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Summary  

The ever-expanding use of ordinal data is usually facilitated by artificial attribution of 
cardinal scale to ordered categories. Such practices have been shown to lead to 
ambiguous and equivocal results. Here a probabilistic distance construct is employed to 
develop unambiguous level and inequality measures for ordinal situations analogous to the 
Mean and Gini coefficient used in cardinally measurable paradigms. The commonality of 
the probabilistic distance measure across dimensions means that the measures are 
readily extended to multidimensional situations. The measures are exemplified in an 
analysis of the progress of health outcomes in pre-covid 21st century United Kingdom.   
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Introduction. 

The increasing use of opinion surveys1, clinical trials with categorical outcomes (Koch et.al. 

1998), political polling, and happiness and satisfaction surveys (Clark et.al. 2016, 

Lauderdale et.al. 2020), has heralded widespread growth in the use of Ordered Categorical 

Data (OCD). Difficulties arise with analyzing OCD because it is bereft of cardinal measure, 

a problem often circumvented by artificially attributing cardinal scale to the ordered 

categories (e.g. Cantril (1965), Likert (1932) or Rankin (1957) scales). However, the practice 

has recently met with criticism within the economics literature (Bond and Lang 2019, 

Schröder and Yitzhaki 2017) since such artificial attribution engenders ambiguity and 

equivocation in interpreting location and diversity measures (alternative equally valid 

scales can be shown to yield very different and sometimes contradictory conclusions). All 

of which highlights the need for unambiguous comparison instruments in OCD 

environments. 

Here, using a probabilistic distance construct (Mendelson 1987), 𝜇𝑂𝐶 and 𝐺𝑂𝐶, location and 

diversity measures analogous to the Mean and Gini coefficient employed in cardinally 

measurable situations, are developed and exemplified in unambiguously measuring levels 

of, and the diversity in, ordered categorical outcome distributions. Intuitively the 

probabilistic distance between two outcome levels is the chance that an outcome occurs 

between the boundaries they define, the greater that chance, the greater the distance 

between them. The specificity of the application - an analysis of self-reported health 

outcomes in the United Kingdom - should not obscure the fact that these techniques can 

be used in a wide range of ordered categorical situations. Indeed, the commonality of the 

probabilistic metric that is employed across dimensions in multivariate OCD situations 

facilitates the extension of these techniques to multivariate environments  in ways that 

have proved difficult in continuous multidimensional environments where different 

dimensions operate under different metrics. 

 
1 The number of active polling and survey agencies in North America more than doubled in the first 20 years of 
the 21st Century (Kennedy et.al. 2023). 



In what follows, Section 1 develops Mean and Gini-like dispersion statics for univariate 

ordinal data and outlines additional analysis techniques used in that data environment. 

Section 2 exemplifies their use in analyzing the progress of health outcomes in pre-covid 

21st Century United Kingdom. Conclusions are drawn in section 3 and bivariate extensions 

and appropriate inference procedures are outlined in the appendix.  

1. Development of mean and Gini-like coefficient measures. 

1.1 The Ordered Categorical Mean. 

The Ordered Categorical Mean 𝜇𝑂𝐶 is developed as an analogue of the classical mean 

employed in a cardinally measurable world. In that continuous world 𝑓(𝑦), the probability 

density function of the random variable 𝑌, is defined on the real line such that 𝑓(𝑦) ≥ 0 

with ∫ 𝑓(𝑦)𝑑𝑦
∞

−∞
= 1. The Cumulative Distribution Function 𝐹(𝑦) = ∫ 𝑓(𝑧)𝑑𝑧

𝑦

−∞
, where 

𝐹(𝑦) = 𝑃(𝑌 ≤ 𝑦) is the probabilistic distance of 𝑦 from its lower bound, has a 

corresponding Survival Function 𝑆(𝑦) = 1 − 𝐹(𝑦) where 𝑆(𝑦) = 𝑃(𝑌 > 𝑦) is the 

probabilistic distance of 𝑦 from its upper bound. The mean 𝜇, where  𝜇 = ∫ 𝑦𝑓(𝑦)𝑑𝑦
∞

−∞
, 

also has a probabilistic interpretation. Integrating ∫ 𝑦𝑓(𝑦)𝑑𝑦
∞

−∞
 by parts will show it to be 

equal to ∫ 𝑆(𝑦)𝑑𝑦
∞

−∞
 which implies that 𝜇 may be alternatively described as the cumulation 

of chances of higher outcomes than 𝑦 over its range. In essence it is an index of the extent 

to which higher outcomes are probable throughout the range of the distribution. 

