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Abstract

Do economies of scopewithin firms transmitmacro shocks across industries? I exploit
exogenous variation in foreign demand faced by US multi-industry manufacturers to
identify this mechanism. I find that a positive demand shock in one industry of a firm
increases its sales in another only when both industries use the same intangible inputs.
I develop a general equilibrium model of multi-industry firms and estimate that scope
economies are driven by the scalability and non-rivalry of intangible inputs under joint
production. Cross-industry spillovers due to scope economies account for 20 percent of
the equilibrium response of productivity to market size. Applied to US trade, the model
predicts large productivity spillovers from industry shocks, particularly across industries
that use more intangible inputs.
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1 Introduction

Multi-industry firms account for three-quarters of US manufacturing output. Is a firm
like General Electric simply a collection of independent industry segments, or do shared
inputs generate economies of scope? The existing literature offers competing theories but
no empirical consensus. When inputs (e.g. management) are rival and constrained within
the firm, growth in one industry comes at the expense of others (Lucas, 1978). On the
other hand, when inputs (e.g. scientists) are non-rival and scalable, growth in one industry
might breed success in another (Penrose, 1959). In the absence of microeconomic evidence,
quantitative models of multi-industry firms have remained ambivalent on how these intra-
firm mechanisms shape an economy’s response to aggregate shocks.

This paper provides empirical evidence of scope economies within the firm and develops
a model to find that these internal effects generate quantitatively large aggregate spillovers
across industries. I begin by examining how a firm’s output in one industry is affected by
demand shocks it receives in other industries. To do so, I assemble panel data from the
US Economic Census on the sales and exports by industry of all US manufacturing firms.
I leverage variation in a firm’s exports across foreign destinations and products along with
changes in the size of these markets to construct plausibly exogenous shifters of demand for
each industry of the firm.1

I find that a positive demand shock in one industry of a firm increases its sales in another
industry only when both industries use the same intangible inputs in production. I use the
BEA’s input-output (I/O) and capital flow tables to infer industry-level expenditure shares on
intangible inputs—comprised of professional services (e.g. R&D, engineering, management),
information (e.g. IT and software), and the leasing of intangible assets.2 Unlike intangibles,
other inputs do not generate spillovers across the industries that use them in common. These
findings suggest that intangible inputs have distinct economic properties, consistent with
evidence on their transfer across plants within the firm (Atalay et al., 2014) and their synergy
and scalability (Haskel and Westlake, 2017).3

To rationalize these reduced-form spillovers, I develop a quantitative general equilibrium
model of multi-industry firms. I introduce two elasticities that enrich properties of variable

1Existing papers have used this shift-share identification strategy to construct demand shocks at the firm-
level, using data from countries such as Denmark (Hummels et al., 2014), France (Mayer et al., 2016), and
Portugal (Garin and Silverio, 2018). In my paper, the scale and scope of US exporters allows demand shocks to
vary across industries within the firm.

2See Table 7 for a full list. The data includes both capitalized and current expenses. McGrattan (2017) uses
a similar classification and the same data to estimate a multi-sector RBC model with intangible capital.

3Intangibles are also important in the aggregate economy. Almost 10 percent of gross manufacturing output
is expensed on intangibles in 1997. Corrado and Hulten (2010) estimate that total investments in intangibles
in the U.S. exceed 11% of GDP. Many intangibles are tradable services that magnify US international exposure
(Gervais and Jensen, 2019) and regional wage inequality (Eckert, 2019; Eckert et al., 2019).
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inputs under joint production: (i) how scalable are inputs within the firm, and (ii) how
rival are their contributions across industries. These elasticities vary across inputs and
determine the direction and strength of economies of scope (and scale).4 My joint production
framework generalizes benchmark models of heterogeneous firms (Melitz, 2003), nesting
constant returns to scale and independence across industries (Bernard et al., 2010) as special
cases.

I model input scalability and rivalry in a setting that reflects the uncertainty inherent in
knowledge creation.5 Consider an input such as ceramics scientists, who generate valuable
research ideas within General Electric. GE deploys each idea in the industry where it serves
the highest value. Gemstone scintillators are deployed in X-ray machines to enable high
sensitivity scanning, whereas SiC-SiC ceramic matrix composites are deployed in aviation
turbines to improve their hot gas path.6 But ex-ante, the contribution of ceramics scientists is
uncertain in terms of both the number of ideas that surface (a Poisson process) and thematch-
specific quality between an idea and an industry (a Fréchet random variable). Scalability is
measured by the effectiveness of additional scientists towards increasing the arrival rate of
ideas. Non-rivalry is captured by the variance in the match-specific qualities between each
idea and industry. The higher is the variance, the larger is the ex-ante expected contribution
of ceramics scientists, and the more likely are their research ideas to be deployed ex-post
across different industries.7

Economies of scope arise whenever inputs in production are more scalable than rival. An
increase in demand in one industry of the firm generates two competing effects on its sales
in another. The more rival are inputs, the more the firm substitutes production towards the
shocked industry, lowering output in others. The more scalable are inputs, the more other
industries stand to benefit. These properties of inputs determine an empirically observable
matrix of cross-industry elasticities of sales to demand shocks. Because industries differ in
input requirements, scope economies (and thus cross-industry spillovers) might be positive
for some pairs of industries while negative for others.

I leverage this mapping between themodel and the data to structurally estimate scale and

4Whereas other papers estimate properties of specific intangible inputs in isolation—ranging from R&D
(Aw et al., 2011), marketing (Arkolakis, 2010), management (Bloom et al., 2019), to ICT (Fort, 2016; Lashkari
et al., 2019)—my quantitative framework accounts jointly for the role of all production inputs in all industries
and aggregates to match BEA industry-by-input expenditures. These other papers focus on scalability of the
particular intangible input but do not consider their rivalry in use under joint production.

5This is inspired by the seminal papers on firm resources and diversification (Penrose, 1959; Gort, 1962)
and a concurrent literature in management (Teece, 1982; Wernerfelt, 1984; Chandler, 1990). Griliches (1979)
and Spence (1984) provide early models on knowledge capital and cost reduction that have been used to study
diversification (Jovanovic, 1993) and R&D spillovers (Klette, 1996) within the firm.

6Source: https://www.ge.com/research/technology-domains/materials/ceramics
7There is ex-ante option value embedded in the firm’s ex-post ability to deploy an idea to the best industry

among competing uses. This option value increases with variance.
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rivalry elasticities of inputs, using demand shocks as instruments.8 While the identification
insight is more general, I estimate a parsimonious set of elasticities for lack of statistical and
computational power. I assume that generic inputs—including agriculture, manufacturing,
and labor—are acquired at constant marginal costs and completely rival across industries.9 I
estimate one pair of scale and rivalry elasticities common to all intangible inputs, and another
pair common to the set of residual inputs in the I/O tables. The elasticities on residual inputs
reflect potential spillovers due to competing mechanisms, such as financial constraints and
span-of-control.

I use simulated method of moments to estimate input elasticities that match the same
within-firm, cross-industry covariances of sales growth and demand shocks in the data.
Absent firm-industry level data on input use, a critical (but sufficient) source of variation
comes from BEA data on industry-level input expenditures. Variation in these expenditures
reflect differences in technology coefficients (common to all firms) in the model. I jointly
estimate these coefficients and use their variation across input-industry pairs to differentiate
elasticities of intangible inputs from residual inputs. For example, a more positive response
of aviation turbine sales to X-ray machine demand suggests that inputs more intensively
used in the two industries (e.g. intangibles) are more scalable and less rival compared to
other inputs. I also use variation in own-industry and cross-industry responses to shocks to
differentiate scale from rivalry elasticities.

Estimates suggest that intangible inputs are more scalable than rival and thus generate
economies of scope. In contrast, residual inputs aremildly less scalable than rival. These elas-
ticities are statistically significant, precisely estimated, and consistent with the reduced-form
evidence. Despite its parsimony, the estimated model replicates cross-sectional moments
not targeted in estimation, such as the firm scope distribution and joint production patterns
across pairs of industries.

Finally, I use the estimated model to quantify the extent to which internal economies of
scope affect the aggregate consequences of industry demand shocks. I exploit the model’s
analytical tractability to express the elasticity of productivity and output to arbitrary in-
dustry shocks in terms of simple propagation matrices. These matrices permit a decom-
position of the aggregate productivity response into changes that occur as a result of scale
economies (own-industry effects) versus scope economies (cross-industry effects). Given the

8Despite the simplicity and minimal data requirements, the use of demand shifters to identify economies of
scope has not been implemented, at least in the context of US manufacturing. Most papers estimate economies
of scope by appealing either to cost concepts developed in Baumol et al. (1982) or the input distance function
in Färe and Primont (1995), and usually do so only for a handful of products at a time, e.g. agricultural
cooperatives (Pokharel and Featherstone, 2019).

9This assumption corresponds to the knife-edge case of generic inputs being completely scalable and com-
pletely non-rival and is consistent with standard models and the reduced-form evidence.
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unrestricted nature of production elasticities, the model nests as special cases the macro
responses in quantitative multi-industry Ricardian models (Costinot and Rodríguez-Clare,
2014) and their extensions that feature variable (own-)industry returns to scale (Kucheryavyy
et al., 2019; Bartelme et al., 2019).

I find quantitatively large aggregate productivity spillovers from scope economies. Under
a calibration of the model to the US data in 2017, I examine the impact of foreign demand
shocks on output and productivity when internal economies of scale and scope are the
only general equilibrium forces. I estimate that scope economies contribute to an aggregate
elasticity of productivity to output of 0.04, more than 20% of the total productivity response.
The model can be easily extended to settings where spillovers are also driven by external
interactions among firms. Under an alternative production structure with input-output
linkages (Caliendo and Parro, 2014), I find that introducing economies of scope more than
doubles the response of productivity to foreign demand shocks.

These aggregate findings mask significant heterogeneity. Industries that use more in-
tangible inputs are stronger transmitters and beneficiaries of productivity spillovers. For
example, cross-industry spillovers account for 60% of the total productivity response when
demand in the electromedical apparatus industry rises. This occurs because firms respond
by scaling up intangible inputs. Non-rivalry leads to productivity improvements in other
industries of these firms that use the same intangible inputs. But for an industry like fla-
voring syrup that relies less on intangible inputs and more on residual inputs (like tangible
capital), I find that spillovers can even be reversed due to diseconomies of scope, accounting
for negative 6% of the total productivity response.

As a proof of concept, I show that these microeconomic properties of joint production
change our assessment of the price and productivity impacts of US trade policy. I analyze
the impact on the US economy of unilateral tariffs of 20% on all Chinese imports. While
import protection raises the prices of foreign goods, it also lowers prices of domestic goods
through scale and scope economies induced by greater domestic market access. I estimate
that the tariff policy would raise the US manufacturing CPI by 0.8% in my model, compared
to 1.12% absent the response of domestic prices. I also use the model’s propagation matrix
to construct alternative tariffs that achieve the same reduction in US imports from China
(41%) but more than halve the adverse CPI effects (to 0.38%) by biasing protection towards
industries with stronger internal economies of scale and scope.

My paper contributes to a growing body of research on multi-product firms. In bench-
markmodels that explain product switching and reallocation in the data (Klette andKortum,
2004; Bernard et al., 2010; Mayer et al., 2014), firms emerge with a portfolio of independent
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industries and products.10 Other papers generate interdependencies across products using
features that range from cannibalization (Eckel and Neary, 2009; Feenstra and Ma, 2007),
innovation (Dhingra, 2013), span-of-control (Nocke and Yeaple, 2014), to carry-along trade
(Bernard et al., 2018).11 In contrast, I propose and quantify a different mechanism: the
scalability and non-rivalry of intangible inputs generate economies of scope.12 Whereas
most models of multi-product firms are solved within an industry equilibrium and feature
one-directional (zero or negative) spillovers, I develop a multi-industry general equilibrium
framework where both within-firm and aggregate spillovers are unrestricted.

The concept of non-rivalry in my model takes inspiration from the theory of the multi-
national enterprise (Helpman, 1984; Markusen, 1984), in which headquarters provides non-
rival, intangible services to other plants of the firm. An empirical strand of this literature
quantifies knowledge spillovers between parent and affiliate plants of multinationals (Keller
and Yeaple, 2009, 2013; Cravino and Levchenko, 2016), but does not study the cross-industry
dimension.13 Despite the difference in application, my estimates of spillovers within the
multi-industry firm are close to the parent-affiliate spillovers (of roughly 20%) estimated in
Bilir andMorales (2019), and also consistent with the positive relationship between domestic
and foreign operations of US multinationals (Desai et al., 2009). Since most multinationals
also operate inmultiple industries, the results inmypaper suggest thatmuchofmultinational
knowledge spillovers could also be generating economies of scope.

Lastly, the quantitative results in my paper complement several literatures that focus on
external interactions as the source of industry spillovers. This is true of papers in macroe-
conomics that study the propagation of shocks across production networks (Gabaix, 2011;
Acemoglu et al., 2012, 2016; di Giovanni et al., 2018; Baqaee and Farhi, 2019; Liu, 2019; Lim,
2018), as well as research on agglomeration externalities (Ellison et al., 2010) and innovation
spillovers (Bloom et al., 2013). My paper offers the requisite microeconomic evidence to dis-
tinguish internal effects from external effects, revealing that intra-firm economies also shape
the macro propagation of shocks.

The rest of the paper is structured as follows. Section 2 describes the data and provides
reduced-form evidence of scope economies. Section 3 develops a quantitative model of joint

10The assumption of independent production functions (i.e. separable across industries) also appears in
multi-product productivity estimation such as De Loecker et al. (2016) and Orr (2019). Other papers in the
IO literature do consider joint production functions but often do so with either a few industries at a time or
in highly parametrized settings. For example, the Cobb-Douglas functional form (Grieco and McDevitt, 2016;
Dhyne et al., 2017) presupposes diseconomies of scope.

11See also, among others, Arkolakis et al. (2019) and Macedoni and Xu (2019).
12In a contemporaneous paper, Boehm et al. (2019b) study the role of tangible intermediate input linkages for

economies of scope. They focus instead on the entry margin using data from India.
13A recent paper by Boehm et al. (2019a) studies multinational spillovers arising from vertical relationships.

Other papers relate intra-firm spillovers to internal capital markets (Lamont, 1997; Giroud and Mueller, 2019),
plant-level shared resources (Borusyak and Okubo, 2016), and distance (Giroud, 2013; Gumpert et al., 2019).
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production. Section 4 structurally estimates the model, and Section 5 uses these estimates to
quantify aggregate industry spillovers. Section 6 concludes.

2 Empirical Evidence on Economies of Scope

This section provides empirical evidence of scope economies in US manufacturing firms.
I construct an exhaustive dataset on their sales and exports by industry, and develop an
identification strategy that exploits plausibly exogenous changes to foreign market size as
shifters of demand specific to an industry within the firm. I find that a demand shock in one
industry of a firm increases its sales in another industry only when both industries use the
same intangible inputs.

2.1 Data and Descriptive Evidence

I construct a firm-industry-level panel dataset containing the universe of US manufacturing
firms from 1997 to 2012. These data are assembled by matching, at the firm-industry level,
production data from the quinquennial US Economic Census (EC) with customs data from
the annual Longitudinal Foreign Trade Transaction Database (LFTTD). Product trailer files
in the Census of Manufactures (part of the EC) contain data on sales across detailed product
lines within each establishment of a firm. I construct firm sales in industry j in year t, X f jt ,
by summing up shipments of all products that fall within industry j over all plants owned
by the firm.14

I define an industry, j, at the maximal level of disaggregation that permits concordability
across census, customs, and BEA taxonomies over this time period.15 This yields 206 indus-
tries. I refer to this classification (roughly at the level of 5-digit NAICS) as ‘BEAX’ and work
with this taxonomy throughout the rest of the paper. This is the most disaggregated level at
which input-output flows (across industries) are available in BEA data, which is crucial for
constructing variation on input use by industry. This definition of industries also allows the
quantitative analysis to connect directly to existing models featuring input-output linkages.

Table 1 summarizes the span of US manufacturing activity attributable to multi-industry
firms. These firms are important across multiple dimensions, suggesting that reallocation
within these firms may have first-order effects on industry-level changes in the economy.16

14I abstract from the plant dimension and focus on the industry boundaries within the firm. Any single es-
tablishment firm that sells products spanning multiple industries is defined as a multi-industry firm. Instances
of such firms are non-trivial and account for more than 5% of gross manufacturing output.

15This ends up generating a slight coarsening of the classification in the BEA Input-Output Use tables. More
details on the match and construction of this concordance can be found in the Data Appendix.

16Bernard et al. (2010) provide a more detailed overview using the same data up to 1997.
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Table 1: Statistics on Multi-Industry Manufacturing Firms

1997 2002 2007 2012
Share of aggregate outcome

Manuf. sales .75 .75 .75 .76
by primary industry .46 .49 .51 .52
by secondary industries .29 .26 .24 .24

External manuf. sales .74 .74 .74 .75
Misclassification-prone sales .09 .08 .07 .07

Manuf. employment .62 .63 .60 .60
Exports .84 .80 .81 .76
Imports .82 .79 .79 .77

Firms .19 .20 .20 .20

Mean and median scope
Mean number of industries 2.69 2.73 2.63 2.65
Median number of industries 2 2 2 2

Mean number of sectors 1.69 1.74 1.69 1.70
Median number of sectors 2 2 2 2

Source: US Economic Census. Multi-industry firms are firms producing manufacturing products that fall in
at least two distinct industry classifications. The definition of an industry is at a hand-constructed BEAX level
(of which there are 206)—roughly corresponding to 5-digit NAICS. External manuf. sales is equal to the firm’s
gross manufacturing sales less its total inter-plant shipments reported. Misclassification-prone refers to the
instances where sales would be misattributed by an analyst who only has data at the plant level and attributes
all sales of the plant to the plant’s industry classification. Sectors refer to 3-digit NAICS codes (of which there
are 21).
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One-fifth of all US manufacturers operate in two or more industries. These firms account
for more than three quarters of manufacturing sales, exports, imports, and a slightly lower
share of employment. The second and third lines of the table show that sales within these
firms are not too skewed towards their primary (single highest grossing) industry. The
primary industry of each firm accounts for only roughly two-thirds of the firm’s total sales.
The remaining industries (just a single one for the median multi-industry firm) are classified
under ‘secondary’ and account for one quarter of total gross output.

I find that the use of product-trailer information to apportion plant-level shipments across
industriesmakes a quantitative difference for the aggregate accounting of industry sales. The
fifth row of Table 1 reports that between 7 and 9 percent of total manufacturing sales would
be misclassified (by industry) if a data analyst attributes the sales of each plant to the plant’s
main industry (which, in many datasets, is the only degree of disaggregation available).17

A classic explanation for the firm boundary is that firms integrate vertically related
industries to avoid holdup and contracting inefficiencies. Consistent with Atalay et al.
(2014), I find that within-firm shipments of goods are a small fraction of firms’ overall sales
and thus do not appear to explain firm size and scope. I define external manufacturing
sales as the total sales less inter-plant shipments (among plants within the firm), and find
that these external sales of multi-industry firms still account for 74 percent of gross output
in manufacturing. Still, to mitigate concerns that intra-firm (inter-plant) shipments might
respond at the margin and drive cross-industry spillovers, I use external sales as the main
empirical variable in the remainder of the paper.

Under my industry classification, the mean scope among multi-industry firms is only 2.7
and stays stable over the years. This broad classification of what is an industry sets my paper
apart from others that emphasize the multi-product margin of the firm. I abstract from the
product dimension within an industry (other than to use as variation in the identification
strategy). This alleviates concerns that demand-side substitution and cannibalization effects
might be driving observational spillovers.18

17This detail is important formy identification strategy andmyfindings of spillovers. I do not find statistically
significant spillovers when I ignore the product dimension within the firm. This statistic is also an under-
estimate of the total degree of misclassification in the data, since many single-unit firms do not have their sales
broken down in the product trailers. See the Data Appendix for more information.

18Interestingly, while the median multi-industry firm operates in two industries, those two industries also
span multiple sectors (defined as 3-digit BEAX, of which there are 27). To the extent that demand complemen-
tarities and input-output relationships are stronger within a sector rather than across sectors, this fact suggests
that neither explanation may be prominent for the median firm.
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2.2 Identifying Economies of Scope

One explanation for the empirical size advantage of multi-industry firms is that they derive
cost savings in a given industry’s production from their scale of output in another industry.
Denote a cost function dual to a firm’s production technology as C(q1, ..., q J ; ®w), where q j

describes output in industry j ∈ {1, ..., J}, and ®w stands for a vector of input prices the firm
takes as given.19 I define economies of scope as follows:

Definition 1 (Economies of Scope) There are local economies of scope in the production of j and
k if marginal costs of producing q j is falling with qk around the current output vector ®q:

C jk(®q) ≡
∂2C(®q)
∂q j∂qk

< 0.

This definition differs from the traditional one—sub-additivity of the total cost function—
developed by Baumol et al. (1982).20 In their setting, economies of scope refer to cost savings
when production in a set of industries occurs jointly instead of separately over a given
partition of that set. Instead, by focusing on local changes, Definition 1 circumvents the
empirical challenge of identifying fixed costs over different sets of industries.21

Proposition 1 shows the conditions under which C jk (and thus economies of scope) are
identified from just panel data on sales, X j , and demand shifters across industries of the
firm, d log Sk . The exclusion restriction is that the demand shifters are uncorrelated with
unobserved demand and supply shocks. This result is useful for my empirical setting, which
lacks data on input prices and expenditures.

Proposition 1 (Identification Benchmark) Let Sk denote an exogenous and relevant shifter of
demand in industry k of the firm. Let ψ jk denote the observable elasticity of sales in industry j with
respect to demand shifters in industry k:

d log X j � ψ jk d log Sk , ∀ j, k ∈ J. (1)

TheHessian of the cost function, {C jk}, is identified from observable sales-elasticities, {ψ jk}, for a firm
that maximizes profits under a known residual demand function and produces observable quantities
q j at an interior solution ®q > 0 satisfying second order conditions.

19I interpret q j as a one-dimensional index summarizing all the characteristics of goods the firm produces
within that industry, including the number of varieties, product appeal, quality, and physical quantity.

20Formally, my definition is neither sufficient nor necessary for the cost function to be sub-additive. In the
absence of fixed costs, local economies of scope à la Definition 1 at all points of production is equivalent to cost
function sub-additivity (and sub-modularity).

21In settings with many industries, the dimensionality of potential partitions explodes. Their criteria yields
2J potentially differing measures of economies of scope at any output vector ®q relative to just J × J in my setting.
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Figure 1: Using Demand Shocks to Identify the Cost Function

(a) Iso-cost curves in (q j , qk) space (b) Cost function over ray expansions of (q̄ j , q̄k)

This figure displays the profit-maximization decisions of a firm under a convex cost function. Curves in panel
(a) indicate feasible production bundles {q j , qk} conditional on costs C̄. Panel (b) plots total costs C for different
proportional expansions of a bundle of outputs, i.e. along the (2)-(3) ray depicted in panel (a).

Proposition 1 extends the textbook logic of using demand shifters to identify themarginal
cost function of a single good. For graphical intuition, consider a firm producing in two
industries, j and k.22 The curved lines in Figure 1a indicate the firm’s iso-cost curves—the set
of feasible production bundles (q j , qk) holding total costs constant. The more concave is the
curve, the more non-rival are inputs in production of j and k.23 The convex curve in Figure
1b takes a different slice of the firm’s cost surface—it traces out total costs along a particular
(q j , qk) ray (such as that depicted by the grey arrow in panel (a)). The more convex is the
curve, themore scalable are inputs in the production of (q j , qk). The firm’s optimal production
choice is characterized by tangency points in (a) where the ratio of marginal revenues are
equal to the ratio of marginal costs, and (b) where the ray marginal revenue is equal to the
ray marginal cost.

A demand shock that increases marginal revenue in industry k generates substitution
and scale effects within the firm. Holding total costs unchanged, the firm adjusts along its
iso-cost curve from point (1) to a new tangency point (2), favoring production of qk . The
more rival are inputs, the stronger is the substitution effect. On the other hand, given the
increase in profitability per bundle sold, the firm is incentivized to increase its scale—its

22While the cost function has to be convex in order for an interior solution to exist in the case of perfect
competition, this is no longer true when the firm faces a downward sloping residual demand curve, which
generates concavity in the marginal revenue function.

