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Abstract

This paper analyzes a bilateral trade model where the buyer’s valuation for the

object is uncertain and she can privately purchase any signal about her valuation.

The seller makes a take-it-or-leave-it offer to the buyer. The cost of a signal is smooth

and increasing in informativeness. We characterize the set of equilibria when learning

is free and show that they are strongly Pareto ranked. Our main result is that, when

learning is costly but the cost of information goes to zero, equilibria converge to the

worst free-learning equilibrium.

1 Introduction

Recent developments in information technology have given consumers access to new in-

formation sources that allow them to learn about products prior to trading. For example,

online resources enable buyers to learn about a mechanic’s reputation, a contractor’s abil-

ity, or an over-the-counter (OTC) asset’s value. This information acquisition often takes
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place before the buyers learn the terms of trade. Indeed, in order to get a price quote,

customers may need to bring their cars to the mechanic, have a contractor over, or waste

their first contact with an OTC dealer.1 Since the buyer’s willingness-to-pay depends

on her information about the product, the seller’s price depends on what he expects the

buyer to learn. The flip side is that the seller’s pricing strategy determines what infor-

mation is worth learning for the buyer. For example, there may be no point in knowing

more about the value of an asset if the buyer is already sure that it is below its price. So,

the buyer’s information acquisition depends on the seller’s expected prices. The goal of

this paper is to study this mutual dependency between the buyer’s learning strategy and

the seller’s pricing policy.

We consider a stylized model where the seller has a single object for sale and full

bargaining power. Initially, the buyer does not know anything about the value of the

object except its prior distribution. We model the buyer’s learning as flexible information

acquisition, that is, she can purchase any signal about her valuation privately. Then

the seller, without observing the buyer’s learning strategy and her signal realization,

sets a price. Signals are costly and we assume that this cost is a smooth and strongly

increasing function of the signal’s informativeness. Below, we explain these assumptions

in detail. Our aim is to characterize the set of equilibria of this game. We are particularly

interested in the limit where the buyer’s cost vanishes. This appears to be particularly

relevant in a world where information is cheap and accessible to consumers. To this end,

we parameterize the cost by a multiplicative constant and consider the limit when this

parameter converges to zero.

We now describe the buyer’s action space and the cost of information. The demand of

the buyer, which is the probability of trade occurring at a given price, is fully determined

by the distribution of her posterior value estimate. In turn, the seller’s profit from any

given price is pinned down by the buyer’s demand. As a consequence, trade outcomes are

fully determined by the distribution of the buyer’s posterior estimate. The prior distribu-

tion is a mean-preserving spread of any such distribution since each signal contains less

information than the valuation itself. Since the buyer can choose any signal, we identify

her action space with the set of these distributions and define the cost of information

acquisition on this set. To require this function to be smooth we appeal to a generalized

notion of differentiability because the domain is a set of CDFs. We postulate that the

1A stylized feature of OTC markets is that prices quoted on a second call can be dramatically higher

than the first one, see Bessembinder and Maxwell (2008), or Zhu (2012).

2



cost function is Fréchet-differentiable.2

Let us now turn to our main assumption on the cost of information. A signal is more

informative than another if its induced distribution over posterior value estimates is a

mean-preserving spread of that of the other. So, a cost function is said to be monotonic

in the signal’s informativeness if it respects this mean-preserving relationship. As will

be argued, a cost function is monotonic whenever its Fréchet-derivative is convex.3 Our

main assumption is somewhat stronger than monotonicity: in addition to requiring the

Fréchet-derivative to be convex, we assume that this derivative at a given CDF is strictly

convex on the CDF’s support. The additional property imposed by this assumption to

monotonicity resembles stipulating that the derivative of a strictly increasing function is

strictly positive everywhere.

Monotonicity of the learning cost implies that the seller randomizes in every equilib-

rium in which the buyer learns. To see this, suppose that there is an equilibrium in which

the seller sets a fixed price and the buyer receives an informative signal about her valua-

tion. Then this signal must be binary, indicating whether or not the buyer should trade.

The reason is that any other signal can be made less informative, and hence cheaper,

while still leading to the same trading decisions. The seller’s best-response to such a

binary signal is to charge the expected valuation of the buyer conditional on one of the

two signal realizations. To get a contradiction, notice that the buyer is strictly better off

by not learning irrespective of which of these prices is set. If the price is the lower signal

realization, then the buyer always trades so learning yields no benefit. If the price is the

higher signal realization, then the buyer’s surplus from trade is zero, so she could again

profitably deviate by saving the cost of learning and not trading.

Our aforementioned strong monotonicity assumption also has important implications

on the buyer’s equilibrium learning strategy. We show that the support of the buyer’s

equilibrium signal is an interval and the buyer’s demand generated by this signal makes

the seller indifferent between setting any price on its support. This indifference condition

implies that the buyer’s equilibrium CDF is a truncated Pareto distribution and hence,

her equilibrium demand is unit-elastic.

As mentioned above, our main objective is to characterize equilibrium outcomes as

the buyer’s cost vanishes. To this end, we first consider the case where learning is free.

We show that this case admits multiple equilibria, all of which can be Pareto ranked. In

2The Fréchet-derivative is a function itself.
3See Machina (1982) for a similar result.
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Figure 1: An Illustration of the best and worst equilibria in the uniform case.

the Pareto-best equilibrium, which maximizes both players’ payoffs across all free-learning

equilibria, the buyer learns her valuation perfectly. The Pareto-worst equilibrium turns

out to be the unique equilibrium in which the buyer’s posterior estimate is distributed

according to a truncated Pareto distribution.

The best and worst free-learning equilibria are illustrated on Figure 1 for the case of

the uniform prior on [0, 1]. In the Pareto-best equilibrium, the buyer learns her valuation

perfectly so the distribution of her value estimate is also uniform, and so is represented by

the 45-degree line on Figure 1. In this case, the seller’s equilibrium price is .5, his profit

is .25, and the buyer’s payoff is .125. The buyer’s CDF in the Pareto-worst equilibrium

is depicted as a gray curve on Figure 1. In this worst equilibrium, the seller’s profit, π,

is approximately .2, the price is p (≈ .715) and the buyer’s payoff is only slightly above

.04. So, the buyer’s payoff is less than one third of her payoff in the perfect-learning

equilibrium.

At first, it may appear counter-intuitive that there are equilibria in which the buyer

does not learn perfectly although information is free. In the above described Pareto-worst

equilibrium, the seller’s price, p, is defined by the highest intersection of the Pareto curve

and the prior CDF. At this point, the mean-preserving spread constraint binds, that is,

the integral of the Pareto curve and the prior CDF on
[
0, p
]

coincide. We call such a

point separating. The important property of a separating point is that the buyer never

confuses a value below such a point with a value above it. That is, a value below p never

generates the same signal as a value above p. This implies that the buyer would not
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gain anything by learning more because this Pareto signal already reveals if her valuation

is above or below p, which is the only information she needs to know in order to trade

ex-post efficiently.

Our main result is that as the buyer’s learning cost vanishes, equilibria converge to a

Pareto-worst free-learning equilibrium. For intuition, recall that when learning is costly,

the CDF of the buyer’s posterior estimate is a truncated Pareto. The limit of truncated

Pareto distributions is also a truncated Pareto, so the same must hold for the costless

limit, which is a free-learning equilibrium. Hence, as costs shrink, we obtain a free learning

equilibrium in which the buyer’s demand is unit elastic. All that remains is to recall the

fact mentioned above, namely that the unique such equilibrium yields the Pareto-worst

free learning outcome.

The main takeaway from our paper is that possessing information might be signifi-

cantly better than having cheap access to it. When information is costly, buyers must have

incentives to acquire it. In equilibrium, prices fail to provide these incentives, so buyers

choose to ignore large amounts of information even when costs are minuscule. In turn,

this ignorance triggers prices that are too high compared to those in a full-information

environment, leading to considerable welfare losses. Mitigating these losses may justify

certain market features such as the existence of professional intermediaries. By making

sure that traders are informed, intermediaries can substantially increase social surplus.

More broadly, our results highlight the importance of regulating the provision of product

information even when data is cheap, as cheap data does not necessarily approximate

full information. Special care should be taken when designing the informational channels

through which market participants learn. For example, mandatory information sessions

appear to be more desirable than supplying brochures. The reason is that being able to

know something is not the same as actually knowing it.

Our paper serves as a cautionary tale on interpreting recent papers characterizing

consumer and producer surplus pairs which can arise as an equilibrium outcome for some

information structure (e.g. Bergemann et al. (2015), Roesler and Szentes (2017)). Of

particular relevance is Roesler and Szentes (2017), who consider a setting similar to ours

in which the buyer’s signal is observed by the seller before he sets a price. Their key

result identifies the signal-equilibrium pair that maximize the buyer’s payoff. It turns out

that the buyer-optimal signal is the same Pareto signal as in our worst free-learning equi-

librium. At first glance, this might seem surprising given that the worst free-information
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equilibrium minimizes the buyer’s payoff. However, since the seller sets a price only after

observing the buyer’s signal in Roesler and Szentes’s (2017) model, he can set any profit-

maximizing price and, in the buyer-optimal equilibrium, he chooses the lowest such price.

In contrast, in our model, the seller’s price must also justify the buyer’s signal choice,

forcing him to choose a separating point. Thus, our analysis suggests that the same

information structure can lead to two drastically different outcomes. Which outcome is

selected depends on the mechanism through which trade occurs.

Our paper also adds to the recent literature on the relationship between free-learning

equilibria and the vanishing-cost limits of equilibria. For example, Yang (2015) studies

a 2-by-2 coordination game where players can learn about their stochastic benefits from

coordination. When the learning cost is proportional to entropy reduction, infinitely

many equilibria can be attained in the limit. Morris and Yang (2016) considers a related

regime-switching game and show that there is a unique vanishing-cost limit if the learning

cost admits a “continuous choice” property, that is, if only signals whose distribution

varies continuously with the state are optimal.4 This literature primarily focuses on

static flexible learning models where all players have access to the same information. It

turns out that, in these models, free information always yields a perfect-learning outcome.

Therefore, the vanishing-cost limit can be considered as an equilibrium-selection device

from a symmetric information game. In contrast, learning is asymmetric in our model

since the seller cannot acquire information about the buyer’s valuation. Consequently,

as we explained above, perfect-learning corresponds to an asymmetric information game

with a substantially smaller equilibrium set than our free-learning game. And indeed,

our vanishing cost limit selects a free-learning outcome that is simply not an equilibrium

under full information.