𝑆(𝑦), in its role in the First Order Stochastic Dominance condition formulation2, features in 

the development of 𝜇𝑂𝐶’s  properties in the ordinal world. Note that, for alternative 

distributions 𝑓𝑎(𝑦) and 𝑓𝑏(𝑦), 𝜇𝑎 − 𝜇𝑏 = ∫ (𝑆𝑎(𝑦) − 𝑆𝑏(𝑦))𝑑𝑦 > 0
∞

−∞
 does not imply that 

the chance of a higher than 𝑦 outcome under 𝑓𝑎(𝑦) is at least as great as under 𝑓𝑏(𝑦) at 

every 𝑦. To establish that an unambiguity factor 𝑈𝑁𝐴𝑀 = ∫ (𝑆𝑎(𝑦) − 𝑆𝑏(𝑦))𝑑𝑦/
∞

−∞

 
2 For any two distributions of 𝑦, 𝑓𝑎(𝑦) and 𝑓𝑏(𝑦), 𝑆𝑎(𝑦) ≥ 𝑆𝑏(𝑦) ∀ 𝑦 with strict inequality for some 𝑦 
guarantees the expected value of any monotonic increasing function of 𝑦 to be at least as great under 
𝑓𝑎(𝑦) as under 𝑓𝑏(𝑦). In essence the condition requires the chance of a higher outcome than 𝑦 to always be at 
least as great under 𝑓𝑎(𝑦) than under 𝑓𝑏(𝑦) and strictly greater for some 𝑦.  



∫ |𝑆𝑎(𝑦) − 𝑆𝑏(𝑦)|𝑑𝑦
∞

−∞
, must equal 1, only then can it be said that chances of higher 

outcomes under 𝑓𝑎(𝑦) are unequivocably at least as good as under 𝑓𝑏(𝑦). 

In the ordinal world an Ordered Categorical Mean can be analogously construed as the 

cumulation (i.e. sum) of the survival function over the ordered categories where the 

Survival Function at a particular category is the chance of being in any higher category. To 

fix ideas, let 𝑝 be a 𝐾 long vector of probabilities 𝑝𝑖 of realizing the 𝑖’th of 𝐾 ordered 

categories indexed 𝑖 = 1, . . , 𝐾 where 0 ≤ 𝑝𝑖 ≤ 1 ∀ 𝑖 𝑤𝑖𝑡ℎ ∑ 𝑝𝑖
𝐾
𝑖=1 = 1. Let 𝑃 be the 𝐾 long 

vector of cumulative densities (with typical element 𝑃𝑖) where 𝑃𝑖 = ∑ 𝑝𝑗
𝑖
𝑗=1  and Let 𝑆 be the 

𝐾 long vector of survival function probabilities (with typical element 𝑆𝑖 = 1 − 𝑃𝑖). Then 𝜇𝑂𝐶 

the Ordered Categorical Mean can be defined as: 

                                                                          𝜇𝑂𝐶 = ∑ 𝑆𝑖
𝐾
𝑖=1                                           [1]  

Note that, 𝜇𝑂𝐶 is a unique cardinally measurable number between 0 (when all the mass is 

at the lowest category) and K-1 (when all the mass is in the highest category), dividing 𝜇𝑂𝐶 

by 𝐾 − 1 will render it comparable across variables with differing numbers of categories. 

Furthermore, the commonality of the distance measure across dimensions, means that [1] 

is readily extended to multi-dimensioned ordered categorical environments, the bivariate 

case is developed in the appendix. 

Given a random sample of OCD observations, inference regarding [1] is straightforward and 

is outlined in the appendix. Note that, for any two distributions 𝑝𝑎 and 𝑝𝑏 over the same 

group of categories with respective ordered categorical means 𝜇𝑂𝐶,𝑎 and  𝜇𝑂𝐶,𝑏 , 𝜇𝑂𝐶,𝑎 −

 𝜇𝑂𝐶,𝑏 = ∑ (𝑆𝑎,𝑖 − 𝑆𝑏,𝑖)
𝐾
𝑖=1 > 0, even though such a difference may be statistically 

significant, does not imply that the chance of a higher outcome under 𝑝𝑎  is greater than 

that under  𝑝𝑏 at every category. For that  𝑈𝑁𝐴𝑀 =
∑ (𝑆𝑎,𝑖−𝑆𝑏,𝑖)
𝐾
𝑖=1

∑ |(𝑆𝑎,𝑖−𝑆𝑏,𝑖)|
𝐾
𝑖=1

= 1 needs to be 



established3, only then can it be said that chances of higher outcomes under 𝑝𝑎 are 

unequivocably at least as good as under 𝑝𝑎.  

