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Abstract. We study the optimal action plan chosen by a decision-maker who faces the pos-
sibility of an irreversible catastrophe. That event follows a non-homogenous Poisson process
with a rate that depends on the stock of past actions. Passed a tipping point, the rate of
arrival of such a disaster increases. We describe optimal trajectories under various informa-
tional scenarios with uncertainty on where the tipping point lies. When the mere fact of having
passed the tipping point is immediately known, the optimal action plan is time-consistent.
When having passed the tipping point remains unknown, a case of deeper uncertainty, a
time-inconsistency problem arises. We characterize the unique Markov-perfect equilibrium
among the decision-maker’s different selves with feedback rules being conditioned only on the
existing stock of past actions. We interpret the Precautionary Principle as an institutional
restriction on actions which aims at solving this time-inconsistency problem. Unfortunately,
such restriction is never optimal as it means refusing acting on useful information that will
arrive in the future. We investigate and discuss the relevance of other potential solutions to
restore commitment.
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1. INTRODUCTION

On the Precautionary Principle. When dealing with the major environmental and
health issues that pertain to our modern risk society,1 policy decision-making is compli-
cated by two features that make the standard tools of cost-benefit analysis of little value
or even irrelevant. The first specificity is that consumption and/or production choices
might entail a strong irreversibility component. The most salient example is given by
global warming. Pollutants have been accumulating in the atmosphere from the incep-
tion of the industrial era, leading to a steady increase in temperature. All current or
planned efforts against global warming consist in controlling the growth rate of temper-
ature, not reducing it. Another example is given by GMO crops whose production may
profoundly modify the surrounding biotope without any possibility of engineering back
that biotope because of irreversible mutations.2

1We thank seminar participants to the Environmental Economics Seminar and to the Frontier in
Environmental Economics 2017 Workshop at Paris School of Economics, ETH Zurich Workshop on
Environmental Economics 2017, World Congress of Environmental and Resource Economics 2018, and
Montpellier, CREST-ENSAE-Polytechnique, Columbia University and the 3rd IO Workshop in Bergamo
2019 for useful comments on earlier versions of this paper. This work has benefitted of many fruitful
discussions with Antoine Bommier, Ivar Ekeland and Eric Serre. The usual disclaimer applies.

aColumbia University, louise.guillouet@columbia.edu
bParis School of Economics-EHESS, david.martimort@psemail.eu
1Beck (1992).
2Other examples of irreversible choices include hydraulic fracturing to exploit shale gas (which implies

irreversible pollution of underground water reserves), authorizing the use of Bisphenol A or glyphosate
(which are both potential sources of cancers), relying exclusively on nuclear energy (with potential severe
environmental destruction and potential severe health issues in case of an accident).

1

http://www.econometricsociety.org/
mailto: louise.guillouet@columbia.edu
mailto: david.martimort@psemail.eu


2 L. GUILLOUET AND D. MARTIMORT

The second feature of those problems is that the costs and benefits of any decisions
have to be assessed in a world of significant uncertainty. Although the consequences of
acting might be detrimental to the environment, the extent to which it is so and the
probability of harmful events, in other words the physical processes at play, remain to a
large extent unknown to decision-makers at the time of acting.

The policy guidelines that have been adopted to rule decision-making and regulation in
those contexts widely vary from one country to the other. To illustrate, while GMOs are
authorized for human consumption in the U.S. without labeling, it is compulsory to label
them in sixty four other countries throughout the world and they are actually forbidden
in most of the European Union. Despite such variations in responses, a common concern
has been to improve knowledge of the risky phenomenons at stake and thus to let scientific
expertise play a significant role throughout decision-making process. When the issues of
probabilities and consequences have to be assessed, learning about fundamentals of the
physical process at stake becomes a key aspect of risk regulation.3

To further guide decision-making, a concept that has repeatedly been invoked is the so
called Precautionary Principle. The original idea is due to the philosopher Hans Jonas’
Vorsorgeprinzip, or Principle of Foresight - sometimes translated and referred to as the
Principle of Responsibility. This Principle suggests that we should acknowledge the long-
term irreversible consequences of present actions, and refrain from undertaking any such
action if there is no proof that it would not negatively affect future generations’ well-
being. The Precautionary Principle was acknowledged by the United Nations in 1992,
during the Earth Summit held in Rio, and expressed as: “Where there are threats of
serious and irreversible damage, lack of full scientific certainty shall not be used as a
reason for postponing cost-effective measures to prevent environmental degradation.” The
same idea was then developed and adopted by several other governments such as France,
where a very similar principle was written in the 2004 Charter on the Environment,4 that
is now part of the French Constitution. Any risk regulation must comply with the legal
framework that the Principle contributes to build, most often taking the form of a law
that states a period during which a certain action cannot be undertaken, or only at a
very limited level.

There has always been a lively debate on whether the Precautionary Principle provides
a convenient guide for decision-making under deep uncertainty. Doubts exist on the fact
that its adoption might actually do more harm, by hindering innovation and wealth
creation, than good, by protecting human health or the environment.

The debate goes on by recognizing the contradictory views that pertains to the Pre-
cautionary Principle.5 Giddens (2011) forcefully argues that preventing one risk may
sometimes trigger another. A ban on GMOs may increase the risk of starvation and mal-
nutrition. Following the 2011 disaster in Fukushima, powerful interest groups throughout
Europe have been advocating for a complete ban on nuclear energy; but on the other
hand, it would also mean relying on fossil energies even more at the cost of accelerating

3We shall leave aside the concerns about the reliability of information and how it can be manipulated
or interpreted by groups of different backgrounds. For some related discussion of those considerations,
we refer to Hood, Rothstein and Baldwin (2003, Chapter 2).

4Loi constitutionnelle n 2005-205 du 1 mars 2005 relative à la Charte de l’environnement.
5See Gardiner (2006) and O’Riordan (2013) for informed discussions.
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global warming. Sunstein (2005) also points out that the Precautionary Principle is some-
times understood as meaning not acting because more of the act is also associated to a
greater harm while true precaution might instead require taking large actions. Fighting
global warming is here an example in order. Finally, commentators have also wondered
about the exact definition of the Precautionary Principle which seems to be modified
on a case-by-case basis.6 One example of the fuzziness of the concept is given by the
difficulty to agree on what is meant by “full scientific certainty”, or the absence of it.
To illustrate, while the intensity of damages following a nuclear accident is unfortunately
perfectly known, it is possible that at some point in the future, advances in science might
make the probability of such catastrophe much smaller. But overturning precautionary
stances, if written into the Law or the Constitution, will be extremely difficult7.

That ethical considerations have entered the judicial arsenal and how such entry has
been perceived by practitioners raises two important comments. The first one is that any
ban on acting that the Principle implies is only justified and thus matters if the laissez-
faire outcome would require, on the contrary, excessive actions. Any theory justifying
the Principle in a laissez-faire economy is thus conceptually flawed. In other words, the
Precautionary Principle can only be justified if it solves an agency problem between the
constitutional level, which aims at preventing actions, and decision-makers who are in
charge of implementing actions later on. Our analysis will unveil such conflict of interests
and link it to the dynamics of actions in a context where information arrives over time.
Indeed, it is a well-known tenet of dynamic decision-making under uncertainty that the
preferred action that a decision-maker would choose ex ante, say ‘not to act’, under the
veil of ignorance might no longer be optimal ex post when more information has been
gathered, prospects on the riskiness of the project are better and acting becomes more
attractive. Time-inconsistency may be a concern here and, in that respect, a Precautionary
Principle may look as an attractive vehicle to restore some sort of commitment.

The second immediate comment is that, even if agency considerations do matter, it
is not clear that a Precautionary Principle is the best way of solving this issue. Taking
again the perspective of Agency Theory, the Precautionary Principle could be viewed as
a rough and incomplete social contract8 to solve a commitment problem. This raises the
issue of whether one can find solutions to this commitment problem.

The objective of this paper is thus threefold. First, we show how time-consistency
becomes a concern in a context of dynamic decision-making under deep uncertainty,
learning and irreversibility. Yet, the underlying question remains of what is precisely
meant by information learning and different scenarios are envisioned in the sequel. Those
scenarios are meant to illustrate different degrees of scientific knowledge and discovery.
Second, we demonstrate that a commitment to a fixed action for any period of time
is suboptimal. In other words, the Precautionary Principle is useless. Lastly, we show
that more complete contingent plans that would link actions to current beliefs, might be
effective remedies to the commitment problem but we also cast doubts on the practical
relevance of such a solution.

6See Immordino (2003) on this.
7Austria banned nuclear power in 1978, arguably before greenhouse gases emissions became a strong

concern for citizens.
8Grossman and Hart (1986).
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Model and Results. We consider the following dynamic environment. A decision-
maker chooses at any point in time an action which yields a flow surplus. The past
stock of actions affects the rate of arrival of an environmental disaster. Following such
disaster, viewed as a major disruptive event, opportunities for surplus disappear and a
flow damage is incurred from that date on. A disaster follows a non-homogenous Poisson
process, and as such arrives with probability one in the long run. To capture the idea
that past actions have an irreversible impact on the likelihood of such a disaster, the rate
of arrival of such disaster depends on the stock of past actions. More precisely, when the
stock reaches a tipping point the rate of arrival discontinuously jumps upwards from a
fixed value to another fixed value.9 To capture various kinds of information learning along
the process, we investigate different scenarios for the degree of uncertainty surrounding
decision-making.

Common knowledge of the tipping point. This is the simplest scenario. The decision-maker
knows where the tipping point is. He can thus postpone the date at which this tipping
point will be reached by reducing earlier actions. Indeed, those actions have now an
opportunity cost since they contribute to approaching the tipping point, an irreversibility
effect. Because future surpluses are discounted while earlier actions all contribute with
the same intensity to the speed at which the tipping point is reached, optimal actions are
reduced over time in a first phase. Once the tipping point has been passed, actions have no
longer any impact on the rate of arrival and the decision-maker maximizes current benefits
by jumping to a higher myopic action. In other words, the action profile is non-monotonic
but distortions below the myopic optimum are driven by concerns for irreversibility.

Common knowledge of when the tipping point has been passed. Suppose now that the tip-
ping point is not a priori known but instead known to be drawn from a common knowledge
distribution.10 In this first scenario of uncertainty, the mere fact of having passed the tip-
ping point is immediately learned. A by-product of such information structure is that
as long as the tipping point is known not to have been passed, the decision-maker also
knows that the rate of arrival remains low. There is no learning along the process. The
decision-maker’s problem is now to find an optimal action plan that prevails as long as
ignorance on the value of the tipping point remains. From a dynamic programming point
of view, the state of the system is entirely determined by the stock of past actions. The
decision-maker acts accordingly; taking into account the irreversibility of his earlier ac-
tions and the uncertainty on when regimes switch. The second consequence is that, upon
revelation of having passed the tipping point, the decision-maker immediately switches
to the myopic action forever just as in the common knowledge scenario.

The dynamic optimization problem has a recursive structure. The Principle of Dynamic
Programming applies and the solution is thus time-consistent. We fully characterize the

9Tipping points are a cornerstone of many models in ecology and in climatology (Lenton et al., 2008).
To illustrate, a recent report by the World Bank argues that “As global warming approaches and exceeds
2-degrees Celsius, there is a risk of triggering nonlinear tipping elements. Examples include the disin-
tegration of the West Antarctic ice sheet leading to more rapid sea-level rise.The melting of the Arctic
permafrost ice also induces the release of carbon dioxide, methane and other greenhouse gases which
would considerably accelerate global warming.” See http://whrc.org/project/arctic-permafrost.

10The case of an agnostic Laplace distribution is a particular example of some relevance in practice.
Kriegler et al. (2009) offers a view of what experts might think of those distributions of tipping points.
Roe and Baker (2007) argues that whether past actions have already triggered a change of regimes might
remain unknown for a while.



PRECAUTION, INFORMATION AND TIME-INCONSISTENCY 5

optimal trajectory by means of a Hamilton-Bellman-Jacobi equation that is satisfied by
the value function together with a feedback rule that determines how the current action
(conditionally on not having yet passed the tipping point) varies with state of the system,
i.e., the existing stock of past actions. We analyze the long-run behavior of this system,
providing bounds on actions and value, and showing two main results. First, the value
function always converges towards the myopic payoff. In the long run, the probability
of having passed the tipping point converges to one and the myopic strategy applies
afterwards. Second, the optimal action conditionally on not having passed the tipping
point (an event with arbitrarily low probability in the long run) remains always bounded
away from the myopic optimum. In other words, the irreversibility effect is still at play as
long as the decision-maker knows that the tipping point has not been passed. Uncertainty
on its location does not change the decision-maker’s incentives to reduce actions before
the tipping point is reached.

Deep uncertainty, irreversibility and learning. Suppose now that the decision-maker re-
mains ignorant on whether the tipping point has already been passed. At any point in
time t, the decision-maker evaluates the extra opportunity costs of having passed the tip-
ping point around that date. This cost is expressed in terms of the possible loss of surplus
associated to all future actions taken at dates t + τ . This cost is thus forward-looking.
Ideally, the decision-maker would like to decrease this cost by committing to lower future
actions below the myopic optimum.

The presence of a forward-looking cost in the decision-maker’s objective is a non-
standard feature that makes our analysis differ from standard optimization problems.
The optimization problem loses its recursive structure. It is where the time-inconsistency
problem bites. To be more explicit, as time t′ ≥ t comes, reducing actions at all future
dates t + τ ≥ t′ is viewed as being less useful than in the past since the forward-looking
loss that is considered in between t and t′ no longer matters for the decision-maker at
date t. A plan stipulating actions from a given date t on is not time-consistent; the
decision-maker would like to further increase these actions later on. In other words, the
decision-maker when choosing a higher action at date t+ τ exerts a negative externality
on his own selves acting at previous dates.

Accordingly and in the spirit of sequential optimality, we look for a time-consistent
feedback rule and the associated pseudo-value function11 by allowing the decision-maker
to only commit for periods of lengths that are arbitrarily small. At any point in time,
the decision-maker thus chooses an action that is optimal given the current stock and
given that he expects his own selves to stick to the same feedback rule later on, when the
stock will have evolved according to his own current choice. The pseudo-value function
satisfies a functional equation that, although somewhat similar to a Hamilton-Bellman-
Jacobi equation, is now non-local in nature. Indeed, this non-local aspect captures the
fact that future actions are not committed to. It represents the externality that future
selfs exert on the decision-maker’s current payoff.

Characterizing the solution to such a functional equation is a difficult task that requires
involved techniques. We indeed transform this functional equation into a pair of differen-
tial equations respectively for the pseudo-value function and the externality component of

11The qualifier pseudo captures the fact that this value function takes into account that future actions
will be taken by the decision-maker with the same requirement of time-consistency.
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the payoff. The properties of this system are analyzed by means of the Hartman-Grobman
Theorem which helps us to show the uniqueness of the time-consistent feedback rule and
the pseudo-value function. We are also able to provide an analysis of the asymptotic be-
havior of these variables and derive tight bounds. In particular, the equilibrium action
(which by definition cannot be conditioned on whether the tipping has been passed or
not) and the value function now converges towards their levels at the myopic optimum.
Moreover, the optimal action is always positive and not acting is never optimal.

The irrelevance of the Precautionary Principle. This time-inconsistency problem is akin
to a conflict of interests between the decision-maker’s selves acting at different points
in time. It provides a sound foundation for viewing the Precautionary Principle as a
potentially attractive solution to such conflict. Committing to a fixed action before more
information is learned (which in our context means that it becomes more likely that the
tipping point has been passed after this commitment phase) indeed forces future selves
to abide to the rule chosen earlier on. Yet, the cost of such commitment is that the action
no longer depends on the current stock, i.e., on how much has been learned on the rate of
arrival of a disaster. The trade-off is of course reminiscent of the rules versus discretion
trade-off that arises (under different forms) in macroeconomics,12 political science13 and
mechanism design14 although, in our context, the conflict of interests is between the
different selves of a given decision-maker, acting at different points in time in a context
of time-inconsistency.

Yet, we demonstrate the sub-optimality of such strategy. Expanding the commitment
period before switching to a time-consistent path is never optimal.The benefits of condi-
tioning the action on the current stock always outweighs the cost of misaligned incentives
between current and future selves. In other words, the Precautionary Principle is unfor-
tunately a bad solution to a true problem.

Restoring commitment. This failure of the Precautionary Principle raises the question of
knowing how to restore commitment under deep uncertainty. With deep uncertainty, the
beliefs on what is the prevailing rate of arrival of a disaster now matters. Unfortunately,
at any point in time, the current stock of past actions does not suffice to summarize past
history. Feedback rules contingent on this sole state variable are thus of limited value.
Instead, the whole past trajectory of the stock does affect beliefs. Different trajectories
bring different amounts of information on whether the tipping point is likely to have been
passed or not. Restoring commitment thus requires a complete feedback rule that would
specify how the current action should depend on the current stock and (an index based on)
current beliefs which stands for a sufficient statistics for this past history. Unfortunately,
this approach is only feasible if the various selves can coordinate and redistribute utils
among themselves.

Organization of the Paper. Section 2 reviews the literature. Section 3 presents the
model. Section 4 presents two benchmarks: the case where the rate of disaster follows a
homogenous Poisson process and the case of where the tipping point is known. Section

12See Kydland and Prescott (1977), Persson and Tabellini (1994) for a nice survey of applications,
Stockey (2002) for a more recent overview and Halac and Yared (2014) for recent developments.

13Epstein and O’Halloran (1999), Huber and Shipan (2002).
14See the literature on delegation in organisations as developed in Melumad and Shibano (1991),

Alonso and Matousheck (2008), Martimort and Semenov (2008) and Amador and Bagwell (2013).
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5 introduces uncertainty on the tipping point but, also suppose that having passed the
tipping point is immediately known. Section 6 deals with the case of deep uncertainty,
stressing the time-inconsistency problem. Section 7 investigates the limited value of a
Precautionary Principle. Section 8 shows how to restore commitment with more complete
feed-back rules if some intertemporal coordination is possible. Section 9 briefly recaps our
results and discusses possible extensions.

2. LITERATURE REVIEW

The paper contributes to several trends of the literature.

Irreversibility, Uncertainty and Information. Arrow and Fisher (1974), Henry
(1974) and Freixas and Laffont (1984) were the first to show how a decision-maker should
take more preventive stances when the consequences of irreversible choices are uncertain,
the comparison being here with respect to the certainty case. Epstein (1980) has discussed
general conditions under which this Irreversibility Effect prevails and proved that the value
of waiting15 increases when the decision-maker benefits of a more informative signal (in
the sense of Blackwell) on the future realizations of uncertainty.

The main differences with our setting are twofold. First, irreversibility is hereafter
encapsulated in the role played by the stock of past actions on triggering the tipping
point and with it, a riskier state of the world. Second, in those earlier models, information
is exogenous while in many contexts in environmental economics, earlier actions also
determine whether information structures will indeed be finer. In contrast, information
in our model is endogenous; the probability of having passed the tipping point depends
on the stock of past actions. Reducing early actions improves flexibility but, in a model of
deep uncertainty where the location of the tipping point remains unknown, those actions
also make the non-occurence of a disaster less informative on whether the tipping point
has been passed or not. Models with such endogenous information structures are scarce.
Freixas and Laffont (1984) have studied a scenario in which more flexible actions increase
the quality of future information, thus confirming the existence of the Irreversibility Effect
while Miller and Lad (1984) have challenged this view in a model of conservation in
which irreversible actions might also be more informative.16 Salmi, Laiho and Murto
(2019) study the trade-off faced by a decision-maker who must choose between acting
now, which means taking a less informed decision but generating information for later,
and acting later, more informed. Still, only the speed of learning is endogenous here. The
quantity of action scales the variance of the belief process: a higher quantity means the
belief converges faster to the true state.