Costly consumer learning is extensively studied in the literature on rational inattention

initiated by Sims (1998, 2003, 2006). In these models, information cost is proportional

to the resulting expected reduction in entropy. For example, Matějka (2015) studies a

dynamic pricing model with a consumer who is rationally inattentive to prices. He finds

that rational inattention leads to rigid pricing because such pricing structures are easier

to assess for the consumer. Ravid (2018) studies a dynamic, repeated-offer bargaining

game in which the buyer is rationally inattentive and can learn about both her valuation

4Denti (2018) shows that allowing players to learn about others’ information yields a unique vanishing

cost limit in Yang’s (2015) model, while Hoshino (2018) argues that the limits selected by Denti’s (2018)

model depend on the fine details of the cost function.
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and the seller’s offers. He finds that the buyer benefits from her inattention, and that

such benefits remain large even when offers are frequent and costs vanish. In contrast to

this literature, we treat the cost of information in an abstract way and do not assume

such a particular form. Still, one can show that our results go through even when the

buyer’s information costs are given by expected entropy reduction.

Several papers examine buyers’ incentives to acquire costly information about their

valuations before participating in auctions. The buyers’ learning strategies depend on the

selling mechanism announced by the seller. Persico (2000) shows that if the buyers’ signals

are affiliated then they acquire more information in a first-price auction than in a second-

price one. Compte and Jehiel (2007) show that dynamic auctions tend to generate higher

revenue than simultaneous ones. Shi (2012) also analyses models where it is costly for

the buyers to learn about their valuations and identifies the revenue-maximizing auction

in private-value environments. In all of these setups, the seller is able to commit to a

selling mechanism before the buyers decide how much information to acquire. In contrast,

we consider environments where the monopolist cannot commit and best-responds to the

buyer’s signal structure.5

Condorelli and Szentes (2018) also consider a bilateral trade model. In contrast to

our setup, the distribution of the buyer’s valuation is not given exogenously. Instead,

the buyer chooses her value-distribution supported on a compact interval and perfectly

observes its realization. The seller observes the buyer’s distribution but not her valuation

and sets a price. The authors show that, as in our model, the equilibrium distribution

generates a unit-elastic demand.

2 The Model

A seller, S, has an object to sell to a single buyer, B. B’s valuation, v, takes values in

[0, 1] according to the CDF F0 whose expected value is v̄ =
∫
v dF0(v) > 0. We assume

that F0 is regular, meaning that it has a strictly positive density, f0, on [0, 1] and that

v − (1 − F0(v))/f0(v) is strictly increasing in v. B does not observe v but can choose

to observe any signal, s, at a cost that depends on the signal’s informativeness. Below,

we describe the set of signals available to the buyer and the associated cost in detail.

5Another strand of the literature analyzes the seller’s incentives to reveal information about the buy-

ers’ valuations prior to participating in an auction, see for example, Ganuza (2004), Bergemann and

Pesendorfer (2007) and Ganuza and Penalva (2010).
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Then S, without observing B’s information acquisition strategy and signal, makes a take-

it-or-leave-it price offer, p ∈ [0, 1], which B accepts if and only if her expected valuation

conditional on her signal weakly exceeds p.6 Both players are risk-neutral expected payoff

maximizers.

Signal structures and B’s action space.— Note that both B’s trading decision and her

expected payoff from trading depend only on her posterior expectation, E[v|s]. Assuming

that acquiring more information7 is more costly, it is without loss of generality to restrict

attention to signal structures for which B’s posterior expectation is the signal itself –

i.e., E[v|s] = s. As a consequence, both B and S only care about the signal’s marginal

distribution. Thus, we identify each signal with the CDF of its marginal. We let F be

the space of all CDFs over [0, 1], which we endow with the L1-norm, denoted by ‖·‖.8 For

any subset A ⊆ [0, 1], we take 1A to be the indicator function that is equal to 1 on A and

to zero otherwise. So, 1[x,1] ∈ F is the CDF corresponding to a unit atom at x ∈ [0, 1].

It turns out to be useful to compare the informativeness of different signals. We

say that s is more informative than s′ if s = s′ + t for some random variable t satisfying

E[t|s′] = 0, that is, observing s is the same as observing both s′ and t. In other words, s is

a mean preserving spread of s′. Hence, if F, F ′ ∈ F , we say that F is more informative

than F ′ (denoted by F � F ′) if and only if F is a mean preserving spread of F ′ – i.e.,9∫ x

0
(F − F ′) ds ≥ 0 for all x with equality for x = 1. (1)

The CDF F is said to be strictly more informative than F ′ (denoted by F � F ′) if

both F � F ′ and F ′ 6= F .10

We allow B to choose any signal to learn about v and we identify B’s action space

with the set of those CDF’s which correspond to a signal about her valuation. Of course,

observing the valuation perfectly is more informative than any signal. Thus, B can choose

any CDF F which is less informative than the prior F0 – i.e., any F ∈ F such that F0 � F .

We denote this set by A, and refer to CDFs in A as signals. Letting IF (x) denote∫ x
0 (F0 − F ) ds, (1) implies that F ∈ A if and only if IF (x) ≥ 0 for all x and IF (1) = 0.

6Assuming that B trades if indifferent has no effect on our results but makes the analysis simpler.
7Using Blackwell’s 1953 information ranking.
8That is, the norm that maps any Borel measurable φ : [0, 1]→ R to ‖φ‖ =

∫ 1

0
|φ(x)|dx. Restricted to

the set of CDFs over [0, 1], this norm metrizes weak* convergence, see for example Machina (1982).
9See Rothschild and Stiglitz (1970) for the statement and Leshno et al. (1997) for the corrected proof.

Blackwell and Girshick (1979) proves the result for discrete distributions.
10Notice that � is reflexive and anti-symmetric, meaning that F � F ′ and F ′ � F if and only if F = F ′.

8



The cost of information acquisition.— Information acquisition is costly. In general,

different information structures generating the same distribution of posterior expectation

might come at different costs. However, since B’s expected payoff from trading depends

only on the distribution of this posterior expectation, F , she would always use the least

expensive signal that leads to F . In fact, B may even randomize to get F . Thus, we can

evaluate the cost of F by the expected cost of the cheapest randomization that leads to

it. This results in a convex cost function,

C : A → R+.

We require the function C to be sufficiently smooth. More precisely, we assume that C is

Fréchet differentiable; that is, it is continuous and for each F ∈ A, there is a Lipschitz

function, cF : [0, 1]→ R, such that for every F ′ ∈ A,

C(F ′)− C(F ) =

∫
cF d(F ′ − F ) + o

(∥∥F ′ − F∥∥) , (2)

where o is a function that equals to zero at zero and limx↘0 [o(x)/x] = 0. We refer to cF

as C’s derivative at F .11

It is natural to assume that acquiring more information is more costly. We say that C

is increasing if C(F ) ≥ C(F ′) whenever F is strictly more informative than F ′. Next, we

show that C is increasing in the informativeness of the signal if and only if its Fréchet-

derivative is convex.

Claim 1 Let C be convex and Fréchet-differentiable. Then C is increasing if and only if

cF is convex for each F ∈ A.

Proof. See appendix.

For the intuition behind the claim and for better understanding the concept of Fréchet-

differentiable, let us restrict attention to signals whose support lies in a finite set, say

{s1, . . . , sN}. Then each F ∈ F , can be represented by the vector (α1, . . . , αN ) such for

which F =
∑N

n=1 αn1[sn,1]. In this case, the Fréchet-derivative at F at sn, cF (sn), is

C’s partial derivative with respect to the probability of sn, that is, ∂C/∂αn(F ) = cF (sn).

Thus, the marginal cost of a small shift from F to F ′ is the sum of the marginal cost at each

signal realization times the change in each realization’s probability, that is,
∫
cF d(F ′−F ).

Of course, if F ′ � F then this quantity is positive if cF is convex.

11Formally, cF (x) =
∫ x
0
φF ds for some φF ∈ L∞[0, 1], and so, cF is unique Lebesgue-a.e.
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Our main assumption requires cF to be not only convex but also strictly convex on

the support of F .

Assumption 1 For each F ∈ A, cF is convex and strictly convex on co(supp F ).

Strategies and payoffs.— A mixed strategy for S is a random price, represented by a

CDF over prices, H ∈ F , while a strategy for B is a signal, F ∈ A.12 If B’s signal is F ,

S’s expected payoff from the random price H is given by

Π(H,F ) =

∫
p(1− F (p−)) dH(p).

We let πF denote S’s maximal profit, maxp∈[0,1] Π(p, F ), and P (F ) denote the set of profit

maximizing prices, arg maxp∈[0,1] Π(p, F ).13

If S’s random price is H, B’s expected payoff from the signal distribution F is

Uκ(H,F ) =

∫ ∫ s

0
(s− p) dH(p) dF (s)− κC(F ),

where κ ∈ R+ is a constant parameterizing B’s cost of information.

Equilibrium Definition and Existence.— An equilibrium is a pair, (H,F ), such that:

1. H maximizes Π(H,F ) over H ∈ F .

2. F maximizes Uκ(H,F ) over F ∈ A.

We call an equilibrium non-trivial if B learns, that is, F 6= 1[v̄,1]. The following

theorem shows that a non-trivial equilibrium exists under general conditions whenever

costs are sufficiently small.

Theorem 1 Suppose C satisfies Assumption 1. Then, an equilibrium exists for all κ ≥ 0.

Moreover, there exists κ̄ > 0 such that all equilibria are non-trivial whenever κ < κ̄.

Proof. See appendix.

Truncated Pareto Distributions.— As mentioned in the introduction, the set of trun-

cated Pareto distributions plays an important role in our analysis. To formally define this

set, for each π ∈ (0, 1] and t ∈ [π, 1] let,

Gπ,t(s) = 1[π,t)

(
1− π

s

)
+ 1[t,1]. (3)

We refer the set {Gπ,t} as the set of truncated Pareto distributions and an element of

{Gπ,t} ∩ A as a Pareto signal.

12Since C is convex, S’s objective is linear, and A is convex, we can assume B uses a pure strategy.
13We slightly abuse notation and let Π(p, F ) denote Π(1[p,1], F ).
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2.1 Examples for the Cost of Learning

This section provides three examples for cost functions and characterizes their Fréchet

derivatives.

Example 1. (Constant Marginal Cost) Fix some strictly convex function c : [0, 1]→
R+. Then one can define the function

C(F ) =

∫
c dF.

Then, C’s Fréchet derivative equals to c for all F .

Example 2. (Increasing Marginal Cost) Fix some strictly convex c : [0, 1]→ R+ and

a strictly increasing, convex and differentiable ψ : R+ → R+. Then the function

C(F ) = ψ

(∫
c dF

)
satisfies our assumptions. Indeed, by the chain rule, the above cost function is Fréchet

differentiable, with the derivative being given by

cF (·) = ψ′
(∫

c dF

)
c(·),

which is convex for all F , and strictly convex for any F 6= 1[v̄,1].

