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Survival of Hedge Funds: Frailty vs Contagion

Abstract

In this paper we examine the dependence between the liquidation risks of individual hedge funds.

This dependence can result either from common exogenous shocks (shared frailty), or from contagion

phenomena, which occur when an endogenous behaviour of a fund manager impacts the Net Asset

Values of other funds. We introduce dynamic models able to distinguish between frailty and contagion

phenomena, and test for the presence of such dependence effects, according to the age and manage-

ment style of the fund. We demonstrate the empirical relevance of our approach by measuring the

magnitudes of contagion and exogenous frailty in liquidation risk dependence in the TASS database.

The empirical analysis is completed by stress-tests on portfolios of hedge funds.

Keywords: Hedge Fund, Liquidation Correlation, Frailty, Contagion, Dynamic Count Model, Au-

toregressive Gamma Process, Systemic Risk, Stress-tests, Liquidation Swap.

JEL classification: G12, C23.
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1 Introduction

The rather short lifetimes 1 of a majority of hedge funds (HF) and the reasons of their liquidation

explain the interest of investors and academics in HF survival analysis. There exist different reasons

for liquidating a hedge fund:

i) When a HF features a poor performance, investors may decide to reallocate their wealth to other HF

or other assets;

ii) In a liquidity crisis, the fund manager can experience large cash withdrawals, while having difficulty

in obtaining credit and being obliged to diminish the use of leverage;

iii) Liquidation can also be the consequence of illegal operations, such as fraud, unauthorized trading

and misappropriation of investors funds, of conflicts of interest or inadequate resources. At the be-

ginning of the 2000’s, half of all failures might be attributed to such operational risks [Feffer, Kundro

(2003)]. On October 2, 2004, the SEC required the managers of the main hedge funds 2 to register

as investment advisors by February 1, 2006. In particular, they have to fill the Form ADV and re-

veal the operational risk problems encountered in the past. Among the registered individual funds

alive in 2006, about 16% encountered operational difficulties in the past [Brown et al. (2008)]. The

new regulation on information disclosure requirements is expected to diminish HF liquidations due to

operational risks;

iv) The incentive for the fund manager is insufficient. For instance, the manager does not reach fre-

1The global annual liquidation rate for hedge funds between 1994 and 2003 has been around 8%-9%, which corre-

sponds to a median lifetime of 6-7 years. However, the liquidation rate is considerably varying according to the year and

management style, with values between about 4% and 30% for that period [see e.g. Getmanski, Lo, Mei (2004), Chan, Get-

manski, Haas, Lo (2007), Table 6.14]. Moreover, the liquidation rate depends significantly on the definition of liquidation

and on the database. For instance, the median lifetime is larger than 10 years in Bares, Gibson, Gyger (2007).
2More precisely, the hedge funds whose manager is based in the United States, with more than 14 clients, assets of at

least 25 millions USD and a lockup period of less than two years.
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quently the high water mark performance objective; then, he/she prefers to liquidate this HF and create

a new one with more attractive management fees [see e.g. Brown, Goetzmann, Liang (2004), Darolles,

Gourieroux (2012) for the description of fees].

From the investor’s point of view, liquidation is a risk, which concerns both the timing of the

payoffs and the value of the fund at liquidation time. It is partially at the discretion of the fund

manager, who can slow down or accelerate liquidation by an appropriate management of gates, for

instance. The liquidation risk is similar to default risk, prepayment risk, or lapse risk encountered on

corporate bonds, credit derivatives, or life insurance contracts, respectively. Liquidation risk is often

neglected in standard portfolio management practices. It is a hidden risk, in contrast to the visible risk

directly measured by the volatility of returns, i.e. the market risk. A fund with a small visible market

risk can have a large hidden liquidation risk. Liquidation risk is especially important for the following

two types of investors:

i) Most of the money invested in HF in the yearly 2000’s comes from institutional investors, including

endowments, foundations, corporate and public plans, and insurance (if they have a minimal capital)

[Casey, Quirk, Acito (2004)]. They invest on a long term basis, are interested in the low correlation of

HF returns with traditional assets classes, like equity and bonds, and want to avoid the consequences

of a short term liquidity crisis.

ii) The funds of funds can be very sensitive to liquidation risk dependencies between individual funds.

An appropriate survival analysis can help to detect the funds of funds, which are too sensitive to such

systematic risk. In the paper we focus on the liquidation time and do not consider the loss on Net Asset

Value during the liquidation process.

The analysis of HF lifetimes is generally based on a duration model, which can be either paramet-

ric, semi-parametric, or nonparametric. Typically, in a first step analysis researchers study how the

liquidation intensity depends on the age of the HF, and/or on calendar time. This is done by appropri-
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ately averaging the observed liquidation rates [see e.g. the Kaplan-Meier non parametric estimation

of the hazard function in Baba, Goko (2006), Figure 1, for the description of age dependence, or the

log-normal hazard function used in Malkiel, Saha (2005)]. In a second step, a parametric specification

of the (discrete-time) liquidation intensity can be selected, such as a logit, or a probit model to analyze

the possible determinants of liquidation. The explanatory variables which are introduced can be time

independent HF characteristics such as the management style, the registration country (off-shore vs

domestic), the minimum investment, variables summarizing the governance structure, such as the ex-

istence of incentive management fees, and their design (high water mark, hurdle rate), the announced

cancellation policy (redemption frequency, lockup period), the experience and education level of the

manager [Boyson (2010)]. Regressors can also include time dependent HF individual characteristics,

such as lagged individual HF return, realized return volatility and skewness, asset under management

(AUM) and the recent fund inflows [see e.g. Baquero, Horst, Verbeek (2005), Malkiel, Saha (2005),

Chan, Getmansky, Haas, Lo (2007), Section 6.5.1, Boyson (2010)], as well as time dependent market

characteristics [Chan, Getmansky, Haas, Lo (2007), Section 6.6.1, Carlson, Steinman (2008)] and the

competitive pressure, measured by the total number of HF [Getmansky (2010)]. Finally, the paramet-

ric and nonparametric approaches can be combined in the proportional hazard model introduced by

Cox (1972), as in Brown, Goetzmann, Park (2001), Boyson (2003), Baba, Goko (2006), Gregoriou,

Lhabitant, Rouah (2010).

While the above survival models are useful to relate the liquidation intensity to individual char-

acteristics, these models are not always appropriate for liquidation risk prediction, for evaluation of

systematic risk, or for representing the observed liquidation clustering. For instance, for such pur-

poses it is not suitable to introduce time dependent explanatory variables in survival models. Indeed,

the future liquidation risk can only be analyzed after predicting the future values of the time dependent

explanatory variables. This is a difficult task as it requires a joint dynamic model for these variables
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and the liquidation indicators. Furthermore, since the duration models considered in the literature

assume the independence of individual liquidation risks given the selected observed explanatory vari-

ables, liquidation correlation has not yet been included in the HF survival models.

Two causes of liquidation risk dependencies arise.

i) There exist underlying stochastic factors, which have a common influence on the liquidation in-

tensities of the individual HF. In the credit risk literature, these factors are called systematic risks, or

frailties [Duffie et al. (2009)]. Such common exogenous shocks also exist in the joint analysis of HF

lifetimes. Let us consider the balance-sheet of a hedge fund and assume that the asset component of the

balance is invested in rather illiquid assets. Then, the liquidation can be caused by a quick decrease of

the liability component of the balance sheet. Such a decrease can result from the withdrawal of some

prime brokers (the effect is amplified by the use of her/his debt to create the needed leverage effect), or

from the outflow of investors. If the prime brokers, or the investors, simultaneously quit several funds,

we get a frailty phenomenon. This frailty effect is exogenous, even when there is a herding behaviour

of prime brokers, or investors, as along as their decision is not triggered by past liquidation events.

ii) A risk dependency can also arise when a shock to one fund has an impact on other funds. This is the

so-called contagion effect. In the case of credit risk, contagion is generally due to the debt structure,

when some banks or funds invest in other banks or funds. A well-known example is the default of

the Russian sovereign debt in August 1998, when Long Term Capital Management (LTCM) and many

other fixed-income HF suffered catastrophic losses over the course of a few weeks. Then, the failure

of one of these funds increases the probability of liquidation of other funds. As another example,

suppose several funds are simply feeder funds of Madoff. It is clear that the failure of Madoff implies

the joint failure of all its feeder funds. This is an endogenous contagion effect. In the case of HF, there

exist other reasons for a contagion, which are related with the structure of the asset component of the

balance sheet. Indeed, the HF portfolios are often invested in rather illiquid assets. A fund in difficulty
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can be obliged to sell a rather large volume of such assets, with a significant impact on asset prices due

to the lack of liquidity. Under marked-to-market pricing, this will impact the Net Asset Values (NAV)

of the other funds invested in these illiquid assets.

The analysis of underlying common risk factors and contagion is the first step before studying

the impact of HF on systemic risk for the global financial markets, and the possible cascade into

a global financial crisis. The aim of our paper is to introduce both frailty and contagion effects in

HF survival models, and to measure the magnitudes of these effects. The liquidation intensity of an

individual HF is assumed to depend on the lagged observations of liquidation counts in the same and

in the other management styles, as well as on a common unobservable dynamic factor. The former

explanatory variables represent contagion, the latter represents the shared frailty. The specification

allows to disentangle the two types of liquidation risk dependence by exploiting the time lag that

contagion necessitates to produce its effects.

The paper is organized as follows. We introduce in Section 2 the binomial and Poisson mod-

els with both common frailty and contagion. The Poisson model with contagion and autoregressive

gamma frailty is especially convenient, since it provides a joint affine dynamics for the frailty and

the liquidation counts. This facilitates the nonlinear prediction of future liquidation risk as well as

the estimation of parameters. Dynamic models with contagion and frailty are estimated on HF data in

Section 3. We assess the relative magnitude of contagion and shared frailty phenomena when we study

liquidation risks dependence across different management styles. We illustrate our methodology by

an application to stress tests of HF portfolios, that evaluates the stress effects on the term structure of

liquidation risk. Section 4 concludes. Technical proofs are gathered in appendices and supplementary

materials.
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2 Frailty vs Contagion in liquidation of hedge funds by genera-

tion and type

In this section we introduce a dynamic model for the joint distribution of liquidation count histories

of hedge funds of different types. The cross-sectional dependence between individual HF liquidation

risks, and the liquidation risk dynamics, are captured by introducing i) the autoregressive effect of

lagged counts, that is the contagion effect, and ii) a dynamic frailty to represent unobservable exoge-

nous common shocks.

2.1 The binomial model

Let us partition the set of HF according to a qualitative individual characteristic, called the type. The

type depends on the hedge fund, and is time independent. This individual characteristic can be the

management style, the registration country, the minimum investment, the type of governance, or the

crossing of such variables. The type can take K alternatives, k = 1, . . . , K. Moreover, let h denote

the age of the fund, where h = 1, . . . , H .

For each period t, we denote by nk,h,t the number of hedge funds with age h and type k at the

beginning of the period. Among these nk,h,t hedge funds, Yk,h,t will be liquidated during this period.

The parametric model specifies the joint distribution of the number of liquidations Yk,h,t, for k, h and

t varying. We first define the joint distribution of these liquidation counts given the common frailty

history. Then, the model is completed by specifying the frailty dynamics, which is needed to account

for the unobservability of the common stochastic factors.

Let us denote by Ft the factor value at date t, and by Yt = (Yk,h,t, k = 1, ..., K, h = 1, ..., H)′

the vector of liquidation counts in period t for all fund types and ages. Let Ft = (Ft, Ft−1, . . .) and

Yt = (Yt, Yt−1, . . .) denote the factor and liquidation counts histories, respectively, at date t. The factor
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Ft can be multidimensional with dimension m. We make the following assumption:

Assumption A.1: Conditional on Ft and Yt−1, the liquidation counts Yk,h,t, for k, h varying, are

independent with binomial distribution:

Yk,h,t ∼ B[nk,h,t, pk,h,t(θ)], (2.1)

where pk,h,t(θ) denotes the discrete-time liquidation stochastic intensity in period t for category (k, h),

and θ is an unknown parameter.

