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Appendix A: Detailed theoretical analysis

This section of the appendix contains additional details about the theoretical analysis.

To solve for equilibrium portfolios in the theoretical model, I follow the same approach as HP: find

portfolio weights that decentralize the optimal allocation. I also follow HP’s approach to deriving intuition

for the solution from the risk-sharing condition.

A.1 Competitive equilibrium first-order conditions

The first-order conditions of the representative production firm in country i are:

wi(st) = υ(1− α)pi,i(st)

(
yi(st)

`i(st)

)
, (1)

pi,i(st) = (1− υ)µpi,i(st)

(
yi(st)

mi,i(st)

)
, (2)

pi,j(st) = (1− υ)

(
1− µ

I − 1

)
pi,i(st)

(
yi(st)

mi,j(st)

)
, j 6= i, (3)

Qi(st) = ∑
st+1∈S

Qi(st, st+1)

[
υαpi,i(st, st+1)

(
yi(st, st+1)

ki(st, st+1)

)
+ 1− δ

]
. (4)
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The first-order conditions of the representative retailer are

pi,i(st) = ω

(
gi(st)

gi,i(st)

)
, (5)

pi,j(st) =

(
1−ω

I − 1

)(
gi(st)

gi,j(st)

)
. (6)

The household’s first-order conditions are

ui,c(st)wi(st) + ui,`(st) = 0, (7)

ui,c(st)ei,j(st)qj(st) = β ∑
st+1∈S

π(st+1|st)ui,c(st, st+1)ei,j(st, st+1)(qj(st, st+1) + dj(st, st+1)), (8)

where ui,c(st) = uc(ci(st)) and ui,`(st) = u`(`i(st)). The household’s budget constraint and all market

clearing conditions must also be satisfied.

A.2 Planner’s problem

The optimal allocation is the solution to the following equal-weighted social planner’s problem:

max(
ci(st),`i(st),xi(st),ki(st),(gi,j(st),mi,j(st))j∈I

)
i∈I

1
I ∑

i∈I
∑
t=0

∑
st∈St

π(st)βu(ci(st), `i(st)) (9)

subject to

yi(st) =
[
zi(st)ki(st−1)α`i(st)1−α

]υ
[

mi,i(st)µ

(
∏
j 6=i

mi,j(st)
1−µ
I−1

)]1−υ

, (10)

gi(st) = gi,i(st)ω

(
∏
j 6=i

gi,j(st)
1−ω
1−I

)
, (11)

yi(st) =
I

∑
j=1

(
mj,i(st) + gj,i(st)

)
, (12)

gi(st) = ci(st) + xi(st), (13)

ki(st) = (1− δ)ki(st−1) + xi(st). (14)

2



We can write the first-order conditions of this problem for each country i as

ui,c(st)

[
υ(1− α)

yi(st)

`i(st)

] [
ω

gi(st)

gi,i(st)

]
+ ui,`(st) = 0, (15)

ui,c(st)

[
ω

gi(st)

gi,i(st)

]
= uj,c(st)

[
1−ω

I − 1
gj(st)

gj,i(st)

]
, (16)

mi,i(st) = (1− υ)µyi(st), (17)

mi,j(st) =

[
(1− υ)

1− µ

1− I
yi(st)

] [
ω

(1−ω)/(I − 1)
gi,j(st)

gi,i(st)

]
, (18)

ui,c(st) = β ∑
st+1∈S

ui,c(st, st+1)

[(
ω

gi(st, st+1)

gi,i(st, st+1)

)(
αυ

yi(st, st+1)

ki(st)

)
+ 1− δ

]
. (19)

These equations, together with the production functions (10)–(11) and the resource constraints (12) and (13),

characterize the solution to the planner’s problem.

A.3 Proof of proposition 1

We will show that if equilibrium portfolios are given by

1− λ =
(I − 1)(1− Dω− F(1−ω))

I − 1 + α [D + (I − 1)F− I(Dω + F(1−ω))]
, (20)

where the constants D and F are defined as

D =
1− µ− µυ− (I − 2)υ

Iµ + υ− Iµυ− I
, (21)

F =
(1− υ)(µ− 1)

Iµ + υ− Iµυ− I
, (22)

then there exists a set prices at which the planner’s solution satisfies all of the competitive equilibrium

first-order conditions. The candidate prices are as follows: the prices of gross output relative to domestic

final goods, pi,i(st) and pi,j(st), are given by equations (5) and (6); wages be given by (1); the real exchange

rates are given by the law of one price,

ei,j(st)pj,j(st) = pi,j(st); (23)

and stock prices are given by qi(st) = ki(st).