The general framework proposed by the irreversibility literature has been applied to
the economics of climate change with mixed success. Some authors have argued that
this literature suggests that current abatements of greenhouse gaz emissions should be
greater when more information will be available in the future (Chichilnisky and Heal,
1993; Beltratti, Chichilnisky and Heal, 1995; Kolstad, 1996; Gollier, Jullien and Treich,
2000; among others). Others like Ulph and Ulph (2012) have pointed out that the sufficient

15Later coined as the quasi-option value by Graham-Tomasi (1995). See also Jones and Ostroy (1984)
and Haneman (1989).

16Charlier (1997), Ramani, Richard and Trommetter (1992) and Ramani and Richard (1993) have also
provided such models of endogenous information structures specializing their analysis to the context of
GMOs and their development.
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conditions given by Epstein (1980) for the Irreversibility Effect to hold may fail even in
simple models of global warming.

The Laissez-Faire Interpretation of the Precautionary Principle. Gollier, Jullien
and Treich (2000) have built on the insights of the irreversibility literature to give some
economic content to the Precautionary Principle. These authors interpret the Precaution-
ary Principle as the incentives of a decision-maker to reduce his action below the level
that would otherwise be optimal without uncertainty, when this action is taken before
any information is learned. Much in the spirit of Kolstad (1996), Gollier, Jullien and
Treich (2000) build a two-period model of pollution accumulation with exogenous infor-
mation and draw conclusions on specific forms of utility functions that induce more of
what they define as precaution. Asano (2010) has focused on the comparison of optimal
environmental policies without and with ambiguity, showing that the decision-maker’s
lack of confidence forces him to hasten the adoption of a policy, rather than postpone it.

As we already pointed out, the decision-maker’s behavior is there optimal and thus not
constrained by the Precautionary Principle in any way.17 In other words, there would be no
reason for drafting such legal principle in this setting. The Laissez-Faire solution suffices.
We depart from this approach by stressing the commitment value of the Precautionary
Principle but also the sub-optimality of such commitment.

Time-Inconsistency. Our approach for characterizing a trajectory in a continuous
time model with a time-inconsistency problem is similar to that developed in Ekeland and
Lazrak (2010), Karp (2005, 2007) and Karp and Lee (2003), although details differ. These
authors have analyzed macroeconomic growth models with time-inconsistent preferences
in continuous time. The source of such time-inconsistency is the time-dependency of the
discount factor.18 Hereafter, the decision-maker has a constant discount factor so his
preferences are instead a priori time-consistent. The time-inconsistency problem arises
from the fact that feedback rules only depend on the current stock of past actions and
cannot keep track of the evolution of beliefs. An action plan based on those simple
feedback rules must thus be continuously re-optimized to capture, even imperfectly so, a
rough dependence on how beliefs evolve.

Marcet and Marimon (2019) have presented a general theory of discrete-time optimiza-
tion problems with forward-looking constraints, a feature that prevails in a number of
macroeconomic and political economy contexts.19 Our continuous time model is some-
what simpler since, in the scenario of deep uncertainty, payoffs themselves have a forward-
looking component. Marcet and Marimon (2019) have shown how to recover a recursive
structure to the optimization problems by adding multiplier of the forward-looking con-
straints as state variables which follow a specific evolution. In our context, a recursive
structure can be found when beliefs are used as an extra state variable.

On Tipping Points. We are not the first ones to introduce tipping points in environ-
mental economics. Sims and Finoff (2016) have analyzed how irreversibility in environ-
mental damage and irreversibility in sunk cost investment do interact. Tsur and Zemel

17This feature is shared by other models in the field like Immordino (2000, 2005) and Gonzales (2008).
18An assumption that generalizes the discrete-time models of Strosz (1955), Laibson (1997), Harris

and Laibson (2001) and O’Donoghue and Rabin (2003).
19Aiyagari et al. (2002), Acemoglu et al. (2011), Attanasio and Rios-Rull (2002) among others.
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(1995) have investigated a problem of optimal resource extraction when extraction af-
fects the probability that resource becomes obsolete passed a certain threshold. Under
deep uncertainty (unknown threshold) the initial state affects the optimal path and the
decision-maker might end up exploiting the resource less than under certainty, maybe
up to the point of stopping exploitation; an extreme form of precaution. In our model,
the probability of the catastrophe is never zero once the activity has been started20 and
foregoing it completely is never optimal. In a model of optimal control of atmospheric pol-
lution, Tsur and Zemel (1996) have shown how uncertainty on a tipping point introduces
a multiplicity of possible equilibrium values. Finally, and independently of us, Liski and
Salanié (2018) have also studied a model with unknown tipping points and deep uncer-
tainty, but with different concerns. Their analysis focuses on the commitment scenario.
Instead, we stress an important time-inconsistency problem in a context of deep uncer-
tainty.21 Our approach, based on Bellman equations or a generalized version of those in
the case of time-inconsistency, allows us to unveil the detailed structure of the solutions
(with our without deep uncertainty/with or without commitment) and in particular to
study their asymptotic behavior.

3. THE MODEL

Technology. A decision-maker (thereafter DM) has to decide ex ante (i.e., at date
t = 0−) whether he should undertake a project which puts the environment at risk. Time
is continuous and r > 0 denotes the discount rate. This risky technology may induce a
disaster. The project pays off till such disaster arises. Such a disaster follows a Poisson
process with a (non-negative) rate θ(t). The probability that a disaster arises over an

interval [t, t+ dt] is thus θ(t)e−
∫ t
0 θ(τ)dτdt and the probability that there has been no

disaster up to date t is e−
∫ t
0 θ(τ)dτ . Later, the rate θ(t) will be supposed to depend on the

stock of past actions that have already been undertaken by DM before date t.

Preferences. Let x = (x(τ))τ≥0 (resp. xt = (x(τ))τ≥t, x
t′
t = (x(τ))t′≥τ≥t ) denote a

plan of actions (resp. the continuation of such a plan from date t on, and the plan between
dates t and t′). The action x(t) belongs to an interval X = [0, x̄] where x̄ is supposed to
be large enough to ensure interior solutions under all circumstances below. Action x(t)
yields a surplus (net of the action cost) at date t worth

ζx(t)− x2(t)

2

where ζ > 0. Had he been myopic, DM would maximize his current payoff by choosing
xm(t) = ζ at any date t ≥ 0. This myopic action is an important benchmark to assess the
impact and origins of the precautionary motives that pertain to the different scenarios
we investigate below.

For future reference, we define the cumulated stock of past actions up to date t as:

X(t) =

∫ t

0

x(τ)dτ.

20In fact, the probability of the catastrophe in the long run is one
21Other differences are related to objective functions and that negative actions are feasible. Instead,

the optimal trajectory in our setting is always strictly monotonic; meaning that optimal actions remain
bounded away from zero.
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If a disaster occurs at date t, DM incurs an irreversible flow of damages −D from that
date on. With a Poisson process, the long run probability that such disaster arises is one.
The discounted welfare loss of such a sure-thing is D

r
. To capture the detrimental and

irreversible impact of a disaster, we also assume that, if such an event arises at date t, the
flow surplus is no longer realized from that date on. A justification is that, the disaster is
such a large event that the technology might no longer be used afterwards. We will often
think of the benefit of not facing a disaster as the (not incurred) damage together with
the surplus, namely:

u(x(t)) ≡ ζx(t)− x2(t)

2
+D

This reference will have some importance when writing the present value of DM ’s payoff.

Welfare. Using the Poisson specification of the arrival rate of a disaster, DM ’s expected
discounted welfare at date 0 if he adopts a plan x = (x(t))t≥0 can be expressed as:

(3.1) W(x) ≡
∫ +∞

0

e−(rt+
∫ t
0 θ(τ)dτ)u(x(t))dt− D

r
.

DM enjoys the surplus plus the flow benefit of not incurring a disaster as long as there is
no such disaster, i.e., with probability e−

∫ t
0 θ(τ)dτ . Since with a Poisson process a disaster

occurs with probability one, everything happens as if D
r

was paid upfront and DM would
also enjoy D, viewed as the current benefit of not having a disaster, at any point in
time. Throughout the paper, we will specialize this expression to various possible kinds
of Poisson processes and different informational environments.

4. BENCHMARKS

4.1. No Irreversibility: Homogenous Poisson

We start with the simplest case where DM has no control over the rate of arrival of
a disaster, which is kept constant and equal to an exogenous parameter θ0. Specializing
our previous formula (3.1), expected welfare can thus be written as:

(4.1) W(x) ≡
∫ +∞

0

e−λ0tu(x(t))dt− D

r

where, for future reference, we denote λ0 = r+ θ0 the effective discount rate that applies
once the possibility of a disaster is taken into account.

Since he cannot influence the rate of arrival of the disaster, DM only maximizes current
surplus. The optimal action, the myopic outcome, is constant over time:

xm(t) = ζ ∀t ≥ 0.

The net present value of this project is positive, and the project so valuable, when

(4.2) W(xm) =
λ1

λ0

V∞ −
D

r
≥ 0

where, for future reference, we denote λ1V∞ = u(ζ) = D + ζ2

2
, λ1 = r + θ1, and ∆ =

θ1 − θ0 > 0.
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4.2. Known Tipping Point

The simplest way to capture a nonlinear dynamics of the stock process is to assume that
the Poisson process features a tipping point. When the cumulative stock of past actions
X(t) =

∫ t
0
x(τ)dτ passes a threshold X0, the rate of arrival of a disaster thus increases

from θ0 to θ1 > θ0. Formally, we may define the time-dependent rate of arrival as:

(4.3) θ(t) = θ0 + ∆1{X(t)>X0}.

Although it remains quite close to a homogeneous Poisson process, and indeed it is so
before and after the tipping point, this specification also implies a dependence on the
past history of actions. In this respect, it is useful to define t0 as the date at which the
tipping point is reached for the first time, namely:

t0 = min {t ≥ 0 s.t. X(t) = X0} .

Had DM chosen to always act myopically, the tipping point would be reached at tm = X0

ζ
.

With these notations at hands, we may rewrite DM ’s expected welfare as:

(4.4) W(x) ≡
∫ t0

0

e−λ0tu(x(t))dt+ e−λ0t0

∫ +∞

t0

e−λ1(t−t0)u(x(t))dt− D

r
.

The integrand in the first line stems for welfare before the tipping point. This term
is identical to that found for an homogenous Poisson process as in (4.1), although now
the upper bound of the interval is the date t0 at which the tipping point is reached.
The second line stands for welfare after the tipping point weighted by the probability of
survival. The only difference is that the arrival rate has now jumped up.

Proposition 1 Suppose that the non-homogenous Poisson process is defined by (4.3).

• The optimal action is decreasing over t ∈ [0, t0) with x∗(t) < xm for all t ∈ [0, t0):

(4.5) x∗(t) =

{
ζ − eλ0(t−t0)

√
2∆V∞ for t ∈ [0, t0),

ζ for t ≥ t0

where t0 (with t0 > tm), the date at which the tipping point is reached, is the unique
positive root for

(4.6) ζt0 −X0 =

√
2∆V∞
λ0

(
1− e−λ0t0

)
.

• The optimal stock X∗(t) satisfies

(4.7) X∗(t) =

{
ζt− (ζt0 −X0) eλ0t−1

eλ0t0−1
for t ∈ [0, t0),

ζ(t− t0) +X0 for t ≥ t0 .

Actions profile. The optimal action goes through two distinct phases. In the first
precautionary phase, i.e., before reaching the tipping point, DM chooses an action which
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remains below the myopic optimum. The intuition is straightforward. Indeed, over this
first phase, the stock remains below the tipping point, namely:

(4.8)

∫ t0

0

x∗(t)dt ≤ X0.

This condition puts a constraint on how to accumulate actions before reaching the tipping
point. To relax this irreversibility constraint, DM chooses low actions early on. This
feature of the optimal path comes from an irreversibility effect. The actions taken earlier
on have a long-lasting impact since they may contribute to passing the tipping point.
Reducing these actions keeps the probability that a disaster arises earlier at a low level.

The optimal action is decreasing over time before the tipping point is passed. All
actions taken there have the same marginal contribution to the overall stock. Because of
discounting and because the probability of not having yet faced a disaster decreases over
time before reaching the tipping point, DM prefers to choose the highest actions earlier
on and the lowest ones when approaching the tipping point.

Once the tipping point has been passed, DM knows that his actions will no longer
impact the arrival rate of a disaster. We are back to the homogeneous case studied in
Section 4.1. The optimal action is again set at its myopic level after the tipping point.

Henceforth, when the tipping point is known, the optimal action path is thus non-
monotonic with actions decreasing over the first phase and then jumping up to the myopic
outcome beyond the tipping point.

Tipping Point. Because actions are now of a lower magnitude than the myopically
optimal one over the first phase, the tipping point t0 is reached after date tm. By pushing
a bit further in the future the date at which the tipping point is reached by a small
amount dt0, DM incurs a welfare loss since, over the precautionary phase, the action is
below the myopic optimum (DM is therefore getting less than the optimal surplus over
a longer period of time). Taking into account discounting and the probability that no
disaster has ever occurred before date t0, this marginal loss can be expressed in terms of
date 0 utils by discounting payoff at a rate λ0 = r + θ0 as:

e−λ0t0

[
ζx− x2

2

]x∗(t+0 )=ζ

x∗(t−0 )

dt0︸ ︷︷ ︸
Marginal loss from not choosing the myopic action over [t0, t0 + dt0]

.

On the other hand, pushing a bit further that date t0 by a small amount dt0 maintains
the rate of arrival of a disaster at its low level θ0. By doing so, DM is less likely to losing
not only the surplus ζ2

2
achieved with the myopic action that is optimal for t ≥ t0 but

also the flow damage D in case a disaster occurs. Taking into account the discounted
probability of a disaster from date t0 on, the benefit (still expressed in terms of date 0
utils) of delaying the date at which the tipping point is reached by dt0 can be written as:

∆

(
D +

ζ2

2

)
e−λ0t0

(∫ +∞

t0

e−λ1(t−t0)dt

)
dt0︸ ︷︷ ︸

Marginal benefit of delaying the tipping point by dt0

≡ ∆V∞e−λ0t0dt0.
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At the optimum, DM balances the loss over the first phase and the above benefit. For
future reference, we may thus define the net marginal benefit from pushing the tipping
point further by dt0 as the undiscounted difference between the two above quantities,
namely (

∆V∞ −
1

2

(
x∗(t−0 )− ζ

)2
)
dt0.

The optimal time at which the tipping point is reached is thus given by (4.6). It is worth
pointing out that, for the constellation of parameters under consideration, passing the
tipping point is always optimal. In other words, D is not so large as to make the project
not valuable upfront or along the course of actions.

Positive Net Present Value of the Project. DM chooses to run the risky tech-
nology when it yields a positive net present value. This condition writes as:

(4.9) W(x∗) =
λ1

λ0

V∞ −
D

r
+
e−λ0t0

λ0

(
e−λ0t0 − 2

)
∆V∞ ≥ 0.

That the rate of arrival of a disaster increases to θ1 once the tipping point is passed,
means that expected welfare is necessarily lower than with an homogenous Poisson process
corresponding to a fixed arrival rate θ0. The condition for running the technology is thus
harder to satisfy as it can be seen from comparing (4.2) and (4.9).

In the sequel, we will ensure that the project has a positive NPV by assuming the
slightly stronger condition

(4.10) V∞ −
D

r
≥ 0.

5. UNCERTAINTY ON THE TIPPING POINT

Consider the more realistic case where the tipping point is not known at the time
of starting the project. We also suppose that, DM knows when the tipping point is
passed, at which point the rate of arrival of a disaster changes from θ0 to θ1. To model
uncertainty, we assume that the tipping point X is now a random variable drawn on the
whole positive real line from a common knowledge (and atomless) distribution F . Let f
be the corresponding (everywhere positive) density.

Dynamic Programming. Consider an action plan xt = {x(τ)}τ≥t from date t onwards.

If the stock at date t is X, this action plan induces a stock process X̃(τ ;X, t). We will
restrict to processes which are everywhere increasing and continuously differentiable. This
stock evolves as:

(5.1) X̃(τ ;X, t) = X +

∫ τ

t

x(s)ds

As times passes, the stock goes through possible values of the tipping point. Formally, we
may also describe this cumulative process by the time T̃ (X̃;X, t) ≥ t at which the stock
reaches a level X̃ ≥ X. Below, we will sometimes slightly abuse and simplify notations
and write X̃(τ ;X) ≡ X̃(τ ;X, 0).
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Accordingly, we also define the value function Ṽu(X, t) as DM ’s optimal intertemporal
payoff starting from date t onwards when the stock level at date t is X. We make two
normalizations. First, the discounted damage −D

r
is again omitted but of course, it has

to be counted to assess the ex ante value of the technology. Second, Ṽu(X, t) is in fact an
expected payoff taking into account that, with probability e−θ0tF (X), the tipping point
has been passed and there has been no catastrophe up to date t. In that event, the optimal
action from date t on is the myopic optimum and the rate of arrival of a disaster is θ1.
Taking into account discounting, we obtain the following expression for Ṽu(X, t):

Ṽu(X, t) ≡ sup
xt,X̃(·) s.t. (5.1)

∫ X

0

e−λ0t

(∫ +∞

t

e−λ1(τ−t)λ1V∞dτ
)
f(X̃)dX̃+(5.2)

∫ +∞

X

(∫ T̃ (X̃;X,t)

t

e−λ0τu(x(τ))dτ + e−λ0T̃ (X̃;X,t)

∫ +∞

T̃ (X̃;X,t)

e−λ1(τ−T̃ (X̃;X,t))λ1V∞dτ

)
f(X̃)dX̃

The first term stands for DM ’s expected payoff once DM has already learned before date
t that the tipping point was less than X. This expression takes into account the fact that
the optimal action from that point on is the myopic optimum and the rate of arrival of a
disaster is θ1. Therefore, when we look for the optimal path, it is only the optimal path
conditional on not having passed the tipping point that we are looking for. The second
term stands for the expected payoff when it is not yet known that the tipping point has
been passed. It accounts for the regime shift at date T̃ (X̃;X, t).

The difficulty here is that the maximand depends on both the action plan xt and the in-
verse T̃ (X̃;X, t) of the stock accumulation that this plan induces; a quite unusual feature.
Next lemma provides a reduction of that problem that makes it look more familiar.

Lemma 1 The value function Ṽu(X, t) satisfies Ṽu(X, t) = e−λ0tVu(X) for all (X, t)
where Vu(X) is defined as:

(5.3)

Vu(X) ≡ V∞+ sup
xt,X̃(·) s.t. (5.1)

∫ +∞

0

e−λ0τ
(

1− F
(
X̃(τ ;X)

))(
∆V∞ −

1

2
(x(τ)− ζ)2

)
dτ 22

The important point to notice is that the maximization problem (5.3) has a recursive
structure. As a consequence, the Principle of Dynamic Programming applies and an op-
timal action plan is necessarily time-consistent. In the scenario studied here, DM always
knows the rate of arrival of a catastrophe. Indeed, the mere fact of knowing that the
tipping point will be known when it is passed is enough to bring information on this
rate of arrival either after or before the tipping point. There is nothing learned along the
trajectory and the state of the system can be reduced to the current stock of past actions
exactly as when the tipping point is known.

22From (5.3), it is straightforward to check that the curent value function Ṽu(X) is non-increasing
in X and thus almost everywhere differentiable. In the sequel, we will look for a value function that
is actually C1. From there, we will deduce an Hamilton-Bellman-Jacobi equation that this C1 value
function satisfies. A Verification Theorem will provide sufficient conditions satisfied by the candidate
solution. See the Appendix for details.
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Of particular importance is the value Vu(0) since the intertemporal welfare for the
optimal path xu can be expressed as Vu(0)− D

r
. Rearranging terms, Lemma 1 shows that

Vu(0) =

∫ +∞

0

e−λ0tu(xu(t))dt︸ ︷︷ ︸
Expected welfare with arrival rate θ0

−
∫ +∞

0

e−λ0t

(
∆V∞ −

1

2
(xu(t)− ζ)2

)
F (Xu(t))dt︸ ︷︷ ︸

Loss from having already passed the tipping point

The first term above is the familiar expression of expected welfare found for an homoge-
neous Poisson process with arrival rate θ0. It would be maximized by adopting the myopic
action at any point in time.

