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1. Introduction

The process of financial globalization has led to an unprecedented increase in the size and complexity of gross financial
positions and gross financial flows among countries. Lane and Milesi-Ferretti (2007a) argue that this increase in cross-
border asset holdings may have significant implications for understanding the international transmission mechanism, the
resolution of external imbalances, and the effects of macroeconomic policy.2 Until quite recently, however, most open
economy macroeconomic models have not included the analysis of the composition of gross country portfolios and gross
capital flows, focusing instead on net foreign assets as a measure of a country’s external position and the current account as
a measure of financial flows. Probably the main reason for this neglect has been the technical difficulties faced in deriving
optimal portfolio positions for general equilibrium models with incomplete markets, while at the same time retaining
enough tractability to explore the responses to macroeconomic shocks and the effects of economic policy.3

This paper presents a general approximation method for characterizing time-varying equilibrium portfolios in a two-
country dynamic general equilibrium model. The method can be easily adapted to most dynamic general equilibrium
models, it applies to environments in which markets are complete or incomplete, and it can be used for models of any
dimension. Moreover, the approximation provides simple, easily interpretable closed-form solutions for the dynamics of
equilibrium portfolios.
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The approach presented in this paper follows the fundamental contribution of Samuelson (1970) in recognizing that
successively higher-order aspects of portfolio behaviour may be captured by a higher degree of approximation of an
investors objective function. We modify and adapt this approach to a dynamic stochastic general equilibrium (DSGE)
environment, and derive simple formulae for equilibrium asset holdings which can be applied to any DSGE model that can
be solved by standard first or second order approximation methods. Building on Devereux and Sutherland (2009), which
shows how to obtain the zero-order (or steady state) portfolio holdings, we obtain expressions which fully characterize the
way in which portfolio holdings evolve over time at the first order. For simple models, optimal portfolios may be derived
analytically. For more complex models, the paper provides a simple, one step, computationally efficient approach to
generating numerical results.4

The approach to characterizing portfolio dynamics here is based on Taylor-series approximation of a model’s
equilibrium conditions. The standard log-linear approximation procedures used in macroeconomics can not be directly
applied to portfolio problems. This is for two reasons. First, the equilibrium portfolio is not determined by a first order
approximation of a DSGE model. Second, the equilibrium portfolio is indeterminate in a non-stochastic steady state, a fact
which appears to rule out the most natural choice of approximation point.5 The first problem can be overcome by
considering higher-order approximations of the portfolio problem. The second problem can be overcome by treating the
value of portfolio holdings at the approximation point as an unknown, to be determined endogenously as part of the
solution. The procedure described in Devereux and Sutherland (2009) solves for portfolio holdings at the approximation
point by looking at the first-order optimality conditions of the portfolio problem in the (stochastic) neighbourhood of the
non-stochastic steady state.6

In general, a second-order approximation of the portfolio problem is sufficient to capture the different risk
characteristics of assets. It is therefore sufficient to tie down a solution for steady-state portfolio holdings. However, in
order to solve for the dynamic behaviour of asset holdings around the steady state portfolio, it is necessary to know how
variations in state variables affect the risk characteristics of assets. This, in turn, requires consideration of a third-order

approximation of the portfolio problem. A third-order approximation captures the first-order effect of state variables on
second moments and thus makes it possible to understand how portfolios should be adjusted as state variables evolve. We
show that a third-order approximation of the portfolio optimality conditions (used in combination with first and second-
order approximations of the non-portfolio parts of the model) can be solved to yield an analytical formula which captures
the dynamics of optimal country portfolios. We show that, even in its general form, this formula provides valuable insights
into the fundamental factors that determine portfolio dynamics.

The general principles underlying the derivation of approximate solutions to portfolio problems were stated by
Samuelson (1970). Using a static model of a portfolio problem for a single agent and exogenous returns, he showed that, in
general, to derive the solution for portfolio holdings up to n th order accuracy, one has to approximate the portfolio
problem up to order n+2. It is easy to see that our solution procedure follows this general principle. Our solution for the
steady-state (or zero-order accurate) portfolio is derived using a second-order approximation of the portfolio optimality
conditions, and our solution for the first-order accurate portfolio is derived using a third-order approximation of the
portfolio optimality conditions. An important innovation of our procedure, relative to the principle established by
Samuelson, is that, to derive n th-order accurate solutions for portfolios, only the portfolio optimality conditions need be
approximated up to order n+2. The other optimality and equilibrium conditions of the model need only be approximated
up to order n+1. This leads to a considerable simplification of the solution procedure.7

In a recent paper, Tille and van Wincoop (2009) use this same general set of principles to solve for the steady-state and
first-order behaviour of country portfolios in an open economy model. The Tille and van Wincoop approach is identical to
ours to the extent that, for any given model, the methods are based on solving the same set of equations. While we focus on
an analytical approach, Tille and van Wincoop (2009) describe an iterative numerical algorithm which can be used to solve
for the coefficients of the Taylor-series approximation for portfolio behaviour. It is straightforward to show that, for any
4 In the existing literature, a number of alternative approaches have been developed for analysing incomplete-markets models. Judd et al. (2002) and

Evans and Hnatkovska (2005) present numerical algorithms for solving dynamic portfolio problems in general equilibrium. These methods are, however,

very complex compared to our approach and represent a significant departure from standard DSGE solution methods. Devereux and Saito (2007) use a

continuous time framework which allows some analytical solutions to be derived in a restricted class of models.
5 It is important to understand that these are two distinct problems. The first problem arises in the approximated form of the model with stochastic

shocks, while the second arises in the non-approximated form of the model without stochastic shocks. In both cases the portfolio is indeterminate because

all assets are identical. This arises in a first-order approximation because certainty equivalence holds. And it arises in the non-stochastic steady state

because of the absence of stochastic shocks.
6 Judd (1998) and Judd and Guu (2001) show how the problem of portfolio indeterminacy in the non-stochastic steady state can be overcome by

using a Bifurcation theorem in conjunction with the Implicit Function Theorem. The solution approach presented here relies on first and second-order

approximations of the model, rather than the Implicit Function and Bifurcation Theorems, but the steady-state gross portfolio holdings derived using our

technique correspond to the approximation point derived by the Judd and Guu method.
7 Samuelson focused on a simple partial equilibrium static model where time-variation in portfolio holdings is irrelevant (because there is only one

time period). Samuelson’s approach derives successively higher-order components of the solution for portfolio holdings using higher-order

approximations of the model. We are considering a dynamic framework where portfolio holdings are potentially time varying and we show that time

variation can be captured in the approximate solution by considering higher orders of approximation of the model. The logic of our approach is the same

as Samuelson’s despite the lack of time variation in Samuelson’s model.
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given model, the steady-state and dynamic portfolio behaviour generated using the Tille and van Wincoop approach is
identical to the analytical solution supplied by our approach.

An advantage of the analytical approach is that it provides a formula which can be applied to a wide range of DSGE
models.8 In many cases this formula may yield closed-form analytical solutions for equilibrium portfolios. Such solutions
can provide important insights and intuitions which are not available from numerical solutions. In addition, the formula
can be used to generate numerical results for more complex models without the need for iterative algorithms. Finally, by
employing the formula for portfolio holdings derived below, the user does not actually have to undertake higher order
approximations. That is, the solution for the zero order portfolio solution requires only a first order approximation of the
model, and the first order solution requires only a second order approximation of the model.

The paper proceeds as follows. Section 2 describes the structure of a basic two-country two-asset model. Section 3
briefly reviews the Devereux and Sutherland (2009) derivation of the steady-state portfolio for this model. Section 4
describes the solution for the first-order dynamic behaviour of portfolio holdings around this steady state. Section 5
derives the solution for expected excess returns. Section 6 applies the method to a simple endowment economy with trade
in nominal bonds. Section 7 concludes the paper.

2. A two-asset open-economy model

The solution procedure is developed in the context of a simple two-country dynamic general equilibrium model. To
make the steps as transparent as possible, the model here is restricted to a case where only two assets are internationally
traded. In addition, we assume that agents in each country consume an identical composite consumption good, so that
purchasing power parity holds. Generalising the analysis to cases with many assets, many countries and asymmetries
between countries, and cases where PPP does not hold, is straightforward.9 In order to develop the solution procedure, it is
not necessary to set out the details of the whole model. Only the features necessary for portfolio choice need to be directly
included. Other aspects of the model, such as the production structure and labour supply, can be neglected since they are
not directly relevant for deriving the expressions for steady-state or first-order properties of portfolios.

