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Abstract

We propose a class of sieve-based efficient estimators for structural mod-

els (SEES), which approximate the solution using a linear combination of basis

functions and impose equilibrium conditions as a penalty to determine the best-

fitting coefficients. Our estimators circumvent repeated solution of the struc-

tural model, apply to a broad class of models, and are consistent, asymptotically

normal, and asymptotically efficient. Moreover, they solve unconstrained op-

timization problems with fewer unknowns and offer convenient standard error

calculations. As an illustration, we apply our method to an entry game between

Walmart and Kmart.
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1 Introduction

A structural model builds on economic theory and describes how a set of endogenous

variables are related to a set of explanatory variables. This relationship is typically

characterized by an implicit function. In particular, it generates endogenous function

p determined by an equation system:

p = Ψ(p, θ), (1)

where θ is the parameter of interest and Ψ is a representation of the structural model.1

While Ψ is explicit, solving for p could be difficult or costly. Such computational

burden limits the use of standard estimators. For instance, the maximum likelihood

estimator (MLE) repeatedly guesses θ and evaluates data likelihood using the solution

of (1), p∗(θ). However, finding the solution can be computationally intensive and is

often hindered by a lack of robust algorithms, particularly in empirical games.

We introduce a new class of estimators: sieve-based efficient estimators for struc-

tural models (SEES). Our approach applies to a broad class of models, including

empirical games, and avoids solving the model. Our SEES is motivated by two pop-

ular approaches to infinite-dimensional optimization problems: approximation and

penalization. See Shen (1997), Shen (1998), and Chen (2007). Because the likelihood

function ℓ(p∗, θ; data) involves an unknown function p∗, maximizing the likelihood

with respect to p∗ and θ may lead to an asymptotically inefficient estimator for the

parameter, and the resulting estimator may not necessarily be close to the solution

of (1). To address these issues, prior studies utilize sieves that are less complex but

dense to approximate the original function space, and regularization that assumes

smoothness of this function.

In this paper, we estimate structural models by approximating the solution to

avoid solving the model and regularizing with the equilibrium conditions that are

built into the model itself. By combining the data fitting and model fitting criteria,

1In discrete choice models, the parameter captures consumer preferences and the observable is
consumer choice; in auctions, the parameter captures the value distribution and the observable is
the bid distribution; in dynamic models, the parameter describes the agent’s intertemporal tradeoff
and the observable is intertemporal choice.

2



we formulate our penalized log-likelihood criterion,

ℓ(β, θ; data)︸ ︷︷ ︸
data likelihood

−ω × ρ(β, θ)︸ ︷︷ ︸
penalization

,

where ℓ and ρ measure the data fitting and model fitting, respectively.2 Moreover,

β ∈ RK and ω ∈ R+ govern the approximation and the weighting, respectively.

Instead of imposing stronger smoothness assumptions than typically implied by the-

ory, our approach relies solely on the model to regularize the sieve approximation.

The smoothing parameter ω explicitly captures the weighting of the data likelihood

and the equilibrium condition, and the dimension of the approximation parameter β,

denoted by K, balances computational cost and solution accuracy.

Allowing these tuning parameters to diverge at appropriate rates, the proposed

parameter estimator of θ is consistent, asymptotically normal, and asymptotically

efficient. Intuitively, by gradually updating the smoothing parameter, we shift the

weight from the data to the equilibrium condition. At the minimum, a preliminary

nonparametric estimate of p (by letting ω = 0) constitutes a good starting value but

is subject to issues with nonparametric estimates. When the smoothing parameter

increases, more weight is given to the equilibrium condition. As model restrictions

are more strongly enforced, the estimator converges to the MLE.

We prescribe several algorithms to implement SEES. The first is a joint algorithm

that finds the combination of sieve approximations and model parameters that best

explains the data and satisfies the equilibrium conditions. That is, we maximize

the penalized log-likelihood function with respect to (β, θ). The second is a nested

algorithm that consists of two main parts. First, for each model parameter θ, we find

the sieve approximation of p that best explains the data and satisfies the equilibrium

conditions. Second, based on the approximated solution, we find the model parameter

that best fits the data. While the joint algorithm is attractive because it results in a

single-level optimization problem, the nested algorithm is quite intuitive, resembling

MLE.

Our estimator allows for discrete and continuous state/heterogeneity in the model

to be estimated. The standard practice of discretizing continuous state variables or

covariates leads to efficiency loss. Under mild regularity conditions, we show that

2While our idea extends to other types of estimators, we focus on likelihood-based ones here.
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our estimator has the same asymptotic distribution as MLE in both cases. To our

knowledge, we are the first to combine approximation and penalization in estimating

structural models. While some studies have adopted approximation approaches, none

combines them with penalization. Another important advantage of our method is that

it produces standard errors in the same way as the standard MLE using the Fisher

information matrix, which is of considerable convenience in empirical work. As a

side product, we also derive a similar approach for the mathematical program with

equilibrium constraints (MPEC) estimators, which provides a faster alternative than

the bootstrapping method previously proposed by Su and Judd (2012).

We acknowledge several limitations inherent in our methodology. First, our sieve-

based approach presupposes the smoothness of the solution within the state variables

or covariates, leaving the treatment of discontinuities as a subject for future inves-

tigation. Second, our approach provides a robust solution that works with minimal

assumptions on the solution, which is particularly valuable in models with unfavorable

or unknown properties. However, it may not always be the most expedient choice in

scenarios where the solution exhibits favorable properties, such as contraction map-

pings. For instance, as demonstrated in the simple model outlined in Section 2, it

exhibits a relatively slower performance when compared to a nested-fixed point algo-

rithm. Throughout this paper, we refrain from comparing computational time across

different estimators, as it is often model-specific and, hence, more relevant in richer

empirical models.

The remainder of the paper is organized as follows. Section 2 explains the idea us-

ing a simple example. Section 3 proposes the class of sieve-based efficient estimators

for structural models and derives its asymptotic properties for the nested estimator

in continuous states. Section 4 demonstrates the performance of our estimators in es-

timating an empirical game. Section 5 concludes. The Appendix contains all omitted

proofs and details.

2 A Motivating Example

Our new method differs from existing methods by how we leverage data and model re-

strictions. We now compare it with popular existing methods, such as maximum like-

lihood estimation (MLE), two-step approaches, and nested pseudo-likelihood (NPL),

through a motivating example.
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Consider a monopolist j, facing logit demand, sells a product at a price Pj. That

is, consumer i gets utility of

uij = ξj − αPj + ϵij,

where ξj is continuous product quality, α is the price coefficient, and ϵij represents the

standard Type 1 extreme value (T1EV) taste shock. The firm’s profit maximization

problem is

max
Pj

( Pj − cj︸ ︷︷ ︸
profit margin

)× exp(ξj − αPj)

1 + exp(ξj − αPj)︸ ︷︷ ︸
market share

,

where cj represents the constant marginal cost. The optimal price is determined by

the FOC,

α(Pj − cj) = 1 + exp(ξj − αPj),

where Pj appears both inside and outside an exponential function. As a result, the

mapping from the parameters to the optimal price is implicit.

2.1 Structural Estimation

For simplicity, we focus on estimating the parameter θ that governs consumer pref-

erences over product feature xj ∈ R using observed prices. Specifically, we treat it as

known that cj = 0, α = 1, ξj = log xj + log θ+1, where “1” is quality normalization

for simplicity. Appendix A shows that the optimal price satisfies

y∗j = p(xj; θ), (2)

where y∗j = P ∗
j − 1 represents the normalized price and p(xj; θ) is defined by

p(xj; θ)e
p(xj ;θ) = θxj or p(xj; θ) = θxje

−p(xj ;θ),

the first of which has the standard form of the Lambert W function3 and the second

of which has the same form as Equation (1). We denote this function as p(·; θ) to

indicate its dependence on the parameter.

Consider a data generating process (DGP) that is a noisy measurement of the

3The Lambert W function W (x) is defined by W (x)eW (x) = x.
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optimal price yj = y∗j + ej, where ej’s are measurement errors that are i.i.d. draws

from the standard normal distribution. Therefore, the observed (normalized) price yj

is from the standard normal distribution with a location p(xj; θ0):

yj ∼ N (p(xj; θ0), 1), where j = 1, . . . , n.

The data contain the product characteristics xj and the prices Pj = P ∗
j + ej (equiva-

lently, the normalized prices yj). The parameter of interest is θ.

Maximum Likelihood Estimation: The standard MLE solves the following

problem

max
θ

n∑
j=1

log ϕ(yj − p(xj; θ)),

where ϕ(·) represents the density function of the standard normal distribution. Be-

cause p(·; θ) is implicitly defined, this estimator is computationally costly. For each

trial of θ, we need to find p(xj; θ) for each data point xj. The number of equations

that need to be solved equals the sample size multiplied by the number of likelihood

function evaluations.

Despite its asymptotic efficiency, the standard MLE requires solving the model for

each parameter and thus solution algorithms that are sufficiently efficient and robust.

When a contraction mapping solution for the model is available, it is often referred

to as the nested fixed point algorithm (NFXP). See, e.g., Rust (1987) in dynamic

discrete choice models and Berry et al. (1995) in demand models.

A Two-Step Approach: We can “invert the FOC” and obtain a representation

of the “unknown” in terms of the optimal prices:

θ =
p(xj; θ)e

p(xj ;θ)

xj

,

where the normalized price y∗j = p(xj; θ) is unobserved. In principle, this FOC inver-

sion allows estimating the parameter using the optimal price in any market.

Due to measurement errors, the rewritten FOC suggests a simple two-step ap-

proach that avoids solving the model repeatedly in estimation. In the first step, we

consider y∗j = p(xj; θ0) and estimate the optimal price as a function of the covariate.
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Although the true parameter θ0, the endogenous variable p and thus the RHS p(xj; θ0)

are all unobserved, we can estimate the LHS y∗j (xj) nonparametrically using the ob-

served price and covariate pairs {xj, yj}nj=1. In particular, we run a nonparametric

regression4,

yj = y∗j (xj) + e,

and obtain an estimate of the normalized price ŷ∗j (xj). In the second step, we have a

simple plug-in estimator,

θ̂ = median

{
ŷ∗j (xj)× exp ŷ∗j (xj)

xj

: j = 1, . . . , n

}
.

Two-step approaches avoid repeatedly solving the economic model at the expense

of efficiency. In the first step, the analyst obtains a nonparametric estimate of the

endogenous variable p̂. In the second step, the estimate is obtained from p̂ = Ψ(p̂, θ)

in various ways. In auction models, Guerre et al. (2000) use the estimated bid dis-

tribution to construct pseudo values, which are then used to estimate the underlying

value distribution. In dynamic discrete choice models, the conditional choice proba-

bility (CCP) approach of Hotz and Miller (1993) plugs the estimated CCPs into the

optimal decision rules. In dynamic games, one can obtain a nonlinear least squares

estimate of θ by replacing p with the estimated CCP p̂ in the function; see Pesendorfer

and Schmidt-Dengler (2008).

Nested Pseudo-Likelihood Algorithm: In each iteration, the NPL algorithm

solves the following problem:

max
θ

n∑
j=1

log ϕ(yj − θxj exp(−p̂τj )),

where p̂τj represents some estimate of the optimal price in market j. Denote the

solution as θ̂τ . We can then update the price estimates p̂τ+1
j = θ̂τxj exp(−p̂τj ). We

iterate the process till the parameter estimate converges.

Given some estimates θ̂ and p̂, the NPL algorithm obtains new estimates of the

choice probabilities by applying the mapping p̃ = Ψ(p̂, θ̂) and then updates the pa-

4We apply kernel regression using the optimal bandwidth estimated by cross-validation. See, e.g.,
Hall et al. (2004), Li and Racine (2004) and Hall and Racine (2015).
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rameter estimate by maximizing the pseudo-likelihood function ℓ(p̃, θ).

A Sieve-Based Efficient Estimator: In this paper, we propose a method that

obviates solving the model repeatedly. In particular, we approximate the “solution”

function p⋆(·) by B-spline basis functions:

pβ(·) =
K∑
k=1

βksk(·),

where sk(·) is a cubic spline basis function, and K denotes the number of basis

functions. Our sieve-based estimator of θ maximizes the likelihood

n∑
j=1

log
{
ϕ
(
yj − pβ̂(θ,ω)(xj)

)}
,

where β̂(θ, ω) is defined by

arg max
β∈RK

n∑
j=1

log
{
ϕ(yj − pβ(xj))

}
− ω

∫
X

[
pβ(x)ep

β(x) − θx
]2

dx︸ ︷︷ ︸
penalization

,

where ω > 0. Because pβ(·) is an approximation, the second term penalizes the

likelihood by the amount of deviation by definition of the Lambert W function. Im-

portantly, this penalization does not depend on the observed data; it is driven solely

by how much the approximation violates the equilibrium conditions.

Discussion

We now compare the above-mentioned estimators. First, SEES and MLE are asymp-

totically equivalent and almost identical in finite samples. However, NFXP algorithms

may converge slowly, and such mappings may not even exist in important models.

For instance, empirical games, such as asymmetric auctions and dynamic games, are

notoriously difficult to solve, making MLE difficult to apply. In contrast, we avoid

solving the model repeatedly by approximating the solution flexibly.

Second, two-step approaches are limited by the first-step nonparametric estima-

tion of the endogenous variable and may suffer from the “curse of dimensionality”

when x has multiple dimensions (Stone, 1980). As a result, the finite-sample esti-
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mation error can be substantial. In contrast, our approximated solution avoids this

issue, as its final version relies almost entirely on the model.

Third, our estimator is also related to the nested pseudo-likelihood algorithm

proposed by Aguirregabiria and Mira (2002, 2007). Exploiting the unique feature

of dynamic discrete choice models that the Jacobian matrix of Ψθ is always zero,

their iterative refinement converges to MLE. However, it requires some discretion in

applying it to empirical games. See Pesendorfer and Schmidt-Dengler (2010). Both

algorithms bridge the gap between the standard MLE and two-step methods, and are

asymptotically equivalent to MLE. However, they are based on very different ideas.

Our estimator is flexible to accommodate different estimation algorithms, including

one that resembles NPL, and robust in applications to various models, including

empirical games.

To our knowledge, we are the first to combine approximation and penalization

in estimating structural models. While some studies have adopted approximation

approaches, none combines them with penalization. For instance, Keane and Wolpin

(1994, 1997) use sieves to approximate solutions in dynamic structural models, com-

bining approximation and NFXP. In estimating dynamic games, Sweeting (2013) uses

parametric approximations to the value function, combining approximation and NPL.