The liquidation intensity is time varying and stochastic, since it depends on the unobservable

stochastic frailty process (Ft) and on the lagged liquidation counts. In general we consider transfor-

mations of the liquidation rates by the inverse of a cumulative distribution function (c.d.f.) to ensure

pk,h,t(θ) to be between 0 and 1. We get a logit (resp. probit) model when the c.d.f. corresponds to

the logistic distribution (resp. standard Gaussian distribution). We consider below the c.d.f. of the

exponential distribution since this transformation provides the continuously compounded liquidation

intensity, 3 which is specified as:

− log [1− pk,h,t(θ)] = ak,h(θ) + bk,h(θ)
′Ft + ck,h(θ)

′Y ∗t−1, (2.2)

where vector Y ∗t−1 = (Y ∗1,1,t−1, . . . , Y
∗
1,H,t−1, . . . , Y

∗
K,1,t−1, . . . , Y

∗
K,H,t−1)

′ measures the lagged liquida-

tion rates at the source of possible contagions. The common factor and the parameters are assumed

such that the RHS of equation (2.2) is positive. The specification of the liquidation rate includes

marginal effects of the individual type and age by means of ak,h(θ), cross effects of type and age with

frailty through bk,h(θ)′Ft, and cross effects of type and age with lagged counts. The variable Y ∗k,h,t−1

can be chosen as the lagged liquidation count Yk,h,t−1, or lagged liquidation frequency Yk,h,t−1/nk,h,t−1,

according to the degree of integration of the HF market. Thus, an effect of the lagged class size can be

represented by the size adjusted variables Y ∗t−1. The current size variable nk,h,t could also be introduced

3that is, an affine specification of the stochastic intensity in continuous time modeling [see equation (2.9)].

9



in the liquidation intensity as the third type of explanatory variable to capture a competitive pressure

effect. Loosely speaking, if nk,h,t is small, the default of one HF can improve the monopolistic power

of the surviving HF’s in this category and thus diminish their future liquidation rates. The contagion

effects can be both within and between categories. The vector of sensitivity coefficients ck,h(θ) has

components ck,h,k′,h′(θ), for k′, h′ varying, which measure the magnitude of contagion from category

(k′, h′) to category (k, h). This contagion effect is not necessarily symmetric. For example, we can

have contagion from (k′, h′) to (k, h) without contagion from (k, h) to (k′, h′).

The frailty dynamics in specified in the following assumption.

Assumption A.2: The shared frailty process (Ft) is unobservable. It is an exogenous Markov process

with transition density:

g(ft|ft−1;ϕ), (2.3)

where ϕ is an unknown parameter.

Under Assumption A.2, the transition of factor process (Ft) depends on the lagged factor value

only, and it does not depend on the lagged liquidation counts Yt−1. Thus, the factor dynamic is ex-

ogenous and Ft summarizes the exogenous shocks affecting jointly the liquidation intensities of the

different categories (k, h) at the beginning of period t. For instance, an increase of liquidation rates in

the early 2000’s can be due to an inflow of mediocre funds, or from more limited investment oppor-

tunities. Other candidates as common factors can be found by considering the significant observable

time-dependent variables introduced in some survival models for hedge funds such as the conditions

on other financial markets: S&P 500 return, volatility of the S&P 500 return, interest rates, corporate

default rates [see e.g. Carlson, Steinman (2008)].

The notion of frailty has been initially introduced in duration models in Vaupel, Manton, Stallard

(1979) and later used to define the Archimedean copulas [Oakes (1989)]. In this meaning, the frailty
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is an unobservable individual variable introduced to account for omitted individual characteristics and

correct for the so-called mover-stayer phenomenon [see e.g. Baba, Goko (2006) for the introduction of

an individual static frailty in the HF literature]. In our framework, Ft is indexed by time and common

to all HF, which justifies the terminology ”dynamic frailty” introduced by Duffie et al. (2009) for

application to credit risk. The unobservable common frailty (also called systematic risk) has to be

integrated out, which creates a contemporaneous dependence between the individual HF liquidation

risks as well as long memory features. The coefficient bk,h(θ) in equation (2.2) gives the sensitivity

of the continuously compounded liquidation rate of category (k, h) with respect to this shared frailty.

In general, this coefficient depends on both fund type k and age h. For instance, we expect that the

newly created HF are more robust, and thus less sensitive to exogenous shocks during the first 2 years,

when they have survivorship available reserves. Then the liquidation rates will increase between 2

and 4 years to diminish later on when the HF becomes mature. However, it is not yet known how the

liquidation correlation depends on the age, and how these different age effects vary with the HF type.

The serial and cross-sectional correlation between liquidation counts can be due to either shared

frailty (systematic risk), or contagion. This explains why it is important to test for the existence of

such effects. In particular, specification (2.1)-(2.2) includes as special cases:

i) the model without frailty and contagion, if bk,h(θ) = 0 and ck,h(θ) = 0, ∀k, h.

ii) The model with frailty only, when ck,h(θ) = 0, ∀k, h.

iii) The model with contagion only, when bk,h(θ) = 0, ∀k, h. This submodel is a time discretized

version of the self- and mutually-exciting point processes introduced by Hawkes (1971) and Hawkes,

Oakes (1974). Models of this type are used in the analysis of corporate default by Giesecke (2004),

Azizpour, Giesecke (2008), and for studying contagion across financial markets by Ait-Sahalia, Cacho-

Diaz, Laeven (2010) and Dungey et al. (2011).

iv) The proportional hazard model with both frailty and contagion, if ak,h(θ) = dh(θ)a
0
k(θ), bk,h(θ) =
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dh(θ)b
0
k(θ) and ck,h(θ) = dh(θ)c

0
k(θ), say. Then, dh(θ) is the baseline liquidation intensity, defined up

to a multiplicative scale.

Frailty and contagion both create correlation between the lifetimes of individual HF. In the limiting

case of a static model, that is, with a serially independent frailty process (Ft) and simultaneous effects

of observed liquidation counts, the two phenomena cannot be identified. This is the reflection problem

highlighted in Manski (1993). In a dynamic framework, frailty and contagion can be disentangled,

since the effect of contagion is produced after a time lag.

Let us now derive the likelihood function of the binomial model in Assumptions A.1 and A.2.

Conditional on the factor history, the joint density of the liquidation counts of all management styles

and age categories is:

K∏
k=1

H∏
h=1

T∏
t=1


 nk,h,t

yk,h,t

 [pk,h,t(θ)]
yk,h,t [1− pk,h,t(θ)]nk,h,t−yk,h,t

 . (2.4)

Since the common dynamic frailty is unobservable, the likelihood function is deduced by integrating

out the factor history. Thus, the likelihood function is given by:

L(θ, ϕ) ∝
∫ K∏

k=1

H∏
h=1

T∏
t=1

[pk,h,t(θ)]
yk,h,t [1− pk,h,t(θ)]nk,h,t−yk,h,t

T∏
t=1

[g(ft|ft−1;ϕ)dft], (2.5)

where ∝ means equality up to a scale factor independent of parameters.

The likelihood function in (2.5) has a complicated expression, which involves a mT -dimensional

integral, whenever a shared dynamic frailty is introduced in the model. Despite the complicated like-

lihood function, the model is suitable for simulating factor and liquidation counts histories, and can

be estimated by the simulation based methods. Indeed, this model is a nonlinear state space model,

and the Gibbs sampling can be used to evaluate numerically the likelihood function [see e.g. Cappé,

Moulines, Rydén (2005), and Duffie et al. (2009) for an application in credit risk]. However, the

Gibbs sampling can be time consuming and difficult to implement numerically, especially when there

is a large number of parameters to estimate. For this reason, we consider next a Poisson approximation
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of the binomial model, and develop in Section 3 a new method of moments for its estimation.

2.2 The Poisson approximation

When the sizes of the categories are large, the binomial model in Assumption A.1 can be approximated

by the Poisson model with both contagion and frailty. The Poisson model is very convenient, as it

provides a joint affine dynamics for the frailty and the liquidation counts. This facilitates the filtering

of the unobservable factor, the nonlinear prediction of future liquidation risk as well as the estimation

of the parameters.

The HF categories are large and the liquidation rates are small, when monthly data are used. Then,

the binomial distribution can be well-approximated by the Poisson distribution [see e.g. Czado, Del-

warde, Denuit (2005) and Gagliardini, Gourieroux (2011) for such an approximation in life insurance

contracts and credit risk analysis, respectively]. To derive such an approximation let us assume that

the category sizes are such that:

nk,h,t ' γk,h,tn, (2.6)

where n tends to infinity and γk,h,t are fixed coefficients, that are, independent of n. Let us also assume

that the liquidation intensities are such that:

lim
n→∞

npk,h,t(θ) = λk,h,t(θ) ≥ 0, say. (2.7)

Then, the conditional distribution of the liquidation counts can be approximated by a Poisson distribu-

tion:

Yk,h,t ∼ P [γk,h,tλk,h,t(θ)]. (2.8)

When model (2.2) is chosen for the liquidation intensity, its expansion provides an affine form for the

limiting liquidation intensity:

λk,h,t(θ) = ak,h(θ) + bk,h(θ)
′Ft + ck,h(θ)

′Y ∗t−1, say. (2.9)
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The scale component γk,h,t in (2.6) is a size adjustment, which can be replaced for instance by:

γ̂k,h,t = nk,h,t/nk,h,t0 , (2.10)

where t0 is a given date. This adjustment is especially useful for the HF industry, which has experi-

enced a large development before the crisis of 2008 (see Section 3.1). Due to this size adjustment, the

distribution of the liquidation count Yk,h,t depends on the current sample size nk,h,t.

While equation (2.1) defines the model for a finite population, equation (2.8) defines its limit

for a large population size. Below we show that, by disregarding the effect of finite category size,

we simplify the dynamics and obtain an affine dynamic for the joint process of liquidation counts

and frailty [see e.g. Duffie, Filipovic, Schachermayer (2003) for continuous time affine processes,

and Darolles, Gourieroux, Jasiak (2006) for discrete time]. The Poisson approximation leads to the

conditional Laplace transform of the current liquidation counts vector Yt given Ft and Yt−1, which is:

ψt(u) = E
[
exp(−u′Yt)|Ft, Yt−1

]
=
∏
k,h

E[exp(−uk,hYk,h,t)|Ft, Yt−1]

=
∏
k,h

exp {−γk,h,tλk,h,t(θ)[1− exp(−uk,h)]}

= exp

{
−
∑
k,h

[1− exp(−uk,h)]γk,h,tak,h(θ)−
∑
k,h

[1− exp(−uk,h)]γk,h,tbk,h(θ)′Ft

−
∑
k,h

[1− exp(−uk,h)]γk,h,tck,h(θ)′Y ∗t−1

}
, (2.11)

where u is a vector with nonnegative components uk,h.

The conditional Laplace transform (2.11) is an exponential affine function of Ft and Y ∗t−1. By

selecting an affine dynamics for the latent factor process (Ft), that is, by assuming that:

E[exp(−u′Ft)|Ft−1, Yt−1] = exp[−α(u)′Ft−1 − β(u)], (2.12)

for some positive functions α and β, we deduce also an affine dynamic for the joint process (Y ′t , F
′
t)
′.

Specifically, the joint conditional Laplace transform of process (Yt, Ft) is deduced from (2.11)-(2.12)
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by iterated expectation, and we get:

ψt(u, v) = E[exp(−u′Yt − v′Ft)|Ft−1, Yt−1]

= E
{
E
[
exp(−u′Yt)|Ft, Yt−1

]
exp(−v′Ft)|Ft−1, Yt−1

}
= exp

{
−
∑
k,h

γk,h,tak,h(θ)[1− exp(−uk,h)]−
∑
k,h

[1− exp(−uk,h)]γk,h,tck,h(θ)′Y ∗t−1

−α

(∑
k,h

γk,h,tbk,h(θ)[1− exp(−uk,h)] + v

)′
Ft−1

−β

(∑
k,h

γk,h,tbk,h(θ)[1− exp(−uk,h)] + v

)}
. (2.13)

This joint conditional Laplace transform is exponential affine in lagged values Yt−1 and Ft−1, that is,

it is of the form:

ψt(u, v) = exp{−α1,t(u, v)
′Yt−1 − α2,t(u, v)

′Ft−1 − βt(u, v)}, say, (2.14)

where the sensitivity coefficients α1,t, α2,t and βt depend on the class size and are time dependent

in general. Thus, process (Y ′t , F
′
t)
′ is a time-heterogenous affine Markov process. The closed form

exponential affine expression of the conditional Laplace transform of process (Y ′t , F
′
t)
′ simplifies the

computation of the predictive distributions at any prediction horizon [see e.g. Darolles, Gourieroux,

Jasiak (2006)] and the filtering of the latent factor [see Bates (2006)]. The closed form expression of

the conditional Laplace transform also provides informative moment restrictions, which are the basis

of estimation with the Generalized Method of Moments (see Section 3.4).