Example 3. (Quadratic Costs) Let c : [0, 1] × [0, 1] → R+ be some strictly convex,

symmetric function – i.e., such that c(s1, s2) = c(s2, s1) for all s1, s2 ∈ [0, 1]. Then the

cost function

C(F ) =
1

2

∫ ∫
c(s1, s2) dF (s1)dF (s2)14

is Fréchet differentiable, with the derivative being given by

cF (·) =

∫
c(·, s2) dF (s2).

As cF is strictly convex, this cost satisfies our assumption.15

3 Costless learning

In this section, we analyze the set of equilibria when learning is free – i.e., when κ = 0. We

first provide geometric characterizations of the best responses of B and S, respectively.

14This is essentially the functional form for quadratic preferences as introduced by Machina (1982).
15To ensure convexity of C, c must be positive semidefinite – i.e.,

∫ ∫
c d(F − F ′)d(F − F ′) ≥ 0 for all

F, F ′ ∈ F .
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We then use these characterizations to identify the set of payoff profiles that arise in

equilibrium. We also show that the free-learning equilibrium set can be strongly Pareto

ranked, with the best equilibrium being the one given by perfect learning, that is, F = F0.

The worst equilibrium outcome is attainable with a Pareto signal.

3.1 The Buyer’s Best Responses

If S sets price p and B learns her valuation perfectly, she makes an ex-post efficient trading

decision. To make such decisions, B’s signal must reveal whether the true valuation is

above or below p. In what follows, we characterize the set of such signal distributions.

To this end, note that if B chooses F and the price is p then her expected payoff from

trade is ∫ 1

p
(s− p) dF (s) = (1− p)−

∫ 1

p
F (s) ds, (4)

where the equality follows from integrating by parts. Of course, when information is free,

perfect learning is a best response to any pricing strategy of the seller. Hence, this payoff is

maximized by F0. Therefore, the previous equation implies that F is also a best response

and achieves the same payoff as that of perfect learning if and only if
∫ 1
p (F0 − F ) ds = 0

or equivalently IF (p) = 0.16 Intuitively, IF (p) = 0 means that p separates the signal

realizations in the sense that either both B’s true valuation and her signal generated by

F are larger or both of them are smaller than p. In what follows, we refer to such a price

as F -separating and we denote the collection of such prices by S (F ), that is,

S(F ) = {p ∈ [0, 1] : IF (p) = 0}.

In summary, if S sets price p the CDF F is B’s best response if and only if p ∈ S (F ).

The next lemma shows that the argument of this paragraph can be extended to the case

where S randomizes over prices. We show that by choosing F , B achieves the same payoff

as with perfect learning if each possible price of S is F -separating.

Lemma 1 The signal F is a best response against H if and only if supp H ⊆ S(F ).

16To see this equivalence, recall that IF (p) =
∫ p
0

(F0 − F ) ds and note that∫ 1

p

(F0 − F ) ds = IF (1)− IF (p) = −IF (p) ,

where the last equality follows from IF (1) = 0.
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Proof. If S uses H and B chooses F , the difference between B’s payoff generated by F

and that of F0 can be written as

U0 (H,F )− U0 (H,F0) =

∫ [∫ 1

p
(s− p) dF (s)−

∫ 1

p
(s− p) dF0 (s)

]
dH (p)

=

∫ [∫ 1

p
F0 (s) ds−

∫ 1

p
F (s) ds

]
dH (p) = −

∫
IF (p) dH (p) ,

where the first equality follows from (4) and the third one from
∫ 1
p (F0−F ) ds = −IF (p).

Since IF (·) is continuous, we conclude that F generates the same payoff as perfect learning

if and only if IF (p) = 0 for all p ∈ supp H, that is, supp H ⊆ S(F ).

Next, we show that the graphs of F and F0 must intersect at any F -separating price.

Intuitively, p is F -separating if the signal reveals whether the valuation is above or below

p. The probability that B observes a signal realization below p and the probability that

the value is below p must be equal, that is, the CDFs F and F0 must cross at p.

Lemma 2 If F ∈ A and p ∈ S(F ) then F is continuous at p and

F (p) = F0(p). (5)

Proof. Suppose p ∈ S(F ). Then, by the definition of S (F ), IF (p) = 0. Recall that

IF (x) ≥ 0 for all x ∈ [0, 1], so

p ∈ arg min
x∈[0,1]

IF (x). (6)

Since IF (x) =
∫ x

0 (F0 − F ) ds, it can be differentiated from both sides at p. Therefore,

(6) implies that

0 ≥ I ′F−(p) = F0(p−)− F (p−),

0 ≤ I ′F+(p) = F0(p)− F (p).

From these two inequalities it follows that F0(p−) ≤ F (p−) ≤ F (p) ≤ F0(p). Since F0 is

regular, it does not have an atom at p, so F0(p−) = F (p). Hence, all the inequalities are

equalities in the previous chain and the statement of the lemma follows.

3.2 The Seller’s Best Responses

We now characterize the set of profit maximizing prices. To this end, we first describe

S’s iso-profit curves on the price-cumulative probability space. Note that if the price is
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Figure 2: The seller’s best response against the uniform distribution.

p and the probability that B’s valuation is strictly less than p is x, then the S’s profit is

p (1− x). Hence, the iso-profit curve in this space corresponding to a given profit, say

π (> 0), is defined by

{(p, x) : x ∈ [0, 1] , p (1− x) = π} .

Of course, if p < π then the profit cannot exceed p and there is no x ∈ [0, 1] which generates

π. Otherwise, for each p ∈ [π, 1], the cumulative probability, x, which guarantees profit

π is 1− π/p. Observe that 1− π/p is the CDF corresponding to the Pareto distribution

parameterized by π. Since p ≤ 1, we conclude that the iso-profit curve of the seller

corresponding to profit π is essentially identical to the truncated Pareto distribution,

Gπ,1.

These iso-profit curves can be used to analyze S’s best-response against B’s signal

distribution as illustrated on Figure 2 for the case of a uniform F . Note that lower iso-

profit curves correspond to larger profits. In addition, the set of feasible outcomes are

{(p, F (p−)) : p ∈ [0, 1]}. Therefore, S’s profit is defined by the largest π such that the

curve Gπ,1 (s) is weakly below that of F (s−). In Figure 2, three iso-profit curves are

depicted as the gray dashed contours and the middle one, G1/4,1, is the largest iso-profit

curve below F so the profit of S is 1/4. Furthermore, the set of optimal prices, P (F ),

are those values at which F is tangent to the largest iso-profit curve below it. In Figure

2, there is a only a single point of tangency at p = 0.5. The following lemma summarizes

these observations.

14



Lemma 3 Fix any F ∈ A. Then,

(i) for all s ∈ [0, 1], F (s−) ≥ GπF ,1 (s−); and

(ii) P (F ) = {p ≥ πF : F (p−) = GπF ,1(p−)} ⊆ suppF.

Part (i) states that B’s CDF is first-order stochastically dominated by the Pareto dis-

tribution parameterized by S’s profit, πF . Part (ii) says the set of profit-maximizing prices

are those signals at which B’s CDF essentially coincides with this Pareto distribution.

Proof of Lemma 3. To prove part (i), note that S’s profit from setting a certain

price cannot exceed πF , that is, for all s ∈ [0, 1], s (1− F (s−)) ≤ πF . Rearranging this

inequality yields

GπF ,1 (s−) = 1− πF
s
≤ F (s−) ,

which proves part (i).

To see part (ii), note that s ∈ P (F ) if and only if the inequality in the previous

displayed chain is an equality. Hence, P (F ) = {p ≥ πF : F (p−) = GπF (p−)}. It remains

to show that P (F ) ⊆ supp F . Suppose, by contradiction, that there exists a p such that

p ∈ P (F ) \supp F . Then there exist p′ > p such that F (p′−) = F (p−). So,

Π (p, F ) = p (1− F (p−)) < p′ (1− F (p−)) = p′
(
1− F (p′−)

)
= Π

(
p′, F

)
,

where the inequality follows from p′ > p and the second equality follows from F (p′−) =

F (p−). This inequality chain implies that S is strictly better off with setting price p′ than

price p, a contradiction to p ∈ P (F ).

3.3 Free-Learning Equilibrium Characterization

First, we show that S never randomizes in equilibrium. More specifically, we prove that

if (H,F ) is a free-learning equilibrium then H specifies an atom of size one at the largest

price which would generate a profit of πF if B learns perfectly. To state this result

precisely, for each π, let Xπ be the set of prices which yield profit π under F0, that is,

Xπ := {p : Π (p, F0) = π} .

Observe that supp H ⊆ P (F ) ∩ S(F ) because any possible equilibrium price must be

profit-maximizing as well as F -separating (see Lemma 1). We now explain that our

characterizations of B’s and S’s best responses imply that the set of such prices, P (F ) ∩
S(F ), is contained in XπF . To see this, note that if p ∈ P (F ) ∩ S(F ) then

GπF ,1(p−) = F (p−) = F (p) = F0(p), (7)
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Figure 3: An illustration of Lemma 4. The blue line corresponds to the prior, F0, the red

curve is the the signal, F , and the dashed curve is the πF iso-profit curve, GπF . While

the signal is such that both prices in XπF = {p
πF
, p̄πF } are profit maximizing, only p̄F

can be separating.

where the first equality holds because p ∈ P (F ) (see Lemma 3), and the last two equalities

follow from p ∈ S(F ) and the continuity of F (see Lemma 2). Therefore,

P (F ) ∩ S(F ) ⊆ {p : GπF ,1(p−) = F0(p)} = XπF . (8)

Lemma 4 below states that, if S’s profit is π in a free-learning equilibrium then his

equilibrium price is the largest element of Xπ. Before we state this result, note that

since F0 is regular, the function Π(·, F0) is strictly concave, so there are at most two such

prices for every π. Since Π(·, F0) is continuous, it attains any value between 0 and πF0 .17

Therefore, for each π ∈ [0, πF0 ], Xπ is non-empty and contains at most two prices. Let p̄π

be the higher of those prices, that is, p̄π = maxXπ. The following lemma says that p̄πF

is the unique price that can be both F -separating and profit maximizing.

Lemma 4 Let (H,F ) be a free-learning equilibrium. Then supp H = {p̄πF }.

Proof. See the Appendix.

For an explanation, recall that Xπ has at most two elements. If XπF is a singleton

then the statement of the lemma immediately follows from the observation that supp H ⊆
17This follows from the Intermediate Value Theorem and the fact that charging zero generates zero

profit.
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P (F )∩S(F ) and equation (8). Suppose now that XπF is binary, that is, XπF = {p
πF
, p̄πF }

and p
πF

< p̄πF . Figure 3 illustrates this case and depicts the prior, F0, the signal, F , and

the πF -iso-profit curve, GπF ,1. These three curves are drawn to intersect at p
πF

and p̄πF .

We now argue that∫ p̄πF

p
πF

F0 (s) ds <

∫ p̄πF

p
πF

GπF ,1 (s) ds ≤
∫ p̄πF

p
πF

F (s) ds.

