the

same token Assumption N3 (iii) and (iv) are also satisfied in our model too.

We then assume the stochastic process in (28) is stochastic equicontinuous in a small neighbor-

hood of (δ∗0, θλ0, P
0) such that the process υJ(δ

∗, θλ, P ) becomes arbitrarily close to υJ(δ
∗0, θλ0, P

0)

as (δ∗, θλ, P ) → (δ∗0, θλ0, P
0). This ensures the remainder terms do not affect the asymptotic dis-

tribution when we replace υJ(δ
∗(θ̂λ, sn, PR), θ̂λ, P

R) with υJ(δ
∗0, θλ0, P

0).

Assumption 20 (N4). The process υJ(δ
∗, θλ, P ) is stochastically equicontinuous in (δ∗, θλ, P ) at

(δ∗(θλ0, s
0, P 0), θλ0, P

0) such that for all sequences of positive numbers ǫJ → 0,

lim
J→∞

Pr{ sup
θλ∈Nθλ0

(ǫJ)
sup

(δ∗,P )∈Nδ∗0(θλ,ǫJ)×NP0 (ǫJ )
||υJ (δ∗, θλ, P ) − υJ(δ

∗(θλ0, s
0, P 0), θλ0, P

0)||} = op(1).

This stochastic equicontinuity holds for the logit model and the random coefficient logit model

as shown in Berry, Linton, and Pakes (2004). Again we only replace their H(·) with our Hδ(·) and

replace their z with r0(z,v) and the same arguments hold.

We then obtain the variance contribution due to the sampling and simulations errors as

(ΞJ)−1υJ(δ
∗0, θλ0, P

0) →d N(0,Ω2 + Ω3) and Ω2 + Ω3 ≡ Ξ−1(Φ2 + Φ3)(Ξ
−1)′

where limJ→∞ ΞJ = Ξ.
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We then can consistently estimate Ω2 and Ω3 respectively with

Ω̂2 =
1

nJ
AT̂ −1((Ψ̂L,J)′Ĥ−1

δ V̂2Ĥ
−1′
δ Ψ̂L,J)T̂ −1A′ (32)

Ω̂3 =
1

RJ
AT̂ −1((Ψ̂L,J)′Ĥ−1

δ V̂3Ĥ
−1′
δ Ψ̂L,J)T̂ −1A′

where Ĥδ = Hδ(θ̂λ, s
n, PR), V̂2 = Sn − snsn′, and V̂3 = 1

R

∑R
r=1 εr(θ̂λ)εr(θ̂λ)

′.

Theorem 6 (AN2). Suppose Assumptions 3-6, 9-10, and 13-15 hold. Suppose Condition S, As-

sumption C1, N1-N4 are satisfied. Then

√
J((θ̂′λ, θ̂

′)′ − (θ′λ0, θ
′
0)

′) →d N(0,Ω + Ω2 + Ω3) and (Ω̂, Ω̂2, Ω̂3) →p (Ω,Ω2,Ω3).

Based on this asymptotic distribution, one can construct the confidence intervals of individual

parameters and calculate standard errors straightforwardly using (26), (27), and (32).

8 Monte Carlo Evidence

We demonstrate our estimator’s performance using Monte Carlo studies on simple demand/pricing

models. We first consider the following demand function (i.e., mean utility of one inside good) where

the endogenous price p interacts with the unobserved demand shock ξ:

q = c− αp+ γpξ + ξ.

Before turning to a single product monopolist setting we consider two reduced form pricing equations

[1] p = 2 + Z + (5 + Z2 + 5Z)ξ + ς

[2] p = Z + (5 + 5Z + ς)ξ.

Here the instrument Z is an observed supply shifter and ς is an unobserved cost shock. In the first

design [1], the instrument and the demand error are not additively separable. In the second design

[2] the demand error is not additively separable from the instrument nor the supply-side error.

We generate a simulation data based on these designs with the following distributions: ξ ∼
U[−1/2,1/2], ς ∼ U[−1/2,1/2], Z = 2 + 2U[−1/2,1/2], and they are independent where U[−1/2,1/2] denotes

the uniform distribution supported on [−1/2, 1/2]. Note that in these designs, the control V =

p−E[p|Z] is not independent of Z. We set the true parameter values (c0, α0, γ0) = (1, 1, 0.5). The

data is generated with the sample sizes: M = 1, 000 and M = 10, 000. We take one reasonable

sample size and one large sample size because we are interested both in a finite sample performance

and the consistency of our proposed estimator.

In our third design we consider a single product monopolistic pricing model with a demand

function (i.e., mean utility in the logit demand)

q(X, p, ξ; c, β, α, γ) = ln s− ln(1 − s) = c+ βX − αp+ γpξ + ξ and
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p = argmaxp (p −mc)
exp(q(X, p, ξ; c, β, α, γ))

1 + exp(q(X, p, ξ; c, β, α, γ))

where s is the share of the inside good, X is an observed demand shifter, and we let the marginal cost

be mc = 2+0.5Z2+(2+2Z2)ς. In this design we draw a demand shock ξ ∼ U[−1/2,1/2], a supply-side

shock ς ∼ ξ+U[−1/2,1/2], X = U[−1/2,1/2], and an observed supply shifter Z2 = X + 2 + 2U[−1/2,1/2].

We set the true parameter values (c0, β0, α0, γ0) = (−2, 1, 1, 0.5). The data is generated with the

sample sizes: M = 2, 000 and M = 10, 000. We let Z = (X,Z2)
′.

We estimate the models using three methods: OLS, 2SLS, and our estimator (CMRCF). Our

estimator is implemented in three steps. First we estimate V̂ = p− (π̂0 + π̂′1Z+ π̂′2Z
2 + π̂′3Z

3) using

OLS and construct approximating functions Ṽ1 = V̂ , Ṽ2 = V̂ 2 − Ê[V̂ 2|Z], and others are defined

similarly where Ê[·|Z] is implemented by the OLS estimation on (1, Z, Z2, Z3).17 In the last step

we estimate the model parameters using nonlinear least squares:

(ĉ, β̂, α̂, γ̂, â) = argmin
∑M

m=1
{qm − (c+ βXm − αpm + γpm(

∑LM

l=1
alṼml) +

∑LM

l=1
alṼml)}2/M

where we let β = 0 in designs [1] and [2]. For the design [1] we use the controls (Ṽ1, ZṼ1, Z
2Ṽ1)

when M = 1, 000 and use (Ṽ1, ZṼ1, Z
2Ṽ1, Z

3Ṽ1, Ṽ2) when M = 10, 000. For the design [2] we use

(Ṽ1, ZṼ1, Z
2Ṽ1) with M = 1, 000 and use (Ṽ1, ZṼ1, Z

2Ṽ1, Ṽ2) with M = 10, 000. Finally we use

(Ṽ1, ZṼ1, Z
2Ṽ1) for the design [3] with both sample sizes.18

We report the biases and the RMSE based on 100 repetitions of the estimations: OLS, 2SLS,

and our estimator. The simulation results (Tables I-III) clearly show that OLS is biased in all

designs. 2SLS is also biased. Our estimator is robust regardless of different designs for the price.

In the designs [1]-[3], 2SLS estimates for the constant term (c) are biased (-69%, 21%, -18%

respectively). In the designs [1]-[3] the 2SLS estimates for the coefficient on the price (α) are

severely biased (38%, 21%, and -16%). The 2SLS estimates for the coefficient on the exogenous

demand shifter (β) in the design [3] seem not biased.

From other Monte Carlos (not reported here) we find higher coefficients on ξ in the pricing

equation create larger biases for the 2SLS estimates of c and higher coefficients on the interaction

term Zξ in the pricing equation generate larger biases for the 2SLS estimates of α.

17In the third design Zl = (Xl, Zl
2)

′ for l = 2, 3 with abuse of notation.
18One can choose an optimal set of controls among alternatives based on the cross validation (CV) criterion,

although the validity of CV may be compromised due to the presence of the first and the second step in our estimation.
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Table I: Design [1], c0 = 1, α0 = 1, γ0 = 0.5, Controls: Ṽ1, ZṼ1, Z
2Ṽ1, Z

3Ṽ1, Ṽ2

mean bias RMSE mean bias RMSE

M = 1, 000 M = 10, 000

OLS c 1.2081 0.2081 0.2119 1.2037 0.2037 0.2040

α 1.1501 0.1501 0.1503 1.1506 0.1506 0.1506

2SLS c 0.3584 -0.6416 0.7461 0.3054 -0.6946 0.7007

α 1.3634 0.3634 0.3765 1.3752 0.3752 0.3760

CMRCF c 1.0118 0.0118 0.0523 1.0024 0.0024 0.0245

α 0.9982 -0.0018 0.0132 0.9998 -0.0002 0.0058

γ 0.5063 0.0063 0.1276 0.4975 -0.0025 0.0549

Table II: Design [2], c0 = 1, α0 = 1, γ0 = 0.5, Controls: Ṽ1, ZṼ1, Z
2Ṽ1, Ṽ2

mean bias RMSE mean bias RMSE

M = 1, 000 M = 10, 000

OLS c 1.3596 0.3596 0.3603 1.3580 0.3580 0.3581

α 1.1333 0.1333 0.1335 1.1337 0.1337 0.1337

2SLS c 1.2038 0.2038 0.2195 1.2062 0.2062 0.2072

α 1.2117 0.2117 0.2163 1.2096 0.2096 0.2099

CMRCF c 1.0097 0.0097 0.0388 1.0018 0.0018 0.0162

α 0.9960 -0.0040 0.0202 0.9995 -0.0005 0.0083

γ 0.5089 0.0089 0.1499 0.5014 0.0014 0.0626

Table III: Design [3], c0 = −2, β0 = 1, α0 = 1, γ0 = 0.5, Controls: Ṽ1, ZṼ1, Z
2Ṽ1

mean bias RMSE mean bias RMSE

M = 2, 000 M = 10, 000

OLS c -2.7465 -0.7465 0.7469 -2.7484 -0.7484 0.7485

β 0.9438 -0.0562 0.0777 0.9453 -0.0547 0.0587

α 0.7496 -0.2504 0.2505 0.7487 -0.2513 0.2513

2SLS c -2.2934 -0.2934 0.3561 -2.3637 -0.3637 0.3778

β 1.0007 0.0007 0.0673 0.9955 -0.0045 0.0274

α 0.8617 -0.1383 0.1470 0.8437 -0.1563 0.1583

CMRCF c -1.9316 0.0684 0.2472 -2.0092 -0.0092 0.0978

β 1.0048 0.0048 0.0735 1.0024 0.0024 0.0261

α 1.0143 0.0143 0.0600 0.9942 -0.0058 0.0245

γ 0.4929 -0.0071 0.2274 0.5067 0.0067 0.1464
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9 Non-separability in the BLP Automobile Data

We revisit the original Berry, Levinsohn, and Pakes (1995) automobile data to investigate

whether interaction terms are important for own- and cross-price elasticities. There are 2217

market-level observations on prices, quantities, and characteristics of automobiles sold in the 20

U.S. automobile markets indexed m beginning in 1971 and continuing annually to 1990. We let

Jm denote the number products in market m and include the same characteristics: horsepower-

to-weight, interior space, a/c standard, and miles per dollar. We do not use a supply side model

when we estimate the demand side model so our point estimates only exactly match their estimated

specifications for the cases they examine without the supply side.19

We decompose utility into three components as in equation (1), with the utility common to all

consumers δmj given as

δmj = c+ β′xmj − αpmj + ξmj +

4∑

k=1

γkxmjkξmj + γp(ȳm − pmj)ξmj .

When (γ1, γ2, γ3, γ4, γp) 6= 0 either characteristics or price are not separable from the demand error.

We parameterize µij(σ) as

µij = σcνic +

4∑

k=1

σkνikxjk

with νi = (νic, νi1, . . . , νi4) mean-zero standard normal and σ = (σc, σ1, . . . , σ4) the standard devia-

tion parameters associated with the taste shocks. The induced vector of tastes for each car j for con-

sumer i is given as µi(σ) = (µi1(σ), . . . , µiJ(σ)) with density f(µi(σ)). Letting δm = (δm1, . . . , δmJm)

the market share of product j is then

smj(δm) =

∫
eδmj+µij

Jm∑
k=0

eδmk+µik

f(µ)dµ,

and we approximate this integral with standard simulation techniques.

9.1 Controls

We use the mean projection residuals for price as the starting point for controls. Following

Berry, Levinsohn, and Pakes (1995) we assume all observed product characteristics are exogenous

and denote these variables for market m as Zm. The mean projection residual is given as an estimate

of

ξ̃mj = pmj − E[ pmj |Zm].

There are many instruments so we follow Berry, Levinsohn, and Pakes (1995) and Pakes (1996),

reducing this set to 15 instruments for each good j that we denote z̃mj . These instruments include

19We focus on the demand side for three reasons: it makes the comparison more transparent, most researchers do
not impose a supply side model when estimating demands, and the results are easier to replicate.
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j’s product characteristics, the sum of each of the product characteristics across all goods in market

m produced by the same firm producing j, and the sum in market m of each of the product

characteristics across all other firms not producing j. Our first control is then given as

ξ̃mj = pmj − E[ pmj | z̃mj ],

and we estimate the expectation using ordinary least squares.

The control function in our setup is given as f(zj ,Vj) = E[ξj |zj ,Vj ] and for consistency setting

Vj = ξ̃mj is sufficient. However, f(zj,Vj) is a new regressor in our setting, and more variation

in this regressor can help to improve precision of the parameter estimates. We add two additional

controls that may lead to an increase in the variation of E[ξj |zj ,Vj ] . Following the logic used in

refining the instrument set, we use

ξ̃(1)mj =
∑

k 6=j,k∈Jf

ξ̃mk

and

ξ̃(2)mj =
∑

k/∈Jf

ξ̃mk,

where Jf is the set of products produced by the firm that produces the product j. These controls

are respectively the sum of all of the other residuals of the products made by the same firm, given

by ξ̃(1)mj , and the sum of all the residuals of all the products made by other firms, given by ξ̃(2)mj .

Based on these ξ̃mj , ξ̃(1)mj , and ξ̃(2)mj , we generate the following nine controls that we use for

our estimation:

V1mj = ξ̃mj , V2mj = ξ̃2mj − E[ξ̃2mj |z̃mj ], V3mj = ξ̃3mj −E[ξ̃3mj |z̃mj ],
V4mj = ξ̃(1)mj , V5mj = ξ̃2(1)mj − E[ξ̃2(1)mj |z̃mj ], V6mj = ξ̃3(1)mj − E[ξ̃3(1)mj |z̃mj ],
V7mj = ξ̃(2)mj , V8mj = ξ̃2(2)mj − E[ξ̃2(2)mj |z̃mj ], V9mj = ξ̃3(2)mj − E[ξ̃3(2)mj |z̃mj ].

Our model for δmj then becomes

δmj = c+ β′xmj − αpmj + f(z̃mj , V̂mj)(1 + γ′xmj + γp(ȳm − pmj)),

where we approximate f(z̃mj , V̂mj) =
∑9

l=1 πlV̂lmj with parameters π = (π1, . . . , π9) to be esti-

mated.

9.2 Estimation

Letting θ = (c, β′, α, γ′, γp)′ we have three sets of parameters to identify given by (σ, θ, π).

Estimation proceeds as in Berry, Levinsohn, and Pakes (1995). Given a value of σ, we use the

contraction mapping to solve for the vector δ̃m(σ) that satisfies s(σ, δ(σ)) = sData. δ̃m(σ) then
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becomes the regressand in the sieve MD objective function given as

QJ(θ(σ), π(σ);σ)

= min
θ,π

1

J

M∑

m=1

Jm∑

j=1

{Ê[δ̃mj(σ)|z̃mj , V̂mj ] − (c+ β′xmj − αpmj + f(z̃mj , V̂mj)(1 + γ′xmj + γp(ȳm − pmj)))}2

with J =
∑M

m=1 Jm and f(z̃mj , V̂mj) =
∑9

l=1 πlV̂lmj . This procedure is used iteratively to minimize

QJ(θ(σ), π(σ);σ) over σ, yielding parameter estimates (σ̂, θ̂, π̂) = (σ̂, θ̂(σ̂), π̂(σ̂)) such that σ̂ =

argminσ QJ(θ(σ), π(σ);σ) .

9.3 Results

The first three columns of Table 1 report results for different specifications in the case where

µij = 0, so the dependent variable is δmj = ln(smj)− ln(sm0), where smj and sm0 denote respectively

the observed market shares in market m for good j and for the outside good. Column 4 reports

results with µij 6= 0, with the market vector δm then recovered from matching observed to predicted

market shares conditional on all parameters not entering into mean utility. Table 2 reports the

implied demand elasticities.