First, note that all market clearing conditions for goods are satisfied directly — they are constraints on

the planner’s problem — and that the candidate portfolio solution satisfies the market clearing condition

for equities. It remains to show that the first-order conditions and the household’s budget constraint are
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satisfied.

The first-order conditions (5), (6), (1), and (23) are trivially satisfied. The first-order condition for domestic

intermediates, equation (2), is the same as the planner’s optimality condition (17), so the former is satisfied.

Many of the other first-order conditions are yielded directly by substiting the candidate prices. Using the

candidates for pi,i(st) and pi,j(st) in the planner’s condition (18) yields the first-order condition for imported

interrmediates, equation (3), so that is satisfied as well. Using the candidates for wi(st) and pi,i(st) in the

planner’s condition (15) yields the household’s intratemporal first-order condition (7), so that is also satisfied.

Using the candidate for pi,i(st) in the planner’s condition (19) yields the first-order condition for investment

(4), so that is satisfied.

To show that the portfolio-choice first-order conditions (8) are satisfied, first note that using the candidate

prices in the planner’s optimality condition (16) yields the standard risk-sharing condition

ui,c(st)ei,j(st) = uj,c(st). (24)

Also note that we can express dividends as

di(st) = αυpi,i(st)yi(st)− xi(st) =

(
ω

gi(st)

gi,i(st)

)
αυyi(st)− ki(st+1) + (1− δ)ki(st) (25)

Multiply both sides of the planner’s choice for country-i investment (19) by ki(st):

ui,c(st)ki(st) = β ∑
st+1∈S

ui,c(st, st+1)

[(
ω

gi(st, st+1)

gi,i(st, st+1)

)
αυyi(st, st+1) + (1− δ)ki(st)

]

If we use the candidate stock price and the dividend expression above we get the first-order condition for

the choice of domestic stock. If we use the version of this equation for country j and use the risk-sharing

equation (24) we get country i’s first-order condition for the choice of country j’s stock.

All that remains is to show that the budget constraints are satisfied. Since portfolios are assumed constant

and symmetric, budget constraints reduce to (suppressing state dependent notation for brevity)

ci = wi`i + λdi +

(
1− λ

I − 1

)
∑
j 6=i

ei,jdj.

where λ is the portfolio weight on domestic stock. Use the candidate wage function and the dividend

expression (25):

ci = υ(1− α)pi,iyi + λ (υαpi,iyi − xi) +

(
1− λ

I − 1

)
∑
j 6=i

ei,j
(
υαpj,jyj − xj

)
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Use the candidate real exchange rate and rearrange:

ci = [υ(1− α) + λυα] pi,iyi +

(
1− λ

I − 1

)
∑
j 6=i

υαei,j pj,jyj − λxi −
(

1− λ

I − 1

)
∑
j 6=i

ei,jxj

From here, I complete the proof for two separate cases. In the simpler one, where υ = 1 so that there are

no intermediate inputs, we can take the same approach as in HP. Use market clearing for gross output and

the law of one price:

ci = [1− α + λα]

[
pi,igi,i + ∑

k 6=i
ei,j pj,igj,i

]

+ α

(
1− λ

I − 1

)
∑
j 6=i

[
pi,jgi,j + ei,j pj,jgj,j + ∑

k 6=i,j
ei,k pk,jgk,j

]

− λxi −
(

1− λ

I − 1

)
∑
j 6=i

ei,jxj

Use the candidate gross output prices and rearrange:

ci = [1− α + λα]

[
ωgi + ∑

k 6=i
ei,k

(
1−ω

I − 1

)
gk

]

+

(
1− λ

I − 1

)
α ∑

j 6=i

[(
1−ω

I − 1

)
gi + ei,jωgj + ∑

k 6=i,j
ei,k

(
1−ω

I − 1

)
gk

]

− λxi −
(

1− λ

I − 1

)
∑
j 6=i

ei,jxj

Collect like terms to get

ci =

[
ω +

(
1− λ

I − 1

)
α (1− Iω)

]
gi +

(
1

I − 1

)
∑
j 6=i

ei,j

[
1−ω−

(
1− λ

I − 1

)
α(1− Iω)

]
gj

− λxi −
(

1− λ

I − 1

)
∑
j 6=i

ei,jxj.

Rearrange and use market clearing for final goods:

gi =

[
ω +

(
1− λ

I − 1

)
α (1− Iω)

]
gi +

(
1

I − 1

)
∑
j 6=i

ei,j

[
1−ω−

(
1− λ

I − 1

)
α(1− Iω)

]
gj

+ (1− λ)(gi − ci)−
(

1− λ

I − 1

)
∑
j 6=i

ei,j(gj − cj).