The first inequality follows from the observation that the strict concavity of Π(·, F0)

implies that Π(·, F0) is strictly larger than πF on
(
p
πF
, p̄πF

)
, so F0 < GπF ,1 on this

interval. The second inequality follows from the fact that S’s maximal profit is πF if B’s

signal is F , so F ≥ GπF ,1. An immediate consequence of this inequality chain is that

IF (p
πF

)− IF (p̄πF ) =
∫ p̄πF
p
πF

F (s)− F0 (s) ds > 0. Since F ∈ A, IF (p̄πF ) ≥ 0 so it must be

that IF (p
πF

) > 0, meaning that p
πF

is not F -separating.

We now turn to the main result of this section, which characterizes the set of payoff-

profiles which can arise in equilibrium. Before stating this result, we introduce an addi-

tional piece of notation. Let π denote the smallest possible profit which can be generated

by some learning strategy, that is, π = infF∈A πF .

Theorem 2 A free-learning equilibrium (H,F ) exists such that πF = π and U0(H,F ) = u

if and only if π ∈ [π, πF0 ] and u =
∫ 1
pπ

(v − pπ) dF0 (v).

Proof. See the Appendix.

The “only if” part of this theorem implies that in a free-learning equilibrium S can

never attain a profit above his full-information profit. This is a straightforward con-

sequence of Lemma 4. Recall that this lemma states that if B’s signal is F then the

equilibrium price is the largest price which generates profit πF under perfect learning,

pπF . But if learning was perfect S can achieve πF0 by setting the optimal price instead

of pπF , showing that πF ≤ πF0 . The theorem also states that if B’s signal is F then her

equilibrium payoff the same as if she learns perfectly and S charges a price of p̄πF . This

follows from the facts that S sets price pπF in every equilibrium where his profit is πF

(see Lemma 4) and that perfect learning is always a best-response when information is

free.

The “if” part of the theorem’s proof is constructive. Specifically, we find an equilibrium

for each π ∈ [π, πF0) such that S’s profit is π. Figure 4 illustrates our construction, which

obtains an equilibrium by applying two modifications to the π-iso profit curve, Gπ,1. The
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Figure 4: A constructed free learning equilibrium, (1[p,1], F ).

first modification creates a CDF with separating and profit maximizing price p that gives

S a profit of π. To get this CDF, we replace the realizations in the lowest q quantiles of

Gπ,1 with realizations from same quantiles of F0. The resulting CDF is equal to F0 at

any x such that F0(x) ≤ q, to Gπ,1 when Gπ,1(x) ≥ q, and to q otherwise. This CDF,

however, fails to be a signal due to having too large of a mean. To make the CDF into

a signal, we reduce the mean using the second modification: truncating the distribution

at the top at some value t. The result is a signal corresponding to the red curve, Gqπ,t, in

Figure 4. Noting that the truncation point t is larger than p means that p still yields S a

profit of π, and remains separating and profit maximizing. Thus, having S offer p and B

use Gqπ,t gives a free learning equilibrium.

Using Theorem 2, we can deduce that free-learning equilibria are strongly Pareto

ranked – i.e, B prefers one free-learning equilibrium to another if and only if S does as

well.
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Corollary 1 All free-learning equilibria are strongly Pareto ranked. – i.e., for any two

free learning equilibria, (H,F ) and (H ′, F ′),

Π(H,F ) ≥ Π(H ′, F ′) if and only if U0(H,F ) ≥ U0(H ′, F ′).

Proof. We prove the corollary by showing that p̄π is strictly decreasing in π over the

interval [b, πF0 ]. To see why this is sufficient, recall that B’s free learning equilibrium

payoff is equal to
∫ 1
p̄π

(s − p̄π) dF0, where π is S’s profit. Hence, B’s utility decreases in

S’s price. If S’s price decreases with her profit, then we get that higher profits correspond

to lower prices and therefore higher B utility. We now show that p̄π decreases over the

range of feasible free learning equilibrium profits. Thus, take any π < π′ in [b, πF0 ]. We

prove that p̄π′ < p̄π by showing that Xπ contains a price strictly larger than p̄π′ . To find

such a price, we make two observations. First, since π < π′, we have that

F0(p̄π′) = Gπ′,1(p̄π′−) = 1− p̄π′

π′
< 1− p̄π′

π
= Gπ,1(p̄π′−).

Second, since F0 is regular, Gπ,1(1−) = 1 − 1
π < 1 = F0(1−). Combining the two

observations, we have that Gπ,1(p̄π′) − F0(p̄π′) > 0 > Gπ,1(1 − ε) − F0(1 − ε) for any

small positive ε. As the difference Gπ,1 − F0 is continuous on [0, 1), we can apply the

intermediate value theorem to find some p ∈ (p̄π′ , 1) for which Gπ,1(p) − F0(p) = 0.

Therefore, p ∈ Xπ, meaning that p̄π ≥ p. We have thus concluded that p̄π ≥ p > p̄π′ ,

meaning that the higher profit level corresponds to a lower price, thereby proving the

corollary.

We have thus shown that when learning is free, our model admits a continuum of

equilibria, all of which can be Pareto ranked. In the next section we discuss the shape

of equilibria when learning is costly and show that, as costs vanish, the equilibrium must

converge to a Pareto worst free-learning equilibrium.

4 Costly Learning

This section accomplishes two goals. First, we provide an equilibrium characterization in

our model of costly learning. In particular, B’s equilibrium signal is shown to belong to

the family of Pareto signals. Second, we prove the main result of this paper: as the cost

of learning vanishes, equilibria converge to the worst free-learning equilibrium.
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4.1 Equilibrium Characterization

The next result provides a partial characterization of the equilibrium when B’s learning

cost satisfy Assumption 1.

Proposition 1 Suppose Assumption 1 holds and that (H,F ) is an equilibrium. Then,

(i) supp H = supp F = co(supp F ), and

(ii) F is a Pareto signal.

Proof. See the Appendix.

Part (i) of this proposition states that the supports of B’s signal and the randomization

of S coincide. Furthermore, this support is an interval. From these two observations, it is

straightforward to conclude part (ii). The reason is that S must be indifferent on supp H,

so each price in supp H must generate the same profit. Therefore, part (i) implies that

B’s equilibrium signal, F , must coincide with an iso-profit curve over its support. Since

the iso-profit curve is a Pareto distribution truncated at one, F must be a Pareto signal.

Next, we explain how to establish part (i). The key step is to show that S charges

every price between any two possible signal realizations, that is,

co(supp F ) ⊆ supp H. (9)

If this inclusion does not hold then there exists an interval (x, y), x, y ∈ co(supp F ),

x < y, such that supp H ∩ (x, y) = {∅}. In fact, we show that if (x, y) is maximal among

such intervals then x, y ∈ supp F . So, in order to prove (9), it is enough to show that

supp H ∩ (x, y) 6= {∅} if x, y ∈ supp F . Suppose first that F places atoms at both x

and y. Then B can profitably deviate by bunching together all the signals x and y, that

is, instead of observing these signals, she only learns that the signal is in {x, y}. By

Assumption 1, this bunching strictly reduces B’s learning cost. Moreover, since S never

sets a price in (x, y), such a bunching leaves B’s trade surplus unchanged. To see this

note that, conditional on the original signal being x, the buyer trades if and only if the

price is weakly less than x, irrespective of whether the signals are bunched together or

not. The only difference in trading decisions is that if the original signal is y, B trades

if the price is y but rejects this price after the bunching. Since the buyer breaks even,

this does not change her payoff. We conclude that when F has atoms at both x and y,

it cannot be a best response against H if supp H ∩ (x, y) = {∅}. If either x or y have

zero mass according to F, one can construct a profitable deviation in a similar fashion by
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pooling together small neighborhoods of x and y. Finally, notice that

co(supp F ) ⊆ supp H ⊆ supp F ⊆ co(supp F ),

where the first inclusion is just (9), the second follows from the observation that S never

sets a price which is not a possible signal realization (see part (ii) of Lemma 3). This

chain of inclusion implies part (i) of the theorem.

4.2 Vanishing Learning Cost

We are now ready to state and prove the main result of the paper: as the cost of learning

vanishes, equilibria converge to a free-learning equilibrium that is worst for both players.

Theorem 3 For κ > 0, let (Hκ, Fκ) be any equilibrium of the κ-game. Then, a t̄ > v̄

exists such that

lim
κ→0

(Hκ, Fκ) = (1[p̄π ,1], Gπ,t̄).

Recall that π denotes the smallest possible profit in a free-learning equilibrium and

p̄π is the largest price which generates profit π if B learns perfectly. So, this theorem says

that in the limit as learning becomes free, B uses a Pareto signal which generates the

lowest profit across all signals. In turn, S charges the higher of the two prices yielding π

when B collects full information.

The proof of this theorem is based on connecting our analysis of costly learning with

our observations regarding free-learning equilibria. When costs are positive, B uses a

Pareto signal (see Proposition 1). As the set of Pareto signals is closed, she must also

be using a Pareto signal in the limit, say Gπ,t. In turn, when learning is free, S must set

a Gπ,t-separating price in the support of Gπ,t (see Lemma 1 and part (ii) of Lemma 3).

The key step in the proof is to show that a Pareto signal that has a non-empty set of

separating prices in its support is associated with the lowest profit– i.e., π = π. We state

this result in the next lemma and provide an explanation afterwards. Since the mean

generated by Gπ,t is strictly increasing in t and F0 is a mean-preserving spread of B’s

signal, there is a unique t̄ such that Gπ,t̄ is a Pareto signal. Finally, we note that if S’s

profit is π, he must charge p̄π by Lemma 4.

Lemma 5 For a Pareto signal, Gπ,t ∈ A, supp Gπ,t ∩ S(Gπ,t) 6= ∅ only if π = π.

Proof. See the Appendix.
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Figure 5: The area between two Pareto signals, Gπ,t and Gπ′,t′ , where π < π′ < t < t′.

We now explain that Pareto signals yielding a profit above π have no separating prices

in their support. To do so, we first observe that for each Pareto signal, Gπ,t ∈ A, with

π < π, there is another one, Gπ′,t′ ∈ A, which is a mean-preserving spread of Gπ,t such

that [π, t] ⊂ (π′, t′). We now argue that the information constraint of Gπ′,t′ is point-wise

slacker than that of Gπ,t, that is, IGπ,t > IGπ′,t′ on supp Gπ,t. In other words, we want to

prove that for all x ∈ supp Gπ,t

0 < IGπ,t (x)− IGπ′,t′ (x) =

∫ x

0

[
Gπ′,t′ (s)−Gπ,t (s)

]
ds. (10)

The right-hand side is just the area between the CDFs Gπ,t and Gπ′,t′ on [0, x]. Figure 5

illustrates these CDFs and the area between them. Note that this area is zero if x ∈ [0, π′],

strictly increases on x ∈ [π′, t] and strictly decreases on [t, t′]. Moreover, since Gπ′,t′ is a

mean-preserving spread of Gπ,t, the area is zero for all x ≥ t′. Therefore, the area must

be strictly positive for all x ∈ [π, t] = supp Gπ,t, so we obtain (10). Since IGπ′,t′ (x) ≥ 0

(because Gπ′,t′ ∈ A), we conclude that for all x ∈ supp Gπ,t, IGπ,t(x) > 0, implying that

Gπ,t has no separating prices in its support.