The results for the separable error and exogenous price case are in Column 1 of Table 1 and

they replicate those results from the first column of Table III in BLP. The price coefficient increases

from -0.088 to -0.136 when we move from OLS to 2SLS, suggesting prices are endogenous, as noted

in Berry, Levinsohn, and Pakes (1995).20

Column 3 includes our CMRCF results where we do not impose (γ, γp) = 0. The additively

separable specification is rejected at 1% as the p-value for H0 :(γ0, γp0) = 0 is 0.0001, although no

single interaction term is significant on its own. The point estimate on the interaction term for price

is negative but not significant, and thus only suggestive that the marginal utility of income declines

as the demand error increases.

Most relevant for estimates of price elasticities is the bias in the 2SLS price coefficient estimate

induced by the correlation between the instrumented price and the interaction term in the error.

The price coefficient α increases from -0.136 to -0.232 and is also significantly different from the

coefficient from 2SLS. The sign of the bias coupled with a negative estimate for the interaction term

on price suggests that there is positive correlation between −p̂j and (ȳ − pj)ξj conditional on xj in

the automobile data.

Column 4 allows for random coefficients in the non-separable specification. Horsepower/weight

and intercept term have significant σ′ks, but with the exception of the point estimate for βk on

20While it does not change the substance of either their findings or our findings, we were not able to exactly
replicate the results for their 2SLS estimator using the optimal instruments described in their paper. We find a price
coefficient that is somewhat smaller than their original reported finding of -0.21. While we can only speculate as to
the source of the difference, we suspect it lies in the instruments they used for these results, as we are able to replicate
the OLS point estimates and standard deviations in their paper. Also consistent with this hypothesis is the fact that
our estimate of -0.13 falls well within +/- two standard deviations of their estimate, as their standard deviation was
-0.12. The significantly smaller standard deviation on our price coefficient also suggests the instruments they used
for that specification - whatever they might of been - were not nearly as “optimal” as the instruments they propose
in the paper, for which we find a much smaller standard deviation on the price coefficient.

38



Table 1: Estimated Parameters for Automobile Demand
No Correction, 2SLS, CMRCF (w/ Interactions), RandomCoefficient-CMRCF (w/ Interactions)

Dependent Variable is δ̂mj

No 2SLS CMRCF RC-CMRCF
Parameter Variable Correction∗ (No Interactions) (w/ Interactions) (w/Interactions)

Term on Price price -0.088 -0.136 -0.232 -0.234
(0.004) (0.011) (0.018) (0.019)

Mean Constant -10.071 -9.915 -9.668 -10.435
Parameters (0.252) (0.263) (0.290) (0.680)

HP/Weight -0.122 1.226 2.815 1.079
(0.277) (0.404) (0.527) (1.189)

Air -0.034 0.486 1.379 1.383
(0.072) (0.133) (0.179) (0.189)

MP$ 0.265 0.172 0.103 0.146
(0.043) (0.049) (0.054) (0.068)

Size 2.342 2.292 2.361 2.486
(0.125) (0.129) (0.140) (0.175)

Interaction (ȳ-price)·ξ -0.028 -0.045
Parameters (0.019) (0.060)

HP/Weight·ξ 0.975 1.212
(1.238) (2.443)

Air·ξ 0.414 0.637
(0.429 (0.982)

MP$·ξ -0.045 -0.160
(0.093) (0.192)

Size·ξ 0.224 0.395
(0.502) (1.229)

Std. Deviations Constant 1.783 (0.713)
HP/Weight 2.454 (0.718)
Air 0.249 (0.309)
MP$ 0.002 (0.008)
Size 0.108 (0.089)

Control Ftns V1 3.597 2.395
(2.988) (3.382)

V2 -1.00 -0.835
(1.949) (1.754)

V3 0.041 0.158
(0.998) (0.790)

V4 -0.736 -0.429
(0.589) (0.572)

V5 0.100 0.077
(0.183) (0.166)

V6 1.120 0.666
(0.898) (0.928)

V7 -0.081 -0.073
(0.126) (0.123)

V8 0.302 0.208
(0.272) (0.283)

V9 -0.120 -0.035
(0.263) (0.175)

The data are identical to BLP (1995). Column 1 replicates estimates for the model of their first column of results in their Table
III. The second column uses the same instruments from BLP and estimates 2SLS for the characteristics used in Column 1.
The third column reports estimates of our CMRCF approach. The last column reports the CMRCF estimates of the random
coefficients model with interactions. We do not impose a supply side model during estimations. Standard errors reported for
our CMRCF and RC-CMRCF estimators are robust to heteroskedasticity and account for the “first and second-stage estimates”
following Kim and Petrin (2010c). The p-value for H0 :all the interaction parameters equal to zero is 0.019 for the CMRCF
and is 0.036 for the RC-CMRCF.
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Horsepower/weight, all of the other point estimates from Column 3 are largely the same. The

presence of the random coefficients does not change the fact that H0 :(γ0, γp0) = 0 is rejected at 5%

as the p-value is 0.028, and the coefficient on the price coefficient changes from 0.232 to 0.234 and

the price interaction term from -0.028 to -0.045.

Table 2 translates these estimates into elasticities. Berry, Levinsohn, and Pakes (1995) report

elasticities for selected automobiles from 1990, so we do the same, choosing every fourth automobile

from their Table III, in which vehicles are sorted in order of ascending price. The first column

uses the uncorrected logit specification from Column 1 of Table III in BLP (1995).21 Ignoring price

endogeneity severely biases price elasticities towards zero. As we control the endogeneity using the

2SLS the price elasticities change significantly and become more elastic, as the median elasticity

moves from -0.77 to -1.18. However, biggest change comes when we move from 2SLS to our CMRCF

approach allowing for interactions, as the median elasticity increases from -1.18 to -2.02, and the

mean elasticity increases from -1.60 to -2.63. Adding the random coefficients to the non-separable

specification has very little effect on the elasticities reported in Table 2, as is clear from examining

columns three and four.

Table 2
Automobile Elasticities: No Correction, 2SLS (without Interactions),

CMRCF, and RandomCoefficient-CMRCF (with Interactions)
No Correction1 2SLS CMRCF RC-CMRCF

Interactions No No Yes Yes
Results for 1971-1990

Median -0.77 -1.18 -2.02 -2.08
Mean -1.04 -1.60 -2.63 -2.68
Standard Deviation 0.77 1.17 1.69 1.71
No. of Inelastic Demands 68% 21% 4% 5%

Elasticities from 1990
Median -0.94 -1.43 -2.76 -2.84
Mean -1.24 -1.90 -3.21 -3.31
Standard Deviation 0.84 1.28 1.86 1.87
No. of Inelastic Demands 53% 12% 2% 2%

1990 Models (from BLP, Table VI):
Mazda 323 -0.45 -0.69 -1.55 -1.77
Honda Accord -0.82 -1.26 -1.47 -1.42
Acura Legend -1.69 -2.57 -4.17 -4.24
BMW 735i -3.32 -5.09 -7.21 -7.26

The uncorrected specification is that from Table III of BLP (1995). 1990 is the year BLP focus
on for the individual models; we choose every fourth automobile from their Table VI (the other
elasticities were also very similar).

21Because the data sets are the same, these are the same elasticities that result from the coefficients of their Table
III.
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10 Conclusion

We show how to allow for interactions in the utility function between the unobserved demand

factor and observed factors including price in a discrete choice demand setting. We start by noting

that when endogenous variables interact with the demand error the inversion and contraction from

Berry (1994) and Berry, Levinsohn, and Pakes (1995) can still be used to recover mean utility.

However, the standard IV approach is no longer consistent because the price interaction term is

correlated with the instrumented price. Furthermore, the conditional mean restrictions (CMR) used

for identification in Berry (1994) and Berry, Levinsohn, and Pakes (1995) are no longer sufficient

for identification.

We show how to consistently estimate demand parameters while allowing for both endogenous

and exogenous variables to interact with the error. We couple the standard CMRs with new moment

conditions that we call “generalized control function moments.” We require only the use of the

exact same instruments used in the separable setting. Our approach thus extends the non-separable

demand literature as we do not require that our controls be one-to-one with the unobserved factors,

as in Bajari and Benkard (2005) or Kim and Petrin (2010a).

We develop a sieve semiparametric estimator for the nonseparable demand models that adds

estimated regressors to the setting of Berry, Linton, and Pakes (2004). Given mean utility it is a

simple three-step estimator to recover the parameters subsumed in the mean utility term, including

those parameters on the interaction terms. Monte Carlos suggest standard IV estimators in the

non-separable setting perform poorly, while our approach is consistent. Using the same automobile

data as was used in Berry, Levinsohn, and Pakes (1995), our estimates reveal that the interactions

terms are significant and the demand elasticities become 60% more elastic relative to the standard

IV estimator, primarily because the coefficient on price changes substantially when the interaction

terms are included.
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Appendix

A Consistency Theorem for Random Coefficients Logit Models

A.1 Proof of General Consistency (Theorem 4)

In proving Theorem 4 we use a strategy close to Berry, Linton, and Pakes (2004). We first show

that the estimator, (θ̃, θ̃λ, f̃) defined as any sequence that satisfies the following is consistent:

QJ(δ
∗(θ̃λ, s

0, P 0), z, p, v̂; θ̃, f̃) = inf
(θ,θλ,f)∈Θ×Θλ×FJ

QJ(δ
∗(θλ, s

0, P 0), z, p, v̂; θ, f) + op(1). (33)

Let ε > 0 be any small real numbers. Note that any estimator (θ̃, θ̃λ, f̃) satisfying (33)

also satisfies that with probability approaching to one (w.p.a.1), QJ(δ
∗(θ̃λ, s0, P 0), ·, v̂; θ̃, f̃) <

QJ(δ
∗(θλ, s0, P 0), ·, v̂; θ, fJ) + ε

6 for all (θ, θλ, fJ) ∈ Θ × Θλ × FJ . Then from the fact that

(θ0, θλ0) ∈ Θ × Θλ and πJf0 ∈ FJ , it follows that

QJ(δ
∗(θ̃λ, s

0, P 0), z, p, v̂; θ̃, f̃) < QJ(δ
∗(θλ0, s

0, P 0), z, p, v̂; θ0, πJf0) +
ε

6
.

Then by Assumption 10, the consistency of the pre-stage estimators (Assumption 7) and Assumption

8, we have w.p.a.1, Q0
J(δ

∗(θ̃λ, s0, P 0), ·, v̂; θ̃, f̃) −QJ(δ
∗(θ̃λ, s0, P 0), ·, v̂; θ̃, f̃) < ε

6 and

Q0
J(δ

∗(θλ0, s
0, P 0), z, p, v̂; θ0, πJf0) −QJ(δ

∗(θλ0, s
0, P 0), z, p, v̂; θ0, πJf0) > −ε

6
.

It follows that w.p.a.1,

Q0
J(δ

∗(θ̃λ, s
0, P 0), z, p, v̂; θ̃, f̃) − ε

6
< QJ(δ

∗(θ̃λ, s
0, P 0), z, p, v̂; θ̃, f̃)

< QJ(δ
∗(θλ0, s

0, P 0), z, p, v̂; θ0, πJf0) +
ε

6
< Q0

J(δ
∗(θλ0, s

0, P 0), z, p, v̂; θ0, πJf0) +
ε

6
+
ε

6
.

Next note by the continuity assumption (Assumption 12) and the consistency of the pre-stage esti-

mators (Assumption 7), we have w.p.a.1, Q0
J(δ

∗(θ̃λ, s0, P 0), ·,v; θ̃, f̃)−Q0
J(δ

∗(θ̃λ, s0, P 0), ·, v̂; θ̃, f̃) <
ε
6 and Q0

J(δ
∗(θλ0, s

0, P 0), ·,v; θ0, πJf0) − Q0
J(δ

∗(θλ0, s
0, P 0), ·, v̂; θ0, πJf0) > − ε

6 . It follows that

w.p.a.1,

Q0
J(δ

∗(θ̃λ, s
0, P 0), z, p,v; θ̃, f̃) − ε

6
< Q0

J(δ
∗(θλ0, s

0, P 0), z, p,v; θ0, πJf0) +
ε

6
+

3ε

6
.

Then by Assumption 15 and Assumption 11 (continuity) and the fact that ‖f0 − πJf0‖F → 0 as

J → ∞, for all J > J0 large enough we have

Q0
J(δ

∗(θλ0, s
0, P 0), z, p,v; θ0, πJf0) < Q0

J(δ
∗(θλ0, s

0, P 0), z, p,v; θ0, f0) +
ε

6
.

It follows that

Q0
J(δ

∗(θ̃λ, s
0, P 0), z, p,v; θ̃, f̃) < Q0

J(δ
∗(θλ0, s

0, P 0), z, p,v; θ0, f0) + ε. (34)
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Next note that for any ǫ > 0, by Assumption 9, Assumption 11 (continuity), 13 (compactness),

inf
θ/∈Nθ0

(ǫ),θλ /∈Nθλ0
(ǫ),f /∈Nf0,J (ǫ)

Q0
J(δ

∗(θλ, s
0, P 0), z, p,v; θ, f)

exists (it can vary by J). Then by Assumption 15 and the fact that FJ ⊂ F , it must be that

Q0
J(δ

∗(θλ0, s
0, P 0), z, p,v; θ0, f0) < inf

θ/∈Nθ0
(ǫ),θλ /∈Nθλ0

(ǫ),f /∈Nf0,J(ǫ)
Q0
J(δ

∗(θλ, s
0, P 0), z, p,v; θ, f).

Take ε small enough that

inf
θ/∈Nθ0

(ǫ),θλ /∈Nθλ0
(ǫ),f /∈Nf0,J (ǫ)

Q0
J(δ

∗(θλ, s
0, P 0), ·,v; θ, f) −Q0

J(δ
∗(θλ0, s

0, P 0), ·,v; θ0, f0) ≥ ε.

Then from (34) it follows that w.p.a.1,

Q0
J(δ

∗(θ̃λ, s
0, P 0), z, p,v; θ̃, f̃) < inf

θ/∈Nθ0
(ǫ),θλ /∈Nθλ0

(ǫ),f /∈Nf0,J(ǫ)
Q0
J(δ

∗(θλ, s
0, P 0), z, p,v; θ, f).

Then by Assumption 11 (continuity) and the fact that (θ̃, θ̃λ, f̃) ∈ Θ × Θλ × FJ , we conclude

θ̃ ∈ Nθ0(ǫ), θ̃λ ∈ Nθλ0
(ǫ), and f̃ ∈ Nf0,J(ǫ). Therefore we have shown that any estimator (θ̃, θ̃λ, f̃)

that satisfies (33) is consistent.

Next we show that the actual estimator (θ̂, θ̂λ, f̂) satisfies the following, so is consistent because

it then satisfies (33) :

QJ(δ
∗(θ̂λ, s

0, P 0), z, p, v̂; θ̂, f̂) = QJ(δ
∗(θ̂λ, s

n, PR), z, p, v̂; θ̂, f̂) + op(1) (35)

≤ inf(θ,θλ,f)∈Θ×Θλ×F̂J
QJ(δ

∗(θλ, s
n, PR), z, p, v̂; θ, f) + op(1) (36)

= inf(θ,θλ,f)∈Θ×Θλ×FJ
QJ(δ

∗(θλ, s
n, PR), z, p, v̂; θ, f) + op(1) (37)

= inf(θ,θλ,f)∈Θ×Θλ×FJ
QJ(δ

∗(θλ, s
0, P 0), z, p, v̂; θ, f) + op(1) (38)

where (36) (the first inequality) holds because (θ̂, θ̂λ, f̂) is an extremum estimator satisfying (21)

and (37) (the second equality) holds because QJ(·, v̂; θ, f) is continuous in f and because for any

f ∈ FJ we can find a sequence f̂ ∈ F̂J such that
∥∥∥f̂ − f

∥∥∥
F
→ 0 as Π̂(·) → Π(·) and ˆ̄ϕl(·) → ϕ̄l(·)

(in a pseudo-metric ‖·‖s) by Assumption 7. We focus on (35) (the first equality) and (38) (the last

equality). Consider that by applying the Cauchy-Schwarz inequality twice we obtain

sup (θ,θλ,f)∈Θ×Θλ×(F̂J∪FJ )|QJ(δ∗(θλ, sn, PR), ·, v̂; θ, f) −QJ(δ
∗(θλ, s

0, P 0), ·, v̂; θ, f)| (39)

≤ sup (θ,θλ,f)∈Θ×Θλ×(F̂J∪FJ )J
−1

J∑

j=1

(Ê[δ∗j (θλ, s
n, PR)|zj , v̂j ] − Ê[δ∗j (θλ, s

0, P 0)|zj , v̂j ])2 ×

×2 sup (θ,θλ,f)∈Θ×Θλ×(F̂J∪FJ )(QJ (δ∗(θλ, s
n, PR), ·, V̂; θ, f) +QJ(δ

∗(θλ, s
0, P 0), ·, V̂; θ, f))

≤ C · sup θλ∈Θλ
J−1

J∑

j=1

(Ê[δ∗j (θλ, s
n, PR)|zj , v̂j ] − Ê[δ∗j (θλ, s

0, P 0)|zj , v̂j ])2

for some constant C. Here the second inequality holds because any δ∗(·) obtained from the con-
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traction mapping is bounded (BLP (1995) show the random coefficients logit model satisfies the

contraction mapping property), all the parameter spaces are bounded (Assumption 13), and we

assume zj and pj are (stochastically) bounded, so sup (θ,θλ,f)∈Θ×Θλ×(F̂J∪FJ )QJ(·) is bounded. Also

note that δ∗(θλ, ·) does not depend on (θ, f).