23In the limit where all inputs are perfectly non-rival, the iso-cost curve is Leontief.
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input expenditures. This adjustment is depicted by the movement from point (2) to point (3)
in panel (b), and the corresponding expansion of the iso-cost curve shown in panel (a). The
more scalable and the less rival are inputs in production, the stronger is the scale effect relative
to the substitution effect, and the stronger is the net increase in q j (as depicted). Observations
of the changes in quantities and knowledge of the movement of tangents (relative prices) in
both planes thus allow marginal changes in total costs, C jk , to be identified.

These responses traced out in Figure 1 nest the case where production is disjoint and the
cost function is separable across industries. Under this knife-edge case, which is assumed
implicitly in many canonical models of multi-product firms, scale and substitution effects
exactly cancel out (so that there are no cross-industry spillovers, i.e. ψ jk � 0).

Before turning to a model that provides the necessary structure to identify economies of
scope, the intuition above suggests that much can be gleaned from the off-diagonal, cross-
industry responses of firm sales to demand shifters, ψ jk . The remainder of this section
presents reduced-form evidence on this cross-industry response margin within the firm.

2.3 Reduced-Form Implementation

2.3.1 Overview

I run the following empirical analog of equation (1) from Proposition 1 to estimate the
impact of demand shocks (∆ log S f kt) a firm receives in various industries k on sales growth
(∆ log X f jt) in a given industry j:

∆ log X f jt � ψ
OWN∆ log S f jt + h f j({∆ log S f kt}k, j ;ψCROSS)+

Controls f j + FE jt + ε f jt , ∀ f , j, t � {2, 3}, (2)

where t � 1, 2, 3 are labels for the years 1997, 2002, and 2007, and ∆ is a first-difference
operator between t and t − 1 (a five-year difference in the data).24

Equation (2) isolates own-industry shocks from cross-industry shocks, so that h f j , 0 (a
non-zero cross-industry response) can be interpreted as a test of economies of scope. I use
various functional forms, h f j(.), to index the potential impact on industry j of demand shocks
in other industries k, {∆ log S f kt}k, j .25 The inclusion of industry-year fixed effects sweeps
away any supply and demand shocks common to all firms in an industry, while a variety

24I drop the year 2012 in all but summary statistics because (i) the global recession generated correlated
shocks across countries, industries, as well as firms, jeopardizing variation in the instrument, and (ii) the
relevance of industry characteristic information contained in BEA expenditure shares (which I hold fixed to
1997) is diminished. (Changes to BEA accounting rules on intangibles and the lack of fixed-asset tables prevent
the direct use of BEA data after 1997.)

25This significantly reduces dimensionality. There are in principle J2 � 42, 436 cross-industry elasticities ψ jk .
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of Controls f j account for non-parallel growth trends that depend on initial characteristics
specific to a firm-industry f j.

I conduct my empirical analysis on as large a sample of data as possible. I include all
US firms that are multi-industry in each base year (t − 1) for which empirical measures of
demand shocks can be constructed in at least one industry. Observations are continuing
industries of these firms over two periods of time, t and t − 1.26 I provide summary statistics
on these firms and the regression variables in Appendix Table 8. My final regression sample
of roughly 5000 firms per year accounts for over half of all US manufacturing gross output.

2.3.2 Demand Shocks

I construct firm-industry level demand shocks, ∆ log S f kt , as a shift-share instrument. I
interact pre-existing variation in a firm’s exports in an industry across foreign destinations
(n) and products (h) with changes in the size of each of these foreign markets. I use the
growth in imports (excluding imports from the US) of each foreign destination-product
market, ∆ log IMP∼US

nht as a proxy for a shift in the size of that market, so that a demand shock
relevant to an industry of the firm can be constructed as:

∆ log S f kt � s∗f j,t−1

∑
n

∑
h∈H j

s f nh | f j,t−1∆ log IMP∼US
nht , (3)

where s∗f j,t−1 is the firm’s export intensity in that industry in year t − 1 and s f nh | f j,t−1 is the
share of firm total exports in industry j that go to destination n and HS6 product h.27 I
use annual customs data on firm exports by destination and product to construct the export
intensity and share variables, and the BACI Comtrade dataset on annual global trade flows
between countries at the HS6 level to construct the import growth variable.28

My identification assumption is that these demand shocks are exogenous (unaffected by
anyof thefirm’sdecisions) aswell as conditionallyuncorrelatedwith (i) unobservable supply-
side shocks in other industries (that shift the firm’s cost function) and (ii) unobservable

26For example, suppose firm f produces in industries A and B in 1997 but only produces in A in 2002. As long
as the firm received a demand shock in either industry A or B in 1997, I include the firm in the sample (where
it takes up a single observation, f �f, j �A). However, if in 2002 the firm switches to producing industries C
and D, there is no intensive margin overlap and this firm does not appear in my sample.

27The use of both census and customs data sources on firm exports to construct the instrument is most similar
to Aghion et al. (2019). There are roughly 5000 HS6 product codes h, and only 206 industries j, with very few
instances of a HS6 code h concording to more than one industry j. See the Data Appendix for how I deal with
instances of carry-along trade and product-industry concordance splits.

28In the data, changes in import growth ∆ log IMP∼US
nht could be driven by both (i) changes in the level of

demand in that market, and (ii) changes in the degree of foreign or home producer competition in that market
that affect the price index. Both sources of variation are valid shifters of a US firm’s residual demand in that
market, though theywouldmove residual demand in opposite directions. Empirically, I find that these demand
shocks act as positive shifters of marginal revenue for US exporters, suggesting that the first force dominates.
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demand-side shocks in other industries. A distinguishing feature of this research design is
that the underlying source of variation behind ∆ log S f kt is not simply at the industry level
(k), but rather at the level of foreign destinations and HS6 products, of which there are over 1
million combinations.29 The scale and scope of US multi-industry exporters also contributes
to variation in the demand shock, even across firms within an industry. The median number
of product-destination export markets within an industry of a firm in my sample is 6.2, and
the mean is 24.1.

One threat to identification relates to exogeneity. Excluding US exports in the measures
of foreign market import growth ∆ log IMP∼US

nht ensures that demand shocks are not con-
taminated by any common supply-side shocks affecting US exporters. Nevertheless, if a US
exporter has a large enough presence in a foreign market, supply-side changes within the
US exporter could very well affect that market’s import growth from other countries. For
example, Indian imports of X-ray scanners from other countries could fall if GE becamemore
productive at making them (and started exporting more to India). To avoid these potentially
endogenous changes in foreign import growth, I construct the shock in equation (3) using
only variation from the export markets of a firm in which it has a market share below 10%.30

2.3.3 Input Proximity

I construct h f j({∆ log S f kt}k, j ;ψCROSS) as a weighted average over shocks that the firm
receives in other industries k , j, for two types of weights: (i) relative sales, and (ii) relative
input-expenditures.

The sales weighting assumes that industries have symmetric spillover effects, so that a
shock received in another industry k should be larger whenever that industry is larger (based
on sales) relative to other industries k′ within the firm:

hSYM
f j ≡ ψSYM

∑
k, j

(
X f k ,t−1∑

k, j X f k ,t−1

)
∆ log S f kt .

However, this functional form presupposes a common sign for spillovers (i.e. ψ jk �

ψSYM ≶ 0). In reality, whereas some pairs of industries may be complements in production,
other pairs might be substitutes. I explore the alternative hypothesis that input proximity
might drive spillovers. If inputs in productiondiffer in their scalability and rivalry properties,

29Analternativewould have been to use governmentmilitary expenditures as exogenous sources of spending,
or the “China shock” popularized by Autor et al. (2013) as a measure of import competition. But both of these
shocks vary only at the industry level. In addition, the China shockwas amassive shock to both input prices and
output competition. Changes in input prices are problematic in my setting because they could be firm-specific
and act as a shifter of the firm’s cost function, thus violating the exclusion restriction.

30The reduced-form results are robust with and without this re-classification.
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industry pairswill tend to have positive cross-elasticitieswhenever they relymore commonly
on inputs that are more scalable than rival. I test whether intangible inputs satisfy this
description by constructing a bilateral j-to-k measure of proximity based on expenditure
shares on intangibles:

hINT
f j ≡ ψ

INT
∑
k, j

∑
m∈MINT

f

β jm

(
βkmX f k ,t−1∑

k, j βkmX f k ,t−1

)
∆ log S f kt ,

where the sales shareweights from the SYM functional formare nowreplacedby aproduct of
two terms. The first term, β jm , is the expenditure share of industry j on input m according to
input-output tables. The second term (in parentheses) measures the importance of industry
k in the firm’s overall spending on input m relative to the firm’s other industries k′ , j.

Data on input-by-industry expenditure shares β jm come from the BEA input-output and
capital flow tables in 1997:

β jm ≡
Em j + Im j∑
m Em j + Im j

,

where Em j are the expenses of industry j on input m and Im j are the capitalized investments
on input m made by industry j to form new capital.31 Using these industry-level coefficients
to impute resource utilization is potentially advantageous even if data on firm-specific input
expenditures were available. For example, I avoid the bias that would occur if firms scaled
up expenditures on relevant inputs in anticipation of pairs of industries that are about to
grow.

I define intangible inputs as industries that belong to the following set of BEAX root
families: all ‘professional and technical services’ industries (54), management of companies
and enterprises (55), the leasing of intangible assets (533), and information (51).32 Expendi-
tures by the manufacturing sector on these inputs are non-trivial: they amount to over 9% of
manufacturing gross output in 1997. More details on the exact input industries and variation
in expenditures across inputs and industries can be found in the Data Appendix Section A.1

31Because the capital flow table ceases to exist (at least publicly) after 1997 and national accounting rules on
intangibles changed over time, I hold the shares fixed at their 1997 values throughout the analysis. Accounting
rules mean that some types of inputs are more likely to be capitalized than expensed. Different from traditional
input-output analysis which focuses on inputs whose value depreciate fully within a year, I include information
on both types of spending to construct the measure of proximity. Results are robust to using just expenditure
flows from the I/O use table. See the Data Appendix for more details.

32Examples of industries under BEAX 54 include scientific R&D, engineering, consulting, architectural,
advertising, and legal services. Although results are robust to including other industries (52, 531, and 532)
under BEAX sector 5 (finance, insurance, real estate, and other rental leasing), I do not include them in baseline
results because of the separate way that financial inputs affect businesses compared to real inputs. Moreover,
placebo exercises show that proximity in these other BEAX-‘5’ inputs alone does not generate positive and
significant spillovers.

15



and accompanying Table 7.
Using these functional forms, I estimate equation (2) and test whether ψINT and/or ψSYM

are zero, which would be true under the null of no scope economies. I also test whether
within-firm spillovers across industries vary with the intensity of use of intangible inputs
(i.e. if ψINT is different from ψSYM).

2.4 Intra-Firm Spillovers

Table 2 reports regression coefficients, ψOWN and ψCROSS � {ψSYM , ψINT}, from estimating
variants of equation (2). I first show, in column (1), that a demand shock in one industry of
the firm increases the firm’s sales in the same industry. The own-industry response, ψOWN ,
is independently positive, which confirms that demand shocks are a shifter of own-industry
sales.33

The next two columns, (2) and (3), show that spillovers from demand shocks in other
industries appear to be a wash when evaluated separately. The average cross-elasticity,
ψCROSS, is statistically insignificant from zero. This could occur for one of two reasons:
either (i) there are no scope economies, or (ii) some pairs of industries are complements
in production while others are substitutes, so that the net effect comes out to zero (due to
omitted variables bias).

Results in the remaining columns, starting with column (4), come in strongly in favor
of the latter hypothesis. When allowing spillovers to be heterogeneous across industries,
I find that spillovers are stronger and more positive among industry pairs that use more
intangible inputs. Controlling for this positive effect concentrated around intangible input-
intensive industries, the remaining spillover (based on sales weights) is negative. These
coefficients are consistently estimated and statistically significant across a battery of controls
in spite of substantial collinearity around the twomeasures of cross-industry shocks.34 These
results suggest that intangible inputs are more scalable and non-rival in use within the firm
compared to tangible capital and other inputs.35

Column (5), the preferred specification, accounts jointly for own as well as cross-industry

33I also check, in Appendix Table 9, that this ‘first-stage,’ own-shock relevance is not driven by the export
intensity variable s∗f j,t−1 picking up pre-trends in growth rates (i.e. if more export-intensive industries of the
firm grow faster). Estimates are robust to including as controls a full set of industry-year dummy variables
interacted with the export intensity variabble. This is recommended by Borusyak et al. (2018) for specifications
that work with ‘incomplete’ shift-share research designs.

34This collinearity—at 0.9—is consistent with regression columns (2) and (3) being independently insignifi-
cant due to omitted variables bias.

35For example, consider the difficulties faced by a firm opening a new plant, or constructing a new assembly
line, both of which are intuitively rival and hard-to-scale inputs. Columns (2)-(4) of Appendix Table 10 confirms
this intuition by estimating a negative cross-industry impact of demand shocks around industries that share
tangible inputs.
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Table 2: Cross-Industry Spillovers within the Firm

Sales growth, ∆ log X f jt (1) (2) (3) (4) (5) (6)
Own-industry shock, ∆ log S f jt 0.45*** 0.46*** 0.37*

ψOWN (0.10) (0.09) (0.19)

Cross-industry shocks, {∆ log S f kt}k, j
(i) Intangible expenditure weighted 0.81 7.51*** 8.00*** 13.31***
ψINT (1.01) (2.22) (2.25) (3.58)

(ii) Sales weighted -0.03 -0.74*** -0.83*** -1.67***
ψSYM (0.11) (0.24) (0.24) (0.52)

Industry-year-FE X X X X X X
Firm-year-FE X
Observations 21,500 21,500 21,500 21,500 21,500 17,500
R2 0.06 0.06 0.06 0.06 0.06 0.39
This table displays responses of firm-industry sales to demand shocks across the firm’s range of industries, in
5-year differences over the period 1997-2007. Standard errors are clustered at the firm level. Observations are at the
firm-industry-year level, for continuing observations of a sample of multi-industry firms with at least one industry
directly exporting. Results are unweighted but robust to weighting by the inverse within-firm share of sales of
industry j. Results are robust to deflating outcomes and also shocks. The magnitude and significance of coefficients
ψ are robust to inclusion of a host of control variables, including: initial period firm size, firm-industry size, export
status, export intensity, as well as controls for the shares in the functional forms used to collapse shocks in other
industries, and the interaction of these shares with other initial-period firm-industry variables.
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demand shocks. I estimate a strong and positive own-industry response to demand shocks,
and cross-industry responses that continue to be stronger andmore positive themore that in-
dustrieswithin the firm share intangible inputs. Overall, these results suggest that economies
of scope exist within the firm (I reject the null that ψ jk is zero for all industry pairs), and are
increasing in industries’ joint utilization of intangible inputs (ψINT is statistically different
from ψSYM).

While the magnitudes of these elasticities are best assessed through the lens of an eco-
nomic model (in Section 3), I offer a back-of-the-envelope calculation to show that they are
sizable in this reduced-form specification. These calculations also demonstrate that the net
effect of cross-industry spillovers within the firm can be either positive or negative, depend-
ing on the intensity of use of intangible inputs among the firm’s mix of industries.

Consider a firm that operates an industry j that has an intangible input proximitywith the
the firm’s other industries, k , j, of 0.09, the mean value in the sample. If this firm receives a
common demand shock in all of its industries equal to one standard deviation in the sample
(8.2%), the firm’s sales in industry j would rise by 2.7%. This can be decomposed into an
own-industry response (3.8%) and a negative cross-industry response (-1.1%). For another
firm receiving the same shocks but whose industry j is more proximate (by one standard
deviation above the mean) in its use of intangible inputs with its other industries k , j, the
cross-industry response rises to a positive 1%. The total increase in sales in industry j is now
4.8% (� 3.8%+ 1%), with cross-industry spillovers accounting for more than one-fifth of this
response.

All the displayed results in Table 2 are robust to the inclusion of an exhaustive set of firm-
industry level controls (see column 1 of Appendix Table 10). They are robust to controlling
for the pre-period size of the firm’s industry j, which captures the possibility that large
and small firm-industry segments might be on different growth trends. Results are robust
to controlling for own-firm-industry export intensity and export status. Additional controls
include firm-wide covariates such as firm total size (in a pre-period) andfirmexport intensity.

To placate concerns that the weights used to construct hINT
f j and hSYM

f j might be picking
up correlated unobserved changes across industries, I construct additional controls that
measure how pre-existing presence, sales, export intensity, and export status, of the firm in
other industries k might affect sales growth in j when weighted using the same intangible
input and sales weights. For any firm-industry level variable Y f k , I construct:

ControlINT
f j ({Y f k}k, j) ≡ ψINT

Y

∑
k, j

∑
m∈M INT

f

β jm

(
βkmX f k ,t−1∑

k, j βkmX f k ,t−1

)
Y f kt ,

and likewise for ControlSYM
f j ({Y f k}k, j) using sales shares over k , j as weights. These vari-
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ables control for the possibility that firm sales in j may have grown faster simply because
the firm had a large amount of pre-existing sales in industry k, or because the firm was
exporting in industry k, etc. I find that they affect neither the significance nor magnitude
of the estimated spillover coefficients, ψINT and ψSYM . Reassuringly, these controls demon-
strate that variation use to identify spillovers is not coming exclusively from the initial period
distribution of export shares and sales intensities, but rather the interaction of these shares
with changes in foreign market size.

Finally, column (6) of Table 2 shows that results remain robust to controlling for firm-year
fixed effects, which soak up unobserved supply and demand shocks that jointly affect all
industries of the firm (so that variation comes from both differences across industries within
the firm and differences across firms within an industry).36

2.4.1 Other Input Linkages

Are there other relevant dimensions of industries that are correlated with spillovers? I
construct alternative spillover functions based on correlation in input use for any blocks of
inputs in the BEA I/O tables. I define these analogously to the measure of proximity over
intangible inputs, hINT

f j . For any block of inputs m ∈ BLK, I construct hBLK
f j according to the

same functional form, using relative input expenditures over industries within that block as
weights:

hBLK
f j ≡ ψ

BLK
∑
k, j

∑
m∈MBLK

f

β jm

(
βkmX f k ,t−1∑

k, j βkmX f k ,t−1

)
∆ log S f kt .

I re-produce the specification in column (5) of Table 2 but now replace hINT
f j with hBLK

f j .37
Coefficients on input-based transmission are displayed in Figure 2 and the corresponding
regression table can be found in the Data Appendix under Table 11. The first three rows
of Figure 2 break down my classification of intangibles into three blocks of inputs. I find
that each block is positive and statistically significant. With the exception of transportation,
wholesale and retail service inputs, which is mildly positive, no remaining input block in
the IO tables appear to drive spillovers in any significant way. In particular, the estimates on
inputs such as capital, labor, agriculture, and manufacturing are all precisely estimated at
zero. These results strongly suggest that intangibles have distinct characteristics from other
inputs.38

36The magnitudes become more polarized because inclusion of firm-year fixed effects soak up any net firm-
wide responses that are induced by economies of scope. For this reason the specification without firm-year
fixed effects (column 5) is preferred.

37To enable a fair comparison, I include the same controls as the original column (5)—the own-industry shock
and the sales-weighted spillover function, hSYM

f j .
38Ultimately, the only factor preventing joint estimates of transmission elasticities for each input block in the
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Figure 2: Cross-Industry Spillovers by Type of Input

This figure displays estimates of ψBLK (spillover coefficient) from replacing hINT
f j with hBLK

f j in alternative
versions of regression specification (5) of Table 2, where BLK corresponds to the input category across the
rows of the Figure. Point estimates are in green and 95% confidence intervals in orange. See Table 11 for the
corresponding regression table and for more detail on the BEAX sector codes of these inputs.
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2.4.2 Response of Intangible Inputs within the Firm

The finding that spillovers are positively correlated with intangible input use is suggestive
of a particular mechanism: when firms scale up intangible inputs in response to a demand
shock in one industry, the non-rivalry of these inputs also benefits other industries within
the firm. I use the data on hand to test a necessary condition behind this mechanism.

I show that firm-wide expenditures on aparticular categoryof intangibles I canmeasure—
purchased professional services—rise in response to firm-wide demand shocks, in line with
the hypothesis that these resources are scalable.39 Table 3 reports the response of a set of firm-
level outcome variables to firm-level demand shocks. I study the response of (i) purchased
professional services and compare it to the response of (ii) sales, (iii) capital expenditures,
and (iv) payroll. I estimate the following regression:

∆ log Y f t � ν̃
∑

k

η f k ,t−1∆ log S f kt + ε f t , (4)

where η f k ,t−1 are weights that measure the relative propensity of demand shocks in industry
k to shift firm-wide outcomes, depending on the outcome variable.40

I find that purchased professional services rise in response to firm-wide demand shocks,
with an elasticity of 0.65. This elasticity reflects the joint effect of input scalability and the
responsiveness ofmarginal revenue to the empirically constructed demand shifter. I leverage
and come back to this relationship when structurally estimating the model (in Section 4).41
In comparison, capital expenditures and payroll all respond with a lower elasticity than
purchased professional services, consistent with the hypothesis that intangibles are more
scalable than these other inputs.

same regression specification is the finiteness of the sample size. Whenever three of more blocks of inputs are
included, collinearity kicks in and all estimated ψ coefficients—except ψINT—lose significance. For an example,
refer to specification (4) of Table 10 in the Data Appendix, which controls jointly for tangible, symmetric, and
intangible spillover variables.

39Data on these expenditures are only available for a subset of firms in themain regression specification. These
expenditures are available at the level of the firm and comprise of expenditures on outsourced professional
services that includepurchased software anddata processing,management, and advertising that are reasonably
a subset of what would fall within the classification of intangibles in BEA data. For more details, see the Data
Appendix.

40See the Data Appendix for the precise definitions. For the professional services outcome variable, I use the
BEA I/O table implied expenditure shares by industry on intangible inputs. For sales as the outcome, I use
firm sales weights. For capex and payroll, I use the relative expenditures on that input category by industry
(implied by the BEA I/O table) as weights.

41This consistency with theory is the primary motivation for using input-expenditure weights η f k ,t−1 instead
of a simple relative sales (market size) as weights. Magnitudes do not change much and significance is retained
when using relative sales (market size) as weights across all four outcome variables in Table 3.
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Table 3: Firm-level Margins of Response to Demand Shocks

(1) (2) (3) (4)
Purchased Prof. Services Sales Capex Payroll

Outcome-relevant demand shock 0.65*** 0.37*** 0.47 0.25**∑
k η f k ,t−1∆ log S f kt (0.22) (0.15) (0.37) (0.11)

Year-FE X X X X
Observations 3,900 3,900 3,900 3,900
R2 0.02 0.05 0.04 0.01
This table displays responses of firm outcomes to aggregated demand shocks across the firm’s range of industries,
in 5-year differences over the period 1997-2007. Standard errors are clustered at the firm level. Observations are
at the firm-year level, for continuing firms with at least one industry directly exporting and reporting non-zero
purchased professional services.

2.5 Discussion

These reduced-form results provide evidence that sales in one industry of the firm responds
to demand shocks in other industries, and that these cross-industry spillovers are more
positive among industries that share more intangible inputs.

For the spillovers in Table 2 to be interpreted as a test of scope economies, the only
requirement is that demand shocks are conditionally uncorrelated with unobservables in
other industries. In particular, a demand shock in industry k can be arbitrarily correlated
with unobserved supply and demand shocks exclusive to that same industry—this would
merely change the interpretation of the own-industry elasticity, ψOWN . Demand shocks also
do not need to be unanticipated: the coefficients pick up precisely the endogenous supply
side response in industry j to demand shifters in industry k. The fact that a particular shock
is anticipatable t years ahead of time simply changes the interpretation of the time horizon
without changing the fact that there has been a response.

My empirical strategy is resilient to two main identification threats. The first concern
is that demand shocks in any industry are correlated with unobserved demand shocks in
other industries, inducing omitted variables bias. But the lack of significance in either of the
spillover functions in columns (2)-(3) of Table 2 rule out a simple correlation structure. Still,
it could be the case that the import growth patterns in foreignmarkets (nh combinations) are
more positively correlated across industries that co-use more intangibles. I directly test and
reject this hypothesis in the data. A related concern is that proximity in the use of intangibles
is actually correlated with demand-side complementarity. In this story, the firm only needs
a demand shock in one of these industries to be observed to be selling more goods in both.
However, results continue to be significant when I purge from the sales of industry j all
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exports to destination countries where the demand shocks (for industries k) originated.42
The second threat to identification is omitted variables bias induced by a correlation

between demand shifters in one industry of the firm and unobserved supply-side shocks in
other industries of the firm. Since all regression specifications include industry-year fixed
effects, remaining supply-side shocks have to be firm-specific.43 My preferred interpretation
is that firm-specific supply-side innovations are the precise result of these cross-industry
demand shocks, and therefore a part of the spillover response.