5



Use the risk-sharing equation (24):

gi =

[
ω +

(
1− λ

I − 1

)
(I − 1 + α(1− Iω))

]
gi +

(
1

I − 1

)
∑
j 6=i

ei,j

[
1−ω−

(
1− λ

I − 1

)
(I − 1 + α(1− Iω))

]
gj.

This equation is satisfied if and only if the proposition is true, i.e.,

1− λ =
(I − 1)(1−ω)

I − 1 + α(1− Iω)
.

If υ < 1, we must use exploit the nature of roundabout production to complete the proof. Follow-

ing Johnson and Noguera (2012), we can write the system of gross output market clearing conditions in

expenditure form as


p1,1y1

p2,2y2
...

pI,IyI

 =


p1,1m1,1 + e1,2 p2,1m21 + . . . + e1,I pI,1mI,1

e2,1 p1,2m1,2 + p2,2m2,2 + . . . + e2,I pI,2mI,2
...

eI,1 p1,Im1,I + eI,2 p2,Im2,I + . . . + pI,ImI,I

+


p1,1g1,1 + e1,2 p2,1g21 + . . . + e1,I pI,1gI,1

e2,1 p1,2g1,2 + p2,2g2,2 + . . . + e2,I pI,2gI,2
...

eI,1 p1,I g1,I + eI,2 p2,I g2,I + . . . + pI,I gI,I


This is equivalent to


p1,1y1

p2,2y2
...

pI,IyI

 = A


p1,1y1

p2,2y2
...

pI,IyI

+


p1,1g1,1 + e1,2 p2,1g21 + . . . + e1,I pI,1gI,1

e2,1 p1,2g1,2 + p2,2g2,2 + . . . + e2,I pI,2gI,2
...

eI,1 p1,I g1,I + eI,2 p2,I g2,I + . . . + pI,I gI,I


where

A = (1− υ)


µ

1−µ
I−1 . . . 1−µ

I−1
1−µ
I−1 µ . . . 1−µ

I−1
...

...
. . .

...
1−µ
I−1

1−µ
I−1 . . . µ


This, in turn, is equivalent to


p1,1y1

p2,2y2
...

pI,IyI

 = (I − A)−1


p1,1g1,1 + e1,2 p2,1g21 + . . . + e1,I pI,1gI,1

e2,1 p1,2g1,2 + p2,2g2,2 + . . . + e2,I pI,2gI,2
...

eI,1 p1,I g1,I + eI,2 p2,I g2,I + . . . + pI,I gI,I


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The Leontief inverse matrix, (I − A)−1, is equal to

[υ (Iµ + υ− Iµυ− I)]−1


(1− µ− µυ− (I − 2)υ) (1− υ)(µ− 1) . . . (1− υ)(µ− 1)

(1− υ)(µ− 1) (1− µ− µυ− (I − 2)υ) . . . (1− υ)(µ− 1)
...

...
. . .

...

(1− υ)(µ− 1) (1− υ)(µ− 1) . . . (1− µ− µυ− (I − 2)υ)


Substitute this into the budget constraint to obtain

ci = [1− α + λα]

D

[
pi,igi,i + ∑

k 6=i
ei,k pk,igk,i

]
+ ∑

j 6=i
F

pi,jgi,j + ei,j pj,jgj,j + ∑
k 6=j

ei,k pk,jgk,j


+ α

(
1− λ

I − 1

)
∑
j 6=i

D

ei,j pj,jgj,j + pi,jgi,j + ∑
k 6=j

ei,k pk,jgk,j

+ F ∑
k 6=j

[
ei,j pj,kgj,k + pi,kgi,k + ∑

l 6=k
ei,l pl,kgl,k

]
− λxi −

(
1− λ

I − 1

)
∑
j 6=i

ei,jxj

where

D =
1− µ− µυ− (I − 2)υ

Iµ + υ− Iµυ− I
,

F =
(1− υ)(µ− 1)

Iµ + υ− Iµυ− I
.

Use the candidate prices and collect like terms to get

ci =

{
Dω + F(1−ω) +

(
1− λ

I − 1

)
α [D + (I − 1)F− I(Dω + F(1−ω)]

}
gi

+

(
1

I − 1

)
∑
j 6=i

ei,j

{
1− Dω− F(1−ω)−

(
1− λ

I − 1

)
α [D + (I − 1)F− I(Dω + F(1−ω)]

}
gj

− λxi −
(

1− λ

I − 1

)
∑
j 6=i

ei,jxj

Use final goods market clearing and the risk-sharing equation:

gi =

{
Dω + F(1−ω) +

(
1− λ

I − 1

)
(I − 1 + α [D + (I − 1)F− I(Dω + F(1−ω)])

}
gi

+

(
1

I − 1

)
∑
j 6=i

ei,j

{
1− Dω− F(1−ω)−

(
1− λ

I − 1

)
(I − 1 + α [D + (I − 1)F− I(Dω + F(1−ω)])

}
gj

This equation is satisfied if and only if the proposition is true, i.e.,

1− λ =
(I − 1)(1− Dω− F(1−ω))

I − 1 + α [D + (I − 1)F− I(Dω + F(1−ω))]
.