1.2 The Ordered Categorical Gini coefficient. 

When the random variable resides in the positive orthant, the classic Gini Coefficient 

formula is given by: 

𝐺 =
1

𝜇
∫ 𝑓(𝑦)∫ 𝑓(𝑥)

∞

0

∞

0

|𝑥 − 𝑦|𝑑𝑥𝑑𝑦 

Which, in words is the mean standardized expected distance between every pair of points 

in the range of the random variable. For a random sample of n observations 𝑥𝑖 , 𝑖 = 1, . . , 𝑛 

on the continuous random variable 𝑋, the Gini Coefficient can be estimated by: 

                                                                   𝐺 = 1

𝜇𝑛2
∑ ∑ |𝑥𝑖 − 𝑥𝑗|

𝑛
𝑗=1

𝑛
𝑖=1   

where 𝜇 = 1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1  which in words is the mean standardized average distance between 

every pair of points in the sample.  

An analogous Gini coefficient for Ordered Categorical Data can be developed using the 

probabilistic distance concept and the Ordered Categorical Mean developed above. The 

probabilistic distance between two outcomes is the chance that an outcome occurs 

between the boundaries they define, the greater that chance, the greater the distance. In 

the univariate case 𝑃  can be used to define 𝑑(𝑖, 𝑗), the probabilistic distance between 

category i and category j. Suppose 𝑖 > 𝑗 then 𝑃𝑖 − 𝑃𝑗  = ∑ 𝑝𝑘
𝑖
𝑘=𝑗+1  which includes the chance 

of being in category 𝑖 but excludes the chance of being in category 𝑗, alternatively  𝑃𝑖−1 −

𝑃𝑗−1 = ∑ 𝑝𝑘
𝑖−1
𝑘=𝑗  includes the chance of being in category 𝑗 and excludes the chance of being 

in category 𝑖, therefor define 𝑑(𝑖, 𝑗) the distance between categories 𝑖 and 𝑗 as: 

                         𝑑(𝑖, 𝑗) = 0.5 ((𝑃𝑖 − 𝑃𝑗) + (𝑃𝑖−1 − 𝑃𝑗−1)) = (𝑃𝑖 − 𝑃𝑗) + 0.5(𝑝𝑗 − 𝑝𝑖).  

 
3 When UNAM is close to 1 𝑝𝑎 can be said to be “Almost” Dominant (Leshno and Levy 2002). 



Then 𝐷, the total probabilistic distance in the distribution from lower outcomes to higher 

outcomes is given by: 

                                                             𝐷 = ∑ ∑ 𝑑(𝑖, 𝑗)𝑖−1
𝑗=1

𝐾
𝑖=2   

with an average probabilistic distance given by 2𝐷/𝑁𝐷 where  𝑁𝐷 is the number of 

distances computed which results 𝐺𝑂𝐶  an ordered categorical Gini coefficient where: 

                                                          𝐺𝑂𝐶 = 𝐷/𝑁𝐷𝜇𝑂𝐶                     [2] 

With 𝜇𝑂𝐶 is the Ordered Categorical Mean. Again, the commonality of the probabilistic 

distance metric across dimensions facilitates development of a multidimensional Ordered 

Categorical Gini which is also relegated to the appendix. 

     1.3 Additional Tools of analysis. 

In the following exemplifying analysis of the progress of Health Outcomes in the UK some 

additional tools of analysis that have already appeared in the literature will be required, 

they are briefly outlined here. 

Much of the examination of progress hinges upon whether health outcomes differ 

substantially over time and between groups. In order to establish whether or not outcome 

distributions are significantly different, Anderson, Linton and Whang (2012) developed an 

asymptotically normal test statistic for the commonality of two continuous distributions 

based upon 𝑂𝑉, the extent to which they overlap4. 𝑂𝑉 can be shown to be equal to 1 − 𝑇𝑅 

which is Ginis’ Transvariation measure (Gini 1912) where 𝑇𝑅 = 0.5 ∫|𝑓1(𝑥) − 𝑓2(𝑥)|𝑑𝑥 is 

statistic measuring the extent of differences between 𝑓1(𝑥) 𝑎𝑛𝑑 𝑓2(𝑥).  Given two 

distributions 𝑓1(𝑥) and 𝑓2(𝑥), 𝑂𝑉 = ∫𝑚𝑖𝑛(𝑓1(𝑥), 𝑓2(𝑥))𝑑𝑥. When the distributions are 

identical 𝑂𝑉 = 1 (𝑇𝑉 = 0), when they are completely segmented 𝑂𝑉 = 0 (𝑇𝑉 = 1). The 

ordered categorical variable analogues for two alternative distributions 𝑝𝐴 and 𝑝𝐵 are given 

by 𝑂𝑉 = ∑ 𝑚𝑖𝑛(𝑝𝑘,𝐴, 𝑝𝑘,𝐵)
𝐾
𝑘=1  and 𝑇𝑉 = 1 − 𝑂𝑉, each is asymptotically normal with 

 
4 𝑂𝑉 can be shown to be equal to 1 − 𝑇𝑅 which is Ginis’ Transvariation measure (Gini 1912) where 𝑇𝑅 =
0.5 ∫|𝑓1(𝑥) − 𝑓2(𝑥)|𝑑𝑥 is statistic measuring the extent of differences between 𝑓

1
(𝑥) 𝑎𝑛𝑑 𝑓

2
(𝑥) 



variance 𝑂𝑉(1 − 𝑂𝑉)/(𝑛𝐴𝑛𝐵/(𝑛𝐴+𝑛𝐵)). OV is a measure of commonality, TV is a measure 

of dissimilarity. 