Most related, Barwick and Pathak (2015) approximates the value function using sieves

and imposes the Bellman equation as an equilibrium constraint.

Another related algorithm is MPEC, which is an alternative computational al-

gorithm to MLE. See, e.g., Su and Judd (2012) and Dubé et al. (2012).5 It avoids

solving the model repeatedly by augmenting the unknown to (θ, p) and imposing the

equilibrium condition as a constraint:

max
θ,p

ℓ(p, θ; data)

subject to p = Ψ(p, θ).

We will show that our SEES’s dual problem is a natural extension of MPEC in

discrete state settings. Our SEES nests MPEC as a limiting case when the number

of basis functions is the same as the dimension of p and the regularization parameter

5Several papers have compared MPEC with the original estimators for various models. For a
comparison of NFXP and MPEC, see, e.g., Lee and Seo (2015) for the Berry et al. (1995) model
and Iskhakov et al. (2016) for dynamic models.
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equals infinity. MPEC forms the Lagrangian function using Lagrange multipliers Λ

that are of the same size as p: maxθ,p,Λ ℓ(p, θ; data) − Λ′(p − Ψ(p, θ)). As a result,

it solves 2 × dim(p) + dim(θ) equations in the same number of unknowns. Our

SEES approximates p by β and introduces a scalar regularization parameter ω, which

reduces the problem to an unconstrained optimization problem with K + 1+ dim(θ)

unknowns. Therefore, SEES is computationally convenient because K + 1 ≪ 2 ×
dim(p).

2.2 Simulation Evidence

Consider xj ∼ Uniform[0, x] and θ0 = 1. For MLE, we use the bisection method to

solve for the Lambert W function. We omit MPEC here for two reasons. First, we

focus on the statistical properties rather than the computational time of the estima-

tors. Second, MPEC is an alternative computational algorithm to MLE with identical

statistical properties. For the two-step approach, we use local linear kernel regres-

sion and apply the optimal bandwidth chosen via cross validation. For the proposed

method, we use the cubic spline explained in Luo et al. (2018) and let K = 6; the

choice of ω follows the method that we propose later. We also provide the analytic

gradient of the outer loop and the analytic gradient and Hessian of the inner loop

maximization problem; see Appendix F.1.

Table 1 shows the simulation results of 1,000 replications with a sample size of

1,000. SEES, MLE, and NPL perform very similarly. In particular, SEES and MLE

are almost identical in each replication. Figure 1 compares MLE and the iterations

of NPL and SEES in a typical replication.6 While their earlier iterations could differ

from MLE significantly, NPL and SEES both converge to a close neighbourhood of

MLE.

In contrast, the two-step approach generates a larger bias and standard error.

Alternatively, we can take the sample average in the second step. However, the noise

in nonparametric estimates near boundaries deteriorates the estimates substantially.

The median performs much better the mean. It is clear that the performance of the

two-step estimator is affected by the first-stage nonparametric regression.

Remark 1. This simple model has a convenient property that each firm’s optimal

6SEES usually converges in 2-4 iterations using our proposed choice of ω. For better visualization
in this figure, we increase logω in 7 equal steps to match the number of iterations of NPL.
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Figure 1: Compare MLE, NPL, and SEES

Table 1: Monopoly Pricing: x = 1

SEES MLE NPL 2-Step
median mean

mean 1.0029 1.0030 1.0030 0.9639 1.4179
se 0.1282 0.1283 0.1285 0.1356 2.8309

price is the solution of a strictly monotone function. In this case, the bisection

method is fast and robust in solving the model, except that it takes many iterations to

converge.7 In empirical games, the equilibrium is the solution of a system of nonlinear

equations, which is harder to find and often lacks reliable algorithms. Appendix E

provides additional simulations using a much richer DGP motivated by our empirical

application of static games.

7Alternatively, we show that the Lambert W function W (x) can be calculated using the contrac-
tion mapping Ψ(W,x) = xe−W when x is smaller than Euler’s number.
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3 Our Sieve-Based Efficient Estimator

We now describe our estimator in detail. Let x ∈ RI denote the state or heterogeneity,

and let p∗(x; θ) ∈ RJ denote the endogenous solution, where I and J are positive

integers. Given any θ ∈ Θ ⊂ Rd, p∗(·; θ) ∈ RJ denotes the solution to the following

the structure equation:

p(·) = Ψ(p(·), θ), (3)

Rather than solving for p∗(·; θ) at each value of θ during likelihood evaluation, we

approximate the true solution by pβ. The choice of approximation infrastructure de-

pends on its approximation properties and computational convenience. A popular

one often adopted in empirical studies is the method of sieves. When x is univariate,

we can use a standard series expansion pβ(x) =
∑K

k=1 βksk(x), where {s1, . . . , sK} are

basis functions spanning the finite-dimensional sieve space B. When x is multivariate,

we can use a tensor-product sieve pβ(x) =
∑K1

k1=1 · · ·
∑KI

kI=1 βk1,...,kI sk1(x1) · · · skI (xI).

For convenience, we denote K = (K1, . . . , KI)
′ and refer to it as the approximation

parameter. Typical choices of sk include B-spline basis functions and Bernstein poly-

nomials. Such methods are flexible in accounting for shape restrictions imposed by

the structural model, such as nonnegativity and monotonicity. For instance, if p rep-

resents choice probabilities, we can use pβ(·) = [1 + exp{
∑K

k=1 βksk(·)}]−1 to ensure

that pβ ∈ (0, 1).

Moreover, our SEES imposes the model constraints by penalizing the difference

between pβ and Ψ(pβ, θ). This difference is independent of the data sample in mea-

suring the fidelity of approximation to the equilibrium conditions. The smaller the

difference, the better the approximate pβ satisfies equilibrium conditions.

We formulate the penalized log-likelihood criterion by combining the data fitting

and model fitting criteria,

ℓ
[
pβ(·), θ

]︸ ︷︷ ︸
ℓ(β,θ)

−ω × ρ
[
pβ(·),Ψ

(
pβ(·), θ

)]
︸ ︷︷ ︸

ρ(β,θ)

, (4)

where ω > 0 is the smoothing parameter, and ρ is a metric that measures the difference

between pβ and Ψ(pβ, θ). For instance, when pβ(x) is scalar, we can use the Euclidean

norm ρ
(
p,Ψ(p, θ)

)
= ∥p − Ψ(p, θ)∥22. If instead pβ(x) =

(
pβ1 (x), . . . , p

β
J(x)

)
is J-
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dimensional, we can use ρ
(
p,Ψ(p, θ)

)
=
∑J

j=1∥pj −Ψj(p, θ)∥22.8

3.1 Estimation Algorithms

We develop two algorithms to implement our estimator given each smoothing param-

eter ω: a joint algorithm and a nested algorithm.

Joint Algorithm This algorithm is attractive because it involves a single-level op-

timization problem. We augment the unknown to (β, θ) and solve the following

problem:

max
β,θ

ℓ(β, θ)− ω × ρ(β, θ), (5)

which leads to β̂(ω) and θ̂(ω). We recommend providing analytical gradients and

Hessians to improve computational efficiency and estimation accuracy.

Nested Algorithm This algorithm is intuitive, resembling MLE. There are two

layers of optimization problems to be solved. In the inner layer, given (θ, ω), we find

the best approximation parameter β̂(θ;ω) that solves the following problem:

max
β∈RK

ℓ(β, θ)− ω × ρ(β, θ). (6)

Solving (6) indicates that the maximizer β̂(θ;ω) is an implicit function of θ.

In the outer layer, applying the best fitting approximation parameter, we search

for the structural parameter θ̂(ω) that maximizes the following likelihood:

ℓ
(
β̂(θ, ω), θ

)
. (7)

Note that we have considered the structural equation (1) in the inner layer. There-

fore, the equilibrium conditions are embedded in β̂(θ, ω). As illustrated above, the

optimizer of (6), β̂(θ;ω), is an implicit function of θ. Therefore, ℓ
(
β̂(θ, ω), θ

)
in (7)

is a function of θ. We obtain the final estimator of θ, denoted by θ̂(ω), by directly

maximizing (7) with respect to θ.

Remark 2. Because we solve the inner loop problem many times, it is more efficient

8Component-specific smoothing is easily accommodated by modifying the penalty to∑J
j=1 ωj ∥pj −Ψj(p, θ)∥22.
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to provide the gradient and Hessian of h(β, θ) = ℓ(β, θ)− ωρ(β, θ) with respect to β,

as well as the gradient of the objective function in the outer loop ℓ̂(θ) = ℓ(pβ̂(θ)(·), θ)
with respect to θ. While the former is often straightforward, the latter is a bit

more involved because the best-fitting approximation β̂(θ) is implicit. In particular,

it requires deriving how the best-fitting approximation changes with respect to the

model parameter, ∇β̂(θ). Proposition A1 in Appendix D provides the gradient of the

outer loop.

Alternatively, we can use an alternating iterative algorithm in place of either

algorithm. That is, we can iterate the problem in (6) given a current estimate of θ

and the problem in (7) to update the estimate of θ. The iterations will continue until

convergence. This iterative approach is similar to NPL.9

The Choice of Tuning Parameters

We propose a new method that selects the smoothing parameter ω based on the

performance of parameter estimation. Intuitively, we choose a sufficiently large ω to

ensure fidelity in approximating the equilibrium conditions.10 In particular, we start

with a moderate ω1 and update it till the estimates converge. For each ω = ωτ , we

can conduct the joint or nested algorithm and obtain an estimate θ̂(ωτ ). Consider

a significance level of α. We obtain its standard error σ̂(ωτ ) and confidence interval

I(ωτ ) = [θ̂(ωτ ) + zα/2σ̂(ωτ ), θ̂(ωτ ) + z1−α/2σ̂(ωτ )], applying the standard formula of

standard error calculation for MLE.

We multiply the smoothing parameter by L each time, i.e. ωτ+1 = L × ωτ and

obtain a new estimate and its confidence interval I(ωτ+1). Continue this process

till the overlapping portion of the two intervals accounts for more than a threshold

percentage of both of the two. That is, our final choice of the smoothing parameter

is ω̂ = ωτ if

min

{
|I(ωτ ) ∩ I(ωτ−1)|

|I(ωτ−1)|
,
|I(ωτ ) ∩ I(ωτ−1)|

|I(ωτ )|

}
≥ c,

where | · | represents the length of the interval. In case the parameter of interest θ is

9Our algorithms, like other methods, do not guarantee finding global optima. We recommend
experimenting with different starting points.

10Cross-validation is commonly used to balance bias and variance in estimation or prediction
when the function of interest is unknown, by estimating prediction error or evaluating the likelihood
function on held-out data. However, in our case, this trade-off is not a concern because the function
p(·) is fully specified by the structural model (1).

14



multi-dimensional, we check this condition element by element. The final estimate of

the model parameter follows θ̂(ω̂).

All the simulations reported in this paper adopt α = 0.05, L = 10, and c =

95%. Therefore, zα/2 = −1.96 and z1−α/2 = 1.96. To illustrate how the proposed

method works in terms of selecting the tuning parameter, consider the monopoly

pricing example with xj = 1. Figure 2 reports the parameter estimate and confidence

intervals when the smoothing parameter varies. The x-axis represents logω. While

the bias seems small for small values of ω, the confidence interval is large. As ω

increases, it shrinks to the MLE confidence interval.

Figure 2: Choosing The Smoothing Parameter

Note: The DGP is yj ∼ N (W (θ0), 1), where θ0 = 1. This figure demonstrates how the
estimate and its confidence interval change when the smoothing parameter increases.

The approximation parameter K (i.e., the number of basis functions) should be

chosen properly: large enough to approximate the equilibrium well. Exactly how

many is sufficient depends on the complexity of the equilibrium solution. In our

motivating example, the solution is simple; as a result, we find that four cubic basis

functions are adequate to approximate the solution well. When the solution is complex

and the number of basis functions needs to be large, the analyst should start with a
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large smoothing parameter to avoid over-fitting in the inner loop; i.e., the likelihood

function dominates. Sometimes, there are a finite number of states in the structural

model, which is often assumed in estimating dynamic models. See, e.g., Aguirregabiria

and Mira (2002) and Pesendorfer and Schmidt-Dengler (2008). Such finite states often

come from discretization of covariates. In this case, the approximation can be perfect,

i.e., β = p. That is, sk(x) = 1(x = pk), where 1(·) is the indicator function and pk

is the kth element in the endogenous variable p. Note in this scenario the number of

basis functions is identical to the dimensionality of p.

To capture empirically relevant covariates without losing much efficiency, any ap-

proximation methods would suffer from a computational curse of dimensionality —

the total number of basis functions has to grow fast as the dimensionality of x in-

creases. We propose to resolve this issue in several ways. First, more advanced

approximation methods are often preferable to simple ones. See, e.g., Chen et al.

(2023a) compare neural networks-based estimators. Additional shape constraints,

sparsity patterns, and better grid choices are useful in reducing computational bur-

den. See, e.g., Chen (2007) discusses various sieve-based methods, and Kristensen

et al. (2021) discuss various approximation architectures for approximating value

functions in dynamic models. Second, there are also many model-specific techniques

for approximating functions using a small number of basis functions. The model may

generate multiple endogenous objects, some directly observable while others inter-

mediate. A well-chosen p simplifies its approximation and evaluating Ψ and data

likelihood. For instance, in static games of asymmetric information, if the determin-

istic component in the payoff function is linear in the parameters, see, e.g., Bresnahan

and Reiss (1991) and Bajari et al. (2010), how covariates determine the endogenous

variable becomes a multiple-index model. In empirical auctions, Chen et al. (2023b)

approximate the bid-stage primitives by flexible Bernstein polynomial sieves. One

can borrow techniques from the existing literature in estimating such a model.

3.2 Asymptotic Properties in Continuous State Settings

In this section, we study the asymptotic properties of the nested SEES algorithm

when the states are continuous. Let x denote the continuous states. Without loss

of generality, we assume that I = 1 and x ∈ [0, T ] with a fixed T > 0. Without

loss of generality, we assume T = 1. We approximate the solution to (3) using a
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sieve method. In particular, we take the sieve space, denoted as Bn, to be the space

of cubic B-spline functions equipped with knots τ (n) =
{
0 = t

(n)
0 < · · · < t

(n)
Mn

= T
}
.

Let |τ (n)| = max0≤i≤Mn−1 |t(n)i+1 − t
(n)
i | be the largest distance of adjacent knots in

τ (n). For any element η ∈ Bn, there exists a β = (β1, . . . , βK)
⊤ ∈ RK such that

η(x) =
∑K

j=1 βjsj(x), where sj’s are cubic B-spline basis functions and K = Mn + 3.

