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Abstract

A seller of an indivisible good designs a selling mechanism for a buyer whose

private information (his type) is the distribution of his value for the good. A

selling mechanism includes both a menu of sequential pricing, and a menu of

information disclosure about the realized value that the buyer is allowed to learn

privately. In a model of two types with an increasing likelihood ratio, we show

that under some regularity conditions the disclosure policy in an optimal mech-

anism has a nested interval structure: the high type is allowed to learn whether

his value is greater than the seller’s cost, while the low type is allowed to learn

whether his value is in an interval above the cost. The interval of the low type

may exclude values at the top of the distribution to reduce the information rent

of the high type. Information discrimination is in general necessary in an optimal

mechanism.
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1 Introduction

In many bilateral trade environments with one-sided incomplete information, the in-

formed party (say the buyer) is endowed with some private information about the

underlying state of the potential trade, but his initial private information is often in-

complete and additional private information may be learned over time. However, the

buyer’s access to the additional information may be controlled by the uninformed party

(say the seller). These environments have become more prevalent as recent advance-

ments in information technologies have made it easier to compute and refine person-

alized prices, and at the same time have also enhanced dissemination of personalized

information to potential buyers.

The interaction between price discrimination and information discrimination in

mechanism design is a new theoretical issue which we study in this paper. We adapt

the framework of sequential screening (Courty and Li (2000)) for this purpose. There is

a single buyer, whose private type is the distribution from which his value for a seller’s

product is drawn. There are two types, and we assume that the value distribution

of the “high type” strictly dominates in likelihood ratio order that of the “low type.”

Unlike in sequential screening where the buyer privately learns his value exogenously, we

assume that the private information available to the buyer is “endogenous” because it

is controlled by the seller. Thus, a selling mechanism consists of a menu of experiments,

as well as a menu of option contracts, each consisting of an advance payment and a

strike price. The advance payment here can be interpreted as the price for both the

call option and access to the endogenous private information controlled by the seller.

Our main characterization is that, under some regularity conditions, the optimal

information disclosure policy is a pair of partitions of the value support with a nested

interval structure. More precisely, each buyer type is recommended to buy if the

realized value lies inside some interval, without knowing the exact realization, and

is otherwise recommended not to buy, again without knowing the exact realization.

Furthermore, the “BUY intervals” for the two types are nested: the low type’s BUY

interval is a subset of the high type’s BUY interval. The partitioning for the high type

is efficient in the sense that the BUY interval includes all realized values higher than

the seller’s cost (reservation value), and is therefore monotone. The partitioning for

the low type is inefficient in that the BUY interval lies above the seller’s cost, and

more interestingly, can be non-monotone. Depending on the level of likelihood ratio at

the top, the BUY interval of the low type may exclude an interval of highest realized

values. Intuitively, if the likelihood ratio of the two distributions is sufficiently high at
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the top of the distributions, excluding the highest realizations from the low type’s BUY

interval may significantly reduce the high type’s information rent with little sacrifice on

the trading surplus with the low type. This is because the deviating high type would

be more likely to gain from buying at these realizations than the truthful low type.

Figure 1 illustrates the optimal BUY interval for the low type. We plot the con-

strained version of the “endogenous virtual surplus” for the low type as a function of

his value. This function is an adaptation of the dynamic virtual surplus in sequential

screening to the present setup of endogenous information. With pricing and infor-

mation jointly optimized, the seller recommends the low type to buy whenever the

constrained endogenous virtual value is non-negative. In the left panel, the low type

is recommended to buy for all values above a cutoff; in the right panel, the likelihood

ratio is too large at the top of the distribution, and an interval of the highest values

for the low type are excluded from trade.

Figure 1: Endogenous virtual surplus and optimal BUY interval

In the original sequential screening model of Courty and Li (2000), there is only price

discrimination because the buyer privately learns his value after the seller commits to

a mechanism. Some features of the optimal sequential screening remain in the present

model with both price and information discrimination.1 In particular, there is no

allocation distortion at the top, meaning that the high type buys the good whenever

his realized value is above the seller’s cost, and only downward distortion at the bottom,

in that the low type never buys when his value is below a cutoff that is strictly higher

than the cost. With information discrimination in this paper, the high type is allowed to

1Courty and Li (2000) study both first order and second order stochastic dominance ranking of
value distributions by type. In this paper, we assume likelihood ratio dominance ranking, which
implies first order stochastic dominance ranking.
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have the necessary information for the efficient allocation, but the information disclosed

to the low type leads to a different form of downward distortion when the partition is

non-monotone: the low type is also prevented from buying when his value is above the

BUY interval. This is impossible in sequential screening, where incentive compatibility

after the buyer learns his realized value requires allocation monotonicity, but in the

present paper this is used to reduce the information rent for the high type.

We show that optimal mechanisms generally require information discrimination. In

particular, the profit achieved by the optimal discriminatory disclosure policy cannot

be replicated by any non-discriminatory disclosure policy generated by the coarsest

common refinement of the pair of partitions. Under the latter policy, the buyer is

given the same information regardless of his type report, but the critical question is

whether the high type’s incentives would remain the same as under discriminatory

disclosure, especially after lying about his type (off-path). Due to the nested-interval

structure, the answer is “yes” when the partition for the low type is monotone. How-

ever, when the partition is non-monotone, the answer is “no” because the high type

profits from disobeying recommendation after misreporting as the low type. We pro-

vide an analytical example that this is indeed the case, and information discrimination

is necessary.

The interaction between information and price discrimination makes it necessary to

adapt the standard approach to dynamic mechanism design, and one contribution of

this paper is to show how to achieve this. In Courty and Li (2000), under the first order

stochastic dominance ranking of the two types, a relaxed program is solved for the low

type’s allocation by optimally balancing the tradeoff between efficiency loss from the

low type and the information rent to the high type. With the disclosure policy part of

the selling mechanism here, even the stronger ranking of likelihood ratio dominance is

not enough to ensure that the solution satisfies the high type’s individual rationality

constraint.2 We provide “regularity conditions” on the primitives of the mechanism

design problem for any optimal information disclosure to allow the high type to buy

the good with a greater probability after a deviation than the truthful low type. This

ensures that the individual rationality constraint of the high type can be dropped in

a simplified problem, resulting in our characterization of the optimal disclosure policy

in a nested interval structure.