When choosing an action plan, i.e., how the stock of past actions Xu(t) evolves over
time, DM also implicitly chooses the dates at which all possible tipping points X ≤ Xu(t)
are reached. To understand the second term in the above expression, first notice that
e−λ0tF (Xu(t)) is the (conveniently discounted) probability that the tipping point has
been passed before date t and that no disaster has yet occurred. Second, we know from
Section 4.2, that the expression ∆V∞ − 1

2
(xu(t) − ζ)2 stems for the opportunity cost of

choosing earlier the date t at which a tipping point is reached.

Hamilton-Bellman-Jacobi (HBJ) Equation. Next proposition presents the HBJ
equation satisfied by Vu(X), together with a characterization of the optimal feedback rule
that determines which action σu(X) is optimal at a given level of stock X.

Proposition 2 If the function Vu(X) is C1, it satisfies the following HBJ equation

(5.4) V ′u(X) = (1− F (X))

−ζ +

(
ζ2 − 2∆V∞ + 2λ0

Vu(X)− V∞
1− F (X)

) 1
2


with the boundary condition

(5.5) lim
X→+∞

Vu(X) = V∞.

The optimal feedback rule is

(5.6) σu(X) = ζ +
V ′u(X)

1− F (X)

From (4.9), remember that V∞ is in fact DM ’s payoff when the tipping point X0 is
known but arbitrarily large, so that the date t0 at which this tipping point would be
crossed also goes to infinity. From (5.2), it also follows that, as X grows large and it
becomes very likely that the tipping point has been passed, the value function comes
close to this limiting value V∞.

Because V ′u(X) ≤ 0, we have σu(X) ≤ ζ for all X. The optimal action is always
below the myopic optimum. Even though there is uncertainty on where the tipping point
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lies, the optimal trajectory takes into account that passing the tipping point remains an
irreversible act which leads to lower actions below the myopic outcome. Yet, Condition
(5.8) below also shows that not acting is never optimal.23

Proposition 3 There exists a unique function C1, the current value value function,
Vu(X) satisfying the HBJ equation (5.4) and the boundary condition (5.5) with

(5.7) V∞ < Vu(X) < V∞
(

1 +
∆

λ0

(1− F (X))

)
∀X ≥ 0,

(5.8)
√
ζ2 − 2∆V∞ < σu(X) < ζ ∀X ≥ 0.24

For what follows, it is important to remind the heuristic derivation of this HBJ equation.
By the Principle of Dynamic Programming, the payoff Vu(X) is obtained by piecing to-
gether an optimal action path xε0 over an arbitrary interval [0, ε] with a continuation path
xε that yields the corresponding (non-discounted) continuation payoff Vu(X̃(t+ ε;X, t)).
The HBJ equation is then obtained by making the commitment period ε arbitrarily small,
taking Taylor expansions while assuming that the function Vu(X) is C1.25 Reciprocally,
Proposition 3 shows that a C1 solution to the HBJ equation satisfying the boundary
condition (5.5) is the value function.

Long-Run Behavior. It is interesting to describe the long-run behavior of the solution.
To this end, we first define the function R(Y ) = f(F−1(1 − Y )) for all Y ∈ [0, 1] and

assume that limX→+∞−f ′(X)
f(X)

exists and is positive. Let R′(0) > 0 denote this limit. We
got the following approximations.

(5.9) σu(X) ≈X→+∞

√(
λ0

R′(0)
+ ζ

)2

− 2∆V∞ −
λ0

R′(0)
< ζ

(5.10)

Vu(X)−V∞ ≈X→+∞ (1−F (X))

 λ0

R′(0)2
+

ζ

R′(0)
−

√(
λ0

R′(0)2
+

ζ

R′(0)

)2

− 2∆V∞
R′(0)2


To illustrate, suppose that X is drawn according to the logistic distribution with density

f(X) = ke−k(X−X0)

(1+e−k(X−X0))
2 .26 As k increases towards +∞, this distribution puts more mass

23Observe also that having an increasing stock process, as requested to ensure that the smooth stock
profile is invertible, requires σu(X) > 0, a condition that is implied by Condition (5.8).

24Observe that Condition (4.10) also writes as V∞ > 1
r

(
λ1V∞ − ζ2

2

)
or ζ2

2 > λ1V∞ − rV∞ = θ1V∞
which implies ζ2

2 > ∆V∞ and
√
ζ2 − 2∆V∞ exists.

25Of course, we do not know yet that the value function is of class C1. We will prove below that the
value function indeed solves the HBJ equation and is C1. We postpone this step of the analysis to the
Proof of Proposition 3.

26Admittedly, this density is defined over the whole real line but negative values have a very low
probability when k → +∞.



PRECAUTION, INFORMATION AND TIME-INCONSISTENCY 17

around the threshold X0 so as to come close to the complete information model. Yet,
since R′(0) = limX→+∞−f ′(X)

f(X)
= k, the optimal action converges again towards the lower

bound
√
ζ2 − 2∆V∞ and not towards the myopic optimum27.

Evolution of the stock. Inserting the expression of the optimal stock Xu(t) =∫ t
0
σu(Xu(τ))dτ into (5.3), Xu(t) satisfies:

(5.11)

Ẋu(t) = ζ− 1

1− F (Xu(t))

∫ +∞

0

e−λ0τ

(
∆V∞ −

1

2

(
Ẋu(t+ τ)− ζ

)2
)
f(Xu(t+τ))dτ.28

The intuition behind (5.11) is straightforward. At any time t, suppose that the tipping
point has not yet been reached; an event of probability 1−F (Xu(t)). Consider the possi-
bility for DM to increase his action xu(t) in that event by a small amount dx over a small
interval of length dt keeping all other actions xu(τ) constant for τ ≥ t + dt. Counted in
date 0 utils, the marginal benefit of doing so writes as:

(5.12) ≈ e−λ0t
(
ζ − Ẋu(t)

)
(1− F (Xu(t)))dxdt.

On the other hand, such a marginal increase in actions also shifts upward the whole path
of future stocks Xu(τ) for τ ≥ t+dt by an amount dxdt. It thus increases the probability
that the tipping point might be passed. Up to terms of order more than two and still
counted in date 0 utils, the corresponding marginal cost of such a change of the overall
trajectory is thus:∫ +∞

t+dt

e−λ0τ

(
1

2

(
Ẋu(τ)− ζ

)2

−∆V∞
)

(F (Xu(τ) + dxdt)− F (Xu(τ))) dτ

(5.13) ≈
(∫ +∞

t

e−λ0τ

(
1

2

(
Ẋu(τ)− ζ

)2

−∆V∞
)
f(Xu(τ))dτ

)
dxdt.

Along the optimal path Xu(t), the current marginal benefit (5.12) equals the future
marginal cost (5.13) of slightly increasing current action. Simplifying yields (5.11).

Exponential distributions. For such functional forms, closed-form solutions are read-
ily obtained. The optimal action is stationary, always positive and independent of the
current stock while the stock evolves linearly over time.

Proposition 4 Suppose that X is exponentially distributed over R+, i.e., f(X) =
ke−kX and F (X) = 1 − e−kX for some k > 0. Notice that R′(0) = k. Closed forms for
the current value function, the optimal feedback rule and the optimal stock are obtained
respectively as

(5.14) Vu(X) = V∞ +

λ0

k2
+
ζ

k
−

√(
λ0

k2
+
ζ

k

)2

− 2
∆V∞
k2

 e−kX ,

27Conditional on not having passed the tipping point.
28It immediately follows from Proposition 3 that there exists a unique solution to the above integralo-

differential equation with the initial condition Xu(0) = 0 which is C1.
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(5.15) σu(X) =

√(
λ0

k
+ ζ

)2

− 2∆V∞ −
λ0

k
> 0 ∀X ≥ 0,

(5.16) Xu(t) =

√(λ0

k
+ ζ

)2

− 2∆V∞ −
λ0

k

 t ∀t ≥ 0.

These expressions provide important insights on how uncertainty shapes optimal tra-
jectories. By varying the parameter k, we may go from the pure uninformative Laplacian
distribution over the positive real line (k → 0) to the Dirac distribution putting mass one
at zero (k → +∞); meaning the tipping point is passed almost immediately. Moving to-
wards the Laplacian world (k → 0) can admittedly be viewed as a metaphor for a context
where DM is agnostic on where tipping points lies. The feedback σu(X) then converges
towards the myopic optimum xm = ζ. Indeed, with such large ignorance on where the
tipping point lies, the probability that the tipping point has been passed remains always
the same at any point in time, namely almost zero. In other words, actions that have
already been taken have no impact on the probability of having passed the tipping point
and DM is as well off always opting for the myopic action.

When the distribution comes closer to a Dirac distribution at zero (k → +∞), the
feedback rule σu(X) converges towards the lower bound

√
ζ2 − 2∆V∞. Intuitively, DM

refrains from taking large actions because he expects that, otherwise, the evolving stock
will quickly cross almost all values of the tipping point so as the likelihood of a disaster
increases.

6. DEEP UNCERTAINTY

Suppose now that DM does not even know whether the tipping point has been passed
or not; a scenario thereafter coined as being one of deep uncertainty. The key difference
with the less extreme scenario investigated in Section 5 is that DM can no longer switch
to the myopic optimum once the tipping point has been passed since he ignores this event.
Yet, DM must account for that possibility when choosing his action plan.

Dynamic Programming. We first define the value function Ṽc(X, t) (again gross of the
term D

r
) as DM ’s optimal intertemporal payoff starting from date t onwards when the

stock level at date t is X and evolves thereafter as X̃(τ ;X, t). By definition, we have:

(6.1) Ṽc(X, t) ≡ sup
xt,X̃(·) s.t. (5.1)

∫ X

0

e−λ0t

(∫ +∞

t

e−λ1(τ−t)u(x(τ))dτ

)
f(X̃)dX̃

+

∫ +∞

X

(∫ T̃ (X̃;X,t)

t

e−λ0τu(x(τ))dτ

+e−λ0T̃ (X̃;X,t)

∫ +∞

T̃ (X̃;X,t)

e−λ1(τ−T̃ (X̃;X,t))u(x(τ))dτ

)
f(X̃)dX̃.
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The first bracketed term stands forDM ’s expected payoff if the tipping point was less than
X and was already passed so that the rate of arrival of a disaster is θ1. This expression
takes into account the fact that DM can no longer condition his action on this non-
observable event. The second bracketed term stands for the expected payoff when the
tipping point has not yet been passed. It accounts for the regime shift that will take
place at date T̃ (X̃;X, t), still assuming that this event remains non-observable.

Lemma 2 The value function Ṽc(X, t) satisfies

(6.2)

Ṽc(X, t) = sup
xt,X̃(·) s.t. (5.1)

∫ +∞

t

e−λ0τ

(
u(x(τ))−∆F (X̃(τ ;X, t))

∫ +∞

τ

e−λ1(s−τ)u(x(s))ds

)
dτ ∀(X, t)

The integrand not only depends on the stock of past actions X, the current action
taken at date τ ≥ t but also on the forward-looking stock of future actions x∞t from that
date τ on. Indeed, the term

∆F (X̃(τ ;X, t))e−λ0τ

∫ +∞

τ

e−λ1(s−τ)u(x(s))ds

stands for the current value of an increase in the cost of having passed the tipping point
at date τ ≥ t (which arises with probability F (X̃(τ ;X, t)) along the path X̃(τ ;X, t) if no
accident has occurred up to date τ (with probability e−λ0τ ). This expression highlights
the intertemporal externality that the choices of DM ’s future selves at dates τ ≥ t exert
on his payoff at date t. To illustrate, the externality is most extreme term if all those
selves choose the myopic action. A contrario, had those selves taken into account their
impact on date t’s payoff, they would certainly reduce their own actions.

From a dynamic programming viewpoint, the maximization problem now loses its re-
cursive structure and the time-consistency property that ensures that an optimal plan
from date t on starting with a stock level X, say x∞t (X), would remain optimal when the
stock reaches a level X̃(τ ;X, t) at a future date τ = t+ ε. Indeed, when date t+ ε comes,
DM now views all future actions x∞t+ε(X) as being less costly since their contribution to
the loss in welfare has diminished by an amount

∆

∫ t+ε

t

F (X̃(τ ;X, t))e−λ0τ

(∫ +∞

τ

e−λ1(s−τ)u(x(s))ds

)
dτ

There are several possible ways of solving this time-inconsistency problem. The first
one is to unveil the extra constraints that would be satisfied by a time-consistent action
plan. This route is followed for the rest of this section. The second solution, investigated
in Section 7 below, is to look for institutional responses to this commitment problem. It is
where a Precautionary Principle that would regulate actions could a priori be attractive.
The last avenue is to expand the state that describes the evolution of the system and
observe that this state should not be reduced to the sole stock X but instead should
includ DM ’s beliefs on the rate of arrival of a catastrophe since those beliefs may have
evolved along the past history. We will come back on this issue in Section 8 below.
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Time-Consistent Value Function and Feedback Rule. To find a time-consistent
plan of actions, we follow an approach which is similar in spirit although different in
details to that developed in Ekeland and Lazrak (2010), Karp (2005, 2007) and Karp and
Lee (2003). These authors have analyzed macroeconomic models with time-consistency
problems. Roughly speaking their approach consists in importing an equilibrium notion,
familiar in discrete-time model, to a continuous time setting. To figure out how it can
be done, consider a discrete version of our model where DM would thus commit to
an action over each period [t, t+ ε], [t+ ε, t+ 2ε], ...[t+ nε, t+ (n+ 1)ε] (with n ∈ N).
It is then natural to focus on stationary Markov-perfect subgame equilibria for such a
discrete game. In such an equilibrium, DM follows a feedback rule σ̃∗ε(X) that defines his
current action in terms of the existing stock. This strategy yields a (current value) ε-value
function Ṽ∗ε (X, t) = V∗ε (X)e−λ0t. Of course, the equilibrium requirement imposes that this
feedback rule is a best-response to DM ’s anticipations of his own future actions, which
should themselves obey to the same time-consistent feedback rule although, of course,
the stock at those future dates has evolved according to past actions.

The second step would consist in looking at the continuous time case by making the
length of the commitment period ε arbitrarily small. When the pair (Ṽ∗ε (X, t), σ∗ε(X, t))
converges as ε goes to zero towards a limit (V∗(X), σ∗(X)), this limit satisfies a number
of important properties that echo those found for (Vu(X), σu(X)) in Section 5. To get an
heuristic derivation of those properties, observe first that, when DM adopts a stationary
feedback rule σ∗(X), the stock evolves according to

(6.3) X̃(t;X) = X +

∫ t

0

σ∗(X̃(τ ;X))dτ

We denote the (current value) pseudo-value function V∗(X) associated to this stationary
trajectory as:

(6.4)

V∗(X) =

∫ +∞

0

e−λ0τ

(
u(σ∗(X̃(τ ;X)))−∆F (X̃(τ ;X))

∫ +∞

τ

e−λ1(s−τ)u(σ∗(X̃(s;X)))ds

)
dτ ∀X

From there, we define accordingly Ṽ∗(X, t) = V∗(X)e−λ0t for all (X, t). The qualifier
pseudo comes from the fact that V∗(X) does not necessarily reach the maximum feasible
payoff starting from a stock X. In other words, Ṽ∗(X, t) may differ from Ṽc(X, t) (the
optimal commitment value) precisely because of the intertemporal externality stressed
above.

To evaluate the equilibrium conditions, we need to assess the benefits that DM may
have when deviating from the putative feedback rule. To this end, consider a possible
deviation that would consist in committing to an action x for a period of length ε,
reaching a stock level X+xε, before jumping back to the above feedback rule. With such
deviation, the whole trajectory is modified and becomes

(6.5) X̃(x,ε)(τ ;X) =

{
X + xτ if τ ∈ [0, ε],

X + xε+
∫ τ

0
σ∗(X̃(x,ε)(s;X))ds if τ ≥ ε.

Next definition explains which requirement are satisfied by a time-consistent action
plan and its associated pseudo-value function.
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Definition 1 A stationary feedback rule σ∗(X) and the associated pseudo-value func-
tion V∗(X) are time-consistent if V∗(X) cannot be improved upon by deviations of the
form (6.5) for ε arbitrarily small.

A Functional Equation Satisfied by V∗(X). Writing the equilibrium condition
suggested by Defintion 1 gives us some properties satisfied by a candidate pseudo-value
function V∗(X).

Proposition 5 If the time-consistent pseudo-value function V∗(X) is C1, it satisfies
the following functional equation:

(6.6)

V∗′(X) = −ζ+

(
ζ2+2λ0 (V∗(X)− V∞)−2∆V∞(1−F (X))−∆F (X)

∫ +∞

0

e−λ1τV∗′2(X̃(τ ;X))dτ

) 1
2

with the boundary condition

(6.7) lim
X→+∞

V∗(X) = V∞.

The time-consistent feedback rule is

(6.8) σ∗(X) = ζ + V∗′(X).

The functional equation (6.6) looks like a HBJ differential equation at first glance,
although it is strikingly different. Indeed, it is non-local and forward-looking. It depends
not only on the current stock but also on future values of the stock along the equilibrium
trajectory. Once contemplating a deviation over an interval of an arbitrarily small length,
DM takes as given the fact that, in the future, he will stick to the time-consistent feedback
rule. The whole profile of these future actions which, from optimality of the feedback rule,
depends on future values of the marginal current-value function, is thus taken as given
to assess the cost and benefit of any putative deviation.

Next result provides our key existence result.

Proposition 6 There exists a unique function C1, V∗(X), satisfying the functional
equation (6.6) and the boundary condition (6.7).

Characterizing the solution to the functional equation (6.6) together with the boundary
condition (6.7) requires involved techniques. We indeed transform this functional equation
into a pair of differential equations respectively for the pseudo-value function and the
externality component of the payoff, namely

ϕ(X) =
1

2

∫ +∞

0

e−λ1τV∗′2(X̃(τ ;X))dτ.

The properties of this system are then analyzed by means of the Hartman-Grobman
Theorem which helps us to show the uniqueness of a unique stable manifold. From there,
the uniqueness of the time-consistent feedback rule and the pseudo-value function follows.
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In passing, this analysis provides interesting properties of the asymptotic behavior
of these variables and allows us to derive rather tight bounds. In particular, the optimal
action (which by definition cannot be conditioned on whether the tipping has been passed
or not) now converges towards the myopic optimum while the value function still converges
towards the corresponding myopic payoff.

Proposition 7 V∗(X) and σ∗(X) admit the following bounds:

(6.9) V∞ < V∗(X) < V∞
(

1 +
∆

λ0

(1− F (X))

)
∀X ≥ 0, ∀X ≥ 0,

(6.10)
√
ζ2 − 2∆V∞ < σ∗(X) < ζ ∀X ≥ 0.

V∗(X) and σ∗(X) admit the following approximations when X is large:

(6.11) V∗(X)− V∞ ≈+∞
∆V∞(1− F (X))

ζR′(0) + λ0

,

(6.12) σ∗(X) ≈+∞ ζ − ∆V∞f(X)

ζR′(0) + λ0

.

The bounds for the pseudo-value function and the feed-back rule are the same as in the
scenario of Section 5. The dynamics are quite similar. To illustrate, the upper bound on
V∗(X) is readily obtained by following a sub-optimal strategy consisting in adopting the
myopic action under all circumstances.

In the long run, the stock is likely to have gone through most possible values of the
tipping point. The choice of the action then has almost no longer any influence on the
rate of arrival of a disaster which is almost surely θ1. The optimal action thus converges
towards the myopically optimal decision as shown in (6.12). At the same time, the value
function converges towards its value V∞ under a myopic scenario.

Exponential distributions. Unfortunately, closed-form solutions can no longer be
obtained when there is deep uncertainty. Yet, some simple comparisons with the more
informative scenario of Section 5 can be readily obtained.

Proposition 8 Suppose that X is exponentially distributed over R+, i.e., f(X) =
ke−kX and F (X) = 1− e−kX for some k > 0. For X large enough, the following compar-
isons hold:

(6.13) Vu(X) > V∗(X) > V∞,

(6.14) ζ > σ∗(X) > F (X)ζ + (1− F (X))σu(X).