Differentiating this expression with respect to the key variables yields the relevant properties.
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A.4 Risk-sharing intuition

First, note that with log utility, perfect risk sharing requires that

ci(st) = ei,j(st)cj(st), ∀i, j.

Following HP, we can write this as ∆ci,j(st) = 0 for all i, j, where ∆ci,j(st) is the exchange-rate adjusted differ-

ence between domestic and foreign consumption. Let ∆yi,j(st) denote the exchange-rate adjusted difference

in nominal gross output between country i and country j. Similarly, let ∆xi,j(st) denote the exchange-rate

adjusted difference in investment.

If portfolios are constant and symmetric, then country i’s budget constraint implies

ci(st) = wi(st)`i(st) + λdi(st) +
1− λ

I − 1 ∑
j 6=i

ei,j(st)dj(st)

= (1− α)υpi,i(st)yi(st) + λ(αυpi,i(st)yi(st)− xi(st)) +
1− λ

I − 1 ∑
j 6=i

ei,j(st)(αυpj,j(st)yj(st)− xj(st).

The second line follows from equation (25). Thus, we get

∆ci,j(st) = υ

{
1− α

[
1−

(
1− Iλ

I − 1

)]}
∆yi,j(st) +

(
1− Iλ

I − 1

)
∆xi,j(st). (26)

Note that the terms involving yk(st) and xk(st) for k 6= i, j are cancelled out. When I = 2 and υ =, this

equation reduces to HP’s equation (18).

I proceed from here in two separate cases again. If there are no intermediate inputs, then nominal gross

output in country i is given by

pi,i(st)yi(st) =
I

∑
j=1

ei,j(st)pj,i(st)gj,i(st) = ωgi(st) +

(
1−ω

I − 1

)
∑
j 6=i

ei,j(st)gj(st).

Then ∆yi,j(st) is

∆yi,j(st) =

(
Iω− 1
I − 1

)
(gi(st)− ei,j(st)gj(st)) =

(
Iω− 1
I − 1

)
(∆ci,j(st) + δxi,j(st))

Using this in (26), we get an I-country version of equation (22) in HP:

∆ci,j(st) ∝
(

1− Iλ

I − 1

)
∆xi,j(st) +

{
1− α

[
1−

(
1− Iλ

I − 1

)]}(
Iω− 1
I − 1

)
∆xi,j(st))− ∆xi,j(st).

With intermediate inputs, we have to use the Leontief inverse again. Nominal gross output in country i
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is equal to

pi,i(st)yi(st) = D

[
pi,igi,i + ∑

k 6=i
ei,k pk,igk,i

]
+ ∑

j 6=i
F

[
pi,jgi,j + ei,j pj,jgj,j + ∑

k 6=j
ei,k pk,jgk,j

]

= [Dω + F(1−ω)] gi(st) +

[
1− Dω− F(1−ω)

I − 1

]
∑
j 6=i

ei,j(st)gj(st)

Thus, the gross output differential is now given by

∆yi,j(st) =

[
I(Dω + F(1−ω))− 1

I − 1

]
(∆ci,j(st) + ∆xi,j(st)).

Using this in (26), we get

∆ci,j(st) ∝
(

1− Iλ

I − 1

)
∆xi,j(st) + υ

{
1− α

[
1−

(
Iλ− 1
I − 1

)]} [
I(Dω + F(1−ω))− 1

I − 1

]
∆xi,j(st))− ∆xi,j(st).

Note that when υ = 1, D = 1 and F = 0 so this collapses to the expression for the first case.

Appendix B: Data

This section of the appendix contains additional details on data sources and data processing.

B.1 Measuring international portfolio diversification

I use the same measure of international portfolio diversification as HP: foreign assets and liabilities as a

percent of total country assets and liabilities. I calculate portfolio diversification for a country (not region!) i

as

DIVit =
FAit + FLit

2(Kit + FAit − FLit)
, (27)

where FAit, FLit, and Kit are country i’s gross foreign assets, gross foreign liabilities, and aggregate capital

stock at time t (note here i indexes individual countries, not regions). I use the same source as Heathcote and

Perri (2013) for the first two: the commonly-used dataset collected by Lane and Milesi-Ferretti (2007), which

now covers the period 1970–2011. FAit and FLit capture long and short positions in any assets that represent

a claim to country output: portfolio equity, FDI, debt, derivatives, and reserves. I express both as fractions

of nominal GDP. I use a different data source to calculate Kit, however. HP look at OECD countries, so they

naturally use the OECD Quarterly National Accounts as their source of national accounting data. The WIOD

input-output matrices use a different set of countries, many of which are not in the OECD. Further none of

the countries in the “rest of the world” are in the OECD. I therefore use the Penn World Tables I calculate
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Kit, again as a fraction of GDP, as

Kit =
CKi,t

CGDPOit
(28)

where CKit is country i’s capital stock at time t at current PPP’s, and CGDPOi,t is output-side real GDP at

current PPPs.