Suppose that (Y1, X1), . . . , (Yn, Xn) are i.i.d observations, where Xi’s are inde-

pendently sampled from a distribution Q on [0, T ] and Yi’s take values in RdY . For

simplicity, we assume that dY = 1 and J = 1. Following the notations defined in the

last subsection, given θ ∈ Θ, we have

p̂n(·; θ) = argmax
p∈Bn

ℓn(p(·))− ωρ[p(·),Ψ(p(·), θ)], (8)

where the likelihood ℓn can be written

ℓn(p(·)) =
1

n

n∑
i=1

f(Yi, p(Xi)),

for any function p defined on [0, T ], and the penalty function ρ is given by

ρ[p(·),Ψ(p(·), θ)] =
∫ T

0

{p(x)−Ψ(p(x), θ)}2 dx.

Then the nested estimator of θ is given by

θ̂n = argmax
θ∈Θ

ℓn(p̂n(·; θ)). (9)

We next study the asymptotic properties of θ̂n in this model. We first establish

consistency for the estimator and then develop the asymptotic normality of θ̂n. To

this end, we need the following regularity conditions.

Assumption 1. The density function of Q, denoted by q, satisfies that C1 ≤ q(x) ≤
C2 for any x ∈ [0, T ], where C1 and C2 are two positive constants.

Assumption 1 ensures that Xi’s are evenly distributed over [0, T ], which is entailed

by a good estimation of p over the entire domain. Moreover, this assumption is

commonly adopted in the literature of nonparametric smoothing; see Stone (1985)

and Chen et al. (2023b) for example.
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Assumption 2. The parameter space Θ is a compact subset of Rd.

Define g(p(x), θ) = Ψ(p(x), θ)− p(x) for any function p defined on [0, T ]. Let h(k)

denote the kth order derivative of function h for any integer k ≥ 0, and define

Ck([0, T ]) = {h : h(k) is continuous on [0, T ]}.

Obviously, the solution to Equation (1), denoted as p∗(θ), satisfies g(p∗(θ), θ) = 0.

We impose the following regularity condition on g(p, θ).

Assumption 3. For any θ ∈ Θ, Ψ ∈ C4(R × Θ). There exists a positive constant

r such that for any (p1, θ), (p2, θ) satisfying max{∥p1∥∞, ∥p2∥∞} ≤ r and θ ∈ Θ, we

have ∥p1 − p2∥L2([0,T ]) ≤ Cg∥g(p1, θ)− g(p2, θ)∥L2([0,T ]) for some constant Cg > 0.

By Lemma A1 in Appendix B, we define the sieve space to be

Bn(r) =

{
η(x) : η(x) =

K∑
k=1

βksk(x), ∥η∥∞ ≤ r

}

with equally spaced knots for some sufficiently large constant r. Therefore, for any

θ ∈ Θ, there exits an pθ,n ∈ Bn(r) such that ∥p∗(·; θ)− pθ,n∥∞ = O(K−4). Let

rn = sup
θ∈Θ

inf
η∈Bn(r)

∥p∗(·; θ)− η∥∞. (10)

For the sieve estimator p̂n(·; θ) defined in (8), we establish an important approxi-

mation error bound, which will be used to develop the asymptotic normality for θ̂n

defined in (9) later.

Theorem 1. Assume that Assumptions 1-3 and 5 are satisfied. Furthermore, if

ω → ∞ as n → ∞, we have

sup
θ∈Θ

∥p̂n(·; θ)−p∗(·; θ)∥2L2(P) := sup
θ∈Θ

∫ T

0

{p̂n(x; θ)−p∗(x; θ)}2q(x) dx = OP(ω
−1)+OP(r

2
n).

Let θ0 denote the true value of θ and Gθ0 denote the joint distribution of (Xi, Yi)

under this true value. Define

M(θ) = E θ0 [f(Yi, p
∗(Xi; θ)], θ ∈ Θ,
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where the expectation is taken with respect to Gθ0 .

Assumption 4. M(θ) is continuous function and has a unique maximum at θ0 in Θ.

Assumption 5. f(y, p) ≤ 0 for any (y, p) ∈ R2 and f(y, p) ∈ C(R× R) satisfies

E θ0

[∣∣∣∣∂f∂p (Yi, p
∗(X; θ0))

∣∣∣∣] < ∞.

Moreover, if Yi is not bounded, f(y, p) satisfies that for any compact set D ⊂ R,

lim inf
|y|→∞

1 + infp∈D[−f(y, p)]

supp∈D[−f(y, p)]
> 0 and lim inf

|y|→∞

1 + infp∈D[−∂f(y, p)/∂p]

supp∈D[−∂f(y, p)/∂p]
> 0

To establish consistency and asymptotic normality for θ̂n, a stronger version of

Assumption 5 is entailed.

Assumption 6. f(y, p) ≤ 0 for any (y, p) ∈ R2 and f(y, p) ∈ C(R×R) satisfies that
under Gθ0 , ∂f(Yi, p

∗(Xi; θ0))/∂p is sub-Gaussian, and

E θ0

[∣∣∣∣∂2f

∂p2
(Y, p∗(X; θ0))

∣∣∣∣] < ∞.

Moreover, if Yi is not bounded, f(y, p) satisfies that for any compact set D ⊂ R,

lim inf
|y|→∞

1 + infp∈D[−f(y, p)]

supp∈D[−f(y, p)]
> 0 lim inf

|y|→∞

1 + infp∈D |∂f(y, p)/∂p|
supp∈D |∂f(y, p)/∂p|

> 0,

and

lim inf
|y|→∞

1 + infp∈D |∂2f(y, p)/∂p2|
supp∈D |∂2f(y, p)/∂p2|

> 0.

Remark 3. We impose a sub-Gaussian condition on ∂f(Yi, p
∗(Xi; θ0))/∂p in Assump-

tion 6, which is stronger than that in Assumption 5. This term is usually referred

to as the residual in the gradient descent algorithm. Actually, this condition is met

when ϵi = Yi− p(Xi) follows a normal distribution and f(Yi, p(Xi)) = −(Yi− p(Xi))
2

or in logistic regression when P(Yi = 1|Xi) = exp{p(Xi)}/[1 + exp{p(Xi)}]. We

impose this condition to ensure that ℓn(p
∗(·; θ̂n)) ≥ supθ∈Θ ℓn(p

∗(θ)) − oP(n
−1). Al-

ternatively, we may impose a stronger smoothness condition on p∗(·; θ). Then a

smaller approximation error, i.e., a smaller rn (defined in (10)), can be obtained with

a sieve space with higher-order B-spline functions. This reflects a trade-off between
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the smoothness of the structure equation and the decaying rate of the tail probability

of ∂f(Yi, p
∗(Xi; θ0))/∂p.

Theorem 2. Suppose Assumptions 1-4 and 6 hold. If ω → ∞ and K2 log(K) = o(n),

then θ̂n is a consistent estimator of θ0.

Theorem 3. Suppose that Assumptions 1-4 and Assumption 6 hold. If ω/n2 →
∞, n1/4 = o(K), K2 log(K) = o(n) and the matrix

Vθ0 = −E θ0

[
∂f(Yi, p

∗(Xi; θ0))

∂p

∂2p∗(Xi; θ0)

∂θ∂θ′

+
∂2f(Yi, p

∗(Xi; θ0))

∂p2

{
∂p∗(Xi; θ0)

∂θ

}{
∂p∗(Xi; θ0)

∂θ

}′]
is invertible, then

√
n (θ̂n − θ0)

d→ N (0,Σ),

where Σ = V −1
θ0

E θ0

[{
∂f(Y,p∗(X;θ0))

∂p

}2 {
∂p∗(Xi;θ0)

∂θ

}′ {
∂p∗(Xi;θ0)

∂θ

}]
V −1
θ0

.

Remark 4. 1) If the sieve space Bn(r) consists of the cubic spline functions equipped

with equally spaced knots τ (n), then by Lemma A1 in Appendix B, this condition

implies rn = o(n−1). Meanwhile, we impose an upper bound on K to control the

bracketing number (cf. Van der Vaart, 2000, p. 270) of a relevant functional class

when we study the uniform estimation error of p̂n(·; θ) relative to p∗(·; θ) over θ ∈ Θ.

2) We approximate the solution by flexible sieves so that the approximation error

disappears in first order asymptotics. 3) If f(Y, p∗(X; θ)) denotes the log density of

(Yi, Xi), then the asymptotic variance of θ̂n attains the Cramér-Rao lower bound.

Thus, θ̂n is asymptotically efficient.

Remark 5. In Appendix C, we examine the discrete state setting and establish

consistency and asymptotic normality for both estimators; see Theorems A4 and A5

for the joint algorithm, and Theorems A7 and A8 for the nested algorithm. Compared

to the continuous state setting, the discrete case does not require accounting for

approximation error when using the sieve method to approximate the true solution

p∗(·; θ). As a result, the theoretical derivation for discrete states is considerably

simpler. Notably, under mild conditions, the two estimators share the same limiting

distribution, and their asymptotic variances achieve the Cramér-Rao lower bound.
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Therefore, although these estimators differ from the maximum likelihood estimator

of θ, they remain asymptotically efficient.

In fact, the techniques used to establish consistency and asymptotic normality

for both estimators are largely the same.11 To show consistency, the essential step is

to establish the uniform law of large numbers for Mn(θ) = n−1
∑n

i=1 f(Yi, p
∗(Xi; θ))

and a uniform bound on |n−1
∑n

i=1{f(Yi, p̂n(Xi; θ)) − f(Yi, p
∗(Xi; θ))}| over θ ∈ Θ.

For asymptotic normality, we apply Theorem 5.23 of Van der Vaart (2000), as both

estimators can be regarded as M -estimators. In particular, although the joint es-

timator θ̃n is not defined as the maximizer of ℓn(p
∗(θ)), where ℓn denotes the data

likelihood function, we are still able to control the difference between ℓn(p
∗(θ̃n)) and

maxθ∈Θ ℓn(p
∗(θ)). We show that θ̃n nearly maximizes ℓn(p

∗(θ)), which allows us to

leverage the general results for M -estimators; see Section 5.2 of Van der Vaart and

Wellner (1996) for details.

3.3 Discussion

MPEC: When the state space is discrete and p is finite, our method could incorpo-

rate each element of the endogenous variable p as a basis function in sieve approxi-

mation and put all of the weight on the equilibrium conditions in the inner loop. In

this case, our estimator becomes the MPEC estimator.

Moreover, it is easy to show that for a given ω > 0, there exists an ϵ > 0 such

that the optimization problem of the joint algorithm (5) has the same solution as its

dual optimization problem

max
β,θ

ℓ(β, θ)

s.t. ρ(β, θ) ≤ ϵ

The dual problem is a natural generalization of the MPEC estimator. However,

solving it numerically is challenging.

Our above-mentioned derivation also suggests a natural way to calculate standard

errors for MPEC estimators.

11Using the same techniques, we can show that the joint estimator θ̃n, defined as in (A15) for
continuous states, has the same limiting distribution under the conditions of Theorem 3.

21



Corollary 3.1. When ω = ∞ and β = p, the observed Fisher information can be

characterized as

Ĥ = Hθθ + [∇β̂(θ̂)]′Hββ[∇β̂(θ̂)] + [∇β̂(θ̂)]′Hβθ + [Hβθ]
′∇β̂(θ̂),

where ∇β(θ̂) = − [∇βg]
−1 × ∇θg on the right-hand side, and the matrices in bold

are the four blocks in the Hessian matrix generated from a constrained maximization

algorithm, [
Hββ Hβθ

Hθβ Hθθ

]
.

To the best of our knowledge, this result is new in the literature. Su and Judd

(2012) suggest obtaining standard errors through bootstrapping. We derive the gen-

eral result in Appendix D. Here, we consider p, β, θ ∈ R, as in the simple example

with xj = 1, to explain the idea. When ω = ∞ and β = p, our estimator is effectively

an MPEC estimator,

max
g(β,θ)=0

ℓ(β, θ).

The MPEC approach forms the Lagrangian function h(β, θ, ω) = ℓ(β, θ) + λg(β, θ).

Note that this multiplier λ should not to be confused with the smoothing parameter ω

for general PSE. By definition, we have g(β̂(θ), θ) = 0. Its first-order and second-order

derivatives are

gββ̂
′(θ) + gθ = 0

gββ[β̂
′(θ)]2 + 2gβθβ̂

′(θ) + gββ̂
′′(θ) + gθθ = 0,

which allow for expressing β̂′(θ) and β̂′′(θ) in the gradient of g.

On the other hand, the second-order derivative of the likelihood is

ℓ̂θθ(θ)|θ=θ̂ = ℓββ[β̂
′(θ)]2 + 2ℓβθβ̂

′(θ) + ℓββ̂
′′(θ) + ℓθθ

=
[(gθ

gβ

)2

(ℓββ + λgββ)− 2
gθ

gβ

(ℓβθ + λgβθ) + (ℓθθ + λgθθ)
]∣∣∣∣

β=β̂(θ̂),θ=θ̂

,

where λ denotes the associated Lagrange multiplier reported by a constrained maxi-

mization algorithm. The last equation follows from the Lagrange multiplier theorem
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that ℓβ + λgβ = 0 at the optimum (β = β̂(θ̂), θ = θ̂) and the first-order and second-

order derivatives of the equilibrium constraints. All terms on the RHS are readily

available if MPEC converges. We recommend supplying the analytic gradient and

Hessian, as the numerical one can be inaccurate.

To the best of our knowledge, the theoretical properties of the MPEC estimator

for structural models with continuous states remain unexplored. In contrast, our

proposed method offers a rigorous framework for conducting statistical inference for

θ with either discrete, continuous, or both types of states. We believe this represents

a critical advancement for practical applications.

Approximate MLE: We now discuss the extreme case when we let ω = ∞. That is,

for each guess of the model parameter θ, we find the best approximation to minimize

any deviation from the equilibrium condition and then evaluate the likelihood by

plugging in this best approximation. Specifically, our estimator becomes equivalent

to

max
θ

ℓ(pβ(θ), θ; data)

where β(θ) = argmin
β

ρ(pβ,Ψ(pβ, θ)),

which looks similar to MLE, with an important difference that we only search for the

best approximation in the inner loop. We call this special case of our estimator the

approximate MLE (AMLE). Such approximate solution approaches have appeared in

the literature. See, e.g., Keane and Wolpin (1994, 1997) use sieves to approximate

solutions in dynamic structural models.