2Technically, the strike price for the low type’s option contract is no longer pinned down by the
allocation when the seller also chooses information disclosure. This is the key observation in Li and
Shi (2017), who use it to show that full information disclosure is not optimal.
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1.1 Related literature

The joint design problem of information policy and pricing scheme has been previously

investigated by a number of papers. Bergemann and Pesendorfer (2007) consider an

auction setting without ex ante private information and show that, if the seller cannot

charge fee for information, the optimal disclosure in an optimal auction must assign

asymmetric partitions to ex ante homogeneous buyers. If buyers have ex ante private

information and the seller can charge fee for information, Eső and Szentes (2007)

show that full disclosure is optimal when the seller is restricted to disclosing only the

orthogonal component of the seller’s information, that is, the part of seller’s information

that is independent of the buyers’ private information.3

Li and Shi (2017) consider a bilateral trade setting similar to the one in Eső and

Szentes (2007), but allow the seller to directly garble the information under her control.

Their goal is to show that full disclosure is then generally suboptimal.4 In particular,

they show that monotone binary partitions of the true value dominate full disclosure

in terms of the seller’s revenue, by limiting the buyer’s additional private information

to only whether his true value is above or below some partition threshold, instead

of allowing him to learn the exact value as under full disclosure. They do not solve

the joint design problem of information policy and pricing scheme in their setup. In

this paper, in a model with two buyer types, we show that the optimal disclosure

policy consists of a pair of intervals, which nests as a special case the monotone binary

partitions that Li and Shi (2017) use to show the sub-optimality of full disclosure.

Although effective in both creating trade surplus and extracting information rent, a

monotone partition for the low type can be too informative for the deviating high type,

generating a large information rent. Therefore, non-monotone partitioning in the form

of intervals may be needed for profit maximizing when the likelihood ratios are large

for the highest values.5

3Hoffmann and Inderst (2011) and Bergemann and Wambach (2015) also consider information
disclosure in the sequential screening setting, but they focus on the case where the information released
by the seller is independent of the buyer’s private information. See also Lu, Ye, and Feng (2021) for a
related analysis of how a seller can use a two-stage mechanism to induce bidders to acquire additional
information.

4Krähmer and Strausz (2015) show that the irrelevance theorem in Eső and Szentes (2007) fails if
the buyer’s type is discrete. They present an example in which full disclosure is not optimal.

5Krähmer (2020) considers a design setting similar to ours and allows the seller to secretly random-
ize information structures via a secret randomization device. He shows that, if the contract can be
made contingent on the seller’s randomization outcome, the seller can use a scheme similar to Crémer
and McLean (1988) to extract the full surplus. Zhu (2023) studies a similar problem in a multi-agent
setting and shows that an individually uninformative but aggregately revealing disclosure policy can
extract full surplus. Transfers are not needed in his construction. Such randomization of information
structures and contracting technology are not allowed in our paper.
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In Li and Shi (2017), the disclosure policy with monotone binary partitions used

to establish the sub-optimality of full disclosure is discriminatory. However, this does

not imply that information discrimination is necessary for profit maximization. In this

paper with binary types, we extend the profit equivalence between discriminatory and

non-discriminatory disclosure with independent information in Eső and Szentes (2007)

to correlated information, when the optimal disclosure policy for the low type is a

monotone partition.6 We show that this equivalence breaks down when the optimal

disclosure policy is non-monotone.7

The issue of equivalence between discriminatory and non-discriminatory disclosure

has been investigated in the literature of Bayesian persuasion. If the receiver’s type

is independent of the sender’s information, Kolotilin, Mylovanov, Zapechelnyuk, and

Li (2017) show that, for any incentive compatible discriminatory disclosure policy,

there is a non-discriminatory disclosure policy that yields the same interim payoff

for both parties. In other words, incentive compatibility alone implies equivalence.

If the receiver’s type is correlated with the sender’s information, however, Guo and

Shmaya (2019) show that equivalence does not follow from incentive compatibility but

optimality does imply equivalence. As in Guo and Shmaya (2019), our seller’s signal

is correlated with the buyer’s type. Different from Guo and Shmaya (2019), our seller

can use prices, in additional to information, to discriminate against different buyer

types, and moreover, her goal is to maximize profit rather than the expected purchase

probability. Our result is that the equivalence fails in general if price discrimination is

possible.8

2 The Model

A seller (she) has a product for sale to a buyer (he). Both the seller and the buyer are

risk-neutral.

6See also a related model of linear attributes in Smolin (2023) where non-discriminatory disclosure
can be optimal.

7This also happens when the buyer’s participation constraint is posterior rather than interim, even
with independent information. In Wei and Green (2024), the assumption that the buyer’s payoff
must be non-negative for every type and every signal realization rules out advance payment and
hence the optimal selling mechanism takes the form of type-dependent posted prices. They show that
information discrimination and price discrimination are complements and optimal mechanism must
feature both.

8In an earlier version of the paper, we show that if price discrimination is impossible – different
buyer types must receive the same pricing scheme – optimality implies equivalence as in Guo and
Shmaya (2019), when the gain from trade is certain. We have examples showing that, when the gain
from the trade is uncertain, the optimal disclosure policy may not be a pair of nested intervals and
that information discrimination is necessary to obtain the maximal profit.
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The seller’s production cost (reservation value for the product) is c. We assume

that c is common knowledge, satisfying 0 ≤ c < ω.

The buyer’s value for the product is ω, which is drawn from Ω = [ω, ω] and is

initially unknown to both of them. The buyer has private information about his value,

which we refer to as his type. Denote the buyer’s type as θ, and assume a binary type

space θ ∈ {H,L}, with ϕH and ϕL = 1−ϕH being the probabilities of type H and type

L respectively. Let Fθ(·) be the cumulative distribution function of the buyer’s value

ω conditional on θ. We assume that Fθ(·) has a continuous density fθ(·). Denote the

mean as

µθ =

∫ ω

ω

ω dFθ(ω).

We assume that H strictly dominates L in likelihood ratio order, i.e.,

λ(ω) =
fH(ω)

fL(ω)

is strictly increasing for all ω. Note that likelihood ratio dominance implies first order

stochastic dominance, that is, FH(ω) < FL(ω) for all ω ∈ (ω, ω).9

The seller can commit to a menu of two contracts, one for each type. Each contract

consists of a pricing scheme and an information policy. A pricing scheme (aθ, pθ)

consists of an advance payment aθ and a strike price pθ (we use superscripts for reported

types and subscripts for true types). A type-θ buyer transfers the advance payment

aθ to the seller before he is allowed to receive additional private information about ω,

and has the option to buy the product at the strike price pθ after he receives additional

private information.