To calculate measures of portfolio diversification for each region, I take GDP-weighted averages. I

remove outlier countries with extreme observations (portfolio diversification less than -1,000 percent or

greater than 1,000 percent in any given year).1 Using other weighting schemes (or taking the median) yields

similar results for changes in regional diversification.

The python scripts portfolios.py and plots_regions.py in the “programs/python” folder in

the online supplement perform these calculations.

B.2 Constructing region-level TFP using the Penn World Tables

I use the Penn World Tables version 8.0. I extract country-level real value added, capital stock, and labor

input for each year in the data (1950–2011). I use the variable RGDPO as my data analogue of real value

added, vit. For the capital stock, I use the variables CK and CGDPO (capital and output at current PPPs) to

calculate the capital-output ratio as above, and multiply this by RGDPO. For labor, I multiply EMP (persons

engaged) by AVH (average hours per person engaged) and HC (human capital per person). Second, for

each year in the data I sum value added, capital, and labor across countries by region. I assign all countries

not in the WIOD dataset to the ROW region. This gives me value added, capital, and labor series for each of

the four model regions. Third, I calculate region-level TFP (in logs) as

log zit = log vit − α log kit − (1− α) log(nit), (29)

where vit, kit, and nit are region-level real value added, capital, and labor respectively. Last, I remove a linear

time trend before estimating the joint process


log z1(st)

log z2(st)

log z3(st)

log z4(st)

 = P


log z1(st−1)

log z2(st−1)

log z3(st−1)

log z4(st−1)

+


ε1(st)

ε2(st)

ε3(st)

ε4(st)

 . (30)

The python script tfp.py in the “programs/python” folder in the online supplement performs these

calculations.
1The outlier countries are: Panama, Syria, Vietnam, Yemen, Angola, Antigua and Barbuda, Bahrain, Belize, Chad, Congo, Ivory

Coast, Dominica, Equatorial Guinea, Ethiopia, Grenada, Iceland, Ireland, Laos, Lebanon, Liberia, Luxembourg, Madagascar, Mali,
Mozambique, Nigeria, Sao Tome and Principe, Sierra Leone, St. Lucia, St. Vincent, Sudan, Trinidad and Tobago, Zambia, Zimbabwe.
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B.3 Input-output data

The input-output data come from the World Input Output Database (Timmer et al., 2015). This database

contains a world input-output table for each year from 1995 through 2011. Each input-output table contains

gross output, value added, intermediate inputs, consumption, and investment for 40 countries and 35 sectors.

Final demand and intermediate use are listed by source and destination; the dataset distinguishes imports

and exports by use as well as sector.

In addition to the 40 countries in the dataset, the WIOD data include a composite “rest of the world”

which represents the group of developing countries that do not have good national input-output data. The

rest of the world’s gross output and value added are implied by world market clearing conditions; they are

constructed by reconciling the national accounts of the 40 countries included in the database with world

output and final demand in the UN National Accounts. The rest of the world’s intermediate-input matrix is

constructed by averaging the data for Brazil, China, India, Indonesia, Mexico, and Russia. Thus, we can think

of the rest of the world as an additional composite emerging economy. To compute portfolio diversification

and TFP for the rest of the world, I use all countries in the relevant dataset that are not in one of the first

three regions.

Below, I describe the construction of each of the input-output tables used in the analysis. The spreadsheet

“4country_alt_scenarios.xlsm” in the “excel” folder in the online supplement performs almost all of the steps.

B.3.1 Benchmark input-output tables

To construct the 1995 and 2011 benchmark tables, I start with the raw WIOD data for each year. First, I

aggregate all industries into one sector and aggregate countries according to the regional aggregation in

Table 1 in the main text. The raw underlying data are large, so I have not included them in the online

supplement; they are available upon request. The python script prepare_wiod_data.py performs the

aggregation and stores intermediate files in the folder “programs/python/wiod_data.” These files are

included in the online supplement. The python script iomats.py uses the intermediate files to construct

unbalanced input-output tables and write them to .csv files which I manuall load into the excel spreadsheet.

All steps in this section from here on out are contained therein.