The first condition captures the fact that being ignorant on whether the tipping point
has been passed or not reduces DM ’s value function. In a sense, the difference Vu(X)−
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V∗(X) stems for the value of learning whether the tipping point is passed or not. The
value of such information is thus positive. The comparison of the feedback rules given in
(6.14) is more interesting. The right-hand side is the average action taken in the scenario
where the tipping point is learned. With probability F (X) the tipping point has been
passed and DM has switched to the myopic action. With probability 1− F (X) instead,
DM knows that the tipping point has not been passed and still chooses σu(X). This
average action is lower than the action taken under full ignorance. To grasp the intuition
behind such comparative statics, remember that, under deep uncertainty, DM finds less
reasons to commit to distort future actions downwards as time passes. As no disaster has
ever arisen, the perceived cost of choosing future actions away from the myopic optimum
diminishes. This force pushes actions upwards.

7. THE IRRELEVANCE OF THE PRECAUTIONARY PRINCIPLE

The Precautionary Principle can be viewed as imposing a legal restriction on the set
of actions available to DM . As long as not much information on the arrival rate of
the disaster has been revealed, i.e., as long as the accumulated stock remains low and
few possible values of the tipping point might have already been passed, actions are
constrained. Later, a “laissez-faire” solution will prevail andDM will freely choose actions
with no restriction beyond the equilibrium conditions embodied in a time-consistent plan.

The simplest way of modeling this issue is to suppose that DM is forced to choose a
fixed action x0 over an interval of (not necessarily infinitesimal) length ε > 0. The stock
then reaches a level X0 = x0ε at the end of this phase. Afterwards, DM can follow the
time-consistent feedback rule σ∗(X) for X ≥ X0 and gets the payoff V∗(X0) from that
date on. The benefit of such policy is to be able to commit to a given action over [0, ε].
The cost is that such a commitment is independent of where the stock lies during that
interval while, even though it is imperfectly so, the time-consistent solution keeps track
of such information.

Of course, DM should optimize over the fixed action x0 and the length of the commit-
ment phase. A first and intuitive result is that, at the optimum, the following smooth-
pasting condition should hold:

(7.1) σ∗(X0) = x0 =
X0

ε
.

This condition just says that, at the end of the commitment period, DM should move
continuously from his committed action to the time-consistent feedback rule that will be
followed from that date on. If that equality were not to hold, it would have been optimal
to extend or contract the length of the commitment period.

This condition also implies that DM ’s intertemporal payoff under such restriction, say
Ω(X0), only depends on the final stock at the end of the commitment period. Of course,
we have also Ω(0) ≡ V∗(0). Next proposition shows how that payoff actually varies with
X0 in that neighborhood.

Proposition 9 For all X0 small enough,

Ω(X0) ≤ V∗(0)

with equality only at X0 = 0.
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From this, it follows that slightly expanding the commitment period beyond zero has no
positive value. Restricting actions over an interval with positive measure is sub-optimal.
There are two consequences of this result. The first one is mostly technical. It provides a
justification for our previous analysis of the time-consistent scenario that was developed
under the assumption that the commitment period was made arbitrarily small.

The second consequence lies at the core of our analysis. Proposition 9 also shows that
the Precautionary Principle has no rationale. Committing over a period of positive (albeit
small) length is never optimal. The benefits of letting future selves act upon having learned
a bit more of information on the rate of arrival of the disaster always exceeds the cost of
not having them internalizing the impact of their actions on earlier selves.

8. HOW TO RESTORE COMMITMENT? ADDING STATE VARIABLES

Our previous analysis has shown that the decisions that DM ’s future selves will exert
an externality on his current self’s payoff. If his future selves adopt the time-consistent
feedback rule σ∗(X),DM is as well off doing the same today. In this section, we investigate
whether there is a way to make future selves internalize the impact of their future actions
on DM ’s current self.

8.1. The Accounting Approach: Beliefs as a State Variable

Updated Beliefs. We first compute DM ’s updated beliefs that a disaster occurs over
an interval [t, t+ dt] if, starting from an initial stock X ≥ 0 at date 0, the action plan
xt = (x(τ))τ≤t has been followed up to date t and no disaster has yet occurred. The
corresponding stock X̃(t;X) is defined as

(8.1) X̃(t;X) = X +

∫ t

0

x(τ)dτ.29

Let T̃ (X̃;X) be the corresponding inverse function. The updated density function that
a disaster occurs over an interval [t, t+ dt], say g(t|xt, X), writes as

g(t|xt, X) = (1− F (X̃(t;X))θ0e
−θ0t +

∫ X̃(t;X)

0

θ1e
−(θ0T̃ (X̃;X)+θ1(t−T̃ (X̃;X)))f(X̃)dX̃.

This expression takes into account that, for any date t ≥ 0, all tipping points X̃ such
that X̃ ≤ X̃(t;X) have already been passed and the arrival rate of a disaster has thus
increased from θ0 to θ1. If instead X̃ > X̃(t;X) ≥ X, the arrival rate remains θ0. Let
also 1−G(t|xt, X) = 1−

∫ t
0
g(τ |xt, X)dτ denote DM ’s beliefs that a disaster has not yet

occurred up to date t if a path X̃(t;X) has so far been followed.

Lemma 3 DM ’s beliefs that a disaster does not occur up to date t when an increasing
path X̃(t;X) has been followed up to that date, is given by:

(8.2) 1−G(t|xt, X) = e−θ0t
(

1−∆e−∆t

∫ t

0

F (X̃(τ ;X))e∆τdτ

)
.

29Again, we slightly abuse notations and adopt our previous convention, namely X̃(τ ;X) ≡ X̃(τ ;X, 0).
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This formula shows how beliefs evolve along the trajectory. At the beginning, X̃(t;X) is
close to X and the likelihood of having passed the tipping point close to F (X). DM still
believes that the expected rate of arrival of a disaster is close to θ0. As X̃(t;X) increases,
it becomes more likely that the tipping point has been passed and beliefs evolve towards
thinking that this expected rate is now close to θ1. Of course, the shape of the distribution
function F matters to evaluate such Bayesian updating. As F puts more mass around
0, it becomes more likely that the tipping point has been passed early on and DM is
more encline to think that the rate of arrival will quickly shift to θ1. Instead, if F puts
more mass for higher values of X, DM believes that this rate remains θ0 for a longer
period. The shape of F and the choice of actions along the trajectory jointly determine
how much has been learned by DM through the process.

A consequence of (8.2) and the fact that F (X) ≤ F (X̃(t;X)) ≤ 1 for all t ≥ 0 is that

(8.3) e−θ1t ≤ 1−G(t|xt, X) ≤ (1− F (X))e−θ0t + F (X)e−θ1t ∀(X, t)

The right-hand side is the expected probability that no disaster has happened at date t
if DM takes a naive view and considers that only the initial stock matters to assess this
probability. This inequality thus means that, as the stock evolves, a fully Bayesian DM
becomes less optimistic than with such naive stance.

Complete Value Function. By definition, the value function Ṽc(X, t) is the maximum
intertemporal payoff achievable from any date t on when the stock at that date is X. This
payoff is necessarily obtained by committing to an action plan for the whole future.30

Our previous analysis has shown that such commitment is not time-consistent. We now
propose an alternative formulation of this value function which makes it possible to restore
time-consistency.

Lemma 4 The value function Ṽc(X, t) satisfies Ṽc(X, t) = Vc(X)e−λ0t for all (X, t)
where

(8.4) Vc(X) = sup
x,X̃(·) s.t. (8.1)

∫ +∞

0

e−rt
(
1−G(t|xt, X)

)
u(x(t))dτ ∀X.

What is remarkable on this formula is that the commitment value function only depends
on the stock X through the impact that the whole trajectory X̃(t;X) has on G(t|xt, X)
(see (8.3)). To understand how this result is obtained, remember Definition (6.1). Tech-
nically, Ṽc(X, t) is actually a double integral, taken first over all possible values of the
tipping point and second over time. Adding up the probabilities of all potential scenarios
that ensure there has not been a disaster up to date t amounts in fact to re-organizing this
double integral; first along time and second along possible values of the tipping point that
have already been passed up to that time. Counting paths this way shows that this overall
probability is precisely 1−G(t|xt, X). Yet, expressing DM ’s intertemporal payoff as (8.4)
implicitly assumes that all DM ’s selves are able to re-organize their payoffs across time;
which amounts to assuming that DM can indeed commit. Indeed, (8.4) shows that the
optimization problem has a simple recursive structure and thus, the Principle of Dynamic
Programming now applies.

30For instance, Ṽc(0, 0)− D
r is the ex ante payoff that DM could achieve by committing from date 0

on.
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The expression of Vc(X) as (8.4) also suggests that the state of the system is best
described by adding to the value of the current stock X another state variable that
would reflect DM ’s updated beliefs. Indeed, those beliefs summarize how the whole past
trajectory matters for current decision. In other words, two trajectories that reach the
same value for the current stock at date t and keep those beliefs the same should be
optimally continued the same way. Instead, two trajectories that have reached the same
stock of past actions at that date but have induced different beliefs might be pursued
along two different paths.

The logic behind the necessity of keeping track on how beliefs evolve can be understood
by coming back on the one-sided externality that DM ’s future selves exert on the current
one. Roughly, beliefs provide a measure of this externality. When DM follows a feedback
rule that depends on his updated beliefs, he implicitly takes care of the impact of his own
action on the welfare loss that have been perceived by his previous selves. In other words,
internalizing the intertemporal externality is achieved with feedback rules that condition
actions not only on stock but also on beliefs.

To capture this possibility formally, we now introduce a new state variable, Z̃c, which
can be thought of as measuring the extent to which updated beliefs about the probability
of a disaster arising evolves over time. At time τ , when the stock is X, the ratio between
updated and prior beliefs at the beginning of the trajectory provides such index:

1−G(τ |xτ , X)

e−θ0τ

To be able to track this quantity in all possible configurations of the system, we consider
the following law of motion and initial condition:

(8.5)
∂Z̃c

∂τ
(τ ;X,Z) = ∆(1− F (X̃(τ ;X,Z))− Z̃c(τ ;X,Z)) with Z̃(0;X,Z) = Z.

Notice that the stock trajectory X̃(τ ;X,Z) is now also contingent on the initial condition
Z for the new state variable. Integrating, we immediately get

(8.6) Z̃c(τ ;X,Z) = (Z − 1)e−∆τ + 1−∆e−∆τ

∫ τ

0

F (X̃c(s;X,Z))e∆sds.

In particular, taking Z = 1 yields

(8.7) Z̃c(τ ;X, 1) = (1−G(τ |xτ , X))eθ0τ .

Let us now define the complete value function Wc(X,Z) for any X ≥ 0 and any
Z ∈ [0, 1] as

(8.8) Wc(X,Z) = sup
x,X̃(·),Z̃(·) s.t. (8.1) and (8.6)

∫ +∞

0

e−λ0τ Z̃c(τ ;X,Z)u(x(τ))dτ.

Together with the complete feedback rule σc(X,Z), this value function defines the full
trajectory of the system both in terms of the overall stock X̃c(t;X,Z) but also of the belief
index Z̃c(τ ;X,Z). In particular, the commitment payoff Vc(0) =Wc(0, 1) can be achieved
by adopting the feedback rule σc(X̃c(t; 0, 1), Z̃(t; 0, 1)) starting from the initial conditions
of the system X = 0 and Z = 1. Of course, the simple identity Vc(X) ≡ Wc(X, 1) holds.
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Proposition 10 If the complete value function Wc(X,Z) is C1, Vc(X) satisfies the
following differential equation:

(8.9) Vc′(X) = −ζ+(
ζ2 + 2λ0 (Vc(X)− V∞)− 2∆V∞

(
1− λ1

λ0

F (X)

)

−∆F (X)

∫ +∞

0

e−λ0τ

(
1

Z̃c(τ ;X, 1)

∂Wc

∂X
(X̃c(τ ;X, 1), Z̃c(τ ;X, 1))

)2

dτ

) 1
2

with the boundary condition

(8.10) lim
X→+∞

Vc(X) = V∞.

The complete feedback rule is

(8.11) σc(X,Z) = ζ +
1

Z

∂Wc

∂X
(X,Z).

The boundary condition (8.10) is quite intuitive. Whether DM can commit to an action
plan or not, all possible values of the tipping point have been passed in the long run and
the myopic action becomes optimal. This yields a payoff worth V∞, exactly as in the
previous scenarios we envisioned earlier on.

The complete value functionWc(X,Z) satisfies a (bi-dimensional) HBJ equation, whose
details are given in the Appendix. The differential equation (8.9) is the trace of this
HBJ equation on the manifold Z = 1. It is strikingly similar to (6.6) found in the no-
commitment case. The difference lies in the last correcting terms where

1

Z̃c(τ ;X, 1)

∂Wc

∂X
(X̃c(τ ;X, 1), Z̃c(τ ;X, 1)) = σc(X̃c(τ ;X, 1), Z̃c(τ ;X, 1))− ζ

now replaces
V∗′(X̃(τ ;X)) = σ∗(X̃(τ ;X))− ζ.

If the feedback rule σc(X,Z) was independent of Z, these two terms would be identical
and, as the result of also having the same boundary conditions, Vc(X) would be equal to
V∗(X). In other words, the incomplete feedback rule σ∗(X) would be enough to achieve
the full commitment solution. Unfortunately, this cannot be true. The complete feedback
rule necessarily keeps track of how beliefs evolve.

Proposition 11 σc(X,Z) cannot be a function of X only.

This analysis shows that payoffs can be re-organized so as to restore a recursive structure
and ensure that the Principle of Dynamic Programming applies. Yet, this re-organization
is somewhat artificial, purely based on counting all paths that avoid a disaster. Implicitly,
it amounts to assuming that the different selves meet at once and trade utils before any
action plan is chosen. In other words, this accounting approach de facto posits that the
commitment problem is solved. In practice, payoffs are hard to trade intertemporally,
which cast doubts on the validity of this approach.
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Proposition 12 Vc(X) and σc(X, 1) admit the following bounds:

(8.12) V∞ < Vc(X) < V∞
(

1 +
∆

λ0

(1− F (X))

)
∀X ≥ 0

(8.13)
√
ζ2 − 2∆V∞ < σc(X, 1) < ζ ∀X ≥ 0.

We observe that these bounds are exactly the same as those obtained above for V∗(X)
and σ∗(X). It suggests that, at least for large values of X, the welfare loss from being
unable to commit might not be such a curse, especially in comparison of the requirements
in terms of computational cost that come with the commitment solution.

8.2. The Game Theoretic Approach: The Failure of Using Promises as a State Variable

Following the seminal work of Abreu, Pearce and Stacchetti (1990), the literature on
repeated games has shown how, in the presence of forward-looking incentive constraints
that characterize equilibrium play, the whole set of subgame-perfect equilibrium payoffs of
a repeated game can be described by using the promise of future utilities as state variables.
This approach restores a recursive structure for the game. There are two differences with
our more specific context. First, ours is not a repeated game but instead a dynamic
game whose state is also defined in terms of the stock of past actions. Second, promised
utilities left to future selves are here of little interest. Instead, the expression of DM ’s
payoff suggests that the overall externality that future DM ’s selves may inflict on the
current one is a more attractive state variable. Simple but tedious computations show
that the value function Vc(X) can indeed be expressed as

(8.14) Vc(X) = sup
x,X̃(·) s.t. (8.1)

V∞ +

∫ +∞

0

e−λ0τ

(
∆V∞(1− F (X̃(τ ;X))− 1

2
(ζ − x(τ))2

+∆F (X̃(τ ;X))

∫ +∞

τ

e−λ1(s−τ) 1

2
(ζ − x(s))2 ds

)
dτ.

The term 1
2

∫ +∞
τ

e−λ1(s−τ) (ζ − x(s))2 dτ captures the whole impact of future selves’ ac-
tions on DM ’s current payoff. Of course, the worst scenario for the current self is that his
followers adopt the myopic action ζ, a strategy that nullifies this externality component.

Consider a new state variable ϕ̃(·), capturing the intertemporal externality that might
be exerted by future selves and evolving as

(8.15)
∂ϕ̃

∂τ
(τ ;X,ϕ) = λ1ϕ̃(τ ;X,ϕ)− 1

2
(ζ − x(τ,X, ϕ))2 with ϕ̃(0;X,ϕ) = ϕ.31

Integrating, we immediately get

(8.16) ϕ̃(τ ;X,ϕ) = eλ1τ

(
ϕ−

∫ τ

0

e−λ1s
1

2
(ζ − x(s,X, ϕ))2 ds

)
.

31Notice that the stock trajectory X̃(τ ;X,ϕ) and the action x(τ,X, ϕ) should now also be made
contingent on the initial conditions (X,ϕ) imposed on the two states variables X̃(·) and ϕ̃(·).



PRECAUTION, INFORMATION AND TIME-INCONSISTENCY 29

This formulation suggests to define a promise-keeping value function Wϕ(X,ϕ) for any
X ≥ 0 and any ϕ as

(8.17)

Wϕ(X,ϕ) = sup
x,X̃(·),ϕ̃(·) s.t. (8.1) and (8.16)

V∞+

∫ +∞

0

e−λ0τ

(
∆V∞(1−F (X̃(τ ;X,ϕ))

−1

2
(ζ − x(τ))2 + ∆F (X̃(τ ;X,ϕ))ϕ̃(τ ;X,ϕ)

)
dτ.

The structure of the maximization problem (8.17) is now recursive. The Principle of
Dynamic Programming would thus apply and the solution would be time-consistent with
the proviso that such a solution should exist. Intuitively, had he been promised a given
level of externality ϕ by his future selves and the current stock of past actions is X, DM
would optimally choose an action σϕ(X,ϕ). This decision would be part of a consistent
plan since, by construction of the above value function, in the continuation, future selves
would themselves find optimal to stick to the same rule when they inherit of the new
stock and promise.

Unfortunately, the dynamics of the new state variable ϕ̃(·) (8.16) does not ensure
that this promise-keeping value function is well-defined. Indeed, the integral in (8.17)
converges only when ϕ = ϕ0(X) =

∫ +∞
T c(X)

e−λ1(s−T c(X)) 1
2

(ζ − xc(s))2 ds where xc(t) =

σc(X̃c(τ ;X, 1), Z̃c(τ ;X, 1)) is the full commitment action plan found in Section 8.1 and

T c(X) is defined as X =
∫ T c(X)

0
xc(t)dt. For ϕ 6= ϕ0(X), the integral is improper

and Wϕ(X,ϕ) cannot be defined. Intuitively, suppose that the state of the system is
(X,ϕ0(X)) at some date t = T c(X). The full commitment solution would be to choose
an action xc(t) at this stage. Yet, by choosing instead an action closer to ζ, ϕ̃(τ,X, ϕ0(X))
would be slightly higher than ϕ̃(τ,Xc(τ), ϕ0(Xc(τ))) in a right-neighborhood of t. In other
words, DM could increase arbitrarily his continuation payoff. An unpalatable conclusion
showing that promises of externality cannot be used as state variable.

9. CONCLUSION

This paper has discussed the relevance of the Precautionary Principle, a controversial
legal framework that aims at preventing the reexamination of decisions for certain periods
of time. We first argued that such a ban on actions only makes sense when there exists
a conflict of interests between decision-makers acting at different points in time. We
proposed a simple dynamic setting where a single decision-maker control actions whose
cumulative stock over time increases the risk of an environmental catastrophe. Deep
uncertainty on the location of the tipping point of such a physical process generates a time-
inconsistency problem. By generalizing Bellman techniques in a context where dynamic
programming fails, we have characterized the unique non-commitment equilibrium path of
actions when the decision-maker can only commit for arbitrarily small lengths of time. We
have also provided various comparative statics, especially comparing equilibrium actions
with and without deep uncertainty. We have shown that there is no value in extending
the commitment period to a fixed action for a non-infinitesimal amount of time; the
optimal commitment period is infinitesimal, therefore contradicting the idea contained in
the Precautionary Principle that commitment helps.