One may wonder about the advantages of gradually changing ω instead of di-

rectly considering the limiting case. AMLE ignores the data when finding the best

approximation of the solution for each θ. Because the data are informative about the

true strategies p, our general sieve-based efficient estimator may perform better than

AMLE. By gradually updating the smoothing parameter, we shift the weight from

the data to the equilibrium condition. At the minimum, a preliminary nonparametric

estimate of p̂ (by letting ω = 0) constitutes a good starting value for the inner loop

but is subject to issues with nonparametric estimates. When the smoothing param-

eter increases, more weight is given to the equilibrium condition. By forcing model
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restrictions more strongly, the estimates converge to MLE estimates.

4 Application: Walmart versus Kmart Entry Game

In this section, we apply our methodology to an entry game between Walmart and

Kmart, using a dataset published by Jia (2008). A detailed description of the industry

and data is available in the original paper.

4.1 Data

The original dataset includes 2,065 markets, each representing a county with an av-

erage population ranging from 5,000 to 64,000, covering the years 1988 to 1997. For

our analysis, we focus on the year 1997. The market-level variables include the log of

county population (pop), the log of retail sales per capita (spc), and the percentage

of urban population (urban). Walmart-specific variables include an intercept, the

log of distance to Bentonville (dbenton), and an indicator for the southern region.

Kmart-specific variables include an intercept and an indicator for the Midwest region

(midwest). These variables capture key variations in the data. For instance, a simple

scatter plot of the total number of firms shows that neither firm enters the market

when SPC is too low.

Denote the data as {dWm, dKm, xWm, xKm, zm}nm=1, where W and K represent Wal-

mart and Kmart, respectively. Here, djm is firm j’s entry decision in market m, xjm

includes firm-specific covariates, including a constant, and zm contains market-specific

covariates. Table 4.1 provides summary statistics for the sample used in our analysis.

Table 2: Summary Statistics

Variable Mean Std. Dev. Min Max
dWm 0.48 0.50 0 1
dKm 0.19 0.39 0 1
pop 2.98 0.67 1.54 4.37
spc 8.20 0.47 5.08 10.66
urban 0.33 0.24 0 1
dbenton 6.24 0.63 3.01 8.29
southern 0.50 0.50 0 1
midwest 0.42 0.49 0 1
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4.2 Empirical Model

For the purpose of illustrating our method, we model the entry game betweenWalmart

and Kmart as a static game with incomplete information. Two players, Walmart

(W) and Kmart (K), decide whether to enter a market. We assume that they make

independent decisions across markets. Let dj = 1 if firm j is active and 0 otherwise.

The payoff function of firm j depends on its own productivity, whether its competitor

enters or not, market- and firm-specific covariates, and private information:

uj(dj, d−j) = X ′
jα + Z ′γ︸ ︷︷ ︸

ξj

−∆d−j + ϵj1,

if dj = 1 and = ϵj0 otherwise, where X = (XW , XK)
′ is firm characteristics that affect

only the focal firm’s profit and Z is market characteristics common to both firms.

For convenience, we denote ξj = X ′
jα + Z ′γ.

Firm j’s profit is ξj under monopoly and ξj − ∆ under duopoly. Note we allow

asymmetry in monopoly profit by including a constant in firm-specific covariates. The

term Z ′γ is common among all firms. Denote θ = (α, γ,∆)′, market- and firm-specific

characteristics (x, z) are common knowledge, and firm j’s private information ϵj is

type-1 extreme value distributed and independent of ϵ−j.

Therefore, the probability that firm j chooses to enter is

pj =
1

1 + exp{−ξj + p−j∆}
,

where p−j is its competitor’s entry probability. Denote the CCPs as p = (pW , pK)
′.

Define the best response mapping from CCP to CCP Ψ : p → p. In equilibrium, we

must have

p = Ψ(p, θ).

We define the likelihood function as

ℓ(pβ, θ) =
∑

j=W,K

n∑
m=1

{
djm log

[
pβj (χm)

]
+ (1− djm) log

[
1− pβj (χm)

]}
,

where χm = (xWm, xKm, zm)
′. The approximation structure pβj is introduced below.
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We define the approximated penalization term as

ρ̂(β, θ) =
∑

j=W,K

n∑
m=1

[
pβj (χm)−Ψj

(
pβ−j(χm), θ

)]2
,

which accounts for the equilibrium conditions for the set of observed market-specific

covariates. In addition, we supply analytic gradient; see Appendix F.2.

Approximation Structure: We now consider the approximation of the CCPs. A

naive approach is to approximate them as a flexible function of all market- and firm-

specific covariates pj(xj, x−j, z), which is of six dimensions in our empirical setting.

To ensure that the approximation error disappears in first order asymptotics, the

dimension of the approximation parameter K needs to be large, leading to substantial

computational challenges.

We propose a novel approximation structure that leverages the model structure:

the deterministic component in the payoff function is linear in the parameters. As

a result, how covariates (x, z) determine the endogenous variable p becomes a two-

index model p∗(ξj, ξ−j), which is much easier to approximate than a six-dimensional

function. Using cubic basis functions following Luo et al. (2018), we propose to

approximate the CCPs in our empirical model by

pβ(ξj, ξ−j) = σ

(
K∑
ı=1

K∑
ȷ=1

βıȷsı
(
σ(ξj)

)
sȷ
(
σ(ξ−j)

))
, (11)

where sı(·) and sȷ(·) are cubic spline basis functions on [0, 1], β = (β11, . . . , βKK)
′

and σ(·) = (1 + e−·)−1 representing the logistic function. In principle, we can use a

different number of basis functions in the two dimensions. For convenience, we will

use the same number K and refer to it as the approximation parameter.

Note that the logistic function appears three times but for different reasons. First,

because sı(·) and sȷ(·) are cubic spline basis functions on [0, 1], the inner ones σ(ξj)

and σ(ξ−j) transforms unbounded payoff indices ξj and ξ−j into bounded ones on

[0, 1]. Interestingly, these correspond to stand-alone entry probabilities when firms

ignore strategic interaction. Second, the outer one transforms an approximation of

the ex-ante value of entry
∑K

ı=1

∑K
ȷ=1 βıȷsı

(
·
)
sȷ
(
·
)
, before observing T1EV errors,
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into CCPs. Altogether, our approximation structure is a hybrid of a simple neural

network and a tensor product linear sieve space. It leverages the index structure in

the payoff function and hence reduces the dimension of the approximation parameters

needed.

Remark 6. To our knowledge, no nested fixed-point algorithm or other numerical

algorithms exist for finding all equilibria in such games, rendering MLE challenging

to apply. In addition, the MPEC estimator would solve a constrained maximization

problem with thousands of unknowns, making it computationally difficult. Finally,

NPL has no guarantee of convergence in empirical games.

4.3 Estimation Results

The algorithms proposed in Section 3.1 share the same asymptotic properties and

perform similarly in simple settings. For practical, real-world applications, we rec-

ommend breaking the search process into more manageable steps. Specifically, we

suggest using the joint algorithm with a small smoothing parameter to identify good

starting values, followed by the alternating iterative version of the nested algorithm

for the main estimation. The following algorithm summarizes the procedure.

Two-step methods are generally less efficient than MLE and also rely on consis-

tent first-stage estimates of the CCPs. Ideally, this first-stage estimation should be

nonparametric, as the functional form of the solution is unknown, even when the

profit and best response functions are known. However, this leads to the well-known

curse of dimensionality. To address this, we propose a novel two-step approach that

leverages the single-index structure, thereby avoiding the curse of dimensionality.12

Specifically, we first obtain the sieve MLE of the CCPs, p̂j, using the same approxima-

tion structure as in Equation (11), and then estimate the parameters by maximizing

the pseudo-likelihood function

max
θ

∑
j=W,K

n∑
m=1

[
djm log

{
pθj(χm)

}
+ (1− djm) log

{
1− pθj(χm)

}]
,

where pθj = 1
1+exp{−ξj(α,γ)+p̂−j∆} . Here, p̂−j = pβ̃(ξ−j(α̃, γ̃)), ξj(α̃, γ̃)), where (α̃, γ̃, β̃)

12This approach can also be applied to the simple model in Section 2 when extending it to multiple
product characteristics. Related strategies appear in the econometrics literature on single-index
regression models, such as Stoker (1986) and Powell et al. (1989).
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Algorithm 1 Alternating Iterative Estimation Algorithm

1: Input: Data {dWm, dKm, xWm, xKm, zm}nm=1; initial value ω(1)

2: for t = 1 to Touter do
3: Given ω(t), initialize θ(0)

4: for s = 1 to Tinner do
5: Given (ω(t), θ(s−1)), estimate β(s) by maximizing the penalized likelihood

(6)
6: Given (ω(t), β(s)), estimate θ(s) by maximizing the data likelihood (7)
7: if |θ(s) − θ(s−1)| < tolerance then
8: Set θ(ω(t)) = θ(s); break
9: end if
10: end for
11: if |θ(ω(t))− θ(ω(t−1))| < tolerance then
12: break
13: else
14: Update ω(t+1) = L× ω(t)

15: end if
16: end for
17: Output: Final estimates θ̂ = θ(ω(t))

denotes the first-step estimates of the parameters (α, γ, β).

Table 4.3 shows the estimated parameters when the number of basis functions,

K, varies from 10 to 30. The second last column reports the maximum likelihood

estimates assuming equilibrium uniqueness.13 The last column reports the two-step

estimates.14 The estimates are quite similar across different estimators. All esti-

mates are significant at the 5% level and their signs are consistent with Jia (2008).

More populated areas tend to have more stores, and higher retail sales per capita

predict increased entry. Urbanized areas also attract more entry. The southern re-

gion dummy variable and the log of the distance to Walmart’s headquarters in Ben-

tonville, Arkansas, both significantly predict Walmart’s entry decisions. Similarly,

because Kmart’s headquarters are located in Troy, Michigan, the dummy variable for

the Midwest region is predictive of Kmart’s entry decisions.

The maximum likelihood estimates imply that the mean and standard deviation

13We conduct fine grid search to check equilibrium uniqueness and find that the equilibrium is
unique in each market.

14All simulations and the empirical application in this paper were implemented in Matlab R2024b,
using fminunc with its built-in quasi-Newton algorithm wherever maximization or minimization was
required, and were run on a machine with an 11th Gen Intel Core i7-11800H 2.30 GHz processor
and 16 GB of RAM.
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Table 3: Estimation Results

SEES MLE 2-Step
K 10 20 30
Market-specific
pop 3.38 3.37 3.34 3.29 (0.15) 3.40
spc 2.81 2.83 2.82 2.80 (0.19) 2.99
urban 2.37 2.39 2.37 2.32 (0.31) 2.50
Walmart-specific
intercept -22.90 -23.03 -22.77 -22.29 (1.73) -24.33
dbenton -1.86 -1.85 -1.87 -1.90 (0.13) -1.87
south 1.02 1.02 1.06 1.10 (0.15) 1.07
Kmart-specific
intercept -36.21 -36.31 -36.22 -35.99 (1.69) -37.70
midwest 0.66 0.66 0.65 0.65 (0.14) 0.58
∆ 1.96 1.98 1.85 1.65 (0.27) 2.12

Note: The model is estimated using the proposed method with K =
10, 20, 30, MLE, and the two-step method. The SEES approach
results in final ω values of 103, 104, and 105, with corresponding ρ
values of 0.1679, 0.0247, and 0.0180, respectively.

of ξW are -0.11 and 3.43, respectively, while the mean and standard deviation of

ξK are -2.20 and 3.30, respectively. The large coefficients on firm dummies suggest

substantial entry costs. Note that Walmart is a dominant firm with a penetration

rate of 48%, while Kmart is relatively weak with a penetration rate of 19%. This

explains the much lower coefficient on the Kmart firm dummy. The proposed sieve

estimator performs well across different K. The larger the approximation parameter

K is, the closer the estimates become to the maximum likelihood estimates. The

estimates from the proposed two-step estimator have larger biases.

5 Conclusion

A structural model is based on economic theory and describes how endogenous vari-

ables relate to a set of explanatory variables. This relationship is often expressed

as an implicit function dependent on unknown parameters, which can be costly to

solve. Two-step methods avoid solving the model but rely heavily on the accuracy

of the first-step nonparametric estimation. We introduce SEES as a new class of
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estimators that use a sieve to approximate the solution while penalizing deviations

from the equilibrium condition. SEES are straightforward to apply, at least as fast as

alternative approaches like MLE, and more robust across various models. We believe

our method will become a valuable tool in structural estimation.
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Appendix

A Optimal Monopoly Pricing With Logit Demand

In this section, we derive Equation (2). Rearranging terms gives ξj − αPj + exp(ξj −
αPj) = ξj − αcj − 1, which reduces to

ξj(x)− P ∗
j (x) + exp{ξj(x)− P ∗

j (x)} = ξj(x)− 1

under our assumptions cj = 0, α = 1. Denote M(x) = exp{ξj(x)−P ∗
j (x)}. The FOC

can be rewritten as logM(x) +M(x) = ξj(x)− 1. Therefore, we have

M(x) = W (exp{ξj(x)− 1}),

applying an alternative definition of the Lambert W function logW (v)+W (v) = log v.

That is, the optimal price satisfies

P ∗
j (x) = ξj(x)− logM(x) = ξj(x)− {ξj(x)− 1−M(x)} = 1 +W (θx),

where the first equation follows the definition of M(·), the second equation follows

the rewritten FOC, and the last equation follows ξj(x) = log x+ log θ + 1.

B Proofs in Section 3.2

In this section, we focus on developing consistency and asymptotic normality for the

estimators of θ obtained from the nested algorithm in the setting of continuous states.

To this end, we first establish an approximation result that helps us to determine an

appropriate choice of the sieve space Bn.

Lemma A1. Under Assumptions 2 and 3, we have when |τ (n)| = o(1),

sup
θ∈Θ

inf
η∈Bn

[∥p∗(·; θ)− η(·)∥∞ ∨ ∥Ψ(p∗(·; θ); θ)−Ψ(η(·), θ)∥∞] = O(|τ (n)|4),

where a ∨ b = max(a, b) denotes the maximum of two real numbers a and b.

Proof of Lemma A1. Under Assumption P4, Ψ has continuous fourth order deriva-

tives. Therefore, d4p∗(x; θ)/dx4 is a continuous function of x and θ for (x, θ) ∈
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[0, T ]×Θ. Because Θ is compact, it follows that

sup
θ∈Θ

∥∥∥∥d4p∗(x; θ)

dx4

∥∥∥∥
∞

< ∞.