Second, I use the RAS algorithm outlined below to modify the table so that each region’s aggregate

trade balance is zero. I impose the following restrictions on row and column totals: (i) each region’s GDP in

the new table equals the its GDP in the raw data; (ii) each region’s gross output in the new table equals its

gross output in the raw data; (iii) each region’s domestic absorption equals its GDP; and (iv) each region’s

investment rate in the new table is the same as in the raw data. These two tables are constructed in the

worksheets “BenchBalanced-1995” and “BenchBalanced-2011” in the spreadsheet. The sheets “iomat-bal-
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bench-1995” and “iomat-bal-bench-2011,” which are linked to the previous two, are used to save the CSV

output used in the MATLAB code to calibrate the model.

B.3.2 Counterfactual 1: size only

To construct the first counterfactual input-output table, I use the RAS algorithm to modify the 1995 bench-

mark table obtained in the previous section so that is satisfies the following requirements: (i) each region’s

GDP in the new table matches its GDP in the 2011 benchmark table; (ii) each region’s gross output/GDP

ratio in the new table equals its gross output/GDP ratio in the 1995 benchmark; and (iii) each region’s

investment rate in the new table equals its investment rate in the 1995 benchmark. The counterfactual table

is constructed in the sheet “Alt1-Balanced-Size” and the CSV output is contained in the sheet “iomat-bal-

size-counter.”

B.3.3 Counterfactual 2: trade openness only

To construct the second counterfactual input-output table, I use the RAS algorithm to modify the 1995

benchmark table obtained in the previous section so that is satisfies the following requirements: (i) the sum

of each region’s exports and imports as a fraction of world GDP in the new table is the same as in the

2011 benchmark; (ii) each region’s net exports as a fraction of world GDP in the new table are the same as

in the 1995 benchmark (i.e., zero); (iii) the shares of each region’s imports that are used for intermediates,

consumption, and investment in the new table are the same as in the 1995 benchmark; and (iv) each region’s

investment rate in the new table is the same as in the 1995 benchmark. The counterfactual table is constructed

in the sheet “Alt2-Balanced-Trd” and the CSV output is contained in the sheet “iomat-bal-trd-counter.”

B.3.4 Counterfactual 3: intermediate trade only

To construct the third counterfactual input-output table, I use the RAS algorithm to modify the 1995 bench-

mark table obtained in the previous section so that is satisfies the following requirements: (i) the sum of

each region’s intermediate trade (exports and imports) as a fraction of its total trade in the new table is the

same as in the 2011 benchmark; (ii) the sum of each region’s total trade as a fraction of world GDP in the

new table is the same as in the 1995 benchmark; (iii) each region’s intermediate and final trade balances

as fractions of world GDP in the new table are the same as in the 1995 benchmark; (iv) the shares of each

region’s final imports that are used for consumption and investment in the new table are the same as in the

1995 benchmark; and (v) each region’s consumption share of domestic absorption in the new table is the

same as in the 1995 benchmark. The counterfactual table is constructed in the sheet “Alt1-Balanced-IO” and

the CSV output is contained in the sheet “iomat-bal-io-counter.”
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B.3.5 Unbalanced-trade versions

The unbalanced-trade versions of the benchmark input-output tables use the RAS algorithm on the raw data

just to ensure that all markets clear exactly; there are slight rounding errors in the raw data. These tables

are l isted in the worksheets the worksheets “BenchmarkIOMatrix-1995” and “BenchmarkIOMatrix-2011”

in the spreadsheet, and the CSV output is contained in the sheets “iomat-bal-bench-1995” and “iomat-bal-

bench-2011.”

The unbalanced-trade versions of the first three counterfactuals are constructed in exactly the same way

as in the baseline analysis, except that I start with the unbalanced 1995 benchmark. The construction is in

the sheets “Alt1-Size,” “Alt2-Trd,” and “Alt3-IO.” The CSV output is contained in the sheets “iomat-size-

counter,” “iomat-trd-counter,” and “iomat-io-counter.”

To construct the fourth counterfactual input-output table, I start with the unbalanced 1995 benchmark

table and use the RAS algorithm with the following restrictions: (i) each region’s net exports as a fraction of

world GDP in the new table is the same as in the 1995 benchmark; (ii) each region’s total trade as a fraction

of world GDP in the new table is the same as in the 1995 benchmark; and the same restrictions (iii) and (iv)

imposed in the second counterfactual. The construction is performed in the sheet “Alt4-NX” and the CSV

output is in the sheet “iomat-nx-counter.”

B.3.6 Using RAS to construct counterfactual input-output matrices

The RAS algorithm (Bacharach, 1965) works as follows. Let M0 ∈ RJ×K denote the initial matrix which

the user wishes to adjust (in this case M0 is the 1995 benchmark matrix). Let u ∈ RJ denote the vector of

user-supplied row sums which with the matrix should be made consistent. v ∈ RK denotes the desired

column sums. The goal of the procedure is to find a new matrix M′ that is similar to M0 and also satisfies

∑K
k=1 Mjk = uj, ∀j and ∑J

j=1 Mjk = vk, ∀k.