It is assumed that the world consists of two countries, which will be referred to as the home country and the foreign
country. The home country is assumed to produce a good (or a bundle of goods) with aggregate quantity denoted YH

(which can be endogenous) and aggregate price PH. Similarly the foreign country produces quantity YF of a foreign good (or
bundle of goods) at price PF

�. In what follows foreign currency prices are denoted with an asterisk.
Agents in the home country have a utility function of the form

Ut ¼ Et

X1
t ¼ t

yt½uðCtÞþvð�Þ� ð1Þ

where C is consumption and uðCÞ ¼ ðC1�rÞ=ð1�rÞ. yt is the discount factor, which is determined as follows:

ytþ1 ¼ ytbðCAtÞ, y0 ¼ 1

where CA is aggregate home consumption and 0obðCAÞo1, b0ðCAÞr0. If bðCAÞ is a constant (i.e. b0ðCAÞ ¼ 0) then the
discount factor is exogenous. In this case, if international financial markets are incomplete, there is a unit root in the first-
order approximated model. Although our solution approach works perfectly well in this case, there may be occasions
where it is useful to eliminate the unit root. This can be achieved by allowing b0ðCAÞo0. Endogenising the discount factor in
this way has no impact on the applicability of our solution approach. The function v( � ) captures those parts of the
preference function which are not relevant for the portfolio problem.10 The consumer price index for home agents is
denoted P.

It is assumed that there are two assets and a vector of two gross returns (for holdings of assets from period t�1 to t)
given by

r0t ¼ ½r1,t r2,t�

Asset payoffs and asset prices are measured in terms of the aggregate consumption good (i.e. in units of C). Returns are
defined to be the sum of the payoff of the asset and capital gains divided by the asset price. It is assumed that the vector of
available assets is exogenous and predefined.

The budget constraint for home agents is given by

Wt ¼ a1,t�1r1,tþa2,t�1r2,tþYt�Ct ð2Þ
8 We emphasise that the method is designed for use with general equilibrium models. The method relies on some of the equilibrium first-order

properties of expected asset returns. Additional restrictions may need to be imposed before the method can be applied to a partial equilibrium setting

where asset returns are specified exogenously.
9 Devereux and Sutherland (2009) develop the procedure for solving for the steady state portfolio in a much more general environment. Dedola and

Lombardo (2009) show how to apply the method to models with many countries.
10 For convenience we adopt the CRRA functional form for u(C) and assume that utility is additively separable in u(C) and v( � ). Generalising our

approach to deal with alternative functional forms is straightforward.
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where a1,t�1 and a2,t�1 are the real holdings of the two assets purchased at the end of period t�1 and brought into period t.
It follows that

a1,t�1þa2,t�1 ¼Wt�1 ð3Þ

where Wt�1 is net wealth at the end of period t�1.11 In (2) Y is the total disposable income of home agents expressed in
terms of the consumption good. Thus, Y may be given by YHPH/P+T where T is a fiscal transfer (or tax if negative).

The budget constraint can be re-written as

Wt ¼ a1,t�1rx,tþr2,tWt�1þYt�Ct ð4Þ

where

rx,t ¼ r1,t�r2,t

Here asset 2 is used as a numeraire and rx,t measures the ‘‘excess return’’ on asset 1.
At the end of each period agents select a portfolio of assets to hold into the following period. Thus, for instance, at the

end of period t home agents select a1,t to hold into period t+1. The first-order condition for the choice of a1,t can be written
in the following form:

Et½u
0ðCtþ1Þr1,tþ1� ¼ Et½u

0ðCtþ1Þr2,tþ1� ð5Þ

Foreign agents face a similar portfolio allocation problem with a budget constraint given by

W�
t ¼ a

�
1,t�1rx,tþr2,tW

�
t�1þY�t �C�t ð6Þ

Foreign agents are assumed to have preferences similar to (1) so the first-order condition for foreign-country agents’ choice
of a�1,t is

Et½u
0ðC�tþ1Þr1,tþ1� ¼ Et½u

0ðC�tþ1Þr2,tþ1� ð7Þ

To simplify notation, in what follows we will drop the subscript from a1,t and simply refer to at . It should be understood,
therefore, that a1,t ¼ at and a2,t ¼Wt�at .

In any given DSGE model, there will be a set of first-order conditions relating to intertemporal choice of consumption
and labour supply for the home and foreign consumers and a set of first-order conditions for profit maximisation and factor
demands for home and foreign producers. Taken as a whole, and combined with an appropriate set of equilibrium
conditions for goods and factor markets, this full set of equations will define the general equilibrium of the model. As
already explained, the details of these non-portfolio parts of the model are not necessary for the exposition of the solution
method, so they are not shown explicitly at this stage. In what follows these omitted equations are simply referred to as
the ‘‘non-portfolio equations’’ or the ‘‘non-portfolio equilibrium conditions’’ of the model.

The non-portfolio equations of the model will normally include some exogenous forcing variables. In the typical
macroeconomic model these take the form of AR(1) processes which are driven by zero-mean innovations. In what follows,
the matrix of second moments of the innovations is denoted S. As is the usual practice in the macroeconomic literature,
the innovations are assumed to be i.i.d. Therefore, S is assumed to be non-time-varying. We further assume (although this
is not necessary for our solution method to work) that all third moments of the vector of innovations are zero.

It is assumed that the innovations are symmetrically distributed in the interval ½�e,e�. This is convenient because, given
the general equilibrium nature of the models we are dealing with, it ensures that all exogenous and endogenous variables
have a maximum deviation from their non-stochastic steady state values which is proportional to e. e can therefore be
treated as an index of the size of deviations of any variable from its value at the point of approximation, and any residual in
an equation approximated up to order n can be captured by a term denoted Oðenþ1Þ. This greatly simplifies notation
without having any significant loss of generality.12

The solution procedure is based on a Taylor-series approximation of the model. The approximation is based around a
point where the vector of non-portfolio variables is given by X and portfolio holdings are given by a. In what follows a bar
over a variable indicates its value at the approximation point and a hat indicates the log-deviation from the approximation
point (except in the case of â, Ŵ and r̂ x, which are defined below).

3. Steady-state portfolios

This section briefly reviews our approach to solving for the steady-state portfolio, a.13 As already explained, a second-
order approximation of the portfolio problem is sufficient to capture the different risk characteristics of assets and is
11 We interpret Wt as the home country’s net wealth, which represents its total net claims on the foreign country. Assets in this set-up are defined to

be in zero net supply. Hence any income on durable assets, such as the income on (home) capital, is included as part of income, Yt. Claims to capital may

be traded indirectly, however, since the asset menu can include a security with the identical rate of return to the home capital stock. Our method for

deriving portfolio dynamics works equally in the alternative approach, where wealth is defined in gross terms and some assets are in positive net supply.

The present approach makes our derivations easier, however.
12 If, alternatively, the innovations are assumed to have infinite support it is possible to use the concept of ‘‘order in probability’’ to denote residuals.

See Kim et al. (2008) for further discussion of ‘‘order in probability’’.
13 A more comprehensive coverage is contained in Devereux and Sutherland (2009).
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therefore sufficient to tie down a solution for a. The solution for a is defined to be the one which ensures that the second-

order approximations of the portfolio optimality conditions (5) and (7) are satisfied within a neighbourhood of X and a. We
use the symmetric non-stochastic steady state of the model as the approximation point for non-portfolio variables. Thus
W ¼ 0, Y ¼ C and r1 ¼ r2 ¼ 1=b. Note that this implies rx ¼ 0. Since W ¼ 0, it also follows that a2 ¼�a1 ¼�a.