It is well known that health outcomes deteriorate with age (Deaton and Paxson, 1998; 

Kerkhofs and Lindeboom, 1997; Miller et al., 2019) however an egalitarian policy objective 

would have it that all should have similar chances of good health. Equality of opportunity 

has much to do with people with different circumstances beyond their control (such as age 

and gender), having the same chances of success. in essence circumstance conditioned 

outcome distributions should be similar in order to secure equal chances of success.  

This has been examined by comparing the mean outcomes of circumstance groups 

(Ferreira and Peragine 2015). Suppose 𝐽 circumstance groups indexed 𝑗 = 1, . . , 𝐽 with 

respective distributions 𝑝𝑗  and Ordered Categorical Means 𝜇𝑂𝐶,𝑗  then a means based index 

of inequality of opportunity is given by 𝑀𝐵𝐺 = 2∑ ∑ |𝜇𝑂𝐶,𝑗 − 𝜇𝑂𝐶,𝑙|
𝑗
𝑙=1

𝐽
𝑗=2 /(𝐽2 − 𝐽)𝜇𝑂𝐶𝐴 

where 𝜇𝑂𝐶𝐴 is the average ordered categorical mean. However, it is readily shown that 

difference in means is not a sufficient statistic for the commonality of distribution required 

for Equality of Opportunity (think of a collection of distributions with identical means but 

different higher moments). However, this can be examined using a multilateral 

distributional variation measure of Inequality of Opportunity 𝑀𝐷𝑉 (Anderson et. al. 2021). 

Letting 𝑂𝑉𝑗,𝑙 = ∑ 𝑚𝑖𝑛(𝑝𝑘,𝑗, 𝑝𝑘,𝑙)
𝐾
𝑘=1  consider: 

                                              𝑀𝐷𝑉 = 2∑ ∑ (1 − 𝑂𝑉𝑗,𝑙)
𝑗
𝑙=1

𝐽
𝑗=2 /(𝐽2 − 𝐽)  

2. An Exploration of Health Outcomes in 21st Century Pre-Covid U.K. 

The Functionings and Capabilities approach to a nations wellbeing argues that the overall 

level of good health and the equality of access to its achievement are integral components 

of a nations’ wellbeing. To examine the pre–covid progress of health outcomes in the 

United Kingdom, data was sourced from the Understanding Society survey dataset 

(University of Essex, Institute for Social and Economic Research 2022), a large-scale 

longitudinal study conducted in the United Kingdom. The seven self-reported Health Status 

Categories were labelled CAT1 Completely dissatisfied, CAT2 Mostly dissatisfied, CAT3 



Somewhat dissatisfied, CAT4 Neither dissatisfied nor satisfied, CAT5 Somewhat Satisfied, 

CAT6 Mostly Satisfied, CAT7 Completely Satisfied. Table 1 reports the Density Functions, 

Cumulative Distribution Functions and Survival Functions for the overall populations in 

2010 and 2018 together with the corresponding Ordered Categorical Means, Gini 

Coefficients and Ambiguity Measures. With a value of 0.9602 and a standard deviation of 

0.0014, the distributional similarity test 𝑂𝑉 clearly rejects the null hypothesis of identical 

distributions in 2010 and 2018 (z = 27.6551).  

Table 1. 

Overall   CAT1        CAT2        CAT3       CAT4       CAT5       CAT6       CAT7 
2010 PDF 
2018 PDF 
2010 CDF 
2018 CDF 
2010 SF 
2018 SF 

0.04269 0.06846 0.13865 0.08337 0.14618 0.40395 0.11670  
0.03872 0.07657 0.13830 0.09845 0.16280 0.38811 0.09705 
0.04269 0.11115 0.24980 0.33316 0.47935 0.88330 1.00000  
0.03872 0.11529 0.25359 0.35204 0.51484 0.90295 1.00000 
0.95731 0.88885 0.75020 0.66684 0.52065 0.11670 0.00000  
0.96128 0.88471 0.74641 0.64796 0.48516 0.09705 0.00000 

 𝜇𝑂𝐶  𝐺𝑂𝐶  
2010 
2018 
𝑈𝑁𝐴𝑀 

3.90056 
3.82258  
0.90770   

0.10244  
0.10736 

Table 2 

Females   CAT1        CAT2        CAT3       CAT4       CAT5       CAT6       CAT7 
2010 PDF 
2018 PDF 
2010 CDF 
2018 CDF 
2010 SF 
2018 SF 

0.04581 0.07201 0.14039 0.08247 0.14282 0.39852 0.11798  
0.04213 0.08358 0.14034 0.09708 0.16395 0.37454 0.09838 
0.04581 0.11782 0.25821 0.34068 0.48350 0.88202 1.00000  
0.04213 0.12571 0.26605 0.36313 0.52708 0.90162 1.00000 
0.95419 0.88218 0.74179 0.65932 0.51650 0.11798 0.00000  
0.95787 0.87429 0.73395 0.63687 0.47292 0.09838 0.00000 

 𝜇𝑂𝐶  𝐺𝑂𝐶  
2010 
2018 
𝑈𝑁𝐴𝑀 

3.87197 
3.77427 
0.92997 

0.10282  
0.10849 

Table 3. 