2.3 A constrained stationary autoregressive Poisson model with gamma dy-

namic frailty

The dynamic Poisson model in equations (2.8) and (2.9) suffers from the curse of dimensionality, as

it involves K2H2 contagion parameters to estimate. To solve this problem, we introduce constrained
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parametric specifications for the liquidation intensity. The general specification of Section 2.2 can be

constrained by considering the following assumption:

Assumption A.3: The liquidation intensity is λk,h,t(θ) = ãk+b̃kFt+c̃
′
kYt−1, where Yt = (Y1,t, ..., YK,t)

′

and Yk,t =
H∑
h=1

Yk,h,t.

Under Assumption A.3, the parameters vector θ consists of the intercept ãk, the frailty sensitivity b̃k

and the vector of contagion coefficients c̃k, for all management styles k. The effect of the lagged

liquidation counts is passing through the liquidation counts aggregated over age classes. Moreover,

the liquidation intensity at a given date t is assumed independent of the fund age h, that is, it is equal

across all funds of the same type. Nevertheless, the liquidation intensity of a given HF is time-varying

as a result of the shared dynamic frailty and the liquidation counts history.

In some applications such as stress testing (see Section 3.6), it is appropriate to consider a given

portfolio structure with respect to fund type and age, which is held fixed through time in the analysis.

Assumption A.4: The size adjustments are constant and equal to 1: γk,h,t = 1, for any k, h, t.

Thus, the sizes of the categories are fixed through time, and are assumed homogenous across fund type

and age for expository purpose. Under Assumptions A.3-A.4 we can aggregate the liquidation counts

over the H age classes and consider the aggregate model:

Yk,t ∼ P(ak + bkFt + c′kYt−1), k = 1, ..., K, (2.15)

where ak = Hãk, bk = Hb̃k and ck = Hc̃k.

Assumption A.5: The frailty process (Ft) is scalar (m = 1) and follows an Autoregressive Gamma

(ARG) process.

The ARG process is the time discretized Cox, Ingersoll, Ross process [Cox, Ingersoll, Ross (1985)].

The transition of this Markov process corresponds to a noncentral gamma distribution γ(δ, ηFt−1, ν),
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where ν > 0 is a scale parameter, δ > 0 is the degree of freedom of the gamma transition distribution

and parameter η ≥ 0 is such that ρ = ην is the first-order autocorrelation. The conditional Laplace

transform is exponentially affine and given by equation (2.12) with:

α(u) =
ηνu

1 + νu
, β(u) = δ log(1 + νu), u ≥ 0, (2.16)

(see Appendix 1 for basic results on the ARG process). Since the factor is unobservable, it is al-

ways possible to assume E(Ft) = 1 for identification purpose. Then, the frailty dynamics can be

conveniently parameterized by ϕ = (δ, ρ)′.

The first and second-order unconditional moments of the liquidation counts process Yt are given in

Proposition 1 below, which is proved in Appendix 2. Let vectors a = (a1, ..., aK)′ and b = (b1, ..., bK)′

gather the intercepts and frailty sensitivities for the K management styles, and let C = [c1, ..., cK ]′ be

the (K,K) matrix whose rows correspond to the contagion coefficients for the K management styles.

Proposition 1: In the Poisson model with Assumptions A.3-A.5, the joint process (Y ′t , Ft)
′ is stationary

if, and only if, ρ < 1 and the eigenvalues of matrix C are strictly smaller than 1 in modulus. Then, we

have:

E(Yt) = (Id− C)−1(a+ b), Cov(Yt, Yt−1) = σ2ρbb′(Id− ρC ′)−1 + CV (Yt),

and the variance-covariance matrix V (Yt) is solution of the linear system:

V (Yt) = diag[E(Yt)] + CV (Yt)C
′ + σ2bb′

+σ2ρC(Id− ρC)−1bb′ + σ2ρbb′(Id− ρC ′)−1C ′, (2.17)

where σ2 = V (Ft) = 1/δ.

As expected, the stationarity condition of the joint process (Y ′t , Ft)
′ requires both the stability of the

contagion phenomenon, i.e. the eigenvalues of the contagion matrix C are smaller than 1 in modulus,

and the stationarity of the frailty process, i.e. the first-order autocorrelation coefficient ρ is smaller
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than 1. Equation (2.17) in Proposition 1 provides a decomposition of the historical variance-covariance

matrix of the liquidation counts. The first term diag[E(Yt)] in the right hand side of equation (2.17)

corresponds to the variance in a Poisson model with cross-sectional independence. The sum of the first

and second terms provides the expression of the variance in a model including contagion, but without

frailty. The third term σ2bb′ captures the direct effect of the exogeneous frailty. The remaining terms

in equation (2.17) accommodate its indirect effects through contagion.

3 Application

The dynamic Poisson model is applied to individual HF data from the Lipper TASS 4 database.

3.1 The Data

The TASS database consists of monthly returns, Asset Under Management (AUM) and other HF char-

acteristics for individual funds from February 1977 to June 2009. The relevant information for our

study concerns the HF status. The database categorizes HF into ”Live” and ”Graveyard” funds. The

”Live” funds are presented as still active. There are several reasons 5 for a fund to be included in

the Graveyard database. For instance, these funds i) no longer report their performance to TASS, ii)

are liquidated, iii) are merged or restructured, iv) are closed to new investors. A HF can be listed in

the Graveyard database only after being listed in the Live database. The TASS dataset includes 6097

funds in the ”Live” database and 6767 funds in ”Graveyard”. In our analysis, we consider only the HF,

4Tremont Advisory Shareholders Services. Further information about this database is provided on the website

http://www.lipperweb.com/products/LipperTASS.aspx.
5Graveyard status code: 1=fund liquidated; 2=fund no longer reporting to TASS; 3=TASS unable to contact the manager

for updated information; 4=fund closed to new investment; 5=fund has merged into another entity; 7=dormant fund;

9=unknown.
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which are considered as ”Live”, or ”Liquidated” (status code 1) 6. Moreover, in order to account for

the time needed to pass from ”Live” to ”Graveyard” in TASS, we have transfered to the ”Graveyard”

database all funds of the ”Live” database with missing data at least for April, May, June 2009. Among

the funds in the ”Live” database, 23 are considered as liquidated according to this criterion.

We apply a series of filters to the data. First, we have selected only funds with Net Asset Value

(NAV) written in USD. This currency filter avoids double counting, since the same fund can have

shares written in USD and EUR for example. After applying the currency code filter, we have 3343

funds in the ”Live” base, and 5033 liquidated funds. Second, we have selected only funds with monthly

reporting frequency. Nevertheless, we have also included the funds with quarterly reporting frequency,

when the intermediate monthly estimated returns were available. Third, to keep the interpretation in

terms of individual funds, we eliminate the funds of funds. Finally, in order to apply the Poisson

approximation within the management styles, we select the management styles with a sufficiently large

size. These are Long/Short Equity (LSE), Event Driven (ED), Managed Futures (MF), Equity Market

Neutral (EMN), Fixed Income Arbitrage (FI), Global Macro (GM), Emerging Markets (EM), Multi

Strategy (MS), and Convertible Arbitrage (CONV). After applying all these filters, we get 2382 funds

in the ”Live” database and 4024 liquidated funds. The distribution by style of alive and liquidated

funds in the database is reported in Table 1.

[Insert Table 1: The database]

The largest management style in the database of alive and liquidated funds is Long/Short Equity Hedge

(about 39%), followed by Managed Futures, Event Driven and Multi-Strategy (each about 10%).

The age of an individual HF is measured since the inception date reported in TASS. Thus, we do

not take into account the incubation period preliminary to inception, and the possible associated left

truncation bias.
6Chan, Getmansky, Haas, Lo (2005) have regarded as liquitaded all Graveyard funds in status code 1, 2 or 3.
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3.2 Summary statistics

In Figures 1 and 2 we provide the subpopulation sizes and the liquidation rates over time for different

management styles, without distinguishing the age of the HF.

[Insert Figure 1: Subpopulation sizes of HF]

[Insert Figure 2: Liquidation rates of HF]

We observe in Figure 1 the HF market growth between 2000 and 2007, and the sharp decrease due

to the 2008 financial crisis. However, the effect of the crisis is less pronounced for HF following a

Global Macro strategy. Figure 2 shows liquidation clustering both with respect to time and among

categories. One liquidation clustering due to the Long Term Capital Management (LTCM) debacle

is observed in Summer 1998 and is especially visible for the Emerging Markets and Global Macro

categories. Another liquidation clustering is observed in the 2008 crisis, but did not include the Global

Macro strategy.

Let us now focus on the age effect. We provide in Figure 3 the smoothed nonparametric estimates

of the liquidation intensity by management style. The estimates are obtained from the Kaplan-Meier

estimators of the survival functions.

[Insert Figure 3: Smoothed estimates of liquidation intensity]

These estimates feature similar patterns, with a maximum at age of about 4 years. Table 2 provides

the estimated liquidation intensities at the maximum, and at ages 0 and 100 months. We observe that

the intensity functions of different management styles are not proportional. This suggests that the

proportional hazard model should not be used for these data.

[Insert Table 2: Maximum and boundary values of the liquidation rates]
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There can also exist cross-effects of time and age in liquidation intensity, which are difficult to

observe when the fund lifetimes are separately analysed w.r.t. either time (see Figure 2), or age (see

Figure 3). These cross-effects can be detected by means of the Lexis diagram. Each liquidated fund

is reported on the diagram by a dot with the date of death on the x-axis and its age at death on the

y-axis. All the funds of the same cohort are represented by the 450 line passing through this dot. In

particular, the intersection of this line with the x-axis provides the birth date of the funds in this cohort

(see Figure 4).

[Insert Figure 4: Lexis diagram]

The Lexis diagrams for four management styles are provided in Figures 5-8. In these figures, each

star represents a liquidation event in the time-age plan, and we look for concentration of stars in a

band either parallel to the x-axis (age effect), or parallel to the y-axis (time effect), or parallel to the

450 line (cohort effect). For example, the Emerging Markets strategy represented in Figure 5 features

a concentration of liquidation events around the age of 20 months, regularly spaced liquidation events

for the cohort born in 1993, and another concentration during the crisis of 2008.

[Insert Figure 5: Lexis diagram for Emerging Markets]

The Lexis diagram for the Global Macro strategy (Figure 6) reveals two high time concentrations

around 1998 (the LTCM crash) and 2008-2009 (the recent financial crisis), whereas the time concen-

trations are around January 2003 and the 2008 crisis for the Multi Strategy funds (Figure 7).

[Insert Figure 6: Lexis diagram for Global Macro]

[Insert Figure 7: Lexis diagram for Multi Strategy]

The strategy Managed Futures in Figure 8 shows essentially an age effect.
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[Insert Figure 8: Lexis diagram for Managed Futures]

We now move to the estimation of the dynamic Poisson model. To avoid the curse of dimensional-

ity, we assume that the liquidation intensity is independent of age and that the lagged liquidation counts

can be aggregated over age as in Section 2.3. To accommodate the HF market growth seen in Figure

1, we adjust for category sizes. The size adjustments are defined as follows: we rely on Assumption

A.3 (Section 2.3) in which the aggregation scheme for the lagged counts is Y ∗t−1 = (Y ∗1,t−1, ..., Y
∗
K,t−1)

′,

with Y ∗k,t−1 = Yk,t−1/γk,t−1 and γk,t−1 =
H∑
h=1

γk,h,t−1. We select γk,h,t as the ratio between the popu-

lation size at month t, and the population size in February 2001, for type k and age h. We consider

first a model with pure contagion. Then we introduce also an unobserved frailty with autoregressive

gamma dynamics (Assumption A.5 in Section 2.3).