30 L. GUILLOUET AND D. MARTIMORT

This negative conclusion should of course be taken with a grain of caution. Indeed, it
might be reversed in alternative settings, especially when political considerations are at
play. To illustrate, consider the possibility that rotating decision-makers with different
preferences are democratically elected for periods of finite length. If a first decision-maker
knows he is about to step down from power and be replaced with another decision-
maker who cares less about the cost of a catastrophe (or has less power to decide, for
example if the future involves free trade agreement with countries that care less about the
catastrophe) he might enact laws that stipulate that actions may not increase beyond
her own optimal control rule32. Now the Precautionary Principle is akin to a political
constraint on future decision-makers. Although attractive, such political considerations
would also suggest that a decision-maker who instead does not care much about the
catastrophe would force more prudent followers to adopt a minimal level of actions.
In fact, we do not observe such a reverse Precautionary Principle, which in our view
casts doubt on the validity of such political economy foundations for the Precautionary
Principle.

In the context of our model, the fact that expanding the commitment period to a fixed
action beyond an infinitesimal length is of no value also suggests that there might not
be so much value to improve commitment by other means. In particular, bringing in a
second state variable on top of the stock of past actions (i.e., the beliefs about the state
of the system) to condition feedback rules, although it certainly restores commitment,
might in fact be of limited value. Indeed, the bounds expressed in Propositions 7 and 12
are identical, meaning that, in the long term, there is not so much difference between
the value functions and the feed-back rules with and without commitment.The difference
certainly matters more at the very start of the process.

Finally, our analysis also relates to the behavioral economics literature. With an in-
complete feed-back rule that only depends on the stock of past actions and does not keep
track of the evolution of beliefs, the decision-maker faces a time-consistency problem.
Yet, this decision-maker remains rational in the sense that first, he fully understands
that his future selves will adopt a similar feed-back rule at equilibrium and second, he
takes into account this feature when choosing his own current action. In other words,
the time-inconsistency problem comes from some sort of bounded rationality constraint
that limits feedback rules but this constraint does not invalidate optimizing and forward-
looking behavior.

The conflict of interests between the different selves of the decision-maker that is in-
herited from such constrained feed-back rules also raises the question of the relevant
definition of welfare. Following the steps of the literature on hyperbolic discounting,33

our approach has been to define welfare as date 0-self’s expected utility along the equi-
librium path of actions.34 Our analysis of the Precautionary Principle, i.e., a constraint
on actions for a-non infinitesimal period, indeed relied on such criterion.

32Historical precedents include the Second Amendment to the U.S. Constitution (1791) which guar-
antees individual citizens’ right to bear arms and has prevented reforms despite frequent political in-
terventions; more recently Austria has written in its constitution its refusal of nuclear energy (1999).
It will be interesting to follow potential trade disputes between the EU, where some rules are (loosely)
based on the Precautionary Principle, and Canada, who refuses precautionary arguments, following the
implementation of the CETA.

33Strosz (1955), Laibson (1997), Harris and Laibson (2001) and O’Donoghue and Rabin (2003).
34Bernheim and Rangel’s (2005) reminds us that any welfare analysis is actually based on revealed
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APPENDIX: MAIN PROOFS

Proof of Proposition 1: DM ’s problem is to maximize over all possible continuous differ-
entiable profiles X(t), non-negative action profiles x(t) and switching time t0, the expression of
expected welfare W(x) given in (4.4) subject to the following constraints:

(A.1) Ẋ(t) = x(t) ∀t ≥ 0,

(A.2) X(0) = 0,

(A.3) X(t0) = X0,

(A.4) No condition on X(∞),

(A.5) t0 free.

We denote by (X∗, x∗, t0) a solution to this problem. To characterize this optimum, we shall
decompose the optimization into two pieces: a first initial phase over [0, t0] before the tipping
point has been reached and a second phase over [t0,+∞) after the tipping point. Over each
phase, we proceed to a standard optimization with two boundary conditions (A.2) and (A.3)
over the first phase and, for the second phase, a terminal condition (A.3) and an initial condition
inherited from the first phase. Then, we characterize the optimal date t0 at which the tipping
point is reached.

First phase on [0, t0]. On [0, t0], we write the Hamiltonian of the maximization problem as:

H1(X,x, λ, t, t0) = L1(X,x, t, t0) + p1x

where p1 is the costate variable for (A.1) on [0, t0] and the Lagrangean writes as

L1(X,x, t, t0) = e−λ0tu(x)).

Pontryagin Principle gives us the following necessary conditions for optimality.35

Costate variable p1(t). p1(t) is continuously differentiable on [0, t0] with

(A.6) −ṗ1(t) =
∂H1

∂X
(X∗(t), x∗(t), p1(t), t, t0)⇔ ṗ1(t) = 0 ∀t ∈ [0, t0] .

35Seierstad and Sydsaeter (1987).
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From this, there exists µ such that

(A.7) p1(t) = −p ∀t ∈ [0, t0] .

Transversality conditions. The boundary conditions (A.2) and (A.3) imply that there are no
conditions on p1(t) at either 0 or t0.

Control variable x∗(t).

∂H1

∂x
(X∗(t), x∗(t), p1(t), t, t0) =

{
0 x∗(t) > 0,

≤ 0 x∗(t) = 0

or

(A.8) x∗(t) = sup
{
ζ − peλ0t, 0

}
∀t ∈ [0, t0] .

Observe that ζ − peλ0t is decreasing in t when λ > 0 (a claim to be proved below). Of course,
it cannot be optimal to have x∗(t) = 0 for some non-empty interval [t1, t0] since DM would
find it optimal to start the second phase earlier at some t1 < t0 rather than at t0 because of
discounting. Henceforth, we have:

(A.9) x∗(t) = ζ − peλ0t ∀t ∈ [0, t0] .

Second phase on [t0,+∞). On this interval, we now write the Hamiltonian of the maximiza-
tion problem as:

(A.10) H2(X,x, λ2, t, t0) = L2(X,x, t, t0) + p2x

where p2 is now the costate variable for (A.1) on [t0,+∞) and where the Lagrangean writes as

(A.11) L2(X,x, t, t0) = e−λ1te∆t0u(x).

Again, Pontryagin Principle gives us the following necessary conditions for optimality.

Costate variable p2(t). p2(t) is continuously differentiable on [t0,+∞) with

(A.12) −ṗ2(t) =
∂H2

∂X
(X∗(t), x∗(t), p2(t), t, t0)⇔ ṗ2(t) = 0 ∀t ≥ t0.

From this, we deduce that there exists p2 such that:

(A.13) p2(t) = −p2 ∀t ≥ 0.

Transversality conditions. The boundary condition (A.3) implies that there are no conditions
on p2(t0). Instead, a necessary condition for (A.4) is

(A.14) lim
t→+∞

p2(t)X∗(t) = 0.

Because X∗(t) is non-decreasing by assumption, it follows from (A.13) that necessarily, we
should have:

(A.15) p2 = 0.



36 L. GUILLOUET AND D. MARTIMORT

Control variable x∗(t).

∂H2

∂x
(X∗(t), x∗(t), p2(t), t, t0) = 0

or

(A.16) x∗(t) = ζ ∀t ∈ [t0,+∞).

Tipping point. Optimizing with respect to t0 and taking into account that (A.3) holds yields
the following necessary condition:

(A.17) L1(X∗(t0), x∗(t−0 ), t0, t0)−L2(X∗(t0), x∗(t+0 ), t0, t0)+

∫ +∞

t0

∂L2

∂t0
(X∗(t), x∗(t), t, t0)dt = 0

where x∗(t+0 ) and x∗(t−0 ) denote respectively the right-hand side and the left-hand side limits
of x∗(t) at t0.

Taking into account (A.16), we rewrite (A.17) as:

e−λ0t0

[
ζx− x2

2

]x∗(t+0 )

x∗(t−0 )

= ∆

(
ζ2

2
+D

)∫ +∞

t0

e−λ1te∆t0dt

or

(A.18)

[
ζx− x2

2

]x∗(t+0 )

x∗(t−0 )

= ∆V∞.

From (A.9) and (A.16), we compute:[
ζx− x2

2

]x∗(t+0 )

x∗(t−0 )

=
1

2

(
x∗(t−0 )− ζ

)2
=
p2

2
e2λ0t0 .

Inserting into (A.18) yields:

(A.19) p = e−λ0t0
√

2∆V∞.

On the other hand, t0 also satisfies the condition:

X0 =

∫ t0

0
x∗(t)dt.

Using the expression of X∗(t) obtained by integrating (A.9) between 0 and t0, we obtain:

X0 = ζt0 −
p

λ0

(
eλ0t0 − 1

)
.

Inserting into (A.19) yields (4.6).

Unicity. Consider

δ(t) ≡
√

2∆V∞
λ0

(
1− e−λ0t

)
− ζt+X0.

We have

δ′(t) =
√

2∆V∞e−λ0t − ζ and δ′′(t) = −λ0

√
2∆V∞e−λ0t < 0.
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Hence, δ is strictly concave and thus cross zero at most twice. Since, δ(0) = X0 > 0 and

limt0→+∞ δ(t) = −∞, there is a unique positive root t0 ∈
(
X0
ζ +∞

)
for (4.6).

Monotonicity. Observe that x∗(t) is decreasing with t for t ∈ (0, t0), constant thereafter.

Stock. The expression of X∗(t) in (4.7 ) is obtained by integrating (A.9) between 0 and t when
t ≤ t0. The case t ≥ t0 is similar.

Condition for a Positive NPV . We decompose the expression of expected welfare into two
pieces:

W([t0,+∞)) = e∆t0

∫ +∞

t0

e−λ1t

(
ζ2

2
+D

)
dt− D

r
= V∞e−λ0t0 − D

r

and

W([0, t0]) =

∫ t0

0
e−λ0tu(x∗(t))dt =

∫ t0

0
e−λ0t

(
ζ2

2
+D − 1

2
(x∗(t)− ζ)2

)
dt.

Taking into account (A.9) and (A.19), we compute:

W([0, t0]) =
λ1V∞
λ0

(
1− e−λ0t0

)
− ∆V∞

λ0
e−λ0t0

(
1− e−λ0t0

)
.

ComputingW(x∗t ) =W([0, t0]) +W([t0,+∞))) yields the non-negativity NPV condition (4.9).
Q.E.D.

Proof of Lemma 1: Observe that∫ X

0
e∆t

(∫ +∞

t
e−λ1τ

(
ζ2

2
+D

)
dτ

)
f(X̃)dX̃ = F (X)V∞e−λ0t.

Integrating by parts the second integral in the maximand on the right-hand side of (5.2), we
thus obtain:

(A.20)

∫ +∞

X

(∫ T̃ (X̃;X,t)

t
e−λ0τu(x(τ))dτ + e∆T̃ (X̃;X,t)

∫ +∞

T̃ (X̃;X,t)
e−λ1τλ1V∞dτ

)
f(X̃)dX̃

= (1− F (X))

∫ +∞

t
e−λ0τu(x(τ))dτ

−
∫ +∞

X
(F (X̃)− F (X))

∂T̃

∂t
(X̃;X, t)e−λ0T̃ (X̃;X,t)

(
u(x(T̃ (X̃;X, t)))− λ0V∞

)
dX̃.

Changing variables and taking now time as the relevant variable (i.e., setting X̃ = X̃(τ ;X, t)
with dX̃ = ˙̃X(τ ;X, t)dτ), we rewrite

(A.21)

∫ +∞

X
(F (X̃)− F (X))

∂T̃

∂t
(X̃;X, t)e−λ0T̃ (X̃;X,t)

(
u(x(T̃ (X̃;X, t)))− λ0V∞

)
dX̃

=

∫ +∞

t
(F (X̃(τ ;X, t))− F (X))e−λ0τ

(
∆V∞ −

1

2
(x(τ)− ζ)2

)
dτ.

Gathering (A.20) and (A.21), the maximand on the right-hand side of (5.2) is expressed as

(A.22)
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Ṽu(X, t) = sup
xt,X̃(·) s.t. (5.1)

V∞e−λ0t+

∫ +∞

t
e−λ0τ (1−F (X̃(τ ;X, t))

(
∆V∞ −

1

2
(x(τ)− ζ)2

)
dτ ∀(X, t).

It immediately follows from (A.22) that we can look for a solution of the form

Ṽu(X, t) ≡ e−λ0tVu(X) ∀(X, t).

Indeed, if the trajectory X̃(τ ;X, t) with the associated actions x̃(τ ;X, t) = ∂X̃
∂τ (τ ;X, t) were to

maximize the right-hand side of (A.22), the trajectory X̃(τ−t;X, 0) with the associated actions

x̃(τ − t;X, 0) = ∂X̃
∂τ (τ − t;X, 0) would achieve the maximand for Ṽu(X, 0). From (A.22), we can

thus define the current value function as (5.3).
Q.E.D.

Proof of Proposition 2: Let us denote an action plan over the interval [t, t+ ε] as xt+εt =
{x(τ)}t+ε≥τ≥t for any arbitrary ε ≥ 0. Using (A.22), it is straightforward to check that Ṽu(X, t)
solves the following recursive condition

(A.23) Ṽu(X, t) = sup
xt+εt ,X̃(·) s.t. (5.1)

V∞e−λ0t
(

1− e−λ0ε
)

+

∫ t+ε

t
e−λ0τ (1− F (X̃(τ ;X, t)))

(
∆V∞ −

1

2
(x(τ)− ζ)2

)
dτ + Ṽ(X̃(t+ ε;X, t), t+ ε).

Existence of such value function (not necessarily C1) easily follows from Ekeland and Turnbull
(1983, Corollary 2, p.92).36 As far as smoothness is concerned, we provide the following Lemma.

Lemma A.1 If the function Ṽu(X, t) is C1, it satisfies the following HBJ equation:

(A.24)

−∂Ṽu
∂t

(X, t) = sup
x∈X

{
x
∂Ṽu
∂X

(X, t) + e−λ0t

(
λ0V∞ + (1− F (X))

(
∆V∞ −

1

2
(x− ζ)2

))}
.

Proof of Lemma A.1: Consider ε small enough. When Ṽu(X, t) is C1, we can take a first-
order Taylor expansion in ε of the maximand in (A.23) to write it as:

Ṽu(X, t)+

ε

(
∂Ṽu
∂t

(X, t) + x
∂Ṽu
∂X

(X, t) + e−λ0t

(
λ0V∞ − (1− F (X))

(
1

2
(x− ζ)2 −∆V∞

)))
+ o(ε)

where limε→0 o(ε)/ε = 0.

Inserting into (A.23) gives us the necessary condition (A.24). Q.E.D.

Expressed in terms of the current value value function Vu(X), the HBJ equation (A.24) now
writes as

(A.25) λ0(Vu(X)− V∞) = sup
x∈X

{
xV ′u(X) + (1− F (X))

(
∆V∞ −

1

2
(x− ζ)2

)}
and simplifying as

(A.26) λ0(Vu(X)− V∞) = ζV ′u(X) +
V ′2u (X)

2(1− F (X))
+ ∆V∞(1− F (X)).

Feedback rule. Maximizing the right-hand side of (A.25) yields (5.6). Q.E.D.

36Similar existence arguments can be used throughout the paper and won’t be repeated.
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The boundary condition (5.5) is immediately obtained from (5.3) and the fact that 1−F (X+∫ t
0 x(τ)dτ) converges towards zero for any positive action profile when X → +∞.

Proof of Proposition 3: We rewrite (A.26) using (5.5) as:

(A.27) λ0(Vu(X)− V∞)(1− F (X)) =
V ′2u (X)

2
+ ζ(1− F (X))V ′u(X) + ∆V∞(1− F (X))2.

Taking the highest root of this second-degree equation in V ′u(X) (so as to ensure that the
feedback rule defined below is positive leading to a stock profile which is increasing over time),
we rewrite this ordinary differential equation as (5.4). Let denote the locus of points where
V ′u(X) = 0 as

V̂(X) = V∞ + (1− F (X))
∆V∞
λ0

.

Observe that, V̂(0) = λ1V∞
λ0

, V̂(X) is decreasing and converges to V∞ as X goes to +∞.

Existence. Consider the domain D = {(V,X)|V̂(X) ≥ V ≥ V∞ for some X ≥ 0}. The bound-
aries of D is made of the vertical segment V ∈ [V∞, V̂(0)], the horizontal axis {V = V∞} and
the curve {V = V̂(X), X ≥ 0}. Let the flow defined by (5.4) γ : (V0, X) → V(X|V0) where
V(X|V0) is the solution to (5.4) for some fixed initial value V0. This flow is of course continuous.
By construction, any solution V(X|V0) that crosses V̂(X) at some X0 ≥ 0 is such that V(X|V0)
is decreasing for X < X0 and increasing for X > X0 and thus can only cross V̂(X) once.
Hence, such solution cannot satisfy the boundary condition (5.5). Take any solution V(X|V0)
that crosses the horizontal axis {V = V∞} for some X2 ≥ 0. At such point, (5.4) indicates that
V ′(X2|V0) < 0. Such solution cannot converge towards V∞ either since, otherwise, there would
exist a point X3 > X2 such that V ′(X3|V0) = 0 and V(X3|V0) < 0. At such point, we should
also have V(X3|V0) = V̂(X3) which yields a contradiction with V(X3|V0) < 0 < V̂(X3).

From these observations, and from the continuity of the flow γ, we deduce that the reciprocal
image of the horizontal line {V = V∞} is of the form [V∞, V02). Similarly, the reciprocal image
of {V = V̂(X), X ≥ 0} is of the form (V01, V̂(0)] with necessarily V02 ≤ V01. Of course, [V∞, V02)
and (V01, V̂(0)] cannot overlap because it would violate the local uniqueness of the solution
V(X|V0) to (5.4) around X = 0 (Cauchy-Lipschitz Unicity Theorem). Thus [V02, V01] is non-
empty and necessarily a solution with V0 ∈ [V02, V01] is such that:

lim
X→+∞

V(X|V0) = V∞.

This proves existence of a solution Vu(X) to (5.4) that satisfies the boundary condition (5.5).

Uniqueness. To prove uniqueness of the solution to (5.4) with the boundary condition (5.5),
consider two putative distinct solutions to (5.4), say V1 and V2 satisfying this boundary condition
with V1(0) ∈ [V02, V01] and V2(0) ∈ [V02, V01]. Denote ∆V = V1 − V2 and suppose w.l.o.g that
∆V(0) > 0. Observe that necessarily ∆V(X) > 0 for all X ≥ 0 (otherwise there would be a
contradiction with Cauchy-Lipschitz Unicity Theorem at a putative date X4 where V1(X4) =
V2(X4) would be supposed). We may compute:

∆V ′(X) =
2λ0∆V(X)√

ζ2 − 2∆V∞ + 2λ0
V1(X)−V∞

1−F (X) +
√
ζ2 − 2∆V∞ + 2λ0

V2(X)−V∞
1−F (X)

.

Integrating, we get:

∆V(X) = ∆V(0)e

∫X
0

2λ0dX̃√
ζ2−2∆V∞+2λ0

V1(X̃)−V∞
1−F (X̃)

+

√
ζ2−2∆V∞+2λ0

V2(X̃)−V∞
1−F (X̃) .
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Observe that both V1 and V2 satisfy (5.7) when V1(0) ∈ [V02, V01] and V2(0) ∈ [V02, V01]. It
implies that∫ X

0

2λ0dX̃√
ζ2 − 2∆V∞ + 2λ0

V1(X̃)−V∞
1−F (X̃)

+

√
ζ2 − 2∆V∞ + 2λ0

V2(X̃)−V∞
1−F (X̃)

≥ λ0

ζ
X.

Hence, ∆V(0) > 0 also implies

lim
X→+∞

∆V(X) = +∞.

A contradiction with our assumption that V1 and V2 both satisfy the boundary condition (5.5).
It follows that there exists a unique solution to (5.4) satisfying (5.5).

Comparative statics. The above analysis shows that any solution Vu(X) also satisfies

V∞ < Vu(X) < V̂(X).