Males   CAT1        CAT2        CAT3       CAT4       CAT5       CAT6       CAT7 
2010 PDF 
2018 PDF 
2010 CDF 
2018 CDF 
2010 SF 
2018 SF 

0.03872 0.06396 0.13644 0.08450 0.15045 0.41085 0.11507  
0.03452 0.06792 0.13578 0.10015 0.16139 0.40483 0.09541 
0.03872 0.10269 0.23913 0.32363 0.47408 0.88493 1.00000  
0.03452 0.10244 0.23822 0.33837 0.49976 0.90459 1.00000 
0.96128 0.89731 0.76087 0.67637 0.52592 0.11507 0.00000  
0.96548 0.89756 0.76178 0.66163 0.50024 0.09541 0.00000 

 𝜇𝑂𝐶  𝐺𝑂𝐶  
2010 
2018 
𝑈𝑁𝐴𝑀 

3.93682 
3.88211 
0.83626 

0.10146  
0.10601 



The decline in the overall level of health (though not unequivocal, 𝑈𝑁𝐴𝑀 < 1) and the rise in 

the inequality of health outcomes is noteworthy, a configuration that is replicated in the 

gender specific results reported in Table 2 for Females and Table 3 for Males. With 

respective 𝑂𝑉 (Standard Error) [z statistic] values of 0.9527 (0.0021) [22.5481] for Females 

and 0.9694 (0.0019) [16.0805] for males the intertemporal difference in distribution of 

outcomes cannot be rejected for both genders. Equally noteworthy is the evidence that, 

consistent with Case and Paxson (2005), Nusselder et. al. (2010), Oksuzyen et. al. (2009) 

and Van Oyen et. al. (2013) results, males have better average health (though with 

respective 𝑈𝑁𝐴𝑀 stats of 0.9177 and 0.9478 not unequivocably so) and less inequality in 

outcomes than do females in both years. Turning to an age group analysis, Tables 4 and 5 

report overall data for <35, 35-65 and > 65 age groupings for the years 2010 and 2018. The 

distributional similarity tests uniformly reject similarity between cohorts in both 

observation years5 and the differences between the cohorts are unambiguous in all cases.  

Table 4. 

2010   CAT1        CAT2        CAT3       CAT4       CAT5       CAT6       CAT7 
<35 PDF 
35-65 PDF 
>65 PDF 
<35 CDF 
35-65 CDF 
>65 CDF 
<35 SF 
35-65 SF 
>65 SF 

0.02613 0.04998 0.11796 0.08203 0.16132 0.40817 0.15441  
0.04880 0.07436 0.14654 0.07881 0.13910 0.41179 0.10059  
0.05304 0.08270 0.15089 0.09875 0.14100 0.37421 0.09940 
0.02613 0.07611 0.19406 0.27609 0.43741 0.84559 1.00000  
0.04880 0.12316 0.26970 0.34852 0.48762 0.89941 1.00000  
0.05304 0.13574 0.28663 0.38539 0.52639 0.90060 1.00000 
0.97387 0.92389 0.80594 0.72391 0.56259 0.15441 0.00000  
0.95120 0.87684 0.73030 0.65148 0.51238 0.10059 0.00000  
0.94696 0.86426 0.71337 0.61461 0.47361 0.09940 0.00000 

 𝜇𝑂𝐶  𝐺𝑂𝐶  
<35  
35-65  
>65  

4.14461 
3.82278 
3.71221  

0.09494  
0.10495  
0.10914 

𝑈𝑁𝐴𝑀 <35 - 35-65  difference  1.00000, 35-65 - >65 difference 1.00000  

 

 
5 2010 similarity test for <35 - 35-65   0.9207 (0.0033) [24.2145], 2010 similarity test for 35-65 - >65  0.9612 

(0.0030) [12.7467], 2018 similarity test for <35 - 35-65  0.9104 (0.0044) [20.4146], 2018 similarity test for 35-
65 - >65 0.9806 (0.00220 [8.6322]  

  

 



 

Table 5. 