3.3 Model with contagion only

Let us first focus on a model with pure contagion. As in Section 2.3, the data can be aggregated over

the age to get:

Yk,t ∼ P
[
γk,t
(
ak + c′kY

∗
t−1

)]
, k = 1, ..., K. (3.1)

This is a multivariate Poisson regression model, with K = 9 lagged counts as explanatory variables

[Cameron, Trivedi (1998)]. The lagged counts capture the liquidation clustering effects and their dif-

fusion between management styles. The model involves 9 intercept parameters ak, k = 1, ..., 9, and a

matrix of 81 contagion parameters ck,k′ , with k, k′ = 1, ..., 9. As usual the parameters of the Poisson

regression model are estimated by the Maximum Likelihood (ML). As this model is a special case of

Generalized Linear Model (GLM), the likelihood equations are easily solved by applying iteratively

the weighted least squares in a Seemingly Unrelated Regression (SUR) model [McCullagh, Nelder

(1989)]. The estimated values of the intercepts are given in Table 3 with standard errors in parenthe-

ses. The estimated contagion matrix is provided in Table 4, where we display only the statistically
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significant contagion coefficients at the 5% level.

[Insert Table 3: Estimated intercepts ak in the pure contagion model]

[Insert Table 4: Estimated contagion parameters ck,k′ in the pure contagion model]

The structure of the contagion matrix provides interesting information on the contagion interac-

tions. We observe the special roles of the Fixed Income Arbitrage and Long/Short Equity Hedge

strategies, which both influence directly most of the other strategies. The contagion matrix is repre-

sented as a network in Figure 9, where an arrow from style k′ to style k corresponds to a statistically

significant estimate of parameter ck,k′ .

[Insert Figure 9: The contagion scheme for the pure contagion model]

All strategies are interconnected either directly, or indirectly through multistep contagion channels.

Such a contagion scheme corresponds to a complete structure in Allen, Gale (2000) therminology.

In Tables 3 and 4, the estimates of the intercepts ak and the rows c′k of the contagion matrix differ

significantly across management styles k. When a model with fund age and management style as

the sole explanatory variables is fitted to the data, as in Figure 3 and Table 2, the variable age partly

captures the effect of the time-varying lagged liquidation counts, that are the explanatory variables in

model (3.1), with different impacts across the management styles. Thus, the results in Tables 3 and 4

are compatible with the findings in Figure 3 and Table 2, and support the evidence that a proportional

hazard specification without time-varying explanatory variables is not appropriate for our dataset.

3.4 Model with frailty and contagion

Let us now extend the model to include an exogenous shared frailty with ARG dynamics. We get:

Yk,t ∼ P
[
γk,t
(
ak + bkFt + c′kY

∗
t−1

)]
, k = 1, ..., K. (3.2)
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The single factor assumption is convenient for tractability. It is also in line with empirical findings in

the literature. For instance, Carlson, Steinman (2008) regress the aggregate liquidation count for the

entire HF market on several time-dependent observable variables related to market conditions and on

the lagged aggregate liquidation count, and find one statistically significant variable. The model in

equation (3.2) involves 99 parameters ak, bk and ck,k′ in the liquidation intensities, plus 2 parameters

for the frailty dynamics, namely the degrees of freedom δ and the autocorrelation ρ. The large number

of parameters is due to introducing cross-effects between management style and frailty, and between

management style and lagged liquidation counts.

The likelihood function of this multivariate autoregressive Poisson regression model with shared

dynamic frailty involves a multi-dimensional integral and a large number of parameters. This makes

the numerical implementation of the likelihood maximization cumbersome. We propose below an

informative Generalized Method of Moments (GMM) approach for our estimation problem. The mo-

ment restrictions can involve either the stationary distribution of the frailty (static moment restrictions),

or the transition distribution of the frailty (dynamic moment restrictions).

i) Static moment restrictions

The moment restrictions are based on the special form of the conditional Laplace transform in

equation (2.11). For type k and by aggregating over the age h, we have:

E[exp (−ukYk,t) |Ft, Yt−1] = exp
{
−γk,t

(
ak + bkFt + c′kY

∗
t−1

)
(1− e−uk)

}
, (3.3)

for any argument uk ∈ [0,∞). These conditional moments are appropriate for analyzing risk param-

eters. Indeed, the left hand side of the above equation is simply the expected utility function for an

investor with a portfolio totally invested in the liquidation events of style k, and an absolute risk aver-

sion equal to uk. By considering the associated set of moment restrictions, we consider all types of

investment, for all values of risk aversion. Therefore, the associated moment method will calibrate the

unknown parameters on the whole set of expected utilities.
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The equations in (3.3) can be rewritten as:

E
[
exp

{
−ukYk,t + γk,t

(
ak + c′kY

∗
t−1

)
(1− e−uk)

}
|Ft, Yt−1

]
= exp

{
−γk,tbk(1− e−uk)Ft

}
, (3.4)

for uk ∈ [0,∞). Thus, we obtain nonlinear transforms of the observable liquidation count variables,

whose conditional expectation depends on the frailty only. As equation (3.4) holds for all real positive

arguments uk, we can consider a time-dependent argument uk. The time dependence is selected such

that the RHS of equation (3.4), and thus the LHS as well, is stationary. More precisely, let uk,t be

such that 1 − e−uk,t = v/γk,t, for given v ∈ Vk, i.e. uk,t = − log (1− v/γk,t). In order to obtain a

well-defined uk,t in [0,∞), the real interval Vk has to be a subset of [0, inf
t
γk,t). Then, equation (3.4)

becomes:

E
[
exp

{
log(1− v/γk,t)Yk,t + v

(
ak + c′kY

∗
t−1

)}
|Ft, Yt−1

]
= exp (−vbkFt) , ∀v ∈ Vk. (3.5)

These moment restrictions are conditional on factor path Ft and cannot be used directly for estimation

since the factor is unobservable. Therefore, we integrate out the latent factor by taking expectation on

both sides of the equation w.r.t. the gamma stationary distribution γ(δ, 0, 1/δ) of factor process Ft (see

Appendix 1). We get a continuum of unconditional moment restrictions:

E
[
exp

{
log(1− v/γk,t)Yk,t + v

(
ak + c′kY

∗
t−1

)}]
=

1

(1 + vbk/δ)
δ
, ∀v ∈ Vk. (3.6)

These static moment restrictions involve the intensity parameters ak, bk, ck for any type k, as well as

parameter δ characterizing the stationary distribution of the frailty, but do not allow to identify the

frailty persistence parameter ρ.

ii) Dynamic moment restrictions

In order to derive moment restrictions that allow for estimation of parameter ρ, let us consider

equation (3.5) and multiply both sides by exp(−ũl,t−1Yl,t−1), where ũl,t−1 = − log(1 − ṽ/γl,t−1), for

some type l and any ṽ ∈ Vl. We have:

E
[
exp

{
−uk,tYk,t − ũl,t−1Yl,t−1 + v

(
ak + c′kY

∗
t−1

)}
|Ft, Yt−1

]
= exp (−vbkFt − ũl,t−1Yl,t−1) ,
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for all v ∈ Vk, ṽ ∈ Vl, where uk,t = log(1 − v/γk,t). By taking the conditional expectation given Ft

and the liquidation counts history Yt−2 up to month t− 2 on both sides of the equation, we get:

E
[
exp

{
−uk,tYk,t − ũl,t−1Yl,t−1 + v

(
ak + c′kY

∗
t−1

)}
|Ft, Yt−2

]
= exp (−vbkFt)E

[
exp (−ũl,t−1Yl,t−1) |Ft, Yt−2

]
= exp

{
−vbkFt − (al + blFt−1 + c′lY

∗
t−2)ṽ

}
.

By rearranging terms, and computing the unconditional expectation of both sides, we get:

E
[
exp

{
−uk,tYk,t − ũl,t−1Yl,t−1 + v

(
ak + c′kY

∗
t−1

)
+ ṽ

(
al + c′lY

∗
t−2

)}]
= E [exp (−vbkFt − ṽblFt−1)] ,

for all v ∈ Vk, ṽ ∈ Vl. The expectation in the right-hand side involves the joint distribution of the

frailty values Ft and Ft−1 on two consecutive months, and hence depends on the frailty autocorrelation

parameter ρ. In fact, by the exponential affine property of the ARG process we have:

E [exp (−vbkFt − ṽblFt−1)]

= E [E[exp (−vbkFt) |Ft−1] exp (−ṽblFt−1)] = exp (−β(vbk))E [exp (−[α(vbk) + ṽbl]Ft−1)]

=
1

[1 + (1− ρ)vbk/δ]δ
1

[1 + [α(bvk) + ṽbl]/δ]
δ

=
1

[1 + (vbk + ṽbl)/δ + (1− ρ)vṽbkbl/δ2]δ
,

where we use β(u) = δ log(1 + (1 − ρ)u/δ) and α(u) =
ρu

1 + (1− ρ)u/δ
from equations (2.16) and

(a.3) in Appendix 1. Thus, we get the continuum of unconditional dynamic moment restrictions:

E
[
exp

{
log(1− v/γk,t)Yk,t + log(1− ṽ/γl,t−1)Yl,t−1 + v

(
ak + c′kY

∗
t−1

)
+ ṽ

(
al + c′lY

∗
t−2

)}]
=

1

[1 + (vbk + ṽbl)/δ + (1− ρ)vṽbkbl/δ2]δ
, ∀v ∈ Vk, ṽ ∈ Vl. (3.7)

These dynamic moment restrictions, written for all pairs of management styles (k, l), involve all model

parameters. For ṽ = 0, these moment restrictions reduce to the static moment restrictions (3.6).

iii) GMM estimators

The above moment restrictions can be used is different ways to define GMM estimators. We

consider below three possible GMM approaches.
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a) We can use the static moment restrictions (3.6) written for all types k to define a first-step GMM

estimator of parameters ak, bk, ck, for all management styles k, and parameter δ. Then, a second-

step GMM estimator of parameter ρ can be defined by using some subset of the dynamic moment

restrictions (3.7) and replacing parameters ak, bk, ck and δ with their first-step GMM estimates.

b) Alternatively, the dynamic moment restrictions (3.7) can be used to estimate jointly all model

parameters (θ′, ϕ′)′, where θ = (ak, bk, c
′
k, k = 1, ..., K, )′ and ϕ = (δ, ρ)′, in one step. More pre-

cisely, consider the dynamic moment restrictions (3.7) written for all management styles k, with

l = k, and for a given grid of values v, ṽ. 7 They define a set of unconditional moment restric-

tions E [hk,t(ak, bk, ck, ϕ)] = 0, for k = 1, ..., K, say. Then, the GMM estimator (θ̂′, ϕ̂′)′ minimizes

the criterion:

QT (θ, ϕ) =
K∑
k=1

‖ĥk,T (ak, bk, ck, ϕ)‖2, (3.8)

where ĥk,T (ak, bk, ck, ϕ) =
1

T

T∑
t=1

hk,t(ak, bk, ck, ϕ) is the sample average of the orthogonality func-

tion. By including only the moment restrictions with k = l, and using a weighting matrix that is

diagonal across management styles, we simplify considerably the optimization problem. 8 In fact, for

given value of the bivariate frailty parameter ϕ = (δ, ρ)′, the GMM criterion (3.8) is additive w.r.t.

the parameters of the styles. Therefore, the minimization can be performed by concentrating w.r.t.

parameter θ. Namely, for given ϕ, the criteria for the different styles k are separately minimized w.r.t.

parameters ak, bk, ck by a Newton-Raphson algorithm. Then, the concentrated criterion is minimized

by a bi-dimensional grid search over parameters (δ, ρ).

c) We can also consider the GMM estimators that exploit the full set of dynamic moment restric-

tions (3.7) written for all pairs of management styles (k, l). Such GMM estimators are expected to be

more efficient than the GMM estimator minimizing criterion (3.8). However, such GMM estimators

7It might also be possible to apply an efficient GMM taking into account the continuum of moment restrictions (3.7)

[see e.g. Carrasco et al (2007)].
8For expository purpose the weighting matrix is set equal to the identity matrix for each type.
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are computationally less convenient, because they involve an optimization over a large-dimensional

parameter space that can not be dealt with by concentration easily.