Therefore (39) is op(1) if

sup
θλ∈Θλ

J−1
J∑

j=1

(Ê[δ∗j (θλ, s
n, PR)|zj , v̂j ] − Ê[δ∗j (θλ, s

0, P 0)|zj , v̂j ])2 = op(1). (40)

This in turn implies (35) immediately and also implies (38) by the triangle inequality as we argue be-

low. Let QJ(δ
∗(θ(1)

λ , sn, PR), z, p, v̂; θ(1), f (1)) = inf(θ,θλ,f)∈Θ×Θλ×FJ
QJ(δ

∗(θλ, sn, PR), z, p, v̂; θ, f)

and QJ(δ
∗(θ(2)

λ , s0, P 0), z, p, v̂; θ(2), f (2)) = inf(θ,θλ,f)∈Θ×Θλ×FJ
QJ(δ

∗(θλ, s0, P 0), z, p, v̂; θ, f). The

minimizers (θ(1), θ
(1)
λ , f (1)) and (θ(2), θ

(2)
λ , f (2)) exist because QJ(·) is continuous in (θ, θλ, f) and

the parameter space Θ × Θλ ×FJ is compact (Assumption 13). It follows that

op(1) = QJ(δ
∗(θ(1)

λ , sn, PR), z, p, v̂; θ(1), f (1)) −QJ(δ
∗(θ(1)

λ , s0, P 0), z, p, v̂; θ(1), f (1))

≤ QJ(δ
∗(θ(1)

λ , sn, PR), z, p, v̂; θ(1), f (1)) −QJ(δ
∗(θ(2)

λ , s0, P 0), z, p, v̂; θ(2), f (2))

≤ QJ(δ
∗(θ(2)

λ , sn, PR), z, p, v̂; θ(2), f (2)) −QJ(δ
∗(θ(2)

λ , s0, P 0), z, p, v̂; θ(2), f (2)) = op(1)

where the first and the last equality hold by (39) and (40). Above the first inequality holds because

(θ(2), θ
(2)
λ , f (2)) minimizes QJ(δ

∗(θλ, s0, P 0), z, p, v̂; θ, f) over Θ×Θλ×FJ and the second inequality

holds because (θ(1), θ
(1)
λ , f (1)) minimizes QJ(δ

∗(θλ, sn, PR), z, p, v̂; θ, f) over Θ × Θλ × FJ . This

proves (38).

Finally we verify (40) is op(1). Note that

J−1
∑J

j=1( Ê[δ∗j (θλ, s
n, PR)|zj , v̂j ] − Ê[δ∗j (θλ, s

0, P 0)|zj , v̂j ])2 (41)

= J−1
J∑

j=1

{δ∗j (θλ, sn, PR) − δ∗j (θλ, s
0, P 0)}ϕL(zj , v̂j)

′(
J∑

j=1

ϕL(zj , v̂j)ϕ
L(zj , v̂j)

′/J)−1

×
J∑

j=1

ϕL(zj , v̂j){δ∗j (θλ, sn, PR) − δ∗j (θλ, s
0, P 0)}/J

≤ Op(1)||
J∑

j=1

ϕL(zj , v̂j){δ∗j (θλ, sn, PR) − δ∗j (θλ, s
0, P 0)}/J ||2

≤ Op(1)
J∑

j=1

||ϕL(zj , v̂j)||2/J
J∑

j=1

{δ∗j (θλ, sn, PR) − δ∗j (θλ, s
0, P 0)}2/J

≤ Op(1)ζϕ(L)2 ·
J∑

j=1

{δ∗j (θλ, sn, PR) − δ∗j (θλ, s
0, P 0)}2/J = op(1)

where the first inequality holds because
∑J

j=1 ϕ
L(zj , v̂j)ϕ

L(zj , v̂j)
′/J becomes nonsingular w.p.a.1

(Assumption 7 and 8 (ii)) and the last result holds by the essentially same proof of A.2 (page

647-648) in the proof of Theorem 1 of Berry, Linton, and Pakes (2004) under Assumption 5 and
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Assumption 14 because (i) all arguments there in terms of ξ also hold in terms of our δ∗ and (ii)

Assumption 5 replaces their Assumption A3 and Assumption 14 replaces their Assumption A5.

This completes the proof.

B Consistency Theorem for the Simple Logit

We show consistency of our multi-step sieve estimator for the simple logit case.

Denote a sample objective function QJ(δ, z, p, v̂; θ, f) for estimation based on the moment con-

dition of (8). If we use nonlinear sieve least squares estimation, then the objective function for

estimation becomes

QJ(δ, z, p, v̂; θ, f) =
1

J

M∑

m=1

Jm∑

j=1

{δmj − (c+ β′xmj − αpmj + f(·)(1 + γ′xmj + γp(ȳm − pmj)))}2

subject to (θ, f) ∈ Θ × F̂J . Our estimator is minimizing the sample objective function

(̂θ,f̂) = arginf(θ,f)∈Θ×F̂J
QJ(δ, z, p, v̂; θ, f) + op(1). (42)

We also define the corresponding population objective function as

Q0
J(δ, z, p,v; θ, f) =

1

J

M∑

m=1

Jm∑

j=1

E[{δmj−(c+β′xmj−αpmj+f(zj,vj)(1+γ′xmj+γp(ȳm−pmj)))}2].

(43)

The consistency theorem below holds either when the asymptotics is in the number of products

(Jm → ∞) or in the number of markets (M → ∞). Note that we do not require Q0
J(δ, z, p,v; θ, f)

converges when the asymptotics is in the number of products while the convergence typically holds

when the asymptotics is in the number of markets. In the latter case requirements for the consistency

can be further simplified.

We derive the consistency of our estimator under the following assumptions based on the results

in Newey and Powell (2003), Chen, Linton, and van Keilegom (2003), and Chen (2007).22 Here

we abstract from the sampling error in the market shares to save notation. We have allowed it for

the random coefficients logit case. The contribution of this sampling error to the variance of the

estimator will be negligible when the market size (number of consumers) is large. The following

assumptions are commonly imposed and standard in the sieve estimation literature and we have

already discussed conditions related to them for the random coefficient logit case, so we minimize

our discussion. We can show or have shown most of assumptions below are satisfied for the logit

case. We list the following assumptions for transparency or possible application of our theorem to

other estimation problems.

As we have shown in Section 5, first we require identification

22Our problem is different from Newey and Powell (2003)’s Theorem 4.1 because we use estimated regressors
(functions, Π̂(·) and ˆ̄ϕl(·)) in the main estimation. Our problem is also different from Chen, Linton, and van Keilegom
(2003) because we estimate the parametric component (θ0) and the nonparametric component (f0) simultaneously
in the main estimation.
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Assumption 21 (B1). (θ0, f0) ∈ Θ×F is the only (θ, f) ∈ Θ×F23 satisfying the moment condition

(8) and (9) and Q0
J(δ, z, p,v; θ0 , f0) <∞.

Next we note our estimator is an extremum estimator solving (42), so satisfies

Assumption 22 (B2). QJ(δ, z, p, v̂; θ̂, f̂) ≤ inf(θ,f)∈Θ×F̂J
QJ(δ, z, p, v̂; θ, f) + op(1)

Assumption B3 below says that both Π0(·) and ϕ̄0l(·) can be approximated by the first stage

and the middle stage series approximations. Again this is well known to be satisfied for power series

and splines approximation if Π0(·)’s and ϕ̄0l(·)’s are smooth and their derivatives are bounded (e.g.,

belong to a Hölder class of functions).

Assumption 23 (B3).
∥∥∥Π̂(·) − Π0(·)

∥∥∥
s

= op(1) and
∥∥ ˆ̄ϕl(·) − ϕ̄0l(·)

∥∥
s

= op(1) for all l.

Assumption 24 (B4). The sieve space FJ satisfies FJ ⊆ FJ+1 ⊆ . . . ⊆ F for all J ≥ 1; and for

any f ∈ F there exists πJf ∈ FJ such that ‖f − πJf‖F → 0 as J → ∞.

Assumption B4 is also known to hold if F is a set of a class of smooth functions such as Hölder

class.

The following continuity conditions obviously hold for our objective function.

Assumption 25 (B5). Q0
J(δ, z, p,v; θ, f) is continuous in (θ, f) ∈ Θ ×F .

Note that Assumption B5 is trivial from observing the construction of Q0
J(δ, z, p,v; θ, f) in (43).

Assumption 26 (B6). Q0
J(δ, z, p,v; θ, fJ ) is continuous in Π(·) and ϕ̄l(·) uniformly for all (θ, fJ) ∈

Θ ×FJ .

Assumption B6 is also trivially satisfied because any fJ ∈ FJ is continuous in Π(·) and ϕ̄l(·) by

construction of FJ and because Π(·) and ϕ̄l(·) enterQ0
J(δ, z, p,v; θ, fJ ) only by fJ andQ0

J(δ, z, p,v; θ, fJ )

is continuous in fJ .

Next we impose compactness on the sieve space.

Assumption 27 (B7). The parameter space Θ is compact and the sieve space, FJ , is compact

under the pseudo-metric || · ||F .

This compactness condition holds when the sieve space is based on power series or splines as in

our construction.

The last condition we add is that in the neighborhoods of Π0(·) and ϕ̄0l(·), the difference between

the sample criterion function and the population criterion function is small enough when J is large.

Assumption 28 (B8). For all positive sequences ǫJ = o(1), we have

sup
(θ,f)∈Θ×FJ ,‖Π−Π0‖s≤ǫJ ,‖ϕ̄l−ϕ̄0l‖s≤ǫJ∀l

∣∣QJ(δ, z, p,v; θ, f) −Q0
J(δ, z, p,v; θ, f)

∣∣ = op(1)

where vmj = gj(pm1 − Π(zm1), . . . , pmJm − Π(zmJm)).

23The parameter space does not need to be a product space. We use “ · × ·” for ease of notation throughout the
paper.
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Note that Assumption B8 can be easily satisfied by applying a proper law of large numbers (e.g.,

Chebychev’s weak LLN). Define W̄J = 1
J

∑M
m=1

∑Jm
j=1 Wmj and µ̄W

J = 1
J

∑M
m=1

∑Jm
j=1E[Wmj ] for a

random vector Wmj . Then it is not difficult to see Assumption B8 holds if ||W̄J−µ̄W

J || = op(1) with

Wmj = vec(wmjw
′
mj) and wmj = (δmj , 1, x

′
mj , pmj , f(zmj ,vmj), f(zmj ,vmj)x

′
mj , f(zmj ,vmj)(ȳm−

pmj))
′ for all f ∈ FJ such that ‖Π − Π0‖s ≤ ǫJ and ‖ϕ̄l − ϕ̄0l‖s ≤ ǫJ .

Theorem 7. Suppose Assumptions B1-B8 are satisfied. Then θ̂ →p θ0.

B.1 Proof of Theorem 7

We prove the consistency by extending Chen (2007)’s consistency proof for sieve extremum estima-

tors allowing for pre-step estimates. We first show that any (infeasible) estimator, (θ̃, f̃) defined as

any sequence that satisfies the following is consistent:

QJ(δ, z, p, v̂; θ̃, f̃) ≤ inf(θ,f)∈Θ×FJ
QJ(δ, z, p, v̂; θ, f) + op(1). (44)

Let ε > 0 be any small real numbers. Any estimator (θ̃, f̃) that satisfies (44) also satisfies that

with probability approaching to one (w.p.a.1), QJ(δ, z, p, v̂; θ̃, f̃) < QJ(δ, z, p, v̂; θ, fJ) + ε
6 for all

(θ, fJ) ∈ Θ × FJ . From the fact that θ0 ∈ Θ and πJf0 ∈ FJ , it follows that QJ(δ, z, p, v̂; θ̃, f̃) <

QJ(δ, z, p, v̂; θ0, πJf0) + ε
6 . Then by Assumption B8 and the consistency of the pre-stage estima-

tors (B3), we have w.p.a.1, Q0
J(δ, z, p, v̂; θ̃, f̃) −QJ(δ, z, p, v̂; θ̃, f̃) < ε

6 and Q0
J(δ, z, p, v̂; θ0, πJf0) −

QJ(δ, z, p, v̂; θ0, πJf0) > − ε
6 . It follows that w.p.a.1,

Q0
J(δ, z, p, v̂; θ̃, f̃) − ε

6
< QJ(δ, z, p, v̂; θ̃, f̃)

< QJ(δ, z, p, v̂; θ0, πJf0) +
ε

6
< Q0

J(δ, z, p, v̂; θ0, πJf0) +
ε

6
+
ε

6
.

Next we note that by the continuity assumption (B6) and the consistency of the pre-stage estima-

tors (B3), we have w.p.a.1, Q0
J(δ, z, p,v; θ̃, f̃) −Q0

J(δ, z, p, v̂; θ̃, f̃) < ε
6 and Q0

J(δ, z, p,v; θ0 , πJf0) −
Q0
J(δ, z, p, v̂; θ0, πJf0) > − ε

6 . It follows that w.p.a.1,

Q0
J(δ, z, p,v; θ̃, f̃) − ε

6
< Q0

J(δ, z, p,v; θ0, πJf0) +
ε

6
+

3ε

6
.

By B1 and B5 (continuity) and the fact that ‖f0 − πJf0‖F → 0 as J → ∞, for all J > J0 large

enough we have Q0
J(δ, z, p,v; θ0, πJf0) < Q0

J(δ, z, p,v; θ0, f0) + ε
6 . It follows that

Q0
J(δ, z, p,v; θ̃, f̃) < Q0

J(δ, z, p,v; θ0, f0) + ε. (45)

Next note that for any ǫ > 0, by B4, B5(continuity), B7 (compactness),

inf
{(θ,f)∈Θ×FJ :||θ−θ0||+||f−f0||F≥ǫ}

Q0
J(δ, z, p,v; θ, f)
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exists (it can vary by J). Then by B1 (identification) and the fact that FJ ⊂ F , it must be that

Q0
J(δ, z, p,v; θ0, f0) < inf

{(θ,f)∈Θ×FJ :||θ−θ0||+||f−f0||F≥ǫ}
Q0
J(δ, z, p,v; θ, f).

Take ε small enough that inf{(θ,f)∈Θ×FJ :||θ−θ0||+||f−f0||F≥ǫ}Q
0
J(δ, z, p,v; θ, f)−Q0

J (δ, z, p,v; θ0, f0) ≥
ε. Then from (45) it follows that w.p.a.1, Q0

J(·; θ̃, f̃) < inf{(θ,f)∈Θ×FJ :||θ−θ0||+||f−f0||F≥ǫ}Q
0
J(·; θ, f).

Then by B5 (continuity) and the fact that (θ̃, f̃) ∈ Θ×FJ , we conclude ||θ̃ − θ0||+ ||f̃ − f0||F < ǫ.

This proves any estimator, (θ̃, f̃) that satisfies (44) is consistent. Next we note that our estimator

(θ̂, f̂) satisfies the following, so is consistent:

QJ(δ, z, p, v̂; θ̂, f̂) ≤ inf(θ,f)∈Θ×F̂J
QJ(δ, z, p, v̂; θ, f) + op(1)

= inf(θ,f)∈Θ×FJ
QJ(δ, z, p, v̂; θ, f) + op(1)

where the first inequality holds by Assumption B2 (extremum estimator) and the second equality

holds because QJ(δ, z, p, v̂; θ, f) is continuous in f and because for any f ∈ FJ we can find a

sequence f̂ ∈ F̂J such that
∥∥∥f̂ − f

∥∥∥
F

→ 0 as Π̂(·) → Π(·) and ˆ̄ϕl(·) → ϕ̄l(·) (in a pseudo-metric

‖·‖s) by Assumption B3.

C Convergence Rate of the Estimator

Following up the consistency, we derive the mean-squared error convergence rates of the estimator

f̂(·), which will be useful to obtain the
√
J -consistency and the asymptotic normality of the estimate

of interest, (θ̂, θ̂λ).

Regularity conditions we impose here are standard in the sieve estimation literature. We first

introduce some notation. Let

g0(zj ,vj) = c0 + β′0xj − αpj + f0(zj ,vj)(1 + γ′0xj + γp(ȳ − pj))

and define ςj(θλ, s
n, pR) = δ∗j (θλ, s

n, PR) − g0(zj ,vj) and ςj(θλ) = δ∗j (θλ, s
0, P 0) − g0(zj ,vj). Here

we let g0(zj ,vj) be a function of (zj ,vj) because xj is included in zj. For a matrix D, let ‖D‖ =

(tr(D′D))1/2, for a random matrix D, we let ‖D‖∞ be the infimum of constants C such that

Pr(||D|| < C) = 1. We also assume that the supports of distributions of p, V, and Z are compact

to avoid other complications but this can be relaxed with additional complexity (e.g., trimming

devices).