2018   CAT1        CAT2        CAT3       CAT4       CAT5       CAT6       CAT7 
<35 PDF 
35-65 PDF 
>65 PDF 
<35 CDF 
35-65 CDF 
>65 CDF 
<35 SF 
35-65 SF 
>65 SF 

0.02915 0.05671 0.11600 0.09860 0.18055 0.37408 0.14490 
0.04240 0.08605 0.14811 0.09670 0.15732 0.38902 0.08040 
0.04105 0.07717 0.14088 0.10229 0.15543 0.40176 0.08142 
0.02915 0.08586 0.20186 0.30047 0.48101 0.85510 1.00000 
0.04240 0.12845 0.27657 0.37326 0.53058 0.91960 1.00000 
0.04105 0.11822 0.25910 0.36139 0.51682 0.91858 1.00000 
0.97085 0.91414 0.79814 0.69953 0.51899 0.14490 0.00000 
0.95760 0.87155 0.72343 0.62674 0.46942 0.08040 0.00000 
0.95895 0.88178 0.74090 0.63861 0.48318 0.08142 0.00000 

 𝜇𝑂𝐶  𝐺𝑂𝐶  
<35  
35-65  
>65  

4.04655 
3.72915 
3.78484 

0.09901  
0.11095  
0.10928 

𝑈𝑁𝐴𝑀 <35 - 35-65  difference  1.00000, 35-65 - >65 difference -1.00000  

With one exception, seniors in 2018, health levels deteriorate with age group, consistent 

with Deaton and Paxson (1998) and Kerkofs and Lindeboom (1997). Similarly, inequality 

increases with age group again with the exception of the elderly in 2018. To consider the 

progress of equality of opportunity for good health treating age-group and gender as 

circumstances beyond control, Table 6 reports the gender specific age group results.   

Table 6. Gender and Age results. 

 2010 2018 
 𝐺𝑂𝐶                  𝜇𝑂𝐶  𝐺𝑂𝐶                  𝜇𝑂𝐶  
Female <35 
Female 35-65 
Female >65 
Male <35 
Male 35-65 
Male >65 

0.09602      
0.10444       
0.11043      
0.09328       
0.10504       
0.10768 

4.11202 
3.80583 
3.67374 
4.20533 
3.85734 
3.75710 

0.10079      
0.11136       
0.11075      
0.09632      
0.10998       
0.10763 

4.00393  
3.68498  
3.73645  
4.11366  
3.79705  
3.84041 

Inequality of Opportunity Indices 
𝑀𝐷𝑉 0.07057    0.06858 
𝑀𝐵𝐺 0.06451    0.05213 

 

The same pattern of diminishing health levels and increasing inequality with age group 

except for the elderly in 2018 is observed in the age-group-gender-specific results, with 

decreasing health levels and increasing inequality (elderly males excepted) for all groups.  



Note that while overall, male and female specific inequality went up over the period, age 

group and gender-based inequality of opportunity diminished whether measured by the 

difference in means measure or the difference in distributions measure. Notice also that 

the difference in distributions measures are always greater than the difference in 

distributional location measure since they capture more than just locational differences. 

A multidimensional analysis. 

An integral part of the Functionings and Capabilities Approach to a society’s wellbeing 

(Nussbaum and Sen 1993, Sen 1999) is that the populace should live long and healthy 

lives. By Reversing the ordering of the age-groups the joint distribution of  health and 

anticipated future life length can be estimated. A mean long and healthy life index can be 

obtained from the corresponding Survival Function, and a Gini coefficient can be obtained 

from the Cumulative Distribution Function. Tables 7 and 8 report the distributions for 2010 

and 2018 respectively. With a distributional overlap statistic and standard error of  0.92457 

and 0.00194 respectively the commonality of distribution in the two years is strongly 

rejected. The positive sum of the 2010-2018 Survival Function differences (0.40943) with 

an unambiguity factor of 0.96316 indicates that 2010 outcomes “almost” first order 

dominate 2018 outcomes (Leshno and Levy 2002) indicating a decline in the long and 

health lived lives of the nation which is reflected in the lower mean long and health life 

index in 2018 and a higher Gini coefficient in that year. 

Table 7. Health and Unexpired Life Distributions 2010 

PDF   CAT1          CAT2         CAT3         CAT4         CAT5         CAT6         CAT7 
>65 
35-65 
<35 

0.01004   0.01576   0.02914   0.01891   0.02750   0.07314   0.01898  
0.02550   0.03835   0.07611   0.04063   0.07162   0.21442   0.05291  
0.00714   0.01435   0.03340   0.02382   0.04706   0.11640   0.04480 

CDF  
>65 
35-65 
<35 

0.01004   0.02580   0.05494   0.07385   0.10136   0.17449   0.19348  
0.03554   0.08965   0.19490   0.25445   0.35357   0.64113   0.71302  
0.04269   0.11115   0.24980   0.33316   0.47935   0.88330   1.00000  

Survival function  
>65 
35-65 
<35 

0.98996   0.97420   0.94506   0.92615   0.89864   0.82551   0.80652  
0.96446   0.91035   0.80510   0.74555   0.64643   0.35887   0.28698  
0.95731   0.88885   0.75020   0.66684   0.52065   0.11670   0.00000 

N=43411,  MOCM = 14.98431,   Gini = 0.01657.  