Armed with Lemma 5, we are now ready to prove Theorem 3.

Proof of Theorem 3. As a preliminary step, note that there is at most one Pareto

signal associated with any feasible profit level. Said differently, Gπ,t and Gπ,t′ are both

in A only if t = t′. This can be seen by noting that the mean of a truncated Pareto Gπ,t

is strictly increasing in the truncation point t, and that all signals must have the same

mean. It follows that there can be only one t̄ such that Gπ,t̄ ∈ A.
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Now, let {κn}n≥0 be a strictly positive sequence that converges to zero, and take

{(Hn, Fn)}n≥0 to be a corresponding sequence of equilibria. As F andA are both compact,

{(Hn, Fn)}n≥0 can be seen as a union of convergent subsequences. Without loss, let one

of these subsequences be the sequence itself, and let (H∞, F∞) ∈ F × A be its limit. To

prove the theorem, it is sufficient to show that (H∞, F∞) = (1[p̄π ,1], Gπ,t̄).

To this end, we begin by noting that, since B’s objective is a continuous function of

(κ,H, F ), B’s best response correspondence is upper hemicontinuous in (κ,H). Therefore,

F∞ ∈ arg maxF∈A U0(H∞, F ), meaning that supp H∞ ⊆ S(F∞) by Lemma 1.

We now show that supp H∞ ⊆ P (F∞). On the one hand, supp(·) is lower hemicon-

tinuous, and so p∞ ∈ supp H∞ only if a sequence pn ∈ supp Hn exists that attains p∞

as its limit. On the other hand, P (·) is upper hemicontinuous,18 and so the limit of any

convergent sequence pn ∈ supp Hn ⊆ P (Fn) is in P (F∞). Therefore, p∞ ∈ supp H∞,

only if p∞ ∈ P (F∞) – i.e., supp H∞ ⊆ P (F∞).

The above establishes that the limit (H∞, F∞) is a free learning equilibrium. As such,

F∞ must have a separating price in its support. Moreover, F∞ must be a Pareto signal,

since it is the limit of Pareto signals (Proposition 1). Hence, F∞ is a Pareto signal, Gπ∞,t∞

that has separating price in its support. However, Lemma 5 says Gπ∞,t∞ has a separating

price in its support only if π∞ = π – i.e., F∞ = Gπ,t̄. As max Π(·, Gπ,t̄) = π, we therefore

have that (H∞, F∞) = (H∞, Gπ,t̄) is a free learning equilibrium in which S’s profit is π.

That H∞ = 1[p̄π ,1] then follows from Lemma 4.

5 Discussion

To conclude, we discuss some of our assumptions and how they can be relaxed.

Production costs.— We assumed that S’s production cost is zero. We now discuss how

our results generalize to the case where S has to incur a positive production cost upon

trade. Thus, suppose that S’s payoff when trading is p− c, where c ∈ (0, 1). For c ∈ (0, v̄)

our analysis goes through with the c-shifted truncated Pareto signal

Ĝcπ,t(s) = 1[π+c,t)

(
1− π

s− c

)
+ 1[t,1] t ≥ π + c, π ≥ 0.

replacing the truncated Pareto, Gπ,t. Other than this replacement, all results hold as

stated.

18We provide a proof of this fact in Lemma 12 in Appendix G.

23



For c ≥ v̄, our analysis implies that trade breaks down: in the costless limit B collects

no information, and there is no trade. To see why, note that even when c > 0, Proposition

1’s part (i) continues to hold for any non-trivial costly learning equilibrium. In other

words, in any costly learning equilibrium in which B learns, the support of S’s price and

of B’s signal must equal the same interval. As such, if B learns, her signal must be a

c-shifted truncated Pareto one. But when c ≥ v̄, no informative signal can have a c-

shifted truncated Pareto distribution.19 Hence, B acquires no information when learning

is costly, and so the same must hold in the costless limit. However, if p < 1, B is strictly

better off with learning. Thus, the vanishing-cost limit is autarky with no learning.

Robustness and purification: random production costs.— Our main result appears to

rely on the observation that, if information is free, B learns whether her valuation is

above or below the equilibrium price but chooses to ignore large amounts of information.

If there were many possible equilibrium prices, B may need to learn more and compare

her valuation with any of these prices. So, one may wonder whether our results extend

to environments where the price is stochastic. Another concern is that, when learning is

costly, S randomizes in equilibrium and it is not obvious that S’s strategy can be purified

without affecting our main conclusion. To address these issues, we describe what happens

if S has a random production cost with full support in [0, 1] which is independent of B’s

valuation. S privately observes the cost realization, c, before setting a price. Then his

utility from trade at price p is p − c, where c is the production-cost realization. In this

case, free-learning equilibria are still strictly Pareto ranked and are indexed by the price

S charges when c = 0. This price is offered for all values of c for which S would set a lower

price under perfect learning and B’s signal distribution above this price agrees with the

CDF of her prior. For higher values of c, S sets the same price as he would under perfect

learning. It turns out that both players strictly prefer equilibria in which the price is

lower conditional on c = 0. As this price must be separating in equilibrium, its maximum

across all B signals is p̄π, whereas its minimum is attained when B learns perfectly. As

such, perfect learning is still a Pareto-best equilibrium. In the Pareto-worst equilibrium,

the CDF of B’s signal coincides with the truncated Pareto, Gπ,t̄, for all values below p̄π.

One can show that this is the only free-learning equilibrim in which B uses this CDF,

and that the same CDF is attained at the vanishing cost limit. Hence, even when the

19To see this, suppose that F = Ĝcπ,t for some signal F ∈ A. Then supp F = supp Ĝcπ,t ⊆ [c, 1] ⊆ [v̄, 1].

Therefore,
∫
s dF ≥ v̄, with equality only if supp F = {v̄}, that is, if F is uninformative.
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production costs is stochastic, our main result is valid and the costless limit still selects

the Pareto worst free-learning equilibrium.

Random prices as general mechanisms.— We argue that it is without the loss of

generality to assume that S sets a price instead of a more general mechanism. Consider

a more general model, where S and B simultaneously choose a mechanism and a signal,

respectively. Then B observes her signal’s realization and decides whether to participate

in S’s mechanism. A mechanism constitutes a set of messages for B and each message

is associated with a transfer and a probability of trade. Note that B’s interim expected

payoff from any of the messages is fully determined by her posterior value estimate. Hence,

by the Revelation Principle, it is without loss to restrict attention to individually rational

and incentive compatible mechanisms in which B truthfully reports her posterior value

estimate. Then standard arguments imply that any mechanism is equivalent to setting a

random price, see, for example, Börgers (2015) Proposition 2.5.

Non-regular prior.— Most of our results generalize to the case where B’s prior value

distribution is not regular. When learning is free, equilibrium requires S’s price to be

separating and the full-information outcome remains profit-maximizing regardless of the

prior. Similarly, the regularity of the prior plays no role in showing that B uses a Pareto

signal when learning is costly and the same holds in the costless limit. Since the costless

limit is a free-learning equilibrium, the limit Pareto signal still has a separating price in

its support, so this signal is still profit-minimizing. Therefore, even without regularity,

the costless limit still minimizes S’s profits across all signal structures and generates the

lowest profit across all free-learning equilibria.

However, a non-regular prior does impact the conclusion that the costless limit mini-

mizes B’s payoff for two reasons. First, a non-regular prior can result in Pareto incompa-

rable free-learning equilibria, and so the profit minimizing equilibrium may not minimize

B’s payoff. Second, when the prior is non-regular, the profit-minimizing Pareto signal may

have more than one separating price in its support, so there may be many free-learning

equilibria in which B uses the profit minimizing Pareto signal. In fact, one can show that,

under Assumption 1, each such equilibrium is a limit of some equilibrium sequence with

vanishing costs. As a consequence, without regularity, B may obtain different outcomes

in the vanishing-cost limit depending on the fine details of the prior and the converging

equilibrium sequence.
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Appendix

A Proof of Claim 1

We begin by proving the following useful lemma, which shows for every F , w, z ∈
int (co(supp F )), and α ∈ (0, 1), two distributions, F ′, F ′′ exist such that F � F ′ � F ′′

and

F ′ − F ′′ = γ
(
α1[w,1] + (1− α)1[z,1] − 1[αw+(1−α)z,1]

)
for some γ > 0.

Lemma 6 Fix some F ∈ F \ {1[x,1] : x ∈ [0, 1]}, let [x, x′] = co(supp F ), and take

w̄ =
∫
s dF . Take any w, y, z ∈ (x, x′), and α ∈ (0, 1) such that y = αw + (1− α)z. For

λ, β ∈ [0, 1) define xλ = w̄−λy
1−λ , and

Fλ,β := (1− λ)1[xλ,1] + λ(1− β)1[y,1] + λβ
[
α1[w,1] + (1− α)1[z,1]

]
.

Then there exists β, λ ∈ (0, 1) such that F � Fλ,β � Fλ,0.

Proof. Suppose without loss that z > w. Note that Fλ,0 � 1[w̄,1] for all λ > 0 since

λy + (1 − λ)xλ = w̄. We now show that Fλ,β � Fλ,0 for every β ≥ 0. For this purpose,

notice that

Fλ,β − Fλ,0 = λβ[α1[w,1] + (1− α)1[z,1]]− λβ1[y,1].

Therefore, for all s̄ ∈ [0, 1],∫ s̄

0
(Fλ,β − Fλ,0) ds = λβ

∫ s̄

0
(α1[w,1] + (1− α)1[z,1] − 1[y,1]) ds ≥ 0,

in view of
(
α1[w,1] + (1− α)1[z,1]

)
� 1[y,1]. Because s̄ was arbitrary, we have Fλ,β � Fλ,0.

Let us introduce some helpful definitions, which rely on xλ being continuous in λ

and x0 = w̄. Fixing some ε > 0 for which (w̄ − ε, w̄ + ε) ⊆ (x, x′), choose a λ̄ to be

such that {xλ}λ∈[0,λ̄] ⊆ (w̄ − ε, w̄ + ε) ⊆ (x, x′). Let x∗ = max
(
{z} ∪ {xλ}λ∈[0,λ̄]

)
and

x∗ = min
(
{w} ∪ {xλ}λ∈[0,λ̄]

)
, and define the function

ϕ : [x∗, x
∗]× [0, λ̄]2 → R

(s̄, λ, β) 7→
∫ s̄

0
(F − Fλ,β) ds.