Rearranging terms on the right-hand side gives (5.7). Inserting now (5.7) into (5.4), we obtain

(1− F (X))
(
−ζ +

√
ζ2 − 2∆V∞

)
< V ′u(X) < 0.

Inserting into (5.6) yields (5.8).

To look at the long-term behavior, we first change variables and define

Y = 1− F (X) ∈ [0, 1] and Vu(X)− V∞ = U(Y ) and R(Y ) = f(F−1(1− Y ))

From this, we get

V ′u(X) = −U ′(Y )R(Y ).

Inserting into (5.4) yields

(A.28) U ′(Y ) =
Y

R(Y )

(
ζ −

√
ζ2 − 2∆V∞ + 2λ0

U(Y )

Y

)
.

From (5.5), we deduce that

(A.29) U(0) = 0.

Observe that R(0) = 0 and R′(0) = limY→0
R(Y )
Y . Taking the limit of (A.28) to (Y = 0,U(0) =

0), we find that U ′(0) must solve

U ′(0) =
1

R′(0)

(
ζ −

√
ζ2 − 2∆V∞ + 2λ0U ′(0)

)
.

After manipulations, we find that U ′(0) must solve (A.36) for k = R′(0). From this, (5.9)
immediately follows. Further, notice that

Vu(X)− V∞
1− F (X)

=
U(Y )

Y
so lim

X→∞

Vu(X)− V∞
1− F (X)

= U ′(0)

Which yields (5.10).

A Verification Theorem. Proposition A.1 shows that the conditions given Proposition 3 to
characterize a value function by means of an HBJ equation together with a boundary conditions
are in fact sufficient. We follow Ekeland and Turnbull (1983, Theorem 1, p. 6) and derive a
Verification Theorem.
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Proposition A.1 Assume first that there exists a C1 function V0(X) which satisfies:

(A.30) λ0(V0(X)− V∞) ≥ xV ′0(X) + (1− F (X))

(
∆V∞ −

1

2
(x− ζ)2

)
∀(x,X);

and, second, that there exists an action profile x0 and X0(t) =
∫ t

0 x0(τ)dτ such that

(A.31) λ0(V0(X0(t))−V∞) = x0(t)V ′0(X0(t))+(1−F (X0(t)))

(
∆V∞ −

1

2
(x0(t)− ζ)2

)
∀t ≥ 0.

Then x0 is an optimal action profile with its associated path X0(t).

Proof of Proposition A.1: First observe that Vu(X) as characterized in Proposition 3 is
C1. It is our candidate for the function V0(X) in the statement of Proposition A.1. By definition
(A.27), we have

λ0(Vu(X)− V∞) = σu(X)V ′u(X) + (1− F (X))

(
∆V∞ −

1

2
(σu(X)− ζ)2

)
and thus

(A.32) λ0(Vu(X)− V∞) ≥ xV ′u(X) + (1− F (X))

(
∆V∞ −

1

2
(x− ζ)2

)
∀(x,X)

where the inequality comes from the concavity in x of the right-hand side.

To get (A.31), we use again (A.27) but now applied to the path (x0(t), X0(t)) ≡ (xu(t), Xu(t))
where Xu(t) is such that Ẋu(t) = xu(t) = σu(Xu(t)) with Xu(0) = 0.

Define now a value function Ṽu(X, t) = e−λ0tVu(X). By (A.32), we get

(A.33)

0 ≥ ∂Ṽu
∂t

(X, t)+x
∂Ṽu
∂X

(X, t)+e−λ0t

(
λ0V∞ + (1− F (X))

(
∆V∞ −

1

2
(x− ζ)2

))
∀(x,X).

Using xu(t) = σu(Xu(t)) and (A.31), we also get

(A.34)

0 =
∂Ṽu
∂t

(Xu(t), t)+xu(t)
∂Ṽu
∂X

(Xu(t), t)+e−λ0t

(
λ0V∞ + (1− F (Xu(t)))

(
∆V∞ −

1

2
(xu(t)− ζ)2

))
∀t ≥ 0.

Take now an arbitrary action plan x with the associated path X(t) =
∫ t

0 x(τ)dτ . Let us fix
an arbitrary T > 0. Integrating (A.33) along the path (x(t), X(t)), we compute

0 ≥
∫ T

0

(
∂Ṽu
∂t

(X(t), t) + x(t)
∂Ṽu
∂X

(X(t), t) + e−λ0t

(
λ0V∞ + (1− F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

)))
dt

or

0 ≥
∫ T

0

(
dṼu
dt

(X(t), t) + e−λ0t

(
λ0V∞ + (1− F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

)))
dt ∀T ≥ 0

By definition of the total derivative of Ṽu with respect to time, we thus get

Ṽu(0, 0) ≥ Ṽu(X(T ), T )+V∞
(

1− e−λ0T
)

+

∫ T

0
(1−F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

)
dt ∀T ≥ 0.
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Because Ṽu(X, t) = e−λ0tVu(X) ≥ 0 for all (X, t), we obtain:

Ṽu(0, 0) ≥ e−λ0T (Vu(X)− V∞)+V∞+

∫ T

0
e−λ0t(1−F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

)
dt ∀T ≥ 0

and thus

Ṽu(0, 0) ≥ V∞ +

∫ T

0
e−λ0t(1− F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

)
dt ∀T ≥ 0

since Vu(X) ≥ V∞ for all X ≥ 0 from our above findings.

Because |e−λ0t(1 − F (X(t)))
(
∆V∞ − 1

2(x(t)− ζ)2
)
| ≤ Me−λ0t for some M when x ∈ X =

[0, ζ] the above integral converges for any feasible path (x(t), X(t)) as T goes to +∞. Hence,
we can write

Ṽu(0, 0) ≥ V∞ +

∫ +∞

0
e−λ0t(1− F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

)
dt.

Moreover, integrating (A.34), the inequality above is indeed an equality for (xu(t), Xu(t)):

Ṽu(0, 0) = V∞ +

∫ +∞

0
e−λ0t(1− F (X(t)))

(
∆V∞ −

1

2
(x(t)− ζ)2

)
dt.

which shows that (xu(t), Xu(t)) is indeed an optimal path. Q.E.D.

Q.E.D.

Proof of Proposition 4: The HBJ equation (A.26) now writes as:

(A.35) λ0(Vu(X)− V∞)e−kX =
1

2
V ′2u (X) + ζe−kXV ′u(X) + ∆V∞e−2kX .

This expression suggests looking for a solution of the form

Vu(X) = V∞ + αe−kX

for some α > 0. Inserting into (A.35), it is immediate to check that such α is a root to the
following second-order equation:

α2

2
−
(
λ0

k2
+
ζ

k

)
α+

∆V∞
k2

= 0.

To ensure that the stock X(t) is an increasing function, we select the lowest non-negative root,
namely

(A.36) α =
λ0

k2
+
ζ

k
−

√(
λ0

k2
+
ζ

k

)2

− 2
∆V∞
k2

.

From there, (5.14), (5.15) and (5.16) immediately follow. Q.E.D.
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Proof of Lemma 2: Starting from the definition (6.1) and integrating by parts, we obtain

Ṽc(X, t) =

[
e∆t

(∫ +∞

t
e−λ1τu(x(τ))dτ

)(
F (X̃)− F (X)

)]X
0

+

[(∫ T̃ (X̃;X,t)

t
e−λ0τu(x(τ))dτ

)(
F (X̃)− F (X)

)]+∞

X

+

[(
e∆T̃ (X̃;X,t)

∫ +∞

T̃ (X̃;X,t)
e−λ1τu(x(τ))dτ

)(
F (X̃)− F (X)

)]+∞

X

−
∫ +∞

X

∂T̃

∂t
(X̃;X, t)e−λ0T̃ (X̃;X,t)u(x(T̃ (X̃;X, t)))

(
F (X̃)− F (X)

)
dX̃

+

∫ +∞

X

∂T̃

∂t
(X̃;X, t)e−λ0T̃ (X̃;X,t)u(x(T̃ (X̃;X, t)))

(
F (X̃)− F (X)

)
dX̃

−
∫ +∞

X

∂T̃

∂t
(X̃;X, t)∆e∆T̃ (X̃;X,t)

(∫ +∞

T̃ (X̃;X,t)
e−λ1τu(x(τ))dτ

)(
F (X̃)− F (X)

)
dX̃.

Simplifying and changing variables by using X̃(τ ;X, t) = X̃ and T̃ (X̃;X, t) = τ , we obtain:

Ṽc(X, t) = F (X)e∆t

∫ +∞

t
e−λ1τu(x(τ))dτ + (1− F (X))

∫ +∞

t
e−λ0τu(x(τ))dτ

−∆

∫ +∞

t
(F (X̃(τ ;X, t))− F (X))e∆τ

(∫ +∞

τ
e−λ1su(x(s))ds

)
dτ.

Integrating by part the terms in F (X) in the last line, this simplifies to

Ṽc(X, t) = F (X)e∆t

∫ +∞

t
e−λ1τu(x(τ))dτ + (1− F (X))

∫ +∞

t
e−λ0τu(x(τ))dτ

−∆

∫ +∞

t
F (X̃(τ ;X, t))e∆τ

(∫ +∞

τ
e−λ1su(x(s))ds

)
dτ

+F (X)

[
e∆τ

(∫ +∞

τ
e−λ1su(x(s))dτ

)]+∞

t

+ F (X)

∫ +∞

t
e−λ0tu(x(τ))dτ.

After simplifications, the first and fourth terms cancel out, and, from the second, the third and
the fifth terms, we finally obtain (6.2). Q.E.D.

Proof of Proposition 5: Observe that stationarity implies

(A.37) X̃(x,ε)(τ ;X) = X̃(τ − ε;X + xε) if τ ≥ ε.

DM ’s payoff (expressed in current value) changes accordingly from (6.4) as

(A.38) V∗(X + xε)e−λ0ε +

∫ ε

0
e−λ0τu(x)dτ

−∆

∫ ε

0
F (X + xτ)e∆τ

(∫ ε

τ
e−λ1su(x)ds+

∫ +∞

ε
e−λ1su(σ∗(X̃(s− ε;X + xε)))ds

)
dτ.
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If the function V∗(X) is C1, we can write a first-order Taylor expansion in ε of this quantity
and get

(A.39) V∗(X)+ε

(
xV∗′(X)−λ0V∗(X)+u(x)−∆F (X)

∫ +∞

0
e−λ1τu(σ∗(X̃(τ ;X))))dτ

)
+o(ε)

where limε→0 o(ε)/ε = 0.

Consistency implies that this payoff should be no more than V∗(X) itself. A necessary condi-
tion is thus that the maximum over x of the bracketed term should be non-positive and achieved
at σ∗(X). Therefore, the following conditions should hold:

(A.40) λ0V∗(X) = sup
x∈X

xV∗′(X) + u(x)−∆F (X)

∫ +∞

0
e−λ1τu(σ∗(X̃(τ ;X))))dτ

and

(A.41) σ∗(X) ∈ arg sup
x∈X

xV∗′(X) + u(x).

From (A.41), a first-order condition immediately yields (6.8). From there, we find the corre-
sponding definition of the trajectory (6.3). Now, manipulating the right-hand side of (A.40), we
find ∫ +∞

0
e−λ1τu(V∗′(X̃(τ ;X)) + ζ)dτ = V∞ −

1

2

∫ +∞

0
e−λ1τV∗′2(X̃(τ ;X))dτ.

Putting things together and inserting into (A.40), we obtain

(A.42)

λ0 (V∗(X)− V∞) = sup
x∈X

x
(
V∗′(X) + ζ

)
−x

2

2
−ζ

2

2
+∆V∞(1−F (X))+

∆

2
F (X)

∫ +∞

0
e−λ1τV∗′2(X̃(τ ;X))dτ

which is finally written as

(A.43)

λ0 (V∗(X)− V∞) = ζV∗′(X)+
1

2
V∗′2(X)+∆V∞(1−F (X))+

∆

2
F (X)

∫ +∞

0
e−λ1τV∗′2(X̃(τ ;X))dτ.

Taking the relevant positive root (remember that, from (6.8), the feedback rule σ∗(X) =
V∗′(X) + ζ must always remain non-negative), we now rewrite (A.43) as

(A.44) V∗′(X) = −ζ +
√
ζ2 + 2λ0 (V∗(X)− V∞)− 2∆V∞(1− F (X))− 2∆F (X)ϕ(X)

where define ϕ(X) as

(A.45) ϕ(X) =
1

2

∫ +∞

0
e−λ1τV∗′2(X̃(τ ;X))dτ.

We will demonstrate below (see Condition (A.83) below) that the quantity in the square root
remains positive for all X ≥ 0. Finally, (6.6) follows from (A.45) and (A.44).

To get the limiting behavior (6.7), we prove the following Lemma.

Lemma A.2 V∗(X) is non-increasing and satisfies

(A.46) lim
X→+∞

V∗(X) = V∞.
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Proof of Lemma A.2: From (A.42) and taking x = ζ on the right-hand side, we get

λ0 (V∗(X)− V∞) ≥ ζV∗′(X) + ∆V∞(1− F (X)) +
∆

2
F (X)

∫ +∞

0
e−λ1τV∗′2(X̃(τ ;X))dτ

and thus

(A.47) V∗′(X) ≤ −∆V∞
ζ

(1− F (X)) +
λ0

ζ
(V∗(X)− V∞) .

Now, we rewrite (6.4) after an integration by parts as

V∗(X) =

∫ +∞

0
e−λ0τ

(
1−∆e−∆τ

∫ τ

0
F (X̃(s;X))e∆sds

)
u(σ∗(X̃(τ ;X)))dτ ∀X.

Because X̃(s;X) ≥ X and u(σ∗(X̃(τ ;X))) ≤ λ1V∞, we then obtain

(A.48)

V∗(X) ≤ λ1V∞
∫ +∞

0
e−λ0τ

(
1− e−∆τF (X)

(
e∆τ − 1

))
dτ = V∞

(
F (X) +

λ1

λ0
(1− F (X))

)
∀X

and thus

V∗(X)− V∞ ≤
∆V∞
λ0

(1− F (X)) ∀X.

This yields the upper bound in (6.9).

Inserting into (A.47) and simplifying, yields

V∗′(X) ≤ 0 ∀X.

Because V∗(X) ≥ 0, V∗(X) converges when X → +∞. Let l be the corresponding limit. From
(A.48), it follows that

(A.49) l ≤ V∞.

Applying Gronwall’s Lemma to (A.47) yields

(V∗(X)− V∞)e
−λ0

ζ
X ≥ ∆V∞

ζ

∫ +∞

X
(1− F (X̃))e

−λ0
ζ
X̃
dX̃.

Thus

V∗(X) ≥ V∞ +
∆V∞
ζ

e
λ0
ζ
X
∫ +∞

X
(1− F (X̃))e

−λ0
ζ
X̃
dX̃.

Taking limits, we get

(A.50) l ≥ V∞.

Taking together (A.49) and (A.50) yields (A.46). Q.E.D.

Q.E.D.
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Proofs of Propositions 6 and 7: Differentiating (A.45) with respect to X yields

(A.51) ϕ′(X) =

∫ +∞

0
e−λ1τV∗′(X̃(τ ;X))V∗′′(X̃(τ ;X))

∂X̃

∂X
(τ ;X)dτ.

The following is a standard result on flows that is here recast in the case of a stationary flow.

Lemma A.3

(A.52)
∂X̃

∂X
(τ ;X) =

σ∗(X̃(τ ;X))

σ∗(X)
.

Proof of Lemma A.3: Starting with the definition of X̃(τ ;X) we get:

∂X̃

∂τ
(τ ;X) = σ∗(X̃(τ ;X))

and

∂X̃

∂τ
(τ ;X + dX) = σ∗(X̃(τ ;X + dX)).

Taking dX small and using a first-order Taylor approximation, we get:

σ∗(X̃(τ ;X + dX)) = σ∗(X̃(τ ;X)) + σ∗
′
(X̃(τ ;X))

∂X̃

∂X
(τ ;X)dX + o(dX)

where limdX→0 o(dX)/X = 0. Therefore, we get:

∂X̃

∂τ
(τ ;X + dX)− ∂X̃

∂τ
(τ ;X) = σ∗

′
(X̃(τ ;X))

∂X̃

∂X
(τ ;X)dX + o(dX).

Using a first-order Taylor approximation of the left-hand side and simplifying, we get:

∂

∂τ

(
∂X̃

∂X
(τ ;X)

)
= σ∗

′
(X̃(τ ;X))

∂X̃

∂X
(τ ;X).

Thus,

∂ log

∂τ

(
∂X̃

∂X
(τ ;X)

)
= σ∗

′
(X̃(τ ;X)).

Integrating and taking into account that X̃(0;X) = X yields

(A.53)
∂X̃

∂X
(τ ;X) = e

∫ τ
0 σ∗

′
(X̃(s;X))ds.

Using the stationarity of the feedback rule and differentiating with respect to t yields

(A.54) σ∗
′
(X̃(τ ;X)) =

∂2X̃
∂τ2 (τ ;X)

∂X̃
∂τ (τ ;X)

.

Inserting into (A.53) and integrating yields

∂X̃

∂X
(τ ;X) = exp

(
ln

(
∂X̃
∂τ (τ ;X)

∂X̃
∂τ (0;X)

))
and thus

∂X̃

∂X
(τ ;X) =

σ∗(X̃(τ ;X))

σ∗(X̃(0;X))
.

Noticing that X̃(0;X) = X yields (A.52). Q.E.D.
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From (A.52), it follows that

∂X̃

∂X
(τ ;X) =

∂X̃
∂τ (τ ;X)

σ∗(X)
.

Inserting now into (A.51) yields

(A.55) σ∗(X)ϕ′(X) =

∫ +∞

0
e−λ1τV∗′(X̃(τ ;X))V∗′′(X̃(τ ;X))

∂X̃

∂τ
(τ ;X)dτ.

Integrating by parts we obtain∫ +∞

0
e−λ1τV∗′(X̃(τ ;X))V∗′′(X̃(τ ;X))

∂X̃

∂τ
(τ ;X)dτ =

[
1

2
e−λ1τV∗′2(X̃(τ ;X))

]+∞

0

+λ1ϕ(X).

Inserting into (A.55) and taking into account (6.8), we finally obtain

(A.56) ϕ′(X) =
λ1ϕ(X)− 1

2V
∗′2(X)

ζ + V∗′(X)

with the boundary condition

(A.57) lim
X→+∞

ϕ(X) = 0.

This condition follows from the fact that limX→+∞ V∗
′
(X) = 0 and the definition (A.45).

We now consider the system of first-order differential equations (A.56)-(A.44) together with
the boundary conditions (6.7)-(A.57). Consider the new variables

Y = 1−F (X) ∈ [0, 1] ,V∗(X)−V∞ = U∗(Y ) and ϕ(X) = ψ(Y ). R(Y ) = f(F−1(1−Y )).

We rewrite (A.56)-(A.44) respectively as

(A.58) ψ′(Y ) =
−λ1ψ(Y ) + 1

2U
∗′2(Y )R2(Y )

R(Y ) (ζ − U∗′(Y )R(Y ))

(A.59) U∗′(Y ) =
1

R(Y )

(
ζ −

√
ζ2 + 2λ0U∗(Y )− 2∆V∞Y − 2∆(1− Y )ψ(Y )

)
;

while the boundary conditions (6.7)-(A.57) become

(A.60) ψ(0) = U∗(0) = 0.

Local behavior. We transform this system as an autonomous system by introducing a new
time scale z and express U∗, ϕ and Y as functions of z (denoted with a tilda) so that:

(A.61) Ũ∗′(z) = −ζ +

√
ζ2 + 2λ0Ũ∗(z)− 2∆V∞Ỹ (z)− 2∆(1− Ỹ (z))ψ̃(z)

(A.62) ψ̃′(z) =
λ1ψ̃(z)− 1

2 Ũ
∗′2(z)R2(Ỹ (z))

ζ − Ũ∗′(z)R(Ỹ (z))

(A.63) Ỹ ′(z) = −R(Ỹ (z))
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with the boundary conditions

(A.64) lim
z→+∞

ψ̃(z) = lim
z→+∞

Ũ∗(z) = lim
z→+∞

Ỹ (z) = 0.