Taking a second-order approximation of the home-country portfolio first-order conditions yields

Et½r̂ x,tþ1þ
1
2ðr̂

2
1,tþ1�r̂

2
2,tþ1Þ�rĈ tþ1r̂ x,tþ1� ¼ Oðe3Þ ð8Þ

where r̂ x,tþ1 ¼ r̂1,tþ1�r̂2,tþ1. Applying a similar procedure to the foreign first-order conditions yields

Et½r̂ x,tþ1þ
1
2ðr̂

2
1,tþ1�r̂

2
2,tþ1Þ�rĈ

�

tþ1r̂ x,tþ1� ¼ Oðe3Þ ð9Þ

The home and foreign optimality conditions, (8) and (9), can be combined to show that, in equilibrium, the following
equations must hold:

Et½ðĈ tþ1�Ĉ
�

tþ1Þr̂ x,tþ1� ¼ 0þOðe3Þ ð10Þ

and

E½r̂ x,tþ1� ¼ �
1
2 E½r̂

2
1,tþ1�r̂

2
2,tþ1�þr1

2Et½ðĈ tþ1þ Ĉ
�

tþ1Þr̂ x,tþ1�þOðe3Þ ð11Þ

These two equations express the portfolio optimality conditions in a form which is particularly convenient for deriving
equilibrium portfolio holdings and excess returns. Eq. (10) provides a set of equations which must be satisfied by
equilibrium portfolio holdings. And Eq. (11) shows the corresponding set of equilibrium expected excess returns. Note that
these equations define the behaviour of portfolios and expected excess returns in equilibrium. The behaviour of expected
excess returns is therefore endogenously determined.

In order to evaluate the left hand side of Eq. (10) it is sufficient to derive expressions for the first-order behaviour of
consumption and excess returns. This requires a first-order accurate solution for the non-portfolio parts of the model.
Portfolio decisions affect the first-order solution of the non-portfolio parts of the model in a particularly simple way. This is
for three reasons. First, portfolio decisions only enter the non-portfolio parts of the model via budget constraints. Second,
the only aspect of the portfolio decision that enters a first-order approximation of the budget constraints is a, the steady-
state portfolio. And third, to a first-order approximation, the portfolio excess return is a zero mean i.i.d. random variable.14

The fact that only the steady-state portfolio enters the first-order model can be illustrated by considering a first-order
approximation of the home budget constraint.15 For period t+1 this is given by

Ŵ tþ1 ¼
1

b
Ŵ tþ Ŷ tþ1�Ĉ tþ1þ

a
bY

r̂x,tþ1þOðe2Þ ð12Þ

where Ŵ t ¼ ðWt�W Þ=C . Notice that the deviation of a from its steady-state value does not enter this equation because
excess returns are zero in the steady state, i.e. rx ¼ 0.

The fact that the portfolio excess return, a r̂ x,tþ1, is a zero-mean i.i.d. random variable follows from Eq. (11). This
equation shows that, up to a first order, the expected excess return is zero. Deviations of the realised excess return, r̂ x,tþ1,
from the expect excess return are therefore i.i.d. (and are a linear function of the i.i.d. innovations affecting the exogenous
forcing processes of the model). The fact that the expected excess return is zero (up to a first order) arises endogenously
from equilibrium in asset markets. This can be explained in economic terms by noting that, up to a first order, agents are
indifferent about the risk characteristics of assets. Arbitrage therefore requires that, in equilibrium, all asset pay the same
expected rate of return.16

These properties can now be used to derive a solution for a. In what follows, it proves convenient to define ~a � a=ðbY Þ

and to describe the solution procedure in terms of the solution for ~a. The corresponding solution for a is simply given by
a ¼ ~abY .

To derive a solution for ~a it is useful initially to treat the realised excess return on the portfolio as an exogenous
independent mean-zero i.i.d. random variable denoted xt . Thus, in (12), replace ða=bY Þr̂ x,tþ1 by xt . We can then incorporate
(12) with ða=bY Þr̂ x,tþ1 replaced by xt , into the linear approximation to the rest of the non-portfolio equations of the model.
As in any standard dynamic rational expectations model, we may summarise the entire first-order approximation (of the
14 In fact, the first of these properties is not critical for the implementation of our solution method. Our method can easily handle cases where the

portfolio excess return (i.e. a1,t�1rx,t) enters equations other than the budget constraint.
15 From Walras’s law it follows that it is only necessary to consider one budget constraint.
16 The equality of expected returns (at the first order) is thus a natural endogenous feature of a very wide class of general equilibrium macro models.

Our solution method can be adapted to handle cases where small trading frictions prevent arbitrage from ensuring equality of first-order expected

returns. In such cases it would be necessary to work with returns appropriately adjusted for the costs of trading frictions. Note that, if our solution

method is to be applied to a partial equilibrium model, where excess returns are specified exogenously, it would be necessary to impose (by assumption)

the equality of expected excess returns at the first order level.
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non-portfolio equations) as follows:

A1

stþ1

Et½ctþ1�

" #
¼ A2

st

ct

" #
þA3xtþBxtþOðe2Þ ð13Þ

xt ¼Nxt�1þet

where s is a vector of predetermined variables (including Ŵ Þ, c is a vector of jump variables (including Ĉ , Ĉ
�
, and r̂ x), x is a

vector of exogenous forcing processes, e is a vector of i.i.d. shocks, and B is a column vector with unity in the row
corresponding to the equation for the evolution of net wealth (12) and zero in all other rows.17 The state-space solution to
(13) can be derived using any standard solution method for linear rational expectations models and can be written as
follows:

stþ1 ¼ F1xtþF2stþF3xtþOðe2Þ

ct ¼ P1xtþP2stþP3xtþOðe2Þ ð14Þ

This form of the solution shows explicitly, via the F3 and P3 matrices, how the first-order accurate behaviour of all the
model’s variables depend on exogenous i.i.d. innovations to net wealth.18

By extracting the appropriate rows from (14) it is possible to write the following expression for the first-order accurate
relationship between excess returns, r̂ x,tþ1, and etþ1 and xtþ1

r̂ x,tþ1 ¼ ½R1�xtþ1þ½R2�i½etþ1�
iþOðe2Þ ð15Þ

where the matrices R1 and R2 are formed from the appropriate rows of (14).19 Similarly extracting the appropriate rows
from (14) yields the following expression for the first-order behaviour of ðĈ tþ1�Ĉ

�

tþ1Þ:

ðĈ tþ1�Ĉ
�

tþ1Þ ¼ ½D1�xtþ1þ½D2�i½etþ1�
iþ½D3�k½ztþ1�

kþOðe2Þ ð16Þ

where z0tþ1 ¼ ½xt stþ1� is a vector formed from the exogenous driving processes and the endogenous state variables.
Expressions (15) and (16) are written using tensor notation (in the form described, for instance, by Judd, 1998; Juillard,
2003).20 This notation will prove particularly useful in the next section, where higher-order approximations are
considered.

Now recognize that the term xtþ1 represents the home country’s return on its portfolio, which depends on asset
holdings and excess returns, i.e.

xtþ1 ¼ ~a r̂ x,tþ1

Substituting into (15) and (16), we get

r̂ x,tþ1 ¼ ½
~R2�i½etþ1�

iþOðe2Þ ð17Þ

ðĈ tþ1�Ĉ
�

tþ1Þ ¼ ½
~D2�i½etþ1�

iþ½D3�k½ztþ1�
kþOðe2Þ ð18Þ

where

½ ~R2�i ¼
1

1�½R1� ~a
½R2�i ð19Þ

½ ~D2�i ¼
½D1� ~a

1�½R1� ~a
½R2�iþ½D2�i

� �
ð20Þ
17 In more general cases, were the portfolio excess return enters the model in equations other than the budget constraint, the portfolio excess return

should be replaced by xt wherever it appears in the model. The vector B would then contain non-zero elements in all the rows corresponding to the

equations where xt appears.
18 When writing a model in the form of (13) we are following the convention that st contains the value of the s variables prior to the realisation of et ,

while ct and xt contain the values of the c and x variables after the realisation of et .
19 Note that, because r̂ x,tþ1 is a zero-mean i.i.d. variable up to first-order accuracy, (15) does not depend on the vector of state variables.
20 For instance, a subscript or superscript i refers to the i th element of a vector. When a letter appears in a term, first as a subscript on one vector, and

then as a superscript on another vector, it denotes the sum of the products of the respective terms in the two vectors. Thus [A]i[B]i denotes the inner

product of vectors A and B. (Note that we enclose the matrix names in square brackets in order to separate subscripts which are part of the matrix name

from subscripts which refer to matrix elements.) When manipulating equations written in tensor notation one simply needs to keep in mind that a term

such as [A]i[B]i is just a convenient way of writing
P

naibi where ai and bi are the i the elements of A and B and n is the number of elements in A and B.

Manipulations of tensor equations therefore obey all the rules of equations containing such summation terms. See Chapter 14 of Judd (1998) for more

discussion.
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Eqs. (17) and (18) now show how, for any given value of ~a, consumption and excess returns depend on the vector of
exogenous innovations, e. Therefore, these expressions can be used to evaluate the left-hand side of (10) and thus to derive
an expression for ~a.