An information policy for type θ is an experiment on Ω, a mapping from Ω to

a set of signals. Since the pricing scheme for type θ is deterministic, it is without

loss to restrict the signal to be either BUY or PASS, and simultaneously the pricing

scheme to be obedient, in the sense that for a buyer who reports his type truthfully,

he purchases the product after learning that the signal is BUY and does not purchase

after learning that the signal is PASS. We can thus denote an information policy for

type θ as σθ : Ω → [0, 1], with σθ(ω) representing the probability of the BUY signal for

a truthful buyer type θ conditional on his true value ω. We say that an information

9We assume strict likelihood ratio dominance, but the weak version suffices for this claim. Fix any
ω̂ ∈ (ω, ω). Since fH(ω)/fL(ω) ≤ fH(ω̂)/fL(ω̂) for all ω ∈ [ω, ω̂], integrating over ω from ω to ω̂ yields
FH(ω̂)fL(ω̂) ≤ FL(ω̂)fH(ω̂), with strict inequality unless fH(ω)/fL(ω) = fH(ω̂)/fL(ω̂) for all ω ∈
[ω, ω̂]. Similarly, weak likelihood ratio dominance implies that (1−FH(ω̂))fL(ω̂) ≥ (1−FL(ω̂))fH(ω̂),
with strict inequality unless fH(ω)/fL(ω) = fH(ω̂)/fL(ω̂) for all ω ∈ [ω̂, ω]. Thus, FH(ω̂) < FL(ω̂).
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policy σθ is partitional if σθ(ω) is either 0 or 1.10 A partitional σθ has an interval

structure if there is an interval [k, k] ⊆ [ω, ω] such that σθ(ω) = 1{ω ∈ [k, k]}, where
1{·} is the indicator function, and we refer to [k, k] as the BUY interval for type

θ. A partitional σθ(·) with an interval structure [k, k] is monotone if k = ω, and is

non-monotone if k < ω. A monotone partitional σθ is efficient if k = c.

A seller’s disclosure policy is a pair of information policies
(
σL, σH

)
. A disclosure

policy is discriminatory if information policies differ cross buyer types: σL ̸= σH .

The timing of the game is as follows. The seller first commits to a menu of contracts(
aθ, pθ, σθ

)
for θ = H,L. If the buyer chooses not to participate in the seller’s mech-

anism, both he and the seller receive a payoff of zero, Otherwise, the buyer chooses

one contract
(
aθ, pθ, σθ

)
from the menu and pays the advance payment aθ to the seller.

The buyer then learns additional private information about ω through his information

policy σθ, and decides whether to buy at the given strike price pθ. If he decides not to

buy, his payoff is −aθ and the seller’s payoff is aθ. If he buys, his payoff is −aθ+ω−pθ,

and the seller’s payoff is aθ + pθ − c.

2.1 Remarks on the model

We restrict pricing schemes to be deterministic.11 Given this restriction, the assump-

tion that the set of signals is binary and the pricing schemes are obedient is without

loss. This is because if there are more than two signals, under a deterministic pricing

scheme, for every signal a type-θ buyer can only choose either to buy or not to buy the

product. If we pool all the signals after which type θ buys, and pool the signals after

which he does not buy, neither the payoff of type θ nor the seller’s profit is affected.

Pooling however makes it less attractive for the other type θ̃ to mimic type θ since

type θ’s experiment becomes less informative.12

We have implicitly assumed that the seller controls all private information of the

buyer about his value ω except his ex ante type θ. This means that the buyer may

not acquire any information about ω on his own. More importantly, as in Li and

Shi (2017), we allow the seller to disclose a signal that is correlated with the buyer’s

private type without observing it. This contrasts with the assumption in Eső and

Szentes (2007) that the seller can only disclose independent information. Correlated

10Whenever we make statements about information policies, we do not distinguish two policies that
differ only for a set of values with zero measure.

11In Section 4, we discuss how to relax this restriction in future work.
12Indeed, this argument is the starting point of Li and Shi (2017). The restriction to binary signals

rules out exogenous full information as in Courty and Li (2000), but is without loss when the seller
chooses the available information.
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signals are natural in our setting as they may be thought of as a product trial or a

pilot program for type θ. The seller designs the trial length and chooses which aspects

of the product are available for trial to control how much type θ privately learns about

his value ω. The advance payment aθ is the price for both the trial and the option to

purchase the product at the strike price pθ. What a buyer learns about his value ω

from a given disclosure policy can depend on his true type, because different types can

have different interpretations of the same trial outcome.

3 Optimal Disclosure

The seller’s problem (P) is to choose a pricing scheme (aθ, pθ) and an information policy

σθ for each θ = H,L to maximize her profit

(P)
∑

θ=H,L

ϕθ

(
aθ +

(
pθ − c

) ∫ ω

ω

σθ(ω)fθ(ω)dω

)
,

subject to two ex ante participation constraints

−aθ +

∫ ω

ω

(ω − pθ)σθ(ω)fθ(ω)dω ⩾ 0, ∀θ; (IRθ)

two obedience constraints∫ ω

ω

(ω − pθ)σθ(ω)fθ(ω)dω ⩾ 0 ⩾
∫ ω

ω

(ω − pθ)(1− σθ(ω))fθ(ω)dω, ∀θ; (OBθ)

and two incentive compatibility constraints

− aH +

∫ ω

ω

(ω − pH)σH(ω)fH(ω)dω

⩾ −aL +max

{∫ ω

ω

(ω − pL)σL(ω)fH(ω)dω,

∫ ω

ω

(ω − pL)fH(ω)dω

}
, (ICH)

− aL +

∫ ω

ω

(ω − pL)σL(ω)fL(ω)dω

⩾ −aH +max

{∫ ω

ω

(ω − pH)σH(ω)fL(ω)dω, 0

}
. (ICL)

In stating ICH , we have assumed that after reporting as the low type, the most

profitable deviation for the high type is either to buy after the BUY signal, or to

buy all the time. For ICL, the corresponding assumption is that after the low type
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reports as the high type, the most profitable deviation is either to buy after the BUY

signal, or not to buy at all. These two assumptions are implications of likelihood ratio

dominance. To see this, for all θ, θ̃ = H,L, denote the posterior estimate of a type θ

buyer who reports θ̃ and then observes the BUY signal as

vθ̃θ =

∫ ω

ω
ωσθ̃(ω)fθ(ω)dω∫ ω

ω
σθ̃(ω)fθ(ω)dω

.

Similarly, denote the posterior estimate of a type θ buyer who reports θ̃ and then

observes the PASS signal as

uθ̃
θ =

∫ ω

ω
ω
(
1− σθ̃(ω)

)
fθ(ω)dω∫ ω

ω

(
1− σθ̃(ω)

)
fθ(ω)dω

.

