Learning from Viral Content
Krishna Dasaratha, Kevin He*
Building: Rotman School of Management
Room: Room 1065
Last modified: 2024-05-02
Abstract
We study learning on social media with an equilibrium model of users interacting with shared news stories. Rational users arrive sequentially, observe an original story (i.e., a private signal) and a sample of predecessors' stories in a news feed, and then decide which stories to share. The observed sample of stories depends on what predecessors share as well as the sampling algorithm generating news feeds. We focus on how often this algorithm selects more viral (i.e., widely shared) stories. Showing users viral stories can increase information aggregation, but it can also generate steady states where most shared stories are wrong. These misleading steady states self-perpetuate, as users who observe wrong stories develop wrong beliefs, and thus rationally continue to share them. Finally, we describe several consequences for platform design and robustness.