Letting |τ (n)| → 0 as n → ∞, by Theorem 2 and Theorem 4 in Hall and Meyer

(1976), we have

sup
θ∈Θ

inf
ηθ∈Bn

∥p(·; θ)− ηθ∥∞ ≤ C0 sup
θ∈Θ

∥∥∥∥d4p(x; θ)

dx4

∥∥∥∥
∞
|τ (n)|4 → 0,

sup
θ∈Θ

inf
ηθ∈Bn

∥Ψ(p∗(·; θ); θ)−Ψ(ηθ(·), θ)∥∞

≤ sup
|p|≤r,θ∈Θ

∣∣∣∣dΨdp (p; θ)
∣∣∣∣× sup

θ∈Θ
inf

ηθ∈Bn

∥p∗(·; θ)− ηθ∥∞,

(A1)

for some positive constant C0 and r. On the right-hand side of (A1), since we choose

ηθ that best approximates p∗(x; θ) over Bn and Θ is compact, we can choose a sufficient

large but finite r such that we restrict our attention to p which is bounded by r from

above. Thus, the left-hand side of the bottom line of (A1) is of order |τ (n)|4 as well.

The proof is completed.

Proof of Theorem 1. Let ρ(p,Ψ(p, θ)) =
∫ T

0
[p(x)−Ψ(p(x), θ)]2 dx. Based on the def-

inition of p̂n(·, θ), we have for any θ ∈ Θ,

ℓn(p̂n(·; θ))− ωρ(p̂n(·; θ),Ψ(p̂n(·; θ), θ)) ≥ ℓn(pθ,n(·))− ωρ(p̂n(·; θ),Ψ(p̂n(·; θ), θ)).

As ℓn(p̂n(·; θ)) ≤ 0 by Assumption 5, it follows that

−ωρ(p̂n(·; θ),Ψ(p̂n(·; θ), θ)) ≥ ℓn(pθ,n(·))− ωρ(p̂n(·; θ),Ψ(p̂n(·; θ), θ)).
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Then

ρ(p̂n(·; θ),Ψ(p̂n(·; θ), θ))

≤ −ω−1ℓn(pθ,n(·)) + ρ(p̂n(·; θ),Ψ(p̂n(·; θ), θ))

= ω−1Pn[−f(Y, pθ,n(X))] + ∥pθ,n(·)−Ψ(pθ,n(·), θ)∥2L2[0,T ]

= ω−1Pn[−f(Y, pθ,n(X))] + ∥pθ,n(·)− p∗(·; θ) + Ψ(p∗(·; θ), θ)−Ψ(pθ,n(·), θ)∥2L2[0,T ]

≤ ω−1Pn[−f(Y, pθ,n(X))] + 2∥pθ,n(·)− p∗(·; θ)∥2L2[0,T ]

+ 2∥Ψ(p∗(·; θ), θ)−Ψ(pθ,n(·), θ)∥2L2[0,T ]

≤ ω−1Pn[−f(Y, pθ,n(X))] + 2∥pθ,n(·)− p∗(·; θ)∥2∞
+ 2∥Ψ(p∗(·, θ), θ)−Ψ(pθ,n(·), θ)∥2∞

≤ ω−1Pn[−f(Y, pθ,n(X))] + C0r
2
n.

for some constant C0, where the last inequality holds by Lemma A1.

Note that supθ∈Θ ∥pθ,n(·)∥∞ ≤ r by the definition of the sieve space Bn(r). By

invoking the same argument for proving equation (A14), we have

sup
θ∈Θ

Pn[−f(Y, pθ,n(X))] = OP(1).

It follows that

sup
θ∈Θ

ρ(p̂n(·; θ),Ψ(p̂n(·; θ), θ)) ≤ ω−1OP(1) + C0r
2
n

= OP(ω
−1) +O(r2n).

As ρ(p,Ψ(p, θ)) =
∫ T

0
[p(x)−Ψ(p(x), θ)]2 dx, we have

sup
θ∈Θ

∥p̂n(·; θ)−Ψ(p̂n(·; θ), θ)∥2L2[0,T ] ≤ OP(ω
−1) +O(r2n).

Since p∗(x; θ) satisfies p(x) = Ψ(p(x), θ),

p̂n(x; θ)−Ψ(p̂n(x; θ), θ) = g(p∗(x; θ), θ)− g(p̂n(x; θ), θ)
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holds for for any x ∈ [0, T ] and θ ∈ Θ. Moreover, under Assumption 3, we have

sup
θ∈Θ

∥p̂n(·; θ)− p∗(·; θ)∥2L2[0,T ]

≤ sup
θ∈Θ

C2
g∥g(p∗(·; θ), θ)− g(p̂n(·; θ), θ)∥2L2[0,T ]

= sup
θ∈Θ

C2
g∥p̂n(·; θ)−Ψ(p̂n(·; θ), θ)∥2L2[0,T ]

= OP(ω
−1) +O(r2n).

Lastly, under Assumption 1, one obtains

sup
θ∈Θ

∥p̂n(·; θ)− p∗(·; θ)∥2L2(P) = OP(ω
−1) +O(r2n).

The proof is completed.

To apply Theorem 5.23 of Van der Vaart (2000) to show asymptotic normality for

θ̂n, we need the following lemma.

Lemma A2. Under the same conditions in Theorem 3, we have

ℓn(p
∗(·; θ̂n)) ≥ sup

θ∈Θ
ℓn(p

∗(·; θ))− oP(n
−1), (A2)

and

sup
θ∈Θ

|ℓn(p∗(·; θ))−M(θ)| = oP(1). (A3)

Proof of Lemma A2. Under Assumption 6, there exists a constant δ > 0, such that

sup
|p|≤r+1

∣∣∣∣∂f∂p (y, p)
∣∣∣∣ ≤ δ−1

{
1 + inf

|p|≤r+1

∣∣∣∣∂f∂p (y, p)
∣∣∣∣} . (A4)
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Then it follows

|ℓn(p̂n(·; θ))− ℓn(p
∗(·; θ))|

≤ 1

n

n∑
i=1

|f(Yi, p̂n(Xi; θ))− f(Yi, p
∗(Xi; θ))|

≤ 1

n

n∑
i=1

{
sup

|p|≤r+1

∣∣∣∣∂f∂p (Yi, p)

∣∣∣∣
}
|p̂n(Xi; θ)− p∗(Xi; θ)|

≤ 1

n

n∑
i=1

1

δ

{
1 + inf

|p|≤r+1

∣∣∣∣∂f∂p (Yi, p)

∣∣∣∣} |p̂n(Xi; θ)− p∗(Xi; θ)|

≤ 1

n

n∑
i=1

{
1 +

∣∣∣∣∂f∂p (Yi, p
∗(Xi; θ0))

∣∣∣∣} |p̂n(Xi; θ)− p∗(Xi; θ)|.

(A5)

Next we identify the stochastic order of the right-hand side of (A5) using empirical

process theory. To simplify the notation, for any function η ∈ Bn(r) and θ ∈ Θ, we

denote H(r, η, θ) as the right-hand side function from one single observation with

parameter (η, θ), i.e.,

H(r, η, θ) =

{
1 +

∣∣∣∣∂f∂p (y, p∗(x; θ0))
∣∣∣∣} |η(x)− p∗(x; θ)|.

Then we define

Gn[H(R, p̂n(·; θ), θ)] =
√
n(Pn − P)[H(R, p̂n(·; θ), θ)].

To find the upper bound on Gn[H(R, p̂n(·; θ), θ)], we consider a function class Ln

defined by {H(r, η, θ) : η ∈ Bn(r), θ ∈ Θ}. By Assumption 6 and the definition of the

sieve space Bn(r), the class Ln has an upper bound OP(log n). Additionally, this class

can be treated as a class of functions indexed by θ and {βj}Kj=1, which are the B-spline

coefficients of η in Bn(r). It is straightforward to verify that functions in Ln are Lips-

chitz continuous with respect to all parameters and the Lipschitz constant is bounded

byOP(log n). Additionally, since θ is bounded by some constant, and all these B-spline

coefficients are bounded by r, they must reside in a hypercube of RK+1. Hence, if we

partition this large hypercube into a set of smaller hypercubes with scale length ϵ, the

cardinality number of this set is no more than O(ϵ−K). Furthermore, by the Lipschitz

property of functions in Ln, the L∞ distance between any two functions in the same
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subcube is bounded by OP(log n)Kϵ. Therefore, the bracketing number (cf. Van der

Vaart, 2000, p. 270) of Ln satisfies N[·](OP(log n)Kϵ,Ln, L∞) ≤ O(1)ϵ−Kn . Then by

Theorem 19.35 of Van der Vaart (2000) and n1/4 = o(K), we have in probability

√
nE∗∥Pn − P∥Ln ≤ OP(1)

∫ 1

0

√
log

{
2(log n)K

ϵ

}2K

dϵ

≤ OP(1)K
1/2
√

log(K).

Therefore, Gn[H(R, p̂n(·; θ), θ)] is bounded by OP(K
1/2
√

log(K)/
√
n) from above,

which is oP(1) by the assumption K2 log(K) = o(n).

Furthermore, with some abuse of notation, we still use Ln to denote the class{
H(r, θ) : H(r, θ) =

{
1 +

∣∣∣∣∂f∂p (y, p∗(x; θ0))
∣∣∣∣} |p̂n(x; θ)− p∗(x; θ)|

}
.

Obviously, the index set Θ is totally bounded when equipped with the Euclidean

distance. Moreover, we can choose Fn = (2r + 1){1 + |∂f(y, p∗(x; θ0)/∂p} to be the

envelop function of Ln, which has finite moments of all orders. Additionally, from the

preceding arguments, we know this class is equi-continuous with respect to θ. There-

fore, by Theorem 2.11.23 of Van der Vaart and Wellner (1996), Gn[H(R, p̂n(·; θ), θ)]
is bounded by oP(1/n) from above. Consequently, it follows from Theorem 1 that

sup
θ∈Θ

|ℓn(p̂n(·; θ))− ℓn(p
∗(·; θ))| = oP(n

−1) (A6)

if rn = o(n−1) and ω/n2 → ∞.

By definition of p∗(·; θ) and θ̂n, we have

ℓn(p
∗(·; θ̂n))

≥ ℓn(p̂n(·; θ̂n))− sup
θ∈Θ

|ℓn(p̂n(·; θ))− ℓn(p
∗(·; θ))|

≥ sup
θ∈Θ

ℓn(p
∗(·; θ))− 2 sup

θ∈Θ
|ℓn(p̂n(·; θ))− ℓn(p

∗(·; θ))|.

Hence, the relation in (A2) holds. Equation (A3) can be obtained with a slight

modification of Lemma A6 in Appendix C.1.

Next we prove Theorem 2.
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Proof of Theorem 2. By (A3) and (A6), we have

M(θ0)−M(θ̂n)

= Mn(θ0)−Mn(θ̂n) + oP(1) by (A3)

= ℓn(p
∗(·; θ0))− ℓn(p

∗(·; θ̂n)) + oP(1)

≤ ℓn(p̂n(·; θ0)) + sup
θ∈Θ

|ℓn(p̂(·; θ))− ℓn(p
∗(·; θ))| − ℓn(p̂(·; θ̂n))

+ sup
θ∈Θ

|ℓn(p̂(·; θ))− ℓn(p
∗(·; θ))|+ oP(1)

= ℓn(p̂(·; θ0))− ℓn(p̂(·; θ̂n)) + 2 sup
θ∈Θ

|ℓn(p̂(·; θ))− ℓn(p
∗(·; θ))|+ oP(1)

≤ ℓn(p̂(·; θ0))− ℓn(p̂(·; θ̂n)) + oP(1). by (A6)

By definition of θ̂n, we have

ℓn(p̂(·; θ̂n)) ≥ ℓn(p̂(·; θ0)),

so M(θ0)−M(θ̂n) ≤ oP(1). By (A20), we have

{d(θ̂n, θ0) ≥ δ} ⊂ {M(θ0)−M(θ̂n) ≥ γ} ⊂ {oP(1) ≥ γ}.

Therefore,

Pθ0(d(θ̂n, θ0) ≥ δ) ≤ Pθ0(oP(1) ≥ γ),

which converges to 0 as n approaches infinity. As δ is an arbitrary positive number,

θ̂n is a consistent estimator of θ0. This completes the proof.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. We follow Theorem 5.23 of Van der Vaart (2000) to prove asymp-

totic normality of θ̂n. Firstly, as we have shown in the proof of Lemma A6, under

Assumption 6, we have

|f(y, p∗(x; θ1))− f(y, p∗(x; θ2))|

≤ 1

η

[
1 +

∣∣∣∣∂f∂p (y, p∗(x; θ0))
∣∣∣∣] |p∗(θ1)− p∗(θ2)|

≤ C

η

[
1 +

∣∣∣∣∂f∂p (y, p∗(x; θ0))
∣∣∣∣] ∥θ1 − θ2∥2 (A7)
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for some constant C and η. By Assumption 6, the right-hand side of (A7) has a finite

second moment.

Next, we consider a second-order Taylor expansion for

M(θ) = E θ0 [f(Y, p
∗(X; θ))]

in a neighbourhood of θ0. Obviously,

f(y, p(x; θ))

= f(y, p∗(x; θ0)) +

[
∂f(y, p∗(x; θ0))

∂p

]′(
∂p∗(x; θ0)

∂θ

)′

(θ − θ0)

+
1

2
(θ − θ0)

′
[
∂f(y, p∗(x; θ0))

∂p

∂2p∗(x; θ0)

∂θ∂θ′

+
∂2f(y, p∗(x; θ0))

∂p2

(
∂p∗(x; θ0)

∂θ

)(
∂p∗(x; θ0)

∂θ

)′]
× (θ − θ0) +R,

(A8)

where R is the remainder term. Define

D(y, x, θ) =
∂f(y, p∗(x; θ0))

∂p

∂2p∗(x; θ0)

∂θ∂θ′

+
∂2f(y, p∗(x; θ0))

∂p2

(
∂p∗(x; θ0)

∂θ

)(
∂p∗(x; θ0)

∂θ

)′

.

Then the reminder term can be rewritten as

R = (θ − θ0)
′
[∫ 1

0

[D(y, x, θ0 + s(θ − θ0))−D(y, x, θ0)](1− s) ds

]
(θ − θ0).