Note that, as shown in Devereux and Sutherland (2009), the second-order approximation of the portfolio problem is
time invariant. Thus the time subscripts can be dropped in (10). Substituting (17) and (18) into (10) implies21

½ ~D2�i½
~R2�j½S�

i,j ¼ 0 ð21Þ

Finally substituting for ½ ~D2�i and ½ ~R2�j using (19) and (20) and solving for ~a yields

~a ¼
½D2�i½R2�j½S�

i,j

ð½R1�½D2�i½R2�j�½D1�½R2�i½R2�jÞ½S�
i,j
þOðeÞ ð22Þ

This is the tensor-notation equivalent of the expression for ~a derived in Devereux and Sutherland (2009).

4. First-order time-variation in portfolios

The portfolio solution given in (22) is non-time-varying. This is because time variation in the true portfolio, at , has no
effect on the properties of consumption, excess returns, or any other variable in the vector [s,c], when evaluated up to first-
order accuracy. But because we are modelling a dynamic environment where the portfolio choice decision is not identical
in every period, the true portfolio will in general vary across periods. Thus, at will in general vary around a. In order to
solve for the behaviour of asset holdings around a it is necessary to know how the risk characteristics of assets are affected
by the predictable evolution of state variables such as wealth, or persistent movements in output. To capture these effects,
it is necessary to determine how these state variables affect the second moments that govern the optimal portfolio choice.
This in turn requires consideration of a third-order approximation of the portfolio problem. A third-order approximation of
the portfolio problem captures the effect of state variables on second moments and thus makes it possible to understand
how portfolios should be adjusted as state variables evolve.

Taking a third-order approximation of the home and foreign country portfolio first-order conditions yields

Et

r̂x,tþ1þ
1

2
ðr̂

2
1,tþ1�r̂

2
2,tþ1Þþ

1

6
ðr̂

3
1,tþ1�r̂

3
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�rĈ tþ1r̂ x,tþ1þ
r2

2
Ĉ

2

tþ1 r̂ x,tþ1�
r
2

Ĉ tþ1ðr̂
2
1,tþ1�r̂

2
2,tþ1Þ

2
664

3
775¼ 0þOðe4Þ ð23Þ

Et

r̂x,tþ1þ
1

2
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1,tþ1�r̂
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2,tþ1Þþ

1

6
ðr̂

3
1,tþ1�r̂

3
2,tþ1Þ

�rĈ
�

tþ1r̂ x,tþ1þ
r2

2
Ĉ
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tþ1r̂ x,tþ1�
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Ĉ
�

tþ1ðr̂
2
1,tþ1�r̂

2
2,tþ1Þ

2
664

3
775¼ 0þOðe4Þ ð24Þ

Combining these two conditions implies that portfolio holdings must ensure that the following holds:

Et

�rðĈ tþ1�Ĉ
�

tþ1Þr̂ x,tþ1þ
r2

2
ðĈ

2

tþ1�Ĉ
�2
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2
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2
1,tþ1�r̂

2
2,tþ1Þ

2
664

3
775¼ 0þOðe4Þ ð25Þ

while expected returns are given by

Et½r̂ x,tþ1� ¼ Et

�
1

2
ðr̂

2
1,tþ1�r̂

2
2,tþ1Þ�

1

6
ðr̂

3
1,tþ1�r̂
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2,tþ1Þ

þ
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�2

tþ1Þr̂ x,tþ1

þ
r
4
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tþ1Þðr̂
2
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2
6666664
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7777775
þOðe4Þ ð26Þ

These are the third-order equivalents of (10) and (11).
Notice that (25) contains only second and third-order terms. Thus it is possible to evaluate the left-hand side of (25)

using first and second-order accurate solutions for consumption and excess returns from the rest of the model. Second-
order accurate solutions for the behaviour of consumption and excess returns can be obtained by solving a second-order
approximation of the non-portfolio parts of the model.

As in the first-order case, it is possible to show that portfolio decisions affect the second-order solution of the non-
portfolio parts of the model in a particularly simple way. In particular, as before, portfolio decisions only enter the
21 Here the tensor notation ½ ~D2�i½
~R2�j½S�

i,j denotes the sum across all i and j of the product of the i th element of ~D2, the j th element of ~R2 and the

(i,j)th element of S.
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non-portfolio parts of the model via the portfolio excess return in budget constraints.22 Furthermore, the portfolio excess
return (as it relates to the time varying element of the portfolio) is a zero mean i.i.d. random variable.

To see this, first take a second-order approximation of the home budget constraint as follows23:

Ŵ tþ1 ¼
1

b
Ŵ tþ Ŷ tþ1�Ĉ tþ1þ ~ar̂ x,tþ1þ

1

2
Ŷ

2

tþ1�
1

2
Ĉ

2

tþ1þ
1

2
~aðr̂2

1,tþ1�r̂
2
2,tþ1Þþ ât r̂ x,tþ1þ

1

b
Ŵ tr̂2,tþ1þOðe3Þ ð27Þ

where

ât ¼
1

bY
ðat�aÞ ¼

at

bY
� ~a

Here ât represents the (level) deviation in the portfolio holding from its steady state value (adjusted by 1=bY ). Note that
the value of ~a in this equation is given by (22) (i.e. the steady-state portfolio calculated in the previous section), so it is not
necessary to solve again for ~a. Recall that, a1,t ¼ at and that a1,tþa2,t ¼Wt so

â1,t ¼ ât , â2,t ¼ ð1=bÞŴ t�ât ð28Þ

The objective in this section is to solve for the behaviour of ât . Movements in the optimal portfolio are determined by
time-variation in the economic environment. It therefore follows that, up to a first-order approximation, movements in ât

will be a linear function of the state variables of the model. We thus postulate that ât has the following functional form:

ât ¼ g0ztþ1 ¼ ½g�k½ztþ1�
k ð29Þ

where z0tþ1 ¼ ½xt stþ1�.
24 Our objective is to solve for the vector of coefficients in this expression, i.e. g.

This postulated functional form for the determination of ât implies that, from the point of view of period t, the value of
zt +1 is known and thus ât is known. In turn, this implies that (as in the derivation of the steady-state portfolio) the realised
excess return on (the time-varying element of) the portfolio, ât r̂ x,tþ1, in period tþ1 is a zero-mean i.i.d. random variable
(up to second-order accuracy).25 Bearing this in mind, the solution for g can now be derived using a procedure which is
very similar to the solution procedure for the steady-state portfolio.

As in the previous section, initially assume that the realised excess return on the time-varying part of the portfolio is an
exogenous independent mean-zero i.i.d. random variable denoted xt . The second-order approximation of the home country
budget constraint in period t can therefore be written in the form

Ŵ t ¼
1

b
Ŵ t�1þ Ŷ t�Ĉ tþ ~a r̂ x,tþ

1

2
Ŷ

2

t�
1

2
Ĉ

2

t þ
1

2
~aðr̂2

1,t�r̂
2
2Þþxtþ

1

b
Ŵ t�1 r̂2,tþOðe3Þ ð30Þ

where, again, the value of ~a in this equation is given by (22).26 Now assume that the entire second-order approximation of
the non-portfolio equations of the model can be summarised in a matrix system of the form

~A1

stþ1

Et½ctþ1�

" #
¼ ~A2

st

ct

" #
þ ~A3xtþ

~A4Ltþ
~A5Et½Ltþ1�þBxtþOðe3Þ ð31Þ

xt ¼Nxt�1þet ð32Þ

Lt ¼ vech

xt

st

ct

2
64

3
75½xt st ct �

0
B@

1
CA ð33Þ

where B is a column vector with unity in the row corresponding to the equation for the evolution of net wealth (30) and
zero in all other rows.27 This is the second-order analogue of (13), which was used in the derivation of the solution for the
steady-state portfolio. However, note that in this case the coefficient matrices on the first-order terms differ from (13)
because (31) incorporates the effects of the steady-state portfolio. This is indicated by the tildes over the matrices A1, A2, A3,
A4 and A5.
22 Again, this particular property is not crucial for our procedure to work. It is simple to generalise our method to handle cases where the portfolio

excess return enters other equations of the model.
23 As before, Walras’s law implies that we need only consider one budget constraint.
24 Given that â t represents portfolio decisions made at the end of period t for holdings of assets into period t+1, it follows that â t will depend on the

value of state variables observable at time t. In terms of the notational convention we follow, the relevant vector is therefore [xt st+ 1], i.e. the values of x

and s prior to the realisation of etþ1.
25 To see why this is the case, note that we are approximating â t r̂ x,tþ1 in (27) only up to second-order accuracy. Because â t is a first-order variable,

r̂ x,tþ1 is also measured up to first order. We have already shown that up to a first order, r̂ x,tþ1 is a mean zero i.i.d. variable.
26 To clarify, Eq. (30) is formed by replacing â t�1 r̂ x,t with xt .
27 Note that Lt is a vectorised form of the matrix of cross products. The matrix of cross products is symmetric, so (33) uses the vechð�Þ operator, which

converts a matrix into a vector by stacking the columns of its upper triangle. Note also that the form of Eq. (31) may not be general enough to encompass

all dynamic general equilibrium models. For instance, some models may contain terms in the lagged value of Lt . Such terms can easily be incorporated

into (31) without affecting our solution approach.
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The state-space solution to this set of equations can be derived using any second-order solution method (see for
instance Lombardo and Sutherland, 2007). By extracting the appropriate rows and columns from the state-space solution it
is possible to write expressions for the second-order behaviour of ðĈ�Ĉ