There is, however, a less organic interpretation: firms that anticipate positive supply-
side shocks in a pair of industries j, k select into exporting in those industries (and, in
particular, to fast-growing markets with higher demand shocks). For this interpretation to
also explain the null coefficients in columns (2) and (3) of Table 2, suppose for the sake
of argument that firms are systematically better at anticipating these effects in intangible
input-intensive industries. Under this interpretation, growth is a function of pre-existing
joint production and exporting patterns. I show that this hypothesis does not survive the
following placebo exercise. I re-assign firm-industry exporters in each industry k different
export demand shocks drawn from the empirical distribution of shocks in that industry.44
I keep all remaining firm variables (such as firm-industry production weights, and other
controls used) the same in the regression but find no false positive spillover coefficients.45

The Data Appendix summarizes findings from additional robustness exercises. I test and
reject other mechanisms that could have generated the spillovers, such as common export
destinations as a non-rival firm resource, and vertical (both upstream and downstream)
relationships between k and j.

3 Quantitative Model

To interpret and quantify the reduced-form spillovers, I develop a tractable general equi-
librium model of multi-industry firms with variable economies of scale and scope. My
framework generalizes workhorse models of heterogeneous firms featuring monopolistic
competition and CES demand (Melitz, 2003). It allows any variable input in production to
have unrestricted degrees of scalability and rivalry within the firm. These characteristics

42I also find that results are robust to controlling for latent demand shocks—a measure of demand for
industry j of the firm not fromwhere it is currently exporting the goods (which is ∆ log S f jt) but from the other
export destinations to which it currently sells goods in other industries.

43For example, suppose that the price of IT capital and software fell over 1997 to 2007. The industry-year
fixed effects take care of this by absorbing any decline in input prices in industries that are heavily dependent
on IT capital. Industry dependence on IT capital comes purely from aggregate (I/O) and not firm-level data,
eliminating any concern about firm-specific endogeneity.

44This is {∆ log S f ′k} f but still constructed using the firm’s own (actual) export-intensity weighting.
45These results are undisclosed but available upon request.
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of inputs generate economies of scope and rationalize cross-industry spillovers in the data.
The first half of this section introduces the functional form assumptions and discusses the
microeconomic predictions.

My model is also tractable in general equilibrium and aggregates to match industry-
level expenditures on inputs (including intangibles). I derive analytical predictions for the
elasticity of the price index in any industry with respect to market size shifters in another
industry—what I call aggregate economies of scope. This matrix of aggregate cross-industry
elasticities depends on the microeconomic scale and rivalry elasticities of variable inputs
within the firm. The second half of this section derives these predictions and uses stylized
examples to build intuition.

3.1 Micro Production Framework

A continuum of firms compete, in each industry j, under monopolistic competition facing
CES demand with elasticity σ j . This assumption shuts down demand-side and strategic
complementarities and variable markups so that the only source of interdependencies in a
firm’s profit maximization problem comes from properties of joint production.

I begin, in Assumptions 1 and 2, with a description of the technology for producing
quality-adjusted units of output, q f j . The production function is agnostic about whether
firms’ input expenditures serve to improve product quality, appeal or physical efficiency.46

Assumption 1 (Production Function) Production of quality-adjusted quantities q f j isCobb-Douglas
in (i) a bundle of generic inputs, l f j , (ii) an exogenous profitability shifter ξ̃ f j , and (iii) an acquired
level of knowledge capital, ϕ f j :

q f j � l
γj

f j · ξ̃ f j · ϕ f j . (5)

Generic inputs l f j are purchased at constant unit prices c j , and γj ∈ [0,
σ j
σ j−1) is the elasticity of

outputs with respect to generic inputs.

This production function breaks down what would be a conventional measure of ‘pro-
ductivity’ in the spirit of Melitz (2003) and Bernard et al. (2010) into two components: an
exogenous component ξ̃ f j , which I call a profitability shifter, and an endogenous component
ϕ f j , which I call knowledge capital. By solving out for the conditional choice of generic
inputs and pricing, I express gross profits π f j and sales X f j as a function of industry-wide

46Given the broad definition of what is an industry (the manufacturing sector is divided into only 206
industries), firms competing in the same industry should not be expected to be making varieties differentiated
only by their physical marginal costs of production. Indeed, Hottman et al. (2016) find, using Neilsen scanner
data, that more than half of the variation in firm size in their sample can be attributed to product appeal alone.
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aggregates (residual profits, B j) and the two firm-industry specific ‘productivity’ terms:

π f j � (1 − ς j)X f j � B jξ f jϕ

σ j−1
σ j (1−ς j )

f j , (6)

where ς j ≡ γj
σ j−1
σ j

is a constant share of industry sales expensed on generic inputs observable

from I/O tables, ξ f j ≡ ξ̃
σ j−1

σ j (1−ς j )

f j is a convenient re-normalization (of a purely exogenous term),
and industry-wide residual profits is given by

B j � (1 − ς j)
(

c j

ς j

) ς j
ς j−1 (

P
σ j−1
j Yj

) 1
σ j (1−ς j ) , ∀ j. (7)

where c j denotes the unit cost of the generic input bundle, P j describes the standard CES
industry price index, and Yj denotes aggregate expenditures on goods from j.47

Different from generic inputs, the contribution of specialized inputs in production is not
deterministic ex-ante. Specialized inputs serve to increase the firm’s knowledge capital, ϕ f j ,
an index that captures the combined profitability effect of firm-industry-specific attributes,
such as customer lists, warehousing capabilities, product design, and brand capital. These
attributes are customized to the firm and impossible to acquire directly on the market. To
build up these attributes, the firm relies on the ideas generated (or the tasks performed) by
different types of specialized inputs, which I denote by m � 1, ...M.48 The firm plays the role
of internally allocating ideas (or tasks) to industries where they generate the highest value.49

The contribution of specialized inputs towards advancing knowledge capital is uncertain
ex-ante (when budgeting and input expenditure decisions are made). The first source of
uncertainty is in the number of ideas generated. Even if the firm allocates a large budget
to R&D (a type of input, m), it may come up short on actual R&D ideas that improve
knowledge capital. I model the arrival of (discrete) type-m ideas within the firm, A f m , as a
Poisson process with rate I f m . The arrival rate can be increased by the firm through higher

47This section does not need to take a stance on whether the economy is open or closed; P j and Yj can reflect
import competition and export market opportunities, as long as there is no selection margin.

48There are no ex-ante assumptions onwhat these inputs need to be: some of these specialized inputs (such as
R&D workers) might fall under the ‘intangible’ classification adopted in the reduced-form, while some others
(administrative assistants) might not. In the context of the model, ideas are also synonymous with specialized
tasks (performed by labor, or machines).

49Though the deployment of ideas is fully rival by assumption, the value of specialized inputs that generate
them is not, as will become clear.
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expenditures on that specialized input, subject to a convex cost function:

Cm(I f m) �
ρm − 1
ρm

w
(

I f mt

Z

) ρm
ρm−1

, ∀m ,

where ρm ∈ (1,∞) is an index of scalability, Z is a technological coefficient, and w is the price
of labor (the single factor of production in the model).

The second source of uncertainty is the match-specific quality between an idea and an
industry. For example, an engineer hired to improve battery longevity in vacuum cleaners
may end up generating ideas that aremore useful when deployed towards increasing battery
efficiency in electric vehicles. I model the match-specific contribution of an idea (indexed i)
to knowledge capital in any industry (denoted φ f jm ,i) as an independent random draw from
a Fréchet distribution:

Pr(φ f jm ,i ≤ x) � e−x−θm
, ∀ j, ∀i � 1, ...,A f m ,

where the shapeparameter θm ∈ (1,∞) indexes predictability (the variance of thedistribution
decreases with θ).

With multiple ideas i arriving from multiple input types m � 1, ...,M varying in quality,
the firm’s solution is intractablewithout further assumptions on how the ideas are combined.
I proceed in the rest of the paper with an additive separability assumption.

Assumption 2 (Knowledge Capital) Firms choose a single industry j in which to deploy each idea
i, φ f jm ,i , knowing that the cumulative effect of deployed ideas on profit-relevant knowledge capital
ϕ f j is additive:

ϕ

σ j−1
σ j (1−ς j )

f j �

∑
m

α̃m j

A f m∑
i

φ f jm ,i1 f jm ,i , ∀ j

where α̃m j is a technology parameter governing the average quality of an idea from specialized input
m applied to industry j, and 1 f jm ,i is the firm’s deployment decision variable: equal to 1 if idea i from
input type m is deployed to industry j, and 0 otherwise.

With this assumption, the optimal industry in which to deploy any given idea is inde-
pendent of past or future decisions.50 Despite these parametric assumptions, the model of
production described here generalizes that in standard models of firms, where knowledge

50This is crucial for tractability in the model, though none of the qualitative predictions hinge on this
parametrization. Taken literally, the parametrization makes directional sense. The value of an idea towards
improving knowledge capital ϕ is increasing with the degree of product differentiation in an industry, 1/σ j ,
and decreasing with the output elasticity with respect to generic inputs, γj .
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capital is implicitly exogenously determined at birth. Given that the scalability (ρ), pre-
dictability (θ), and technology coefficients α̃m j are fully general in my setting, I nest these
benchmark models whenever the cost function is restrictively convex (ρm →∞).51

Two properties of the firm’s profit maximization problem are noteworthy. First, discrete-
ness in the number of ideas that arrive means that the firm can very well end up with zero
accumulated knowledge capital in certain (or even, all) industries. Given the necessity of
knowledge for production (through the Cobb-Douglas specification), the allocation of ideas
to knowledge capital affects the firm’s extensive margin (the set of industries in which the
firm is active). This decision, however, is fully endogenous. The firm chooses the mean
Poisson arrival rate, I f m , and, among the ideas that do arrive, it chooses the industry in
which that idea is deployed, 1 f jm ,i . The model thus explains intensive and extensive margin
reallocation in the data without the need to turn to literal fixed costs typical in this class of
models.52

Second, the technology parameters α̃m j allow the quantitative model to exactly match
heterogeneity in input-by-industry expenditures in the BEA Tables. For example, the fact
that advertising innovations (a particular m) aremore useful on average for certain industries
j (e.g. consumer-facing ones) is captured by a higher value of α̃m j in the model, and a higher
expenditure share in the data. I exploit this mapping in Section 4 to invert technology
parameters from expenditure shares.

Given these assumptions, the ex-ante value provided by specialized inputs within the
firm is partially non-rival and determined by the Fréchet shape parameter, θm .

Lemma 1 (Microfoundation for Non-rivalry) Given Assumptions 1 and 2, the expected contri-
bution to gross profits of any idea generated by specialized input m is given by ∆ f m/Z, where ∆ f m is
a power sum of residual profitability of input m over industries j :

∆ f m ≡
©«
∑

j

δθm
f m j

ª®¬
1
θm

, δ f m j ≡ ξ f jαm jB jZ,

where αm j ≡ α̃m jΓ(1 − 1/θm) is a renormalization of the technology parameter and δ f m j is an
exogenous index of residual profitability of input m in industry j in firm f .

Intuitively, non-rivalry comes from ex-ante ‘option value’ generated by unpredictability
in the match-specific quality of ideas. When unpredictability is high (θm low), the expected

51Another way to motivate the additive separability assumption is to think of each idea as the genesis of a
distinct product linewithin the industry of the firm, and have the firm operate discrete product lines ofmeasure
zero within each industry.

52Expenditure outlays on specialized inputs Cm(I f m) can be interpreted as ‘variable fixed costs’ of the firm.
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value (to gross profits) of the best industry application of an idea is high, and therefore so
is the ex-ante value of the corresponding specialized input m within the firm. There are
two illustrative limit cases. As θm → 1, optionality is so large that the expected value of
the best industry application is equal to the sum of residual profitability across all industries
j. Specialized inputs (which generate these ideas) are thus fully non-rival in their expected
value-added to the firm. On the other hand, as θm → ∞, the quality of each idea is fully
predictable, resulting in no option value. The ex-ante expected value-added of specialized
inputs is thus lower—equal to the marginal profitability of the single highest industry in the
firm.

Despite being an ex-ante concept, non-rivalry in the expected value-added of specialized
inputs also rationalizes ex-post observations of ‘non-rivalry’. Due to higher unpredictability,
all else equal, non-rival inputs will generate ideas that are more likely to be deployed across
more industries.

3.2 Firm Outcomes

Timing. The production framework introduced in this section can be tractably embedded
in either dynamic or static equilibrium settings. For exposition, I consider a static represen-
tation.53 Each firm maximizes profits by first choosing expenditures on specialized inputs,
C(I f m), knowing the exogenous terms in δ f m j , but before the number of ideas and their
match-specific qualities are realized. The firm thus internalizes the higher expected value of
more non-rival specialized inputs. After spending on specialized inputs, the firm undergoes
an incubation period of time before production to harvest ideas that improve knowledge
capital. It decides the industry in which to deploy each idea that arrives. Finally, the firm
purchases generic inputs l and decides quantities of production in equilibrium conditional
on its accumulated level of knowledge capital ϕ f j .

Lemma 2 characterizes optimal choices made by the firm and the expected profits and
entry patterns that result from those choices, where the expectation operator, E, represents
uncertainty over the number and quality of ideas generated by specialized inputs.

Lemma 2 (Firm’s Solution) Given Assumptions 1 and 2, the expected gross profits of any firm f
in industry j is a constant fraction (1 − ς j) of expected sales and given by

E[π f j] � (1 − ς j) E[X f j]

�

∑
m

µ f m j∆
ρm

f mw1−ρm ,
(8)

53The additive separability assumptionmakes it is easy to have a firmproduce and harvest ideas overmultiple
periods; one simply needs an assumption on the rate of depreciation of knowledge capital. Indeed, this slight
extension is used in the next section to structurally estimate the model given the panel structure of the data.
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where ∆ f m is the expected contribution to profits of a single idea generated by input m, as in Lemma
1, and µ f m j is the probability that the firm deploys an idea generated by input m in industry j:

µ f m j ≡
δθm

f m j

∆
θm
f m

.

The probability that a firm enters industry j, denoted χ f j � 1, is given by

Pr(χ f j � 1) � 1 − exp

(
−Z

∑
m

µ f m j∆
ρm−1
f m

)
, (9)

and is independent across industries. Expected net profits of the firm are given by expected gross
profits over all industries less total expenditures on specialized inputs:

E[Π f ] �
∑

j

E[π f j] −
∑

m

Cm(I f m) �
∑

m

1
ρm
∆
ρm

f mw1−ρm . (10)

Equation (8) encapsulates all the microeconomic insights behind scale and rivalry. A
firm’s sales in an industry j always increases with own-industry residual profit shifters: B j

and ξ f j . But sales is also affected by profitability shifters in other industries ξ f kBk , which
show up in the total profitability terms {∆ f m}m . The direction and magnitude of cross-
industry effects depend on whether the scalability of each input (ρm) is larger than its rivalry
in use (θm).54

Intuitively, two things happen when profitability in k (either Bk or ξ f k) rises. First, the
firm increases its expenditures on specialized inputs, particularly those inputs m where
ideas contribute the most to knowledge capital in k. Second, because profitability in k is now
relatively higher, the firm will more often find k to be the most profitable industry in which
to deploy an idea.55 While the first effect raises the number of potential ideas of type-m that
improve knowledge capital in another industry j, the second effect decreases the likelihood
that an actual idea will be deployed to industry j. The net effect on accumulated knowledge
capital in industry j depends on a trade-off between these two forces, averaged across the
sets of inputs m that are most technologically relevant for production in j and k.

These expressions for firmsales andprofits combine both the extensivemarginprobability

54The use of this Fréchet shape parameter to model choice shares was introduced to trade by Eaton and
Kortum (2002). However, rather than focusing on θ as a choice-share elasticity, my paper exploits the role of θ
in the Fréchet functional form for expected value.

55Variance of match-specific shocks need not be a driver of differences in θm . Even if θm � θ for all inputs m,
the model is isomorphic to idea φ f m j having different returns to scale in the generation of knowledge capital
ϕ f j in Assumption 2. See the online supplementary theory appendix for more details.
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that a firm is active (in that industry) and the intensive margin quality of accumulated
knowledge capital conditional on ‘entry’. Industry entry in the model is generated by
the firm deploying a first idea in that industry j. Granularity in the arrival process of
ideas, combined with the necessity of knowledge capital in the production function, thus
rationalizes endogenous entry and exit without any need to introduce fixed costs.56 The
probability of firm entry into industry j is analytically characterized by equation (9) and
endogenous to the same scale and rivalry properties of specialized inputs. These features of
the model render the firm’s ex-ante problemwell-defined and convex, significantly reducing
dimensionality.

Proposition 2 log differentiates equation (8) to illustrate how cross-industry elasticities of
expected sales (or gross profits) with respect to demand shocks depend on scale and rivalry
parameters behind specialized inputs, {ρm , θm}m . Within the firm, own-industry elasticities
are positive, while cross-industry elasticities are completely unrestricted in both magnitude
and direction. Cross-industry elasticities appear as simple weighted averages of ρm − θm

over the set of inputs m; they are positive whenever, on average, inputs common in both
industries are more scalable than rival. Cross-elasticities are asymmetric since transmission
is one-directional. They are larger whenever the shocked industry k is an important user of
specialized inputs m (relative to other industries k′), and whenever input type m is a more
important input for production in industry j (relative to other inputs m′).57

Proposition 2 (Spillovers within the Firm) The elasticity of firmprofits or sales,E[X f j], to resid-
ual demand shocks in any industry k is given by:

ψ f jk �
d logE[X f j]
d log ξ f kBk

�

∑
m

λ f jm
(
µ f m j(ρm − θm) + θm1 j�k

)
, ∀ j, k , (11)

where µ f m j are choice shares given in Lemma 2, and λ f jm denote utilization shares: the share of gross
profits of industry j attributable to knowledge capital contributions by input m:

λ f jm ≡
µ f m j∆

ρm

f mw1−ρm∑
m′ µ f m′ j∆

ρm′
f m′w

1−ρm′
.

Proposition 2 explains the competing presence of both positive and negative spillovers
(generated by the same demand shocks) in the reduced form. It interprets positive spillovers

56The use of discrete stochastic processes to explain ‘zeros’ is inspired by Klette and Kortum (2004), Eaton
et al. (2013), and Armenter and Koren (2014). But instead of having an exogenous statistical process drive
granularity, my framework grounds zeros (the absence of a firm operating in an industry) in the endogenous
profit-maximizing decisions of firms.

57Note that the asymmetry is true even if αm j � αmk , since the asymmetry also depends on firm-specific
market sizes in industries j and k.
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in the reduced form as coming from a set of inputs that has ρm > θm , and negative spillovers
as coming from other inputs that have ρm < θm . The case where there are no interdepen-
dencies across industries occurs on a knife’s edge in parameter space: spillovers are zero for
all industry pairs if and only if θm � ρm , ∀m.

In the limit as firms in the regression sample become infinitely large, equation (11)
becomes a close approximation to the functional forms h f j assumed in the reduced-form
(Section 2). In this limit, the expectation termE[X f j]—which normally reflects both extensive
and intensive margins—approaches just the intensive margin specification in the reduced-
form. I provide more information in the Theory Appendix.

3.3 Industry-level Spillovers

This subsection characterizes aggregate equilibrium predictions in the model. I endogenize
industry-level residual profits, {B j} j , by aggregating the decisions of all firms. General
equilibrium is a setting whereby, given anticipated residual profits, {B j} j , firms’ decisions
over input expenditures, idea deployment, and production give rise to the same equilibrium
{B j} j as anticipated, clearing the goods market in each industry.

The lack of any literal fixed costs in the model makes aggregation smooth and convex.58
The problem of the firm described earlier applies to all firms, not just the firms that are
ex-postmulti-industry. In the model, both small (low ξ f j) and large (high ξ f j) firms face the
same convex specialized input expenditure decision. Smaller firms simply spend less, and
in equilibrium, are more likely to either have zero ideas that arrive (in which case it becomes
a latent firm with no sales) or only one (in which case it becomes a single-industry firm).59

To economize on exposition, I develop here the minimal equilibrium structure required
to understand how scope economies generate cross-industry propagation. I assume that
the mass of firms N in the economy is fixed and that a distribution G({ξ f j}) describes pre-
existing variation in exogenous profitability shifters across firms and industries. I abstract
from factor price changes and input price changes.60

58Fixed costs are problematic in that they introduce non-convexities not just from the point of view of firms,
but also from the point of the aggregate economy. That is, even if a solution to the firm’s combinatorial discrete
choice problem under a partially supermodular and submodular profit function were computationally feasible
(perhaps by building on innovations in Jia (2008), Antràs et al. (2017) and Arkolakis and Eckert (2017)), solving
for equilibrium residual profits {B j} j under firm heterogeneity is itself non-trivial and likely to admit multiple
equilibria. Instead, the stochasticity introduced in the model obviates the need to confront these issues, while
still allowing for endogenous extensive margin responses within the firm.

59Note that firms that have two or more ideas that arrive do not automatically become multi-industry firms.
Due to the independent draws, two ideas could both be optimally deployed in the same industry, particularly
if the firm has a particularly high latent profitability shifter ξ f j in that industry.

60This setup is sufficient for estimating themodel (in Section 4) since X j is observed. Estimates of themodel’s
elasticities are invariant to other GE specifications. In the quantification section (5), I close the model in a GE
setting calibrated to the US economy, and more general details are given in the Theory Appendix.
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In such a setting, equilibrium boils down to solving a system of J goods market clearing
conditions that solve for industry price indices, P j :

N
∫

f
E[X f j ; ®P]dG(ξ f ) � X j , ∀ j, (12)

where firm sales E[X f j ; ®P] as denoted in equation (8) depends on ®P through residual profits
B j , given by equation (7).

Holding all else equal, equations (12), (8), and (7) can be log-differentiated to yield a
system of cross-industry local elasticities of the price index with respect to equilibrium
changes in gross output X j . I define these macro elasticities in Proposition 3 as aggregate
economies of scale and scope.61

Proposition 3 (Aggregate Economies of Scale and Scope) The elasticity of the price index P j

with respect to equilibrium changes in gross output in other industries {Xk}k∈ J is given by:

d log P j �
1

σ j − 1

∑
k∈ J

(
σ j(1 − ς j)[Υ−1] jk − 1 j�k

)︸                           ︷︷                           ︸
≡[Ψ]jk

d log Xk , ∀ j, (13)

where Ψ is a J× J spillover matrix that depends on inverting weighted averages of individual firm-level
cross-industry elasticities:

[Υ] jk ≡
∑

m

λ̄ jm µ̄ jmk(ρm − θm) + 1 j�k

∑
m

λ̄ jmθm , ∀ j, k ,

where the bar over utilization and choice shares λ̄ and µ̄ indicate that they are weighted averages over
individual firm-level firm-level shares:

(i) Choice shares µ̄ jmk indicate the economy-wide propensity for ideas generated by input m to be
deployed towards expanding knowledge capital in industry k (relative to other industries k′)
among firms that produce in j:

µ̄ jmk ≡
∫

f

λ f jmE[π f j]∫
f λ f jmE[π f j]dG(ξ f )

µ f mk dG(ξ f ).

(ii) Utilization shares λ̄ jm indicate the aggregate contribution to industry j of ideas generated by

61This is, of course, related to the traditional definition of scale economies as an elasticity of costs to quantities.
See Appendix Section B.6 for a derivation of that expression. Concepts as defined here are more useful in
monopolistic competition equilibria. The counterfactual shocks I consider (in Section 5) can be constructed as
exogenous shifters of market size.
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input m (relative to other specialized inputs m′):

λ̄ jm ≡

∫
f λ f jmE[X f j]dG(ξ f )∫

f E[X f j]dG(ξ f )
.