Note that D(y, x, θ) is a d × d matrix. For any (a, b)th entry in D(y, x, θ), we can

show that, for any θ ∈ Θ,

|Dab(y, x, θ)|

≤
∣∣∣∣∂f(y, p∗(x; θ))∂p

∂2p∗(x; θ)

∂θa∂θb

∣∣∣∣+ ∣∣∣∣∂2f(y, p∗(x; θ))

∂p2

(
∂p∗(x; θ)

∂θa

)′(
∂p∗(x; θ)

∂θb

)∣∣∣∣
≤ C ′

η

[
1 +

∣∣∣∣∂f∂p (y, p∗(x; θ0))
∣∣∣∣+ ∣∣∣∣∂2f

∂p2
(y, p∗(x; θ0))

∣∣∣∣] ,
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where C ′ is a positive constant. Additionally, under Assumption 6, the right-hand

side of the above inequality has a finite mean. Therefore, applying the dominated

convergence theorem, we have

E θ0

[∫ 1

0

[D(y, x, θ0 + s(θ − θ0))−D(y, x, θ0)](1− s) ds

]
→ 0

as θ → θ0. Then, by the Taylor expansion of f(y, p∗(x; θ)), it follows that

M(θ) = M(θ0) +
1

2
(θ − θ0)

′Vθ0(θ − θ0) + o
(
∥θ − θ0∥22

)
. (A9)

Recall that f(y, p) is the log density of Yi. Therefore, there is no linear form in (A9)

and the expected value of D(Y,X, θ0) is given by Vθ0 as the expectation of (A22) is

zero.

Finally, (A2) holds by Lemma A2. Moreover, we can easily show θ̂n is a consistent

estimator of θ0 from (A3) in Lemma A2. Combining (A7), (A9) and (A2), it follows

from Theorem 5.23 in Van der Vaart (2000) that
√
n(θ̂n−θ0) is asymptotically normal

with mean zero and covariance matrix

V −1
θ0

E θ0

[{
∂f(Y, p∗(X; θ0))

∂p

}2(
∂p∗(X; θ0)

∂θ

)′(
∂p∗(X; θ0)

∂θ

)]
V −1
θ0

,

if Vθ0 is non-singular. This completes the proof.

Lastly, we prove Corollary 3.1.

Proof of Corollary 3.1. Denote the jth function of g(β̂(θ), θ) = 0 as gj. Taking its

first-order derivative gives ∑
k

gjβk

∂βk

∂θℓ
+ gjθℓ = 0,

which can be written in matrix form ∇βg ×∇β(θ) +∇θg = 0. Therefore,

∇β(θ) = − [∇βg]
−1 ×∇θg.
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Taking its second-order derivative gives

∑
k

{[∑
k′

gjβkβk′

∂βk′

∂θℓ′
+ gjβkθℓ′

]
∂βk

∂θℓ
+ gjβkθℓ

∂βk

∂θℓ′

}
+
∑
k

gjβk

∂2βk

∂θℓ∂θℓ′
+ gjθℓθℓ′ = 0.

(A10)

Now, consider the Hessian of the likelihood function ℓ̂(θ) = ℓ(β̂(θ), θ),

∂2ℓ̂(θ)

∂θℓθℓ′
=
∑
k

{[∑
k′

ℓβkβk′

∂βk′

∂θℓ′
+ ℓβkθℓ′

]
∂βk

∂θℓ
+ ℓβk

∂2βk

∂θℓ∂θℓ′
+ ℓβkθℓ

∂βk

∂θℓ′

}
+ ℓθℓθℓ′

=ℓθℓθℓ′+
∑
k

∑
k′

ℓβkβk′

∂βk′

∂θℓ′

∂βk

∂θℓ
+
∑
k

[
ℓβkθℓ′

∂βk

∂θℓ
+ ℓβkθℓ

∂βk

∂θℓ′

]
−
∑
k

∑
j

λjg
j
βk

∂2βk

∂θℓ∂θℓ′

=

[
ℓθℓθℓ′ +

∑
j

λjg
j
θℓθℓ′

]
︸ ︷︷ ︸

Hθθ

+
∑
k

∑
k′

[
ℓβkβk′

+
∑
j

λjg
j
βkβk′

]
︸ ︷︷ ︸

Hββ

∂βk′

∂θℓ′

∂βk

∂θℓ

+
∑
k

[
ℓβkθℓ′

+
∑
j

λjg
j
βkθℓ′

]
︸ ︷︷ ︸

Hβθ

∂βk

∂θℓ
+
∑
k

[
ℓβkθℓ +

∑
j

λjg
j
βkθℓ

]
︸ ︷︷ ︸

Hθβ

∂βk

∂θℓ′

where the first equation follows from the Lagrange multiplier theorem, i.e., ℓβk
+∑

j λjg
j
βk

= 0, and the second equation follows from (A10). In its matrix form, we

can construct the observed Fisher information,

Ĥ = Hθθ + [∇β̂(θ̂)]′Hββ[∇β̂(θ̂)] + [∇β̂(θ̂)]′Hβθ + [Hβθ]
′∇β̂(θ̂),

where ∇β(θ̂) = − [∇βg]
−1 ×∇θg, and the matrices in bold are the four blocks in the

Hessian matrix generated from a constrained maximization algorithm,[
Hββ Hβθ

Hθβ Hθθ

]
.

40



C Asymptotic Properties in Discrete State Set-

tings

As mentioned in the main text, our proposed method can handle both continuous

states, which result in an infinite-dimensional endogenous variable p, and discrete

states, which lead to a finite-dimensional p. In the setting of discrete states, the

approximation can be perfect, i.e., β = p. That is, sk(x) = 1(x = pk), where 1(·) is
the indicator function and pk is the kth element in the endogenous variable p.

Let p = (p1, . . . , pJ)
′ ∈ RJ be the endogenous variable in (1). Without loss of gen-

erality, we assume that θ ∈ Rd and Θ denotes the space of θ. Under certain conditions

that are specified below, we establish consistency and asymptotic normality of the

joint estimator of θ first. Then we develop consistency and asymptotical normality

for the nested estimator of θ. In fact, the two estimators have the same asymptotic

distribution.

Assumption P1. The parameter space Θ is a compact subset of Rd.

For any given θ ∈ Θ, we aim to maximize the following function with respect to p

ℓn(p)− ω∥p−Ψ(p, θ)∥22, (A11)

where ℓn denotes the log-likelihood corresponding to n i.i.d. observations and ∥ · ∥2
is the Euclidean norm of a vector. Suppose Y1, . . . , Yn are i.i.d. observations, taking

values in RdY . We assume that the likelihood function in (A11) can be written as

ℓn(p) =
1

n

n∑
i=1

f(Yi, p),

where f is a function defined on RdY × RJ . For simplicity, we assume that dY = 1.

In this context, f(y, p) is actually the log density function of Yi.

Assumption P2. There exists a compact and convex set Λ ⊂ RJ such that p must

lie in Λ.

By Brouwer’s fixed-point theorem, there must exist a solution to (1) for any θ ∈ Θ.

For instance, p ∈ [0, 1] represents CCP in dynamic games. Define g(p, θ) = Ψ(p, θ)−p.

Obviously, the solution to Equation (1), denoted as p∗(θ), satisfies g(p∗(θ), θ) = 0.

We impose the following regularity condition on g(p, θ).
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Assumption P3. There exists a positive constant r such that for any (p1, θ), (p2, θ) ∈
Λ×Θ satisfying ∥g(p1, θ)∥2 ∨ ∥g(p2, θ)∥2 ≤ r, where a ∨ b denotes the larger value of

a and b, we have ∥p1 − p2∥2 ≤ C∥g(p1, θ)− g(p2, θ)∥2 for some constant C > 0.

Assumption P3 can be understood as a local inverse Lipschitz condition. Consider

the Lambert function p = W (θ), which is defined implicitly by pep = θ. In correspon-

dence, g(p, θ) = θe−p−p. Thus, (p+g)ep+g = θeg, which implies that p+g = W (θeg)

or

p(g) = −g +W (θeg) .

Since W is a continuously differentiable function by the implicit function theorem,

for any g1, g2 satisfying |g1| ∨ |g2| ≤ r with some constant r, we have |p(g1)− p(g2)| ≤
C|g1 − g2| for some constant C.

Assumption P4. Ψ is twice differentiable in both p and θ, and the Jacobian defined

by Jg,p(p, θ) =
[
∂gi
∂pj

(p∗(θ), θ)
]
is invertible.

By the implicit function theorem, this assumption ensures that the solution to

Equation (1), p = p∗(θ), is a continuously differentiable function of θ. Let θ0 denote

the true value of θ. Define

M(θ) = E θ0 [f(Yi, p
∗(θ))] for θ ∈ Θ,

where the expectation is taken with respect to Pθ0 . The following assumptions are

essentially the same as those in Section 3.2.

Assumption P5. The true value θ0 is in the interior of Θ.

Assumption P6. M(θ) is a continuous function and has a unique maximum at θ0

in Θ.

This assumption ensures that the true parameter θ0 is identifiable.

Assumption P7. f(y, p) ≤ 0 for any (y, p) ∈ R1+J and f(y, p) ∈ C(R × RJ).

Moreover, if Yi is not bounded, f(y, p) satisfies that for any compact set D ⊂ RJ ,

lim inf
|y|→∞

1 + infx∈D[−f(y, p)]

supp∈D[−f(y, p)]
> 0.
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This assumption holds for square loss functions, i.e., f(y, p) = −(y − p)2. Given

any θ ∈ Θ and a positive ω, recall the sieve estimate of p is given by

p̂(θ) = argmax
p

1

n

n∑
i=1

f(Yi, p)− ω∥p−Ψ(p, θ)∥22. (A12)

The following theorem indicates the approximate solution to the structural equation

(1) is uniformly close to the exact solution p∗(θ).

Theorem A3. Assume that Assumptions P1-P7 are satisfied. Then, we have

sup
θ∈Θ

∥p̂(θ)− p∗(θ)∥2 = OP

(
1√
ω

)
, (A13)

provided that ω → ∞ as n approaches infinity.

Proof of Theorem A3. Define Pnf(Y, p) =
1
n

∑n
i=1 f(Yi, p). To continue the proof, we

first show the following technical result:

sup
θ∈Θ

Pn[−f(Y, p∗(θ))] = OP(1). (A14)

As Assumption P2 is met, ∥p∗(θ)∥2 ≤ C for some positive constant C for any θ ∈ Θ. If

Yi’s are bounded, supθ∈Θ Pn[−f(Y, p∗(θ))] must be bounded, because f is a continuous

function. Hence, (A14) holds. If Yi’s are not bounded, by Assumption P7, there exists

a positive constant η such that

η sup
x∈Λ

[−f(y, x)] ≤ 1 + inf
x∈Λ

[−f(y, x)] ∀y ∈ R.

Therefore,

sup
θ∈Θ

Pn[−f(Y, p∗(θ))] ≤ η−1{1 + Pn[−f(Y, p∗(θ0))]}.

By the strong law of large numbers, with probability one, we have

Pn[−f(Y, p∗(θ0))] → E θ0 [−f(Y, p∗(θ0))] = −M(θ0) < ∞.

It follows that η−1{1 + Pn[−f(Y, p(θ0))]} = OP(1). Equation (A14) is established.

Let ρ(p,Ψ(p, θ)) = ∥p− Ψ(p, θ)∥22. Based on the definition of p̂(θ), we have that,
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for any θ ∈ Θ,

ℓn(p̂(θ))− ωρ(p̂(θ),Ψ(p̂(θ), θ)) ≥ ℓn(p
∗(θ)).

As ℓn(p̂(θ)) ≤ 0 by Assumption P7, it follows that

−ωρ(p̂(θ),Ψ(p̂(θ), θ)) ≥ ℓn(p
∗(θ)).

Then,

ρ(p̂(θ),Ψ(p̂(θ), θ)) ≤ −ω−1ℓn(p
∗(θ)) = ω−1Pn[−f(Y, p∗(θ))].

Therefore, it follows from (A14) that supθ∈Θ ρ(p̂(θ),Ψ(p̂(θ), θ)) = ω−1OP(1). Conse-

quently,

sup
θ∈Θ

∥g(p̂(θ), θ)∥2 = OP

(
1√
ω

)
,

while g(p∗(θ), θ) = 0. By Assumption P3, we have

sup
θ∈Θ

∥p̂(θ)− p∗(θ)∥2 ≤ OP

(
1√
ω

)
.

This completes the proof.

Remark A1. The error term originates from using a finite ω. Since ω is finite, the

solution to the penalized optimization problem in (A11) is affected by the sample

through the likelihood function ℓn. Therefore, there exist discrepancies between this

estimator and the solution to the structural equation (1), which is the also the mini-

mizer of the penalty term ρ(p,Ψ(p, θ)) for any given θ.

To establish the consistency of the joint and nested estimators of θ, we need a

stronger version of Assumption P7.

Assumption P8. f(y, p) ≤ 0 for any (y, p) ∈ R1+J and f(y, p) ∈ C(R×RJ) satisfies

E θ0

[∥∥∥∥∂f∂p (Yi, p
∗(θ0))

∥∥∥∥
2

]
< ∞.
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Moreover, if Yi is not bounded, f(y, p) satisfies that for any compact set D ⊂ RJ ,

lim inf
|y|→∞

1 + infp∈D[−f(y, p)]

supp∈D[−f(y, p)]
> 0 and lim inf

|y|→∞

1 + infp∈D |∂f(y, p)/∂pj|
supp∈D |∂f(y, p)/∂pj|

> 0

for j = 1, . . . , d1.

C.1 Asymptotic properties of the joint estimator

We first study the asymptotic properties of the joint estimator. Let θ̃n denote the

estimator of θ obtained from the joint algorithm in Section 3.1. Actually, θ̃n is defined

by

θ̃n = argmax
θ∈Θ

ℓn(p̂(θ))− w∥p̂(θ)−Ψ(p̂(θ), θ)∥22, (A15)

where p̂(θ) is given by (A12).

Theorem A4. Suppose that Assumptions P1-P6 and P8 hold. If ω → ∞, then θ̃n is

consistent.

Proof of Theorem A4. We first show that

sup
θ∈Θ

|ℓn(p̂(θ))− ℓn(p
∗(θ))| = OP

(
1√
ω

)
+ oP

(
1

n

)
. (A16)

Recall that M(θ) = E θ0 [f(Yi, p
∗(θ))]. Then, we define

Mn(θ) = ℓn(p
∗(θ)) =

1

n

n∑
i=1

f(Yi, p
∗(θ)) for θ ∈ Θ.

We will show

sup
θ∈Θ

|Mn(θ)−M(θ)| = oP(1). (A17)

Finally, we prove that

θ̃n → θ0

in probability as n → ∞.

To prove (A16), we assume that Θ is convex without loss of generality. By As-

sumption P2, there must exist some positive constant r such that

∥p∗(θ)∥2 ≤ r, ∀θ ∈ Θ.
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Let Vn = supθ∈Θ ∥p̂(θ)− p∗(θ)∥2. Theorem A3 indicates

Vn ≤ OP

(
1√
ω

)
.