The OBθ constraints can then be rewritten as:

vθθ ⩾ pθ ⩾ uθ
θ.

For each θ = H,L, the conditional density function in vθH dominates the conditional

density function in vθL in likelihood ratio order. As a result, vθH > vθL. Similarly,

uθ
H > uθ

L. For the right-hand side of ICH , OBL then implies vLH > vLL ≥ pL, and for the

right-hand side of ICL, OBH implies uH
L < uH

H ≤ pH .

3.1 A simplified problem

In a dynamic mechanism design problem with exogenous full information, e.g., Courty

and Li (2000), the standard approach is to reduce the original problem to choosing

the low type’s allocation to optimally balance efficiency loss from the low type against

reduction of information rent to the high type. A key step in this approach is to show

that IRH is implied by IRL and ICH under the assumption of first order stochastic

dominance; that is, the high type is guaranteed a positive information rent because

of the option of pretending to be the low type. This step fails here with the seller

choosing an information policy σL for the low type L.

For IRH to follow from IRL and ICH , we need

max

{∫ ω

ω

(ω − pL)σL(ω)fH(ω)dω,

∫ ω

ω

(ω − pL)fH(ω)dω

}
≥

∫ ω

ω

(ω−pL)σL(ω)fL(ω)dω.
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Suppose that double deviations by type H – first misreporting as type L and then

disobeying recommendation not to buy after receiving the PASS signal – are not prof-

itable:

uL
H ≤ pL. (NDH)

Then, IRH is implied by∫ ω

ω

(ω − pL)σL(ω)(fH(ω)− fL(ω))dω ≥ 0. (IR′
H)

With no restrictions on the information policy σL for type L, the above can fail even

under the stronger assumption of strict likelihood ratio dominance we have made.

To adapt the standard approach to the present setup, we define a relaxed problem

(RP) by dropping ICL and OBH but retaining IRH in the original problem (P). The

following lemma provides a characterization of solutions to (RP). Its proof and all

subsequent omitted proofs are in the appendix.

Lemma 1 At any solution to (RP), both IRL and ICH bind, and NDH is satisfied.

To see why IRL and ICH bind, note that ICL is dropped in (RP), and advance

payments aθ as a sunk cost do not enter the obedience constraints. As a result, if

IRL is slack, the seller would want to increase aL; and if ICH is slack, the seller would

want to make σL efficient, which then implies IRH is slack and the seller would want

to raise aH . The incentive for the seller to make the information policy σL for type L

as efficient as possible is also why NDH is satisfied at any solution to (RP). We show

through a perturbation argument that σL must be a monotone partition if NDH is

violated. But then the seller could profitably raise the strike price for the low type

because a deviating type H buys the product after both signals.

Any solution to (RP) that satisfies ICL and OBH solves (P). We now use Lemma

1 to further simplify (RP). Substituting binding IRL and ICH under NDH into the

objective of (P), we can rewrite it as the sum of

ϕH

∫ ω

ω

(ω − c)σH(ω)fH(ω)dω,

and

(SP)

∫ ω

ω

ϕL

(
(ω − c)− ϕH

ϕL

(
ω − pL

) fH(ω)− fL(ω)

fL(ω)

)
σL(ω)fL(ω)dω.
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It is clearly optimal in (RP) to set σH(ω) = 1{ω ∈ [c, ω]}. Thus, (RP) can be refor-

mulated as a simplified problem (SP) as choosing a strike price pL and an information

policy σL for type L to maximize (SP), subject to IR′
H , which is equivalent to IRH

because IRL and ICH bind under NDH at any solution to (RP), and combined OBL

and NDH , which imposes bounds on the strike price pL for type L:13

uL
H ≤ pL ≤ vLL. (PBL)

The following lemma validates our approach of focusing on (SP). We show that any

solution (pL, σL) to (SP) combined with the efficient information policy σH(ω) = 1{ω ∈
[c, ω]} and the strike price pH = c satisfies the dropped constraints of ICL and OBH ,

and thus solves (P).14

Lemma 2 If (pL, σL) solves (SP), then there is an optimal mechanism (aθ, pθ, σθ) that

combines it with pH = c and σH(ω) = 1{ω ∈ [c, ω]}.

The objective in (SP) is the difference of two integrals: the integral of the first

term (ω − c) is the surplus from type L, and the integral of the second term is the

information rent to type H at a given price pL (see the left-hand side of IR′
H). Thus,

if we define

J(ω) = (ω − c)− ϕH

ϕL

(
ω − pL

) fH(ω)− fL(ω)

fL(ω)
,

then J(ω) has the familiar interpretation of virtual surplus, which we will call the

endogenous virtual surplus.

For comparison, the objective function in sequential screening with exogenous full

information is ∫ ω

ω

ϕL

(
(ω − c)− ϕH

ϕL

FL(ω)− FH(ω)

fL(ω)

)
xL(ω)fL(ω)dω,

where xL : [ω, ω] → [0, 1] is the allocation rule for type L. The term inside the bracket

above is the standard dynamic virtual surplus of type L. Although our simplified

problem and its associated endogenous virtual surplus bear some similarities to their

counterparts under exogenous full information, there are several notable differences.

13Since uL
H ≥ uL

L and NDH holds, the only part of OBL constraints that still remains to be considered
is vLL ≥ pL.

14Given a solution (pL, σL) to (SP), aL is uniquely determined by IRL, and then aH is uniquely
determined by ICH given σH = 1{ω ∈ [c, ω]} and pH = c. Although the information policy for the
high type is efficient and thus uniquely optimal, this particular pricing scheme (aH , pH) is not: any
scheme that binds ICH given σH = 1{ω ∈ [c, ω]} and satisfies ICL and OBH is also optimal.
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First, the point-wise choice variable in (SP) is an information policy σL(ω) for the

low type rather than an allocation rule. Under the obedience constraints, we may think

of σL(ω) as the recommended allocation, but there is no point-wise restriction on σL(ω)

such as weak monotonicity on the allocation rule. Second, unlike the dynamic virtual

surplus involving only primitives, the endogenous virtual surplus J(ω) incorporates the

strike price pL. It can be much harder to determine the optimal information policy

σL(ω) than to find the optimal allocation, because σL(ω) and pL are simultaneously

chosen subject to the joint constraints through price bounds PBL. Third, while the

ratio (FL(ω)−FH(ω))/fL(ω) in the dynamic virtual surplus measures how informative

the type of the buyer is regarding his value, such interpretation is lost for the cor-

responding term (ω − pL)(λ(ω) − 1) in the endogenous virtual surplus J(ω). This is

because when the information policy is chosen by the seller, the allocation of the low

type is separated from the strike price.