First, define the operators r : RJ×K → RJ and s : RJ×K → RK by

rj(M) =
uj

∑K
k=1 Mjk

, j = 1, . . . , J (31)

sk(M) =
vk

∑J
j=1 Mjk

, k = 1, . . . , K. (32)

Next, define the operators T1 : RJ×K → RJ×K and T2 : RJ×K → RJ×K by

T1(M) = diag(r(M))M (33)

T2(M) = M diag(s(M)). (34)
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Last, define T : RJ×K → RJ×K by

T(M) = T2(T1(M)). (35)

The desired matrix M′ is obtained by iterating on T starting with M0, i.e., M′ = limn→∞ Mn, where Mn =

T(Mn−1) for n > 0.

The spreadsheet described above contains an Excel VBA macro that implements the RAS algorithm and

applies it to each of the input-output tables.

Appendix C: Solving for equilibrium portfolios numerically

This section of the appendix illustrates how to extend the method of Devereux and Sutherland (2011),

henceforth DS, to my many-country, many-asset environment.

Following that study’s lead, let αi,j(st) = qj(st)αi,j(st) denote the value of country i’s holding of country

j’s stock. I will solve for the steady state values of these variables rather than the portfolio weights, λi,j(st),

directly. We can write households’ budget constraints as

pi,c(st)ci(st) + Wi(st) = wi(st)`i(st) +
I

∑
j=1

αi,j(st)(Rj(st)− RI(st)) + Wi(st−1)RI(st), (36)

where Wi(st) is the total value of country i’s portfolio:

Wi(st) =
I

∑
j=1

αi,j(st). (37)

In other words, its net foreign assets.

For this purpose, I ignore the portfolio wedges τi. The key second-order approximation of the portfolio

choice first order conditions, the portfolio choice equation from the main text,

0 = ∑
st+1∈S

π(st, st+1)

[
R̂j(st, st+1)− R̂I(st, st+1) +

1
2

(
R̂j(st, st+1)

2 − R̂I(st, st+1)
2
)

+
(
−γĉi(st, st+1)− p̂i,c(st, st+1)

) (
R̂j(st, st+1)− R̂I(st, st+1)

)
+ eτi1{i 6=j} − eτi1{i 6=I}

]
, ∀j < I, (38)

simplifies to

∑
st+1∈S

[
R̂j,x(st, st+1) +

1
2

(
R̂j(st, st+1)

2 − R̂I(st, st+1)
2
)

− (γĉi(st, st+1) + p̂i,c(st, st+1))R̂j,x(st, st+1)

]
= 0, ∀i, ∀j 6= I, (39)
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where R̂x,j(st) is the excess return on tree j:

R̂x,j(st) = R̂j(st)− R̂I(st). (40)

There are I − 1 of these equations for each country I — I(I − 1) equations in total. This ought to be enough

to pin down αi,j for all i = 1, . . . , I and all j = 1, . . . I − 1. We can reduce this a bit, recognizing that we only

need to solve for αi,j for the first I − 1 countries (the last country’s portfolio shares will be implied by share

market clearing). Combine them to yield

∑
st+1∈S

[
ĉi,D(st, st+1)R̂j,x(st, st+1)

]
= 0, ∀i 6= I, ∀j 6= I, (41)

where

ĉi,D(st) = −γ
(
ĉi(st, st+1 − ĉI(st, st+1)

)
− ( p̂i,c(st, st+1)− p̂c,I(st, st+1)) (42)

are marginal utility differentials as in DS. This is (I − 1)(I − 1) distinct equations, which ought to be just

what we need to pin down αi,j for each of the first I − 1 countries and I − 1 asssets.

DS point out that evaluating the products of the marginal utility differentials and excess returns in

the equations above to second-order accuracy requires only first-order accurate solutions for the two com-

ponents ĉi,D(st) and R̂i,x(st). We can therefore linearize the rest of the equilibrium system around the non-

stochastic steady-state given some choice of αi,j, ignoring the portfolio shares and portfolio choice optimality

conditions, and solve to get recursive decision rules as in any linearized macro model. We then use these

decision rules to check that (42) are satisfied.

One could solve for αi,j in an iterative manner, making a guess, checking to see if (42) are satisfied, and

updating the guess if not. However, following DS there is a much simpler approach. The expected value

after history st of R̂j,x(st, st+1) is zero, so we can define an auxilliary i.i.d. exogenous variable

ξi(st) =
1
β

I−1

∑
j=1

αi,jR̂i,x(st), (43)

or in matrix notation

ξi(st) =
1
β

α′i R̂x(st) = α̃′i R̂x(st). (44)

Note that we now need one for each country since the total excess return of each country’s portfolio dpends

on its vector of shares αi. In DS, there is only one auxilliary variable.