In this paper we apply method b), which provides a trade-off between tractability and efficiency.

iv) Estimation results

The estimated intercept parameters ak and factor sensitivities bk are displayed in Table 5, the es-

timated contagion parameters ck,k′ are displayed in Table 6 along with their standard errors. The

estimated parameters of the frailty dynamics are δ̂ = 0.59 (with standard error 0.34) and ρ̂ = 0.74

(with standard error 0.20). To simplify the numerical computation of the GMM estimator, we set

equal to zero the parameters in the contagion matrix whose estimates in the pure contagion model

are not statistically significant. The standard errors of the GMM estimates are computed using the

asymptotic distribution.

[Insert Table 5: Estimated intercepts ak and factor sensitivities bk in the model with contagion and

frailty]

[Insert Table 6: Estimated contagion parameters ck,k′ in the model with contagion and frailty]

The estimated factor sensitivities are all statistically significant. The sums ak + bk = ak + bkE[Ft]

are much larger than the coefficients ak estimated in the pure contagion model (see Table 3). Thus, a

large fraction of the common liquidation features is captured by the introduction of the frailty. This

effect is balanced by a diminution in the estimated contagion parameters. Only 11, resp. 13, estimated

contagion parameters in Table 6 are statistically significant at 5%, resp. 10%, level. These numbers

have to be compared with the 27 statistically significant contagion parameters at 5% in Table 4 obtained

when the frailty component is omitted. The contagion scheme for the model including both contagion

and frailty is displayed in Figure 10, where any estimated contagion coefficient in Table 6, that is

statistically significant at 5% level, is represented by an arrow.
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[Insert Figure 10: The contagion scheme for the model with contagion and frailty]

By comparing Figure 10 with Figure 9, as expected the introduction of the systematic risk factor Ft

largely diminishes the perception of contagion phenomena. In particular, we observe that the key roles

of Fixed Income Arbitrage and Long-Short Equity Hedge in Table 4 and Figure 9 were mostly due to

the effect of the common factor, and the fact that these management strategies are rather sensitive to the

factor, especially the second management style. Moreover, in Figure 10 we observe that contagion oc-

curs along some specific directions, such as Multi Strategy→ Equity Market Neutral→ Event Driven

→ Fixed Income Arbitrage → Emerging Markets, without any evidence of contagion in the reverse

direction. The Multi Strategy and Global Macro management styles are at the source of contagion,

whereas Emerging Markets and Convertible Arbitrage are at the other end of the contagion chain.

The relative effect of contagion and frailty on liquidation risk can be measured by using the vari-

ance decomposition derived in Proposition 1. Let us consider a portfolio of Liquidation Swaps (LS)

written on the individual hedge funds, which is diversified with respect to the types in order to ensure

γk,t = 1, for all k, t. The liquidation swap for management style k pays 1 USD for each fund of style k

that is liquidated in month t. The payoff of the LS portfolio at month t is e′Yt, where e = (1, 1, ..., 1)′

is a (K, 1) vector of ones. To ensure the time-invariant diversification, the portfolio of LS has to be

appropriately rebalanced when a liquidation occurs. By using the decomposition of variance in Propo-

sition 1, we can evaluate the percentage of portfolio variance e′V (Yt)e, due to the underlying Poisson

shocks, contagion and frailty, respectively. We have the following decomposition:

Underlying Poisson Contagion Frailty (direct) Frailty (indirect)

Percentage of variance 6.54 % 5.10 % 64.30 % 24.06 %

The largest contribution to the portfolio variance comes from the frailty process, either through a direct

effect (64.30%), or through an indirect effect via the contagion network (24.06%). The remaining part

of portfolio variance is explained by the underlying Poisson shocks (6.54%) and the pure contagion
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effects (5.10%).

3.5 Diagnostic checks for shared frailty

In this section we discuss diagnostic tools to test for the presence of the shared frailty effect. Our aim

is to provide empirical evidence that the Poisson model with contagion only is not able to reproduce

some relevant feature in the joint dynamics of the liquidation counts.

As it is common in tests of omitted heterogeneity, it is difficult to establish an optimal testing

procedure and, when it exists, it is complicated to implement it in practice. The difficulties are the

following:

i) The null hypothesis of no frailty effect can be written as:

H0 : {σ2 = 0} ∪ {bk = 0, ∀k}, (3.9)

where σ2 = V (Ft) is the frailty variance. Thus, we have no heterogeneity effect, if either the het-

erogeneity is constant through time, or the sensitivity coefficients bk are all equal to 0. 9 The null

hypothesis is the union of two subspaces of the parameter set. It is nonstandard, especially as the

dimensions, and thus the degrees of freedom, are not the same on {σ2 = 0}, on {bk = 0, ∀k}, and on

the intersection {σ2 = 0} ∩ {bk = 0, ∀k}.

ii) The null hypothesis {σ2 = 0} touches the boundary of the parameter set, since σ2 ≥ 0.

iii) Finally, under the null hypothesis we have Yk,t ∼ P(γk,tλ
0
k,t) conditionally on Yt−1, where

λ0
k,t = ak + bk + c′kY

∗
t−1. Thus, the identifiable parameters are ak + bk and ck, for k = 1, ..., K. In

9Das et al. (2007) and Lando, Nielsen (2010) test for default independence across U.S. corporations conditional on

a given set of observable common and firm-specific variables (doubly stochastic assumption). In Das et al. (2007) and

Lando, Nielsen (2010), the null hypothesis is a model with common factors and without contagion, while in our paper the

null hypothesis is a model with contagion and without common factors. Moreover, common factors are assume observable

in Das et al. (2007) and Lando, Nielsen (2010), while they are unbservable in our paper.
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particular, the sensitivities bk, k = 1, ...K, the variance σ2 and the frailty autocorrelation ρ are not

identifiable under the null hypothesis.

It is complicated to develop optimal tests when some parameters, here the bk, σ2 and ρ, are not

identifiable under the null [see e.g. Andrews, Ploberger (1994)]. However, it is easy to construct infor-

mative diagnostic tools. For this purpose, we consider the score w.r.t. parameter σ2, namely the partial

derivative of the log-likelihood function w.r.t. σ2, evaluated at the true parameter value satisfying the

null hypothesis H0 of no frailty effect. 10 This score is given in equation (a.10) in Appendix 3. It

involves the unknown parameters ak + bk, bk, ck and ρ. In the standard use of such a score, these

parameters would have to be replaced by their constrained ML estimators. In our framework, the con-

strained estimates of parameters bk and ρ are not uniquely defined, due to the lack of identification of

these parameters under the null. Nevertheless, the expression of the score in equation (a.10) suggests

some basic statistics, which can be used to construct diagnostic tools. These are:

ξkl,T =
1

T

T∑
t=1

γk,tγl,t

[
∂2 log p(Yk,t; γk,tλ

0
k,t)

∂λ2
1{k = l}+

∂ log p(Yk,t; γk,tλ
0
k,t)

∂λ

∂ log p(Yl,t; γl,tλ
0
l,t)

∂λ

]

=
1

T

T∑
t=1

γk,tγl,t

[(
Yk,t

γk,tλ0
k,t

− 1

)(
Yl,t
γl,tλ0

l,t

− 1

)
− Yk,t

(γk,tλ0
k,t)

2
1{k = l}

]
, (3.10)

and:

rkl,T (s) =
1

T

T∑
t=s+1

γk,tγl,t−s
∂ log p(Yk,t; γk,tλ

0
k,t)

∂λ

∂ log p(Yl,t−s; γl,t−sλ
0
l,t−s)

∂λ

=
1

T

T∑
t=s+1

γk,tγl,t−s

(
Yk,t

γk,tλ0
k,t

− 1

)(
Yl,t−s

γl,t−sλ0
l,t−s
− 1

)
, (3.11)

for k, l = 1, ..., K and s = 1, 2, ..., where p(·;λ) is the p.d.f. of the Poisson distribution with intensity

parameter λ. The statistic ξkl,T corresponds to the standard information-matrix test [White (1982)]

for the pair (k, l), which is a score test for omitted heterogeneity [Chesher (1984)]. For a Poisson

regression model, statistic ξkl,T with k = l corresponds to a test for conditional overdispersion, that

10From the expression of the null hypothesis, we might also consider the score w.r.t. bk under the null. However, it is

equal to the score w.r.t. ak, due to the identification problem, and is not informative.
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is, a test for the null hypothesis that the mean and the variance of the conditional distribution of

liquidation counts in management style k are equal. Indeed, statistic ξkk,T involves the difference

between the weighted mean and variance of the liquidation counts for management style k. It is

well known that the Poisson distribution features no overdispersion, that is, the mean is equal to the

variance. In the statistical literature, overdispersion in count data is typically modeled my means of

unobservable heterogeneities [see e.g. Cox (1983)]. In the dynamic model estimated in Section 3.4,

overdispersion in the conditional distribution of liquidation counts is generated by the shared dynamic

frailty. For k 6= l, statistic ξkl,T corresponds to a weighted covariance between the residuals of the

Poisson regressions Yk,t/(γk,tλ0
k,t)− 1 and Yl,t/(γl,tλ0

l,t)− 1 for styles k and l, and can be used to test

for the absence of conditional contemporaneous correlation across styles. The values of statistics ξkl,T

are symmetric with respect to the indices k and l, that is, ξkl,T = ξlk,T . The statistics rkl,T (s) are used

to detect possible serial auto- and cross-correlation between the residuals of the Poisson regression

model. Indeed, if the model without shared dynamic frailty is correctly specified, the Poisson residuals

feature no serial auto- and cross-correlation.

These basic statistics can be used as diagnostic tools. We construct the standardized statistics:

ξ∗kl,T = ξkl,T/
√
ω̂kl,T , k, l = 1, ..., K, (3.12)

where ω̂kl,T is an estimate of the asymptotic variance of ξkl,T . Statistic ξ∗kl,T is asymptotically standard

Gaussian distributed under the null hypothesisH0 of no frailty effect. The values of ξ∗kl,T are displayed

as a (K,K) array in Table 7.

[Insert Table 7: Statistics ξ∗kl,T for diagnostic check of conditional overdispersion and conditional

contemporaneous cross-correlation ]

When the shared frailty is not introduced in the model, five HF management styles feature conditional

overdispersion in liquidation counts. Moreover, we find evidence of conditional contemporaneous
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cross-correlation in Poisson residuals, in particular between Long/Short Equity Hedge and all other

management styles except Convertible Arbitrage.

For each pair (k, l), we also compute the estimated (cross-)ACF of the Poisson residuals:

r∗kl,T (s) = rkl,T (s)/
√
rkk,T (0)rll,T (0), s = 1, 2, ..., (3.13)

with their confidence bands to detect if there is some omitted dynamic in the pure contagion model.

The (cross-)ACF for management styles Fixed Income Arbitrage, Global Macro and Long/Short Eq-

uity Hedge are displayed in Figure 11.

[Insert Figure 11: (Cross-)ACF r∗kl,T (s) for diagnostic check]

We find evidence of autocorrelation in the Poisson residuals of the Long/Short Equity Hedge style,

as well as cross-correlation between the residuals of the three management styles, especially between

residuals of Long/Short Equity Hedge and leads and lags of residuals of Fixed Income Arbitrage.

Overall, the results in Table 7 and Figure 11 show that the Poisson model with contagion only

does not fully capture the serial and cross-sectional dependencies featured by the joint dynamics of

the liquidation counts. These findings suggest that it is necessary to introduce a dynamic frailty in the

autoregressive Poisson model to achive a sastifactory specification.