In addition to Assumption C1 we impose the rate conditions that restrict the growth of k(J)

and L(J) as J tends to infinity.

Assumption 29 (C2). Let △J,1 = k(J)1/2/
√
J+k(J)−sΠ/dim(z), △J,2 = k(J)1/2/

√
J+k(J)−sϕ/dim(z),

and ∆J = max{∆J,1,∆J,2} → 0. Also △δ = L(J)1/2/
√
J + L(J)−sδ/ dim(z,v) → 0. For polyno-

mial approximations k(J)3/J → 0, L(J)3/J → 0,
√
L3/J + △J(L(J)4 + L(J)2k(J)3/2/

√
J) +

L(J)1−sf/dim(z,v) → 0 and for the spline approximations k(J)2/J → 0, L(J)2/J → 0,
√
L3/J +

△J(L(J)5/2 + L(J)2k(J)/
√
J) + L(J)1−sf/dim(z,v) → 0.

Then we obtain the mean-squared error convergence of f̂(·):
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Theorem 8. Suppose Assumptions 3-6, 9-10, 13-15, Condition S, and Assumptions C1-C2 are

satisfied. Suppose J2/n and J2/R are bounded. Then

(∫
(f̂(z,v) − f0(z,v))2dµ0(z,v)

)1/2

= Op(
√
L(J)/J + L(J)△J + L(J)−sf/dim(z,v))

where µ0(z,v) denotes the distribution function of (Z,V).

Note that one would obtain the convergence rate O(
√
L(J)/J + L(J)−sf/dim(z,v)) (e.g., Newey

(1997)) if the first and the second step estimations are not required.

C.1 Proof of Theorem 8

We introduce notation and prove Lemma L1 below that is useful to derive the convergence rate

result.

Define fL(z,v) = a′Lϕ̃
L(z,v) and ˆ̃fL(z,v) = a′L ˆ̃ϕL(z,v) where aL satisfies Assumption L1 (iv)

below. Define ψLθ0,j ≡ (1, x′j ,−pj , x′jf0(zj ,vj), (ȳ−pj)f0(zj ,vj), (1+γ′0xj +γp0(ȳ−pj))ϕ̃L(zj ,vj)
′)′,

ψLθ (zj ,vj) = (1, x′j ,−pj, x′jfL(zj ,vj), (ȳ − pj)fL(zj ,vj), (1 + γ′0xj + γp0(ȳ − pj))ϕ̃
L(zj ,vj)

′)′,

ψ̂Lθ (zj ,vj) = (1, x′j ,−pj, x′j
ˆ̃
fL(zj ,vj), (ȳ − pj)

ˆ̃
fL(zj ,vj), (1 + γ′0xj + γp0(ȳ − pj)) ˆ̃ϕL(zj ,vj)

′)′, and

Ψ̂L
θ,j = (1, x′j ,−pj, x′j f̂(zj , v̂j), (ȳ − pj)f̂(zj , v̂j), (1 + γ̂′xj + γ̂p(ȳ − pj)) ˆ̃ϕL(zj , v̂j)

′)′. We further let

ˆ̂
ψLθ,j = ψ̂Lθ (zj , v̂j), ψ

L
θ,j = ψLθ (zj ,vj), and ψ̂Lθ,j = ψ̂Lθ (zj ,vj). Let Ψ̂θλ,j = Ê[

∂δ∗j (θλ,s
n,PR)

∂θλ
|zj , v̂j ]

and Ψθλ,j = E

[
∂δ∗j (θλ,s

0,P 0)

∂θλ
|zj ,vj

]
. Let Ψ̂L

j = (Ψ̂′
θ̂λ,j

,−Ψ̂L′
θ,j)

′ and Ψ̂L,J = (Ψ̂L
1 , . . . , Ψ̂

L
J )′. Simi-

larly we let ψL,J = (ψL1 , . . . , ψ
L
J )′ with ψLj = (Ψ′

θλ0,j
,−ψL′θ,j)′ , ψ̂L,J = (ψ̂L1 , . . . , ψ̂

L
J )′ with ψ̂Lj =

(Ψ′
θλ0,j

,−ψ̂L′θ,j)′, and
ˆ̂
ψL,J = (

ˆ̂
ψL1 , . . . ,

ˆ̂
ψLJ )′ with

ˆ̂
ψLj = (Ψ′

θλ0,j
,− ˆ̂
ψL′θ,j)

′.
Let C (also C1,C2, and others) denote a generic positive constant and let C(p, x) and C(z,v)

(also C1(·), C2(·), and others) denote generic bounded positive function of (p, x) and (z,v) respec-

tively. We often write Cj = C(pj , xj) or Cj = C(zj ,vj). We let W = Z × V (the support of

(Z,V)).

Assumption 30 (L1). (i) (pj , Zj ,Vj) is continuously distributed with bounded density; (ii) (a)

For each k and L there are nonsingular matrices B, B̃, and B1 such that for ϕkB1
(z) = B1ϕ

k(z),

ϕLB(z,v) = BϕL(z,v) and ϕ̃L
B̃

(z,v) = B̃ϕ̃L(z,v),
∑J

j=1E[ϕLB(Zj ,Vj)ϕ
L
B(Zj ,Vj)

′]/J ,
∑J

j=1E[ϕ̃L
B̃

(Zj,Vj)ϕ̃
L
B̃

(Zj ,Vj)
′]/J and

∑J
j=1E[ϕkB1

(Zj)ϕ
k
B1

(Zj)
′]/J have smallest eigenvalues that

are bounded away from zero for all J large enough, uniformly in k and L; (ii) (b) Let ΨL
0,j =

(Ψ′
θλ0,j

,−ψL′θ0,j)′. Then for each k and L,
∑J

j=1E[ΨL
0,jΨ

L′
0,j]/J has a smallest eigenvalue that is

bounded away from zero for all J large enough, uniformly in k and L; (iii) For each integer ι > 0,

there are ζι(L) and ζι(k) with |ϕL(z,v)|ι ≤ ζι(L), |ϕ̃L(z,v)|ι ≤ ζι(L), and |ϕk(z)|ι ≤ ζι(k) ; (iv)

There exist ι, ̺1, ̺2, ̺, ̺δ > 0 and aL, bL, BL, λ1
k, and λ2

l,k such that |Π0(z)−λ1′
k ϕ

k(z)|ι = Ck−̺1,
|ϕ̄0l(z)−λ2′

l,kϕ
k(z)|ι = Ck−̺2 for all l, |f0(z,v)−a′Lϕ̃L(z,v)|ι = CL−̺,

∑
j |E[δ∗j (θλ, s

0, P 0)|zj ,vj ]−
b′Lϕ

L(zj ,vj)|ι/J = C(L−̺) and
∑

j |E[
∂δ∗j (θλ,s

0,P 0)

∂θλ
|zj ,vj ] − BLϕ

L(zj ,vj)|ι/J = C(L−̺); (v) both

Z and the support of p are compact.

Let △J,1 = k(J)1/2/
√
J + k(J)−̺1 , △J,2 = k(J)1/2/

√
J + k(J)−̺2 , and ∆J = max{∆J,1,∆J,2}.
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Lemma 1 (L1). Suppose Assumptions 3-6, 9-10, 13-15, Condition S, Assumptions L1, and As-

sumptions C1 (i), (iv)-(ix) hold. Suppose J2/n and J2/R are bounded. Further suppose (i)

ζ0(k)
√
k/J → 0, (ii) ζ0(L)

√
L/J → 0, and (iii)

L△ϕ
J = (Lζ1(L) + L3/2ζ0(k)

√
k/J + L3/2)△J → 0

L△J,ϑ =
√
L3/J + L2ζ0(k)△J,1

√
k/J + L2△J,2 + L1−̺ → 0.

Then,

(
∑J

j=1

(
f̂(zj ,vj) − f0(zj ,vj)

)2
/J) = Op(

√
L/J + Lζ0(k)△J,1

√
k/J + L△J,2 + L−̺).

C.1.1 Proof of Lemma L1

Without loss of generality, we will let ϕk(z) = ϕkB1
(z), ϕL(z,v) = ϕLB(z,v) and ϕ̃L(z,v) = ϕ̃L

B̃
(z,v).

Let Π̂j = Π̂(zj) and Πj = Π0(zj). Let ˆ̄ϕl,j = ˆ̄ϕl(zj) and ϕ̄l,j = ϕ̄0l(zj). Let
ˆ̂
ϕ̃l,j = ˆ̃ϕl(zj , v̂j)

and ϕ̃l,j = ϕ̃l(zj ,vj). Also let ˆ̃̂ϕLj = ˆ̃ϕL(zj , v̂j) and ϕ̃Lj = ϕ̃L(zj ,vj). Further define ˙̄ϕl(z) =

ϕk(z)′(P′
P)−

∑J
j=1 ϕ

k(zj)ϕl(zj ,vj) where we have ˆ̄̂ϕl(z) = ϕk(z)′(P′
P)−

∑J
j=1 ϕ

k(zj)ϕl(zj , v̂j).

Let ˙̄ϕL(z) = ( ˙̄ϕ1(z), . . . , ˙̄ϕL(z))′ and ϕ̄L(z) = (ϕ̄1(z), . . . , ϕ̄L(z))′. We also let

ϕL(zj , v̂j) = (ϕ1(zj , v̂j), . . . , ϕL(zj , v̂j))
′ and ϕL(zj ,vj) = (ϕ1(zj ,vj), . . . , ϕL(zi,vj))

′.
First note (P′

P)/J becomes nonsingular w.p.a.124 as ζ0(k)
2k/J → 0 by Assumption L1 (ii) and

by the essentially same proof in Theorem 1 of Newey 1997. Then by the essentially same proof

(A.3) of Lemma A1 in Newey, Powell, and Vella (1999)), we obtain

∑J

j=1
||Π̂j − Πj ||2/J = Op(△2

J,1) and
∑J

j=1
|| ˙̄ϕl,j − ϕ̄l,j||2/J = Op(△2

J,2) for all l. (46)

Also by a similar argument to Theorem 1 of Newey (1997), it follows that

max
j≤J

||Π̂j − Πj|| = Op(ζ0(k)△J,1) (47)

max
j≤J

|| ˙̄ϕl,j − ϕ̄l,j|| = Op(ζ0(k)△J,2) for all l. (48)

Again by the essentially same proof (A.3) of Lemma A1 in Newey, Powell, and Vella (1999)), we

obtain

∑J

j=1
||Ê[

∂δ∗j (θλ, s
0, P 0)

∂θλ
|zj ,vj ] −E[

∂δ∗j (θλ, s
0, P 0)

∂θλ
|zj ,vj ]||2/J

= Op(△δ ≡ L(J)1/2/
√
J + L(J)−ρδ ) = op(1).

24 In the sense that there exists a C(ǫ) such that Pr(||(P′
P)/J − I || > C(ǫ)) < ǫ for all J large enough. Others are

similarly defined.
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Then because E[
∂δ∗j (θλ,s

0,P 0)

∂θλ
|zj ,vj ] is Lipschitz in vj and by Assumption C1 (viii) we further obtain

∑J

j=1
||Ê[

∂δ∗j (θλ, s
0, P 0)

∂θλ
|zj , v̂j ] − E[

∂δ∗j (θλ, s
0, P 0)

∂θλ
|zj ,vj ]||2/J (49)

≤ 2
∑J

j=1
||Ê[

∂δ∗j (θλ, s
0, P 0)

∂θλ
|zj , v̂j ] −E[

∂δ∗j (θλ, s
0, P 0)

∂θλ
|zj , v̂j ]||2/J

+2
∑J

j=1
||E[

∂δ∗j (θλ, s
0, P 0)

∂θλ
|zj , v̂j ] − E[

∂δ∗j (θλ, s
0, P 0)

∂θλ
|zj ,vj ]||2/J

=
∑J

j=1
||Π̂j − Πj ||2/J + op(1) = op(1)

by the essentially same proof in Newey, Powell, and Vella (1999) (p. 595). Also applying the similar

argument to (41) we further find

J∑

j=1

||Ê[
∂δ∗j (θλ, s

n, PR)

∂θλ
|zj , v̂j ] − Ê[

∂δ∗j (θλ, s
0, P 0)

∂θλ
|zj , v̂j ]||2/J (50)

≤ Op(1)ζϕ(L)2 ·
J∑

j=1

{
∂δ∗j (θλ, s

n, PR)

∂θλ
−
∂δ∗j (θλ, s

0, P 0)

∂θλ
}2/J = op(1)

under Assumption 5 and Assumption C1 (ix).

Combining (49) and (50) by triangle inequality we obtain (in a neighborhood of θλ0)

J−1
J∑

j=1

||Ψ̂θλ,j − Ψθλ,j||2 = op(1). (51)

Define T̂ = (Ψ̂L,J)′Ψ̂L,J/J ,
ˆ̂
T = (

ˆ̂
ψL,J)′ ˆ̂ψL,J/J , and Ṫ = (ψL,J)′ψL,J/J . Our goal is to show

that T̂ is nonsingular w.p.a.1. First note that Ṫ is nonsingular w.p.a.1 by Assumption L1 (ii) (b)

because |fL − f0|ι ≤ CL−̺ → 0 by Assumption L1 (iv) and ζ0(L)2L/J → 0 (i.e. ||Ṫ − T J || → 0

w.p.a.1. where T J =
∑J

j=1E[ΨL
0jΨ

L′
0j ]/J). Assumption L1 (ii) (b) can hold as follows. Recall that

our identification condition requires that 1, x′j , pj , x
′
jf(zj,vj), and (ȳ−pj)f(zj ,vj) for any f(zj ,vj)

such that E[f(Zj ,Vj)|zj ] = 0 have no additive functional relationship, similarly it requires that

1, x′j , pj , x
′
jf(zj,vj), (ȳ − pj)f(zj ,vj), and (γ′0xj + γp0(ȳ − pj) + 1)ϕ̃Lj have no additive functional

relationship for any f(zj,vj) such that E[f(Zj ,Vj)|zj ] = 0 because E[ϕ̃Lj |zj ] = 0 by construction

of ϕ̃Lj . Moreover E[(γ′0Xj + (ȳ − pj)γp0 + 1)2ϕ̃Lj ϕ̃
L′
j ] is nonsingular by Assumption L1 (ii) (a),

var(γ′0Xj + (ȳ − pj)γp0 + 1) > 0 for all j, and by the essentially same proof in Lemma A1 of

Newey, Powell, and Vella (1999). The same conclusion holds even when instead we take Ṫ =∑J
j=1C(zj,vj)ψ

L
j ψ

L′
j /J for some positive bounded function C(zj,vj) and this helps to derive the

consistency of the heteroskedasticity robust variance estimator later.

Next note that

∥∥ ˆ̃̂ϕLj − ϕ̃Lj
∥∥ ≤

∥∥ϕL(zj , v̂j) − ϕL(zj ,vj)
∥∥ +

∥∥ ˆ̄ϕL(zj) − ϕ̄L(zj)
∥∥ (52)

≤
∥∥ϕL(zj , v̂j) − ϕL(zj ,vj)

∥∥ +
∥∥ ˆ̄ϕL(zj) − ˙̄ϕL(zj)

∥∥ +
∥∥ ˙̄ϕL(zj) − ϕ̄L(zj)

∥∥ .
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We find
∥∥ϕL(zj , v̂j) − ϕL(zj ,vj)

∥∥ ≤ Cζ1(L)||Π̂j − Πj || applying a mean value expansion because

ϕl(zj ,vj) is Lipschitz in Πj for all l (Assumption C1 (vi)). Combined with (46), it implies that

∑J

j=1

∥∥ϕL(zj , v̂j) − ϕL(zj ,vj)
∥∥2
/J = Op(ζ1(L)2△2

J,1). (53)

Next let ω̂l = (ϕl(z1, v̂1) − ϕl(z1,v1), . . . , ϕl(zJ , v̂J) − ϕl(zJ ,vJ))
′. Then we can write

∑J

j=1

∥∥ ˆ̄ϕl(zj) − ˙̄ϕl(zj)
∥∥2
/J = tr

{∑J

j=1
ϕk(zj)

′(P′
P)−P

′ω̂lω̂
′
lP(P′

P)−ϕk(zj)
}
/J (54)

= tr



(P′

P)−P
′ω̂lω̂

′
lP(P′

P)−
J∑

j=1

ϕk(zj)ϕ
k(zj)

′



 /J

= tr
{
(P′

P)−P
′ω̂lω̂

′
lP

}
/J

≤ Cmax
j≤J

||Π̂j − Πj ||2tr
{
(P′

P)−P
′
P

}
/J ≤ Cζ0(k)

2△2
J,1k/J

where the first inequality is obtained by (47) and applying a mean value expansion to ϕl(zj ,vj)

which is Lipschitz in Πj for all l (Assumption C1 (vi)). From (46), (52), (53), and (54), we conclude

∑J

j=1
|| ˆ̄ϕL(zj) − ϕ̄L(zj)||2/J = Op(Lζ0(k)

2△2
J,1k/J) +Op(L△2

J,2) = op(1) (55)

and

∑J

j=1

∥∥ ˆ̂
ϕ̃Lj − ϕ̃Lj

∥∥2
/J = Op(ζ1(L)2△2

J,1) +Op(Lζ0(k)
2△2

J,1k/J) +Op(L△2
J,2) = op(1). (56)

This also implies that by the triangle inequality and the Markov inequality,

∑J

j=1
|| ˆ̂ϕ̃Lj ||2/J ≤ 2

J∑

j=1

|| ˆ̂ϕ̃Lj − ϕ̃Lj ||2/J + 2

J∑

j=1

||ϕ̃Lj ||2/J = op(1) +Op(L). (57)

Let

△ϕ
J = (ζ1(L) + L1/2ζ0(k)

√
k/J + L1/2)△J .