�
Þ and r̂ x in the following form28:

ðĈ�Ĉ
�
Þ ¼ ½ ~D0�þ½

~D1�xþ½ ~D2�i½e�iþ½ ~D3�kð½z
f �kþ½zs�kÞþ½ ~D4�i,j½e�i½e�jþ½ ~D5�k,i½e�i½zf �kþ½ ~D6�i,j½z

f �i½zf �jþOðe3Þ ð34Þ

r̂ x ¼ ½
~R0�þ½

~R1�xþ½ ~R2�i½e�iþ½ ~R3�kð½z
f �kþ½zs�kÞþ½ ~R4�i,j½e�i½e�jþ½ ~R5�k,i½e�i½zf �kþ½ ~R6�i,j½z

f �i½zf �jþOðe3Þ ð35Þ

where time subscripts have been omitted to simplify notation and zf and zs are, respectively, the first and second-order
parts of the solution for z. These expressions are the second-order analogues of (15) and (16) (but note again that they
incorporate the effects of the steady-state portfolio).29 These expressions show how the second-order behaviour of ðĈ�Ĉ

�
Þ

and r̂ x depend on the excess returns on the time-varying element of portfolios (represented by xÞ and the state variables
and exogenous i.i.d. innovations.

As we noted above, up to first-order accuracy, the expected excess return is zero and, up to second-order accuracy, it is a
constant with a value given by (11). This implies that ½ ~R3�k½z

f �k ¼ 0 and that the terms ½ ~R3�k½z
s�k and ½ ~R6�i,j½z

f �i½zf �j are
constants. It also follows that

½ ~R0� ¼ E½r̂ x��½
~R3�k½z

s�k�½ ~R4�i,j½S�
i,j�½ ~R6�i,j½z

f �i½zf �j

so

r̂ x ¼ E½r̂ x��½
~R4�i,j½S�

i,jþ½ ~R1�xþ½ ~R2�i½e�iþ½ ~R4�i,j½e�i½e�jþ½ ~R5�k,i½e�i½zf �kþOðe3Þ ð36Þ

Now recognize that x is endogenous and given by

x¼ â r̂ x ¼ ½g�k½zf �kr̂ x

This is a second-order term, so r̂ x can be replaced by the first-order parts of (36), that is, by the term ½ ~R2�i½e�i. This implies
that

x¼ ½g�k½zf �kr̂x ¼ ½
~R2�i½g�k½e�i½zf �k ð37Þ

so (34) and (36) can be rewritten as follows:

ðĈ�Ĉ
�
Þ ¼ ½ ~D0�þ½

~D2�i½e�iþ½ ~D3�kð½z
f �kþ½zs�kÞþ½ ~D4�i,j½e�i½e�jþð½ ~D5�k,iþ½

~D1�½
~R2�i½g�kÞ½e�i½zf �kþ½ ~D6�i,j½z

f �i½zf �jþOðe3Þ ð38Þ

r̂ x ¼ E½r̂ x��½
~R4�i,j½S�

i,jþ½ ~R2�i½e�iþ½ ~R4�i,j½e�i½e�jþð½ ~R5�k,iþ½
~R1�½

~R2�i½g�kÞ½e�i½zf �kþOðe3Þ ð39Þ

These two expressions provide some of the components necessary to evaluate the left hand side of (25). The following
expressions for the first-order behaviour of home and foreign consumption and the two asset returns are also required

Ĉ ¼ ½ ~C
H

2 �i½e�
iþ½ ~C

H

3 �k½z
f �kþOðe2Þ, Ĉ

�
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F

3�k½z
f �kþOðe2Þ ð40Þ

r̂1 ¼ ½
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1

3�k½z
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where it should be noted that ½ ~R
1

3�k ¼ ½
~R

2

3�k. The coefficient matrices for these expressions can be formed by extracting the
appropriate elements from the first-order parts of the solution to (31).

Substituting (38)–(41) into (25) and deleting terms of order higher than three yields
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where use has been made of the fact that ½ ~D0� is a second-order term and that all third moments of e are assumed to be
zero.30

The fact that solutions (34) and (35) are based on an approximation where the steady-state portfolio is given by (22) by
definition implies that

½ ~D2�i½
~R2�j½S�

i,j ¼ 0 ð43Þ
28 The appendix discusses the steps necessary to derive these equations from a state-space solution based on Lombardo and Sutherland (2007).
29 Note that the matrices ~R2 and ~D2 in (34) and (35) will, in fact, be identical to the matrices defined by Eqs. (19) and (20) (which were derived in the

process of solving for the steady state portfolio).
30 The generalisation of the solution procedure to handle non-zero third moments is simply a matter of allowing for a constant term in the expression

for â . This constant term captures the first-order component of the steady state portfolio (which can be added to the zero-order component derived in the

previous section to obtain a first-order accurate expression for the steady-state portfolio). It is this first-order constant term that would be identified by

Samuelsons (1970) approach to approximating portfolio behaviour.
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This implies that (42) is homogeneous in [zf]. Thus, the following equation must be satisfied for all k:
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Using (40) and (41) it is possible to write the following expression for expected excess returns:
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Substituting this into (44), using the fact that from (38) and (40), it must be that ½ ~D2� ¼ ½
~C

H
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F

2�, ½
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3�, and
simplifying yields
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r
2
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F
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~R5�k,j

þ½ ~R1�½
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~R
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3�k½S�
i,j ¼ 0þOðe3Þ ð46Þ

which, by applying (43), simplifies to

½ ~R2�ið½
~D5�k,jþ½

~D1�½
~R2�j½g�kÞ½S�i,jþ½ ~D2�i½

~R5�k,j½S�
i,j ¼ 0þOðe3Þ ð47Þ

which implies, for all k, that

gk ¼�
ð½ ~R2�i½

~D5�k,j½S�
i,jþ½ ~D2�i½

~R5�k,j½S�
i,jÞ

½ ~D1�½
~R2�i½

~R2�j½S�
i,j

þOðeÞ ð48Þ

which is our solution for g.31 Eq. (48) expresses the solution for g in terms of tensor notation. It can equivalently be stated
in the form of a matrix expression, as follows:

g0 ¼ �ð ~D1
~R2S ~R

0

2Þ
�1
ð ~R2S ~D

0

5þ
~D2S ~R

0

5ÞþOðeÞ ð49Þ

It should be emphasized that implementing this solution procedure requires only that the user apply (48), which needs
only information from the second-order approximation of the model in order to construct the D and R matrices. So long as
the model satisfies the general properties described in Section 2, the other details of the model, such as production, labour
supply, and price setting can be varied without affecting the implementation. The derivations used to obtain (48) do not
need to be repeated. In summary, the solution for equilibrium g has three steps:
1.
Not

eva
Solve the non-portfolio equations of the model in the form of (31) to yield a state-space solution.

2.
 Extract the appropriate rows from this solution to form Eqs. (34) and (35) and thus derive ~D1, ~R2, ~D2, ~R5 and ~D5.