Replace each country’s total excess portfolio returns in its budget constraint with ξi(st):

pi,c(st)ci(st) + Wi(st) = wi(st)`i(st) + ξi(st) + Wi(st−1)RI(st). (45)
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Using net foreign assets, Wi(st), as state variables in addition to capital stocks, we can linearize the non-

portfolio equations and solve for recursive decision rules for non-portfolio variables using standard methods.

These rules take the following form in DS notation:

st+1 = F1xt + F2s2 + F3ξt (46)

ct = P1xt + P2s2 + P3ξt (47)

xt = Nxt−1 + Σet, (48)

where xt is the vector of exogenous state variables, st is the vector of endogenous states, ct is the vector of

controls,

ξt = [ξ1,t, . . . , ξ I−1,t]
′ , (49)

and the last equation is the Markov process for the exogenous states. From here on out, I omit the history-

dependent notation given that all model variables are recursively defined.

By extracting the appropriate coefficients from above, we can write

R̂x,t+1︸ ︷︷ ︸
(I−1)×1

= R1︸︷︷︸
(I−1)×(I−1)

· ξt+1︸︷︷︸
(I−1)×1

+ R2︸︷︷︸
(I−1)×I

· et+1︸︷︷︸
I×1

, (50)

where the matrices R1 and R2 are formed from the appropriate rows from the decision rule matrices above.

This looks just like in DS, except that R1 is an (I − 1)× (I − 1) matrix rather than a vector with length equal

to the number of assets. This expression confirms that excess returns are indeed i.i.d., being functions of

other i.i.d. variables only. Now, use the definition of ξi(st),

ξi,t+1 = α̃′i R̂x,t+1, (51)

and stack to get

ξt+1 =


ξ1,t+1

ξ2,t+1
...

ξ I−1,t+1


︸ ︷︷ ︸

(I−1)×1

=


α̃′1

α̃′2
...

α̃′I−1


︸ ︷︷ ︸

(I−1)×(I−1)

R̂x,t+1︸ ︷︷ ︸
(I−1)×1

= α̃′R̂x,t+1 (52)

Now plug this into (50) to get

ξt+1 = (α̃′R2)(I(I−1) − α̃′R1)
−1et+1 = H̃et+1 (53)

R̂x,t+1 = (R1H̃ + R2)et+1 = R̃et+1. (54)
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These are basically the same as (A.5) - (A.7) in DS, except that the identity matrix shows up in the inverse

term instead of a unit scalar.

We perform a similar trick with the consumption differential, which can be written as

ci,D,t+1 = Di,1ξt+1 + Di,2et+1 + Di,3

 xt

st+1


= (Di,1H̃ + Di,2)et+1 + Di,3

 xt

st+1


= D̃iet+1 + Di,3

 xt

st+1

 . (55)

Now multiply by the excess return:

0 = Et
[
ĉi,D,t+1R̂x,t+1

]
= Et

D̃iet+1 + Di,3

 xt

st+1

 R̃et+1


= Et

D̃iet+1R̃et+1 + Di,3

 xt

st+1

 R̃et+1


= Et

[
R̃et+1e′t+1D̃′i

]
= R̃︸︷︷︸

(I−1)×I

Σ︸︷︷︸
I×I

D̃′i︸︷︷︸
I×1

, (56)

where the fourth line follows from the fact that et+1 is i.i.d., and the fifth from the fact that the expected

value of e′t+1et+1 is the variance-covariance matrix of the innovations.

The last step is to stack the resulting expressions above and solve for the portfolio shares. To be explicit,

we solve for αi,j such that 
R̃ΣD̃′1
R̃ΣD̃′2

...

R̃ΣD̃′I−1

 =


0

0
...

0

 . (57)

This is a system of (I − 1)(I − 1) equations in the same number of variables.

The MATLAB script lucas_trees.m in the “programs/matlab/lucas_tree_model” folder in the online

supplement illustrates how to apply this solution method to a simple Lucas tree model. Upon running the

script, the user will find that the program matches the theoretical solution for portfolio diversification exactly

for any number of countries.
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The MATLAB script quant_model.m in the “programs/matlab/quantitative_model” folder in the

online supplement performs all of the quantitative exercises in the paper. In each exercise, it calibrates the

model to input-output data, linearizes the non-portfolio equations, and solves for equilibrium portfolios.

When calibrating to the 1995 benchmark input-output table, it also calibrates the wedge parameters to match

diversification data.
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