It also follows that

∑J

j=1

∥∥∥ ˆ̂
ψLj − ψLj

∥∥∥
2

/J ≤
∑J

j=1
(Cj ‖aL‖2 +C1j)

∥∥∥ ˆ̃̂ϕLj − ϕ̃Lj

∥∥∥
2
/J = Op(L(△ϕ

J )2) = op(1). (58)

Then applying (58) and applying the triangle inequality and Cauchy-Schwarz inequality and by

Assumption L1 (iii) , we obtain

|| ˆ̂T − Ṫ || ≤
∑J

j=1

∥∥∥ ˆ̂
ψLj − ψLj

∥∥∥
2

/J + 2
∑J

j=1

∥∥ψLj
∥∥

∥∥∥ ˆ̂
ψLj − ψLj

∥∥∥ /J (59)

≤ Op(L(△ϕ
J )2) + 2

(∑J

j=1

∥∥ψLj
∥∥2
/J

)1/2 (∑J

j=1

∥∥∥ ˆ̂
ψLj − ψLj

∥∥∥
2

/J

)1/2

= Op(L(△ϕ
J )2) +Op(L

1/2L1/2△ϕ
J ) = op(1).
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Therefore we conclude
ˆ̂
T is also nonsingular w.p.a.1.

Next let ϑ̂ = (θ̂′λ, ĉ, β̂
′, α̂, γ̂′, γ̂p, â′L)′ and ϑ0 = (θ′λ0, c0, β

′
0, α0, γ

′
0, γp0, a

′
L)′ where aL satisfies

Assumption L1 (iv). Because Ψ̂L
j depends on the estimates and we have shown the consistency

(implying ||ϑ̂ − ϑ0|| = op(1)), we derive the convergence rate by letting ||ϑ̂ − ϑ0|| = Op(J
−τ ) and

then obtain conditions that the convergence rate τ should satisfy later.

Note that we can write

∑J

j=1
||Ψ̂L

j − ˆ̂
ψLj ||2/J ≤

∑J

j=1
C1j

∥∥∥ϑ̂− ϑ0

∥∥∥
2
|| ˆ̃̂ϕLj ||2/J +

∑J

j=1
||Ψ̂θ̂λ,j

− Ψθλ0,j||2/J (60)

≤ 2
∑J

j=1
C1j

∥∥∥ϑ̂− ϑ0

∥∥∥
2 (

|| ˆ̂ϕ̃Lj − ϕ̃Lj ||2 + ||ϕ̃Lj ||2
)
/J + (61)

+2
∑J

j=1
||Ψ̂θ̂λ,j

− Ψθ̂λ,j
||2/J + 2

∑J

j=1
||Ψθ̂λ,j

− Ψθλ0,j||2/J

where the second term in (61) is op(1) by (51) and the last term is also op(1) by the Markov

inequality because
∂δ∗j (θλ,s,P )

∂θλ
is continuous in (θλ, s, P ) at (θλ0, s

0, P 0), ||∂δ
∗
j (θλ,s,P )

∂θλ
|| is bounded

in the neighborhood of (θλ0, s
0, P 0) (by Assumption C1 (vii)), and θ̂λ → θλ0. Then from (51),

||ϑ̂−ϑ0|| = Op(J
−τ ), (56), and

∑J
j=1C1j

∥∥∥ϕ̃Lj
∥∥∥

2
/J = Op(L) by the Markov inequality, we conclude

∑J

j=1
||Ψ̂L

j −
ˆ̂
ψLj ||2/J = O(

∑J

j=1
||Ψ̂L

θ,j−
ˆ̂
ψLθ,j||2/J+

J∑

j=1

||Ψ̂θ̂λ,j
−Ψθλ0,j||2/J) = Op(J

−2τL)+op(1).

(62)

Then (58) and (62) implies
∑J

j=1

∥∥∥Ψ̂L
j

∥∥∥
2
/J = Op(L)

because
∑J

j=1

∥∥∥Ψ̂L
j

∥∥∥
2
/J ≤ 3

∑J
j=1

∥∥∥Ψ̂L
j − ˆ̂

ψLj

∥∥∥
2

/J + 3
∑J

j=1

∥∥∥ ˆ̂
ψLj − ψLj

∥∥∥
2

/J + 3
∑J

j=1

∥∥∥ψLj
∥∥∥

2
/J =

Op(L). Also from (58) and (62) we conclude

||T̂ − ˆ̂
T || ≤

∑J

j=1
||Ψ̂L

j − ˆ̂
ψLj ||2/J + 2

∑J

j=1

(
|| ˆ̂ψLj − ψLj || + ||ψLj ||

)
||Ψ̂L

j − ˆ̂
ψLj ||/J (63)

≤
∑J

j=1
||Ψ̂L

j − ˆ̂
ψLj ||2/J

+C

(∑J

j=1

(
|| ˆ̂ψLj − ψLj ||2 + ||ψLj ||2

)
/J

)1/2 (∑J

j=1
||Ψ̂L

j − ˆ̂
ψLj ||2/J

)1/2

= Op(J
−2τL+ L1/2J−τL1/2) = Op(J

−τL).

Therefore under the rate condition J−τL → 0, by (59), (63), and Ṫ is nonsingular w.p.a.1, we

conclude T̂ is nonsingular w.p.a.1. The same conclusion holds even when we instead take T̂ =
∑J

j=1C(zj,vj)Ψ̂
L
j Ψ̂L′

j /J ,
ˆ̂
T =

∑J
j=1C(zj,vj)

ˆ̂
ψLj

ˆ̂
ψL′j /J , and Ṫ =

∑n
i=1 C(zj,vj)ψ

L
j ψ

L′
j /J for some

positive bounded function C(zj,vj) and this helps to derive the consistency of the heteroskedasticity

robust variance estimator later.

Let ς̃j = δ∗j (θλ0, s
n, PR) − g0(zj ,vj) and ςj = δ∗j (θλ0, s

0, P 0) − g0(zj ,vj) and let ς̃ = (ς̃j , . . . , ς̃j)
′
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and ς = (ςj , . . . , ςj)
′. Then by the intermediate value theorem we have

ς̃ − ς = H−1
δ (δ̄∗, θλ0, P

R)εn −H−1
δ (δ̃∗, θλ0, P

R)εR(θλ) (64)

for some intermediate δ̄∗ between δ∗j (θλ0, s
n, PR) and δ∗j (θλ0, s

0, PR) and for some intermediate δ̃∗

between δ∗j (θλ0, s
0, PR) and δ∗j (θλ0, s

0, P 0), respectively. Consider by the essentially same proof for

(A.9) in Berry, Linton, and Pakes (2004) we have for any positive sequence ǫJ → 0,

sup
(δ̄∗,P̄ )∈Nδ∗0 (θλ0,ǫJ)×NP0 (ǫJ )

|| 1√
J

(Ψ̂L,J − ψL,J)′{H−1
δ (δ̄∗, θλ0, P̄ ) −H−1

δ (δ∗0, θλ0, P
0)}εn||

= op(J
−τL1/2 + L1/2(△ϕ

J )) = op(1)

by the stochastic equicontinuity Assumption N4. Similarly we have for any positive sequence ǫJ → 0,

sup
(δ̃∗,P̃ )∈Nδ∗0 (θλ0,ǫJ)×NP0(ǫJ )

|| 1√
J

(Ψ̂L,J − ψL,J)′{H−1
δ (δ̃∗, θλ0, P̃ ) −H−1

δ (δ∗0, θλ0, P
0)}εR(θλ0)||

= op(J
−τL1/2 + L1/2(△ϕ

J )) = op(1)

by the stochastic equicontinuity Assumption N4.

Let (Z,V) = ((Z1,V1), . . . , (ZJ ,VJ)). Then we have E[ςj |Z,V] = 0 and by the independence

assumption of the observations given (Z,V), we have E[ςjςj′ |Z,V] = 0 for j 6= j′. We also have

E[ς2j |Z,V] <∞. Then by (64), (58), (62), and the triangle inequality, under J−τL→ 0 we obtain

E
[
||(Ψ̂L,J − ψL,J)′ς̃/J ||2|Z,V

]

≤ C1J
−2

∑J

j=1
E[ς2j |Z,V]||Ψ̂L

j − ψLj ||2

+C2J
−2tr{(Ψ̂L,J − ψL,J)′E[(ς̃ − ς)(ς̃ − ς)′|Z,V](Ψ̂L,J − ψL,J)}

≤ J−1Op(J
−2ιL+ L(△ϕ

n)2)

+C2n
−1J−2tr{(Ψ̂L,J − ψL,J)′H−1(δ̄∗, θλ0, P

R)nE∗[εnεn′]H−1(δ̄∗, θλ0, P
R)′(Ψ̂L,J − ψL,J)}

+C2R
−1J−2tr{(Ψ̂L,J − ψL,J)′H−1(δ̃∗, θλ0, P

R)RE∗[εRεR′]H−1(δ̃∗, θλ, P
R)′(Ψ̂L,J − ψL,J)}

≤ J−1Op(J
−2ιL+ L(△ϕ

n)2) + C2
1

J

[
1

nJ
tr{(Ψ̂L,J − ψL,J)′H−1

δ0 V2H
−1′
δ0 (Ψ̂L,J − ψL,J)}

]

+C2
1

J

[
1

RJ
tr{(Ψ̂L,J − ψL,J)′H−1

δ0 V3H
−1′
δ0 (Ψ̂L,J − ψL,J)}

]

≤ J−1Op(J
−2τL+ L(△ϕ

J )2) +Op(J
−1)

where the bounds for the last two terms in the last inequality are obtained by the essentially same

proofs for (38) and (39) in Berry, Linton, and Pakes (2004) for the random coefficient logit models

(also for the logit without random coefficients) assuming J2

n and J2

R are bounded. Then from the

standard result (see Newey (1997) or Newey, Powell, and Vella (1999)) that the bound of a term

in the conditional mean implies the bound of the term itself, we obtain ||(Ψ̂L,J − ψL,J)′ς̃/J ||2 =

Op(J
−1). Also note that E[

∥∥(ψL,J )′ς/J
∥∥2

] = CL/J by the essentially same proof of Lemma A1 in

Newey, Powell, and Vella (1999)) and that E[
∥∥(ψL,J )′(ς̃ − ς)/J

∥∥2
] = CL/J by the similar proof as

above.
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Therefore, by the triangle inequality

||(Ψ̂L,J)′ς̃/J ||2 ≤ 2||(Ψ̂L,J − ψL,J )′ς̃/J ||2 + 2||(ψL,J )′ς̃/J ||2 (65)

≤ 2||(Ψ̂L,J − ψL,J )′ς̃/J ||2 + 4||(ψL,J )′ς/J ||2 +
∥∥(ψL,J )′(ς̃ − ς)/J

∥∥2

= Op(J
−1) +Op(L/J) = Op(L/J).

Define

ˆ̂
ĝj = ĉ+ x′j β̂ − α̂pj + (1 + x′j γ̂ + γ̂p(ȳ − pj))f̂(zj , v̂j),

ˆ̂gLj = c0 + x′jβ0 − α0pj + (1 + x′jγ0 + γ̂p0(ȳ − pj))f̂L(zj , v̂j),

g̃Lj = c0 + x′jβ0 − α0pj + (1 + x′jγ0 + γ̂p0(ȳ − pj))fL(zj , v̂j),

g̃0j = c0 + x′jβ0 − α0pj + (1 + x′jγ0 + γ̂p0(ȳ − pj))fL(zj ,vj),

where f̂(zj , v̂j) = â′L ˆ̃ϕ(zj , v̂j), f̂L(zj , v̂j) = a′L ˆ̃ϕ(zj , v̂j), fL(zj ,vj) = a′Lϕ̃(zj ,vj), fL(zj , v̂j) =

a′L(ϕ(zj , v̂j)− ϕ̄L(zj)), and let
ˆ̂
ĝ, ˆ̂gL, g̃L, g̃0, and g0 stack the J observations of

ˆ̂
ĝj , ˆ̂gLj , g̃Lj , g̃0j , and

g0j , respectively.

Then from the first order condition of the sieve M-estimation,25 we obtain

op(1) =

J∑

j=1

Ψ̂L
j (Ê[δ∗j (θ̂λ, s

n, PR)|zj , v̂j ] − ˆ̂
ĝj)/J (66)

= Ψ̂L,J ′(δ∗(θ̂λ, s
n, PR) − ˆ̂

ĝ)/J +
J∑

j=1

Ψ̂L
j {Ê[δ∗j (θ̂λ, s

n, PR)|zj , v̂j ] − δ∗j (θ̂λ, s
n, PR)}/J

= Ψ̂L,J ′(ς̃ + (δ∗(θ̂λ, s
n, PR) − δ∗(θλ0, s

n, PR)) − (
ˆ̂
ĝ − ˆ̂gL) − (ˆ̂gL − gL) − (gL − g0))/J + op(1)

= Ψ̂L,J ′(ς̃ − Ψ̂L,J(ϑ̂− ϑ0) − (Ψ̃L,J − Ψ̂L,J)(ϑ̂ − ϑ0))

−Ψ̂L,J ′((ˆ̂gL − g̃L) − (g̃L − g̃0) − (g̃0 − g0))/J + op(1).

Above in the third equality we note for each element Ψ̂L,l
j of Ψ̂L

j , l = 1, 2, . . . ,dim(Ψ̂L
j )

J∑

j=1

Ψ̂L,l
j {Ê[δ∗j (θ̂λ, s

n, PR)|zj , v̂j ] − δ∗j (θ̂λ, s
n, PR)}/J

=

J∑

j=1

{Ê[Ψ̂L,l
j |zj , v̂j ] − Ψ̂L,l

j }δ∗j (θ̂λ, sn, PR)/J = op(1)

because each element in Ê[Ψ̂L
j |zj , v̂j ]− Ψ̂L

j is either zero or arbitrarily close to zero (this is because

Ê[Ψ̂L
j |zj , v̂j ] is a projection of Ψ̂L

j on the space in which Ψ̂L
j lies) and δ∗j (θ̂λ, s

n, PR) is uniformly

bounded. In the last equality of (66) we applied a mean value expansion to −(δ∗(θ̂λ, sn, PR) −
δ∗(θλ0, s

n, PR)) + (
ˆ̂
ĝ − ˆ̂gL) such that Ψ̃L,J = (Ψ̃L

1 , . . . , Ψ̃
L
J )′ is defined as

Ψ̃L
j = −(−Ψ̂′

θ̃λ,j
, 1, x′j ,−pj, x′j ã′L ˆ̃ϕL(zj , v̂j), (ȳ − pj)ã

′
L

ˆ̃ϕL(zj , v̂j), (1 + x′j γ̃ + (ȳ − pj)γ̃p) ˆ̃ϕL(zj , v̂j)
′)′

25Take the minimization error (tolerance) of estimation arbitrary small to justify this asymptotic expansion.
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and (θ̃λ, θ̃, ãL) lies between (θλ0, θ0, aL) and (θ̂λ, θ̂, âL).

Next note that (similarly to (60))

||Ψ̃L,J − Ψ̂L,J ||2/J ≤ ||ϑ̂− ϑ̃0||2(
J∑

j=1

Cj || ˆ̃̂ϕLj ||2/J +

J∑

j=1

C||
∂Ψ̂θ̃λ,j

∂θλ
||2/J) = Op(LJ

−2τ ).

It follows that by Ψ̂L,J(Ψ̂L,J ′Ψ̂L,J)−1Ψ̂L,J ′ idempotent, the triangle inequality, and the Cauchy-

Schwarz inequality

||T̂ −1Ψ̂L,J ′(Ψ̃L,J − Ψ̂L,J)(ϑ̂ − ϑ0)/J || (67)

= {(ϑ̂ − ϑ0)
′(Ψ̃L,J − Ψ̂L,J)′Ψ̂L,J(Ψ̂L,J ′Ψ̂L,J)−1Ψ̂L,J ′(Ψ̃L,J − Ψ̂L,J)(ϑ̂ − ϑ0)/J}1/2

≤ Op(1)||ϑ̂ − ϑ0||(
∑J

j=1
||Ψ̃L

j − Ψ̂L
j ||2/J)1/2

= Op(J
−τL1/2J−τ ) = Op(L

1/2J−2τ ).