3.2 Regular solutions

The optimal mechanism design problem with simultaneous price and information dis-

crimination is more difficult than a dynamic price discrimination problem. As estab-

lished in Lemma 2, any solution (pL, σL) to (SP) forms a solution to (P). Our simplified

problem, however, differs from a standard relaxed problem in dynamic mechanism de-

sign, because we impose the NDH constraint and retains the IR′
H constraint for type

H, and more significantly, we must solve for the strike price pL and the information

policy σL jointly.

Our solution strategy is to identify a class of information policies for the low type,

which we call regular, under which price discrimination and information discrimination

can be uncoupled, while postponing the question of how to impose conditions to en-

sure regularity. Under any regular information policy for the low type, the high type

expects to buy the product with a greater probability after misreporting as the low

type than the truthful low type. Due to the assumption of likelihood ratio dominance,

this property is sufficient to pin down the strike price pL for any choice of a regular

information policy in any solution to the simplified problem.

Definition 1 An information policy σL is regular if∫ ω

ω

σL(ω)(fH(ω)− fL(ω))dω ≥ 0,

and is irregular otherwise. A solution (pL, σL) to (SP) is regular if σL is regular.
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A monotone partition σL is regular under the weaker assumption of first order

stochastic dominance. However, even under strict likelihood ratio dominance, regu-

larity can fail for non-monotone information policies. As a relaxation of monotone

partitions, regularity can be viewed as a natural restriction on information policies for

the low type when the seller engages in both price and information discrimination.

Regularity of an information policy for the low type guarantees a non-negative

information rent for the high type. Formally, the IR′
H constraint is slack under any

regular information policy σL. The assumption of likelihood ratio dominance implies

that vLH > vLL. If σ
L is regular, we then have

(vLH − pL)

∫ ω

ω

σL(ω)fH(ω)dω > (vLL − pL)

∫ ω

ω

σL(ω)fL(ω)dω,

which implies that IR′
H is satisfied with slack. Even though the seller is choosing the

strike price pL and σL in (SP) simultaneously, regularity of σL allows us to drop IR′
H

as in a standard relaxed problem of dynamic mechanism design.

Regularity of information policies of the low type allows us to uncouple price and

information discrimination in the simplified problem. With IR′
H slack under any regular

information policy, it is immediate from the objective of (SP) that pL = vLL at any

regular solution (pL, σL). That is, pL is set at the upper bound according to PBL.

This is intuitive; under a regular information policy σL, raising strike price pL hurts a

deviating type H more than a truthful type L because a deviating type H buyer buys

more often than a truthful type L buyer.

We are now ready to present our main characterization result that regular solutions

to the simplified problem have an interval structure.

Proposition 1 At any regular solution (pL, σL) to (SP), pL = vLL ≥ c, and there exist

k and k satisfying c < k < k ≤ ω such that σL(ω) = 1{ω ∈ [k, k]}.

The proof of Proposition 1 is based on a perturbation argument. We show that if

the BUY region of the low type in a regular solution is not an interval, by perturbing σL

marginally, we can increase the trade surplus from the low type while simultaneously

decrease the information rent to the high type. Here, we use a Lagrangian approach to

provide the intuition. We first drop NDH and impose the single remaining constraint

pL ≤ vLL in PBL, with a Lagrangian multiplier β ≥ 0. The Lagrangian function is

L =

∫ ω

ω

ϕLJ(ω; β)σ
L(ω)fL(ω)dω,

13



where

J(ω; β) = (ω − c)− ϕH

ϕL

(ω − pL)(λ(ω)− 1− β),

is the constrained endogenous virtual surplus. If (pL, σL) solves (SP), then

σL(ω) = 1{ω : J(ω; β) ≥ 0}.

Since pL = vLL implies pL ≥ c,15 we have J(pL; β) ≥ 0, and by likelihood ratio dom-

inance, J(ω; β) < 0. As shown in the two panels of Figure 1, J(ω; β) crosses zero

exactly once from below for ω < pL and at most once from above for ω > pL. To see

why, consider ω > pL. The sign of J(ω; β) is the same as

ω − c

ω − pL
− ϕH

ϕL

(λ(ω)− 1− β).

The first term is non-increasing because pL ≥ c, and hence the difference is decreasing

in ω by strict likelihood ratio dominance. A similar argument establishes single-crossing

of J(ω; β) for ω < pL.16

Proposition 1 has established that any regular solution (pL, σL) to the simplified

problem has an information policy σL for type L with a BUY interval [k, k] ⊂ [c, ω].

The optimal partition for the low type may be either monotone with k = ω (see the

left panel of Figure 1), or non-monotone with k < ω (see the right panel of Figure 1).

By Lemma 2, the BUY interval of the low type is a strict subset of the BUY interval

[c, ω] of type H. Therefore, if the solution to (SP) is regular, the optimal disclosure

policy has a nested interval structure.

The nested interval structure of the optimal disclosure policy helps to highlight the

difference in allocations between sequential price discrimination with exogenous full

information and simultaneous price and information discrimination. In both cases, the

optimal allocation is efficient for the high type, and is distorted downward for the low

type with values just above the seller’s cost. Under sequential price discrimination

with exogenous full information, the downward distortion helps the seller to reduce the

information rent to the high type more than it hurts the surplus from the low type. This

15Otherwise the integral of the first term in J(ω) in the objective of (SP) is strictly negative, and
the seller could do better than excluding the low type altogether. Indeed, Proposition 1 implies that
the inequality is strict at any regular solution to (SP).

16If we assume that µH ≤ c, then since pL ≥ c at any regular solution to (SP), it is never profitable
for a deviating type H buyer to always buy. The dropped NDH constraint is slack at any regular
solution, and thus the above argument provides an alternative proof for Proposition 1. The pertur-
bation argument in the appendix is more general, and covers both when constraint NDH is slack and
when it is binding.
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logic stays valid under simultaneous price and information discrimination with k > c.17

Indeed, as illustrated in Figure 1 and established in Proposition 1, the same logic leads

to a downward distortion in the allocation of the low type with an interval of the

highest values when the optimal information policy for the low type is non-monotone,

with k < ω. This is however impossible under exogenous full information.