By Assumption P8, there exists a positive constant η such that, for j = 1, . . . , J ,

sup
∥p∥2≤r+1

∣∣∣∣ ∂f∂pj (y, p)
∣∣∣∣ ≤ 1

η

{
1 + inf

∥p∥2≤r+1

∣∣∣∣ ∂f∂pj (y, p)
∣∣∣∣} ∀y ∈ R. (A18)

Then, it follows that

|ℓn(p̂(θ))− ℓn(p
∗(θ))|

≤ 1

n

n∑
i=1

|f(Yi, p̂(θ))− f(Yi, p
∗(θ))|

=
1

n

n∑
i=1

|f(Yi, p̂(θ))− f(Yi, p
∗(θ))|1(Vn≤1) +

1

n

n∑
i=1

|f(Yi, p̂(θ))− f(Yi, p
∗(θ))|1(Vn>1)

≤ 1

n

n∑
i=1

 sup
∥p∥2≤r+1,
1≤j≤J

∣∣∣∣ ∂f∂pj (Yi, p)

∣∣∣∣
 ∥p̂(θ)− p∗(θ)∥21(Vn≤1)

+
1

n

n∑
i=1

|f(Yi, p̂(θ))− f(Yi, p
∗(θ))|1(Vn>1)

≤ 1

n

n∑
i=1

1

η

{
1 + max

1≤j≤J
inf

∥p∥2≤r+1

∣∣∣∣ ∂f∂pj (Yi, p)

∣∣∣∣}Vn1(Vn≤1)

+
1

n

n∑
i=1

|f(Yi, p̂(θ))− f(Yi, p
∗(θ))|1(Vn>1)

≤ 1

n

n∑
i=1

1

η

{
1 +

∥∥∥∥∂f∂p (Yi, p
∗(θ0))

∥∥∥∥
2

}
Vn +

1

n

n∑
i=1

|f(Yi, p̂(θ))− f(Yi, p
∗(θ))|1(Vn>1).

Therefore,

sup
θ∈Θ

|ℓn(p̂(θ))− ℓn(p
∗(θ))| ≤ 1

n

n∑
i=1

1

η

{
1 +

∥∥∥∥∂f∂p (Yi, p
∗(θ0))

∥∥∥∥
2

}
Vn

+
1

n

n∑
i=1

|f(Yi, p̂(θ))− f(Yi, p
∗(θ))|1(Vn>1).

(A19)
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By the strong law of large numbers and Assumption P8,

1

n

n∑
i=1

[
1 +

∥∥∥∥∂f∂p (Yi, p
∗(θ0))

∥∥∥∥
2

]
→ 1 + E θ0

∥∥∥∥∂f∂p (Yi, p
∗(θ0))

∥∥∥∥
2

almost surely. So, it is OP(1). The second term on the right-hand side of (A19) is

nonzero only in the event {Vn > 1}, whose probability converges to zero by Theorem

A3, so it is oP(n
−1). Hence, we have established Equation (A16). Equation (A17)

follows from Lemma A6, which will be presented later.

Now, we are ready to prove θ̃n → θ0 in probability. Let δ be an arbitrary positive

number. Assumption P6 indicates that θ0 is the unique maximizer of M(θ). As M(θ)

is continuous over the compact set Θ,

γ := M(θ0)− sup
θ∈Θ,d(θ,θ0)≥δ

M(θ) > 0, (A20)

where d(θ, θ0) = ∥θ − θ0∥2 for any θ ∈ Θ. Note that θ̃n ∈ Θ. By (A16) and (A17),

we have

M(θ0)−M(θ̃n)

= Mn(θ0)−Mn(θ̃n) + oP(1)

= ℓn(p
∗(θ0))− ℓn(p

∗(θ̃n)) + oP(1)

≤ ℓn(p
∗(θ0))− ℓn(p̂(θ̃n)) + sup

θ∈Θ
|ℓn(p̂(θ))− ℓn(p

∗(θ))|+ oP(1)

= ℓn(p
∗(θ0))− ℓn(p̂(θ̃n)) + oP(1).

By definition of θ̃n and p∗(θ0), we have

ℓn(p̂(θ̃n)) ≥ ℓn(p
∗(θ0)),

so M(θ0)−M(θ̃n) ≤ oP(1). By (A20), one has

{d(θ̃n, θ0) ≥ δ} ⊂ {M(θ0)−M(θ̃n) ≥ γ} ⊂ {oP(1) ≥ γ}.

Therefore,

Pθ0(d(θ̃n, θ0) ≥ δ) ≤ Pθ0(oP(1) ≥ γ),
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which converges to 0 as n → ∞. As δ is an arbitrary positive number, θ̃n is a

consistent estimator of θ0. This completes the proof.

Remark A2. Since θ̃n is the maximizer of ℓn(p̂(θ)) with a non-positive penalty, we

choose ℓn(p̂(θ)) as the criterion function. Though it is difficult to evaluate the gradient

of p̂(θ) with respect to θ, we can still use it as our criterion function, because we have

established the bound on the difference between p̂(θ) and p∗(θ) in Theorem A3. We

establish the consistency and later the asymptotic normality of θ̃n by resorting to the

techniques for M -estimators. Even though θ̃n is not the maximizer of ℓn(p
∗(θ)), we

are able to control the difference between ℓn(p
∗(θ̃n)) and maxθ∈Θ ℓn(p

∗(θ)). We show

that, in actuality, θ̃n nearly maximizes ℓn(p
∗(θ)), and then we leverage the results for

M -estimators; see Section 5.2 of Van der Vaart and Wellner (1996) for more details.

To derive asymptotic normality of θ̃n, we need a stronger condition than Assump-

tions P7 and P8.

Assumption P9. f(y, p) ≤ 0 for any (y, p) ∈ R1+J and f(y, p) ∈ C(R×RJ) satisfies

E θ0

[∥∥∥∥∂f∂p (Y, p∗(θ0))
∥∥∥∥2
2

]
< ∞ and E θ0

[∣∣∣∣ ∂2f

∂pi∂pj
(Y, p∗(θ0))

∣∣∣∣] < ∞

for i, j = 1, . . . , J . Moreover, if Yi is not bounded, f(y, p) satisfies that for any

compact set D ⊂ RJ ,

lim inf
|y|→∞

1 + infp∈D[−f(y, p)]

supp∈D[−f(y, p)]
> 0 lim inf

|y|→∞

1 + infp∈D |∂f(y, p)/∂pj|
supp∈D |∂f(y, p)/∂pj|

> 0

for j = 1, . . . , J , and

lim inf
|y|→∞

1 + infp∈D |∂2f(y, p)/∂pi∂pj|
supp∈D |∂2f(y, p)/∂pi∂pj|

> 0

for any i, j = 1, . . . , J .

Theorem A5. Suppose that Assumptions P1-P6 and P9 hold. If ω/n2 → ∞ and the

matrix

Vθ0 = E θ0

[{
∂p∗(θ0)

∂θ

}′
∂2f(Yi, p

∗(θ0))

∂p∂p′

{
∂p∗(θ0)

∂θ

}]
is invertible, then

√
n (θ̃n − θ0)

d→ N (0,Σ),
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where Σ = V −1
θ0

(
∂p∗(θ0)

∂θ

)′
E θ0

[{
∂f(y,p∗(θ0))

∂p

}{
∂f(y,p∗(θ0))

∂p

}′
](

∂p∗(θ0)
∂θ

)
V −1
θ0

.

Remark A3. Under mild regularity conditions on f ,

−E θ0

[
∂2f(Yi, p

∗(θ0))

∂p∂p′

]
= E θ0

[{
∂f(y, p∗(θ0))

∂p

}{
∂f(y, p∗(θ0))

∂p

}′]
,

then Σ = −V −1
θ0

. Consequently, even though θ̃n is different from the maximum

likelihood estimator of θ, which minimizes ℓn(p
∗(θ)), the asymptotic variance of θ̂n

attains the Cramér-Rao lower bound. Thus, θ̃n is asymptotically efficient.

Proof of Theorem A5. We mainly follow Theorem 5.23 of Van der Vaart (2000) to

prove asymptotic normality of θ̃n. Firstly, as we have shown in the proof of Lemma

A6,

|f(y, p∗(θ1))− f(y, p∗(θ2))|

≤ 1

η

[
1 +

∥∥∥∥∂f∂p (y, p∗(θ0))
∥∥∥∥
2

]
∥p∗(θ1)− p∗(θ2)∥2

≤ C

η

[
1 +

∥∥∥∥∂f∂p (y, p∗(θ0))
∥∥∥∥
2

]
∥θ1 − θ2∥2 (A21)

for some constant C, and η is defined in Equation (A18). By Assumption P9, the

right-hand side of (A21) has a finite second moment.

Next, we consider a second-order Tayor expansion for

M(θ) = E θ0 [f(Y, p
∗(θ))]

in a neighbourhood of θ0. Obviously,

f(y, p(θ))

= f(y, p∗(θ0))

+

[
∂f(y, p∗(θ0))

∂p

]′(
∂p∗(θ0)

∂θ

)
(θ − θ0) (A22)

+
1

2
(θ − θ0)

′

[
J∑

j=1

∂f(y, p∗(θ0))

∂pj

∂2p∗j(θ0)

∂θ∂θ′
+

(
∂p∗(θ0)

∂θ

)′
∂2f(y, p∗(θ0))

∂p∂p′

(
∂p∗(θ0)

∂θ

)]
× (θ − θ0) +R,
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where R is the remainder term. Define

D(y, θ) =
J∑

j=1

∂f(y, p∗(θ))

∂pj

∂2p∗j(θ)

∂θ∂θ′
+

(
∂p∗(θ)

∂θ

)′
∂2f(y, p∗(θ))

∂p∂p′

(
∂p∗(θ)

∂θ

)
.

Then the reminder term can be rewritten as

R = (θ − θ0)
′
[∫ 1

0

[D(y, θ0 + s(θ − θ0))−D(y, θ0)](1− s) ds

]
(θ − θ0).

Note that D(y, θ) is a p × p matrix. For any (a, b)th entry in D(y, θ), by using the

same argument for Equation (A19), we can show that, for any θ ∈ Θ,

|Dab(y, θ)|

≤
J∑

j=1

∣∣∣∣∂f(y, p∗(θ))∂pj

∂2p∗j(θ)

∂θa∂θb

∣∣∣∣+ ∣∣∣∣(∂p∗(θ)

∂θa

)′
∂2f(y, p∗(θ))

∂p∂p′

(
∂p∗(θ)

∂θb

)∣∣∣∣
≤ C ′

η

[
1 +

∥∥∥∥∂f∂p (y, p∗(θ0))
∥∥∥∥
2

+max
i,j

∣∣∣∣ ∂2f

∂pi∂pj
(y, p∗(θ0))

∣∣∣∣] ,
where C ′ is a positive constant. Additionally, under Assumption P9, the right-hand

side of the above inequality has a finite mean. Therefore, applying the dominated

convergence theorem, we have

E θ0

[∫ 1

0

[D(y, θ0 + s(θ − θ0))−D(y, θ0)](1− s) ds

]
→ 0

as θ → θ0. Then, by the Taylor expansion of f(y, p∗(θ)), it follows that

M(θ) = M(θ0) +
1

2
(θ − θ0)

′Vθ0(θ − θ0) + o
(
∥θ − θ0∥22

)
. (A23)

Recall that f(y, p) is the log density of Yi. Therefore, there is no linear form in (A23)

and the expected value of D(Y, θ0) is given by Vθ0 as the expectation of (A22) is zero.

Finally, we want to establish that

ℓn(p
∗(θ̃n)) ≥ sup

θ∈Θ
ℓn(p

∗(θ))− oP(n
−1). (A24)
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By definition of p∗(θ) and θ̃n, we have

ℓn(p
∗(θ̃n))

≥ ℓn(p̂(θ̃n))− sup
θ∈Θ

|ℓn(p̂(θ))− ℓn(p
∗(θ))|

≥ sup
θ∈Θ

ℓn(p
∗(θ))− sup

θ∈Θ
|ℓn(p̂(θ))− ℓn(p

∗(θ))|.

By (A16) and ω/n2 → ∞, we have

sup
θ∈Θ

|ℓn(p̂(θ))− ℓn(p
∗(θ))| = OP

(
1√
ω

)
+ oP

(
1

n

)
= oP(n

−1).

Hence, the relation in (A24) holds. By (A21), (A23), (A24), and Theorem A4, it

follows from Theorem 5.23 in Van der Vaart (2000) that
√
n(θ̃n−θ0) is asymptotically

normal with mean zero and covariance matrix

V −1
θ0

(
∂p∗(θ0)

∂θ

)′

E θ0

[{
∂f(y, p∗(θ0))

∂p

}{
∂f(y, p∗(θ0))

∂p

}′](
∂p∗(θ0)

∂θ

)
V −1
θ0

,

if Vθ0 is non-singular. This completes the proof.

Lemma A6. The class {f(·, p∗(θ)), θ ∈ Θ} is Pθ0-Glivenko-Cantelli.

Proof. As Assumption P4 is met and Θ is a compact set, by the implicit function

theorem, there exists some constant C such that

∥p∗(θ1)− p∗(θ2)∥2 ≤ C∥θ1 − θ2∥2

for any θ1, θ2 ∈ Θ. Furthermore, with a similar argument for Equation (A19), we

obtain

|f(y, p∗(θ1))− f(y, p∗(θ2))|

≤ 1

η

[
1 +

∥∥∥∥∂f∂p (y, p∗(θ0))
∥∥∥∥
2

]
∥p∗(θ1)− p∗(θ2)∥2

≤ C

η

[
1 +

∥∥∥∥∂f∂p (y, p∗(θ0))
∥∥∥∥
2

]
∥θ1 − θ2∥2. (A25)

By Assumption P8,
∥∥∥∂f

∂p
(Y, p∗(θ0))

∥∥∥
2
has a finite expectation under Pθ0 . Thus,

based on Theorem 2.7.11 in Van der Vaart and Wellner (1996), the L1(Pθ0)-bracketing
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number is bounded by the covering numberN(ϵ,Θ0, ∥·∥2) of Θ0. Since Θ0 is a compact

subset of Rd,

N(ϵ,Θ, ∥ · ∥) ≤ C0 ×
(
1

ϵ

)d

for some constant C0 and any ϵ > 0. Therefore, by Theorem 2.4.1 of Van der Vaart

and Wellner (1996), this lemma holds.

C.2 Asymptotic Properties for the Nested Estimator

Recall that θ̂n obtained from the nested algorithm is the maximizer of ℓn(p̂(θ)). Sim-

ilar to the joint estimator, we now establish consistency for θ̂n as an estimator of θ0

by invoking M-estimation techniques.