Proposition 3 demonstrates that the scalability and rivalry of specialized inputs within
the firm create interdependence across aggregate industry price indices. This is a new trans-
missionmechanism independent of general equilibrium factor price and input price changes
(such as those from Heckscher-Ohlin models or input-output linkages).62 Cross-industry
macro propagation occurs if and only if off-diagonal terms in Υ are non-zero. This requires
inputs to be both (i) co-utilized in multiple industries, and (ii) differ in their scalability and
rivalry in production, ρ , θ.

To understand the first force, suppose that each industry is technologically isolated. This
could occur if specialized inputs only serve one industry (i.e. m is industry-specific capital
and ideas generate value only in one industry), or if residual profitability shifters of firms are
positive for only one industry within the firm. In this extreme case, Υ jk � 0 for all elements
j , k and the inverse is thus a diagonal matrix. Given that other elements of equation (13)
operate only on themain diagonal, the spillovermatrixΨ is also limited to themain diagonal.
The fact that spillovers Ψ relate to the inverse of Υ captures propagation forces under general
equilibrium. Even if a pair of industries j and k have no technological overlap63, price indices
in j can respond to price indices in k due to changes occurring vis-a-vis other parts of the
economy.

The second condition requires that scale and rivalry effects do not perfectly offset each
other within the firm. This perfect offset occurs only in the knife-edge case of Proposition 2
where there are no economies of scope. Scope economies (positive or negative) within the
firm are a necessary condition for general equilibrium propagation across industries.

Because within-firm economies of scope are nested within a CES-MC framework, de-
mand elasticities σ j invariably play an important role in regulating the overall magnitude of
economies of scale and scope. The value of (1/(σ j − 1)) is an upper bound for the strength of
economies of scale.64 Because of this, I later explore the sensitivity of quantitative results to

62One goal behind quantification in Section 5 is to interact and compare spillovers arising from scale and
scope to those in I/O models. I show, in Proposition 5, that it is straightforward to nest I/O linkages in this
setting—by replacing wage-related unit costs with an appropriated weighted index of factor and input prices
using I/O shares as Cobb-Douglas weights.

63That is, either αm j � 0 or αmk � 0 for each m over the set of specialized inputs m � 1, ...,M, or firm that
have positive profitability shifters in j have zero shifters in k and vice versa. In this case λ̄ jm µ̄ jmk � 0 and
off-diagonal terms in Υ are zero.

64This is achieved as ρm →∞, since σ j (1−ς j )∑
m λ̄ jmρm

is always positive.
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different values of σ.

3.3.1 Relation to Existing Models

Proposition 3 generalizes the macro predictions of existing multi-industry GE models by in-
troducingmore degrees of freedom in how specialized inputs adjust within the firm, thereby
opening up off-diagonals in the spillover Ψ matrix. Whenever there are no scope economies
within firms, Ψ reduces to a main-diagonal matrix of own-industry scale elasticities. This
knife-edge condition nests a wide class of models with variable own-industry economies of
scale. Equation (13) reduces to the following:

d log P j �
1

σ j − 1

(
σ j(1 − ς j)∑

m λ̄ jmρm
− 1

)
d log X j , ∀ j,

which, for enough flexibility in ρm and σ j , is isomorphic to the predictions in recent models
with variable own-industry returns to scale (Kucheryavyy et al., 2019; Bartelme et al., 2019).

Economies of scale in this setting are increasing in the scalability of inputs, ρm . In the
limit as ρm →∞ for all m, the industry-level scale elasticity (1/(σ j − 1)) is equivalent to that
in a multi-industry Krugman (1980) model with industry-specific free entry. In this limit,
the costs of expanding the arrival rate of ideas is linear, so the endogenous response within
existing (including latent) firms to shifters of market size equals that achieved by outside
entrants in the Krugman model.

Conversely, as ρm approaches the other limit of 1, knowledge capital becomes fixed. As
the costs of adjusting the arrival rate of ideas approach infinity, firms respond to market size
shifters only by adjusting their use of generic inputs. The returns to scale in generic inputs
thus shapes the response of the price index tomarket size shifters. The higher is the returns to
scale γj , the lower is 1− ς j and the stronger is the productivity response. If there are constant
returns to scale behind generic inputs, σ j(1− ς j) � 1 and the price index (productivity) does
not respond to shifters of market size given a fixed set of firms. Consequently, there are
no industry-level economies of scale. Re-introducing aggregate free entry in this limit case
reproduces the setup of Bernard et al. (2010).

4 Structural Estimation

In this section, I estimate the model’s parameters using moment conditions analogous to the
within-firm spillovers (ψ f jk) examined in Section 2. The model provides the requisite as-
sumptions and structure to leverage the identification insight of Proposition 1, and attributes
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economies of scope to the scalability (ρm) and rivalry (θm) of different specialized inputs. I
proceed parsimoniously and estimate a pair of scale and rivalry elasticities common to all
intangible inputs, and another pair common to a set of residual specialized inputs. Despite
this parsimony, the matrix of intra-firm cross-industry spillovers in the model, ψ f jk , is still
fully unrestricted, permitting a direct connection to that in the data.

Relative to the reduced-form, the structural estimation procedure accounts for selection
on unobservables, entry and exit, and allows empirical coefficients (that are estimated on
only a continuing panel of multi-industry firms) to be re-interpreted as structural elasticities
that affect all firms in the economy. Crucially, the model’s aggregation properties enable
the use of BEA industry-level data in estimation. I invert these data through the model’s
equilibrium conditions to identify the technology parameters behind specialized inputs as
well as levels of residual profits in each year.

4.1 Framework

Input Taxonomy. I take an ex-ante stance on which inputs are generic (acquired at constant
marginal costs and perfectly rival in use) versus specialized (acquired at convex costs and
partially non-rival). Consistent with the sector-specific tests for rivalry and scalability in
Figure 2, I classify all inputs in agriculture, mining, construction, and utilities, manufactures,
and wholesale, retail and transportation, and labor as generic.65 I then estimate a common
set of elasticities (ρINT , θINT) for the set of intangible inputs in the reduced form, and another
set of elasticities (ρRES , θRES) for the remaining inputs.66 I let Θ denote the parameter set
containing all four elasticities.67

Since the reduced-form results do not uncover any bilateral expenditure-driven industry
proximity other than intangibles that generates spillovers, I collapse the set of residual inputs
in the I/O tables to one category. The elasticities (ρRES , θRES) serve as a broad catch-all for
any latent mechanism contributing to economies (and diseconomies) of scope, such as finan-
cial frictions, span-of-control, as well as demand-side cannibalization (or complementarity)
effects. I also collapse the set of intangible inputs into just the three broad categories shown
in Figure 2 corresponding to (i) headquarters services, (ii) the leasing of intangible assets,
and (iii) professional services and information. This significantly reduces the number of
technology parameters that I need to invert for.

65These correspond to NAICS sectors 1, 2, 3, 4, and labor value added. Leaving intermediate inputs such
as manufactures as generic has the added benefit of allowing for a comparison with quantitative effects from
standard I/O linkages (i.e. from manufacturing inputs to manufacturing downstream industries.

66These correspond to NAICS sectors 52, 531, 532, 56, 6, 7, 8, 9, and capital value added.
67In principle, with unlimited data and computing power, one can estimate separate scale and rivalry

elasticities for each type of input m (among the roughly 300 input categories in the BEA I/O table). In practice,
the burden of precisely estimating more than 600 elasticities in a highly co-linear setting is insurmountable.
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Timing. To leverage time-variation within the firm for structural estimation, I interpret
each period in the data (t � {1, 2, 3}) as separate outcomes of the static equilibrium described
in the model. Every five years, firms re-optimize expenditures on specialized inputs and re-
accumulate knowledge capital conditional on their latent profitability shifters ξ f jt .68 Theonly
firm characteristic that persists across periods is the unobserved firm-industry profitability
shifters, ξ f jt , which explain dynamic persistence of firm outcomes in the data even in the
absence of any shocks.

The mass of firms is fixed over this period of time, at N . But there will still be observed
entry and exit of firms into and out of ‘active’ status. Recall that an inactive firm is a firm that,
despite its chosen level of investment, has not had any ideas arrive that build knowledge
capital. In any year in which this happens, the firm will have zero sales, fall out of the
observed sample, and thus ‘exit’. Likewise, in any subsequent year in which the same firm
does find ideas to build knowledge capital, the firm reappears as an entrant.69

Parametrization. While a sufficiently rich covariance structure in the cross-sectional
distribution of ξ f j alone can explain any pattern of co-production, it cannot explain the
dynamic responses of firms to shocks in the reduced-form. For this reason, I rely on the
variation induced by dynamic spillovers (Proposition 1) to estimate elasticities. In order to
highlight the ability for the elasticities to explain co-production in the model, I impose a zero
covariance structure on the draws of firm profitability shifters across industries (even when,
in practice, they might be correlated). These statements are formalized in Assumption 3:

Assumption 3 (Parametrization of Profitability Shifters) Latent firm-industry profitability in-
dices are distributed joint lognormal according to:

ξ f j,t�1 � ζ f j ζ f , ∀ f , j

log ζ f j ∼i.i.d. N(0, γ0), log ζ f ∼i.i.d. N(0, γ1), ∀ f , j.

The means of the lognormal distributions are isomorphic to proportional shifters in
industry residual demand, B j , so the normalization to 0 is without loss of generality. The

68Think of ξ f j as a stand-in for accumulated capital in a full-fledged dynamic model that doesn’t depreciate
over the time horizon I study. These assumptions are consistentwith a dynamic framework if knowledge capital
decays fully within 5 years, and latent profitability shifters do not decay. I show in the Online Supplementary
Appendix that themodel can also accommodate an arbitrary depreciation rate and also an arbitrary time frame,
including an infinite horizon model. The memoryless and additive separability properties of the model enable
tractability even in a full-fledged dynamic setting.

69I assume that firm longitudinal identifiers in the Census data break whenever a firm goes into a period
of inactivity. It is also worth pointing out that–due to endogenous spending I f m , entry is also ‘directionally’
endogenous - if residual profitsB j gets smaller i.e. due to increased foreign competition, theprobability of ‘entry’
in an industry is also smaller. Interestingly, the same can happen if an industry becomes more competitive
(smaller B j due to spending on specialized inputs by multi-industry firms with good fundamentals in other
booming industries k that co-utilize these specialized inputs).
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variance parameters γ0, γ1 control the degree of ex-ante dispersion in productivities (i) across
industries within the firm, and (ii) across firms. The former, γ0, explains persistence in firm
outcomes over time despite full depreciation of accumulated specialized inputs. I estimate
γ0 by matching the aggregate share of industries of multi-industry firms that survive over
5-year intervals in the model to that in the data, equal to 0.42. The latter, γ1, explains why
some firms are larger than others. I estimate γ1 by matching the aggregate share of sales by
multi-industry firms in 1997 in the model to that in the data, equal to 0.75.70

In each year, a discrete and measure-zero number of firms receive export demand shocks
{∆SHK f kt}k as constructed in the data. I model the impact of these shocks as reduced-form
shifters of firm profitability, ξ f kt , according to the following assumption:71

Assumption 4 (Impact of Demand Shocks) Demand shocks as constructed in the data affect
firm-industry latent profitabilities according to

log ξ f j,t � log ξ f j,t−1 + ν ∆ log S f jt ∀ f , j, t � {2, 3}.

The parameter ν is a ‘first-stage’ elasticity that captures the relevance of demand shocks
∆ log S f kt , as they are measured in the data, at shifting firm profitability in a given industry.
The reduced-form, firm-level response of intangible input expenditures to demand shifters,
in Table 3, identifies ν conditional on ρINT . Log-differentiating expenditures MINT

f t on all
intangibles in the model yields

∆ log MINT
f t � ρINT · ν

∑
k

ηINT
f k ∆ log S f kt ,

where the theoretical expenditure shares ηINT
f k are approximated using aggregate I/O ex-

penditure shares of an industry on intangibles:

ηINT
f k ≡

∑
m∈INT µ f mk∆

ρm

f m∑
m∈INT ∆

ρm

f m

≈
βk ,INT X f k∑
k βk ,INT X f k

.

Column (1) of Table 3 estimates the combined elasticity ρINTν at 0.65. This ‘offline’ relation-
ship yields a value of ν conditional on any estimate of ρ, and helps reduce dimensionality of
the non-linear search below.72

70These are estimates instead of calibrated parameters because required values of γ0 , γ1 change conditional
on estimates of the model’s scale and rivalry elasticities.

71This assumption can be properly micro-founded in a multi-destination exporting model by having firms
draw different latent profitability shifters across destinations. See the Online Supplementary Appendix for
details.

72Of course, ν as parametrized here is an only approximation: it is assumed to be constant across industries,
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Table 4: Overview of Model Primitives and Source of Identification

Variable Description Source of Identification
Θ Scale and rivalry elasticities of specialized inputs Within-firm spillovers, ψ f jk
γ0 Within-firm heterogeneity in ξ f jt Share of industries that continue (0.42)
γ1 Across-firm heterogeneity in ξ̄ f t Share of sales by multi-industry firms (0.75)
ν Responsiveness of ξ f jt to export demand shocks Assumption 4, Table 3, ρINTν � 0.65

N Mass of latent firms All active and inactive firms (318,000)
ς j Expenditures on generic inputs as a share of sales Corresponding share in I/O Table
αm j Effectiveness of input m for industry j I/O Table Expenditures Mm j
B jt Equilibrium industry-wide residual profit shifter Gross Output X jt
Z Efficiency of innovation on the extensive margin Share of multi-industry firms (0.2)

Table 4 provides an overview of the remaining macro-level variables that can be inverted
from the data conditional on knowledge of Θ, γ, ν. First, I fix the mass of firms at N �

318000, the total number of unique firms ever to appear in the 1997 census of manufacturing
(including administrative and inactive records). Second, I read off 1 − ς j from the industry-
level share of gross profits in sales.73 Third, the technology coefficients and residual profit
shifters αm j , B jt are positively related to aggregate expenditures (by input) and industry sales
per firm. With one degree of normalization afforded per industry, I choose to normalize the
technology coefficient on the residual category of specialized inputs to 1. This normalization
pins down B jt and αm j for m ∈ INT in the year 1997 based on I/O table data, and fixing
αm j to their 1997 levels, I can recover B jt based on gross output data in subsequent years.74
Finally, I estimate the technology parameter in the cost function for the arrival rate of ideas, Z,
by matching the model’s share of multi-industry firms to that in the data (0.2).75 I normalize
the wage to equal 1.

The estimation routine developed here is agnostic to general equilibrium details (i.e.
whether there is trade, or whether there are input-output linkages among generic inputs).
Estimates of the model’s elasticities (and macro parameters in Table 4) are also invariant

when in reality scale elasticities and changes to price indices in foreign destinations could make the impact
of demand shocks different across industries. A more serious attempt could be made to leverage variation in
micro responses for estimating demand elasticities σ j directly; I do not take up that exercise in this paper.

73Importantly, note that this does not translate to economic net profits. Net profits are gross profits less any
expenses incurred towards specialized inputs. This can vary across firms both because different types of firms
incur different mixes of expenditures depending on their inherent profitability shifters ξ f j , and also because
sales at the firm-level are stochastic: a firm could have gotten lucky with a lot of high-quality ideas (and thus
high sales) with a small amount of specialized input expenditures.

74I principle I can re-estimating αm j in each year. In practice, I don’t have good industry-by-expenditure data
on intangibles after 1997 due to changes to BEA accounting rules.

75This parameter shifts the importance of the extensive margin number of arrivals relative to the intensive
margin quality per arrival. While it has no aggregate implications (aggregation includes both intensive and
extensive margins), it does affect the computation of the conditional moment condition which matches firms
based on observed outcomes on the extensive margin.
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to values of generic input returns to scale γj and demand elasticities σ j . Observations
of industry sales X jt and gross profits are sufficient for identifying macro industry-wide
residual profits, B j . These residual profit terms act as a macro sufficient statistic for the firm
(along with technology parameters α and idiosyncratic profitability shifters ξ).

4.2 Inference

I define firm-industry level structural residuals, ε f jt , as the linear deviation of observed sales
in the data from expected sales in the model (conditional on ξ f t , Bt):

ε f jt ≡ X f jt − E[X f jt |ξ f t].

Variation in ε f jt comes from stochasticity in ϕ f j induced by Poisson and Fréchet-distributed
shocks. The structural residuals are mean-independent of any other observable firm-level
variables, such as demand shocks ∆ log S f s and industry presence χ f ,s for any year s, since
ξ f t contains all the relevant information for the firm’s investment and allocation decisions in
any given year t. By the law of iterated expectations (on ξ f t):

E f [ε f jt | ∆ log S f s , χ f ,t−1] � 0, ∀ f , j, t , s .

Features of the data such as demand shocks and extensive margin outcomes (in the past) can
serve as ‘instruments’.76 I exploit variation in the vector of demand shocks, ∆ log S f s , to iden-
tifyΘ. Conducting inference in this way requires taking a stance on the relationship between
export demand shocks ∆ log S f s and unobserved profitability shifters, ξ f ,s−1. Assumption 5
below stipulates conditional independence: export demand shocks are randomly assigned
to firms conditional on pre-existing industry presence (i.e. the extensive margin):

Assumption 5 (Conditional Independence) Export demand shifters are randomly assigned to
firms conditional on pre-existing industry presence:

∆ log S f jt ⊥ {ξ f k ,t−1,X f k ,t−1}k∈ J | {χ f k ,t−1}k∈ J ∀ j.

This assumption is a significant weakening over a simple (unconditional) exogeneity
assumption, because it allows shocks to be non-parametrically correlated with past industry
presence. This is almost necessary in my setting, where, by construction, only firms with
multi-industry presence receive export demand shocks, and where firm-industry shocks are

76Note that the vector of ‘ones’ are implicitly being used as instruments to identify B jt by relying on data we
have on the average firm outcome over the entire population X jt/N , and the model’s prediction for that given
the parametric distribution of ξ f j .
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mechanically zero whenever a firm is not active in an industry. Another advantage of this
assumption is that it takes into account potential correlations between shocks and firm latent
productivity shifters. If, systematically, firms with higher ξ f t are in more industries, and
these firms receive larger shocks, this correlation would be accounted for in the moment
conditions used for inference, which I derive in Proposition 4.

Proposition 4 (Inference) Let ˜∆ log S f kt denote demeaned demand shocks by industry-year. Define
the following analytical sample moment conditions for a pair of industries j, k and year t � {2, 3}:

m jkt ≡
1

n jk ,t−1

∑
f ∈n jk ,t−1

(
(X f jt − X f j,t−1) −

∑
s∈S

ωs f m f jk(ξs ,∆ log S f t)
)

˜∆ log S f kt ,

where n jk ,t−1 is the set of firms f in the data with positive sales in j and k in year t − 1, s ∈ S denotes
a sample of simulated firms with profitability shifters ξs drawn from distribution G(ξs) according to
Assumption 3, ω f s refers to the probability that a simulated firm (s) (with fundamentals ξs) matches
that of a firm ( f ) in the data (industry presence χ f ,t−1) relative to other s′ ∈ S:

ω f s ≡
∏

j Pr(χ j,t−1 � χ f j,t−1 |ξs)∑
s′
∏

j Pr(χ j,t−1 � χ f j,t−1 |ξs′)
,

and m f jk is model-implied expected sales growth given by

m f jk � E[X f jt |ξ′s] − E[X f j,t−1 |ξs , χ f j,t−1 > 0],

where next-period latent profitability ξ′s evolves conditional on ξs and empirical demand shocks
∆ log S f t according to Assumption 4.

At true parameter values Θ, γ, as the data and simulation samples get large, N, S → ∞ , the
sample moment m jkt � 0 for any j, k and t ∈ {2, 3}.

These moment conditions offer several advantages for inference. First, all expressions are
closed-form analytical objects, so that no simulation is required (other than a fixed initial set
of draws of ζs used to parametrize ξs). Second, I use demeaned versions of demand shocks
to avoid themean picking up differences in variances in firm growth across moments. Third,
the moment conditions allow and utilize the endogeneity of industry (and firm-wide) exit
as a response to shocks. Lastly, the sampling weights, ωs f , take care of the correlation
between observed initial-period industry presence and the shocks received in the data, so
that inference is conducted not from the full parametric distribution of ξ f but from the
relevant parts of the distribution that are more likely to yield the kinds of multi-industry
firms observed in the sample.
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In practice, because there are very fewobservations in each non-diagonal jk cell, I collapse
the set of J × J moments in each year to four sets of moments based on observable bilateral
characteristics of industries. I make these grouping choices based on ex-ante characteristics
of industries in the I/O tables in 1997:

1. Main diagonals of the matrix, j � k, for industries j where expenditures on intangibles
as a share of gross output is higher than the mean. This helps identify the residual
scale elasticity ρINT .

2. Main diagonals of the matrix, j � k, for industries j where expenditures on intangibles
as a share of gross output is lower than the mean. This helps identify the residual scale
elasticity ρRES.

3. Off-diagonals of the matrix, j � k, for industry pairs jk where the proximity in the joint
use of intangibles is higher than the mean over all industry pairs. This helps identify
the residual rivalry elasticity θINT .

4. Off-diagonals of the matrix, j � k, for industry pairs jk where the proximity in the joint
use of intangibles is lower than the mean over all industry pairs. This helps identify
the residual rivalry elasticity θRES.

In total, I estimate six non-linear parameters (ρINT , θINT , ρRES , θRES , γ0, γ1) using ten
moments: fourdynamicmoments eachyear (for t � 2, 3) corresponding to the four groupings
of cells in the J × J matrix, and two remaining cross-sectional moments (from t � 1) used
to estimate the variances in the lognormal distribution: γ0, γ1. I use the identity weighting
matrix to weigh moments.77

Estimation proceeds as follows:

1. Simulate a fixed set of 2000 firms, with baseline draws of ζs j , ζs from standard normal
distributions. I use stratified sampling to over-weigh firms with higher ζs .

2. Guess a starting Θ̂, γ̂0, γ̂1, then repeat Steps 3-5 until convergence criterion is met.

3. Compute ξs j given γ̂0, γ̂1 from Assumption 3 and ζs j , ζs .

4. Given ξs j and Θ̂, invert for αm j , B jt , Z using macro data.

5. Compute the sample moment conditions in Proposition 4, stack the moments as de-
scribed above, and use a bounded Nelder-Mead simplex search algorithm to adjust the
guess of Θ̂, γ̂0, γ̂1 given the change in the objective value.

77Estimates do not change by much when using the optimal weighting matrix under 2-step GMM, which I
compute when conducting the test of over-identifying restrictions.
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Table 5: Estimated Model Elasticities

Parameter Description Estimate S.E.

ρINT Intangible Input Scalability 12.64 (0.39)
θINT Intangible Input Rivalry 3.61 (0.07)

ρRES Residual Input Scalability 2.63 (0.05)
θRES Residual Input Rivalry 4.06 (0.12)

γ0 Variance in ζ f j draws 0.85 (0.03)
γ1 Variance in ζ f draws 0.99 (0.05)

Test of Over-identifying Restrictions: 7.28 ∼ χ2
4 p � 0.12

This table reports estimates of structural parameters in the model. The six parameters are estimated on the
sample of all multi-industry firms and the industries in which they are active, in years 2002-2007 and 1997-2002,
using 10moments. There are 13,000 firm-year observations used in the sample. Standard errors of estimates are
computed based on results from 21 bootstrap samples, where I re-draw over both the data and the simulated ξ
samples.

4.3 Results

Results are given in Table 5. Consistent with the directional results in the reduced-form,
I find that intangible inputs have much higher scale than rivalry elasticities, whereas the
opposite is true for the set of residual specialized inputs, and that these claims are statistically
significant. The test of over-identifying restrictions does not reject the null that the moments
used in estimation are jointly valid, suggesting a good fit to the micro variation in the data.

4.4 External Validation

Despite its parsimony, the model is capable of reproducing static features of the data that
were not targeted during estimation (recall that variation used to identify Θ comes from
dynamic changes in firm sales over time).

First, the model matches the distribution of the number of firms and their sales over firm
scope. Figure 3 shows that the data and the model form a close match—firms with higher
scope are increasingly scarce but also increasing large in overall sales. Both the data and
the model attribute a significant size premium to the extreme right tail of the firm scope
distribution (firms with 9 or more industries), though the model undershoots the data by
some amount. Appendix Table 12 reports the numbers behind these figures. Overall, the
close fit between the model and data validate the function form assumptions (Poisson and
Fréchet) used in the model.