Under sequential price discrimination with exogenous full information, the seller

charges the advance payment aL to take away all ex post rent from the low type in

expectation. A strictly positive aL is necessary because the strike price pL is pinned

down as the lowest value for the low type buys the product. With information dis-

crimination, the seller reveals only the BUY interval to the low type. In the optimal

mechanism, a positive strike price pL is sufficient to take away all rent from the low

type. There is no advance payment for the low type. In practice, this difference in

the optimal pricing scheme may provide a way to detect the presence of information

discrimination.

3.3 Sufficient conditions for regularity

In this subsection, we provide sufficient conditions on the primitives of the original

optimal mechanism design problem to ensure that solutions to the simplified problem

are regular. Since we cannot exploit the characterization of regular solutions to (SP)

given by Proposition 1, to provide sufficient conditions we directly tackle the definition

of regularity, using only the fact that the seller does not exclude the low type com-

pletely in an optimal mechanism. To emphasize our end result, we state the following

proposition directly in terms of the optimal disclosure policy instead of a sufficient

condition for regular solutions to (SP).

Proposition 2 If there exists γ > 0 such that λ(ω) ≥ 1 + γ(ω − c) for all ω ∈ [ω, ω],

then there is an optimal disclosure policy with a nested interval structure.

Proof. By the condition stated in the proposition, for any information policy σL for

type L we have∫ ω

ω

σL(ω)(fH(ω)− fL(ω))dω ≥ γ

∫ ω

ω

σL(ω)(ω − c)fL (ω) dω.

17In an earlier draft of the paper, we show that under further restrictions on the primitives of
the model, k is lower than the strike price under the optimal sequential screening of Courty and Li
(2000). There is a greater distortion in the allocation for the low type with values just above c without
information discrimination, because the strike price is the only tool to trade off distortion in allocation
and reduction in information rent.
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The right-hand side of the above inequality is non-negative if σL is part of a solution

(pL, σL) to (SP), because the trade surplus with type L – the integral of the first term

in J(ω) – must be non-negative. Otherwise, the seller could profitably exclude type L

altogether. It follows from the definition of regularity that under the condition stated

in the proposition, any solution to (SP) is regular. The proposition follows immediately

from Proposition 1 and Lemma 2.

A more stringent but more intuitive condition than the sufficient condition in Propo-

sition 2 can be obtained if λ(ω) is convex. Let ωo ∈ (ω, ω) be the value where the

density functions fH and fL intersect: fH(ωo) = fL(ωo); that is, λ(ωo) = 1. By the

assumption strict likelihood ratio dominance, ωo exists and is unique. If ωo ≤ c and

λ (ω) is convex, then we have

λ(ω)− 1 ≥ λ′(ωo)(ω − ωo),

and thus the sufficient condition for regularity in Proposition 2 is satisfied. We state

this result as a corollary.

Corollary 1 If λ (ω) is convex and ωo ≤ c, then there is an optimal disclosure policy

with a nested interval structure.

Below we provide an explicit analytical example to illustrate Proposition 2.18 Con-

vexity of likelihood ratio function λ(ω) is sufficient, but not necessary.

Example 1 Let fL(ω) = 1 + (2ω − 1)tL and fH(ω) = 1 + (2ω − 1)tH for ω ∈ [0, 1],

with −1 ≤ tL < tH ≤ 1. We have ωo = 1/2, and

λ(ω) =
1− tH + 2tHω

1− tL + 2tLω
.

If tL ≤ 0, λ(ω) is convex, and the sufficient condition in Corollary 1 is satisfied if

c ≥ 1/2. If tL > 0, λ(ω) is concave, and the sufficient condition in Proposition 2 is

satisfied if tL ≤ 2c− 1 for any c > 1/2.

The sufficient conditions in Proposition 2 and Corollary 1 exclude irregular infor-

mation policies by showing that irregular policies are suboptimal in (SP). Instead, the

following result directly identifies conditions under which the optimal information pol-

icy for type L is a monotone partition, and is thus regular. We consider the same

18This is the example we have used to generate Figure 1 in the introduction. We choose ϕL = 69/119,
c = 1/2 and tH = 0 for both panels. In addition, we set tL = −1/4 for the left panel and tL = −1 for
the right panel.
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Lagrangian L as in our discussion of the intuition for Proposition 1. By imposing

conditions on the likelihood ratio function λ(ω), we show that only the left panel in

Figure 1 for the constrained endogenous virtual surplus J(ω; β) is possible. This di-

rectly shows that the optimal information policy for type L is a monotone partition,

and the BUY interval is nested in the BUY interval [c, ω] of type H.

Proposition 3 Suppose that λ(ω) ≤ ϕL/ϕH and maxω λ
′(ω) ≤ 1/(ω−ω). The optimal

disclosure policy is a pair of monotone partitions with a nested interval structure.

Proof. Consider the auxiliary problem to (SP) by dropping NDH . We first show that

at any solution (pL, σL) to the auxiliary problem σL is a monotone partition. For any

fixed pL, taking derivative of J(ω; β) with respect to ω gives

∂J(ω; β)

∂ω
= 1− ϕH

ϕL

(
(λ(ω)− 1− β + (ω − pL)λ′(ω)

)
.

The conditions stated in the proposition, together with β ≥ 0, imply that the above

is non-negative and therefore J(ω; β) is weakly increasing in ω. A necessary condition

for (pL, σL) to solve the auxiliary problem is that σL(ω) = 1{ω : J(ω; β) ≥ 0}. Thus,

σL is a monotone partition.

Given that at any solution (pL, σL) to the auxiliary problem σL is a monotone

partition, the objective of the auxiliary problem, which is the same as that of (SP),

is increasing in pL. Therefore, we have pL = vLL. Since uL
H < vLL under a monotone

partition σL, the dropped constraint of NDH in (SP) is satisfied. As a result, the

solution (pL, σL) to the auxiliary problem solves (SP). The proposition then follows

immediately from Lemma 2.

The sufficient conditions stated in Proposition 3 impose upper bounds on both

the level and the slope of the likelihood ratio function. Although the conditions are

restrictive, Example 1 can be used to show how they can be satisfied. It also shows that

the sufficient conditions for monotone partitions in Proposition 3 is complementary to

the sufficient conditions for regularity in Proposition 2 and Corollary 1.

Example 1 continued We have

λ(ω) =
1 + tH
1 + tL

, max
ω∈[0,1]

λ′(ω) =
2(tH − tL)

(1− |tL|)2
.

It is straightforward to verify that, as long as ϕL > ϕH , for any tL > −1, there always

exist values of tH that satisfy the sufficient conditions in Proposition 3, regardless of

whether the conditions in Proposition 2 and Corollary 1 hold. However, for tL = −1
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the conditions in Proposition 3 can never hold because λ(ω) is unbounded at ω = ω,

even though the conditions in Corollary 1 can be satisfied.