Similarly by Ψ̂L,J(Ψ̂L,J ′Ψ̂L,J)−1Ψ̂L,J ′ idempotent and Assumption L1 (iv),

||T̂ −1Ψ̂L,J ′(g̃L − g̃0)/J || = Op(1){(g̃L − g̃0)
′(g̃L − g̃0)/J}1/2 = Op(L

−̺). (68)

Next note that by Ψ̂L,J(Ψ̂L,J ′Ψ̂L,J)−1Ψ̂L,J ′ idempotent, the Cauchy-Schwarz inequality and (55),

||T̂ −1Ψ̂L,J ′(ˆ̂gL − g̃L)/J || = Op(1){(ˆ̂gL − g̃L)′(ˆ̂gL − g̃L)/J}1/2 (69)

≤ Op(1)(

J∑

j=1

Cj ||f̂(zj , v̂j) − fL(zj , v̂j)||2/J)1/2

≤ Op(1)(

J∑

j=1

||aL||2|| ˆ̄ϕL(zj) − ϕ̄L(zj)||2/J)1/2 = Op(Lζ0(k)△J,1

√
k/J + L△J,2).

Next consider applying the Cauchy-Schwarz inequality and a mean value expansion we obtain

||Ψ̂L,J ′(δ∗(θ̂λ, s
n, PR)−δ∗(θλ0, s

n, PR))||/J ≤ ||Ψ̂L,J ∂δ
∗(θ̃λ, sn, PR)

∂θλ
/J ||·||θ̂λ−θλ0|| ≤ CLJ−τ (70)

where θ̃λ is an intermediate value between θ̂λ and θλ0.

Combining (65), (66), (67), (68), (69), (70), and by T̂ is nonsingular w.p.a.1, we obtain

||ϑ̂ − ϑ0|| ≤ ||T̂ −1(Ψ̂L,J)′ς̃/J || + ||T̂ −1(Ψ̂L,J)′(ˆ̂ĝL − ˆ̂gL)/J ||
+||T̂ −1(Ψ̂L,J)′(ˆ̂gL − gL)/J || + ||T̂ −1(Ψ̂L,J)′(gL − g0)/J || + op(1)

= Op(1){
√
L/J + L1/2J−2ι + Lζ0(k)△J,1

√
k/J + L△J,2 + L−̺}.

This implies ||ϑ̂ − ϑ0|| = Op(
√
L/J + Lζ0(k)△J,1

√
k/J + L△J,2 + L−̺) and for (63) to be op(1),

the convergence rate should satisfy

L ·Op(
√
L/J + Lζ0(k)△J,1

√
k/J + L△J,2 + L−̺) → 0 (71)

56



for consistency. Combining (59) and (71) (other order conditions are dominated by these two

conditions), we obtain the rate condition for the consistency:

(Lζ1(L) + L3/2ζ0(k)
√
k/J + L3/2)△J → 0

√
L3/J + L2ζ0(k)△J,1

√
k/J + L2△J,2 + L1−̺ → 0

and we conclude

||ϑ̂− ϑ0|| = Op(△J,ϑ) ≡ Op(
√
L/J + L△J + L−̺)

since ζ0(k)
√
k/J = o(1). From (63), we also find that T̂ becomes nonsingular w.p.a.1 under

△T ≡ L△J,ϑ → 0.

Applying the triangle inequality, by (55), the Markov inequality, Assumption L1 (iv), and∑J
j=1(ϕ

L(zj ,vj) − ˆ̄ϕL(zj))(ϕ
L(zj ,vj) − ˆ̄ϕL(zj))

′/J is nonsingular w.p.a.1 (by Assumption L1 (ii)

and (55)), we find

∑J

j=1

(
f̂(zi,vj) − f0(zj ,vj)

)2
/J (72)

≤ 3
∑J

j=1

(
f̂(zj ,vj) − f∗Lj

)2
/J + 3

∑J

j=1

(
f∗Lj − fLj

)2
/J + 3

∑J

j=1
(fLj − f0(zj ,vj))

2 /J

≤ Op(1)||âL − aL||2

+C1

∑J

j=1
||aL||2| ˆ̄ϕL(zj) − ϕ̄L(zj)||2/J +C2 sup

W
||a′Lϕ̃L(z,v) − f0(z,v)||2

≤ Op(△2
J,ϑ) + LOp(Lζ0(k)

2△2
J,1k/J + L△2

J,2) +Op(L
−2̺) = Op(△2

J,ϑ)

where we let f∗L(zj ,vj) = a′L(ϕL(zj ,vj)− ˆ̄ϕL(zj)), f
∗
Lj = f∗L(zj ,vj), and fLj = fL(zj ,vj). This also

implies that ||ˆ̂ĝ − g0||2/J = Op(△2
J,ϑ) and

max
1≤j≤J

|ˆ̂ĝj − g0j | = Op(△g) ≡ Op(ζ0(L)△J,ϑ) (73)

by a similar proof to Theorem 1 of Newey (1997).

C.2 Proof of Theorem C1

Under Condition S and Assumptions 3-6, 9-10, 13-15 and Assumptions C1, all the conditions for

the consistency are satisfied. We take the pseudo-metrics as the uniform norm || · ||s = || · ||∞ and

|| · ||F = || · ||∞. We can therefore conclude that (θ̂, θ̂λ) and f̂ are consistent from the consistency

theorem. Under Assumptions C1, all the assumptions in Assumption L1 are satisfied (we take

̺1 = sΠ/dim(z), ̺2 = sϕ/dim(z), and ̺δ = sδ/dim(z,v)). For the consistency, we require the

following rate conditions be satisfied: (i) ζ0(k)
2k/J → 0 (such that P

′
P/J is nonsingular w.p.a.1),

(ii) ζ0(L)2L/J → 0 (such that Ṫ is nonsingular w.p.a.1) and (iii)

L△ϕ
J = (Lζ1(L) + L3/2ζ0(k)

√
k/J + L3/2)△J → 0

L△J,ϑ =
√
L3/J + L2ζ0(k)△J,1

√
k/J + L2△J,2 + L1−̺ → 0.
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The other rate conditions are dominated by these three. For the polynomial approximations, we

have ζι(L) ≤ CL1+2ι and ζ0(k) ≤ Ck and for the spline approximations, we have ζι(L) ≤ CL0.5+ι

and ζ0(k) ≤ Ck0.5. Therefore for the polynomial approximations, the rate condition (iii) becomes√
L3/J+△J(L

4 +L2k3/2/
√
J)+L1−̺ → 0 and for the spline approximations, it becomes

√
L3/J+

△J(L
5/2 + L2k/

√
J) + L1−̺ → 0. We can take ̺ = sf/dim(z,v) because f0 is assumed to be in

the Hölder class and we can apply the approximation theorems (e.g., see Timan (1963), Schumaker

(1981), Newey (1997), and Chen (2007)). Therefore, the conclusion of Theorem C1 follows from

Lemma L1 applying the dominated convergence theorem by
ˆ̂
ĝ and g0 are bounded.

D Asymptotic Normality (Proof of Theorem AN1 and AN2 )

D.1 Rate conditions

Along the proof, we obtain a list of rate conditions from bounding terms. We collect them here.

We take ̺ = sf/dim(z,v), ̺1 = sΠ/dim(z), and ̺2 = sϕ/dim(z). Define

△ϕ
J = (ζ1(L) + L1/2ζ0(k)

√
k/J + L1/2)△J , △J,ϑ =

√
L/J + L△J + L−̺

△T = L△J,ϑ, △T1 = ζ0(k)
√
k/J

△H = ζ0(L)k1/2/
√
J + k1/2L1/2△ϕ

J + L−̺ζ0(L)k1/2, △dΨ = L1/2△2
J,ϑ

△dϕ̄ = ζ0(L)L△J,2, △g = ζ0(L)△J,ϑ, △Σ = ∆T + ζ0(L)2L/J

△Ĥ = (ζ1(L)△J,ϑ + ζ0(k)△J,1)L
1/2ζ0(k), △ω = J−1(ζ0(L)2L+ ζ0(k)

2k + ζ0(k)
2kL4).

Then for the
√
J-consistency and the consistency of the variance estimator we require

√
Jk1/2L−̺ →

0,
√
Jk−̺1 → 0,

√
Jk−̺2 → 0 and

√
J△dΨ → 0, k1/2(△T1 + △H + △T ) → 0, △ω → 0, L1/2△J,ϑ → 0

k1/2(△T1 + △H) + L1/2△T + △dϕ̄ → 0, △g → 0, L1/2△J,ϑ → 0, △Σ → 0, △Ĥ → 0.

For the polynomial approximations, the rate conditions become (dropping the dominated terms)

(1)
√
J△dΨ =

√
JL1/2△2

J,ϑ = L3/2/
√
J +

√
JL5/2△2

J +
√
JL1/2−2̺

(2) k1/2(△T1 + △H) + L1/2△T + △dϕ̄

= (k2 + Lk + L2)/
√
J + (kL1/2 + L2)△ϕ

J + L−̺(ζ0(L)k + L3/2) + ζ0(L)L△J

=
k2

√
J

+ (kL7/2 + L5 +
Lk5/2 + L5/2k3/2

√
J

)△J + L−̺(Lk + L3/2) → 0

(3) △Ĥ = (L7/2k△J,ϑ + L1/2k2△J,1) → 0.

Assuming L−̺, k−̺1 , and k−̺2 are small enough, these are all satisfied when L5k1/2+L9/2k3/2√
J

→ 0.

For the spline approximations, the rate conditions (dropping the dominated terms) become

(1)
√
J△dΨ = L3/2/

√
J +

√
JL5/2△2

J +
√
JL1/2−2̺ → 0

(2) k1/2(△T1 + △H) + L1/2△T + △dϕ̄ = (kL2 + L7/2 + Lk2+L5/2k√
J

)△J + L−̺(L1/2k + L3/2) → 0

(3) △Ĥ = (L2k1/2△J,ϑ + L1/2k△J,1) → 0.
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Assume L−̺, k−̺1 , and k−̺2 small enough. Then these are all satisfied if L7/2k1/2+L3k+L2k3/2√
J

→ 0.

D.2 Asymptotic variance terms

Let ϕkj = ϕk(Zj) and ΨL
0j = (Ψ′

θλ0,j
,−ΨL′

θ0,j)
′ where Ψθλ0,j = E[

∂δ∗j (θλ0,s
0,P 0)

∂θλ
|zj ,vj ] and ΨL

θ0,j =

(1, xj ,−pj, xjf0(zj ,vj), (ȳ − pj)f0(zj ,vj),
∂g0j

∂f0
ϕ̃L(zj ,vj)

′)′. Also let ς0j = ςj(θλ0). Then define the

followings:

ΣJ =
∑J

j=1
E[ΨL

0jΨ
L′
0jvar(ς0j |Zj ,Vj)]/J,T J =

J∑

j=1

E[ΨL
0jΨ

L′
0j]/J,T J

1 =
J∑

j=1

E[ϕkjϕ
k′
j ]/J, (74)

ΣJ
1 =

∑J

j=1
E[V 2

j ϕ
k
jϕ

k′
j ]/J,ΣJ

2,l =
∑J

j=1
E[(ϕl(Zj,Vj) − ϕ̄l(Zj))

2ϕkjϕ
k′
j ]/J,

HJ
11 =

∑J

j=1
E[
∂g0j
∂f0

∂f0j

∂Vj
ΨL

0jϕ
k′
j ]/J, H̄J

11 =
J∑

j=1

∂g0j
∂f0

∂f0j

∂vj
Ψ̂L
j ϕ

k′
j /J

HJ
12 =

∑J

j=1
E[
∂g0j
∂f0

E[
∂f0j

∂Vj
|Zj]ΨL

0jϕ
k′
j ]/J, H̄J

12 =

J∑

j=1

∂g0j
∂f0

E[
∂f0j

∂Vj
|Zj ]Ψ̂L

j ϕ
k′
j /J

HJ
2,l =

∑J

j=1
E[al

∂g0j
∂f0

ΨL
0jϕ

k′
j ]/J, H̄J

2,l =

J∑

j=1

al
∂g0j
∂f0

Ψ̂L
j ϕ

k′
j /J,H

J
1 = HJ

11 −HJ
12, H̄

J
1 = H̄J

11 − H̄J
12

Ω̄J = A(T J)−1[ΣJ +HJ
1 (T J

1 )−1ΣJ
1 (T J

1 )−1HJ ′
1 +

L∑

l=1

HJ
2,l(T J

1 )−1ΣJ
2,l(T J

1 )−1HJ ′
2,l](T J)−1A′

Ω̄J
2 =

1

nJ
A(T J)−1(ΨL,J

0
′H−1

δ0 V2H
−1′
δ0 ΨL,J

0 )(T J)−1A′

Ω̄J
3 =

1

RJ
A(T J)−1(ΨL,J

0
′H−1

δ0 V3H
−1′
δ0 ΨL,J

0 )(T J)−1A′.

Here we note AJ = (
∑J

j=1E[r0jr
′
0j ]/J)−1

∑J
j=1E[r0jΨ

L′
0j]/J and AJ = A where A = limJ→∞AJ ,

so we do not distinguish A and AJ to save notation. We also often write C → 0 to denote

||C|| → 0 for a sequence of matrix C. Below we show that Ω̄J + Ω̄J
2 + Ω̄J

3 → Ω + Ω2 + Ω3 as

J, k, L→ ∞ and in Section D.4 we show Ω̂− Ω̄J →p 0, Ω̂2 − Ω̄J
2 →p 0, Ω̂3 − Ω̄J

3 →p 0 and therefore

Ω̂ + Ω̂2 + Ω̂3 →p Ω + Ω2 + Ω3. We let T J
1 = I without loss of generality for ease of notation. Then

Ω̄J = A(T J)−1
[
ΣJ +HJ

1 ΣJ
1H

J ′
1 +

∑L
l=1H

J
2,lΣ

J
2,lH

J ′
2,l

]
(T J)−1A′. Let ΓJ be a symmetric square root

of (Ω̄J+Ω̄J
2 +Ω̄J

3 )−1. Because T J is nonsingular for all J large enough and var(ς0j |Zj ,Vj) is bounded

away from zero for all j, CΣJ − I is positive semidefinite for some positive constant C for all J

large enough. It follows that

||ΓJA(T J)−1|| = {tr(ΓJA(T J)−1(T J)−1A′ΓJ ′)}1/2 ≤ C{tr(ΓJA(T J)−1ΣJ(T J)−1A′ΓJ ′)}1/2

≤ {tr(CΓJ(Ω̄J + Ω̄J
2 + Ω̄J

3 )ΓJ ′)}1/2 ≤ C

and therefore ||ΓJA(T J)−1|| is bounded. Now we show that Ω̄J → Ω as J, k, L → ∞. Note

A = (
∑J

j=1E[r0jr
′
0j ]/J)−1

∑J
j=1E[r0jΨ

L′
0j]/J and ω∗J

j = (
∑J

j=1E[r0jr
′
0j ]/J)−1r0j . Let ω∗

Lj =
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A(T J)−1ΨL
0j. Then note

J∑

j=1

E[||ω∗J
j − ω∗

Lj||2]/J → 0 (75)

because (i) we can view r̃0j ≡ (
∑J

j=1E[r0jΨ
L′
0j]/J)(T J

)−1ΨL
0j is a projection of r0j on ΨL

0j and (ii)

r0j is smooth and the second moment of r0j is bounded (Assumption N1 (i)). It follows that

J∑

j=1

{E[ω∗
Ljvar(ςj |Zj ,Vj)ω

∗′
Lj] − E[ω∗J

j var(ς0j |Zj ,Vj)ω
∗J ′
j ]}/J

=
J∑

j=1

{A(T J
)−1E[ΨL

0jvar(ς0j |Zj ,Vj)Ψ
L′
0j ](T

J
)−1A′ − E[ω∗J

j var(ς0j |Zj ,Vj)ω
∗J ′
j ]}/J → 0.

This concludes that A(T J)−1ΣJ(T J)−1A′−∑J
j=1E[ω∗J

j var(ς0j |Zj ,Vj)ω
∗J
j

′]/J → 0 as J, k, L→ ∞
where the limit of the latter is the first term in Ω.