Theorem A7. Under conditions of Theorem A4, θ̂n is consistent.

Proof of Theorem A7. We employ the techniques of proving Theorem A4. By (A16)

and (A17), we have

M(θ0)−M(θ̂n)

= Mn(θ0)−Mn(θ̂n) + oP(1) by (A17)

= ℓn(p
∗(θ0))− ℓn(p

∗(θ̂n)) + oP(1)

≤ ℓn(p̂(θ0)) + sup
θ∈Θ

|ℓn(p̂(θ))− ℓn(p
∗(θ))| − ℓn(p̂(θ̂n))

+ sup
θ∈Θ

|ℓn(p̂(θ))− ℓn(p
∗(θ))|+ oP(1)

= ℓn(p̂(θ0))− ℓn(p̂(θ̂n)) + 2 sup
θ∈Θ

|ℓn(p̂(θ))− ℓn(p
∗(θ))|+ oP(1)

≤ ℓn(p̂(θ0))− ℓn(p̂(θ̂n)) + oP(1).

By definition of θ̂n, we have

ℓn(p̂(θ̂n)) ≥ ℓn(p̂(θ0)),

so M(θ0)−M(θ̂n) ≤ oP(1). By (A20), we have

{d(θ̂n, θ0) ≥ δ} ⊂ {M(θ0)−M(θ̂n) ≥ γ} ⊂ {oP(1) ≥ γ}.
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Therefore,

Pθ0(d(θ̂n, θ0) ≥ δ) ≤ Pθ0(oP(1) ≥ γ),

which converges to 0 as n approaches infinity. As δ is an arbitrary positive number,

θ̂n is a consistent estimator of θ0. This completes the proof.

The following theorem indicates the nested estimator has the same asymptotic

distribution as the joint estimator under mild conditions.

Theorem A8. Under conditions of Theorem A5,

√
n (θ̂n − θ0)

d→ N (0,Σ).

Proof of Theorem A8. We leverage the same techniques of proving Theorem A5. In

other words, we only need to show

ℓn(p
∗(θ̂n)) ≥ sup

θ∈Θ
ℓn(p

∗(θ))− oP(n
−1). (A26)

Note that

ℓn(p
∗(θ̂n))

≥ ℓn(p̂(θ̂n))− sup
θ∈Θ

|ℓn(p̂(θ))− ℓn(p
∗(θ))|

= sup
θ∈Θ

ℓn(p̂(θ))− sup
θ∈Θ

|ℓn(p̂(θ))− ℓn(p
∗(θ))|

≥ sup
θ∈Θ

[ℓn(p
∗(θ))− sup

θ∈Θ
|ℓn(p∗(θ))− ℓn(p̂(θ))|]− sup

θ∈Θ
|ℓn(p̂(θ))− ℓn(p

∗(θ))|

≥ sup
θ∈Θ

ℓn(p
∗(θ))− 2 sup

θ∈Θ
|ℓn(p̂(θ))− ℓn(p

∗(θ))|.

By (A16) and ω/n2 → ∞, we have

sup
θ∈Θ

|ℓn(p̂(θ))− ℓn(p
∗(θ))| = OP

(
1√
ω

)
+ oP

(
1

n

)
= oP(n

−1).

Hence, the relation in (A26) is verified. By (A21), (A23), (A26), and Theorem A7, it

follows from Theorem 5.23 in Van der Vaart (2000) that
√
n(θ̂n−θ0) is asymptotically

53



normal with mean zero and covariance matrix

V −1
θ0

(
∂p∗(θ0)

∂θ

)′

E θ0

[{
∂f(y, p∗(θ0))

∂p

}{
∂f(y, p∗(θ0))

∂p

}′](
∂p∗(θ0)

∂θ

)
V −1
θ0

,

if Vθ0 is non-singular. This completes the proof.

D More about the Joint and Nested algorithms

In this section, we develop more properties on these two algorithms.

The joint algorithm is attractive because it involves a single-level optimization

problem and computes the Hessian matrix with respect to (β, θ) at the solution di-

rectly. The following corollary provides a natural way to calculate the standard error

of θ̃n using the Hessian matrix generated from the joint algorithm.

Corollary A8.1. The Fisher information can be characterized as

Ĥ = Hθθ −H′
βθH

−1
ββHβθ,

where the matrices in bold are the four blocks in the Hessian matrix generated from a

joint maximization algorithm, [
Hββ Hβθ

Hθβ Hθθ

]
.

Proof of Corollary A8.1. Consider the following problem: max h(β, θ) = ℓ(β, θ) −
ω (Ψ(β, θ)− β)2 where β = p. Taking the first-order condition gives

ℓβ − 2ω (Ψ− β) (Ψβ − 1) = 0

ℓθ − 2ω (Ψ− β)Ψθ = 0

Note that Ψ(β̂(θ), θ)− β̂(θ) ≈ 0 for ω approaches infinity, which further implies that

ℓβ ≈ 0. Taking the derivative gives Ψββ̂
′(θ) + Ψθ − β̂′(θ) ≈ 0, which implies that

Ψβ − 1 ≈ − Ψθ

β̂′(θ)
.
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Taking the second-order derivative gives

(
∂2h
∂θ∂θ

∂2h
∂θ∂β

∂2h
∂θ∂β

∂2h
∂β∂β

)
, where

∂2h

∂θ∂θ
= ℓθθ − 2ω

[
(Ψθ)

2 + (Ψ− β)Ψθθ

]
∂2h

∂θ∂β
= ℓθβ − 2ω [(Ψβ − 1)Ψθ + (Ψ− β)Ψβθ]

∂2h

∂β∂β
= ℓββ − 2ω

[
(Ψβ − 1)2 + (Ψ− β)Ψββ

]
As ω approaches infinity, we study the block that we highlight here15

Hθθ −H′
βθH

−1
ββHβθ

=ℓθθ − 2ω (Ψθ)
2 −

[
ℓθβ + 2ω (Ψθ)

2

β̂′(θ)

]2
ℓββ − 2ω

(
Ψθ

β̂′(θ)

)2
=ℓθθ −

2ω (Ψθ)
2 ℓββ − 4ω2 (Ψθ)

2
(

Ψθ

β̂′(θ)

)2
+ (ℓθβ)

2 + 4ω2 (Ψθ)
4

(β̂′(θ))2
+ 4ωℓθβ

(Ψθ)
2

β̂′(θ)

ℓββ − 2ω
(

Ψθ

β̂′(θ)

)2
→ℓθθ + ℓββ

[
β̂′(θ)

]2
+ 2ℓθββ̂

′(θ)

Now consider ℓ(β̂(θ), θ), where β̂(θ) solves Ψ(β, θ) = β. We have the Hessian

ℓθθ + ℓββ

[
β̂′(θ)

]2
+ 2ℓθββ̂

′(θ) + ℓββ̂
′′(θ) = ℓθθ + ℓββ

[
β̂′(θ)

]2
+ 2ℓθββ̂

′(θ),

which equals the limit of Hθθ −H′
βθH

−1
ββHβθ.

Next we derive the gradient of the outer loop problem in the nested algorithm.

Proposition A1. The gradient of the outer loop satisfies

∇ℓ̂(θ) = ∇θℓ(β̂(θ), θ) + (∇β̂(θ))′ × [∇βℓ(β̂(θ), θ)].

Proof of Proposition A1. Fix the smoothing parameter ω for the moment. Recall

15Note that the inverse of a block matrix

(
A B
C D

)−1

=

( (
A−BD−1C

)−1 ∗
∗ ∗

)
.
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that β̂(θ) is defined implicitly by an equation system

∂ℓ(β, θ)

∂βk

− ω
∂ρ(β, θ)

∂βk

= 0.

Denote this system as hk(β, θ) = 0, where k = 1, . . . , K. Taking the derivative (w.r.t.

θ) gives
∑

ℓ
∂hk

∂βℓ

dβℓ

dθ
+ ∂hk

∂θ
= 0. It allows us to find ∇β̂(θ) using the Hessian of h with

respect to β, i.e., Hββ(θ), and the cross derivative of h with respect to β and θ, i.e.

Hβθ(θ), as follows:

∇β̂(θ) = −Hββ(θ)
−1Hβθ(θ),

where the terms on the RHS are calculated at the inner loop solution β = β̂(θ).

Therefore, the gradient of ℓ(pβ̂(θ)) w.r.t. θ can be calculated as follows

∂ℓ̂(θ)

∂θℓ
=

∂ℓ(β, θ)

∂θℓ

∣∣∣∣
β=β̂(θ)

+
K∑
k=1

∂ℓ(β, θ)

∂βk

∣∣∣∣
β=β̂(θ)

∂β̂k(θ)

∂θℓ
,

which can be written in matrix form.

E Additional Simulations

The DGP is only for demonstration purposes in the Monte Carlo simulations in the

main text. We now conduct additional simulation experiments in a rich setting build-

ing on our empirical application to further demonstrate our method. Specifically, we

constructed a richer DGP using market- and player-specific variables along with the

maximum likelihood estimates. We set the true parameters to the rounded estimates.

We sampled markets (with replacement) using the same dataset and re-generated

Walmart and Kmart’s choices using the equilibrium CCPs. Table E1 presents the sim-

ulation results based on 100 replications with sample sizes of n = 2000 and n = 4000,

respectively. All simulations were implemented in Matlab R2024b, using fminunc

with its built-in quasi-Newton algorithm, and were run on a machine with an 11th

Gen Intel Core i7-11800H 2.30GHz processor and 16GB of RAM.
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F Deriving Gradient and Hessian Functions

F.1 The Monopoly Pricing Problem

In this subsection, we derive the gradient of the objective function in the monopoly

pricing problem.

In the inner loop, we maximize the following function with respect to β

h(β, θ) =
n∑

i=1

log ϕ(yi − pβ(xi))− ω

L∑
ℓ=1

[
pβ(xℓ)e

pβ(xℓ) − θxℓ

]2
,

where L = 1000 is the number of grid points to approximate the integration. Note

that the standard normal density ϕ(z) = 1√
2π

exp (− z2

2
) and pβ(x) =

∑K
k=1 βksk(x).

We will consider the two terms in sequence.

In the first step,

∂ℓ

∂βk

=
∑

(yi − pβ(xi))sk(xi),

∂2ℓ

∂βk∂βk′
=−

∑
sk(xi)sk′(xi).

In the second step,

∂ρ

∂βk

=2
L∑

ℓ=1

[pβ(xℓ)e
pβ(xℓ) − θxℓ]e

pβ(xℓ)[1 + pβ(xℓ)]sk(xℓ),

∂2ρ

∂βk∂βk′
=2

L∑
ℓ=1

[(
ep

β(xℓ)[1 + pβ(xℓ)]
)2

+ [pβ(xℓ)e
pβ(xℓ) − θxℓ]e

pβ(xℓ)[2 + pβ(xℓ)]
]
sk(xℓ)sk′(xℓ),

∂2ρ

∂βk∂θ
=− 2

L∑
ℓ=1

xℓe
pβ(xℓ)[1 + pβ(xℓ)]sk(xℓ).
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F.2 Static Game with Incomplete Information

In this subsection, we derive the gradient of the objective function in the static game

with incomplete information, where

ℓ(β, θ) =
∑

j=W,K

n∑
m=1

[
djm log

(
pβj (ξm(θ))

)
+ (1− djm) log

(
1− pβj (ξm(θ))

)]
(A27)

ρ(β, θ) =
∑

j=W,K

n∑
m=1

[
pβj (ξm(θ))− σ

(
ξjm − pβ−j(ξm(θ))∆

)]2
(A28)

We approximate the CCP by pβj (ξj, ξ−j) = σ
(∑K

ı=1

∑K
ȷ=1 βıȷsı

(
σ(ξj)

)
sȷ
(
σ(ξ−j)

))
. De-

note vj =
∑K

ı=1

∑K
ȷ=1 βıȷsı

(
σ(ξj)

)
sȷ
(
σ(ξ−j)

)
for convenience. Note that σ(v) = 1

1+e−v

and σ′(v) = −1
σ2 e

−v(−1) = e−v

σ(v)2
. Moreover, ξjm = X ′

jmα−Z ′
mγ. We stack the param-

eters θ = (γ, αw, αk,∆)′, where αw and αk are WalMart and Kmart’s coefficients.

First, denote pjm = pβj (ξm(θ)).

∂ℓ

∂βıȷ

=
∑

j=W,K

n∑
m=1

[
djm
pjm

− 1− djm
1− pjm

]
· ∂pjm
∂βıȷ

,

∂ℓ

∂θk
=
∑

j=W,K

n∑
m=1

[
djm
pjm

− 1− djm
1− pjm

]
· ∂pjm
∂θk

,

∂ℓ

∂∆
=0,

∂ρ

∂βıȷ

=2
∑

j=W,K

n∑
m=1

[
pjm − σ(ηjm)

][∂pjm
∂βıȷ

+∆σ′(ηjm)
∂p−jm

∂βıȷ

]
,

∂ρ

∂θk
=2

∑
j=W,K

n∑
m=1

[
pjm − σ(ηjm)

][∂pjm
∂θk

− σ′(ηjm)(
∂ξjm
∂θk

−∆
∂p−jm

∂θk
)
]
,

∂ρ

∂∆
=2

∑
j=W,K

n∑
m=1

[
pjm − σ(ηjm)

][
σ′(ηjm)p−jm

]
,
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where ηjm = ξjm − pβ−j(ξm(θ))∆,

∂pjm
∂βıȷ

=σ′(vjm)sı
(
σ(ξjm)

)
sȷ
(
σ(ξ−jm)

)
∂pjm
∂θk

=σ′(vjm)
[ K∑

ı=1

K∑
ȷ=1

βıȷ

(
s′ısȷσ

′(ξjm)
∂ξjm
∂θk

+ sıs
′
ȷσ

′(ξ−jm)
∂ξ−jm

∂θk

))]
.

Note that ∂ℓ
∂∆

= 0, which implies that the data likelihood is independent of ∆.

To make the data likelihood depend on θ more explicitly, we could replace pβj by

σ(ξjm − pβ−j(ξm(θ)∆)).

∂ℓ

∂θk
=
∑

j=W,K

n∑
m=1

[
djm
σjm

− 1− djm
1− σjm

]
· ∂σjm

∂θk
, (A29)

∂σjm

∂θk
=σ′(ηjm)

[∂ξjm
∂θk

− ∂p−jm

∂θk
∆
]

(A30)

∂σjm

∂∆
=σ′(ηjm)

[
− pβ−j(ξm(θ)

]
(A31)

where σjm = σ(ξjm − pβ−j(ξm(θ)∆)) represents the best response to the opponent −j.
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