The BUY region of the optimal information policy σL in Proposition 1 is an interval,

and not necessarily a monotone partition as in Proposition 3. A natural question

is then when the optimal policy σL is a non-monotone partition with k < ω. As

suggested by Proposition 3 and Example 1 above, we need the likelihood ratio λ (ω)

to increase sharply in the neighborhood of ω. To provide formal sufficient conditions

for non-monotone partitions, we apply Proposition 1 to rewrite the objective of (SP)

as functions of k and k:

Γ(k, k) = ϕL

∫ k

k

(ω − c)fL(ω)dω − ϕH

∫ k

k

(ω − vLL)(fH(ω)− fL(ω))dω.

The first-order necessary conditions for optimal k and k are

∂Γ(k, k)

∂k
= 0;

∂Γ(k, k)

∂k
≥ 0, k ≤ ω with complementary slackness. (FOC)

The proof of the following result exploits the above first order conditions.19 It is stated

as a corollary to Proposition 1 and assumes a regular solution to (SP). Together with

either Proposition 2 or Corollary 1, it provides sufficient conditions for the optimal

disclosure policy to not only have a nested interval structure, but also have a BUY

interval for the low type that excludes the highest values.

Corollary 2 If λ′′(ω)/λ′(ω) > 3/(ω − c) + 2f ′
L(ω)/fL(ω), then for sufficiently small

ϕL, any regular solution to (SP) has σL(ω) = 1{ω ∈ [k, k]} with k < ω.

We use Example 1 again to illustrate that conditions in Corollary 2. It also shows

that these conditions are sufficient but not necessary for the optimal BUY interval of

the low type to exclude the highest values.

Example 1 continued Suppose that c ≥ 1/2. We have ω = 1, and

λ′′(1)

λ′(1)
= − 4tL

1 + tL
;
f ′
L(1)

fL(1)
=

2tL
1 + tL

.

If tL < −3/(11− 8c), λ(ω) is convex and hence the solution is regular, and moreover,

when ϕL is sufficiently small, the sufficient condition in Corollary 2 is satisfied. If

19We need an upper bound for k to show ∂Γ(k, k)/∂k evaluated at k = ω is strictly negative. By
making ϕL go to zero, Corollary 2 uses ω as the upper bound.
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tL = −1, λ(ω) is convex and unbounded at ω, and the optimal σL has k < 1 regardless

of the value of ϕL.

3.4 Necessity of information discrimination

We have established conditions under which the optimal disclosure policy consists of

pair of nested BUY intervals. The optimal policy is discriminatory because the two

types have different BUY intervals after their respective truthful report. However,

as suggested in Guo and Shmaya (2019) in a non-transferable setting, although the

optimal information policies σH and σL are different, the optimal mechanism may

nonetheless be implemented with a non-discriminatory policy. In this subsection,

we address the necessity of information discrimination in implementing the optimal

disclosure policy. In particular, we ask if the seller can replicate the optimal profit by

replacing the optimal disclosure policy with a single experiment for both types.

We claim that replication can be achieved whenever the optimal information policy

for type L is a monotone partition, that is, whenever k = ω.

Proposition 4 Let (aθ, pθ, σθ) be an optimal mechanism, where σL(ω) = 1{ω ∈ [k, k]}
with c < k < k ≤ ω and pL = vLL, and σH(ω) = 1{ω ∈ [c, ω]} and pH = c. If k = ω,

then there is a single experiment for both types that attains the optimal profit with the

same pricing scheme.

Proof. Take the common partition

{[ω, c] , [c, k] , [k, ω]} ,

which is refined from the monotone partition {[ω, k], [k, ω]} for type L and the mono-

tone partition {[ω, c], [c, ω]} for type H. Consider an experiment of the buyer’s value

ω with three signals, each corresponding to a partition element of the above common

partition. That is, both type H and type L are allowed to learn privately which of

above three intervals his value lies in. Suppose that the seller replaces the disclosure

policy (σL, σH) in the optimal mechanism with this non-discriminatory experiment,

with no change in the two pricing schemes (aθ, pθ), θ = H,L. Since the strike price

pL = vLL > k, after choosing the low type’s pricing scheme, both a truthful type L

and a deviating type H will buy the product if and only if he learns his value ω is

in the interval [k, ω], exactly the same as under the original information policy σL.

In particular, under the non-discrimination experiment, a deviating type H can now

differentiate the intervals [ω, c] and [c, k], but such additional information relative to
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σL does not change the purchase decision by type H. Similarly, since pH = c, after

choosing (aH , pH), both a truthful type H and a deviating type L will buy if and only

if he learns his value ω is either in [c, k] or in [k, ω], the same as under σH . Replication

is thus achieved.

Replication of the optimal profit may fail, however, if the optimal information

policy σL for the low type is a non-monotone partition, with k < ω. Consider the

non-discriminatory experiment over the buyer’s value with the common partition re-

fined from the partition
{
[ω, k] ∪ [k, ω], [k, k]

}
for type L and the monotone partition

{[ω, c] , [c, ω]} for type H:

{
[ω, c] , [c, k] ∪ [k, ω], [k, k]

}
.

After misreporting as type L, type H will not buy the product only if

EH

[
ω|ω ∈ [c, k] ∪ [k, ω]

]
≤ pL.

In contrast, under the original optimal information policy σL for type L, type H will

not buy if and only if

EH

[
ω|ω ∈ [ω, k] ∪ [k, ω]

]
≤ pL.

Under the non-discriminatory experiment, type H’s additional information relative to

σL allows him to rule out low values below the seller’s cost c. If

EH

[
ω|ω ∈ [c, k] ∪ [k, ω]

]
> pL ≥ EH

[
ω|ω ∈ [ω, k] ∪ [k, ω]

]
, (NR)

a deviating type H will buy more often after misreporting as type L under the non-

discriminatory experiment than under the original discriminatory policy. The infor-

mation rent for type H would become higher, leading to a lower revenue for the seller.

Therefore, replication through the non-discriminatory experiment fails.20

We again use Example 1 to illustrate condition NR. Since a necessary condition

for the failure of replication is that the optimal information policy for type L is non-

monotone, in the example we have an unbounded likelihood ratio λ at the top of the

value distributions.