Next let

bLj′ =
1

J

J∑

j=1

E

[
ω∗
Lj

∂g0j
∂f0

(
∂f0j

∂Vj
− E[

∂f0j

∂Vj
|Zj ]

)
ϕk′j

]
ϕkj′

and bj′ = 1
J

∑J
j=1E

[
ω∗
j
∂g0j

∂f0

(
∂f0j

∂Vj
− E[

∂f0j

∂Vj
|Zj ]

)
ϕk′j

]
ϕkj′ . Note that because (T J

1 )−1 = I, bLj

and bj are least squares mean projections respectively of ω∗
Lj

∂g0j

∂f0

(
∂f0j

∂Vj
− E[

∂f0j

∂Vj
|Zj ]

)
on ϕkj and

ω∗J
j

∂g0j

∂f0

(
∂f0j

∂Vj
− E[

∂f0j

∂Vj
|Zj]

)
on ϕkj . Then 1

J

∑J
j=1E[||bLj − bj||2] ≤ 1

J

∑J
j=1CE[||ω∗

Lj − ω∗J
j ||2] → 0

because the mean square error of a least squares projection cannot be larger than the MSE of the

variable being projected. Also note that 1
J

∑J
j=1E[||ρv(Zj)− bj ||2] → 0 as J, k → ∞ because bj is a

least squares projection of ω∗J
j

∂g0j

∂f0

(
∂f0j

∂Vj
− E

[
∂f0j

∂Vj
|Zj

])
on ϕkj and it converges to the conditional

mean as k → ∞. Finally note that

E[bLjvar(Vj |Zj)b′Lj ]

= A(T J)−1
J∑

j=1

1

J
E

[
ΨL

0j

∂g0j
∂f0

(
∂f0j

∂Vj
− E

[
∂f0j

∂Vj
|Zj

])
ϕk′j

]
E[var(Vj |Zj)ϕkjϕk′j ]

×
J∑

j=1

1

J
E

[
ϕkj
∂g0j
∂f0

(
∂f0j

∂Vj
− E

[
∂f0j

∂Vj
|Zj

])
ΨL′

0j

]
(T J)−1A′

and therefore
∑J

j=1E[bLjvar(Vj |Zj)b′Lj ]/J −A(T J)−1HJ
1 ΣJ

1H
J ′
1 (T J)−1A′ → 0. This also conclude

that

A(T J)−1HJ
1 ΣJ

1H
J ′
1 (T J)−1A′ −

J∑

j=1

E[ρv(Zj)var(pj|Zj)ρv(Zj)′]/J → 0

as J, k, L → ∞ where the limit of the latter is the second term in Ω. Similarly we can show that

60



for all l as J, k, L→ ∞

A(T J)−1HJ
2,lΣ

J
2,lH

J ′
2,l(T J)−1A′ −

J∑

j=1

E[ρϕ̄l
(Zj)var(ϕl(Zj ,Vj)|Zj)ρϕ̄l

(Zj)
′]/J → 0

where the limit of the latter is the third term in Ω. Therefore we conclude Ω̄J → Ω as J, k, L→ ∞.

Next we show Ω̄J
2 → Ω2 and Ω̄J

3 → Ω3 as J, k, L→ ∞. Remember that V2 = nE[εnεn′] and V3 =

RE[εR(θλ0)ε
R(θλ0)

′]. Note that ω∗J
j = (ΞJ)−1r0j and ω∗

Lj = A(T J)−1ΨL
0j. Let ω∗JJ ′ = (ω∗

1 , . . . , ω
∗
J)

and ω∗J ′
L = (ω∗

L1, . . . , ω
∗
LJ). Then from (75)

1

J
E[ω∗J

L H−1
δ0 V2H

−1′
δ0 ω∗J ′

L ] − 1

J
E[ω∗JJH−1

δ0 V2H
−1′
δ0 ω∗JJ ′] (76)

=
1

J
A(T J)−1E[ΨL,J

0 H−1
δ0 V2H

−1′
δ0 ΨL,J ′

0 ](T J)−1A′ − 1

J
E[ω∗JJH−1

δ0 V2H
−1′
δ0 ω∗JJ ′] → 0

and we find by definition of ω∗JJ and Assumption N3,

1

J
E[ω∗JJH−1

δ0 V2H
−1′
δ0 ω∗JJ ′] − (ΞJ)−1Φ2(Ξ

J)−1′ → 0. (77)

This concludes Ω̄J
2 → Ω2 as J, k, L→ ∞. By similar argument we conclude Ω̄J

3 → Ω3 as J, k, L→ ∞.

We therefore conclude Ω̄J + Ω̄J
2 + Ω̄J

3 → Ω + Ω2 + Ω3 as J, k, L → ∞. This also implies that

ΓJ → (Ω + Ω2 + Ω3)
−1/2 and ΓJ is bounded for all J large enough.

D.3 Influence functions and asymptotic normality

Next we derive the asymptotic normality of
√
J((θ̂′λ, θ̂

′)− (θ′λ0, θ
′
0))

′. After we establish the asymp-

totic normality, we will show the convergence of the each term in (26) and (32) to the corresponding

terms in (74). We show some of them first, which will be useful to derive the asymptotic normality.

From the proofs in the convergence rate section, we obtain ||T̂ − T J || = Op(△T ) = op(1) (see

(63)-(71)) and obtain ||T̂1 −T J
1 || = Op(△T1) = op(1) . We also have ||ΓJA(T̂ −1 − (T J)−1)|| = op(1)

and ||ΓJAT̂ −1/2||2 = Op(1) (see proof in Lemma A1 of Newey, Powell, and Vella (1999)). We

next show ||H̄J
11 −HJ

11|| = op(1). Let HJ
11L =

∑J
j=1E[

∂g0j

∂f0

∑L
l=1 al

∂ϕl(Zj ,Vj)
∂Vj

ΨL
0jϕ

k′
j ]/J and H̄J

11L =
∑J

j=1
∂g0j

∂f0

∑L
l=1 al

∂ϕl(Zj ,Vj)
∂Vj

ΨL
0jϕ

k′
j /J . Similarly define HJ

12L and H̄J
12L and let HJ

1L = HJ
11L−HJ

12L.

By Assumption N1 (ii), Assumption L1 (iii), and the Cauchy-Schwarz inequality,

||HJ
1 −HJ

1L||2

≤ C
1

J

J∑

j=1

{E[||∂g0j
∂f0

{(∂f0j

∂Vj
− E[

∂f0j

∂Vj
|Zj ]) −

∑

l

al(
∂ϕl(Zj,Vj)

∂Vj
− E[

∂ϕl(Zj ,Vj)

∂Vj
|Zj ])}ΨL

0jϕ
k′
j ||2]}

≤ CL−2̺E[Cj ||ΨL
0j ||2

k∑

i=1

ϕ2
ij ] = O(L−2̺ζ0(L)2k).
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Next consider that by Assumption L1 (iii) and the Cauchy-Schwarz inequality,

E[
√
J ||H̄J

11L −HJ
11L||] ≤ C


 1

J

J∑

j=1

E[(
∂g0j
∂f0

L∑

l=1

al
∂ϕl(Zj,Vj)

∂Vj
)2||ΨL

0j ||2
k∑

i=1

ϕ2
ij ]


 1/2 ≤ Cζ0(L)k1/2

and that by a similar argument with (58) and (62) (applying a triangle inequality), the Cauchy-

Schwarz inequality, and the Markov inequality,

∥∥H̄J
11 − H̄J

11L

∥∥ ≤ CJ−1
∑J

j=1
|∂g0j
∂f0

L∑

l=1

al
∂ϕl(Zj ,Vj)

∂Vj
| · ||Ψ̂L

j − ΨL
0j|| · ||ϕkj ||

≤ C

(∑J

j=1
Cj||Ψ̂L

j − ΨL
0j||2/J

)1/2

·
(∑J

j=1
||ϕkj ||2/J

)1/2

≤ Op(k
1/2L1/2△ϕ

J ).

Therefore, we have ||H̄J
11 −HJ

11|| = Op(ζ0(L)k1/2/
√
J + k1/2L1/2△ϕ

J + L−αζ0(L)
√
k) = Op(△H) =

op(1). Similarly we can show that ||H̄J
12−HJ

12|| = op(1) and ||H̄J
2,l−HJ

2,l|| = op(1) for all l. Therefore

we have H̄J
1 = H1 + op(1) and H̄J

2,l = H2,l + op(1) for all l.

Now we derive the asymptotic expansion to obtain the influence functions. Recall definitions of
ˆ̂
ĝj , ˆ̂gLj , and gLj and further define

ĝLj = c0 + x′jβ10 − α0pj + (1 + x′jγ0 + (ȳ − pj)γp0)f̃L(zj , v̂j),

gLj = c0 + x′jβ10 − α0pj + (1 + x′jγ0 + (ȳ − pj)γp0)fL(zj ,vj),

where f̃L(zj , v̂j) = a′L(ϕL(zj , v̂j) − E[ϕL(Zj , V̂j)|zj ]) and again let
ˆ̂
ĝ, ˆ̂gL, ĝL, and gL stack the J

observations of
ˆ̂
ĝ, ˆ̂gL, ĝL, and gL, respectively.

From the first order condition, we obtain the expansion26 similarly to (66).

op(1) = Ψ̂L,J ′(δ∗(θ̂λ, s
n, PR) − ˆ̂

ĝ)/
√
J (78)

= Ψ̂L,J ′{ς̃ + (δ∗(θ̂λ, s
n, PR) − δ∗(θλ0, s

n, PR)) − (
ˆ̂
ĝ − ˆ̂gL)}/

√
J

−Ψ̂L,J ′{(ˆ̂gL − ĝL) − (ĝL − gL) − (gL − g0)}/
√
J (79)

= Ψ̂L,J ′{ς̃ − Ψ̂L,J(ϑ̂− ϑ0) − (Ψ̃L,J − Ψ̂L,J)(ϑ̂ − ϑ0)}/
√
J

−Ψ̂L,J ′{(ˆ̂gL − ĝL) − (ĝL − gL) − (gL − g0)}/
√
J.

First consider that similar to (67), by Ψ̂L,J(Ψ̂L,J ′Ψ̂L,J)−1Ψ̂L,J ′ idempotent, the triangle inequality,

the Markov inequality, Cauchy-Schwarz inequality,

||T̂ −1Ψ̂L,J ′(Ψ̃L,J − Ψ̂L,J)(ϑ̂ − ϑ0)/
√
J || (80)

≤ Op(1)(
√
JL1/2△2

J,ϑ) = Op(
√
J△dΨ) = op(1).

Next similar to (68) by Ψ̂L,J(Ψ̂L,J ′Ψ̂L,J)−1Ψ̂L,J ′ idempotent and Assumption L1 (iii),

||T̂ −1Ψ̂L,J ′(gL − g0)/
√
J || = Op(

√
JL−̺) (81)

26Take the minimization error (tolerance) in estimation arbitrary small to justify this asymptotic expansion.
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From (78), (80), and (81), we have

√
JΓJ((θ̂′λ, θ̂

′)′−(θ′λ0, θ
′
0)

′) =
√
JΓJA(ϑ̂−ϑ0) = ΓJAT̂ −1Ψ̂L,J ′(ς̃−(ˆ̂gL− ĝL)−(ĝL−gL))/

√
J+op(1).

(82)

D.3.1 Influence function for the first stage

Now we derive the stochastic expansion of ΓJAT̂ −1Ψ̂L,J ′(ĝL−gL)/
√
J . Note that by a second order

mean-value expansion of each f̃Lj around vj ,

ΓJAT̂ −1
∑J

j=1
Ψ̂L
j (ĝLj − gLj)/

√
J = ΓJAT̂ −1

∑J

j=1

∂gLj
∂fL

Ψ̂L
j (f̃Lj − fLj)/

√
J

= ΓJAT̂ −1
∑J

j=1

∂gLj
∂fL

Ψ̂L
j (
dfLj
dvj

− E[
dfLj
dVj

|Zj ])(Π̂j − Πj)/
√
J + κ̂

= ΓJAT̂ −1H̄J
1 T̂ −1

1

∑J

j=1
ϕkj vj/

√
J + ΓJAT̂ −1H̄J

1 T̂ −1
1

∑J

j=1
ϕkj (Πj − ϕk′j λ

1
k)/

√
J (83)

+ΓJAT̂ −1
∑J

j=1

∂gLj
∂fL

Ψ̂L
j (
dfLj
dvj

− E[
dfLj
dVj

|Zj ])(ϕk′j λ1
k − Πj)/

√
J + κ̂.

and the remainder term ||κ̂|| ≤ C
√
J ||ΓJAT̂ −1/2||ζ0(L)

∑J
j=1Cj ||Π̂j−Πj||2/J = Op(

√
Jζ0(L)△2

J,1) =

op(1). Then by the essentially same proofs ((A.18) to (A.23)) in Lemma A2 of Newey, Powell, and

Vella (1999), we can show the second term and the third term in (83) are op(1) under
√
Jk−̺1 → 0

(so that
√
J

∣∣Π0(z) − λ1′
k ϕ

k(z)
∣∣
0
→ 0 by Assumption L1 (iv) ) and k1/2(△T1 + △H) + L1/2△T → 0

(so that we can replace T̂1 with T J
1 , H̄J

1 with HJ
1 , and T̂ with T J respectively). Therefore we obtain

ΓJAT̂ −1Ψ̂L,J ′(ĝL − gL)/
√
J = ΓJA(T J)−1HJ

1

∑J

j=1
ϕkj vj/

√
J + op(1). (84)

This derives the influence function that comes from estimating Vj in the first step.

D.3.2 Influence function for the second stage

Next we derive the stochastic expansion of ΓJAT̂ −1Ψ̂L,J ′(ˆ̂gL − ĝL)/
√
J :

ΓJAT̂ −1
J∑

j=1

Ψ̂L
j (ˆ̂gLj − ĝLj)/

√
J = ΓJAT̂ −1

J∑

j=1

∂ĝLj
∂fL

Ψ̂L
j a

′
L( ˆ̄ϕL(zj) −E[ϕL(Zj , V̂j)|zj ])/

√
J

= ΓJAT̂ −1{
∑

l
H̄J

2,lT̂ −1
1

∑J

j=1
ϕkj ϕ̃l(zj ,vj)/

√
J +

∑
l
H̄J

2,lT̂ −1
1

∑J

j=1
ϕkj (ϕ̄l(zj) − ϕk′j λ

2
l,k)/

√
J}

+ΓJAT̂ −1
∑J

j=1

∂ĝLj
∂fL

Ψ̂L
j

∑
l
al(ϕ

k′
j λ

2
l,k − ϕ̄l(zj))/

√
J + ΓJAT̂ −1

∑J

j=1

∂ĝLj
∂fL

Ψ̂L
j ρj/

√
J (85)

where ρj ≡ ∑
l al{ϕk′j T̂ −1

1

∑J
j′=1 ϕ

k
j′(ϕl(zj′ , v̂j′) − ϕl(zj′ ,vj′))/J − (E[ϕl(zj , v̂j)|zj ] − ϕ̄l(zj))}. We

focus on the last term in (85). Note that ϕk′j T̂ −1
1

∑J
j=1 ϕ

k
j (ϕl(zj , v̂j)−ϕl(zj ,vj))/J is a least squares

projection of ϕl(zj , v̂j)−ϕl(zj ,vj) on ϕkj and it converges to the conditional mean E[ϕl(Zj , V̂j)|zj ]−
ϕ̄l(zj). Therefore ρj =

∑L
l=1 alρjl and ρjl is the projection residual from the least squares projection
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of ϕl(zj , v̂j) − ϕl(zj ,vj) on ϕkj for each l. It follows that E[ρj |Z1, . . . , ZJ ] = 0 and therefore

J∑

j=1

E[||ρj ||2|Z1, . . . , ZJ ]/J ≤
J∑

j=1

E[L
∑

l

||ρjl||2|Z1, . . . , ZJ ]/J ≤ L2Op(△2
J,2)

where the first inequality holds by the Cauchy-Schwarz inequality and the second inequality holds

by the similar proof to (46). It follows that by Assumption L1 (iii) and the Cauchy-Schwarz

inequality,27

E[
∥∥

J∑

j=1

∂ĝLj
∂fL

Ψ̂L
j ρj/

√
J
∥∥|Z1, . . . , ZJ ] ≤ (

1

J

J∑

j=1

E[Cj ||Ψ̂L
j ||2||ρj ||2|Z1, . . . , ZJ ])

1/2 ≤ Cζ0(L)L△J,2.

This implies that
∑J

j=1
∂ĝL
∂fL

Ψ̂L
j ρj/

√
J = Op(ζ0(L)L△J,2) = Op(△dϕ̄) = op(1).

Then again by the essentially same proofs ((A.18) to (A.23)) in Lemma A2 of Newey, Powell, and

Vella (1999), we can show the second term and the third term in (85) are op(1) under
√
Jk−̺1 → 0

(so that
√
J |ϕ̄l(z) − λ2′

l,kϕ
k(z)|0 → 0 for all l by Assumption L1 (iv)),

√
Jk1/2L−̺ → 0 (so that√

Jk1/2|f0(z,v)−a′Lϕ̃L(z,v)|0 → 0 by Assumption L1 (iv)), and k1/2(△T1+△H)+L1/2△T +△dϕ →
0 (so that we can replace T̂1 with T J

1 , H̄J
2,l with HJ

2,l, and T̂ with T J respectively). Therefore we

obtain

ΓJAT̂ −1Ψ̂L,J ′(ˆ̂gL − ĝL)/
√
J = ΓJA(T J)−1

∑
l
HJ

2,l

∑J

j=1
ϕkj ϕ̃l(zj ,vj)/

√
J + op(1). (86)

This derives the influence function that comes from estimating E[ϕlj |zj ]’s in the middle step.