We now linearize this system around its equilibrium (0, 0, 0) to get:

(A.65) Ũ∗′(z) =
λ0

ζ
Ũ∗(z)− ∆

ζ
ψ̃(z)− ∆V∞

ζ
Ỹ (z)

(A.66) ψ̃′(z) =
λ1

ζ
ψ̃(z)

(A.67) Ỹ ′(z) = −R′(0)Ỹ (z).

The properties of the linear system above are thus determined by those of the following matrix

A =

λ0
ζ −∆

ζ −∆V∞
ζ

0 λ1
ζ 0

0 0 −R′(0)


A has two positive eigenvalues and one negative one. The system is hyperbolic and its equilib-
rium (0, 0, 0) is thus a saddle. The plane (Ũ∗, ψ̃) is unstable while the axis Y is stable.

From the Hartman-Grobman Theorem,37 the nonlinear system (A.61)-(A.62)-(A.63) and the
linear system (A.65)-(A.66)-(A.67) are topologically equivalent. More formally, let φz be the flow
for the nonlinear system (A.61)-(A.62)-(A.63). Because A has non-zero eigenvalues, there exists
a homeomorphism H on an open neighborhood U of (0, 0, 0), such that for each (Ũ∗0 , ψ̃0, Y0) ∈ U
there is an open interval I0 ⊂ R containing zero such that for all (Ũ∗0 , ψ̃0, Y0) ∈ U and z0 ∈ I0,
H(φz(Ũ∗0 , ψ̃0, Y0)) = eAzH(Ũ∗0 , ψ̃0, Y0).

From this homeomorphism, it follows that the stable manifold for the nonlinear system (A.61)-
(A.62)-(A.63) is also one-dimensional. This means that there is a one-to relationship between
Ũ∗ and Y on that manifold. Henceforth, the solution U∗(Y ) is also unique and thus the value
function V∗(X) is thus also unique. This ends the proof of uniqueness of the equilibrium.

To give an approximation of the solution. Observe that the linear system (A.65)-(A.66)-(A.67)
can be solved recursively by noticing first that

(A.68) Ỹ (z) = Ỹ0e
−R′(0)z

for some arbitrary Ỹ0 since all such solutions satisfy (A.64).

We have also

(A.69) ψ̃(z) = ψ̃0e
λ1
ζ
z

but the only solution consistent with (A.64) has ψ̃0 = 0. Finally inserting those findings into
(A.65), we get

(A.70) Ũ∗′(z) =
λ0

ζ
Ũ∗(z)− ∆V∞Ỹ0

ζ
e−R

′(0)z

37Perko (1991, Section 2.8).
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Integrating yields

(A.71) Ũ∗(z) = e
λ0
ζ
z

(
Ũ∗0 −

∆V∞Ỹ0

ζ

∫ z

0
e
−
(
R′(0)+

λ0
ζ

)
z̃
dz̃

)
.

The only solution consistent with (A.64) has thus

(A.72) Ũ∗0 =
∆V∞Ỹ0

ζR′(0) + λ0

which gives us a first-order approximation for the stable manifold. Expressed in terms of our
original variable, we find that the one-dimensional stable manifold can be approximated as
(6.11) when X → +∞.

Global Behavior and Comparative Statics. The local analysis above ensures the exis-
tence of a unique solution (U∗(Y ), ψ(Y )) to (A.58)-(A.59) with the boundary conditions (A.60).
This system has a singularity at 0. Yet, simple applications of L’Hôspital’s rule give us the values
of the following derivatives:

(A.73) ψ′(0) = 0

and

(A.74) U∗′(0) =
∆V∞

ζR′(0) + λ0
.

Define now Û(Y ) as the solution to

(A.75) Û(Y ) =
∆V∞
λ0

Y +
∆

λ0
(1− Y )ψ(Y ).

Observe that Û(1) = ∆V∞
λ0

and Û(0) = 0. Moreover, we have

0 < U∗′(0) <
∆V∞
λ0

= Û ′(0).

Hence, locally in a right-neighborhood of 0, we have:

(A.76) 0 ≤ U∗(Y ) ≤ Û(Y )

with these inequalities being strict for Y > 0 in that right-neighborhood.

To study some of the global properties of U∗(Y ), we take ψ∗(Y ) as exogenous for a while
and consider all the solutions to (A.59), viewed as a backward differential equation for Y ≤ 1,

taking possibles values U1 in
[
0, Û(1)

]
. Consider the domain D = {(U, Y )| Û(Y ) ≥ U ≥

0 for Y ∈ [0, 1]}. The boundaries of D is made of the vertical segment U ∈ [0, Û(1)] at Y = 1,
the horizontal axis {U = 0} and the curve {U = Û(Y ), Y ∈ [0, 1]}. Let the (backward) flow
defined by (A.59) π : (U1, Y )→ U(Y |U1) where U(Y |U1) is the backward solution to (A.59) for
some fixed initial value U1 at Y = 1. This flow is of course continuous.

Take any solution U(Y |U1) that crosses Û(Y ) at a point Y1 ∈ (0, 1) such that U∗′(Y0|U1) = 0.
For Y ≤ Y1, this solution is decreasing and cannot converge towards 0 when Y → 0+. Take
now any solution U(Y |U1) that crosses the horizontal line at a point Y2 ∈ (0, 1). We have
U ′(Y2|U1) > 0. Such solution cannot converge towards 0 either since, otherwise, there would
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exist a point Y3 < Y2 such that U ′(Y3|U1) = 0 and U(Y3|U1) < 0. At such point, we should also
have U ′(Y3|U1) = Û(Y3) which yields a contradiction with U(Y3|U1) < 0 < Û(Y3).

From these observations, and from the continuity of the flow π, we deduce that the reciprocal
image of the segment {(0, Y )| Y ∈ (0, 1]} is a set of the form [0, U02). Similarly, the reciprocal
image of the set {U = Û(Y ), Y ∈ (0, 1]} is also of the form (U01, Û(1)] with necessarily U02 ≤ U01.
Of course, [0, U02) and (U01, Û(1)] cannot overlap because it would violate the local uniqueness
of the solution U(X|U1) to (A.59) around Y = 1 (Cauchy-Lipschitz Unicity Theorem). Thus
[U02, U01] is non-empty and necessarily a solution with an initial condition U1 ∈ [U02, U01] is
such that:

lim
Y→0+

U(Y |U1) = 0.

This confirms the existence of a solution U∗(Y ) to the backward differential equation (A.59),
corresponding to an initial value U1 ∈ [U02, U01] that satisfies the boundary condition (5.5).
From the local uniqueness result, we also know that U∗(Y ) is unique.

From the analysis above, it also follows that this solution satisfies

(A.77) 0 ≤ U∗(Y ) ≤ Û(Y ) ∀Y ∈ [0, 1]

with both inequalities being equalities at Y = 0. Expressed in terms of our initial variables, this
inequality becomes

(A.78) V∞ ≤ V∗(X) ≤ V̂∗(X) ∀X ≥ 0

where

(A.79) V̂∗(X) = V∞ +
∆V∞
λ0

(1− F (X)) +
∆

λ0
F (X)ϕ(X).

From the left-hand side inequality above, it also follows that

(A.80)

ζ2+2λ0(V∗(X)−V∞)−2∆V∞(1−F (X))−2∆F (X)ϕ(X) ≥ ζ2−2∆V∞+2∆F (X)(V∞−ϕ(X)).

Now, observe that ζ2 − 2∆V∞ > 0 (see Footnote 3). From (A.77) and (A.44), we also deduce

(A.81) 0 ≤ −V∗′(X) ≤ ζ.

Notice that the left-hand side inequality of (A.81) implies the upper bound for the feedback
rule (6.10).

Moreover, the right-hand side inequality of (A.81) also implies that

(A.82) ϕ(X) ≤ ζ2

2λ1
< V∞ ∀X.

Gathering those findings and inserting into (A.80) yields the non-negativity condition:

(A.83) ζ2 + 2λ0V∗(X)− 2∆V∞(1− F (X))− 2∆F (X)ϕ(X) > 0 ∀X ≥ 0.

Hence, the solution to (A.43) never crosses the manifold where the square root is zero.
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Moreover, inserting again the right-hand-side inequality of (A.82) into (A.80) immediately
gives us

(σ∗(X)− ζ)2 = V∗′2(X)

= ζ2 + 2λ0(V∗(X)− V∞)− 2∆V∞(1− F (X))− 2∆F (X)ϕ(X)

≥ ζ2 − 2∆V∞ + 2∆F (X)(V∞ − ϕ(X))

≥ ζ2 − 2∆V∞.

From which, we get the lower bound for the feedback rule (6.10).

Sufficient condition. Coming back on the first-order Taylor expansion (A.39), observe that
the term in ε writes as

(A.84) ε

(
xV∗′(X)− λ0V∗(X) + u(x)−∆F (X)

(∫ +∞

0
e−λ1τu(σ∗(X̃(τ ;X))))ds

)
dτ

)

where (V∗(X), σ∗(X)) solves (A.43)-(6.7)-(6.8). This expression is strictly concave in x. Thus
the maximum is indeed achieved for σ∗(X) as characterized by (6.8).

Q.E.D.

Proof of Proposition 8: Remember that R′(0) = k for an exponential distribution. The
proof then hinges on the following comparison that holds for all A ≤ 1

2 :

√
1− 2A ≤ 1−A.

Using A = ∆V∞(
ζ+

λ0
k

)2 and noticing that ∆V∞ < ζ2

2 is a sufficient condition for A ≤ 1
2 , we obtain

ζ +
λ0

k
−

√(
ζ +

λ0

k

)2

− 2∆V∞ ≥
∆V∞
k

ζ + λ0
k

Inserting into (5.14) and comparing with (6.11) yields the left-hand side inequality of (6.13).
The right-hand side follows from our earlier findings that V∗(X) < 0 is non-decreasing with
limit V∞. Inserting into (5.15) and comparing with (6.12) also yields

(1−F (X))(ζ − σu(X)) = (1−F (X))

ζ +
λ0

k
−

√(
ζ +

λ0

k

)2

− 2∆V∞

 > ζ − σ∗(X)

which finally writes as the right-hand side inequality of (6.14). The left-hand side follows from
V∗′(X) < 0 and the definition of the feedback rule σ∗(X). Q.E.D.

Proof of Proposition 9: We first write DM ’s intertemporal payoff ω(x0, ε) in terms of
(x0, ε) and X0 = x0ε as

ω(x0, ε) =

∫ ε

0

(
e−λ0t

(
λ1V∞−

1

2
(ζ−x0)2

)
−∆F (x0t)e

∆t

(∫ ε

t
e−λ1τ

(
λ1V∞ −

1

2
(ζ − x0)2

)
dτ

+

∫ +∞

ε
e−λ1τ

(
λ1V∞ −

1

2

(
ζ − σ∗(X̃(τ − ε;X0))

)2
)
dτ

))
dt+ e−λ0εV∗(X0)
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where

e−λ0εV∗(X0) =

∫ +∞

ε

(
e−λ0t

(
λ1V∞ −

1

2

(
ζ − σ∗(X̃(t− ε;X0))

)2
)

−∆F (X̃(t− ε;X0))e∆t

∫ +∞

t
e−λ1τ

(
λ1V∞ −

1

2
(ζ − σ∗(X̃(τ − ε;X0)))2

)
dτ

)
dt.

Partial derivatives. We first differentiate with respect to ε and find

∂ω

∂ε
(x0, ε) = e−λ0ε

(
λ1V∞−

1

2
(ζ−x0)2

)
−∆F (X0)e∆ε

∫ +∞

ε
e−λ1τ

(
λ1V∞ −

1

2

(
ζ − σ∗(X̃(τ − ε;X0))

)2
)
dτ

+e−λ1ε

[
1

2
(ζ − x)2

]x0

σ∗(X̃(ε;X0))

∫ ε

0
∆F (x0t)e

∆tdt

−
∫ ε

0
∆F (x0t)e

∆t

(∫ +∞

ε
e−λ1τx0σ

∗′(X̃(τ−ε;X0))
∂X̃

∂X
(τ−ε;X0)

(
ζ − σ∗(X̃(τ − ε;X0))

)
dτ

)
dt

+

∫ ε

0
∆F (x0t)e

∆t

(∫ +∞

ε
e−λ1τσ∗

′
(X̃(τ−ε;X0))

∂X̃

∂τ
(τ−ε;X0)

(
ζ − σ∗(X̃(τ − ε;X0))

)
dτ

)
dt

−λ0e
−λ0εV∗(X0) + x0e

−λ0εV∗′(X0).

Simplifying, we obtain:

(A.85)
∂ω

∂ε
(x0, ε) = e−λ0ε

(
− λ0V∗(X0) + λ1V∞ −

1

2
(ζ − x0)2 −∆V∞F (X0)

+
∆

2
F (X0)eλ1ε

∫ +∞

ε
e−λ1τ

(
ζ − σ∗(X̃(τ ;X0))

)2
dτ + x0V∗

′
(X0)

)

+e−λ1ε

[
1

2
(ζ − x)2

]x0

σ∗(X̃(ε;X0))

∫ ε

0
∆F (x0t)e

∆tdt

−e−λ1ε

(∫ ε

0
∆F (x0t)e

∆tdt

)

×

(∫ +∞

0
e−λ1τσ∗

′
(X̃(τ ;X0))

(
x0
∂X̃

∂X
(τ ;X0)− ∂X̃

∂τ
(τ ;X0)

)(
ζ − σ∗(X̃(τ ;X0))

)
dτ

)
.

From (A.42), we know that

(A.86) λ0V∗(X0) = λ1V∞ + σ∗(X0)V∗′(X0)− 1

2
(ζ − σ∗(X0))2

−∆V∞F (X0) +
∆

2
F (X0)

∫ +∞

0
e−λ1τ (ζ − σ∗(X̃(τ − ε;X0)))2dτ.

By stationarity, we also know that

(A.87) eλ1ε

∫ +∞

ε
e−λ1τ

(
ζ − σ∗(X̃(τ − ε;X0))

)2
dτ =

∫ +∞

0
e−λ1τ

(
ζ − σ∗(X̃(τ ;X0))

)2
dτ.
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Finally, from Lemma A.3, we know that

(A.88)
∂X̃

∂X
(τ ;X0) =

σ∗(X̃(τ ;X0))

σ∗(X0)
=

∂X̃
∂τ (τ ;X0)

σ∗(X0)
.

Inserting (A.86), (A.87) and (A.88) into (A.85) yields

(A.89)

∂ω

∂ε
(x0, ε) = e−λ0ε

(
−1

2

[
(ζ − x)2

]x0

σ∗(X0)

(
1−∆e−∆ε

∫ ε

0
F (x0t)e

∆tdt

)
+(x0−σ∗(X0))V∗′(X0)−

(
x0

σ∗(X0)
− 1

)(
∆e−∆ε

∫ ε

0
F (x0t)e

∆tdt

)∫ +∞

ε
e−λ1τσ∗

′
(X̃(τ ;X0))σ∗(X̃(τ ;X0))

(
ζ − σ∗(X̃(τ ;X0))

)
dτ

)
.

We now differentiate with respect to x0 and find

(A.90)
∂ω

∂x0
(x0, ε) = (ζ−x0)

∫ ε

0
e−λ0tdt−

∫ ε

0
∆tf(x0t)e

∆t

(∫ ε

t
e−λ1τ

(
λ1V∞ −

1

2
(ζ − x0)2

)
dτ

+

∫ +∞

ε
e−λ1τ

(
λ1V∞ −

1

2

(
ζ − σ∗(X̃(τ − ε;X0))

)2
)
dτ

)
dt

−
∫ ε

0
∆F (x0t)e

∆t

(
(ζ − x0)

∫ ε

t
e−λ1τdτ

+ε

∫ +∞

ε
e−λ1τσ∗

′
(X̃(τ − ε;X0))

∂X̃

∂X
(τ − ε;X0)

(
ζ − σ∗(X̃(τ − ε;X0))

)
dτ

)
dt

+εe−λ0εV∗′(X0).

Now, we notice that

(A.91)∫ ε

t
e−λ1τ

(
λ1V∞ −

1

2
(ζ − x0)2

)
dτ+

∫ +∞

ε
e−λ1τ

(
λ1V∞ −

1

2

(
ζ − σ∗(X̃(τ − ε;X0))

)2
)
dτ

=

(
λ1V∞ −

1

2
(ζ − x0)2

)
e−λ1t − e−λ1ε

λ1
+e−λ1ε

∫ +∞

0
e−λ1τ

(
λ1V∞ −

1

2

(
ζ − σ∗(X̃(τ ;X0))

)2
)
dτ

and

(A.92)

(ζ−x0)

∫ ε

t
e−λ1τdτ+ε

∫ +∞

ε
e−λ1τσ∗

′
(X̃(τ−ε;X0))

∂X̃

∂X
(τ−ε;X0)

(
ζ − σ∗(X̃(τ − ε;X0))

)
dτ

= (ζ−x0)
e−λ1t − e−λ1ε

λ1
+εe−λ1ε

∫ +∞

0
e−λ1τσ∗

′
(X̃(τ ;X0))

∂X̃

∂X
(τ ;X0)

(
ζ − σ∗(X̃(τ ;X0))

)
dτ.

Insert (A.91) and (A.92) into (A.90) and taking into account (6.8) and ( 7.1) then yields

(A.93)
∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

)
= (ζ − σ∗(X0))

1− e−
λ0X0
σ∗(X0)

λ0
− e−

λ0X0
σ∗(X0)

X0

σ∗(X0)
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−
∫ X0

σ∗(X0)

0
∆tf (σ∗(X0)t) e∆t

((
λ1V∞ −

1

2
(ζ − σ∗(X0))2

)
e−λ1t − e−

λ1X0
σ∗(X0)

λ1

+e
− λ1X0
σ∗(X0)

∫ +∞

0
e−λ1τ

(
λ1V∞ −

1

2

(
ζ − σ∗(X̃(τ ;X0))

)2
)
dτ

)
dt

−
∫ X0

σ∗(X0)

0
∆F (σ∗(X0)t) e∆t

(
(ζ − σ∗(X0))

e−λ1t − e−
λ1X0
σ∗(X0)

λ1

+
X0

σ∗(X0)
e
− λ1X0
σ∗(X0)

∫ +∞

0
e−λ1τσ∗

′
(X̃(τ ;X0))

∂X̃

∂X
(τ ;X0)

(
ζ − σ∗(X̃(τ ;X0))

)
dτ

)
dt.

Optimality conditions. Clearly, the first-order optimality condition ∂ω
∂ε (x0, ε) = 0 writes as

the smooth-pasting condition (7.1) (assuming quasi-concavity of the objective in ε for a fixed
value of x0). This leads us to alternatively express DM ’s intertemporal payoff in terms of X0

only as

Ω(X0) = ω

(
σ∗(X0),

X0

σ∗(X0)

)
.

We thus compute

Ω′(X0) =
∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

)
σ∗
′
(X0)+

∂ω

∂ε

(
σ∗(X0),

X0

σ∗(X0)

)(
σ∗(X0)−X0σ

∗′(X0)

σ∗2(X0)

)
.

Taking into account the smooth-pasting condition (7.1), the second term is 0 and thus

Ω′(X0) =
∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

)
σ∗
′
(X0).

To evaluate the local behavior of Ω′(X0) around X0 = 0, we now rely on a second-order Taylor
expansion, namely:

(A.94) Ω′(X0) = Ω′(0) + Ω′′(0)X0 + Ω′′′(0)
X2

0

2
+ o(X2

0 )

where lim o(X2
0 )/X2

0 = 0. To this end, we thus compute

Ω′(0) =
∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

)∣∣∣∣
X0=0

σ∗
′
(0),

Ω′′(0) =
d

dX0

(
∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

))∣∣∣∣
X0=0

σ∗
′
(0)+

∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

)∣∣∣∣
X0=0

σ∗
′′
(0)

Ω′′′(0) =
d2

dX2
0

(
∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

))∣∣∣∣
X0=0

σ∗
′
(0)

+2
d

dX0

(
∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

))∣∣∣∣
X0=0

σ∗
′′
(0) +

∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

)∣∣∣∣
X0=0

σ∗
′′′

(0).