Another feature in the data is a strong and increasing pattern of joint production associ-

42



Figure 3: External Validity: Distribution of Firms and Sales by Scope

(a) Share of firms by scope (b) Share of sales by scope

Panel (a) plots the share of total firms accounted for by firms across the scope distribution, comparing the
data (in 1997) to the model. Panel (b) plots the share of total sales accounted for by firms across the scope
distribution, comparing the data to the model.

ated with industry co-utilization of intangible inputs. I measure joint production in a pair of
industries jk as the share of industry j sales by firms with activities in k:

JointProd jk ≡
∑

f X f j1X f k>0∑
f X f j

,

and industry co-utilization of intangible inputs as

ProxINT
jk ≡

∑
m∈INT

βm j
βmk∑
k′ βmk′

.

Panel (a) of Figure 4 visualizes this relationship in the data in terms of a binscatter, for
the full 42,240 pairs of industries j, k, where j , k, in 1997. Panel (b) in the same figure
reproduces this relationship using the model’s elasticities and parameters alone. The model
predicts higher joint production among industry pairs that use similar intangible inputs.
Joint production is high in these industries precisely because intangible inputs are scalable
(resulting in higher investments by the firm) and non-rival (resulting in a greater fraction of
times that ideas are deployed to both industries).
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Figure 4: External Validity: Joint Production in the Data and the Model

(a) Joint Production in the Data (b) Joint Production in the Estimated Model

These panels display the relationship between bilateral industry joint production (share of industry j sales by
firms with activities in k) and a measure of jk proximity in the utilization of intangible inputs, in (a) the data,
and (b) the model.

5 Quantitative Implications

In this section, I embed the estimatedmodel in open-economygeneral equilibrium toquantify
US industry-level responses to exogenous foreign shocks and tariffs. I calibrate parameters
of the open-economy model to data on the US economy in 2017.

Using analytical decompositions permitted by the spillover matrix, Ψ, I find that 20% of
the aggregate productivity response to foreign demand shocks occurs as a result of scope
economies and manifests in the form of cross-industry effects. Moreover, these productivity
spillovers are unevenlydistributed. Industries that utilizemore intangible inputs are stronger
transmitters as well as recipients of productivity spillovers.

Finally, I apply the model to analyze the price and productivity effects of a US trade
policy. I estimate that a uniform 20% tariff on US imports from China raises the US man-
ufacturing CPI by 0.8%, with domestic productivity responses mitigating the direct impact
of higher foreign prices. I use the analytical spillover matrix Ψ to identify alternative tariff
implementations that are biased towards industries with higher internal economies of scale
and scope. I find alternative tariffs on Chinese imports that achieve the same (possibly po-
litical) objectives of reducing trade volumes with China—at a cost of only a 0.38% rise in the
manufacturing CPI.
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5.1 General Equilibrium Setting

I embed the model in an open economy setting where the only cross-industry propagation
effects are due to either internal economies of scope or external input-output linkages (that
I can turn on or off). This allows me to attribute spillovers precisely to economies of scope
and illustrate how they interact with propagation effects driven by external linkages.

I assume that upper-tier demand is Cobb-Douglas across industries, which shuts down
demand-side inter-industry substitutability. When transitioning to a setting with external
input-output linkages, I openup the bundle of generic inputs, l j , in equation (5). I assume that
it is a Cobb-Douglas aggregator over labor and output from other manufacturing industries,
and I calibrate these generic input expenditure shares to match those in the I/O table. I
abstract from the free entry of new firms and focus on interactions among existing (including
inactive) firms (under the estimated distribution of profitability shifters, ξ). I calibrate the
within-industry elasticity of substitution at σ j � 5 across the board and explore sensitivity
of results to alternative values of σ j .78

I model the US economy under trade with two foreign partners: China (singled out
for the purposes of tariff counterfactuals), and a rest-of-the-world composite. While levels
of foreign industry expenditures and foreign price indices are assumed to be exogenous, I
endogenize the prices of goods sold by US firms. I abstract from wage effects by assuming
that there is a large enough residual sector (e.g. intra and inter-temporal services) in which
the US is a net exporter facing perfectly elastic foreign demand over the range of shocks
considered. This pins down the wage under overall US trade balance (over combined trade
in manufacturing and residual services). Instead of the wage adjusting, the manufacturing
trade deficit becomes endogenous, allowing import protection to lead to export promotion
through scale and scope economies. All firm profits (regardless of whether they are rebated
or invested) are spent on the residual sector to shut out feedback effects through increased
manufacturing demand.

Definition 2 in the Quantitative Appendix formalizes these assumptions in terms of
equilibrium conditions in the economy. It also describes how I calibrate relevant model
objects (i.e. exogenous foreign price indices) from aggregate industry-level production and
trade data for the US in 2017.

78The IO tables only allowme to read off values of ς j � γj
σ j−1
σ j

. Setting σ j to a common value across industries
is a reasonable benchmark for the counterfactuals because it ensures that the asymmetric industry results are
not driven by differences in demand substitutability.

45



5.2 Sizing up Economies of Scope

I log-differentiate the system of equations in Definition 2 to derive a unified analytical
propagation matrix relating aggregate domestic industry productivity indices, PD j , to any
exogenous unit-elasticity shifter of market size, Sk .

Proposition 5 Under the open economy equilibrium characterized in Lemma 2, exogenous shocks
to market size faced by US firms, d log Sk , generate the following effects on domestic industry j
manufacturing productivity d log PD j :

d log PD � −
(
I −ΩP

+ Ψ
(
I −ΩR)−1 diag(λcpt)

)−1
Ψ

(
I −ΩR)−1 d log S, (14)

where PD j indexes productivity (inverse price) of domestic manufacturers:

PD j ≡ N
∫

f
E

[
p

1−σ j

f j

]
d f ,

Ψ is the spillover matrix given in equation (13), I is the identity matrix, and ΩP , ΩR are matrices
containing external input-to-output coefficients:

[ΩP] jk ≡
γk jς jσ jλc

uuk

σk − 1 , [ΩR] jk ≡ λs
u j(1 − λ

c
f in , j)

γjkςkXk∑
k′ γjk′ςk′Xk′

,

λc
f in , j is the share of final use in consumption in industry j, and λcpt

j is ameasure of foreign competition
given by

λ
cpt
j ≡

∑
d∈{u ,r,c}

λs
dj(1 − λ

c
udj),

where λc
udj is the share of destination d’s consumption of industry j on goods sold by the US, u, and

λs
dj is the share of US firms’ total sales in industry j going to destination d.

Equation (14) presents a general formula for understanding the first order effects of
exogenous unit-elasticity shifters of market size, d log S, on the economy. Proposition 5
nests Proposition 3 as a special case when shifters of market size are domestic population
L, the economy is in autarky (so λcpt

j � 0), and there are no input-output linkages (so that
ΩP � ΩR � 0).

I use this analytical propagationmatrix to decompose the effects of proportional increases
in foreignmarket size79 (across all industries) on theUSmanufacturing PPI. This is computed

79The term d log S refers to a unit-elasticity demand shifter for US producers. To scale a foreign shock d log Ȳ
into a unit-elasticity impact I use d log S � (1 − λs

u j)d log Ȳ. With an alternative scaling, these increases in
foreign market size can also be interpreted as reductions in US export trade costs.
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as aweighted average of industry-level productivity responses, withweights equal to current
output shares across industries, λprod

j :

d log PPI �
∑

j

λ
prod
j

1 − σ j
d log PD j .

The impact of foreign demand shocks on productivity can be decomposed by splitting up
the matrix in equation (14) into (i) diagonal elements, representing the direct effect (of a
shock in industry k on productivity in the same industry k) versus (ii) off-diagonal elements,
representing spillovers (a shock in k on productivity in j).

Figure 5 illustrates results fromperforming thedecompositionaboveunder four scenarios,
labelled (a)-(d). To impose appropriate units on the exercise, in each scenario I scale the
productivity change by the total response in gross output, so that the sum over direct effects
and spillovers yields the macro elasticity of productivity to gross output. The accompanying
numbers (along with a companion decomposition for the response of gross output to foreign
shocks) are given inAppendix Table 13. The first two scenarios turn off external input-output
linkages, while the latter two turn them on. In scenario (a), I pretend that an analyst has data
only on own-industry responses in the micro spillover matrix of equation (13), Υ, through,
perhaps, estimating returns to scale using data on single-industry firms. In this scenario, the
only impact of foreign shocks on the economy are direct, own-industry responses, depicted
by the green bar in the figure.

Scenario (b) is my benchmark case and illustrates what happens when Υ (and, by associ-
ation, Ψ) incorporates both scale and scope economies. The orange bar depicts productivity
responses accruing due to cross-industry spillovers (economies of scope). On net, scope
economies generate an elasticity of productivity to output of 0.04 and account for 20% of the
total elasticity of productivity to gross output. The direct effect (green bar) is slightly diluted
owing to a higher response of gross output (the scaling on the denominator).

Scenarios (c) and (d) of Figure 5 mirror the exercise in (a) and (b) but under a calibration
featuring external input-output linkages across industries. Scenario (c) depicts these pro-
ductivity responses in the presence of only own-industry returns to scale and external I/O
linkages. Input-output linkages induce large propagation effects due to the resulting circular
structure of production, depicted by the relative size of the blue bar. The total response of
gross output is much higher under such a world, and because productivity is induced by
scale, the total productivity response is nowmuch higher, with a larger proportion explained
by spillovers relative to the direct effects.

Finally, I bring together scale, scope and input-output linkages in scenario (d) by combin-
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Figure 5: Elasticity of Productivity with respect to Gross Output

This figure decomposes the elasticity of the US manufacturing PPI (on the x-axis) with respect to gross
manufacturing output (induced by a proportional increase in foreign demand) into (i) a direct, own-industry
effect (green bar), (ii) spillovers that accrue due to scope economies (orange bar) and (iii) spillovers that accrue
due to input-output linkages (blue bar). This decomposition is performedunder four different scenarios, (a)-(d),
corresponding to different underlying assumptions about the economy. For more details on the four scenarios,
see the main text. Appendix Table 13 presents separately the responses of productivity and output used to
compute these elasticities.
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ing the full Ψ matrix with Ω. I find that internal spillovers due to scope are quantitatively
important not only in the setting without I/O links (comparing scenarios (a) and (b)) but
also in the setting with external linkages (comparing scenarios (c) and (d)). In this latter case,
allowing for internal scope economies more than doubles the total productivity response,
almost all of which accrues due to cross-industry spillovers.

In addition to large cross-industry responses in the aggregate, I also find significant
heterogeneity in the strength of spillovers across industries. I find that intangibles-intensive
industries are stronger transmitters as well as recipients of productivity spillovers. Figure
6 plots, for each industry, the share of the total aggregate productivity change accruing as
a result of net cross-industry spillovers, for a given industry-specific foreign demand shock
under scenario (b) (where economies of scale and scope are the only forces at play). This
share ranges from 0.71 for totalizing fluid meter and counting device manufacturing to -0.06
for flavoring syrup. Table 14 in the Quantitative Appendix presents a list of top and bottom
industries. Interestingly, flavoring syrup is the only industry in which negative spillovers
(owing to residual inputs being less scalable than rival) quantitatively overwhelm positive
spillovers, causing a net negative productivity spillover in the event of a demand shock.

Finally, I explore the sensitivity of these results to alternative values of σ j in the Quan-
titative Appendix. The finding that scope economies generate an equilibrium elasticity of
productivity to gross output of 0.04 is insensitive across typical estimates of σ in the range of
3 to 10. I also allow σ j to vary across industries by calibrating σ j to match typical estimates of
industry-level direct returns to scale or profit shares and find that scope economies account
for roughly 20 percent of the total productivity response in both these instances.

5.3 Revisiting the Impact of Trade Protection

Given the findings of large and biased spillovers across industries, I apply the model to
evaluate the aggregate consequences of US import tariffs on Chinese goods. I compare the
impact of different tariff policies, holding all other foreign variables constant. I solve the
system of equilibrium conditions in Definition 2 before and after the policy change using
exact hat algebra. Table 6 displays the results and theQuantitative Appendix presents details
on their definition and calculation.80

The first two columns of Table 6 display the aggregate impact of uniform 20% Chinese
import tariffs on all industries. In column (1), I calibrate a neoclassical trade model with
constant returns to scale and perfect competition to the same US data in 2017, and compute

80To isolate the impact of mymechanism, I compute these results without taking into account external input-
output linkages (with the underlying economy corresponding to benchmark scenario (b) in Figure 13. See the
Appendix Table 16 for results under input-output linkages and a discussion.
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Figure 6: Intangible-intensive Industries Drive Productivity Spillovers

This figure plots the net productivity spillover (as a share of the total productivity response) owing to an
industry-level foreign demand shock, by industry expenditure share on intangible inputs. Each BEAX industry
is represented by a circle on the diagram, and the size of each circle corresponds to the total elasticity of
productivitywith respect to gross output. The computations areperformedunder scenario (b)where economies
of scale and scope are the only general equilibrium forces. Table 14 in the Quantitative Appendix presents a
list of top and bottom industries. Overlaid in black text is the same statistic but aggregated to the level of broad
2-digit sectors. In order from the highest to lowest net spillovers, these sectors are: Computers, Machinery,
Other, Chemicals, Electrical Equipment, Metals, Minerals, Textiles, Transportation Equipment, Plastic, Paper,
Wood, Coke, and Food.
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Table 6: Effects on the US Economy from US Tariffs on Chinese Imports

(1) (2) (3)
Model Neoclassical CRS Scale + Scope Scale + Scope
Import tariffs on Chinese imports 20% Uniform 20% Uniform Alternative
Change (%)
Consumer Price Index (CPI) 1.12 0.80 0.38
Producer Price Index (PPI) 0 -0.46 -0.67

Imports from China -39.2 -40.5 -40.5
Imports from Rest of World 7.3 5.9 2.4
US Output 1.4 2.4 3.5
US Exports 0 2.1 2.8
Manufacturing Trade Deficit -11.5 -19.3 -28.3

As Share of Manufacturing Output (%)
NewManufacturing Profits 0 0.10 0.14
New Tariff Revenues 0.88 0.86 0.36

This table presents estimates of the impact of two different sets of tariffs on outcomes in the US economy, under
two different model settings calibrated to match US national industry-level aggregates (industry output and
trade patterns) in 2017. Column (1) presents results from a 20% increase in tariffs on Chinese imports across
all industries, under a neoclassical model with constant returns to scale and perfect competition. Column (2)
compares the impact of the same set of tariffs to my model with economies of scale and scope. Column (3)
presents results from alternative tariffs identified by my model that minimize the CPI impact while achieving
the same reduction in total imports from China. See Definition 2 for a characterization of the open economy
equilibrium and Appendix Section C.4.6 for details on how I compute alternative tariffs.
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the counterfactual price effects due to tariff policy. This corresponds to solving for the system
of equations in Appendix Section C.4.5 with exogenous domestic prices. Column (1) serves
as a useful benchmark to evaluate the mechanism of my model; here, the CPI rises by 1.12%
due to Chinese imports becoming more expensive.

Column (2) applies my estimates of scale and scope economies and the full non-linear
structure of the model to compute aggregate outcomes arising from the same tariff policy.
Domestic US firms now benefit from reduced import competition, and prices of US goods
fall not only in industries that are directly protected, but also in industries that are jointly
produced. These endogenous responses of domestic prices (due to both scale and scope
economies) substantially mitigate the price impact of import tariffs. The domestic PPI falls
by 0.46%, lowering the overall rise in the CPI from 1.12% to 0.8%.81 Other margins of the
US economy also improve due to increased competitiveness of US goods: exports go up, the
deficit shrinks, and import substitution towards other countries is less pronounced.

Are there other tariff implementations that lower imports fromChina by the same amount
(41%) at the cost of an even smaller rise in theCPI?While the optimal tariff structure is difficult
to solve for in this non-linear environment, I use a similar local propagation matrix to that
in equation (14) to compute the contribution of import tariffs, by industry, towards reducing
Chinese imports (a ‘benefit’) and increasing in the CPI (a ‘cost’). I start with a baseline vector
of tariff values that are biased towards industries with higher benefits per unit cost, and
scale up the tariffs proportionately so that they generate the same counterfactual decline in
imports from China.

I find that the higher the bias, the smaller the reduction in the CPI needed to reduce
Chinese imports by 41%.82 When the degree of bias is such that tariffs on the most heavily
affected industry reach 300%, the CPI impact reduces to 0.38%. Almost half of this reduction
occurs as a result of a stronger domestic productivity response, indicated by a greater reduc-
tion in the PPI of 0.67%. Column (3) of Table 6 reports the impact on US aggregate economic
outcomes from this policy. Due to the increased domestic productivity response, exports
rise by 2.8%, the manufacturing trade deficit shrinks by 28.3%, and increased manufacturing
net profits account for 0.14% of initial gross output.

81Squaring these consumer price effects with new tariff revenues, the overall impact on welfare suggested by
the results in column (1) is relatively low and consistent with estimates in Amiti et al. (2019) and Fajgelbaum et
al. (2019). Adding an endogenous scale and scope response lowers the welfare costs of tariffs by even more.

82For details, see Section C.4.6 of the Quantitative Appendix.
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6 Conclusion

This paper finds that economies of scope within firms drive the propagation of shocks across
industries. I assemble panel data on industry-level sales of all US manufacturing firms
and draw on plausibly exogenous shocks to their industry-specific market size to identify
economies of scope. I provide reduced-form evidence that a demand shock in one industry
of a firm increases its sales in another the more that the two industries share intangible
inputs. I rationalize these results by developing a model of joint production under which
inputs (including intangibles) differ in their degree of scalability and rivalry within the firm.
I provide structural estimates of scale and rivalry elasticities and find that intangible inputs
generate scope economies within firms.

Internal scope economies represent a new and quantitatively largemechanism for general
equilibrium propagation. The aggregate response of productivity to market size would be
roughly 20 percent lower if scope economies were not taken into account. Productivity
spillovers are concentrated among industries that utilize more intangible inputs, suggesting
that these industries should be more closely scrutinized in quantitative studies and policy
evaluation. In light of these findings, I re-examine the consequences of US tariffs on imports
from China. I identify alternative tariff policies that more than halve the adverse CPI effects
by biasing protection towards industries with stronger internal economies of scale and scope.

There are at least two directions for further research. One is to apply the stochastic joint
production framework to oligopolistic competition settings featuring strategic interactions
among firms across and within industries. By incorporating firm-level data on research
expenditures, patenting, levels of IT capital, and worker occupations, it might be possible
to delve deeper into the knowledge production function of the firm, and provide evidence
on how internal and external knowledge spillovers interact. Another direction is to exploit
the model’s tractability to study directed innovation and endogenous productivity across
industries at the macro level. These results can improve our understanding of the origins,
evolution, and correlation of comparative advantage across countries, as well as the welfare
and productivity consequences of trade liberalization.
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A Data Appendix

A.1 Data Construction and Details
Firms, Plants, and Products. I assemble data from the Economic Censuses (EC), the Longitudinal
Business Database (LBD), and the Longitudinal Firm Trade Transactions Database (LFTTD) to con-
struct a portrait of firm activity over the years 1997 to 2012. The Censuses are conducted quinquenni-
ally in years ending with ‘2’ and ‘7’. Data on product shipments made by establishments come from
the product trailer (PT) files which are attached to the Census of Manufactures (CMF). These trailer
files contain responses of establishments that are sent a CMF ‘Long Form’. The long form is sent to all
establishments belonging to multi-establishments firms as well as a sample of single-establishment
firms. The long form elicits shipments made by the establishment at a disaggregated level (varying
from 6 to 10 digit NAICS). There are two reasons why this process yields a strict underestimate of
the significance of multi-product activity in the US economy. First, the long-form elicits questions
about product sales over a pre-specified list of products (specific to the plant’s classified industry).
Although there is space for the firm to report shipments in products not covered by that pre-specified
list, in practice firms rarely do. Second, the long-forms do not cover all single-establishment firms in
the economy. A single-establishment firm could be selling in multiple industries but I will not see the
breakdown of its sales over these industries if the firm was not sent a long-form.

Using firm identifiers in the LBD, I match establishments to their parent firms and aggregate
industry-level shipments from the level of the plant to the level of the firm. The firm identifier in
the LBD comes from information the census collects on the span of control of firms in the Company
Organization Survey and from tax identifier and plant identifier information in the Business Register.
An establishment is a physical location where business activity occurs. The firm is defined (by the
census) as the highest level entity that controls more than 50% of each of the establishments we assign
to the firm. I drop plants that are administrative records (for which sales data are imputed).

External Sales. The CMF contains data on the shipments of a plant that go towards other
plants within the same firm (i.e. inter-plant, intra-firm). However, this data is not broken down at
the product-line level. For plants that produce in multiple industries, I apportion this inter-plant
shipment data into industry-level intra-firm shipments using shares taken from the plant’s total sales
across industries. I then define the external sales of a firm in each industry as its total sales in that
industry minus its intra-firm shipments. I drop external sales computed in this way in any industries
of the firm that (i) account for less than 0.5% of firm-wide external shipments and (ii) are never
the main produced industry of any plant the firm owns. This is conservative and allows product
shipments in very small industries of the firm to be entirely intra-firm. This also prevents the spurious
adding / dropping of products simply because of changes to the PT forms over the years.

Firm Trade Data. The LFTTD contains the value of all import and export transactions, by trading
country and by HS10 product, that each firm entity (a set of EIN tax codes) is a counter-party
to. The CMF also contains data on plant-level shipments that are ultimately destined for export
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markets (whether directly or indirectly through an intermediary). If the plant is a multi-industry
plant, I apportion this plant-level shipment across the plant’s industries using product trailer product
shipment shares. I use both LFTTD and CMF sources of data on exports to construct the export
demand shock, detailed below. Data on firm exports and imports from Table 1 come from the LFTTD.

Country-level Trade Data. I use data from BACI and Comtrade (bilateral country-level trade
flows at the HS6 level) to generate the five-year growth rates in imports of a destination n in product
h used in the analysis, ∆ log IMPnht .

Intangible Inputs. I use BEA input-output tables from 1997 for information on the use of inputs
by industry. Table 7 lists the input industries from BEA input-output and capital flow tables that I
classify as intangible inputs. These correspond to NAICS sectors 55, 54, 51, and 533. Although results
are robust to including finance, insurance, real estate, and other rental leasing (NAICS 52, 531, and
532), I do not include them in my list of intangible inputs because of the separate way that financial
inputs affect businesses compared to real inputs.83

The input-output tables record expenses on inputs that fully depreciate within one year. Because
some intangible assets also have short depreciation rates and there are arbitrary rules around which
inputs are expensed versus capitalized, I incorporate data from the capital flow tables on capitalized
investments made by firms in manufacturing industries on intangible input industries (for example,
a shoemaker investing in software capital). I count both capitalized investments and expensed
investments as intangible input expenditures. The last three columns of Table 7 show data on
aggregate expenditures on these input industries. I give statistics on the weighted mean (total
manufacturing) expenditure share, as well as the 25th and 75th percentiles across industries.

In practice, it makes no difference to the results if I exclude data from the capital flow tables.
Most intangible inputs circa 1997 were still expensed under the national accounts. Only four input
industries had capitalized investments: software publishers (511200), architectural, engineering, and
related services (541300), custom computer programming services (541511), and computer systems
design services (541512). Total capitalized investments in these industries by the manufacturing
sector only amount to 0.64% of gross manufacturing output. I do not use input-output table data
on intangible input expenditures after 1997 because of subsequent changes to accounting rules that
generate a lot of time variation in the data series.