3.6 Stress-tests

The estimated model with dynamic frailty and contagion can be used for portfolio management of a

fund of funds, for computation of reserves, etc. In this section we illustrate how to implement stress-

tests for liquidation risk. We consider a portfolio of HF with fixed category sizes such that γk,t = 1,

for all k and t. The stress can be designed as follows:

i) We can stress the current factor value by setting Ft = qα in the conditioning set, where qα is the

quantile of the estimated stationary distribution of the frailty Ft at level α. By choosing α = 95%, or

33



99%, we consider an extreme scenario with a large shock on the underlying liquidation risk factor.

ii) We can change some parameters values, by either “increasing” the matrix of contagion, or

by increasing the value of the frailty persistence parameter ρ. This stress scenario will increase the

liquidation risks by amplifying the impact of the exogenous shock by contagion and by introducing

some exogenous shocks clustering, respectively.

For any given stress scenario Ft = qαs and (θs, ϕs), where αs and (θs, ϕs) denote the frailty

quantile level and the model parameters values in the stress scenario, we compute the term structure

of expected liquidation counts, volatility and overdispersion of these counts, for the different types:

τ →

 E
(θs,ϕs)

(Yk,t+τ |Ft = qαs , Yt), V
(θs,ϕs)

(Yk,t+τ |Ft = qαs , Yt)
1/2,

V
(θs,ϕs)

(Yk,t+τ |Ft = qαs , Yt)

E
(θs,ϕs)

(Yk,t+τ |Ft = qαs , Yt)

 ,

where τ = 1, 2, ... is the horizon, and E
(θs,ϕs)

and V
(θs,ϕs)

denote conditional mean and variance computed

for parameter values (θs, ϕs). These conditional moments are derived in closed form by using the

exponential affine property of the joint process of frailty and liquidation counts (see Sections 2.2 and

2.3, and the supplementary materials). By conditioning on an extreme event, these statistics are in line

with the measures for systemic risk as the CoVaR [Adrian, Brunnermeier (2011), Clemens, Sun and

Zheng (2012)], or the marginal expected shortfall [Acharya et al. (2010)]. The main difference is in

the definition of the conditioning set including the unobservable factor and the observable liquidation

counts, instead of including the return of a market portfolio. Clemens, Sun and Zheng (2012) use

CoVaR to measure contagion in returns of funds of funds.

Our stress test analysis is dynamic, as it fully accounts for both liquidation counts and exogenous

frailty dynamics. Therefore, it sharply differs from the stress test analysis in models with time-varying

observable variables, in which a cristallized scenario for the future factor path is assumed. Such a

stress test would neglect the liquidation risk dependence induced by the exogenous factors.

We consider three sets of stress scenarios:

S.1: The current factor value Ft is increased from the median, i.e. αs = 0.50, to the 95% quantile, i.e.
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αs = 0.95, of the historical distribution. Parameter values (θs, ϕs) correspond to the estimates

of Section 3.4.

S.2: The contagion matrix is changed from Cs = Ĉ to Cs = 2Ĉ, where Ĉ is the estimate of Section

3.4. The other parameter values are kept constant, equal to the estimates of Section 3.4. The

current factor value Ft is the median of the historical distribution.

S.3: The frailty autocorrelation is increased from ρs = 0.74 (corresponding to the estimate in Section

3.4) to ρs = 0.90. The other parameter values are kept constant, equal to the estimates of Section

3.4. The current factor value Ft is the median of the historical distribution.

For all stress scenarios, the vector of liquidation counts Yt in the conditioning set is equal to the

observations on the liquidation counts in the last month of the sample, i.e. June 2009. In Figures 12,

13 and 14 we display for the nine management styles the impact of stress scenarios S.1, S.2 and S.3,

respectively, on the term structures of the conditional expectations of liquidation counts. 11

[Insert Figure 12: Term structure of expected liquidation counts when stressing the current factor value]

[Insert Figure 13: Term structure of expected liquidation counts when stressing the contagion matrix]

[Insert Figure 14: Term structure of expected liquidation counts when stressing the frailty persistence]

In each figure, the squares represent the term structures of expected liquidation counts before stress,

that are the same in each scenario. As the horizon increases, the term structure converges to the un-

conditional expectation of the liquidation count, for each management style. The term structures are

upward sloping since the current month, i.e. June 2009, corresponds to a period with few liquidation

events compared to the historical average in any style. The circles represent the term structures of ex-

11Figures with the term structures of conditional volatility and overdispersion of liquidation counts are provided in the

supplementary material.
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pected liquidation counts after the shock. We observe that the three types of shocks have very different

effects on the term structures. The shock to the factor value in stress scenario S.1 is a transitory shock,

with different impacts in the short run with respect to the management style (see Figure 12). Its effect

decays rather quickly and disappears after about 12 months. The magnitude of the impact on the term

structure depends on the conditioning information. There can be months when the sensitivity to shocks

are larger, depending on the lagged liquidation counts at the month of the stress. In stress scenario S.2,

the change in the contagion matrix is a permanent shock. In Figure 13, there is no important effect in

the short run, but the long run behaviors of the models with and without the shock in the contagion

matrix significantly differ for all styles, except for Global Macro. Indeed, the elements in the row of

the estimated contagion matrix (Table 6) for that management style are zero. We conclude that there is

no contagion effect impacting the Global Macro style. Therefore, the stress in scenario S.2 is irrelevant

for the distribution of liquidation counts in that management style. Finally, when the frailty persistence

parameter is shocked in stress scenario S.3, we observe an increase in the time at which the long run

expected values of the liquidation counts are attained (Figure 14).

4 Concluding remarks

In this paper we develop a new methodology to analyse the dynamics of liquidation risk dependence in

the hedge fund industry. The autoregressive Poisson model with dynamic frailty is especially appeal-

ing, since it allows for distinguishing the effect of exogenous shocks and the endogenous contagion

effects. We estimate this model by an appropriate method of moments, identify the channels through

which the exogenous factor has an impact, and introduce different diagnostic tools. We also explain

how the model can be used for stress testing.

In addition to contagion and exogenous frailties shared by the entire population of HF, liquidation

clustering can also be the consequence of type-specific effects. For instance, liquidation risk depen-
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dence can be due to sharing the same management company [Gregoriou, Pascalau (2012)] or part of

the clients [Ben-David, Franzoni, Moussawi (2010)], or to being located in the same geographic area.

In the latter case, the dependence can result from common clients, if there is a home bias effect of the

investors [Sialm, Sun and Zheng (2012)]. Such liquidation risk dependence can be accommodated by

refining the definition of type k, and including type-specific exogenous frailties Fk,t.

It is known that systemic risk can be due to a significant shock on a common factor amplified by

contagion. Models with both frailty and contagion are required to understand what is the main channel

of systemic risk, namely the exogenous shock and/or contagion, and to develop accurate strategies to

avoid systemic crises. Concerning hedge funds, such an analysis would have to be performed jointly

for market risk, that is on returns, and liquidation risk, that is on lifetimes. In this respect, our work

completes the systemic risk analysis based on returns developed in a series of recent papers including

Sadka (2010), Boyson, Stahel, Stulz (2010), Akay, Seniuz, Yoldas (2011), Brown et al. (2011), Billio

et al. (2012), Bali, Brown, Caglayan (2012), and the analysis of comovements between inflows and

outflows [Clemens, Sun and Zheng (2012)]. Moreover, liquidation can bias the performance analy-

sis of hedge funds, as it is often a consequence of unexpected bad results. There exist an extensive

literature on correcting the survivorship bias in individual mutual fund or HF performance [see e.g.

Brown, Goetzmann, Ibbotson, Ross (1992), Carpenter, Lynch (1999) for mutual funds, and Fung,

Hsieh (1997), (2000), Ackermann, McEnally, Ravenscraft (1999), Liang (2000), Baquero, Horst, Ver-

beek (2005) for hedge funds]. Liquidation risk dependence implies that the correction for survivorship

bias should be performed jointly for all funds, and not individually fund by fund. The specification

of a joint model for hedge fund returns and endogenous liquidation is an interesting avenue for future

research.
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Figure 1: Subpopulation sizes of HF.
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The figure displays the evolution of the population size nk,t between October 1992 and June 2009 for

the nine management styles. Data are aggregated w.r.t. age.
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Figure 2: Liquidation rates of HF.
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The figure displays the time series of liquidation rate Yk,t/nk,t between October 1992 and June 2009

for the nine management styles. Data are aggregated w.r.t. age.
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Figure 3: Smoothed estimates of liquidation intensity.
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The figure displays the smoothed nonparametric estimates of the liquidation intensity as a function of

age for the nine management styles. The estimates are based on the Kaplan-Meier estimators of the

historical survival functions.
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Figure 4: Lexis diagram.

In the lexis diagram, the liquidation of a HF is represented by a dot in the plane. The horizontal axis

corresponds to the calendar time of the liquidation event, while the vertical axis displays the age of the

fund at liquidation. The diagonal 45-degree lines correspond to funds in a same cohort.
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Figure 5: Lexis diagram for Emerging Markets.
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The figure displays the lexis diagram for liquidation events of HF with management style Emerging

Markets in the TASS database. The horizontal axis represents calendar time and the vertical axis

represents age in months.

Figure 6: Lexis diagram for Global Macro.
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The figure displays the lexis diagram for liquidation events of HF with management style Global Macro

in the TASS database. The horizontal axis represents calendar time and the vertical axis represents age

in months.
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Figure 7: Lexis diagram for Multi Strategy.
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The figure displays the lexis diagram for liquidation events of HF with management style Multi Strat-

egy in the TASS database. The horizontal axis represents calendar time and the vertical axis represents

age in months.

Figure 8: Lexis diagram for Managed Futures.
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The figure displays the lexis diagram for liquidation events of HF with management style Managed

Futures in the TASS database. The horizontal axis represents calendar time and the vertical axis

represents age in months.
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Figure 9: The contagion scheme for the pure contagion model.
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The figure provides the contagion scheme for the Poisson model with contagion only estimated on

the TASS database. We display an arrow between two management styles, if the estimated contagion

coefficient from the first style to the second style is statistically significant. The estimated contagion

matrix is provided in Table 4.
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Figure 10: The contagion scheme for the model with contagion and frailty.
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The figure provides the contagion scheme for the Poisson model with both frailty and contagion esti-

mated on the TASS database. We display an arrow between two management styles, if the estimated

contagion coefficient from the first style to the second style is statistically significant at 5% level. The

estimated contagion matrix is provided in Table 6.
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Figure 11: (Cross-)ACF of residuals for diagnostic check.
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The figure displays the auto- and cross-correlation functions of residuals r∗
kl,T (s), with s varying,

defined in equation (3.13), for the management styles Fixed Income Arbitrage (k = 5), Global Macro

(k = 6) and Long/Short Equity Hedge (k = 7). The horizontal lines are 95% confidence bands.
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Figure 12: Term structure of expected liquidation counts when stressing the current factor value.
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Term structure of the conditional expectation E[Yk,t+τ |Yt, Ft] of liquidation counts for horizon τ =

1, 2, ..., 24 months, by management style k. Squares and circles correspond to conditioning sets with F t

equal to the median and the 95% quantile, respectively, of the stationary distribution of the frailty. The

liquidation counts vector Yt in the conditioning set corresponds to the observations in June 2009 for

both curves. The model is the specification including frailty and contagion, with intensity parameters

as in Tables 5 and 6, and frailty dynamic parameters δ = 0.59 and ρ = 0.74, corresponding to the

estimates of Section 3.4.
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Figure 13: Term structure of expected liquidation counts when stressing the contagion matrix.