Table 8. Health and Unexpired Life Distributions 2018 

PDF   CAT1          CAT2         CAT3         CAT4         CAT5         CAT6         CAT7 
>65 
35-65 
<35 

0.00995   0.01886   0.03392   0.02454   0.03775   0.09833   0.01973  
0.02182   0.04408   0.07669   0.05007   0.08156   0.19978   0.04209  
0.00695   0.01362   0.02768   0.02385   0.04349   0.09000   0.03523  

CDF  
>65 
35-65 
<35 

0.00995   0.02881   0.06273   0.08726   0.12502   0.22334   0.24308  
0.03177   0.09471   0.20532   0.27993   0.39924   0.69734   0.75917  
0.03872   0.11529   0.25359   0.35204   0.51484   0.90295   1.00000  

Survival function  
>65 
35-65 
<35 

0.99005   0.97119   0.93727   0.91274   0.87498   0.77666   0.75692  
0.96823   0.90529   0.79468   0.72007   0.60076   0.30266   0.24083  
0.96128   0.88471   0.74641   0.64796   0.48516   0.09705   0.00000 

N=32076, MOCM = 14.57492,  Gini = 0.01768. 

Conclusions. 

The ambiguity problems associated with applying artificial scaling to ordinal data have 

been circumvented by applying the construct of probabilistic distance, whereby the 

distance between two categories is quantified in terms of the probability that an 

observation could be realized between those categories. It has been possible to develop 

unambiguous tools for measuring the locational level of, and inequalities within ordered 

categorical distributions analogous to the mean and Gini coefficient employed in cardinal 

world distributions. Furthermore, these tools are readily extended to multi-dimensional 

environments. A Simple exemplifying application to the study of self-reported health 

outcomes in the United Kingdom over the pre-covid period 2010-2018 highlighted the fact 

that health outcome levels were deteriorating with inequalities in those outcomes 

increasing. However, it was also determined that equality of opportunity in achieving good 

health levels improved over the period. 

Appendix 

Multidimensionality. 

𝜇𝑂𝐶 is readily extended to the multidimensional case, for example when the situation is two 
dimensioned with ordered outcomes indexed 𝑖 = 1, . . , 𝐾 in one dimension and 𝑗 = 1, . . , 𝐻 
in the other, 𝑃, the cumulative density matrix,  becomes a 𝐾 x 𝐻 matrix based upon the 
similarly dimensioned matrix 𝑝 with typical element 𝑝𝑘,ℎ where 𝑃𝑘,ℎ = ∑ ∑ 𝑝𝑙,𝑚

ℎ
𝑚=1

𝑘
𝑙=1 . The 



corresponding Survival function matrix 𝑆 will have typical elements 𝑆𝑘,ℎ = 1 − 𝑃𝑘,ℎ and 
𝜇𝑀𝑂𝐶  the multidimensional ordered categorical mean will be of the form:  

                                                                   𝜇𝑀𝑂𝐶 = ∑ ∑ 𝑆𝑗,𝑖
𝐾
𝑖=1

𝐻
𝑗=1   

𝜇𝑀𝑂𝐶  will have a minimum value of 0 when 𝑝1,1 = 1 and a maximum value of 𝐿𝐾 − 1 when 
𝑝𝐿,𝐾 = 1. 

A multidimensional Ordered Categorical Gini coefficient can be developed in a similar 
fashion. In the bivariate case the Cumulative Density Matrix 𝑃 can be used to define 

𝑑 (𝑖(𝑘𝑖, ℎ𝑖), 𝑗(𝑘𝑗 , ℎ𝑗)), the probabilistic distance between category combination i and 

category combination j. Suppose 𝑘𝑖 ≥ 𝑘𝑗  and ℎ𝑖 ≥ ℎ𝑗  with strict inequality somewhere, 

then 𝑃𝑘𝑖,ℎ𝑖 − 𝑃𝑘𝑗,ℎ𝑗  = ∑ ∑ 𝑝𝑘
𝑘𝑖
𝑘=𝑘𝑗+1

ℎ𝑖
ℎ=ℎ𝑗+1

 includes the chance of being in category 

combination 𝑖(𝑘𝑖, ℎ𝑖) and excludes the chance of being in category combination 𝑗(𝑘𝑗 , ℎ𝑗), 