28



Taking (·)+ := max{·, 0}, we can write

ϕ(s̄, λ, β) =

∫ s̄

0
F ds− (1− λ)(s̄− xλ)+ − λ(1− β)(s̄− y)+

− λβα(s̄− w)+ − λβ(1− α)(s̄− z)+,

and so ϕ is continuous in the product topology. Therefore,

ϕ∗ : [0, λ̄]2 → R

(λ, β) 7→ min
s∈[x∗,x∗]

ϕ(s, λ, β)

is also continuous by Berge’s Theorem.

We now show ϕ(s̄, 0, 0) > 0 for all s̄ ∈ [x∗, x
∗]. To do so, notice x0 = w̄, and

therefore F0,0 = 1[x0,1] = 1[w̄,1]. Because w̄ > x∗ > x (by choice of F ), we also have

F (s) > 0 = 1[w̄,1](s) for all s ∈ [x, w̄). As such, if s̄ ∈ [x∗, w̄] then
∫ s̄

0 (F − 1[w̄,1])(s) ds =∫ s̄
x F (s) ds > 0. Similarly, for all s ∈ [w̄, x′), F (s) < 1 = 1[w̄,1](s). As such, if s̄ ∈ [w̄, x∗],∫ 1
s̄ (1 − F (s)) ds > 0 =

∫ 1
s̄ (1 − 1[w̄,1](s)) ds, and so

∫ 1
s̄ (F − 1[w̄,1])(s) ds < 0. Since∫ 1

0 (F − 1[w̄,1])(s) ds = 0, we obtain
∫ s̄

0 (F − 1[w̄,1])(s) ds > 0 for all s̄ ∈ [w̄, x∗] as well

We are now in a position to complete the proof; that is, show F � Fλ,β for all

small λ, β > 0. By the previous paragraph, ϕ(s̄, 0, 0) > 0 for all s̄ ∈ [x∗, x
∗]. As such,

ϕ∗(0, 0) = mins∈[x∗,x∗] ϕ(s, 0, 0) > 0, and so by continuity of ϕ∗, one must then have

ϕ∗(λ, β) > 0 for all λ, β > 0 small enough. Fixing any such λ and β, we now show that∫ s̄
0 (F − Fλ,β) ds ≥ 0 for all s̄ by considering three cases. First, if s̄ ∈ [x∗, x

∗],∫ s̄

0
(F − Fλ,β) ds ≥ ϕ∗(λ, β) > 0.

Second, if s̄ ∈ [x, x∗), F (x) ≥ 0 = Fλ,β(x), and so
∫ s̄

0 (F −Fλ,β) ds =
∫ s̄

0 F ds ≥ 0. Third,

if s̄ ∈ (x∗, 1],∫ s̄

0
(F − Fλ,β) ds =

∫ x∗

0
(F − Fλ,β) ds+

∫ s̄

x∗
(F − 1) ds

≥
∫ x∗

0
(F − Fλ,β) ds+

∫ 1

x∗
(F − 1) ds =

∫ 1

0
(F − Fλ,β) ds = 0,

in view of supp Fλ,β ⊆ [x∗, x
∗] and Fλ,β � 1[w̄,1]. We have therefore shown that for all

sufficiently small λ and β,
∫ s̄

0 (F − Fλ,β) ds ≥ 0 for all s̄ ∈ [0, 1], with equality holding at

s̄ = 1 (because Fλ,β � 1[w̄,1]). Therefore, F � Fλ,β, thereby completing the proof.

We are now ready to prove Claim 1.
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Proof of Claim 1. Suppose first that cF is convex for all F . Fix some F ′ � F . Since

C is convex, we have that

C(F ′)− C(F ) ≥
∫
cF d(F ′ − F ) ≥ 0,

where the last inequality follows from cF being convex. Hence, C is monotone.

Suppose now that C is monotone. Fix any w, y, z ∈ co(supp F0) such that y =

αw+(1−α)z for some α ∈ (0, 1). Because cF is only unique Lebesgue almost everywhere

(see footnote 11), we may as well assume w, y, z ∈ int (co(supp F0)). Our task is to show

that cF (y) ≤ αcF (w) + (1− α)cF (z).

By Lemma 6, an F ′ and F ′′ exist such that F0 � F ′ � F ′′ and

F ′ − F ′′ =
(
α1[w,1] + (1− α)1[z,1] − 1[αw+(1−α)z,1]

)
,

for some γ > 0. Because � respects convex combinations,

F + ε(F ′ − F ) � F + ε(F ′′ − F )

must hold for all ε ∈ [0, 1]. Appealing to monotonicity, convexity and Fréchet differentia-

bility of C then yields that, for all ε ∈ (0, 1),

0 ≤ C(F+ε(F ′−F ))−C(F+ε(F ′′−F )) =
[
C(F + ε(F ′ − F ))− C(F )

]
−
[
C(F + ε(F ′′ − F ))− C(F )

]
.

Dividing by ε > 0, taking ε↘ 0 and substituting for F ′ and F ′′ then yields

0 ≤ 1

ε

[
C(F + ε(F ′ − F ))− C(F )

]
− 1

ε

[
C(F + ε(F ′′ − F ))− C(F )

]
→
∫
cF d(F ′ − F )−

∫
cF d(F ′′ − F ) = αcF (w) + (1− α)cF (z)− cF (y),

thereby concluding the proof.

B Proof of Theorem 1

We prove a slightly more general result, showing that the theorem holds for any cost

function C : A → [0,∞] that is convex, monotone (C(F ) ≥ C(F ′) whenever F � F ′),

lower semicontinuous, and satisfies cl
(
C−1[0,∞)

)
= A. Because of the last property

C(F ) <∞ for some F ∈ A. Therefore, C being monotone and F ′ � 1[v̄,1] for all F ′ ∈ A
imply C(1[v̄,1]) = minC(A) <∞. Thus, we may as well normalize C(1[v̄,1]) = 0.
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We begin by proving that an equilibrium exists. Let UMκ (H,F ) := max {Uκ(H,F ),M}
for some M < 0. Note that UMκ is upper semicontinuous and quasiconcave since it is a

composition of a continuous and increasing function on a concave and upper semicontin-

uous function. Consider the game in which the S’s action set equals F , B’s action set is

A, and the player’s payoffs are given by Π and UMκ . We prove that the modified game has

an equilibrium, after which we show that this equilibrium corresponds to an equilibrium

of the original game. We then conclude the proof by showing that the equilibrium must

be non-trivial whenever κ is low enough.

We prove that the modified game has an equilibrium using Corollary 3.3 of Reny

(1999). Both UMκ and Π are quasiconcave, lie in [M, 1], and are upper semicontinuous

over F × A, which is a compact subset of a topological vector space. Thus, this is a

compact, quasiconcave, and reciprocally upper-semicontinuous game. To show existence,

it is therefore sufficient to show the game is payoff secure.

Fix any (H,F ) and ε > 0. Since Uκ is continuous in H, F secures a payoff of

Uκ (H,F ) − ε from Uκ(H,F ) (otherwise one can find a sequence Hn → H such that

Uκ (Hn, F ) does not converge to Uκ (H,F )), and so B can secure max{Uκ (H,F )−ε,M} ≥
UMκ (H,F )− ε from UMκ (H,F ) using F . To show that S can secure Π (H,F ), take Hε to

be the distribution of max {p− ε, 0}, where p is drawn according to H. Note that for any

sequence {Fn}n≥0 that converges to F ,

lim inf
n→∞

Π (Hε, Fn) ≥ lim inf
n→∞

∫
(p− ε)[1− Fn((p− ε)−)]dH(p)

≥ lim inf
n→∞

∫
p[1− Fn((p− ε)−)]dH(p)− ε

≥
∫

lim inf
n→∞

p[1− Fn((p− ε)−)]dH(p)− ε

≥
∫
p[1− F ((p− ε)−)]dH(p)− ε

≥
∫
p[1− F (p)]dH(p)− ε = Π (H,F )− ε,

where the first inequality follows from max {p− ε, 0} ≥ p− ε, the second inequality from

{s > p− ε} ⊆ {s ≥ p− ε} and probabilities being less than 1, the third inequality from

Fatou’s lemma, and the fourth inequality from Portmonteau theorem. Thus, the modified

game is payoff secure and therefore has an equilibrium.

We now show that any equilibrium of the modified game must be an equilibrium of

the original game. To do so, let (H,F ) be an equilibrium of the modified game. Clearly

S is best responding, as his objective is the same in both games. To see that B best
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responds, notice first that C(1[v̄,1]) = 0 implies that UMκ (H,1[v̄,1]) = Uκ(H,1[v̄,1]) ≥ 0,

and so UMκ (H,F ) = Uκ(H,F ) due to F being optimal in the modified game. Combined

with UMκ ≥ Uκ, F being optimal in the modified game also implies that Uκ(H,F ) =

UMκ (H,F ) ≥ UMκ (H,F ′) ≥ Uκ(H,F ′) for all F ′ ∈ A. In other words, F maximizes

Uκ(H, ·) over A. Thus, (H,F ) is an equilibrium of the original game.

All that remains is to show that there is no trivial equilibrium for sufficiently low κ.

Note that in any trivial equilibrium, F = 1[v̄,1], meaning that H = 1[v̄,1] by S optimality.

As such, B’s utility is zero in any trivial equilibrium. To prove the result it is therefore

sufficient to show that there is a κ̄ > 0 and F such that κ < κ̄ implies Uκ(1[v̄,1], F ) > 0.

By non-degeneracy of F0, there exists ε > 0 such that
∫ 1
v̄ (v − v̄) dF0(v) > 2ε. Since

F0 ∈ cl (C−1[0,∞)), there exists a sequence {Fn}n≥0 such that Fn → F0 and C(Fn) <∞
for all n. Because Fn → F0, an n exists such that

∫ 1
v̄ (v − v̄) dFn(v) > ε. But then one

must have Uκ(1[v̄,1], Fn) > 0 for all κ < κ̄ = ε/C(Fn) > 0, as required.

C Proof of Lemma 4: Free-learning equilibrium prices

If (H,F ) is an equilibrium then F is best-response to H and hence, by Lemma 1, supp H ⊆
S (F ). Furthermore, since H is a best-response to F , each price in the support of H must

be profit-maximizing, that is, supp H ⊆ P (F ). Therefore, it is enough to prove that

P (F ) ∩ S(F ) = {p̄πF }. We have already shown that P (F ) ∩ S(F ) ⊆ XπF , see equation

(8). Thus, it remains to show that if p ∈ XπF but p < p̄πF then p /∈ S (p).

To this end, note that for all s ∈ (p, p̄πF ) it must be that

GπF ,1(s) > F0(s). (11)

The reason is that since F0 is regular, the profit function Π (·, F0) is strictly concave and

hence, any price between p and p̄πF generates a profit strictly above πF (= Π (p, F ) = Π (p, F0)).