1 12 24
0.5

1

1.5

2
Convertible arbitrage

horizon
1 12 24

0

2

4

6
Emerging markets

horizon
1 12 24

0.5

1

1.5

2

2.5
Equity market neutral

horizon

1 12 24
0

1

2

3

4
Event driven

horizon
1 12 24

0

2

4

6
Fixed income arbitrage

horizon
1 12 24

0.95

1

1.05

1.1

1.15
Global macro

horizon

1 12 24
4

6

8

10
Long/short equity hedge

horizon
1 12 24

1.5

2

2.5

3
Managed futures

horizon
1 12 24

0.5

1

1.5

2
Multi−strategy

horizon

Term structure of the conditional expectation E[Yk,t+τ |Yt, Ft] of liquidation counts for horizon τ =

1, 2, ..., 24 months, by management style k. Squares and circles correspond to models with contagion

matrices Cs = Ĉ and Cs = 2Ĉ, respectively, where Ĉ is the matrix of estimates in Table 6. The

intercepts and frailty sensitivities are as in Table 5, and the frailty dynamic parameters are δ = 0.59

and ρ = 0.74, corresponding to the estimates of Section 3.4. The factor value Ft in the conditioning

set corresponds to the median of the stationary distribution of the frailty, while the liquidation counts

vector Yt in the conditioning set corresponds to the observations in June 2009 for both curves.
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Figure 14: Term structure of expected liquidation counts when stressing the frailty persistence.
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Term structure of the conditional expectation E[Yk,t+τ |Yt, Ft] of liquidation counts for horizon τ =

1, 2, ..., 24 months, by management style k. Squares and circles correspond to models with frailty

autocorrelation ρs = 0.74 (corresponding to the estimate in Section 3.4) and ρs = 0.90, respectively.

The intensity parameters are as in Tables 5 and 6, and the parameter characterizing the stationary

distribution of the frailty is δ = 0.59, corresponding to the estimate of Section 3.4. The factor value

Ft in the conditioning set corresponds to the median of the stationary distribution of the frailty, while

the liquidation counts vector Yt in the conditioning set corresponds to the observations in June 2009

for both curves.
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Table 1: The database.

Alive funds (%) Liquidated funds (%) Total (%)

CONV Convertible Arbitrage 47 2,00% 170 4,20% 217 3,40%

EM Emerging Markets 235 9,90% 266 6,60% 501 7,80%

EMN Equity Market Neutral 132 5,50% 299 7,40% 431 6,70%

ED Event Driven 224 9,40% 434 10,80% 658 10,30%

FI Fixed Income Arbitrage 102 4,30% 239 5,90% 341 5,30%

GM Global Macro 181 7,60% 277 6,90% 458 7,10%

LSE Long/Short Equity Hedge 922 38,70% 1543 38,30% 2465 38,90%

MF Managed Futures 231 9,70% 454 11,30% 685 10,70%

MS Multi-Strategy 308 12,90% 342 8,50% 650 10,10%

Total 2382 100,00% 4024 100,00% 6406 100,00%

The table provides the distribution of alive and liquidated funds across the nine management styles in

June 2009.
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Table 2: Maximum and boundary values of the liquidation rates.

Lower Boundary Maximum Upper Boundary

Convertible Arbitrage 0.022 0.075 0.051

Emerging Markets 0.034 0.082 0.051

Equity Market Neutral 0.045 0.124 0.084

Event Driven 0.032 0.093 0.058

Fixed Income Arbitrage 0.040 0.114 0.066

Global Macro 0.045 0.108 0.066

Long/Short Equity Hedge 0.038 0.102 0.062

Managed Futures 0.041 0.086 0.045

Multi-Strategy 0.052 0.119 0.058

The table provides the value of the estimated liquidation intensity at the lower and upper bounderies

of the age domain, as well as the maximum estimated value of the liquidation intensity. The lower and

upper boundaries of the age domain are 0 months and 100 months from inception, respectively.

55



Table 3: Estimated intercepts in the pure contagion model.

Intercept ak

Convertible Arbitrage 0.05

(0.11)

Emerging Markets 0.51∗∗∗

(0.15)

Equity Market Neutral 0.63∗∗∗

(0.17)

Event Driven 0.59∗∗∗

(0.21)

Fixed Income Arbitrage 0.30∗∗

(0.13)

Global Macro 0.73∗∗∗

(0.13)

Long/Short Equity Hedge 4.56∗∗∗

(0.46)

Managed Futures 1.65∗∗∗

(0.22)

Multi-Strategy 0.21∗∗

(0.10)

The table provides the Maximum Likelihood (ML) estimates of the intercept parameters ak for the

Poisson model with contagion only. Standard errors are provided in parentheses. Stars ∗, ∗∗ and ∗ ∗ ∗
denote significance at the 10%, 5% and 1% level, respectively.

56



Table 4: Estimated contagion parameters in the pure contagion model.

Convertible Emerging Equity Event Fixed Global Long/Short Managed Multi-

Arbitrage Markets Market Driven Income Macro Equity Hedge Futures Strategy

Neutral Arbitrage

Convertible -0.13∗∗ 0.11∗∗ 0.20∗∗∗ 0.05∗∗

Arbitrage (0.06) (0.05) (0.07) (0.02)

Emerging 0.19∗∗∗ 0.31∗∗∗ 0.17∗∗∗

Markets (0.07) (0.09) (0.05)

Equity Market 0.24∗∗∗

Neutral (0.09)

Event Driven 0.35∗∗∗ 0.16∗∗ 0.36∗∗∗ 0.08∗∗∗

(0.11) (0.07) (0.13) (0.03)

Fixed Income 0.08∗∗ 0.32∗∗∗

Arbitrage (0.04) (0.08)

Global Macro 0.20∗∗∗ 0.23∗∗∗ - 0.04∗∗

(0.07) (0.08) (0.02)

Long/Short 0.42∗∗ 0.42∗∗ 0.67∗∗∗ 0.21∗∗∗ 0.78∗∗∗

Equity Hedge (0.17) (0.20) (0.25) (0.06) (0.23)

Managed 0.27∗∗

Futures (0.11)

Multi-Strategy -0.16∗∗∗ 0.15*** -0.07** 0.47***

(0.04) (0.06) (0.03) (0.07)

The table provides the Maximum Likelihood (ML) estimates of the contagion parameters (ck,k′) for the

Poisson model with contagion only. Rows and columns correspond to target and source of contagion,

respectively. Standard errors are provided in parentheses. Stars ∗∗ and ∗ ∗ ∗ denote significance at the

5% and 1% level, respectively. The estimates that are not statistically significant at 5% level are not

displayed.
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Table 5: Estimated intercepts and factor sensitivities in the model with contagion and frailty.

Intercept ak Sensitivity bk

Convertible Arbitrage 0.00 1.08∗∗

(0.15) (0.55)

Emerging Markets 0.10 0.69∗∗

(0.23) (0.27)

Equity Market Neutral 0.27 0.84∗∗

(0.30) (0.40)

Event Driven 0.00 1.39∗∗

(0.15) (0.70)

Fixed Income Arbitrage 0.00 0.31∗∗

(0.20) (0.13)

Global Macro 0.76∗∗∗ 0.33∗∗∗

(0.14) (0.12)

Long/Short Equity Hedge 2.98∗∗∗ 4.55∗∗

(1.10) (1.92)

Managed Futures 1.18 0.63∗∗

(0.75) (0.25)

Multi-Strategy 0.00 0.89∗∗

(0.17) (0.41)

The table provides the estimates of the intercepts ak and frailty sensitivities bk for the Poisson model

with frailty and contagion. The estimates are obtained by the Generalized Method of Moments (GMM)

estimator of Section 3.4 iii). Standard errors are provided in parentheses. Stars ∗, ∗∗ and ∗ ∗ ∗ denote

significance at the 10%, 5% and 1% level, respectively.
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Table 6: Estimated contagion parameters in the model with contagion and frailty.

Convertible Emerging Equity Event Fixed Global Long/Short Managed Multi-

Arbitrage Markets Market Driven Income Macro Equity Hedge Futures Strategy

Neutral Arbitrage

Convertible 0.15∗∗

Arbitrage (0.07)

Emerging 0.17∗∗∗ 0.21∗∗ 0.20∗∗∗

Markets (0.06) (0.08) (0.05)

Equity Market 0.10∗∗

Neutral (0.05)

Event Driven 0.35∗∗∗ 0.10∗

(0.09) (0.06)

Fixed Income 0.09∗∗ 0.22∗∗∗

Arbitrage (0.04) (0.07)

Global Macro 0.20∗

(0.11)

Long/Short 0.39∗∗

Equity Hedge (0.16)

Managed 0.27∗∗

Futures (0.11)

Multi-Strategy 0.29∗∗∗

(0.06)

The table provides the estimates of the contagion parameters (ck,k′) for the Poisson model with frailty

and contagion. Rows and columns correspond to target and source of contagion, respectively. We set

equal to zero the contagion parameters, that are not statistically significant at 5% in the model with

contagion only (Table 4). The free parameters are estimated by the Generalized Method of Moments

(GMM) estimator of Section 3.4 iii). Standard errors are provided in parentheses. Stars ∗, ∗∗ and ∗ ∗ ∗
denote significance at the 10%, 5% and 1% level, respectively. The estimates that are either set equal

to zero, or statistically non-significant at 10% level, are not displayed.
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Table 7: Statistics for diagnostic check of conditional overdispersion and conditional contemporaneous

cross-correlation.

Convertible Emerging Equity Event Fixed Global Long/Short Managed Multi-

Arbitrage Markets Market Driven Income Macro Equity Hedge Futures Strategy

Neutral Arbitrage

Convertible 2.25∗∗ -0.31 2.02∗∗ 1.49 -0.00 0.42 1.22 -1.32 -0.29

Arbitrage

Emerging 1.91∗ 0.39 1.40 1.19 1.37 1.97∗∗ -0.09 1.61

Markets

Equity Market 2.06∗∗ 1.67∗ -0.24 1.62 2.91∗∗∗ 1.36 1.72∗

Neutral

Event Driven 3.82∗∗∗ 1.44 2.27∗∗ 4.23∗∗∗ 1.68∗ 0.75

Fixed Income 1.99∗∗ 0.20 2.35∗∗ 1.01 0.89

Arbitrage

Global Macro 1.79∗ 2.57∗∗ 0.11 0.98

Long/Short 4.73∗∗ 2.18∗∗ 2.27∗∗

Equity Hedge

Managed 1.83∗ 1.39

Futures

Multi-Strategy 2.60∗∗∗

The table provides the values of the statistics ξ∗kl,T , for k, l = 1, ..., 9, defined in equation (3.12).

Since the statistic ξ∗kl,T is symmetric with respect to the indices k and l of the management styles, we

only provide the values on and above the diagonal. Values on the diagonal are used for diagnostic

check of conditional overdispersion in any management style. Values outside the diagonal are used for

diagnostic check of conditional contemporaneous cross-correlation between any pair of management

styles. Under the null hypothesis of no frailty effect, the statistic ξ∗kl,T admits a standard normal

distribution, for any k, l. Stars ∗, ∗∗ and ∗ ∗ ∗ denote significance at the 10%, 5% and 1% level,

respectively.
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Appendix 1: The Autoregressive Gamma process

In this Appendix we review the main properties of the ARG(1) process used in the paper [see Gourieroux, Jasiak

(2006)].

i) The conditional distribution

The ARG(1) process (Ft) is a Markov process with conditional distribution the noncentral gamma distribu-

tion γ(δ, ηFt−1, ν), where δ, δ > 0, is the degree of freedom, ηFt−1, η > 0, the noncentrality parameter and ν,

ν > 0, a scale parameter. Its first- and second-order conditional moments are:

E(Ft|Ft−1) = δν + ηνFt−1, V (Ft|Ft−1) = ν2δ + 2ην2Ft−1. (a.1)

ii) The state space representation

The ARG(1) process admits a state space representation, which is especially convenient for simulating the

trajectories of the process. To get a simulated value of Ft given Ft−1, we proceed as follows:

a) We draw an intermediate value Zst in a Poisson distribution P(ηFt−1);

b) Then, Ft is drawn in the centered gamma distribution γ(δ + Zst , 0, ν).

iii) Stationarity condition and stationary distribution

The ARG(1) process is stationary if ρ = νη is such that ρ < 1. Then, the stationary distribution is a centered

gamma distribution γ(δ, 0,
ν

1− νη
). In particular, we get the unconditional moments:

E(Ft) =
νδ

1− νη
, V (Ft) = δ

(
ν

1− νη

)2

. (a.2)

From the first equation in (a.1) it is seen that parameter ρ is the first-order autocorrelation of process (Ft).

iv) Normalization and reparameterization

When theARG(1) process is used as a latent frailty, the scale of the process can be absorbed in the parameter

θ of the intensity function. Then, the process (Ft) can be normalized to have E(Ft) = 1. Thus, from the first

equation in (a.2), the parameters are such that:

νδ = 1− νη = 1− ρ. (a.3)
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It follows that the stationary distribution is γ(δ, 0, 1/δ), with Laplace transform E[exp(−uFt)] = (1 + u/δ)−δ,

for u > −δ. Moreover, the stationary variance is V (Ft) = 1/δ.