whilst  𝑃𝑘𝑖−1,ℎ𝑖−1 − 𝑃𝑘𝑗−1,ℎ𝑗−1 = ∑ ∑ 𝑝𝑘
𝑘𝑖
𝑘=𝑘𝑗+1

ℎ𝑖
ℎ=ℎ𝑗+1

 excludes the chance of being in category 

combination 𝑖(𝑘𝑖, ℎ𝑖) and includes the chance of being in category combination 𝑗(𝑘𝑗 , ℎ𝑗), 

therefor letting 𝑑 (𝑖(𝑘𝑖 , ℎ𝑖), 𝑗(𝑘𝑗 , ℎ𝑗)) = 

 0.5 ((𝑃𝑘𝑖,ℎ𝑖 − 𝑃𝑘𝑗,ℎ𝑗) + (𝑃𝑘𝑖−1,ℎ𝑖−1 − 𝑃𝑘𝑗−1,ℎ𝑗−1)) = (𝑃𝑘𝑖,ℎ𝑖 − 𝑃𝑘𝑗,ℎ𝑗) + 0.5 (𝑝𝑘𝑗,ℎ𝑗 − 𝑝𝑘𝑖,ℎ𝑖).  

𝐷, the total probabilistic distance in the distribution will be given by 𝐷 =

∑ ∑ ∑ ∑ 𝑑 (𝑖(𝑘𝑖, ℎ𝑖), 𝑗(𝑘𝑗 , ℎ𝑗))
𝑖−1
𝑘𝑗=1

𝐾
𝑖=2

𝑚−1
ℎ𝑗=1

𝐻
𝑚=2  whilst the average probabilistic distance is 

given by 𝐷/(𝑁𝐷) where ND is the number of distributional distances computed making 
𝐺𝑀𝑂𝐶  a Gini-like inequality measure where: 

                                                                 𝐺𝑀𝑂𝐶 = 𝐷/(𝑁𝐷)𝜇𝑀𝑂𝐶)  

And where 𝜇𝑀𝑂𝐶  is the multidimensional Ordered Categorical Mean. 

Inference. 

Assume an independently observed sample from population 𝑎 with 𝑛𝑎 observations and let 
the true 𝑘’th outcome level probability 𝑝𝑎,𝑘 for 𝑘 = 1, . . , K  be stacked in the 𝐾 x 1 vector 𝑝𝑎 

and let 𝑝̂𝑎 be the corresponding relative frequency estimates of those probabilities. Then, 

following Rao (2009), √𝑛𝑡 (𝑝̂𝑎 − 𝑝𝑎)~𝑎𝑠𝑦𝑚𝑝𝑁 (0, 𝑉 (𝑝𝑎)) where: 



                      𝑉 (𝑝𝑡) = (

𝑝a,1 0 .

0 𝑝a,2 .
. . .

0
0
.

0 0 . 𝑝a,K

)−

(

 

𝑝a,1
2 𝑝a,1𝑝a,2 .

𝑝a,2𝑝a,1 𝑝a,2
2 .

. . .

𝑝a,1𝑝a,K
𝑝a,2𝑝a,K
.

𝑝a,K𝑝a,1 𝑝a,M𝑝a,2 . 𝑝a,K
2 )

  

Given the 𝐾 × 𝐾  dimensioned cumulating matrix 𝐷, where: 

𝐷 = (

1 0 .
1 1 .
. . .

0
0
.

1 1 . 1

) 

𝐹𝑎, the vector of CDF values are such that, given 𝐼 is an 𝐾 dimensioned vector of ones: 

                                                       𝐹𝑡 = 𝐷𝑝𝑎 and 𝑆𝑎 = 𝐼 − 𝐷𝑝𝑎                 

Each will have variance 𝐷𝑉 (𝑝𝑎)𝐷′, so that √𝑛𝑎(𝐹̂𝑎 − 𝐹𝑎)~𝑎𝑠𝑦𝑚𝑁 (0, 𝐷𝑉 (𝑝𝑎)𝐷′) and 

√𝑛𝑎(𝑆̂𝑎 − 𝑆𝑎)~𝑎𝑠𝑦𝑚𝑁 (0, 𝐷𝑉 (𝑝𝑎)𝐷′). Since 𝜇𝑂𝐶,a = 𝐼′𝑆𝑎 , it follows that: 

                                                      √𝑛𝑡(𝜇̂𝑂𝐶,a − 𝜇𝑂𝐶,a)~𝑎𝑠𝑦𝑚𝑁 (0, 𝐼′𝐷𝑉 (𝑝𝑎)𝐷′𝐼).  

 When populations are independently sampled, under the null hypothesis of common 
means: 

                    √
𝑛𝑎𝑛𝑏

(𝑛𝑎+𝑛𝑏)
(𝜇̂𝑂𝐶,a − 𝜇̂𝑂𝐶,b)~𝑎𝑠𝑦𝑚𝑁 (0, 𝐼′𝐷 (𝑉 (𝑝𝑎) + 𝑉 (𝑝𝑏))𝐷′𝐼) 
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