Industry Definition. I construct a unified industry nomenclature, BEAX, that is time-invariant
over the period 1997 and 2012 and concordablewithHS, NAICS, and BEA industry codes in each year.
There are 206 BEAX industries in manufacturing. I use the HS-NAICS concordance in US Census
Bureau data provided by Schott (2008) and Pierce and Schott (2012) to convert import and export HS
codes (at the 10-digit and 6-digit levels) in each year to NAICS. I use the concordances provided by US
Census Bureau and BEA to go between NAICS codes and BEA codes in each year. I use an iterative

83My model does not speak to the various mechanisms explored in the corporate finance literature, such as
internal capital markets (Stein, 1997) or corporate socialism (Scharfstein and Stein, 2000). Instead, I soak up
these effects under estimate properties of residual inputs in my quantitative framework, and under the hSYM

f j
control variable in the reduced-form.
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Table 7: Definition of Intangible Inputs and their Use in Manufacturing in 1997

Share of Gross Output (%)
m ∈ M INT Description Mean 25th pctile 75th pctile

550000 Management of companies and enterprises 3.54 2.60 4.94

541700 Scientific research and development services 0.62 0.25 0.96
541300 Architectural, engineering, and related services† 0.62 0.31 0.96
5419A0 All other professional, scientific, and technical services 0.61 0.61 0.63
541511 Custom computer programming services† 0.58 0.21 0.86
541800 Advertising, public relations, and related services 0.48 0.14 0.62
541610 Management consulting services 0.28 0.28 0.30
541100 Legal services 0.28 0.09 0.30
541200 Accounting, tax prep., bookkeeping, & payroll services 0.15 0.08 0.21
541400 Specialized design services 0.09 0.01 0.02
541512 Computer systems design services† 0.07 0.02 0.06
54151A Other computer related services 0.04 0.02 0.04
5416A0 Environmental and other technical consulting services 0.04 0.01 0.02
541940 Veterinary services 0.00 0.00 0.00
541920 Photographic services 0.00 0.00 0.00

533000 Lessors of nonfinancial intangible assets 0.69 0.06 0.34

5111A0 Wired telecommunications carriers 0.34 0.17 0.37
511200 Software publishers† 0.33 0.05 0.19
518200 Data processing, hosting, and related services 0.20 0.17 0.26
512100 Motion picture and video industries 0.03 0.00 0.03
512200 Sound recording industries 0.00 0.00 0.00

Total Intangible Expenditures 9.01 6.38 11.48

Source: BEA Input-Output & Capital Flow Tables, 1997. Mean refers to the weighted average across all 206 BEAX
manufacturing industries, with industry gross output as weights. 25th and 75th pctile refers to expenditure shares of
the corresponding percentiles (unweighted) across the 206 manufacturing industries. Codes in the first column refer to
BEAX codes that are hand-developed; they roughly correspond to codes available in BEA I/O tables but are aggregated
to ensure consistency over time.
† Industries where data on capitalized investments from the capital flow tables are used to compute expenditures. This
makes up only 0.64% of gross manufacturing output.
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algorithm to aggregate over m:m splits over years and in each cross section so that in any given year,
each NAICS code and HS10 code is entirely contained within a BEAX code.

A.2 The Non-Manufacturing Sector
Statistics shown in Table 1 are limited to the manufacturing sector since this paper limits attention to
economies of scope in manufacturing. Here I briefly extend the reported statistics on multi-industry
firm activity using a different classification of multi-industry firms: whether their sales span two or
more industries in any sector. In the non-manufacturing sector, I find that 52% of sales come from
multi-industry firms in 1997, while this number rises to 57% in 2012. Themain difference compared to
manufacturing is the long tail of small firms in non-manufacturing industries. The share of firms that
are multi-industry in non-manufacturing is only 1% (compared to 20% in manufacturing). However,
the lack of comparable product-trailer data for the non-manufacturing sector makes an apples-to-
apples comparison difficult. In the non-manufacturing sector, industry variation in the data comes
exclusively from the span of plants owned by a firm and the extent to which these plant classifications
differ.

A.3 Export Demand Shocks
I leverage both the LFTTD and CMF sources of data on firm-industry exports to construct demand
shocks, ∆ log S f jt . First, among LFTTD data, I compute export shares of each industry of each firm
across destinations n andHS6 products h. I exclude destination-product markets whenever the firm’s
exports in those markets exceed 10% of the market’s imports from the rest of the world. I use these
shares as s f nh | f j,t−1 in the analysis. Data on export intensity, s∗f j,t−1, come from the CMF export
shipment response variable. This is a firm-industry level variable as described in the preceding
section. If the firm has no reported exports in an industry by manufacturing plants producing in
that industry, it is likely that customs data is an instance of carry-along trade, made by the firm’s
wholesale / retail arm. These demand shocks are unlikely to affect the firm’s manufacturing sales
(reported by its plants) any more than other firms in the industry. Export intensity helps to discipline
the customs-derived export demand shocks. I also set export intensity to zero for instances where
carry-along trade of the firm (customs exports less census exports) in an industry exceeds its total
external shipments in the CMF. After purging these edge cases, I am left with two measures of export
intensity: (i) census exports divided by census sales in an industry, and (ii) customs exports divided
by census sales in an industry. I take the average of these two measures as my measure of s∗f j,t−1.
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Table 8: Regression Sample Summary Statistics

Description

By firm-industry: Variable Mean Std. Dev.
Sales Growth ∆ log X f jt 0.15 0.99
Has Export Demand Shock? 0.68 0.47
Export Intensity s∗f j,t−1 0.06 0.10
Own-Industry Demand Shock ∆ log S f jt 0.028 0.082
Cross-Industry Demand Shock, sales-weighted hSYM

f j 0.025 0.063
Cross-Industry Demand Shock, intangible-input-weighted hINT

f j 0.002 0.007

Initial Period Sales (millions) X f j,t−1 165 1225
Initial Period Employment 522 2245

Other Statistics Value
Number of firms in 1997-2002 5000
Number of firms in 2002-2007 4700
Share of U.S. manuf. output accounted for by sample 0.51
Share of U.S. manuf. employment accounted for by sample 0.37

This table reports sample statistics for the particular sample of multi-industry firms and industries used in
the reduced-form regression (Table 2). The selection criteria is any firm-industry with continuing sales over
a 5-year period, and belonging to a firm with at least one industry exporting (so that at least one out of the
own-industry and cross-industry demand shock variables will be non-zero).

A.4 Regression Analysis

A.4.1 Summary Statistics

Table 8 displays summary statistics on common variables that appear in the regressions, for the
regression sample. The regression sample consists of all continuing firm-industries (across 5-year
periods) of firms that have at least one industry with a non-zero export demand shock.

A.4.2 Export Demand Shock

Before proceeding to the main test of spillovers, I verify that demand shifters are indeed able to
shift firm sales in the same industry by running the following regression for only the sample of
firm-industries that have non-zero own-industry export demand shocks:

∆ log X f jt � α∆ log S f jt + Controls jt(s∗f j,t−1) + FE jt + ε f jt ,

where Controls jt(s∗f j,t−1) refers to variousways of controlling for the export intensity scaling variable,
to make sure that variation in the export demand shock is not driven by firms with different export
intensities being on different growth trends. Results are presented in Table 9. Across all three columns
(that vary in terms of the control for export intensity used), the coefficient on the shock variable is

64



Table 9: Relevance of Export Demand Shocks for Predicting Sales Growth

∆ log X f jt (1) (2) (3) (4)

∆ log S f jt 0.59*** 0.36*** 0.34*** 0.32***
(0.10) (0.12) (0.11) (0.11)

Industry-year-FE X X X X
s∗f j,t−1× year-FE X X

s∗f j,t−1× Industry-year-FE X

Control for pre-period sales, log X f j,t−1 X X

Observations 14,500 14,500 14,500 14,500
R2 0.08 0.08 0.12 0.15

This table displays responses of firm-industry sales to demand shocks the firm receives in the same industry,
in 5-year differences over the period 1997-2007. Standard errors in parentheses are clustered at the firm level.
Observations are at the firm-industry-year level, for continuing industries of all multi-industry firms that have
an export demand shock in that same industry. The control s∗f j,t−1 is the firm’s export intensity (exports over
sales) in industry j in the initial census year.

positive and ranges from 0.32 to 0.59. Without controls for export intensity (column 1), the impact of
the demand shock is statistically higher, consistent with selection on export intensity.84

A.4.3 Control Variables

The regression results in Table 2 are robust to including an exhaustive set of controls, as described in
the main text. I define the pre-period size of the firm as the log of the sum of sales over all the firm’s
industries. The pre-period industry size is the log of the firm’s sales in that industry. I define export
status as a dummy variable equal to 1 if the firm has a non-zero export intensity in that industry,
s∗jt > 0.

In column (1) of Table 10, I re-estimate specification (5) of Table 2 but including all the controls
discussed in the body of the text. I find that—aside from an increase in R2—there are no changes to
the magnitude or significance of spillover coefficients.

A.4.4 Other Input Linkages

The remaining columns (2)-(4) of Table 10 estimates a variant of the main regression equation (2)
where instead of using sales weights to form the hSYM

f j function, I focus only on input proximity and
separate out intangible inputs from the remaining inputs in the BEA I/O tables. I call the remaining
set of inputs tangible, denoted by TAN , and construct hTAN

f j in the same way as hINT
f j . Column (2)

84I also run a placebo test where I assign firms in a given industry j a random ∆SHK f jt drawn from the
empirical distribution of shocks received by all firms active in industry j. The placebo tests return false
positives in column (1) but not columns (2) and (3). This suggests that linear controls for export intensity
control adequately for selection on export intensity.

65



Table 10: Cross-Industry Spillovers within the Firm: Additional Robustness Specifications

Sales growth, ∆ log X f jt (1) (2) (3) (4)

Own-industry shock, ∆ log S f jt 0.51*** 0.47*** 0.47***
ψOWN (0.10) (0.09) (0.09)

Cross-industry shocks, {∆ log S f kt}k, j
Intangible expenditure weighted 8.26*** 6.54*** 7.02*** 8.14***
ψINT (2.22) (2.08) (2.11) (2.22)

Tangible expenditure weighted -0.75*** -0.86*** -0.44
ψTAN (0.26) (0.26) (0.44)

Sales weighted -0.81*** -0.48
ψSYM (0.26) (0.39)

Industry-year-FE X X X X
Full Set of Controls X
Observations 21,500 21,500 21,500 21,500
R2 0.12 0.05 0.06 0.06

This table displays responses of firm-industry sales to demand shocks across the firm’s range of industries,
in 5-year differences over the period 1997-2007. Standard errors are clustered at the firm level. Observations
are at the firm-industry-year level, for continuing observations of a sample of multi-industry firms with
at least one industry directly exporting. Results are unweighted but robust to weighting by the inverse
within-firm share of sales of industry j. Results are robust to deflating outcomes and also shocks. The
magnitude and significance of coefficients ψ are robust to inclusion of a host of control variables, including:
initial period firm size, firm-industry size, export status, export intensity, as well as controls for the shares
in the functional forms used to collapse shocks in other industries, and the interaction of these shares with
other initial-period firm-industry variables.
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shows that they pull in opposite directionswithin the firm, strongly suggestive that industry spillovers
differ in the intangible input proximity dimension. Column (3) adds the own-industry shock to the
regression, and column (4) includes both hTAN

f j and hSYM
f j . The negative coefficients on hTAN

f j and
hSYM

f j are imprecisely estimated and at roughly half their respective magnitudes when appearing
individually, which is consistent with the presence of collinearity (their unconditional correlation is
98%).

To further disentangle whether it is certain tangible inputs or simply sales presence in other
industries that are driving the negative spillovers, I conduct a placebo exercise based on column
(5) where I use different proximity measures constructed based on bilateral similarity in use over
different sets of inputs (in lieu of intangibles, hINT

f j ). Table 11 displays the regression table counterpart
to coefficients shown in Figure 2. The numbers next to the description in parentheses display the
BEAX subroot (1, 2 or 3 digits) among 6-digit BEAX industry inputs that make up the sector. Taxes,
government sector inputs, and the two types of value-added are specific BEA categories that have no
corresponding numeric BEAX code.

A.4.5 Firm-level Respones

I construct weights, η f k ,t , in the firm-level regression equation (4) for the various outcome categories
as follows:

η f kt �
∑

k

βy ,kX f kt∑
k′ β(i),kX f k′t

,

where X f kt is firm sales and βy ,k takes on the following values depending on the outcome variable:

(i) Purchased professional services: βy ,k � βINT,k , the share of gross output by industry k on
intangible inputs.

(ii) Sales: βy ,k � 1 (so η are simply sales weights).

(iii) Capex: βy ,k � βCAP,k , the share of gross output by industry k on capital value added.

(iv) Payroll: βy ,k � βLAB,k , the share of gross output by industry k on labor value added.

The quantitative appendix discusses the extent to which the weight for intangible input expenditures,
(i), approximate theoretically-relevant weights.

Data on purchased professional services at the firm level come from aggregating responses of
plants of the firm to the following ASM survey expense line items: expenses on legal, accounting,
management, communication, advertising, and computer software and data processing services.
Firms that do not have plants respond to these questions in the ASM and firms that have sales outside
of the manufacturing sector account for larger than 5% of overall sales are dropped for this particular
regression. Data on firm-wide capex come from summing up plant-level capital expenditures, and
data on payroll come from summing up plant-level production worker payroll.
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A.4.6 Vertical Explanations

There are four general reasons a demand shock in industry k may propagate within a firm to generate
increased sales in industry j: (i) j supplies k, (ii) k supplies j, (iii) k , j use similar inputs, and (iv) k , j
are demand-complementary and have similar buyers. My focus is on story (iii). The discussion in the
body of the paper (Section 2.5) rules out reason (iv), demand-complementarity. The following points
discuss the first two, vertical stories.

(i) I use the external sales growth in industry j as my main outcome variable, so the reaction is
precisely in the increased outward sales in industry j. It could still be true that external sales
growth is driven by productivity effects induced by intra-firm sales growth. I check specifically
whether intra-firm sales growth in j occurs in response to demand shocks in k. I find that
they do not respond (even among only the tiny fraction of j industries that have any inter-plant
shipments at all).

(ii) For this to occur there must first be an increase in internal shipments in the shocked industry
k. Then the story would be that increased quality of shipments (as measured by increased
internal sales) drives growth in industry j. I use growth in inter-plant (intra-firm) shipments as
an outcome variable across the specifications in Table 9. I find that they do not respond (even
among the tiny fraction of k industries that have any inter-plant shipments at all).

A.4.7 Threats to Identification

Related to the discussion on threats to identification in Section 2.5, I test directly and reject the
hypothesis that the import growth patterns across industries within a destination are positively
correlated among intangible-input intensive industries. I aggregate imports of each destination to the
industry level (across products), IMP US

nk ,t−1, and construct spillover functions corresponding to the
same functional forms used in the main firm-industry regression table:

hBLK
n jt ≡ ψ

BLK
∑
k, j

∑
m∈MBLK

β jm

(
βkm IMP US

nk ,t−1∑
k, j βkm IMP US

nk ,t−1

)
∆ log IMP∼US

nkt ,

for BLK � {INT, TAN} to separate out intangible inputs from remaining inputs in the input-output
tables. I the run the following regression, at the level of destination-industries, over the same time
period (in 5-year differences):

∆ log IMP∼US
n jt � ψTAN hTAN

n jt + ψINT hINT
n jt + FE jt + FEnt .

I do not find that ψINT is positive, either with or without destination-year fixed effects.
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A.4.8 Deflating

Even though the main regressions specifications all include industry-year fixed effects, whether
variables are nominal or deflated couldmake a difference in terms of the relative sizes of export shares
and expenditure shares. All the reduced-form results are virtually unchanged when the following
variables are deflated with industry-level price deflators from the NBER: demand shocks (import
growth at destinations), outcomes (external shipments of a firm-industry), as well as ‘initial-period’
variables in the formulation of weights, for example, behind the h f j functions.
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B Theory Appendix
In this section I prove any claims and derive the expressions found in Propositions and Lemmas in
the main body of the paper. I also provide commentary on a few relevant extensions of the results of
the model.

B.1 Proposition 1: Identification Benchmark
Consider the partial equilibrium problem of a firm that chooses own quantities of production {q j} j

to maximize profits facing inverse residual demand p j(q j):85

π ≡ max
{q j} j

∑
j∈ J

p j q j − C(®q; ®w).

The first order conditions relate marginal revenue MR j to marginal cost MR j in each industry:

MR j(q j) � MC j(®q; ®w) ∀ j.

Let S j be exogenous and relevant shifters of marginal revenue from the point of view of the firm,
so that ∂C

∂S j
� 0 and ∂MR j

∂S j
, 0. First consider the case where marginal revenue is only a function of

own-industry quantities and demand shifters. Take a total derivative to yield

∂MR j

∂S j
dS j +

∂MR j

∂q j
dq j �

∑
k

∂2C
∂q j∂qk

dqk , ∀ j.

Rearranging and expressing in matrix form:

dq � Γ−1 diag
(
∂MR j

∂S j

)
dS,

where elements of Γ are given by

[Γ] jk �
∂2C
∂q j∂qk

−
∂MR j

∂q j
,

and a sufficient condition for the invertibility of Γ is that the second order conditions of the firm’s
profit maximization problem are satisfied, implying that the matrix Γ is positive definite. Using the

85When the demand function is known, identification is robust to arbitrary demand-side complementarities
(where inverse demand can be a function of quantities in all industries). Of course, in the CES-monopolistic
competition equilibrium introduced in the model, this is ruled out. This assumption is not unreasonable in
my empirical setting with only 206 industries. For example, results in Flaaen et al. (2019) suggest significant
demand-side complementarities between washers and dryers, which fall within the same industry.
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relationship between sales and quantities we can re-express the matrix as

d log X �

(
Γ−1 diag

(
MR j

X j

∂MR j

∂ log S j

)
+ diag

(
∂ log p j

∂ log S j

))
︸                                                      ︷︷                                                      ︸

�ψ jk

d log S,

so that knowledge of quantities and the demand function is enough to identify the Hessian of the cost
function, ∂2C

∂q j∂qk
, from ψ jk .

Finally, working out the more general case where inverse demand p j is a function of the full vector
of quantities ®q and demand shifters ®S is logically trivial since we assume knowledge of the demand
function but simply algebraically more cumbersome to show.

B.2 Lemma 1: Microfoundation for Non-rivalry
Combine the expression in Assumption 2 with the expression for firm-industry profits in equation (6)
to compute the expected impact on firm profits from the arrival of an idea im generated by specialized
input m:

∆ f m

Z
≡ E

[
max

j
α̃m jB jξ f j φ f jm ,i

]
,

where φ f jm ,i is an independent random draw from a Fréchet distribution. The expected impact is
the change in profits in the industry in which the idea (given its distribution of qualities in different
industries) generates the highest improvement in profitability. The remainder of this proof simply
relies on properties of the Fréchet distribution popularized by Eaton and Kortum (2002). I can
re-express the profit contribution as:

∆ f m

Z
� E

[
max

j
φ̃ f jm ,i

]
,

where φ̃ f jm ,i is an independent random draw from a different Fréchet distribution that absorbs the
multiplicative shifters:

Pr(φ̃ f jm ,i ≤ x) � e−(α̃m j B jξ f j)θm x−θm
, ∀ j,

and it follows that

∆ f m

Z
�

©«
∑

j

(
α̃m jB jξ f j

)θmª®¬
1
θm

Γ(1 − 1/θm),

∆ f m �
©«
∑

j

δθm
f m j

ª®¬
1
θm

.

where Γ is the gamma function and δ f m j ≡ ξ f jαm jB jZ.
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B.3 Lemma 2: The Firm’s Solution
Given the timing assumptions, the firm’s problem is solved in two steps. During the production step,
the firm decides expenditures on generic inputs knowing values of accumulated knowledge capital,
ϕ f j . This yields the expression for gross profits of the firm (sales less generic input expenses) in
equation (6).

The remaining problem of the firm is to solve expenditures on specialized inputs at the beginning
of time and decide the industries in which to deploy the ideas that arrive during the incubation
period. Given Assumption 2, expected firm net profits Π f can be written as:

E[Π f ] � max
I f m
E


∑

j

∑
m

B jξ f j α̃m j

A f m∑
i

φ f jm ,i1 f jm ,i

 −
∑

m

ρm − 1
ρm

w
(

I f m

Z

) ρm
ρm−1

.

The first half of the expression denotes the expected gross profits of the firm given choices of the
Poisson arrival rate I f m and deployment decisions 1 f jm ,i . The remaining half of the expression relates
to the costs (in terms of expenditures on specialized inputs) spend on acquiring the chosen Poisson
arrival rate I f m over all specialized inputs m. Given the independence of the Poisson and Fréchet
distributions, this problem is additively separable, so that the contribution and deployment decisions
of each idea that arrives is independent of past and future decisions.

More formally, the deployment decision 1 f jm ,i has the following expectational properties inherited
from Fréchet (Section B.2):

Pr(1 f jm ,i � 1) � Pr(φ̃ f jm ,i � max
k
φ̃ f km ,i)

�

δθm
f m j

∆
θm
f m

≡ µ f m j ,

where µ f m j are deployment probabilities for any given idea generated by specialized input m and

E[α̃m jB jξ f jφ f jm ,i |1 f jm ,i � 1] � ∆ f m .

Recalling that A f m is distributed independently with Poisson mean I f m , expected firm net profitsΠ f

can be re-written as

E[Π f ] � max
I f m

∑
m

∑
j

E[A f m |I f m]E[α̃m jB jξ f jφ f jm ,i |1 f jm ,i � 1]Pr(1 f jm ,i � 1) −
∑

m

ρm − 1
ρm

w
(

I f m

Z

) ρm
ρm−1

� max
I f m

∑
j

∑
m

I f m
∆ f m

Z
µ f m j −

∑
m

ρm − 1
ρm

w
(

I f m

Z

) ρm
ρm−1

� max
I f m

∑
m

I f m
∆ f m

Z
−

∑
m

ρm − 1
ρm

w
(

I f m

Z

) ρm
ρm−1

.
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This is a simple convex optimization problem separable across specialized inputs m, with solution
given by

I f m � ∆
ρm−1
f m w1−ρm Z, ∀m ,

and thus net profits are equal to

E[Π f ] �
∑

m

∆
ρm

f m w1−ρm −
∑

m

ρm − 1
ρm

∆
ρm

f m w1−ρm

�

∑
m

1
ρm
∆
ρm

f m w1−ρm .

Likewise, expected gross profits in industry j are given by

E[π f j] �
∑

m

I f m
∆ f m

Z
µ f m j �

∑
m

µ f m j∆
ρm

f m w1−ρm .

The probability that a firm is active in industry j, denoted χ f j � 1, is one minus the probability that
no ideas are chosen to be deployed to that industry. Since deployment of one idea is independent of
another, and the total arrival of ideas generated by any input m is a Poisson process with rate I f m ,
the arrival of ideas deployed to industry j is also a Poisson process, with different rate I f mµ f m j . The
probability that no ideas are chosen to be deployed is thus the probability that there are no arrivals
from the joint Poisson processes of deployed ideas to industry j over all specialized inputs:

Pr(χ f j � 1) � 1 − exp

(∑
m

µ f m j I f m

)
� 1 − exp

(
−Z

∑
m

µ f m j∆
ρm−1
f m w1−ρm

)
,

and is independent across industries. Similarly, an inactive firm is a firm with no ideas arrive at all.
The probability that a firm is inactive is thus given by

Pr(χ f � 1) � 1 − exp

(∑
m

I f m

)
� 1 − exp

(
−Z

∑
m

∆
ρm−1
f mt w1−ρm

)
.

B.4 Proposition 2: Firm-level Elasticities
Log-differentiating equation (8) with respect to shifters of firm profitability in industries k, holding
factor prices w constant, yields

d logE[X f j] � d logE[π f j]

�

∑
m

λ f jm

(
θm1k� j d log ξ f kBk + (ρm − θm)

∑
k

µ f mk d log ξ f kBk

)
,
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where µ f m j are choice shares given in Lemma 2, and λ f jm denote utilization shares: the share of
gross profits of industry j attributable to knowledge capital contributions by input m:

λ f jm ≡
µ f m j∆

ρm

f m w1−ρm∑
m′ µ f m′ j∆

ρm′
f m′w

1−ρm′
.

B.5 Connecting Firm-level Elasticities in the Model and Reduced-Form
The firm-level cross-industry elasticity from Proposition 2 combines responses on both intensive and
extensive margins (E[X f j] includes the non-trivial probability of zero sales).86 But for sufficiently
large firms (high in ξ f ), all the responses load on the intensivemargin. The intuition is that the largest
firms choose a level of expenditures on specialized inputs so high to start with that the likelihood
of cross-industry shocks affecting the extensive margin vanishes.87 With a high enough arrival rate,
the expectation operator becomes exact thanks to the law of large numbers.88 The following Lemma
clarifies this point and motivates the focus of the reduced-form regressions on the intensive margin
(given that the regression sample comprises large firms):

Lemma 3 (Intensive Margin Spillovers for Large Firms) For a firm with non-zero latent productivities
ξ f j and ξ f k , cross-industry elasticities characterized by Proposition 2 load completely onto the intensive margin
as the average firm productivity ξ f become arbitrarily high:

lim
ξ f→∞

d logE[X f j]
d log ξ f kBk

�
d logE[X f j |X f j > 0]

d log ξ f kBk
.