D.3.3 Influence function due to the sampling and simulation errors

Next we analyze the influence function terms due to the sampling and the simulation errors, i.e.

we derive the stochastic expansion of ΓJAT̂ −1Ψ̂L,J ′(ς̃ − ς)/
√
J . Note that ω∗J

j = (ΞJ)−1r0j ,

ω∗J
Lj = A(T J)−1ΨL

0j , and (75) and note that replacing Ψ̂L
j with ΨL

0j does not influence the stochastic

expansion by (58) and (62) and |fL − f0|ι = O(L−̺) by Assumption N1 (ii). We therefore have

ΓJAT̂ −1Ψ̂L,J ′(ς̃ − ς)/
√
J = ΓJ(ΞJ)−1

r0(z,v)′(ς̃ − ς)/
√
J + op(1). (87)

Further note that by the intermediate value expansion

ς̃ − ς = δ∗(θλ0, s
n, PR) − δ∗(θλ0, s

0, P 0) = H̃−1
δ {εn − εR(θλ0)} (88)

where H̃δ = Hδ(δ̃
∗, θλ0, P̃ ) for some intermediate (δ̃∗, P̃ ). Combining (87) and (88) we can write

ΓJAT̂ −1Ψ̂L,J ′(ς̃ − ς)/
√
J = ΓJ(ΞJ)−1

r0(z,v)′(ς̃ − ς)/
√
J + op(1) (89)

= ΓJ(ΞJ)−1υJ(δ̃
∗, θλ0, P̃ ) + op(1)

= ΓJ(ΞJ)−1υJ(δ
∗(θλ0, s

0, P 0), θλ0, P
0) + op(1)

27Note that in our definition of ĝLj , gLj , and g0j ,
∂ĝLj

∂fL
=

∂gLj

∂fL
= ∂g0i

∂f0
= (1 + γ′

0xj + (ȳ − pj)γp0).
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where the third equality holds by Assumption N4 (Stochastic Equicontinuity).

Therefore by (82), (84), (86), and (89) we obtain the stochastic expansion,

√
JΓJ((θ̂′λ, θ̂

′)′ − (θ′λ0, θ
′
0)

′) = ΓJA(T J)−1(ΨL,J ′
0 ς −HJ

1

∑J

j=1
ϕkj vj/

√
J −

∑
l
HJ

2,l

∑J

j=1
ϕkj ϕ̃lj/

√
J)

+ΓJ(ΞJ)−1υJ(δ
∗0, θλ0, P

0) + op(1).

To apply the Lindeberg-Feller theorem for the first three terms, we check the Lindeberg condition.

For any vector q with ||q|| = 1, let WjJ = q′ΓJA(T J)−1(ΨL
0jςj −HJ

1 ϕ
k
j vj−

∑
lH

J
2,lϕ

k
j ϕ̃lj)/

√
J. Note

that WjJ is a triangular array r.v. and by construction, E[WjJ ] = 0 and var(WjJ) = O(1/J). Also

note that ||ΓJA(T J)−1|| ≤ C, ||ΓJA(T J)−1HJ
l || ≤ C||ΓJA(T J)−1|| ≤ C by CI − HJ

l H
J ′
l being

positive semidefinite for l = 1, (2, 1), . . . , (2, L). Also note that (
∑L

l=1 ϕ̃lj)
4 ≤ L2(

∑L
l=1 ϕ̃

2
lj)

2 ≤
L3

∑L
l=1 ϕ̃

4
lj . It follows that for any ǫ > 0,

JE[1(|WjJ | > ǫ)W 2
jJ ] = Jǫ2E[1(|WjJ | > ǫ)(WjJ/ǫ)

2] ≤ Jǫ−2E[|WjJ |4]
≤ CJǫ−2{E[||ΨL

0j ||4E[ς4j |Zj ,Vj ]] + E[||ϕkj ||4E[V4
j |Zj]] + L3

∑

l

E[||ϕkj ||4E[ϕ̃4
lj |Zj]]}/J2

≤ CJ−1(ζ0(L)2L+ ξ(k)2k + ξ(k)2kL4) = o(1).

For the second term ΓJ(ΞJ)−1νJ(δ
∗0, θλ0, P

0) we can apply the Lyapunov Central Limit Theorem

for triangular arrays by Assumption N3 such that

ΓJ(ΞJ)−1νJ(δ
∗0, θλ0, P

0) →d ΓJ(ΞJ)−1(Φ2 + Φ3)(Ξ
J)−1′ΓJ ′.

Therefore,
√
JΓJ((θ̂′λ, θ̂

′)′ − (θ′λ0, θ
′
0)

′) →d N(0, I) by the Lindeberg-Feller and the Lyapunov

Central Limit Theorem. We have shown that Ω̄J + Ω̄J
2 + Ω̄J

3 → Ω + Ω2 + Ω3 and ΓJ is bounded

for all J large enough. We therefore also conclude
√
J((θ̂′λ, θ̂

′)′ − (θ′λ0, θ
′
0)

′) →d N(0,Ω + Ω2 + Ω3).

This proves the asymptotic normality results in Theorem AN1 and AN2.

D.4 Consistency of the estimate of the asymptotic variance

Now we show the convergence of the each term in (26) and (32) to the corresponding terms in (74).

Let δ̂∗j = δ∗j (θ̂λ, s
n, PR), ς̂j = δ̂∗j − ĝ(zj , v̂j), and ςj = δ∗0j − g0(zj ,vj). Note that

ς̂2j − ς2j = 2ςj{(δ̂∗j − δ∗0j ) − (
ˆ̂
ĝj − g0j)} + {(δ̂∗j − δ∗0j ) − (

ˆ̂
ĝj − g0j)}2

≤ 2ςj{(δ̂∗j − δ∗0j ) − (
ˆ̂
ĝj − g0j)} + 2(δ̂∗j − δ∗0j )2 + 2(

ˆ̂
ĝj − g0j)

2

and that maxj≤J |ˆ̂ĝj − g0j | = Op(△g) = op(1) by (73). Let (H−1
δ )j and (H−1

δ )j denotes the j-th row

of H−1
δ and H−1

δ , respectively where H−1
δ is defined in (29).

Note (H−1
δ )j = s−1

j ej + i

s0
= J(Jsj)

−1
ej + Ji

Js0
where ej is the j-th row of the J × J identify

matrix and note

Pr[

J∑

j=1

(εnj )
2 > ǫ] ≤ J max

1≤j≤J
Pr[(snj − s0j)

2 > ǫ] ≤ J exp(−ǫn) (90)
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where the last inequality is obtained by Bernstein’s inequality since sn is a sum of n independent

random variables each bounded by one. By similar argument we obtain

Pr[

J∑

j=1

(εRj (θλ0))
2 > ǫ] ≤ J exp(−ǫR). (91)

It follows that under Condition S for all j ≤ J ,

|(Hδ(·, s̃, P̃ )−1)j(ε
n − εR(θλ0))| ≤ max

1≤j′≤J
(H−1

δ )jj′
J∑

j=1

|εnj − εRj (θλ0)|

≤ O(J) ×
√
J(

J∑

j=1

(εnj )
2 +

J∑

j=1

(εRj (θλ0))
2)1/2

where the second inequality is obtained applying the Markov inequality. Therefore |(Hδ(·, s̃, P̃ )−1)j(ε
n−

εR(θλ0))| = op(1) as long as log(J4)
n → 0 and log(J4)

R → 0 by (90) and (91).

Then applying the intermediate value expansions we obtain for all j

|δ̂∗j − δ∗0j | ≤ |δ̂∗j − δ∗j (θλ0, s
n, PR)| + |δ∗j (θλ0, s

n, PR) − δ∗0j | (92)

≤ |
∂δ∗j (θ̃λ, s

n, PR)

∂θλ
| · ||θ̂λ − θλ0|| + |(Hδ(·, s̃, P̃ )−1)j(ε

n − εR(θλ0))|

≤ Op(||θ̂λ − θλ0||) + op(1)

= Op(△J,ϑ) + op(1).

Let D̂ = ΓJAT̂ −1Ψ̂L,J ′diag{1 + |ς1|, . . . , 1 + |ςJ |}Ψ̂L,J T̂ −1A′ΓJ ′ and D̃ = ΓJAT̃ −1Ψ̃L,J ′diag{1 +

|ς1|, . . . , 1+ |ςJ |}Ψ̃L,J T̃ −1A′ΓJ ′ where Ψ̃L,J and T̃ is obtained by replacing f̂j with f̂L(zj , v̂j). Then

by (60), (63), ||ϑ̂− ϑ0|| = Op(△J,ϑ), and the triangle inequality, we have E[||D̂− D̃||] = o(1) under

L1/2△J,ϑ → 0 and then by the Markov inequality, ||D̂− D̃|| = op(1). Note Ψ̃L,J and T̃ only depend

on (z1, v1), . . . , (zJ , vJ ) and thus E[D̃|(Z1, V1), . . . , (ZJ , VJ )] ≤ CΓJAT̃ −1A′ΓJ ′ = Op(1). Therefore,

||D̂|| = Op(1) as well. Next let Σ̃ =
∑J

j=1 Ψ̂L
j Ψ̂L′

j ς
2
j /J and êj = −2ςj{(δ̂∗j − δ∗0j ) − (

ˆ̂
ĝj − g0j)} +

2(
ˆ̂
ĝj − g0j)

2. Then,

||ΓJAT̂ −1(Σ̂ − Σ̃)T̂ −1A′ΓJ ′|| ≤ ||ΓJAT̂ −1Ψ̂L,J ′diag{ê1, . . . , êJ}Ψ̂L,J T̂ −1A′ΓJ ′|| (93)

+o(max
j≤J

|ˆ̂ĝj − g0j | + max
j≤J

|δ̂∗j − δ∗0j |)

≤ Ctr(D̂){max
j≤J

|ˆ̂ĝj − g0j | + max
j≤J

|δ̂∗j − δ∗0j |}(1 + o(1))

= Op(△J,ϑ) + op(1) = op(1)

where the last equality holds because of (30) and (92).
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Then, by the essentially same proof in Lemma A2 of Newey, Powell, and Vella (1999), we obtain

||Σ̃ − ΣJ || = Op(∆T + ζ0(L)2L/J) = Op(△Σ) = op(1), (94)

||ΓJAT̂ −1(Σ̂ − ΣJ)T̂ −1A′ΓJ ′|| = op(1)

||ΓJA(T̂ −1ΣJ T̂ −1 − T −1ΣJT −1)A′ΓJ ′|| = op(1).

Then, by (93), (94), and the triangle inequality, we conclude ||ΓJAT̂ −1Σ̂T̂ −1A′ΓJ ′−ΓJAT −1ΣJT −1A′ΓJ ′|| =

op(1). It remains to show that for l = 1, (1, 2), . . . , (2, L),

ΓJA(T̂ −1ĤlT̂ −1
1 Σ̂lT̂ −1

1 Ĥ ′
l T̂ −1 − (T J)−1HJ

l ΣJ
l H

J ′
l (T J)−1)A′ΓJ ′ = op(1). (95)

As we have shown ||Σ̂−ΣJ || = op(1), similarly we can show ||Σ̂l−ΣJ
l || = op(1), l = 1, (1, 2), . . . , (2, L).

We focus on showing ||ĤJ
l − H̄J

l || = op(1) for l = 1, (1, 2), . . . , (2, L). First note that

||ĤJ
11 − H̄J

11|| = ||
∑J

j=1

∂
ˆ̂
ĝj

∂f̂
(
∑L

l=1
âl
∂ϕl(zj , v̂j)

∂vj
− al

∂ϕl(zj ,vj)

∂vj
)Ψ̂L

j ϕ
k′
j /J || (96)

+||
∑J

j=1
(
∂
ˆ̂
ĝj

∂f̂L
− ∂g0j
∂f0

)
∑L

l=1
al
∂ϕl(zj ,vj)

∂vj
Ψ̂L
j ϕ

k′
j /J ||.

Note
∑J

j=1 ||
∂
ˆ̂
ĝj

∂f̂
− ∂g0j

∂f0
||2/J ≤ ||θ̂−θ0||2

∑J
j=1C

2
j /J = Op(△2

J,ϑ). By the Cauchy-Schwarz inequality,

(57), (60), and Assumption L1 (iii), we have

J∑

j=1

||CjΨ̂L
j ϕ

k′
j ||2/J ≤ C

J∑

j=1

||Ψ̂L
j ||2||ϕkj ||2/J = Op(Lξ0(k)

2) (97)

for any bounded Cj > 0. Therefore we bound the second term in (96) as Op(L
1/2ξ0(k)△J,ϑ).

Also note that by the triangle inequality, the Cauchy-Schwarz inequality, and by Assumption

C1 (vi) and (47), applying a mean value expansion to
∂ϕl(zj ,vj)

∂vj
w.r.t vj,

∑J

j=1
||

∑L

l=1
(âl

∂ϕl(zj , v̂j)

∂vj
− al

∂ϕl(zj ,vj)

∂vj
)||2/J (98)

≤ 2
∑J

j=1
||

∑L

l=1
(âl − al)

∂ϕl(zj ,vj)

∂vj
||2/J + 2

∑J

j=1
||

∑L

l=1
âl(

∂ϕl(zj , v̂j)

∂vj
− ∂ϕl(zj ,vj)

∂vj
)||2/J

≤ C||â− aL||2
∑J

j=1
||∂ϕ̃

L(zj ,vj)

∂vj
||2/J + C1

∑J

j=1
||

∑L

l=1
âl
∂2ϕl(zj , ṽj)

∂v2
j

(Π̂j − Πj)||2/J

≤ C||â− aL||2
∑J

j=1
||∂ϕ̃

L(zj ,vj)

∂vj
||2/J + C1 max

1≤j≤J
||Π̂j − Πj ||2 ·

∑J

j=1
||

∑L

l=1
âl
∂2ϕl(zj , ṽj)

∂v2
j

||2/J

= Op(ζ
2
1 (L)△2

J,ϑ + ξ20(k)△2
J,1)

where ṽj lies between v̂j and vj , which may depend on l. Therefore we bound the first term in (96)

as Op((ζ1(L)△J,ϑ+ζ0(k)△J,1)L
1/2ζ0(k)) by the Cauchy-Schwarz inequality combining (97) and (98).

Then we conclude by the triangle inequality, ||ĤJ
11−H̄J

11|| ≤ Op((ζ1(L)△J,ϑ+ζ0(k)△J,1)L
1/2ζ0(k)) =

Op(△Ĥ) = op(1). Similarly we can show that ||ĤJ
12 − H̄J

12|| = op(1) and ||ĤJ
2,l − H̄J

2,l|| = op(1)
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l = 1, (2, 1), . . . , (2, L).

Then we have ||H̄J
l −HJ

l || = op(1) for l = 1, (2, 1), . . . , (2, L). Therefore, ||ĤJ
l −HJ

l || = op(1)

for l = 1, (2, 1), . . . , (2, L). Then by the similar proof like (93) and (94), the conclusion (95) follows.

Next we show Ω̂2 = 1
nJAT̂ −1((Ψ̂L,J)′Ĥ−1

δ V̂2Ĥ
−1′
δ Ψ̂L,J)T̂ −1A′ is consistent and consistency of

Ω̂3 is similarly obtained. First note that replacing T̂ with T and Ψ̂L,J with ΨL,J
0 does not affect

the consistency, so we have only to show 1
nJ (ΞJ)−1

r0(z,v)′Ĥ−1
δ V̂2Ĥ

−1′
δ r0(z,v)(ΞJ )−1′ → Ω2 where

we replace A(T J)−1ΨL,J ′
0 with (ΞJ)−1

r0(z,v)′ applying the same argument in (76). Next note

obviously limn→∞ V̂2 = V2 = nE∗[εnεn′], so we have

1

nJ
(ΞJ)−1

r0(z,v)′Ĥ−1
δ V̂2Ĥ

−1′
δ r0(z,v)(ΞJ )−1′

=
1

nJ
(ΞJ)−1

r0(z,v)′Ĥ−1
δ (nεnεn′)Ĥ−1′

δ r0(z,v)(ΞJ )−1′ + op(1)

= (ΞJ)−1

{
1

nJ
r0(z,v)′H−1

δ0 (nεnεn′)H−1′
δ0 r0(z,v)

}
(ΞJ)−1′ + op(1)

= (ΞJ)−1Φ2(Ξ
J)−1′ + op(1) = Ω2 + op(1)

where the second equality holds by the stochastic equicontinuity (Assumption N4) and the third

equality holds by Assumption N3 and (30).

Then from (95) finally note that because ΓJ is bounded for all J large enough ||(Ω̂ + Ω̂2 +Ω̂3)−
(Ω + Ω2 + Ω3)|| ≤ C||ΓJ(Ω̂ + Ω̂2 + Ω̂3)Γ

J ′ − ΓJ(Ω + Ω2 + Ω3)Γ
J ′|| = op(1).
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