Taking into account that σ∗(0) >
√
ζ2 − 2∆V∞ > 0 (which comes from (6.10)), it follows that

(A.95) lim
X0→0

X0

σ∗(X0)
= 0.
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Looking at (A.93), we can conclude that

∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

)
|X0=0 = 0

and thus

(A.96) Ω′(0) = 0.

Differentiating (A.93) with respect to X0 and using again (A.95), tedious computations show
that

d

dX0

(
∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

))
|X0=0 = 0

and thus

(A.97) Ω′′(0) = 0.

Finally, we also compute

(A.98)
d2

dX2
0

(
∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

))
X0=0

=
1

σ∗2(0)
(λ0(ζ − σ∗(0))−∆f(0)(V∞ − ϕ(0))) .

Differentiating (A.43) with respect to X yields

(A.99) λ0V
′∗(X) = (ζ + V∗′(X))V∗′′(X)−∆V∞f(X) + ∆(F (X)ϕ′(X) + f(X)ϕ(X)).

Taking into account (6.8) but also V∗′′(X) = σ∗
′
(X), (A.99) taken for X = 0 becomes

σ∗
′
(0)σ∗(0) = λ0(σ∗(0)− ζ) + ∆f(0)(V∞ − ϕ(0)).

Inserting into (A.98) yields

d2

dX2
0

(
∂ω

∂x0

(
σ∗(X0),

X0

σ∗(X0)

))
X0=0

= −σ
∗′(0)

σ∗(0)
.

Inserting the latter condition into (A.94), while taking into account (A.96) and (A.97), yields

(A.100) Ω′(X0) = −σ
∗′2(0)

σ∗(0)

X2
0

2
+ o(X2

0 )

From this, it follows that Ω′(X0) ≤ 0 in a right-neighborhood of zero. Hence, expanding the
commitment period is, locally at least, suboptimal.

Q.E.D.

Proof of Lemma 3: Integrating by parts, we obtain:∫ X̃(t;X)

0
θ1e
−(θ0T̃ (X̃;X)+θ1(t−T̃ (X̃;X))f(X̃)dX̃ =

F (X̃(t;X))θ1e
−θ0t −∆

∫ X̃(t;X)

0
F (X̃)

∂T̃

∂X̃
(X̃;X)θ1e

−(θ0T̃ (X̃;X)+θ1(t−T̃ (X̃;X)))dX̃.
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Now changing variables and setting X̃ = X̃(τ ;X) (with dX̃ = ∂X
∂τ (τ ;X)dτ) in the integral, we

obtain:

F (X̃(t;X))θ1e
−θ0t −∆θ

∫ X̃(t;X)

0
F (X̃)

∂T̃

∂X̃
(X̃;X)θ1e

−(θ0T̃ (X̃;X)+θ1(t−T̃ (X̃;X)))dX̃

= θ1e
−θ0t

(
F (X̃(t;X))−∆θe−∆θt

∫ t

0
F (X̃(τ ;X))e−∆τdτ

)
.

From this, it follows that:

g(t|xt, X) = (1−F (X̃(t;X))θ0e
−θ0t+θ1e

−θ0t
(
F (X̃(t;X))−∆e−∆t

∫ t

0
F (X̃(τ ;X))e∆τdτ

)
.

Integrating by parts, we finally obtain:

g(t|xt, X) = (1− F (X̃(t;X)))θ0e
−θ0t + θ1e

−θ1t
∫ t

0
f(X̃(τ ;X))

∂X̃

∂τ
(τ ;X)e∆τdτ.

Integrating, we obtain:

G(t|xt, X) =

∫ t

0

(
(1− F (X̃(τ ;X))θ0e

−θ0τ + θ1e
−θ1τ

∫ τ

0
f(X̃(s;X))

∂X̃

∂s
(s;X)e∆sds

)
dτ

Integrating by parts and simplifying yields:

1−G(t|xt, X) = (1− F (X̃(t;X))e−θ0t + e−θ1t
∫ t

0
f(X̃(τ ;X))

∂X

∂τ
(τ ;X)e∆τdτ.

Integrating by parts the last term, we now obtain:

1−G(t|xt, X) = (1−F (X̃(t;X))e−θ0t+e−θ1t
(
F (X̃(t;X))e∆t −∆

∫ t

0
F (X̃(τ ;X))e∆τdτ

)
which finally yields (8.2). Q.E.D.

Proof of Lemma 4: Integrating by parts the maximand on the right-hand side of (6.2), we
rewrite the value function Ṽc(X, t) as

(A.101)

Ṽc(X, t) = sup
xt,X̃(·) s.t. (5.1)

∫ +∞

t
e−λ0τ

(
1−∆e−∆τ

∫ τ

t
F (X̃(s;X, t))e∆sds

)
u(x(τ))dτ ∀(X, t).

Changing variables in the integral and letting τ ′ = τ − t, we get∫ +∞

t
e−λ0τ

(
1−∆e−∆τ

∫ τ

t
F (X̃(s;X, t))e∆sds

)
u(x(τ))dτ

= e−λ0t

∫ +∞

0
e−λ0τ ′

(
1−∆e−∆(τ ′+t)

∫ τ ′+t

t
F (X̃(s;X, 0))e∆sds

)
u(x(τ ′ + t))dτ ′

= e−λ0t

∫ +∞

0
e−λ0τ ′

(
1−∆e−∆τ ′

∫ τ ′

0
F ( ˜̃X(s′;X, 0))e∆s′ds′

)
u(x(τ ′))dτ ′
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where we have used the change of variables s′ = s− t and where x̃(τ ′) = x(τ) and ˜̃X(s′;X, 0) =

X̃(s′ + t;X, t). Henceforth, if the actions plan x̃(τ ′) and the corresponding stock ˜̃X(s′;X, 0) =

X +
∫ s′

0 x̃(τ ′)dτ ′ reach the maximum of Vc(X) which is defined as

Vc(X) = sup
x,X̃(·)

∫ +∞

0
e−λ0t

(
1−∆e−∆t

∫ t

0
F (X̃(τ ;X))e∆τdτ

)
u(x(t))dτ ∀X.

Then x(τ) and the corresponding stock X̃(s;X, t) = X +
∫ s
t x(τ)dτ reach the maximum of the

right-hand side of (A.101). Taking into account (8.2), we obtain (8.4) which ends the proof of
the lemma. Q.E.D.

Proof of Proposition 10: Notice first that (8.3) implies the following inequality:

(A.102) e−∆t ≤ Z̃(t;X, 1) ≤ F (X)e−∆t + 1− F (X).

From which it follows the state variable Z takes value in the domain [0, 1].

We now proceed with proving the proposition below and will conclude with a Verification
Theorem (Proposition A.3):

Proposition A.2 If the complete value function Wc(X,Z) is C1, it satisfies the following
HBJ equation:

(A.103)

λ0Wc(X,Z) = Zλ1V∞+ζ
∂Wc

∂X
(X,Z)+

1

2Z

(
∂Wc

∂X
(X,Z)

)2

+∆(1−F (X)−Z)
∂Wc

∂Z
(X,Z)

with the boundary conditions

(A.104) ZV∞ ≤ lim
X→+∞

Wc(X,Z) ≤ V∞.

The complete feedback rule is given by (8.11)

Proof of Proposition A.2: Using previous notations, it is straightforward to check that
Wc(X,Z) solves the following recursive condition

(A.105) Wc(X,Z) = sup
x,X̃(·),Z̃(·) s.t. (8.1) and (8.5)

∫ ε

0
e−λ0tZ̃(t;X,Z)u(x(t))dt

+e−λ0εWc(X̃(ε;X,Z), Z̃(ε;X,Z)).

Consider now ε small enough and denote by x a fixed action over the interval [0, ε]. From (8.1)
and (8.5), we get

X̃(ε;X,Z) = X + εx+ o(ε)

and

Z̃(ε;X,Z) = Z + ε∆(1− F (X)− Z) + o(ε)

where limε→0 o(ε)/ε = 0.
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When Wc(X,Z) is C1, we can take a first-order Taylor expansion in ε of the maximand in
(A.105) to write it as:

Wc(X,Z)+

e−λ0εε

(
Zu(x) + x

∂Wc

∂X
(X,Z) + ∆(1− F (X)− Z)

∂Wc

∂Z
(X,Z)− λ0Wc(X,Z)

)
+ o(ε).

Inserting into (A.105) yields the following HBJ equation:

(A.106) λ0Wc(X,Z) = sup
x∈X

{
Zu(x) + x

∂Wc

∂X
(X,Z) + ∆(1− F (X)− Z)

∂Wc

∂Z
(X,Z)

}
.

Simplifying using the feedback rule finally yields (A.103).

Boundary condition. Now, observe that (8.5) and F (X) ≤ F (X̃(t;X)) ≤ 1 imply

0 ≤ ∂

∂t

(
Z̃(t;X,Z)e∆t

)
≤ ∆(1− F (X))e∆t.

Integrating between 0 and t yields

0 ≤ Ze−∆t ≤ Z̃(t;X,Z) ≤ Ze−∆t + (1− F (X))
(
1− e−∆t

)
.

From this and the fact that 0 ≤ Z ≤ 1, it follows that

(A.107) 0 ≤ Ze−∆t ≤ Z̃(t;X,Z) ≤ F (X)e−∆t + 1− F (X) ≤ 1.

Henceforth, the whole trajectory Z̃(t;X,Z) always remains in the stable domain [0, 1].

From the third inequality in (A.107), taking maximum of the value function (A.105), it also
follows that

(A.108) Wc(X,Z) ≤ F (X)V∞ + (1− F (X))
λ1V∞
λ0

.

Which can be rewritten to explain the right-hand side inequality of (8.12).

Passing to the limit yields the right-hand side inequality of (A.104)

lim
X→+∞

Wc(X,Z) ≤ V∞.

From the second inequality in (A.107), and again taking maximum, we get

Wc(X,Z) ≥ ZV∞

Passing to the limit yields the left-hand side inequality of (A.104) which holds for any Z. For
Z = 1, we obtain

lim
X→∞

V∗(X) = V∞

and therefore the left-hand side inequality of (8.12).

Feedback rule. Maximizing the right-hand side of (A.106) yields (8.11).

Q.E.D.
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A Verification Theorem. Proposition A.3 below shows that the conditions given Proposition
10 to characterize the commitment value function by means of an HBJ equation together with
boundary conditions are in fact sufficient. We again follow Ekeland and Turnbull (1983, Theorem
1, p. 6) to derive a Verification Theorem.

Proposition A.3 Assume first that there exists a C1 function W0(X,Z) which satisfies:

(A.109)

λ0W0(X,Z) ≥ Z̃(t;X,Z)u(x)+x
∂W0

∂X
(X,Z)+∆(1−F (X)−Z̃(t;X,Z))

∂W0

∂Z
(X,Z) ∀(x,X,Z);

and, second, that there exists an action profile x0 and a path X0(t) =
∫ t

0 x0(τ)dτ , Z0(t) =

1−∆e−∆t
∫ t

0 F (X0(τ))e∆τdτ such that

(A.110) λ0W0(X0(t), Z0(t)) = Z0(t)u(x0(t))

+x0(t)
∂W0

∂X
(X0(t), Z0(t)) + ∆(1− F (X0(t))− Z0(t))

∂W0

∂Z
(X0(t), Z0(t)) ∀t ≥ 0.

Then x0 is an optimal action profile with its associated path (X0(t), Z0(t)).

Proof of Proposition A.3: Suppose thus that Wc(X,Z) as characterized in Proposition
A.2 is C1. It is our candidate for the function W0(X,Z) in the statement of Proposition A.3.
By definition (A.106), we have

λ0Wc(X,Z) = Zu(σc(X,Z))+σc(X,Z)
∂Wc

∂X
(X,Z)+∆(1−F (X)−Z)

∂Wc

∂Z
(X,Z), ∀(X,Z)

and thus

(A.111) λ0Wc(X,Z) ≥ Zu(x) + x
∂Wc

∂X
(X,Z) + ∆(1− F (X)− Z)

∂Wc

∂Z
(X,Z), ∀(x,X,Z)

where the inequality comes from the concavity in x of the right-hand side.

To get (A.110), we use again (A.106) but now applied to the path (xc(t), Xc(t), Zc(t)) where
Xc(t) is such that Ẋc(t) = xc(t) = σc(Xc(t), Zc(t)) withXc(0) = 0 and Zc(t) = 1−∆e−∆t

∫ t
0 F (Xc(τ))e∆τdτ .

Define now a value function W̃c(X,Z, t) = e−λ0tWc(X,Z). By (A.111), we get

(A.112)

0 ≥ ∂W̃c

∂t
(X,Z, t)+x

∂W̃c

∂X
(X,Z, t)+∆(1−F (X)−Z)

∂W̃c

∂Z
(X,Z)+e−λ0tZu(x) ∀(x,X,Z).

Using xc(t) = σc(Xc(t), Zc(t)), Zc(t) = 1−∆e−∆t
∫ t

0 F (Xc(τ))e∆τdτ and (A.31), we also get

(A.113) 0 =
∂W̃c

∂t
(Xc(t), Zc(t), t) + xc(t)

∂W̃c

∂X
(Xc(t), Zc(t), t)

+∆(1− F (Xc(t))− Zc(t))∂W̃
c

∂Z
(Xc(t), Zc(t), t) + e−λ0tZc(t)u(xc(t)) ∀t ≥ 0.

Take now an arbitrary action plan x with the associated path X(t) =
∫ t

0 x(τ)dτ and Z(t) =

1−∆e−∆t
∫ t

0 F (X(τ))e∆τdτ . Let us fix an arbitrary T > 0. Integrating (A.112) along the path
(x(t), X(t), Z(t)), we compute

0 ≥
∫ T

0

(
∂W̃c

∂t
(X(t), Z(t), t) + x(t)

∂W̃c

∂X
(X(t), Z(t), t)
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+∆(1− F (X(t))− Z(t))
∂W̃c

∂Z
(X(t), Z(t), t) + e−λ0tZ(t)u(x(t))

)
dt

or

0 ≥
∫ T

0

(
dW̃c

dt
(X(t), Z(t), t) + e−λ0tZ(t)u(x(t))

)
dt ∀T ≥ 0.

By definition of the total derivative of W̃c(X(t), Z(t), t) with respect to time, we thus get

W̃c(0, 0, 0) ≥ W̃c(X(T ), Z(T ), T ) +

∫ T

0
e−λ0tZ(t)u(x(t))dt ∀T ≥ 0.

Because W̃c(X,Z, t) = e−λ0tWc(X,Z, t) ≥ 0 for all (X,Z, t), we obtain:

Wc(0, 0) ≥ e−λ0TWc(X(T ), Z(T )) +

∫ T

0
e−λ0tZ(t)u(x(t))dt ∀T ≥ 0.

Because of the boundary conditions (A.104), e−λ0TWc(X(T ), Z(T )) converges towards zero
as T → +∞ for any feasible path. Moreover, for any such feasible path

∫ +∞
0 e−λ0tZ(t)u(x(t))dt

exists. Henceforth, we get:

Ṽu(0, 0) ≥ sup
x

∫ +∞

0
e−λ0tZ(t)u(x(t))dt

which shows that (xc(t), Xc(t), Zc(t)) is indeed an optimal path. Q.E.D.

Boundary condition. An immediate corollary of (A.104) is thus (8.10).

Differential equation (8.9) for Vc(X). A simple application of the Envelope Theorem on
(8.8) demonstrates that

∂Wc

∂Z
(X,Z) =

∫ +∞

0
e−λ0tu(σc(X̃c(t;X,Z), Z̃(t;X,Z)))dt

or using (8.11)

∂Wc

∂Z
(X,Z) =

λ1

λ0
V∞ −

1

2

∫ +∞

0
e−λ0t

(
1

Z̃c(t;X,Z)

∂Wc

∂X
(X̃c(t;X,Z), Z̃c(t;X,Z))

)2

dt.

Inserting into (A.103), taking Z = 1 and using Vc(X) ≡ Wc(X, 1) yields

λ0(Vc(X)− V∞) = ∆V∞
(

1− F (X)
λ1

λ0

)
+ ζVc′(X) +

1

2
Vc′2(X)

+
∆F (X)

2

∫ +∞

0
e−λ0t

(
1

Z̃c(t;X, 1)

∂Wc

∂X
(X̃c(t;X, 1), Z̃c(t;X, 1))

)2

dt

Solving this second-order equation for Vc′(X) and keeping (as in our previous analysis) the
positive root that corresponds to a positive action σc(X, 1) yields (8.9).
Q.E.D.
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Proof of Proposition 11: Suppose, the contrary, then differentiating (8.11) with respect
to Z yields

∂σc

∂Z
(X,Z) =

∂

∂Z

(
1

Z

∂Wc

∂X
(X,Z)

)
= 0 ∀(X,Z)

This means that the complete value function Wc(X,Z) would be affine in Z and thus of the
form

Wc(X,Z) = ZW1(X) +W2(X).

Inserting into the HBJ equation (A.103) satisfied by Wc(X,Z) for all (X,Z) immediately gives

W1(X) =W2(X) = 0 ∀X,

which is a contradiction with the boundary condition (A.104). Q.E.D.

Proof of Proposition 12: From (8.8), we have:

Vc(X) = sup
x,X̃(·),Z̃(·) s.t. (8.1) and (8.6)

∫ +∞

0
e−λ0τ Z̃c(τ ;X, 1)u(x(τ))dτ.

From (8.6) and the fact that X̃c(s;X, 1) ≥ X, we also have:

Z̃c(τ ;X, 1) ≤ 1−∆e−∆τ

∫ τ

0
F (X)e∆sds.

Therefore, the following inequality holds:

Vc(X) ≤ λ1

∫ +∞

0
e−λ0τ

(
1−∆e−∆τ

∫ τ

0
F (X)e∆sds

)
V∞dτ.

Developing and integrating the right-hand side term yields the right-hand side inequality of
(8.12). The left-hand side inequality follows from observing that

Z̃c(τ ;X, 1) ≥ e−∆τ .

Thus, we get

(A.114) Vc(X) ≥
∫ +∞

0
e−λ1τu(ζ)dτ = V∞

From the Envelope Theorem applied to (8.8), we get

∂Wc

∂X
(X,Z) = −∆

∫ +∞

0
e−λ0τ

(
e−∆τ

∫ τ

0
f(X̃c(s;X,Z))e∆sds

)
u(σc(X̃c(τ ;X,Z), Z̃c(τ ;X,Z)))dτ < 0

where X̃c(s;X,Z) is the stock trajectory associated to the optimal complete feedback rule
σc(X̃c(τ ;X,Z), Z̃c(τ ;X,Z)). Hence, (8.11) implies

(A.115) σc(X,Z) < ζ

and thus the right-hand side inequality of (8.13) follows.

We now use this condition to show that∫ +∞

0
e−λ0τ

(
1

Z̃c(t;X,Z)

∂Wc

∂X
(X̃c(t;X,Z), Z̃c(t;X,Z))

)2

dτ
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=

∫ +∞

0
e−λ0τ

(
σc(X̃c(t;X,Z), Z̃c(t;X,Z))− ζ

)2
dτ ≤ ζ2

λ0
.

Using that inequality and (A.114), we now obtain

(σc(X, 1)− ζ)2 = Vc′2(X)

= ζ2 + 2λ0(Vc(X)− V∞)− 2∆V∞
(

1− λ1

λ0
F (X)

)

−∆F (X)

∫ +∞

0
e−λ0τ

(
1

Z̃c(t;X,Z)

∂Wc

∂X
(X̃c(t;X,Z), Z̃c(t;X,Z))

)2

dτ

≥ ζ2 − 2∆V∞.

Taking roots ends the proof of the left-hand side inequality of (8.13). Q.E.D.
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