As a corollary, the share of the cross-industry elasticity in Proposition 2 explained by extensive margin changes
within the firm ranges from 1 (for the lowest ξ firms) to 0 (for the highest ξ firms).

Proof. Separate the expected gross sales into intensive margin and extensive margins:

logE[X f j] � logE[X f j |X f j > 0] + log Pr(X f j > 0).

Differentiate the extensive margin:

d log Pr(X f j > 0)
d log ξ f kBk

�
exp(−Σ f j)Σ f j

1 − exp(−Σ f j)
∑

m

sm j
(
θm1k� j + (ρm − θm)µ f mk

)
,

86It is easy to log-differentiate equation (9) to derive purely extensivemargin predictions and thus decompose
the action.

87For intuition, consider how demand shocks for MRI machines might affect General Electric’s intensive
margin sales of jet engines but is unlikely to affect whether the company is active at all in jet engines. Of course,
the Lemma does not mean that we should expect big firms to have no adjustments on the extensive margin:
adjustments can still occur whenever firm-industry demand and supply shifters (ξ f j) change (i.e. from 0 to
some positive value) for reasons outside of the model.

88All the Frechet idiosyncratic errors wash out. This large firm limit also corresponds to the framework
pioneered in Tintelnot (2016) and Antràs et al. (2017), whereby outcomes are smoothed across a continuum
within the firm instead of being granular.
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where

sm j ≡
Zµ f m j∆

ρm−1
f m w1−ρm

Σ f j
,

and Σ f j ≡ Z
∑

m µ f m j∆
ρm−1
f m w1−ρm . Let ξ̄ f denote the average of the profitability shifters in two

industries of the firm j, k in which the firm has non-zero sales. The term to the right of the
∑

m in the
derivative of the extensive margin is bounded (weighted average of elasticities),

lim
ξ̄ f→∞

d log Pr(X f j > 0)
d log ξ f kBk

� lim
Σ f j→∞

exp(−Σ f j)Σ f j

1 − exp(−Σ f j)
� 0,

where the last equality makes use of L’hopital’s rule.

B.6 Proposition 3: Aggregate Economies of Scale and Scope
Equation (12) is a system of goods market clearing conditions linking residual profits B j to industry
gross output, Xk . Log-differentiating this system of equations yields

d log B � Υ−1 d log X.

Equation (7) is a system of equations defining residual profits B j in terms of industry price indices
and gross output. This system of equations is separable yielding

d log P j �
1

σ j − 1
(
σ j(1 − ς j)d log B j − d log X j

)
, ∀ j.

Combining the two equations yields the result in Proposition 3.
Technically speaking, economies of scale and scope relate to properties of a cost function. In

monopolistic competition with product differentiation, industry-level economies of scale and scope
can still be represented with reduced-form industry-level aggregate production functions that take
into account firms’ endogenous responses to competition. I provide such a representation below. Let
Q j denote an aggregate, industry-level production technology for a composite good in the industry:

Q j ≡
(
N

∫
f

q
σ j−1
σ1

f j d f

) σ j
σ j−1

,

where q f j is the quality-adjusted output by firm f in industry j given in Assumption 1.
The total cost of producing Q j units is given by C j(Q j) � P jQ j where the industry price index P j

is defined as:
P

1−σ j

j ≡ N
∫

f
p

1−σ j

f j d f ,

and corresponds to the P j term inside residual profits in equation (7). P j can be expressed as a
function of Q j , underlying industry quantities of production, through re-defining Xk in equations
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(12) and (7) as Xk � PkQk . Carrying through the same sets of derivatives but now using Qk as the
exogenous shifter rather than Sk yields

d log B � Υ−1 (
d log Q + d log P

)
.

d log P j �
1

σ j − 1
(
σ j(1 − ς j)d log B j − d log Q j − d log P j

)
, ∀ j.

These can be combined to give an alternative formulation of Proposition 3 in terms of a matrix of
responses of average cost to quantities produced:

d log P �

(
Υ diag

(
σ j

σ j(1 − ς j)

)
− I

)−1 (
I −Υ diag

(
1

σ j(1 − ς j)

))
d log Q. (15)

When there are no economies of scope within the firm (ρm � θm ∀m) we recover certain well-known
cases. It is easy to check that as ρ → ∞, we reach the limit where d log P j � − 1

σ j
d log Q j . And as

ρ→ 1, and generic inputs are constant returns to scale in production, d log P j � 0.
Here is where, not being concerned with market structure, I differ from Baumol et al. (1982).

The aggregate production function generates changes in the sets of prices through the behavior of
other firms, rather than any particular firm itself. It is awkward to ask the question of what would
happen if aggregate quantity indices Q j , Qk were produced jointly instead of separately (i.e. tests of
sub-additivity in the aggregate cost function C �

∑
j C j(Q j)), since they are already composites from

the output of other firms, and an economy rarely has zero production in any given industry.
The more relevant question is what would happen to price indices in any given industry (or

average costs of the aggregate production function) were quantities of production in another industry
changed. The above matrix of derivatives, equation (15), answers that question.

In counterfactual scenarios, Q j does not change for exogenous reasons; rather, exogenous shifters
of market size induce changes in equilibrium Q j . Inmonopolistic competition this is well-captured by
iso-elastic shifters of market size, Sk . It is easy to check that plugging in d log Q j + d log P j � d log X j

back into equation (15) yields the result in Proposition 3.

B.7 Extension of Proposition 3 with Exogenous Productivity Shocks
The framework is general enough to also handle exogenous productivity shocks at the industry level.
Suppose productivity shocks are Hicks neutral. They can be represented in the micro production
framework as shifters of ξ f j for all firms f . Call these shocks d log G j . Proposition 3 can be amended
to incorporate the effect of these shocks on equilibrium objects: prices and sales.

Log-differentiating equation equation (12) yields

d log B + d log G � Υ−1 d log X.

The derivative to equation (7) does not change. Combining the two equations yields a modified

77



version of Proposition 3:

d log P j �
1

σ j − 1
(
[Ψ] jk d log Xk − σ j(1 − ς j)d log G j

)
, ∀ j, k.

The above derivations also imply that if sales d log X is invariant to prices on the demand side (i.e.
if demand is Cobb-Douglas across industries) then industry productivity shocks under monopolistic
competition do not generate spillovers, even when there are economies of scope.

C Quantitative Appendix

C.1 Input Classification
I use the 1997 BEA I/O table to estimate the model. This provides me with a matrix of input
expenditure shares by industry j. I define the set of generic inputs (l j in the theory) to correspond to
NAICS sectors 1, 2, 3, 4, and labor value-added. I take ς j ≡ γj

σ j−1
σ j

to be the industry-level expenditures
on these input categories as a share of gross output.

I group expenditures into three separate intangible input categories corresponding to the first
three rows of Figure 2: headquarters (55), professional services and information (51 and 54), and the
leasing of intangible assets (533). I group all remaining inputs into one residual input. No expenditure
information is needed on this remaining input category, as the derivations belowwill make clear. This
residual category is set up to also absorb payments to latent factors (venture capital, sweat equity)
that are paid rents from out of gross operating surplus in the I/O tables.

This choice of classification yields four specialized inputs. The three intangible inputs share the
same scale and rivalry elasticities (ρINT , θINT), and the remaining latent input category has a separate
set of scale and rivalry elasticities (ρRES , θRES). I let Θ denote the parameter set containing all four
elasticities.

C.2 Estimation Details

C.2.1 Inversion

Conditional on Θ, γ0 , γ1, I describe how to use the aggregate predictions of the parametrized model
to invert for macro technology coefficients αm j , residual profits in each year, B jt , and the technology
index in the cost function, Zt .

First, although expenditures on specialized inputs in the model are at the firm-level, aggregate
data in the BEA tables has these expenditures separated by industry. I assume that, for multi-
industry firms, accounting over these expenditures is proportionalized across industries with respect
to choice shares µ f m j for the deployment of ideas.89 Under such a case, the model predicts aggregate

89Alternatively, one can assume that the BEA computes specialized input expenditures based off of the
first industry in which the firm deployed a successful idea generated by m. This yields the same aggregate
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expenditures of industry j on specialized input m:

Mm j

N
�
ρINT − 1
ρINT

∫
f
µ f m j∆

ρINT

f m dG(ξ f ), ∀ j, ∀m ∈ INT, (16)

where G(ξ f ) is the distribution of ξ given by Assumption 3. To get αm j from base period (t � 1) data
on Mm j , I solve equation (16) separately for each of the three m inputs that I classify as an intangible. I
solve for the J vector of unknowns αm jB j,t�1Zt (grouped together) given data on expenditures {Mm j} j .

The mean of αm j across m for each j is isomorphic to shifts in B j,t�1. Thus, I am free to normalize
αRES, j � 1. To find base period B j,t�0, note that gross profits (sales minus expenditures on generic
inputs) among all firms in an industry equal

π j

N
�

∑
m

∫
ξ
µ f m j∆

ρm

f m dG(ξ), ∀ j, (17)

I subtract equations (16) from equation (17) to yield

π j −
∑

m∈INT
ρINT

ρINT−1 Mm j

N
�

∫
ξ
µ f ,RES, j∆

ρRES

f ,RES dG(ξ),

where the left-hand-side is data contained in BEA input-output tables, and the right-hand side contain
a J vector of unknowns B j,t�1Z that can be inverted. Note that this equation imposes a non-negativity
restriction which manifests as a lower bound on the value of ρINT according to the model:

π j >
∑

m

ρINT

ρINT − 1
Mm j , ∀ j

⇐⇒ (1 − ς j) >
ρINT

ρINT − 1

∑
m∈INT

γm j , ∀ j

⇐⇒
ρINT − 1
ρINT > max

j

γINT, j

1 − ς j
� max

j

γINT, j

γINT, j + γOTH, j
,

for I/O expenditure shares γm j . In the IO data, this restriction corresponds roughly to imposing that
ρINT > 3.

I use the values of B j,t�1Zt�1, and αm jB j,t�1Zt�1 to back out αm j . I hold αm j constant over all three
time periods, for lack of I/O table expenditure data on intangibles in subsequent years.

To find future-period residual profits {B j,2 , B j,3} j (jointly with Zt), I invert for B jt Zt using equation
(17) with data from that corresponding year directly and values of αm j from the above two steps.

Finall, given the full set of B f t Zt and α, I can solve for Zt such that the share of single-industry

prediction as equation 16.
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firms matches 0.8 in the data:∑
j

(
Pr(χ f jt � 1)∏k, j(1 − Pr(χ f kt � 1))

)
Pr(χ f t � 1) � 0.8. (18)

where the probabilities of entry by industry (χ f jt) and by firm (χ f t) are given in Section B.3.

C.2.2 Inference

First, I show that at true parameter valuesΘ, γ, the following J × J structural moment conditions hold
true:

E f

[
(ε f jt − ε̊ f jt−1) ˜∆ log S f kt | χ f j,t−1 � 1, χ f k ,t−1 � 1

]
� 0, ∀ j, k , ∀t � {2, 3}

where ˜∆ log S f kt is the de-meaned shock among shocks received by all firms that are active in industry
k, and ε̊ f j,t−1 is the structural error conditional on the firm being active in industry j:

ε̊ f j,t−1 ≡ X f j,t−1 − E[X f j,t−1 |ξ f ,t−1 , χ f j,t−1 � 1].

By the law of iterated expectations, the moment condition for any pair of industries j, k in any
year t � {2, 3} can be written as

Eξ f ,t−1 ,∆ log S f t

[
˜∆ log S f kt E f

[
(ε f jt − ε̊ f jt−1) | χ f j,t−1 � 1, χ f k ,t−1 � 1, ξ f ,t−1 ,∆ log S f t

]
| χ f j,t−1 � 1, χ f k ,t−1 � 1

]
,

where the (ε f jt − ε̊ f jt−1) terms inside the inner expectation are zero in expectation because

E f
[
X f jt | χ f j,t−1 � 1, χ f k ,t−1 � 1, ξ f ,t−1 ,∆ log S f t

]
� E

[
X f jt | ξ f ,t

]
,

usingAssumption 4 (relevance), so that ξ f ,t canbe expressed as a known functionof (ξ f ,t−1 ,∆ log S f t)),
and

E f
[
X f j,t−1 | χ f j,t−1 � 1, χ f k ,t−1 � 1, ξ f ,t−1 ,∆ log S f t

]
� E

[
X f j,t−1 | ξ f ,t−1 , χ f j,t−1 � 1

]
,

using Assumption 5 (conditional independence), so that ∆ log S f t can be dropped conditional on the
industry presence χ and unobserved profitability shifters. Note that it is important for ∆ log S f t to
be independent of realized outcomes X f j,t−1, so what Assumption 5 rules out is for firms that do
unexpectedly well (conditional on ξ) to receive higher demand shocks.

Next, I show that the inference can proceed off of computable sample analogs of the moment
conditions. One component of the moment condition is pure data (the terms inside structural
residuals ε that correspond to realized sales X f t). I label the set of firms that are active in any
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pair of industries j, k in year t − 1 by n f j,t−1 and construct

Ξo
jkt ≡

1
n jk ,t−1

∑
f ∈n jk ,t−1

(X f jt − X f j,t−1) ˜∆ log S f kt , ∀ j, k , ∀t � {2, 3}.

The remaining components of the structural residuals in the moment condition is model-implied
sales (i.e. E[X f j,t−1 |ξ f ,t−1 , χ f j,t−1 � 1]). I re-write this as:

Ξm
jkt ≡ E f

[ (
E[X f jt |ξ f t] − E[X f j,t−1 |ξ f ,t−1 , χ f j,t−1 � 1]

) ˜∆ log S f kt | χ f j,t−1 � 1, χ f k ,t−1 � 1
]

� Eξ f ,t−1 ,∆ log S f t

[
g jk(ξ f j,t−1 ,∆ log S f t) | χ f j,t−1 � 1, χ f k ,t−1 � 1

]
� E∆ log S f t ,χ f ,t−1

[∫
ξ f ,t−1

g jk(ξ f j,t−1 ,∆ log S f kt) Pr(ξ f ,t−1 | χ f ,t−1)dξ f ,t−1 | χ f j,t−1 � 1, χ f k ,t−1 � 1

]
� E∆ log S f t ,χ f ,t−1

[∫
ξ

g jk(ξ,∆ log S f kt)
Pr(χ f ,t−1 | ξ)∫

ξ
Pr(χ f ,t−1 | ξ)dG(ξ)

dG(ξ) | χ f j,t−1 � 1, χ f k ,t−1 � 1

]
where the second line uses the law of iterated expectations and introduces a g jk function to capture
the inner expectation terms:

g jk(ξ f j,t−1 ,∆ log S f t) ≡
˜∆ log S f ktE f

[ (
E[X f jt |ξ f t] − E[X f j,t−1 |ξ f ,t−1 , χ f j,t−1 � 1]

)
|∆ log S f t , ξ f ,t−1 , χ f j,t−1 � 1, χ f k ,t−1 � 1

]
,

which is an analytical function of (ξ f j,t−1 ,∆ log S f t) given the solution properties of the model and
again, given Assumption 4 (relevance), so that ξ f ,t is known. The third line applies Assumption 5
(conditional independence) to get Pr(ξ f ,t−1 | ∆SHK f t , χ f ,t−1) � Pr(ξ f ,t−1 | , χ f ,t−1) and the forth line
applies Bayes rule to transformPr(ξ f ,t−1 | χ f ,t−1) into known analytical extensivemargin probabilities
given the model.

The sample analog of the last line is given by

Ξm
jkt ≡

1
n jk ,t−1

∑
f ∈n jk ,t−1

∑
s∈S

ω f s m f jk(ξs ,∆ log S f t) ˜∆ log S f kt ,

where ωs f are probability weights that stand for the probability that a simulated firm s has funda-
mentals ξ that belong to firm f in the data (with industry presence χ f ,t−1) relative to other simulated
firms s′ ∈ S,

ω f s ≡
∏

j Pr(χ j,t−1 � χ f j,t−1 |ξs)∑
s′
∏

j Pr(χ j,t−1 � χ f j,t−1 |ξs′)
,

By the law of large numbers,

lim
n jk ,t−1→∞

lim
s→∞
Ξo

jkt − Ξ
m
jkt � E f

[
(ε f jt − ε̊ f jt−1) ˜∆ log S f kt | χ f j,t−1 � 1, χ f k ,t−1 � 1

]
� 0.
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Table 12: Scope Distribution in the Data and Model, 1997

Share of Firms (%) Share of Sales (%)
Number of Industries Data Model Data Model

1 80.99 80.15 26.13 25.00
2 13.01 13.54 10.80 15.74
3 3.32 3.29 7.34 9.43
4 1.33 1.07 5.51 6.33
5 0.61 0.44 4.08 5.48
6 0.28 0.23 2.89 5.76
7 0.14 0.15 3.54 6.71
8 0.08 0.10 3.63 4.05
9 + 0.25 1.03 36.05 21.49

This Table shows the distribution of firms by scope, in the data and in themodel (with
the six estimated parameters,Θ, γ0 , γ1). Sales of firms with 9 or more industries could
not be simulated via brute force due to memory issues when simulating the discrete
Poisson process. Instead, it is backed out from the fact that the share of sales by firms
with one industry was set to equal 0.25 in the estimation.

C.3 External Validity
Table 12 displays the distribution of firms and sales over firm scope behind Figure 3. These are
computed by simulating the actual outcomes of firms in the model when matched to data on output
and input expenditure by industry in 1997 (which is done for estimation).

C.4 Counterfactuals

C.4.1 Equilibrium Definition and Mapping to Data

I introduce some more notation used to characterize the open economy equilibrium. Let D denote
the US manufacturing trade deficit (exports of capital services) vis-à-vis the rest of the world. Let
Ȳr, j and Ȳc , j denote the total market size faced by US firms in each industry j in the rest of the world
and China, and suppose that all firms are common exporters.90 Let W̄P j , C̄P j represent indices of
price competitiveness in each of the two foreign markets by all foreign firms. Let ¯CM j and ¯WM j

represent indices of price competitiveness in the US market by firms from China and from the rest
of the world in industry j. For example, an increase in ¯CM j indicates that Chinese prices have been
lowered (become more competitive) in the US market.

90The selection into exporting margin is not a margin that is addressed in this paper. But in fact, the model
setup here is isomorphic to a setup where firms have common probability χ j of adapting each specialized idea
successively to a foreignmarket (at the same time as for domestic sale). I show this in theOnline Supplementary
Appendix.
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Definition 2 (General Equilibrium) Given fixed foreign price competitiveness abroad and at home, W̄P j ,
C̄P j , ¯CM j , ¯WM j , foreign expenditures Ȳr, j , Ȳc , j , general equilibrium for a given country is described by a
wage, w, and a vector of domestic price competitiveness {PD j} j such that the following equations and related
definitions hold:

(i) Total industry expenditures in the US (from domestic and foreign) is given by

Yj �
∑

k

γjkςkXk + β j(1 − βS)(wL),

where X j stands for domestic industry gross output, γjk is the share of expenditures on generic inputs
by industry k on inputs from industry j, ς j is the share of generic input expenditures in gross output of
industry j, β j reflects Cobb-Douglas final consumption shares within manufacturing, and βS is the share
of final consumption by private households on non-manufacturing.

(ii) Goods market clearing yields a system of J equations in J residual profit shifters B j : output produced over
all firms have to equal total domestic industry output, which has to equal output consumed at home plus
output exported to foreign markets:

X j � N
∫

f
E[X f j(®B)]dG(ξ f )

� Yj
PD j

PD j + ¯CM j + ¯WM j
+ Ȳc , j

PD j

PD j + C̄P j
+ Ȳr, j

PD j

PD j + W̄P j
, ∀ j � 1, ..., J,

(19)

where the index of domestic competitiveness, PD j is endogenous:

PD j ≡ N
∫

f
E

[
p

1−σ j

f j

]
dG(ξ f ).

(iii) Domestic competitiveness can be related to residual profit shifters B j (through combining equation 19 with
an open-economy version of equation 7):

B j � (1 − ς j)
(

c j

ς j

) ς j
ς j−1

(
X j

PD j

) 1
σ j (1−ς j )

, (20)

where c j stands for the unit price index of a bundle of generic inputs assembled using a Cobb-Douglas
intermediate production function:

c j ≡ wγl j
∏
m∈ J

P
γm j
m ,

where γm j , γl j is the Cobb-Douglas share of expenditures (among expenditures on generic inputs) of
industry j on input m ∈ J or labor value-added l, and the domestic industry price index P j (in both final
and intermediate consumption) is given by:

P
1−σ j

j ≡ PD j + ¯CM j + ¯WM j . (21)
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(iv) The trade balance condition equates manufacturing imports with manufacturing exports plus net exports
in a residual service sector, D (the manufacturing trade deficit):∑

j

Yj

¯CM j + ¯WM j

PD j + ¯CM j + ¯WM j
� D +

∑
j

Ȳc , j
PD j

PD j + C̄P j
+ Ȳr, j

PD j

PD j + W̄P j
. (22)

(v) The residual service sector is producedwith constant returns to scale using labor under perfect competition.
Domestic value-added in the residual sector is given by

wLs � D +Π + T + βS(wL),

where T is government tariffs (assumed 0 in initial equilibrium), andΠ is net profits in the manufacturing
sector given by equation (10).

(vi) Manufacturing sector payroll is

wLm �

∑
k

Xk
©«1 −

∑
j

γjkςk
ª®¬ −Π,

where Lm + Ls � L satisfies labor market clearing.

Data in the Initial Equilibrium. These equilibrium definitions allow me to impute consumption
expenditure shares β j , the manufacturing deficit D, all price competitiveness indices, and foreign
expenditures Ȳc , j , Ȳr, j given US and world trade and industry level data in 2017. I introduce the data
I use from public data in 2017:

1. Data on gross output by manufacturing industry, X j come from the BEA in 2017.

2. I hold the number of total manufacturing firms, N , fixed, at 318,000.

3. Data on γjk and ςk come from the 2012 BEA I/O tables (the 2017 tables are not yet available).91

4. Trade data in 2017 on US imports and exports by country and industry (after mapping HS10 to
BEAX) come from the US Census Bureau (made available by Schott (2008)).92

5. World trade data in 2017 by industry and country come from BACI Comtrade.

Variables in theModel. Using the trade data, I compute λs
dj is the share of US firms’ total sales in

industry j going to destination d ∈ {u , r, c} (the US, rest-of-world, and China, respectively), λc
odj is the

share of destination d ∈ {u , r, c}’s consumption of industry j on goods sold by the origin o ∈ {u , r, c}.

91There are a few industries where implied input-output use shares are so large that final use is predicted to
be negative. I adjust input-output shares downward by a proportional factor for that industry until final use is
at least 2% of gross consumption.

92There are a few industries where US exports is higher than measures of gross output in BEA data. I
harmonize the two data sources by adjusting gross output, X j , to be at least 1% higher than gross exports.
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These trade shares are important; note that all the ratios of price competitiveness in the definition of
equilibrium can be written as these observable trade shares.

I compute industry gross expenditures as Yj �
X jλs

u j

λc
uu j

.
I compute final consumption shares in manufacturing, βk , as:

βk �
Yk −

∑
j γjkςkXk∑

k(Yk −
∑

j γjkςkXk)
.

Using the estimatedparameters, I use the samemacro inversion steps as in the structural estimation
(equations 16, 17, and 18) to compute α, B, Z in 2017. I use 1997 expenditure shares on intangible
inputs m by industry j combined with 2017 output data to impute expenses on intangibles Mm j used
in the inversion. With these variables on hand I compute net profits in the manufacturing sector Π
using equation (10).

I compute themanufacturing deficit as the difference between total consumption and total output:
D �

∑
j Yj −

∑
j X j . I normalize the wage w to 1 by choosing an appropriate unit in which to measure

efficiency-adjusted labor, whereby
L � GDP −Π,

where GDP is 19.4 trillion in 2017. The share of consumption on residual services is then given by:

1 − βS �

∑
j Yj −

∑
j
∑

k γjkςkXk

L
.

Foreign demand in themodel is given by Ȳr, jλc
ur j � EXur j whereEXur j is US exports to destination

r in industry j. An identical expression pins down Ȳc , j .