This means that F0 is strictly below the πF -iso-profit curve at these prices, that is, (11)

holds. Now, observe that

IF (p) = IF (p̄πF )−
∫ p̄πF

p
(F0 − F ) ds ≥ IF (p̄πF )−

∫ p̄πF

p
(F0 −GπF ,1) ds > IF (p̄πF ) ≥ 0,

where the first inequality follows from part (i) of Lemma 3, the strict inequality follows

from (11), and the last inequality is implied by F ∈ A. Thus, we have shown that

IF (p) > 0 and hence, p /∈ S (p).
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D Proof of Theorem 2: Free-learning equilibrium payoffs

We begin by noting that, if (H,F ) is a free-learning equilibrium and F0 is regular, then

B’s expected utility is
∫ 1
p̄πF

(v − p̄πF ) dF0(v). This is a simple consequence of two facts.

First, Lemma 4 implies that H puts a unit mass on p̄πF ; that is, H = 1[p̄πF ,1]. Second,

full information is always optimal for B when learning is costless, meaning that her ex-

pected utility in equilibrium must be the same as her expected utility when collecting full

information – i.e., U0(1[p̄πF ,1], F ) = U0(1[p̄πF ,1], F0) =
∫ 1
p̄πF

(v − p̄πF ) dF0(v).

Given the above, it remains to be shown that there exists a free-learning equilibrium

(H,F ) such that π = πF if and only if π ∈ [π, πF0 ]. To do so, we first establish that

π ≤ Π(H,F ) ≤ πF0 whenever (H,F ) is a free learning equilibrium. Because π ≤ Π(H,F )

by definition of π, it remains to show that Π(H,F ) ≤ πF0 . To do so, notice that, since

supp H ⊆ S(F ), we have by Lemma 2 that F (p−) ≥ F0(p−) for every p ∈ supp H.

Since H maximizes S’s profit, S’s profit must be the same from all prices in supp H. We

therefore have that for any p ∈ supp H,

Π(H,F ) = Π(p, F ) = p(1− F (p−)) ≤ p(1− F0(p−)) = Π(p, F0) ≤ πF0 ,

as required.

We now show that for every π ∈ [π, πF0 ] a free-learning equilibrium, (H,F ), exists

such that Π(H,F ) = π. Note that the vanishing cost limit of Theorem 3 is a free learning

equilibrium which gives S a profit of π, while having B collect full information and S best

respond is an equilibrium yielding S a profit of πF0 . It thus remains to construct a free

learning equilibrium for any profit π ∈ (π, πF0). Fix such a π, and define for q ∈ [0, 1]

and t ∈ [π, 1] the following CDF,

Gqπ,t : [0, 1]→ [0, 1]

x 7→ max{Gπ,t(x),min{q, F0(x)}}.

Let [x, x̄] = co(supp F0). Below we prove the following lemma:

Lemma 7 There exists q∗ such that I
Gq
∗
π,1
≥ 0, with equality holding for some x̂ ∈ [π, x̄]

such that Gq
∗

π,1(x̂) = Gπ,1(x̂) ≥ q∗.

Before providing the lemma’s proof, let us show how to use the lemma to obtain an

equilibrium. Take q∗ and x̂ to be as in the lemma. We explain how to find a t ≥ x̂

such that Gq
∗

π,t is a signal. Let y = max{x ∈ [x, x̄] : I
Gq
∗
π,1

(x) = 0}. Since I
Gq
∗
π,1

(x̂) = 0
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and x̂ ∈ [π, x̄] ⊆ [x, x̄], y ≥ x̂. As such, x ∈ [y, 1] implies Gπ,1(x) ≥ q∗, and therefore

Gq
∗

π,1(x) = Gπ,1(x). Thus,

I
Gq
∗
π,y

(1) =

∫ x̄

y
(F0(s)− 1) ds ≤ 0 ≤ I

Gq
∗
π,1

(1).

As x 7→ I
Gq
∗
π,x

(1) is continuous, we have that a t ∈ [y, 1] exists such that I
Gq
∗
π,t

(1) = 0.

It remains to verify that Gq
∗

π,t is a signal. For x ≤ t, Gq
∗

π,t(x−) = Gq
∗

π,1(x−), and so

I
Gq
∗
π,t

(x) = I
Gq
∗
π,1

(x) ≥ 0. For x > t,

I
Gq
∗
π,t

(x) = I
Gq
∗
π,t

(t) +

∫ x

t
(F0 − 1) ≥ I

Gq
∗
π,t

(t) +

∫ 1

t
(F0 − 1) = I

Gq
∗
π,t

(1) = 0.

Thus Gq
∗

π,t is a signal. We now argue that (1[x̂,1], G
q∗

π,t) is a free learning equilibrium

yielding S a profit of π. To do so, notice first that Gq
∗

π,t(x−) ≥ Gπ,1(x−) for all x, with

equality holding for x = x̂ ≥ π. Therefore, x̂ ∈ P (Gq
∗

π,t), and

π
Gq
∗
π,t

= Π(x̂, Gq
∗

π,t) = Π(x̂, Gπ,t) = π.

Moreover, I
Gq
∗
π,t

(x̂) = I
Gq
∗
π,1

(x̂) = 0 by choice of x̂ and in view of t ≥ y ≥ x̂. Hence,

x̂ ∈ S(I
Gq
∗
π,t

(x̂)), and so Gq
∗

π,t is optimal for B given 1[x̂,1].

Hence, all that remains to prove Lemma 7, which we do below.

D.1 Proof of Lemma 7

We first show that mean preserving spreads increase the convex hull of a CDF’s support.

Lemma 8 Suppose F � G. Then co (supp F ) ⊇ co (supp G).

Proof. Let [x, y] = co (supp F ) and [w, z] = co (supp G), and suppose that w < x for a

contradiction (the proof for z > y is analogous). Take ε > 0 to be such that w + ε < x.

Because w must be in G’s support, G(w + ε) > 0. In contrast, F (w + ε) = 0 as w + ε

is below F ’s support. Since these observations are true for every ε ∈ (0, x− w), we have∫ x
0 F ds = 0 <

∫ x
0 G ds, contradicting that F � G.

Because the support of every signal is contained in [x, x̄] = co(supp F0) (by Lemma

8), and there is a truncated Pareto signal associated with π (which follows from Theorem

3), π > π ≥ x. We begin with the following lemma.

Lemma 9 IGπ,1(x) ≥ 0 for all x, with a strict inequality whenever x > x.
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Proof. note that π > π implies Gπ,1(s) ≤ Gπ,1(s) for all s, with a strict inequality for

s > π ≥ x. As such, for every x > x,

IGπ,1(x) =

∫ x

0
(F0 −Gπ,1) ds ≥

∫ x

0
(F0 −Gπ,1) ds ≥

∫ x

0
(F0 −Gπ) ds = IGπ(x) ≥ 0,

where the first inequality is strict whenever x ≥ π. Since IGπ,1(·) is continuous, we also

have that IGπ,1(x) ≥ 0.

Let

A = {x ∈ [π, x̄] : Gπ,1(x) ≥ F0(x−)}.

Note that A is closed in view of upper semicontinuity of Gπ,1(·) and lower semicon-

tinuity of x 7→ F0(x−). We now show that A is non-empty. In particular, we show that

A ⊆ P (F0), which is non-empty due to upper-semicontinuity of Π(·, F0). By Lemma 3

and π < πF0 , P (F0) ⊆ [πF0 , x̄] ⊆ [π, x̄]. Moreover, for any x ∈ P (F0), π < πF0 implies

F0(x−) = GπF0 ,1(x−) < Gπ,1(x−) ≤ Gπ,1(x).

That P (F0) ⊆ A follows.

In view of the above, x∗ := minA is well-defined. We now prove that a q∗ exists such

that the minimal value of I
Gq
∗
π,1

over A is zero.

Lemma 10 There exists q∗ ≤ F0(x∗−) such that min I
Gq
∗
π,1

(A) = 0.

Proof. The proof is based on the intermediate value theorem. Observe that min IG0
π,1

(A) =

min IGπ,1(A) ≥ 0. Moreover, as Gπ,1(s) < F0(s−) for all s < x∗, we have that:

I
G
F0(x

∗−)
π,1

(x∗) =

∫ x∗

0
(F0 −max{Gπ,1(s),min{F0(x∗−), F0(s)}}) ds

=

∫ x∗

0
(F0 −max{Gπ,1(s), F0(s)}) ds = 0.

Since x∗ ∈ A, min I
G
F0(x

∗−)
π,1

(A) ≤ I
G
F0(x

∗−)
π,1

(x∗) = 0. Thus, we have shown that

min I
G
F0(x

∗−)
π,1

(A) ≤ 0 = min IG0
π,1

(A). Now, observe that the mapping

(q, x) 7→ IGqπ,t(x) =

∫ x

0
(F0 −Gqπ,t) ds,

is continuous, being the difference of two continuous functions of (q, x). As such, q 7→
min IGqπ,1(A) is continuous in view of the maximum theorem. The lemma follows from

the intermediate value theorem.

The next lemma assures us that Gqπ,1 is not a signal only if it has too high of a mean.
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Lemma 11 For all x ∈ [0, 1]: I
Gq
∗
π,1

(x) ≥ 0.

Proof. Divide [0, 1] into three subintervals, [0, π), [π, x∗], and (x∗, 1], showing that the

desired inequality holds for each at a time. We first show that inf I
Gq
∗
π,1

([0, π)) ≥ 0. To

see this, recall that π ≥ x, meaning that x < π only if Gπ,1(x) = 0. As such, whenever

x < π,

Gq
∗

π,1(x) = max{0,min{q∗, F0(x)}} = min{q∗, F0(x)} ≤ F0(x).

Thus, I
Gq
∗
π,1

(x) ≥
∫ x

0 (F0−F0) ds = 0 for all x ∈ [0, π). We now show that min I
Gq
∗
π,1

([π, x∗]) ≥
0. For this, let x ∈ [π, x∗], and recall that Gπ,1(s−) < F0(s−) ≤ F0(s) must hold for all

s < x by choice of x∗. As a consequence,

I
Gq
∗
π,1

(x) =

∫ x

0
F0(s)−max{Gπ,1(s),min{q∗, F0(s)}} ds

≥
∫ x

0
F0(s)−max{Gπ,1(s), F0(s)} ds

=

∫ x

0
F0(s)− F0(s) ds = 0.

We thus have that min I
Gq
∗
π,1

([0, x∗]) ≥ 0. To complete the proof that min I
Gq
∗
π,1

([0, 1]) ≥ 0,

suppose for a contradiction that there exists x ∈ (x∗, 1] such that I
Gq
∗
π,1

(x) < 0. Take

x0 ∈ arg min
x∈[0,1]

I
Gq
∗
π,1

(x) = arg min
x∈(x∗,1]

I
Gq
∗
π,1

(x).