Appendix 2: Stationarity and first and second-order moments of
the Poisson model with contagion and frailty

Let us consider the Poisson model with liquidation intensity independent of age, fixed category sizes and ARG

frailty dynamics (Assumptions A.3-A.5).

i) Stationarity condition

Let us consider the joint process Zt = (Y ′t , Ft)
′, and let w = (u′, v)′ ∈ RK × R. From a computation

similar to equation (2.13), the conditional moment generating function of the Markov process Zt is given by:

E
[
exp

(
−w′Zt

)
|Zt−1

]
= exp

(
−A(w)′Zt−1 −B(w)

)
,

where functions A(w) and B(w) are given by:

A(w) =

[
K∑
k=1

c′k(1− e−uk), α

(
v +

K∑
k=1

(1− e−uk)bk

)]′
,

and:

B(w) =
K∑
k=1

(1− e−uk)ak + β

(
v +

K∑
k=1

(1− e−uk)bk

)
,

and functions α and β are given in (2.16). Thus, process (Zt) is a discrete time affine process. From Proposition

2 in Darolles, Gourieroux, Jasiak (2006), process (Zt) is strictly stationary if:

lim
τ→∞

[
∂A(0)
∂w′

]τ
= 0. (a.4)

Now, by using that
∂A(0)
∂uk

= [c′k, bkdα(0)/du]′ = [ck, ρbk]′, for k = 1, ...,K, and
∂A(0)
∂v

= [0′, dα(0)/du]′ =

[0′, ρ]′, we get:

∂A(0)
∂w′

=

 C 0

ρb′ ρ

 .

Thus, condition (a.4) is satisfied if, and only if, ρ < 1 and the eigenvalues of matrix C have modulus smaller

than 1.
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ii) Moments of order 1

We have:

Et−1(Yt) = Et−1[Et−1(Yt|Ft)] = Et−1(a+ bFt + CYt−1) = a+ bEt−1(Ft) + CYt−1,

where Et−1 denotes expectation conditional on the past histories of liquidation counts Yt−1 and factor Ft−1. By

taking expectation of both sides of the equation, and using the stationarity of process (Yt) and the normalization

E(Ft) = 1, we get:

E(Yt) = a+ b+ CE(Yt) ⇔ E(Yt) = (Id− C)−1(a+ b). (a.5)

iii) Moments of order 2

Let us first consider the covariance between the liquidation counts and the frailty. We have:

Et−1(FtYt) = Et−1[Et−1(FtYt|Ft)] = Et−1[Ft(a+ bFt + CYt−1)]

= aEt−1(Ft) + bEt−1(F 2
t ) + CEt−1(Ft)Yt−1

= aEt−1(Ft) + bEt−1(F 2
t ) + C(1− ρ+ ρFt−1)Yt−1,

from equations (a.1) and (a.3). By taking the expectation of both sides of the equation, we get:

E(FtYt) = a+ b(1 + σ2) + (1− ρ)C(Id− C)−1(a+ b) + ρCE(FtYt).

We deduce that:

E(FtYt) = (Id− ρC)−1{bσ2 + [Id+ (1− ρ)C(Id− C)−1](a+ b)},

= (Id− ρC)−1bσ2 + (Id− C)−1(a+ b).

Thus:

Cov(Yt, Ft) = σ2(Id− ρC)−1b. (a.6)

63



Let us now consider the variance-covariance matrix of the liquidation counts vector Yt. We have:

Et−1(YtY ′t ) = Et−1(Et−1[YtY ′t |Ft]) = Et−1[Vt−1(Yt|Ft) + Et−1(Yt|Ft)Et−1(Yt|Ft)′]

= Et−1[diag(a+ bFt + CYt−1)] + Et−1[(a+ bFt + CYt−1)(a+ bFt + CYt−1)′]

= diag[a+ bEt−1(Ft) + CYt−1] + bb′Vt−1(Ft)

+[Et−1(a+ bFt + CYt−1)][Et−1(a+ bFt + CYt−1)]′

= diag[a+ bEt−1(Ft) + CYt−1] + bb′Vt−1(Ft)

+[a+ b(1− ρ+ ρFt−1) + CYt−1][a+ b(1− ρ+ ρFt−1) + CYt−1]′.

By taking the expectation of both sides, we deduce:

E(YtY ′t ) = diag[a+ b+ C(Id− C)−1(a+ b)] + bb′E[Vt−1(Ft)] + V [bρFt−1 + CYt−1]

+E[a+ b(1− ρ+ ρFt−1) + CYt−1]E[a+ b(1− ρ+ ρFt−1) + CYt−1]′

= diag[(Id− C)−1(a+ b)] + σ2(1− ρ2)bb′ + V [bρFt−1 + CYt−1] + E(Yt)E(Y ′t ),

where we used that E[Vt−1(Ft)] = σ2(1 − ρ2). Therefore, the variance-covariance matrix of Yt satisfies the

recursive equation:

V (Yt) = CV (Yt)C ′ + diag[(Id− C)−1(a+ b)] + σ2bb′

+ρbCov(Ft, Yt)C ′ + ρCCov(Yt, Ft)b′. (a.7)

Equation (2.17) is obtained by substituting the expression (a.6) of Cov(Yt, Ft).

iv) Autocovariance at order 1

We have:

Cov(Yt, Yt−1) = Cov[Et−1(Yt), Yt−1] = Cov[Et−1(a+ bFt + CYt−1), Yt−1]

= Cov[a+ b(1− ρ+ ρFt−1) + CYt−1, Yt−1].

Therefore:

Cov(Yt, Yt−1) = Cov(bρFt−1 + CYt−1, Yt−1) = bρCov(Ft−1, Yt−1) + CV (Yt)

= CV (Yt) + σ2ρbb′(Id− ρC ′)−1. (a.8)
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Appendix 3: Diagnostic checks for the frailty effect

In this appendix we derive the score for the test of the null hypothesis (3.9) of no frailty effects in the Poisson

model. The liquidation count variables Yk,t, for k = 1, ...,K, are independent conditionally on Yt−1 and Ft, with

Poisson distribution P(γk,tλk,t), where λk,t = ak + bkFt + c′kY
∗
t−1. The frailty process (Ft) is a ARG process,

normalized with E(Ft) = 1 and parametrized by ϕ = (δ, ρ)′, where parameter δ is such that V (Ft) = 1/δ ≡ σ2

and ρ is the first-order autocorrelation [see Appendix 1 iii) and iv)]. The likelihood function is given by:

L(θ, ϕ) =
∫
· · ·
∫

[
T∏
t=1

K∏
k=1

p(Yk,t; γk,tλk,t)][
T∏
t=1

g(ft|ft−1;ϕ)]
T∏
t=1

dft,

where p(·; λ) is the pdf of the Poisson distribution P(λ) with parameter λ > 0, g(ft|ft−1;ϕ) is the transition

p.d.f. of the ARG process with parameter ϕ, and parameter vector θ is the collection of the vectors (ak, bk, c′k)
′

for all management styles k.

We compute the score for the null hypothesis of no frailty effects as the partial derivative of the log-likelihood

function w.r.t. parameter σ2 evaluated at σ2 = 0. Let us write the likelihood function as:

L(θ, ϕ) = E
ϕ

[
T∏
t=1

K∏
k=1

p(Yk,t; γk,tλ0
k,t + γk,tbk(Ft − 1))

]
, (a.9)

where λ0
k,t = ak+bk+c′kYt−1 andE

ϕ
denotes expectation w.r.t the frailty process with parameter ϕ. We perform

a Taylor series expansion of the function within the expectation around the values Ft = 1 for t = 1, ..., T . We

have:

T∏
t=1

K∏
k=1

p(Yk,t; γk,tλ0
k,t + γk,tbk(Ft − 1)) = exp

(
T∑
t=1

K∑
k=1

log p(Yk,t; γk,tλ0
k,t + γk,tbk(Ft − 1))

)

=
T∏
t=1

K∏
k=1

p(Yk,t; γk,tλ0
k,t) exp

(
T∑
t=1

K∑
k=1

∂ log p(Yk,t; γk,tλ0
k,t)

∂λ
γk,tbk(Ft − 1)

+
1
2

T∑
t=1

K∑
k=1

∂2 log p(Yk,t; γk,tλ0
k,t)

∂λ2
γ2
k,tb

2
k(Ft − 1)2 + ...

)
,

where the reminder term in the exponent involves powers of Ft − 1 of order larger or equal to 3. By expanding
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the exponential function, we get:

T∏
t=1

K∏
k=1

p(Yk,t; γk,tλ0
k,t + γk,tbk(Ft − 1)) =

T∏
t=1

K∏
k=1

p(Yk,t; γk,tλ0
k,t)

(
1 +

T∑
t=1

K∑
k=1

∂ log p(Yk,t; γk,tλ0
k,t)

∂λ
γk,tbk(Ft − 1)

+
1
2

T∑
t=1

K∑
k=1

∂2 log p(Yk,t; γk,tλ0
k,t)

∂λ2
γ2
k,tb

2
k(Ft − 1)2

+
1
2

T∑
t=1

T∑
τ=1

K∑
k=1

K∑
l=1

∂ log p(Yk,t; γk,tλ0
k,t)

∂λ

∂ log p(Yl,τ ; γl,τλ0
l,τ )

∂λ
γk,tγl,τ bkbl(Ft − 1)(Fτ − 1) + ...

)
.

We now take the expectation w.r.t. the frailty process, and use thatE
ϕ
[Ft−1] = 0,E

ϕ
[(Ft−1)(Fτ−1)] = ρ|t−τ |σ2,

and that higher order central moments of the ARG process involve powers of σ2 = 1/δ of order larger or equal

to 2. From equation (a.9) we get:

L(θ, ϕ) =
T∏
t=1

K∏
k=1

p(Yk,t; γk,tλ0
k,t)

·

(
1 +

σ2

2

T∑
t=1

K∑
k=1

K∑
l=1

bkblγk,tγl,t

[
∂2 log p(Yk,t; γk,tλ0

k,t)
∂λ2

1{k = l}+
∂ log p(Yk,t; γk,tλ0

k,t)
∂λ

∂ log p(Yl,t; γl,tλ0
l,t)

∂λ

]

+
σ2

2

T∑
t=1

T∑
τ=1,τ 6=t

K∑
k=1

K∑
l=1

bkblγk,tγl,τρ
|t−τ |∂ log p(Yk,t; γk,tλ0

k,t)
∂λ

∂ log p(Yl,τ ; γl,τλ0
l,τ )

∂λ
+ ...

 ,

where the reminder involves terms of order σ4, σ6, ... We deduce the score w.r.t. σ2:

∂ logL(θ, ϕ)
∂σ2

∣∣∣∣
σ2=0

=
1
2

K∑
k=1

K∑
l=1

bkbl

{
T∑
t=1

γk,tγl,t

[
∂2 log p(Yk,t; γk,tλ0

k,t)
∂λ2

1{k = l}+
∂ log p(Yk,t; γk,tλ0

k,t)
∂λ

∂ log p(Yl,t; γl,tλ0
l,t)

∂λ

]

+
T∑
t=1

T∑
τ=1,τ 6=t

ρ|t−τ |γk,tγl,τ
∂ log p(Yk,t; γk,tλ0

k,t)
∂λ

∂ log p(Yl,τ ; γl,τλ0
l,τ )

∂λ

 .

By rearranging terms, and using that the density of the Poisson distribution is such that log p(y;λ) = y log λ−λ

up to a constant independent of parameter λ, we get:

∂ logL(θ, ϕ)
∂σ2

∣∣∣∣
σ2=0

=
T

2

K∑
k=1

K∑
l=1

bkbl

{
ξkl,T +

T−1∑
s=1

ρs [rkl,T (s) + rlk,T (s)]

}
, (a.10)

where the stastistics ξkl,T and rkl,T (s) are defined in equations (3.10) and (3.11), respectively.
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