3.
 Calculate g using (48) or (49).
What is the intuition behind expression (48)? When we evaluate the portfolio selection equation up to a third order, we can no
longer describe the optimal portfolio choice as being determined by a constant covariance between ðĈ�Ĉ

�
Þ and r̂ x. Predictable

movements in state variables will lead to time-variation in this covariance, and this requires changes in the optimal portfolio
composition. Take for instance the first term in the numerator of (48), given by ½ ~R2�i½

~D5�k,j½S�
i,j. Looking at (34), we see that ½ ~D5�

captures the way in which movements in state variables affect the response of the consumption difference to stochastic shocks.
Since this leads to a predictable change in the covariance between the ðĈ�Ĉ

�
Þ and r̂ x so long as ½ ~R2� is non-zero, a compensating

adjustment of the optimal portfolio is required. The other term in the numerator has a similar interpretation; predictable
movements in the state variables affect the response of r̂ x to stochastic shocks at the second order, and so long as ½ ~D2�is non-zero,
this changes the covariance between ðĈ�Ĉ

�
Þ and r̂ x, and requires a change in the optimal portfolio.

5. Expected excess returns

Having derived an expression for g, and thus an expression for â, it is now relatively simple also to solve for the
dynamics of expected excess returns, E½r̂ x� using (26). Notice that (26) can be written as follows:

Et½r̂ x,tþ1þ
1
2 ðr̂

2
1,tþ1�r̂

2
2,tþ1Þþ

1
6ðr̂

3
1,tþ1�r̂

3
2,tþ1Þ� ¼GtþOðe4Þ ð50Þ

where

Gt ¼ Et

r
2
ðĈ tþ1þ Ĉ

�

tjþ1Þr̂ x,tþ1�
r2

4
ðĈ

2

tþ1þ Ĉ
�2

tþ1Þr̂ x,tþ1

þ
r
4
ðĈ tþ1þ Ĉ

�

tþ1Þðr̂
2
1,tþ1�r̂

2
2,tþ1Þ

2
664

3
775 ð51Þ
31 The error term in (48) is of order OðeÞ. Thus the solution for g is of the same order of approximation as the solution for ~a (the steady state portfolio).

e, however, that the solution for â will, nevertheless, be of first-order accuracy because â depends on the (inner) product of g and z, where the latter is

luated up to first order accuracy.
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In what follows we present a solution for Gt .
32 We postulate that Gt is a linear function of the state variables, z, as follows:

Gt ¼ d0þd
0ztþ1 ð52Þ

Notice that third-order evaluation of G requires first and second-order approximate expressions for r̂ x and Ĉþ Ĉ
�
. The

second-order solution for r̂ x is given in (39). The second-order solution for Ĉþ Ĉ
�

can be written in the following form:

ðĈþ Ĉ
�
Þ ¼ ½ ~G0�þ½

~G1�xþ½ ~G2�i½e�iþ½ ~G3�kð½z
f �kþ½zs�kÞþ½ ~G4�i,j½e�i½e�jþ½ ~G5�k,i½e�i½zf �kþ½ ~G6�i,j½z

f �i½zf �jþOðe3Þ ð53Þ

where, to simplify notation, time subscripts have been omitted. After substituting for x using (37), this becomes

ðĈþ Ĉ
�
Þ ¼ ½ ~G0�þ½

~G2�i½e�iþ½ ~G3�kð½z
f �kþ½zs�kÞþ½ ~G4�i,j½e�i½e�jþð½ ~G5�k,iþ½

~G1�½
~R2�i½g�kÞ½e�i½zf �kþ½ ~G6�i,j½z

f �i½zf �jþOðe3Þ ð54Þ

For convenience we define

½ ~G
A

5�k,i ¼ ½
~G5�k,iþ½

~G1�½
~R2�i½g�k

½ ~R
A

5�k,i ¼ ½
~R5�k,iþ½

~R1�½
~R2�i½g�k

After substitution from (39)–(41) and (54), (51) becomes

G¼
r
2

½ ~G2�i½
~R2�j½S�

i,jþ½ ~R
A

5�k,i½
~G2�j½S�

i,j½zf �k

þ½ ~G
A

5�k,i½
~R2�j½S�

i,j½zf �kþ
1

2
½ ~G2�i½

~R2�j½S�
i,j½ ~R

1

3�k½z
f �k

þ½ ~G3�k½z
f �kE½r̂ x�

�
r
2
ð2½ ~C

H

2 �i½
~C

H

3 �kþ2½ ~C
F

2�i½
~C

F

3�kÞ½
~R2�j½S�

i,j½zf �k

þ
1

2
½ ~G3�k½z

f �kð½ ~R
1

2�i½
~R

1

2�j�½
~R

2

2�i½
~R

2

2�jÞ½S�
i,j

2
6666666666664

3
7777777777775

ð55Þ

where use has been made of the fact that ½ ~G0� is a second-order term and that all third moments of e are assumed to be
zero. Making use of (45) this can be simplified to

G¼
r
2

½ ~G2�i½
~R2�j½S�

i,jþ½ ~R
A

5�k,i½
~G2�j½S�

i,j½zf �k

þ½ ~G
A

5�k,i½
~R2�j½S�

i,j½zf �kþ½ ~G2�i½
~R2�j½S�

i,j½ ~R
1

3�k½z
f �k

þ
r
2
½ ~G3�k½

~G2�i½
~R2�j½S�

i,j½zf �k

�
r
2
ð2½ ~C

H

3 �k½
~C

H

2 �iþ2½ ~C
F

3�k½
~C

F

2�iÞ½
~R2�j½S�

i,j½zf �k

2
666666664

3
777777775

ð56Þ

This expression can be further simplified by noting that, in equilibrium, ½ ~D2�i½
~R2�j½S�

i,j ¼ 0 and

2½ ~C
H

3 �k½
~C

H

2 �iþ2½ ~C
F

3�k½
~C

F

2�i ¼ ½
~D3�k½

~D2�iþ½
~G3�k½

~G2�i

hence

G¼
r
2

½ ~G2�i½
~R2�j½S�

i,jþ½ ~R
A

5�k,i½
~G2�j½S�

i,j½zf �k

þ½ ~G
A

5�k,i½
~R2�j½S�

i,j½zf �kþ½ ~G2�i½
~R2�j½S�

i,j½ ~R
1

3�k½z
f �k

2
64

3
75 ð57Þ

It thus follows that

d0 ¼
r
2
½ ~G2�i½

~R2�j½S�
i,j ð58Þ

dk ¼
r
2
½ ~R

A

5�k,i½
~G2�j½S�

i,jþ
r
2
½ ~G

A

5�k,i½
~R2�j½S�

i,jþd0½
~R

1

3�k ð59Þ

As before, it is not necessary to derive these expressions for each model. Having obtained a solution for g via (49) it is
simple to evaluate ½ ~R

A

5� and ½ ~G
A

5� and thus apply (58) and (59) to obtain d0 and d.
Eqs. (58) and (59) show that expected excess returns, while zero at the first order, are not in general zero at higher

orders. Eq. (58) shows that expected excess returns will contain a constant term which is second order and which depends
on the second moments of model variables. This effectively captures the steady state risk premium in expected excess
returns. Eq. (59) defines the coefficients which show how the risk premium varies through time in response to changes in
state variables. The resulting time variation in expected excess returns occurs at the third order level because the
coefficients, dk, are second order while the time variation in state variables in (52) is measured at the first order level.
32 It is straightforward to derive expressions for the terms ðr̂
2
1�r̂

2
2Þ and ðr̂

3
1�r̂

3
2Þ so, for the sake of brevity, we focus on the term G.
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The steady state and time varying element in risk premia identified by these calculations are likely to be quite small in
many standard macro models, unless one assumes that second moments are implausibly large and/or risk aversion is very
strong (as measured by the parameter r). Gourinchas and Rey (2007) claim that excess returns on US assets have been
quite large and vary systematically in response to shocks to the US current account. Devereux and Sutherland (2010) show
that risk premia in a simple dynamic endowment model, calculated using the solution method described in this paper, are
unlikely to be as large as suggested by the Gourinchas and Rey (2007) data. However, risk premia may be larger in models
which allow for more general specifications of consumer preferences. Alternatively large measured excess returns may
reflect trading frictions in financial markets. As previously noted, our solution method can be adapted to handle such
frictions.
6. Example

The solution procedure is illustrated using a simple dynamic endowment model. This is a one-good, two-country
economy where the utility of home households is given by

Ut ¼ Et

X1
t ¼ t

bt�t C1�r
t

1�r
ð60Þ

where C is consumption of the single good.33 There is a similar utility function for foreign households. The home and
foreign endowments of the single good are auto-regressive processes of the form

logYt ¼ zY logYt�1þeY ,t , logY�t ¼ zY logY�t�1þeY� ,t ð61Þ

where 0rzY r1 and eY and eY� are i.i.d. shocks symmetrically distributed over the interval ½�e,e� with
Var½eY � ¼ Var½eY� � ¼ s2

Y . Asset trade is restricted to home and foreign nominal bonds. The budget constraint of home
agents is given by

Wt ¼ aB,t�1rB,tþaB� ,t�1rB� ,tþYt�Ct ð62Þ

where W is net wealth, aB and aB� are holdings of home and foreign bonds and rB,t and rB� ,t are the real returns on bonds.
Net wealth is the sum of bond holdings, i.e. Wt ¼ aB,tþaB� ,t . Real returns on bonds are given by

rB,t ¼ RB,t
Pt�1

Pt
, rB� ,t ¼ RB� ,t

P�t�1

P�t
ð63Þ

where P and P� are home and foreign currency prices for the single tradeable good and RB and RB� are the nominal returns
on bonds. The law of one price holds so P=SP�where S is the nominal exchange rate (defined as the home currency price of
foreign currency).