As I
Gq
∗
π,1

(x) is right differentiable we have that

0 ≤ ∂−IGq∗π,1 = F0(x0−)−Gπ,1(x0−),

in view of q∗ ≤ F0(x∗) ≤ Gπ,1(x∗). Therefore, F0(x0) ≥ F (x0) – i.e., x0 ∈ A, in contra-

diction to min I
Gq
∗
π,1

(A) = 0. Thus, I
Gq
∗
π,1

(x) ≥ 0 for all x.

To conclude the proof of Lemma 7, notice that x ∈ A only if Gπ,1(x) ≥ F0(x−) ≥
F0(x∗−) ≥ q∗. Taking x1 ∈ arg minx∈A IGq

∗
π,1

(x), we therefore have

Gq
∗

π,1(x1) = max{Gπ,1(x1),min{q∗, F0(x1)}} = max{Gπ,1(x1), q∗} = Gπ,1(x1),

Thus, x1 is in A ⊆ [π, x̄], has I
Gq
∗
π,1

(x) = 0, and satisfies Gq
∗

π,1(x) = Gπ,1(x) ≥ q∗; that is,

our proof is complete.
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E Proof of Proposition 1: Costly learning equilibria

We show supp H = supp F = co(supp F ), meaning that supp F is a convex set overwhich

S is indifferent; that is, F is a truncated Pareto. Because supp H ⊆ supp F ⊆ co(supp F )

by Lemma 3, our task is to show co(supp F ) ⊆ supp H.

Letting [w, z] := co(supp F ), we wish to show that [w, z] ⊆ supp H. Suppose otherwise

for a contradiction – i.e., [w, z] ∩ supp H 6= [w, z]. Note that supp H ∩ [w, z] is a closed

set, meaning that [w, z] \ supp H is open (in [w, z]), and so must contain a non-empty

open subinterval of [w, z]. Let (x, y) be a maximal such subinterval with respect to set

containment; that is, (x, y) is such that (x′, y′) ∩ supp H 6= Ø for all (x′, y′) ⊇ (x, y).20

Because supp H is closed, if x 6= w then x ∈ supp H: otherwise, (x − ε, x + ε) ⊆
[w, z] \ supp H for all small ε > 0, meaning that (x, y) ⊆ (x − ε, y) ⊆ [w, z] \ supp H,

a contradiction to maximality of (x, y). An analogous argument gives y 6= z only if

y ∈ supp H. Because supp H ⊆ supp F (Lemma 3) and {w, z} ⊆ supp F , we thus have

that x, y ∈ supp F .

We now construct a family of deviations indexed by ε > 0, F ∗ε , and obtain a contra-

diction by showing that these deviations must be strictly profitable for B when ε > 0 is

sufficiently small.

Fix a small ε > 0, and note that the following are all well-defined due to x, y ∈ supp F :

F1,ε = F (·|s ∈ [x− ε, x+ ε]),

F2,ε = F (·|s ∈ [y − ε, y + ε]),

β1,ε = F (x+ ε)− F ((x− ε)−) > 0,

β2,ε = F (y + ε)− F ((y − ε)−) > 0.

Moreover, take

β0,ε = 1− β1,ε − β2,ε,

F0,ε =

F (·|s /∈ [x− ε, y + ε]) if β0,ε > 0,

arbitrary F ′ ∈ A otherwise.

Clearly, F =
∑2

i=0 βi,εFi,ε. Moreover, since x, y ∈ supp F , both β1,ε and β2,ε are strictly

20One can find the subinterval (x, y) by fixing some (x′, y′) ⊂ [w, z] \ supp H, and taking the union of

all (x′′, y′′) ⊆ [w, z] \ supp H that contain (x′, y′).
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positive for all ε > 0. Define

sε =

∫
s d (αF1,ε + (1− α)F2,ε) ,

ηε = min{β1,ε, β2,ε} > 0,

F ∗ε = β0,εF0,ε + ηεδsε + (β1,ε − αηε)F1,ε + (β2,ε − (1− α)ηε)F2,ε.

In words, F ∗ε takes αηε mass from the ε-ball around x and (1−α)ηε mass from the ε-ball

around y and pools them to create an ηε > 0 mass on sε. Since αF1,ε + (1−α)F2,ε � δsε ,
F ∗ε is less informative than F which, in turn, is less informative that F0. By transitivity

of the information ordering, F0 is more informative than F ∗ε ; that is, F ∗ε ∈ A.

Let TH(s) =
∫ s

0 (s− p) dH(p) denote B’s expected trade surplus conditional on signal

realization s. Below we prove

lim
ε↘0

∫
TH
ηε

d(F − F ∗ε ) = 0, (12)

lim
ε↘0

(
C(F ∗ε )− C(F )

ηε

)
< 0, (13)

and so obtain the following contradiction to F maximizing Uκ(H,F ),

0 ≤ lim
ε↘0

Uκ(H,F )− Uκ(H,F ∗ε )

ηε
= lim

ε↘0

[∫
TH
ηε

d(F − F ∗ε ) + κ
C(F ∗ε )− C(F )

ηε

]
< 0, (14)

hence completing the proof.

We now explain why (12) and (13) both hold. Because (x, y) ∩ supp H = Ø, B’s

trading surplus from receiving a signal s ∈ [x, y] is given by

TH(s) =

∫ s

0
(s− p) dH(p) =

∫ x

0
(s− p) dH(p) = H(x)s−

∫ x

0
p dH(p). (15)

As such, TH , is affine over [x, y], and so (12) obtains as follows:∫
TH
ηε

d(F − F ∗ε ) = α

∫
TH dF1,ε + (1− α)

∫
TH dF2,ε − TH(sε)

→ αTH(x) + (1− α)TH(y)− TH(αx+ (1− α)y) = 0,

where convergence follows from continuity of TH(·), sε → αx+(1−α)y, F1,ε → 1[x,1], and

F2,ε → 1[y,1]. We now use the latter three convergences to obtain (13). To do so, notice

that these convergences imply that

‖F ∗ε − F‖
ηε

=
∥∥1[sε,1] − (αF1,ε + (1− α)F2,ε)

∥∥→ ∥∥1[αx+(1−α)y,1] −
(
α1[x,1] + (1− α)1[y,1]

)∥∥ =: M.
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As such, Fréchet differentiability of C, and strict convexity of cF over co(supp F ) ⊆ [x, y]

yield

1

ηε
[C(F ∗ε )− C(F )] =

1

ηε

[∫
cF d(F ∗ε − F ) + o (‖F ∗ε − F‖)

]
=

∫
cF d

[
1[sε,1] − (αF1,ε + (1− α)F2,ε)

]
+
‖F ∗ε − F‖

ηε

[
o (‖F ∗ε − F‖)
‖F ∗ε − F‖

]
→ cF (αx+ (1− α)y)− (αcF (x) + (1− α)cF (y)) +M0 < 0.

Thus, we have (12) and (13), which together yield the contradiction (14). In other words,

the proof is complete.

F Proof of Lemma 5: Separating prices and Pareto signals

SupposeGπ,t ∈ A. We begin by showing that suppGπ,t∩S(Gπ,t) is empty whenever π > π;

that is, In other words, we need to show that IGπ,t(x) > 0 for all x ∈ supp Gπ,t. We do

so by comparing the information constraint of Gπ,t to the constraint of a different Pareto

signal, Gπ′,t′ , where π′ ∈ [π, π) and t′ > t. Existence of a Pareto signal associated with

such a π′ follows from Roesler and Szentes (2017). That the truncation point associated

with π′ is strictly larger than t follows from Gπ′,t′ having the same mean as Gπ,t and the

mean of a truncated Pareto distribution Gπ′′,t′′ being strictly increasing (π′′, t′′).

Given that Gπ′,t′ exists, showing that

IGπ,t(x)− IGπ′,t′ (x) =

∫ x

0
(Gπ′,t′ −Gπ,t) ds > 0 for all x ∈ (π′, t′), (16)

is sufficient for proving that supp Gπ,t ∩ S(Gπ,t) is empty whenever π > π. To see that

(16) must hold for x ∈ (π′, t), note that

(Gπ′,t′ −Gπ,t)(s) =


0 if s ≤ π′

1− π′/s if s ∈ (π′, π]

(π − π′)/s if s ∈ (π, t).

As such, (Gπ′,t′ −Gπ,t)(s) ≥ 0 for all s ≤ π′, and, more importantly, (Gπ′,t′ −Gπ,t)(s) > 0

for all s ∈ (π′, t). It follows that (16) holds for all x ∈ (π′, t]. To see that (16) holds for
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x ∈ (t, t′), notice that for any such x,∫ x

0
(Gπ′,t′ −Gπ,t) ds =

∫ 1

0
(Gπ′,t′ −Gπ,t) ds−

∫ 1

x
(Gπ′,t′ −Gπ,t) ds

=

∫ 1

x
(Gπ,t −Gπ′,t′) ds

=

∫ t′

x
(Gπ,t −Gπ′,t′) ds

=

∫ t′

x

π′

s
ds > 0,

where the second equality follows from IGπ,t(1) = IGπ′,t′ (1) = 0, and the third equality

following from Gπ,t(s) = Gπ′,t′(s) = 1 for all s ≥ t′ > t.

G Upper hemicontinuity of S’s best response

In this section we prove the following lemma about S’s best response correspondence and

maximal value.

Lemma 12 S’s maximal profit, F 7→ πF , is continuous, and P (·) is upper hemicontinu-

ous.

Proof. Let {Fn}n≥0 be some sequence attaining F∞ as its limit. We show that limn→∞ πFn =

πF∞ . Since Π is upper-semicontinuous, F 7→ πF is also upper-semicontinuous.21 As such,

it is sufficient to show that lim infn→∞ πFn ≥ π∞. To do so, take any p ∈ P (F∞). Then

for all ε > 0,

πFn ≥ Π(p− ε, Fn) ≥ (p− ε)(1− Fn(p− ε)).

Thus,

lim inf
n

πFn ≥ lim inf
n

(p− ε)(1− Fn(p− ε)) ≥ (p− ε)(1− F∞(p− ε)) ≥ p(1− F∞(p−))− ε.

where the second inequality follows from the Portmanteau theorem. As ε above is arbi-

trary, the result follows.

To see that P (·) is upper hemicontinuous, take any convergent sequence pn ∈ P (Fn)

attaining p∞ as its limit. Since Π is upper semicontinuous and F 7→ πF is continuous,

πF∞ = limπFn = lim sup Π(pn, Fn) ≤ Π(p∞, F∞) ≤ πF∞ .

Thus, Π(p∞, F∞) = πF∞ ; that is, p∞ ∈ P (F∞).

21See Aliprantis and Border (2006), Lemma 17.30, for example.
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