C.4.2 Exogenous Shocks

The equilibrium set-up in Definition 2 accommodates different assumptions on how D adjusts to
external shocks. Assuming that D is constant allows the use of the trade balance equation (22) to
solvewages, w. On the other hand, assuming that D is generated by a perfectly elastic foreign demand
for residual services pins down w across counterfactuals; D is simply computed from subtracting new
manufacturing imports and exports under fixed w, from the same trade balance equation (22). The
results I present in this paper follow this second approach in order to not have wage effects generate
spillovers.

I consider three types of counterfactual shocks. I map these shocks to changes in exogenous
variables under Definition 2.

1. A change in the domestic labor force, given by L̂.

2. A change in foreign market size, given by ˆ̄Yr j , ˆ̄Yc j

3. I consider new tariffs imposed by the US on imports from China, denoted by τcu j , and import
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tariffs imposed by China on imports from the US, denoted by τuc j . I model tariffs τ ≥ 1 as
ad-valorem, so that

(a) The change in Chinese price competitiveness in the US is ˆ̄CM j � τ
1−σ j

cu j .

(b) The change in US price competitiveness in China can be modeled as ˆ̄CP j � τ
σ j−1
uc j . Tariffs

also cause take-home revenues of firms to fall to 1
t j

of tax-inclusive sales. This can be

reflected by a change in ˆ̄Yc j � τ−1
uc j .

(c) US tariff revenues are given by

T′ �
∑

j

τcu j − 1
τcu j

τ
1−σ j

cu j λ
c
cu j P̂

σ j−1
j ,

I assume that pre-existing tariffs on Chinese imports are zero. If they are non-zero, the
new tariffs change infra-marginal tariff revenues and the calculation needs to be revised. I
assume that Chinese tariffs onUS goods are taken out of the system and do not go towards
increasing market demand Ȳc , j .

C.4.3 Proposition 5: Arbitrary Propagation in Open Economy with Input-Output Link-
ages under Economies of Scale and Scope

I log differentiate the system of equations in Definition 2 to derive a unified system of equations
linking endogenous equilibrium variables (price indices, sales, etc) to exogenous shocks described
above (changes to L, Ȳ, CM, CP). These equations yield analytical propagation matrices. First, log-
differentiating the second line of equation (19) yields the following demand-side relationship between
sales and changes in gross output X and domestic productivity PD, in matrix algebra:

d log X �
(
I −ΩR)−1

(
d log S + diag(λcpt)d log PD + diag(λs

u j)d log PF
)
, (23)

where λs
dj , λ

c
odj are defined earlier, and λcpt

j is a measure of foreign competition in the US given by

λ
cpt
j ≡

∑
d∈{u ,r,c}

λs
dj(1 − λ

c
udj),

the matrix ΩR contains external input-output revenue-weighted coefficients denoting the extent to
which changes in gross output in other industries k′ affect gross output in j:

[ΩR] jk ≡ λs
u j(1 − λ

c
f in , j)

γjkςkXk∑
k′ γjk′ςk′Xk′

,
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where λc
f in , j is the share of final use in consumption in industry j, and exogenous shocks are grouped

under changes to the scale of output, d log S, and changes to domestic competition, d log PF:

d log S j ≡ λs
r j d log Ȳr j + λ

s
c j d log Ȳc j + λ

s
u jλ

c
f in , j d log L − λs

c jλ
c
uc j d log C̄P j − λs

r jλ
c
ur j d log W̄P j ,

d log PF j ≡ −λc
cu j d log ¯CM j − λc

ru j d log ¯WM j .

Next, I turn to the supply-side relationship between market size (residual profits), prices and
productivities. The first line of equation (19) can be log-differentiated to yield

Υ−1 d log X � d log B,

where Υ is the aggregate matrix over individual firm spillovers given by equation (13). I log-
differentiate the expression for residual profits B j in equation (20), open up the generic cost index c j

to reflect intermediate input purchases form manufacturing industries, replace d log B with d log X
given the above equation to get

Ψ d log X � −
(
I −ΩP diag (λc

uu)
)

d log PD −ΩP d log PF, (24)

where Ψ is an inverse spillover matrix (due to economies of scale and scope) given by

[Ψ] jk ≡ σ j(1 − ς j)[Υ−1] jk − 1 j�k ,

and ΩP is matrix of external input-output price-related coefficients given by

[ΩP] jk ≡
γk jς jσ j

σk − 1 .

Equations (24) and (23) represent two systems of equations in two vectors of unknowns (X and
PD). I combine them to express domestic productivity PD changes in terms of external shocks PF
and S:

d log PD � −
(
I −ΩPdiag(λc

uuk) + Ψ
(
I −ΩR)−1 diag(λcpt)

)−1
×

×
(
Ψ

(
I −ΩR)−1 d log S +

(
ΩP

+ Ψ
(
I −ΩR)−1 diag(λs

u)
)

d log PF
)
. (25)

Proposition 5 follows from setting d log PF � 0 in the above expression (the only exogenous shock
is to market size, not to competitiveness). The main results described in Figure 5 are computed as
follows. I express the productivity effects as:

d log PD � −Ξd log S,

where Ξ is a matrix defined below, taking on different values across the scenarios described in the
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text.
Ξ � −

(
I −ΩPdiag(λc

uuk) + Ψ
(
I −ΩR)−1 diag(λcpt)

)−1
Ψ

(
I −ΩR)−1

For each scenario (associated with a Ξ), I decompose Ξ into diagonal and off-diagonal elements,
respectively, as

Ξ � ΞDIAG
+ ΞCROSS .

The values of λprod
j ≡ X j/X are shares of industry j output among total manufacturing output X.

I use these shares to collapse the vector of price (productivity) effects d log PD j into an aggregate
productivity index. I compute, for example, the diagonal effect as:

d log PPI �
(
λprod

1 − σ

)′
× ΞDIAG × diag(λs

r + λ
s
c), (26)

which yields a 1 × J vector describing the effect of a proportional change in foreign market size in a
column industry on the manufacturing PPI.

Table 13 describes the numbers behind producing Figure 5. I compute the effects of a 1% pro-
portional rise in foreign demand (across all industries) on US firm productivity and gross output.
I decompose these effects into direct (own-industry) and spillover effects using equations (24), (25),
and (26). The change in gross output is computed using the same λprod weights. I compute the share
of spillovers generated by scope economies by differencing the productivity effects between scenarios
(b) and (a), and likewise for scenarios (d) and (c) and expressing this difference as a share of the total
productivity effect (in (b) and (d), respectively).

Table 14 presents results for the main counterfactual, scenario (b), industry-by-industry, rather
than collapsed into an aggregate productivity index. It shows the top and bottom industries by the
proportion of productivity response that occurs as a result of spillovers relative to the total effect
whenever the industry receives an industry-specific demand shock. Note that this is a relative result
(spillovers as a share of total). The top industries listed do not indicate the industries where demand
shocks generate the highest total aggregate productivity gains, nor industrieswhere the total elasticity
of productivity to gross output is highest.93

C.4.4 Robustness to Alternative values of σ

I explore the sensitivity of the key results in Table 13 to alternative values of σ j , against the benchmark
of σ j � 5 ∀ j. I consider three different exercises. First, I vary the absolute value of σ but continue to
hold it constant across industries. Figure 7 shows how the elasticity of productivity with respect to
gross output varies with values of σ ∈ (3, 10), decomposing the aggregate productivity response to
the direct, own-industry effect versus net spillovers. While the direct effect is, as expected, decreasing
with the value of σ j , the indirect effect is much less so, contributing between 3 and 5 percentage points

93The top 5 industries by total aggregate productivity gains are aircraft manufacturing, petroleum refiner-
ies, other motor vehicle parts, light truck and utility vehicles, and broadcast and wireless communications
equipment.
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Table 13: Effect of a 1% Increase in Foreign Demand on US Productivity and Output

Scenario (a) (b) (c) (d)

Total Effect on Productivity (%) 0.066 0.082 0.636 1.410
Direct 0.066 0.066 0.067 0.134
Positive Spillovers 0 0.018 0.526 1.275
Negative Spillovers 0 -0.002 0 0.000

Total Effect on Gross Output (%) 0.387 0.416 1.976 3.922
Direct 0.387 0.392 0.515 0.581
Positive Spillovers 0 0.032 1.460 3.342
Negative Spillovers 0 -0.003 0 0.000

Elasticity of Productivity with respect to Gross Output 0.17 0.20 0.32 0.36
share due to Scope Economies 0 0.20 0 0.55

This table depicts the effect on aggregate productivity and output in the US due to a proportional 1% foreign
demand shock (across all industries) used to compute the elasticities in Figure 5. The sub-rows decompose
the total effects into those accruing due to direct, own-industry responses versus spillovers across industries.
The four columns depict four scenarios corresponding to different versions of the underlying economy: (a)
only scale economies (along the own-industry), (b) both scale and scope economies, (c) only scale economies
with external I/O linkages, (d) both scale and scope economies with external I/O linkages. These effects are
computed using equations (24), (25), and (26). The elasticities in Figure 5 correspond to the direct and spillover
productivity effects scaled by the total effect on gross output. They sum to the penultimate row, the elasticity
of productivity with respect to gross output. To compute the last row, the contribution of scope economies in
scenario (b), I take the difference in productivity between (b) and (a) divided by the productivity response in
(b). I do the analogous computation for scenario (d) by comparing to (c).
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Table 14: Top and Bottom Industries by Positive Spillovers Generated

BEAX Description Share

334514 Totalizing fluid meter and counting device 0.71
3122A0 Tobacco product manufacturing 0.71
334510 Electromedical and electrotherapeutic apparatus manufacturing 0.60
334516 Analytical laboratory instrument 0.58
33451B Watch, clock, and other measuring and controlling device manufacturing 0.57
33641A Propulsion units and parts for space vehicles and guided missiles 0.52
33461X Manufacturing and reproducing magnetic and optical media 0.50
339115 Ophthalmic goods manufacturing 0.46
334511 Search, detection, and navigation instruments 0.45
325620 Toilet preparation manufacturing 0.44

31161A Animal (except poultry) slaughtering, rendering, and processing 0.06
326160 Plastics bottle manufacturing 0.06
314110 Carpet and rug mills 0.06
311920 Coffee and tea manufacturing 0.06
312140 Distilleries 0.05
337215 Showcase, partition, shelving, and locker manufacturing 0.05
311221 Wet corn milling 0.03
33142X Copper rolling, drawing, extruding and alloying 0.02
327992 Ground or treated mineral and earth manufacturing 0.02
311930 Flavoring syrup and concentrate manufacturing -0.06

This table depicts the top and bottom 10 industries in terms of the proportion of aggregate productivity
response (due to amarginal demand shock in that industry) that accrues due to net cross-industry spillovers.
These effects are evaluated using equation (14); the numbers here correspond to the scatterplot in Figure 6.
Results are generated as an average of 100monte carlo simulations of themodel’s draws of firmproductivities
to wash out sampling variation.
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Figure 7: Robustness: Elasticity of Productivity to Gross Output under different values of σ

This graph explores the sensitivity of the results in Figure 5 to alternative common values of σ j across industries.
I decompose the aggregate elasticity productivity to output in scenario (b) into the direct effect in the blue line
(driven by scale economies) and an indirect effect in the orange line (driven by scope economies).

to the elasticity aggregate productivity to gross output across the entire range of values of σ.
In the next two calibrations, I allow σ j to vary across industries j by: (i) assuming that profit shares

(gross operating profits) in each industry are equal to 1
σ j

(as would be true in a case with constant
returns to scale, monopolistically competitive firms, and sunk entry costs paid in some pre-period),
and (ii) targeting the same own-sector returns to scale as in Bartelme et al. (2019). While assumption
(i) is ad-hoc (and not consistent with the model), the values of σ j serve as a useful benchmark as they
appear in other papers. Assumption (ii) is however model-consistent. In this scenario, I first generate
a mapping from BEAX to the two-digit manufacturing sectors in Table 1 of their paper, denoted by s.
I allow for as many differences across σ j as there are sectors s, so all σ j is the same within a sector but
different across sectors. I then solve for the values of σs that would generate the following relationship
between sectoral price indices and sectoral size (from combining equations 26 and 24).

d log PPIs

d log Xs
� −γBCDR

s � −
∑
j∈s

λ
prod
j

1 − σs

∑
k∈s

Ψ jk , ∀s ,

where γBCDR
s are estimates of scale elasticities in Table 1 of Bartelme et al. (2019).94

94Note that this procedure does attribute (correctly) the cross-industry spillovers across industries within
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Table 15: Effect of a 1% Increase in Foreign Demand on US Productivity and Output:
Robustness under different values of σ j

Value of σ j Baseline (=5) Profit Share BCDR
Scenario (b) (d) (b) (d) (b) (d)

Total Effect on Productivity (%) 0.082 1.410 0.085 0.417 0.064 1.073
Direct 0.066 0.134 0.069 0.094 0.050 0.101
Positive Spillovers 0.018 1.275 0.018 0.323 0.016 0.972
Negative Spillovers -0.002 0.000 -0.002 0.000 -0.002 0.000

Total Effect on Gross Output (%) 0.416 3.922 0.408 1.639 0.395 3.299
Direct 0.387 0.581 0.372 0.454 0.365 0.524
Positive Spillovers 0.032 3.342 0.039 1.185 0.032 2.775
Negative Spillovers -0.003 0.000 -0.004 0.000 -0.003 0.000

Elasticity of Productivity w.r.t. Gross Output 0.20 0.36 0.21 0.25 0.16 0.33
share due to Scope Economies 0.20 0.55 0.19 0.43 0.23 0.52

This table explores the sensitivity of results in Table 13 and Figure 5 to alternative calibrations of σ j that vary
across industries. Across the rows of each column I compute the effect on aggregate productivity and output
in the US due to a proportional 1% foreign demand shock (across all industries). The sub-rows decompose
the total effects into those accruing due to direct, own-industry responses versus spillovers across industries.
These effects are computed using equations (24), (25), and (26). The penultimate row divides the total response
of productivity by the total effect on output. To compute the last row, the contribution of scope economies in,
say, scenario (b), I take the difference in productivity between (b) and (a) divided by the productivity response
in (b). I do the analogous computation for scenario (d) by comparing to (c). Across the columns, I alter the
values of σ and the scenario. The first two columns display results obtained under the baseline assumption of
σ j � 5 ∀ j, for scenarios (b) (no I/O linkages) and (d) (incl. I/O linkages). The next set of two columns repeat
the baseline calculations but using σ j calibrated to match the profit share in each industry assuming constant
returns to scale, and the final set of two columns repeat the baseline calculations but using σs calibrated (at the
2-digit manufacturing level) to match sectoral level returns to scale in Bartelme et al. (2019).

Table 15 displays how these baseline results change with respect to the two different calibrations,
both with and without I/O linkages. The different calibrations with heterogeneous σ j do not alter
the main quantitative message that spillovers due to scope are large. In the benchmark model set-
up without input-output links (b), scope economies account for between 19% (Profit Share) and
23% (BCDR) of the total elasticity of productivity with respect to gross output. Whereas own-
industry effects under the BCDR calibration, scenario (b), generate an aggregate scale elasticity of
0.13 (=0.050/0.395), accounting for spillovers induced by scope economies brings this up to 0.16
(=0.064/0.395).

C.4.5 Solving the Model in Exact Changes

For any set of counterfactual exogenous shocks, the system of equations admits a new solution for
PD j and w. I solve the system of equations in terms of exact hat changes. Specifically, for any guess

a sector to sectoral economies of scale. The only productivity response that would be missed in BCDR are
cross-sectoral spillovers.
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of ˆPD j and ŵ, I can compute

B̂ j � ĉ

ς j
ς j−1

j

(
X̂ j

ˆPD j

) 1
σ j (1−ς j )

,

where ĉ j is given by
ĉ j � ŵγl j

∏
m∈ J

P̂
γm j
m ,

and P̂ j is the change in the domestic price index given by

P̂
1−σ j

j � ˆPD jλ
c
uu j +

ˆ̄CM jλ
c
cu j +

ˆ̄WM jλ
c
ru j ,

and X̂ j is given by

X̂ jX j � Y′j ˆPD jλ
c
uu , j P̂

σ j−1
j + Ȳc , j

ˆ̄Yc , j ˆPD jλ
c
uc j P̂

σ j−1
chn , j + Ȳr, j

ˆ̄Yr, j ˆPD jλ
c
ur j P̂

σ j−1
row , j ,

and P̂row , j is the change in the rest-of-world consumption price index given by

P̂
1−σ j

row , j �
ˆPD jλ

c
ur j +

ˆ̄WP j(1 − λc
ur j),

P̂chn , j is the change in the consumption price index in China given by

P̂
1−σ j

chn , j �
ˆPD jλ

c
uc j +

ˆ̄CP j(1 − λc
uc j),

and finally the new vector of gross expenditures Y′j can be inverted from

Y′j �
∑

k

γjkςk
(
X̂kXk

)
+ β j(1 − βS)(ŵLL̂),

where T′ is tariff revenues defined above.
To evaluate the guess I use a system of J equations equal to deviations between industry sales as

computed above, X′j , and the implied industry sales (by solving the firm’s problem) given by equation
12 under the new B′j . I also use the trade balance condition, expressed (succinctly) as∑

j

Y′j � D′ +
∑

j

X̂ jX j ,

to either pin down D′ when ŵ � 1 ( foreign demand for residual services is assumed to be perfectly
elastic), or to solve for ŵ when D is held exogenous (as is more typical in trade counterfactuals). A
gradient based optimization algorithm is found to work very well with this system of equations.

Equilibrium Changes. Throughout counterfactuals presented in Table 6, I compute several
changes in macroeconomic variables of interest:
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1. The change in the manufacturing CPI (consumer price deflator) is∏
j

P̂
β j

j

2. The change in the manufacturing CPI excluding the domestic response of productivity is∏
j

(
P̂CTF

j

)β j
,

where (
P̂CTF

j

)1−σ j
� λc

uu j +
ˆ̄CM jλ

c
cu j +

ˆ̄WM jλ
c
ru j .

3. Expressions for the change in imports, USoutput andUSexports in each industry, tariff revenues
and the deficit can also be computed directly given the equations above.

C.4.6 Alternative Tariffs

I compute the vector of alternative tariffs as follows. First, local effects of external shocks on the CPI
can be computed from log-differentiating the price index equation (21):

d log CPI �
∑

j

β j d log P j �
∑

j

β j

1 − σ j

(
λc

uu j d log PD j − d log PF j

)
,

where the change in foreign prices in my setting is given by d log PF j � λc
cu j(σ j − 1)d log τ j . Finally,

I use equation (25) to replace d log PD j above with its exogenous source, { d log τ j} j .
The change in imports from China is given by

d log IMc �
∑

j

λc j

(
−λc

uu j d log PD j − (1 − λc
cu j)(σ j − 1)d log τ j + d log Yj

)
,

where λc j is the share of imports from China in industry j, and again d log Yj and d log PD j can be
solved for using the equilibrium relationships surrounding equation (25).

A marginal tariff in each industry thus generates a cost (higher consumer prices) versus a benefit
(reducing imports fromChina, assuming that it is a policy-making objective). I manipulate thematrix
of relationships above to yield

τ̊k �

−d log IMc
d log τk

d log CPI
d log τk

, ∀k ,

which expresses the effect of a marginal tariff in industry k towards achieving the policy target
(reducing imports from China) per unit of increase in the CPI. Industries k with a higher τ̊k should
have higher tariffs (due to their higher benefit / cost ratio), but exactly how much higher is not exact
given the non-linear structure of the model. I use this starting vector of alternative tariffs, τ̊, as the
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basis for a search over various scaling parameters β ≥ 0:

τ j � max(1, ατ̊βj ),

where the α is chosen so that the alternative tariffs τ j reduce Chinese imports by 41%, the same
amount as uniform tariffs of 20% would. Intuitively, the values of β adjust the skew / bias that is
applied to the tariffs identified by the local propagation matrix as less adverse on the CPI.95

Figure 8 displays the impact of alternative tariffs on the CPI and domestic productivity, across
varying degrees of industry bias in tariffs on the x-axis (induced by values of β). For each value
of β, the parameter α is chosen to scale the set of tariffs so that the overall impact on reducing
Chinese imports is 41%. The left-most point, where tariffs of τ � 1.2 are symmetric across industries,
corresponds to Column (2) of Table 6. Intuitively, as bias increases, more concentrated tariffs are
required in order to achieve the same reduction in Chinese imports. I hold the lower bound of tariffs
at 1 (so that import subsidies are ruled out).

C.4.7 China Import Tariff Counterfactual: Model with Input-Output Linkages

Finally, in Table 16, I repeat the China import tariff counterfactuals under the extension of the model
with input-output linkages. First, in the neoclassical setting under constant returns to scale (Column
1), I find that input-output linkages generate higher increases in the CPI relative to the case without
I/O linkages. Not only are prices of directly imported goods higher, but domestic goods prices also
increase due to higher input costs. Column (2), which displays results from my model, highlights
additional competing forces coming from scale and scope economies. While import taxes raise the cost
of foreign imported inputs, substitution towards the use of domestic intermediate goods generates a
scale effect which lowers the cost of domestic inputs. These domestic price effects are amplified by
further success in export markets (the foreign demand for US exports is elastic), so that the net effect
on upstream input prices faced by US producers in any industry is theoretically ambiguous. I find,
in this calibration, that the domestic scale effect dominates. The results in Column (2) under input-
output linkages actually reduce welfare losses of tariffs compared to the main results presented in
column (2) of Table 6 (without input-output linkages). The improved success of domestic producers is
reflected in an increase in net profits (equal to 0.28%of grossmanufacturing output) and amuch larger
reduction in the trade deficit. Finally, column (3) displays results from applying a similar process
of searching for alternative import tariffs that mitigate the reduction in the CPI while achieving the
same reduction in imports fromChina. The results demonstrate that there are pure gains from import
protection in this environment with scale and scope economies, exogenous foreign prices, and wages
pinned down by a residual (services) sector. The results are sensitive, however, to assumptions on
the foreign import demand elasticity. Inelastic foreign demand curtails the amplification of domestic
scale effects and would turn the impact on the CPI back to positive territory.

95While the values τ̊ are identified using a local propagation matrix, the computed effects shown in Figure 8
and Table 6 are fully non-linear and not local approximations.
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Figure 8: Impact of Alternative Tariff Policies on US Manufacturing CPI and Productivity

This graph displays the impact on the manufacturing CPI (in blue) and domestic productivity (in orange) from
a range of tariff policies that are designed to achieve the same reduction in US imports from China (of 41%).
Tariff policies range on the x-axis in terms of their degree of bias towards the vector τ̊ identified by the model’s
propagation matrix. The bias is summarized as the highest value of τ among the vector. A highest value of 1.2
(the initial point) reflects the benchmark counterfactual of blanket 20% tariffs.

96



Table 16: Model with external I/O links: Effects on the US Economy from US Tariffs on
Chinese Imports

(1) (2) (3)
Model (with input-output linkages) Neoclassical CRS Scale + Scope Scale + Scope
Import tariffs on Chinese imports 20% Uniform 20% Uniform Alternative

Change (%)
Consumer Price Index (CPI) 1.69 0.11 -2.68
Producer Price Index (PPI) 0.58 -2.12 -6.10

Imports from China -38.7 -40.8 -40.8
Imports from Rest of World 8.9 4.6 -4.2
US Output 0.6 7.4 20.2
US Exports 2.6 7.5 26.0
Manufacturing Trade Deficit -3.0 -32.5 -86.3

As Share of Manufacturing Output (%)
New Manufacturing Profits 0 0.28 0.72
New Tariff Revenues 0.89 0.86 0.15

This table extends the results in Table 6 to an environment with external input-output linkages. It presents
estimates of the impact of two different sets of tariffs on outcomes in the US economy, under two different model
settings calibrated to match US national industry-level aggregates (industry output and trade patterns) in 2017.
Column (1) presents results from a 20% increase in tariffs on Chinese imports across all industries, under a
neoclassical model with constant returns to scale and perfect competition. Column (2) compares the impact of the
same set of tariffs to my model with economies of scale and scope. Column (3) presents results from alternative
tariffs predicted by my model that seek to minimize the CPI impact while achieving the same reduction in total
imports from China. See Definition 2 for a characterization of the open economy equilibrium and Appendix
Section C.4.6 for details on how I compute alternative tariffs.
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