Consumer prices are assumed to be determined by simple quantity theory relations of the following form:

Mt ¼ PtYt , M�t ¼ P�t Y�t ð64Þ

where home and foreign money supplies, M and M�, are assumed to be exogenous auto-regressive processes of the
following form:

logMt ¼ logMt�1þeM,t , logM�t ¼ logM�t�1þeM� ,t ð65Þ

where eM and eM� are i.i.d. shocks symmetrically distributed over the interval ½�e,e� with Var½eM� ¼ Var½eM� � ¼ s2
M .34

The first-order conditions for home and foreign consumption and bond holdings are

C�rt ¼ bEt½C
�r
tþ1rB� ,tþ1�, C��rt ¼ bEt½C�

�r
tþ1 rB� ,tþ1� ð66Þ

Et½C
�r
tþ1rB,tþ1� ¼ Et½C

�r
tþ1rB� ,tþ1�, Et½C�

�r
tþ1 rB,tþ1� ¼ Et½C�

�r
tþ1 rB� ,tþ1� ð67Þ

Finally, equilibrium consumption plans must satisfy the resource constraint

CtþC�t ¼ YtþY�t ð68Þ

To make the example easy, the shock processes are assumed to be independent from each other. There are four sources
of shocks in this model and only two independent assets. Hence, assets markets are incomplete.
33 In this example, we assume a constant time discount factor so as to allow for explicit algebraic solutions for portfolios.
34 It would be more conventional to assume that the demand for real balances depends on consumption rather than output (as assumed in (64)). Our

solution method can easily handle either assumption, but the formulation in (64) yields particularly simple results which are useful for demonstrating the

application of the method.
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6.1. Solution for steady-state bond holdings

Solving the model in linearised form and applying (22) yields the following expression for steady state bond holdings:

~aB ¼� ~aB� ¼ �
s2

Y

2ðs2
Mþs2

Y Þð1�bzY Þ

Home residents hold a gross negative position in home-currency bonds, because their real return (inversely related to the
home price level) is positively correlated with home consumption.

6.2. Solution for first-order time-variation in bond holdings

Solving the model up to the second order, and applying the procedures described in Section 4, we obtain the following
expressions:

~D1 ¼ ½2ð1�bÞ�

~R2 ¼ ½1 �1 �1 1�, ~D2 ¼ ½Y�2D 2D�Y 2D �2D�

~R5 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
6666664

3
7777775

, ~D5 ¼

D �D �D D
D �D �D D
0 0 0 0

0 0 0 0

�F F 0 �2F

2
6666664

3
7777775

where D¼ ðb�1Þ ~aB, Y¼ ð1�bÞ=ð1�bzY Þ, F¼ ð1�bÞ=b and, for simplicity, we set r¼ 1. The vectors zt and et are defined as
follows:

zt ¼ ½Ŷ t�1 Ŷ
�

t�1 M̂t�1 M̂
�

t�1 Ŵ t�1�
0

et ¼ ½eY ,t eY� ,t eM,t eM� ,t�
0

The solution for âB,t is

âB,t ¼ g1Ŷ tþg2Ŷ
�

t þg3M̂tþg4M̂
�

t þg5Ŵ t=b ð69Þ

where

g1 ¼ g2 ¼
1
2
~aB, g3 ¼ g4 ¼ 0, g5 ¼

1
2

Note that, from (28), it follows that the solution for âB� ,t is

âB� ,t ¼�g1Ŷ t�g2Ŷ
�

t�g3M̂t�g4M̂
�

t þð1�g5ÞŴ t=b ð70Þ

The intuition behind the time variation in portfolios in this example follows the logic of the previous section.
Predictable movements in home income make the consumption difference ðĈ�Ĉ

�
Þ more sensitive to stochastic shocks to

home or foreign income, when evaluated up to a second order. This means that consumers in each country must increase
the degree to which nominal bonds hedge consumption risk. So, for instance, in response to a predictable rise in home
income, home consumption becomes more sensitive to home output shocks, at the second order. As a result home
consumers increase their short position in home currency bonds. For the same reason, they increase their long position in
foreign bonds. A predictable rise in foreign income has the same effect.

In this example, movements in net wealth are distributed equally among home and foreign currency bonds. Hence, as
the home country’s wealth increases, beginning in the symmetric steady state, it increases its holdings of both bonds,
becoming less short in home currency bonds, and more long in foreign currency bonds. Of course the foreign country
experiences exactly the opposite movement.

The expressions for âB,t and âB� ,t given in (69) and (70) can be used to study the dynamic response of bond holdings to
shocks. Fig. 1 shows the response of home-country gross and net asset holdings to a persistent fall in home income.35 Fig. 1
shows that the short-run impact of a persistent fall in Y is a large one-time increase in home-country net wealth. This
comes from an (unanticipated) capital gain on the home portfolio, caused by a jump in P, given that home currency bonds
are a liability for the home country.36 But since the home endowment is persistently lower, net wealth subsequently falls
and converges to a new (lower) steady state. The extent of the initial rise and subsequent fall in net wealth depends on the
scale of the initial portfolio positions ~aB and ~aB� . As s2

M falls relative to s2
Y , steady state gross asset and liability positions are
35 The figure is based on the following parameter values: b¼ 0:98, r¼ 1:0, zY ¼ 0:9, and s2
Y ¼ s2

M . Bond holdings are measured in terms of the

deviation from steady-state value expressed as a percentage of steady-state income.
36 An equivalent interpretation is that the home country gains from an exchange rate depreciation.
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Fig. 1. Home country gross and net asset holdings.
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higher.With greater leverage, the initial rise in net wealth then becomes larger, and the subsequent decline smaller, so that
the response to a shock tends towards that under complete markets.

The movement in gross asset and liability positions are illustrated by the other plots in Fig. 1, which show how the time
path for net wealth is divided between holdings of home and foreign bonds. The short run effect of the fall in Y is to cause a
rise in the holdings of the home bond which is roughly equal in magnitude to the fall in net wealth. This can be understood
by considering Eq. (69) which shows that the fall in Y and the rise in Ŵ both imply that it is optimal for home agents to
increase their holdings of home bonds. On the other hand, the shock to income has a much smaller short-run effect on
home country holdings of the foreign bond because the fall in Y and the rise in W have offsetting effects on âB� , as can be
seen from (70). After the initial shock, as net wealth gradually falls, the holdings of home bonds and foreign bonds both
decline to new lower levels.
6.3. Solution for expected excess returns

The solution for expected excess returns can by obtained by applying the method described in Section 5. The second
order solution of the model yields the following expressions for the matrices ~R

A

5, ~G2 and ~G
A

5:

~R
A

5 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
6666664

3
7777775

, ~G2 ¼ ½1 1 0 0�

~G
A

5 ¼

zYDYþC �zYDY�C �zYDY zYDY
�zYDY�C zYDYþC zYDY �zYDY

0 0 0 0

0 0 0 0

ð2D�YÞF ðY�2DÞF �2DF 2DF

2
6666664

3
7777775

where C¼ zY ð1�zY ÞYð1þYÞ=2F.
Given the symmetric structure of this example model it is simple to show that

Et½
1
2 ðr̂

2
B,tþ1�r̂

2
B� ,tþ1Þþ

1
6ðr̂

3
B,tþ1�r̂

3
B� ,tþ1Þ� ¼ 0 ð71Þ

so Et½r̂ B,tþ1�r̂ B� ,tþ1� ¼GtþOðe4Þ.
The expressions for ~R2, ~R

A

5, ~G2 and ~G
A

5 given above can be used to derive an expression for Gt in the following form:

Gt ¼ d0þd1Ŷ tþd2Ŷ
�

t þd3M̂tþd4M̂
�

t þd5Ŵ t ð72Þ
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Applying (58) it is found that

d0 ¼ 0 ð73Þ

While applying (59) shows that

d1 ¼�d2 ¼
1
2zYs2

Y , d3 ¼ d4 ¼ d5 ¼ 0 ð74Þ

The solutions (73) and (74) indicate that the unconditional expected excess return on home currency bonds, evaluated up
to the third order, is zero. This is natural, since the model in this example is completely symmetric across countries. Shocks
to either country’s endowment, however, will lead to time variation in expected excess returns. In response to a persistent
shock to the home (foreign) endowment, the expected excess return on home currency bonds increases (decreases).

Fig. 2 illustrates the impact of a fall in the home country endowment (the same shock as in Fig. 1) on expected excess
returns on home currency bonds. In response to the fall in the home endowment, there is a shift in demand towards home
currency bonds, and away from foreign currency bonds (as illustrated in Fig. 1). This is associated with a persistent fall in
the expected return on home currency bonds relative to foreign currency bonds.37 Since the home country has a negative
position in home bonds, this anticipated fall in excess returns facilitates a continued portfolio transfer towards the home
agent.38 But the movement of expected excess returns in this example is very small, as shown in Fig. 2. Thus, following the
negative shock to the home endowment, the anticipated excess return on the home country portfolio is negligible in
comparison to the initial, unanticipated portfolio gain immediately following the shock.

7. Conclusion

This paper develops a simple analytical method for characterizing optimal equilibrium portfolios up to a first order in
stochastic dynamic general equilibrium models. In addition to obtaining time-varying optimal portfolio holdings, the
approach also gives a solution for time varying excess returns (or risk-premiums). There are a number of advantages of our
approach relative to previous models of portfolio choice. First, the method is not restricted to situations of low
dimensionality—we can use (49) to characterize portfolio holdings in any dynamic economic model in which it is practical
to employ second-order solution methods. Second, as we have shown, the method applies equally to contexts where
financial markets are either complete or incomplete. Third, the application of the formula does not actually require the user
to go beyond a second-order solution to the underlying model. While, as we have shown, capturing first order aspects of
portfolio behaviour requires a third-order approximation of the portfolio selection equations, all implications of that
approximation are already contained in the derived expressions for the response of portfolio holdings to predictable state
37 Using (23), (24) and (71) it is possible to show that third-order movements in Et[rx,t+ 1] are equal (but opposite in sign) to third-order movements in

the covariance between the stochastic discount factor (of both countries) and the excess return. Thus the decline in the excess return shown in Fig. 2 is

matched by a rise (of equal magnitude) in the correlations between the home and foreign stochastic discount factors and the excess return.
38 This is consistent with the empirical findings of Gourinchas and Rey (2007). They find that a decline in the US trade surplus is associated with a

persistent increase in the expected excess return on the US external portfolio.
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variables. The ingredients on the right hand side of (49) can all be obtained from a second-order approximation of the non-
portfolio parts of the model.

More generally, an advantage of our general formula is that it can provide simple and clear insights into the factors
which determine the dynamic evolution of portfolios and returns in general equilibrium. These insights may not always be
easy to obtain using a purely numerical solution procedure.
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Appendix

A number of alternative solution algorithms are now available for obtaining second-order accurate solutions to DSGE
models. See, for instance, Judd (1998), Jin and Judd(2002), Sims (2000), Kim et al. (2008), Schmitt-Grohé and Uribe (2004)
and Lombardo and Sutherland (2007). For the purposes of implementing our solution procedure for portfolio dynamics,
any of the methods described in this literature can be used to derive second-order accurate solutions to the non-portfolio
parts of a model. Care must be taken, however, to ensure that the solution thus obtained is transformed into the correct
format. As an example of the steps required to accomplish this, in this appendix we show how the Lombardo and
Sutherland (2007) solution can be transformed into the required format. Similar steps can be used to transform the second-
order solutions obtained by other methods.

It is assumed that the entire second-order approximation of the non-portfolio equations of the model can be
summarised in a matrix system of the form

~A1

stþ1

Et½ctþ1�

" #
¼ ~A2

st

ct

" #
þ ~A3xtþ

~A4Ltþ
~A5Et½Ltþ1�þBxtþOðe3Þ ð75Þ

xt ¼Nxt�1þet ð76Þ

Lt ¼ vech

xt

st

ct

2
64

3
75½xt st ct �

0
B@

1
CA ð77Þ

Lombardo and Sutherland (2007)show that the solution to a system of this form can be written as follows:

stþ1 ¼
~F 1xtþ

~F 2stþ
~F 3xtþ

~F 4Vtþ
~F 5 vechðSÞþOðe3Þ ð78Þ

ct ¼
~P1xtþ

~P2stþ
~P3xtþ

~P4Vtþ
~P5 vechðSÞþOðe3Þ ð79Þ

where

S¼ Etetþ1e0tþ1 ð80Þ

Vt � vech
xt

sf
t

" #
½xt sf

t �

 !
ð81Þ

sf
tþ1 ¼

~F 1xtþ
~F 2sf

tþOðe2Þ ð82Þ

where the superscript f indicates the first-order part of the solution.
When written in this form, the solutions for st +1 and ct depend on xt, st and the cross product of the vector ½xt sf

t �
0. And

thus the solution for ct + 1 depends on xt +1, st +1 and the cross product of the vector ½xtþ1 sf
tþ1�

0. Notice, however, that the
solutions for Ĉ tþ1�Ĉ

�

tþ1 and r̂ x,tþ1, given in Eqs. (34) and (35), are expressed in terms of zt + 1 and etþ1 (where
z0tþ1 ¼ ½xt stþ1�) and cross products of zt+ 1

f and etþ1. We show here how the solutions given in (78) and (79) can be re-
written in the appropriate form.

First note that ½xt sf
t �
0 and zt

f are related via the following equation:

xt

sf
t

" #
¼U1zf

tþU2et
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where

U1 ¼
N 0

0 I

� �
, U2 ¼

I

0

� �

It is thus possible to derive the following expression for Vt (where Vt is defined in (81)):

Vt ¼ X1 vechðete0tÞþX2 vecðzf
te
0
tÞþX3 vechðzf

t zf 0
t Þ ð83Þ

where

X1 ¼ LcU2 � U2Lh

X2 ¼ Lc½U2 � U1þU1 � U2P
0

�

X3 ¼ LcU1 � U1Lh

where the matrices Lc and Lh are conversion matrices such that

vechð�Þ ¼ Lcvecð�Þ

Lhvechð�Þ ¼ vecð�Þ

and P is a ‘permutation matrix’ such that, for any matrix Z,39

vecðZÞ ¼ P vecðZ0Þ

Eqs. (76) and (83) can now be used to write (78) and (79) in the following form:

stþ1 ¼
~F 1etþ½

~F 1N, ~F 2�ztþ
~F 3xtþ

~F 4X1 vechðete0tÞþ ~F 4X2 vecðzf
te
0
tÞþ

~F 4X3 vechðzf
t zf 0

t Þþ
~F 5 vechðSÞþOðe3Þ ð84Þ

ct ¼
~P1etþ½

~P1N, ~P2�ztþ
~P3xtþ

~P4X1vechðete0tÞþ ~P4X2 vecðzf
te
0
tÞþ

~P4X3 vechðzf
t zf 0

t Þþ
~P5 vechðSÞþOðe3Þ ð85Þ

and thus

ctþ1 ¼
~P1etþ1þ½

~P1N, ~P2�ztþ1þ
~P3xtþ1þ

~P4X1 vechðetþ1e0tþ1Þþ
~P4X2 vecðzf

tþ1e
0
tþ1Þþ

~P4X3vechðzf
tþ1zf 0

tþ1Þ

þ ~P5 vechðSÞþOðe3Þ ð86Þ

These expressions now express the solution to the non-portfolio parts of the model in a form which is appropriate for
constructing Eqs. (34) and (35). So, for instance, if Ĉ and Ĉ

�
are, respectively, the i th and j th elements of the vector c, then

~D2 is formed from the difference between i th and j th rows of ~P1, while ~D5 is formed from the difference between i th and j

th rows of ~P4X2. In the latter case, the row vector is transformed into the matrix ~D5 using the vec�1ð�Þ operator.
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