20If we further assume that optimal σL is essentially unique in the sense that any other optimal
policy leads to the same purchasing behavior of type L who buys if and only if ω ∈

[
k, k

]
with

k < ω, then replications through any other non-discriminatory disclosure policy must also fail if
condition NR holds, because any non-discriminatory disclosure policy can always be implemented
with a discriminatory disclosure policy.

20



Example 1 continued Recall that when c ≥ 1/2 and tL = −1, any solution to

(SP) is regular with k < ω = 1. For tH = 0, c = 1/2 and ϕL = 8/35, we can

use the two first order conditions FOC to obtain k = 5/8 and k = 13/16. At the

solution, pL = 17/24, and EH

[
ω|ω ∈ [c, k] ∪ [k, ω]

]
= 123/160 > 17/24. Condition

NR is satisfied and replication fails.

4 Discussion

We have imposed several restrictions on our model to gain tractability. The buyer’s ex

ante types are assumed to be binary and are ordered by likelihood ratio dominance. We

restrict attention to deterministic pricing mechanisms and focus on regular solutions

to (SP). Below we will comment on each of these four restrictions.

We start with the regularity restriction under which the optimal disclosure policy is

shown to feature a pair of nested intervals. As illustrated by the following example,21

a pair of nested intervals can be optimal even if the solution to (SP) is irregular. This

example demonstrates that regularity is sufficient but not necessary for the optimal-

ity of either nested BUY intervals or non-monotone information policies. Moreover,

replicating the optimal profit with a non-discriminatory disclosure policy may also fail

when solutions to (SP) are irregular.

Example 2 Suppose that ϕL = ϕH = 1/2. and the seller’s reservation value c = 1/2.

Type L has a uniform value distribution over [0, 1]. Type H also has a uniform value

distribution except for an atom of size 1/4 at the top:

FH(ω) =

{
3
4
ω if ω ∈ [0, 1)

1 if ω = 1.

Consider the low type’s information policy σL(ω) = 1{ω ∈ [1/2, 1)} and pricing

scheme (aL, pL) = (0, 3/4). The NDH constraint holds because type H will buy only

at the BUY signal after deviating, and IR′
H binds because type H has zero informa-

tion rent. Since type L’s allocation is also efficient, (pL, σL) solves (SP). The solution

is irregular because under σL, the probability that type H receives the BUY signal af-

ter reporting as type L is 3/8, which is lower than the probability of 1/2 that type

21Our model assumes atomless distributions of values. Examples 2 and 3 below allow for atoms,
but they can be appropriately rewritten to satisfy this assumption by taking the appropriate limits.
Distributions with atoms allow for full surplus extraction, greatly facilitating the construction of
optimal mechanisms.

21



L receives the BUY signal. Finally, EH

[
ω|ω ∈ [c, k] ∪ [k, ω]

]
= 1, pL = 3/4, and

EH

[
ω|ω ∈ [ω, k] ∪ [k, ω]

]
= 11/20. Therefore, condition NR holds and replication fails.

As in the case of regular solutions, the optimal information policy σL excludes values

that are particularly attractive to the high type. The atom in FH(ω) at ω = 1 means

that the likelihood ratio λ(ω) explodes at the top. By excluding the top realization of

ω = 1 from type L’s BUY interval, the seller can cut the information rent of type H to

zero without incurring any loss in the trading surplus with type L, because ω = 1 occurs

with probability 1/4 for a misreporting type H while ω = 1 occurs with probability

zero for type L. Indeed, the seller extracts the full surplus by setting type L’s BUY

interval to [1/2, 1).22

Next, consider the assumption of strict likelihood ratio dominance. This is stronger

than the standard assumption of first order stochastic dominance in dynamic mech-

anism design, but is critical to our analysis of simultaneous price and information

discrimination. We have used it to formulate the simplified problem, motivate the re-

striction to regular solutions to the simplified problem, and derive the nested-interval

structure characterization of regular solutions. The example below shows that, under

first order stochastic dominance, the optimal BUY region for type L need not be an

interval, and the BUY interval of type H may not nest the BUY region of type L, i.e.,

the characterization in Proposition 1 generally fails.

Example 3 Suppose that ϕL = ϕH = 1/2. and the seller’s reservation value c = 1/2.

Type L has a uniform value distribution over [0, 1]. For some ε > 0 sufficiently small,

type H’s value distribution is uniform on (1/2− ε, 1] except for an atom of size 1/4 at

ω = 1/2− ε:

FH(ω) =

{
0 if ω ∈ [0, 1

2
− ε)

1
4
+ 3(2ω−1+2ε)

4(1+2ε)
if ω ∈ [1

2
− ε, 1]

The distributions FH(ω) and FL(ω) satisfy first order stochastic dominance, but not

likelihood ratio dominance. Consider a menu of information policies and pricing schemes:

σH(ω) = 1{ω ≥ 1/2} with (aH , pH) = (0, 3/4); σL(ω) = 1{ω ∈ {1/2 − ε} ∪ [1/2, 1]}
with (aL, pL) = (0, 3/4). Type H will not misreport, type L is indifferent between mis-

reporting and truth-telling, and both types get a payoff of zero. The mechanism extracts

all surplus and is thus optimal. The BUY region of type L is not an interval, and it

nests the BUY interval of type H.

22In contrast, if the seller is restricted to monotone partitions for type L, the optimal partition
threshold is equal to 5/8, leaving an information rent of 3/128 to type H.
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Here the optimal BUY region for type L includes values that are especially undesir-

able for type H. By including the mass point ω = 1/2− ε for type L, the seller is able

to exploit the unbounded likelihood ratio at the mass point to squeeze the information

rent of type H to zero. While the logic is similar to what underlies Proposition 1,

without the assumption of likelihood ratio dominance it is unclear how to apply this

logic in a systematic way.

The restriction to deterministic pricing mechanisms plays an important role in our

analysis, because it allows us to focus on binary experiments. In the sequential screen-

ing model of Courty and Li (2000), deterministic contracts are optimal with binary

types, but randomization can be optimal with three or more types. Li and Shi (2022)

provide necessary and sufficient conditions for randomization, and a characterization

of optimal stochastic sequential mechanisms with three or more types. With binary

types, but with the seller choosing the disclosure policy, it is an open question whether

the assumption of deterministic pricing schemes is restrictive or not.

A natural question for future research is how to generalize our approach and char-

acterization to a model with more than two types or even a continuum of types. We

conjecture that the optimal disclosure policy still has a nested-interval structure at any

regular solution to a suitably constructed simplified problem. Finding sufficient condi-

tions on the primitives of the mechanism design problem to ensure that solutions are

regular would be a challenge. The other important issue is that, with more than two

types, the simplified problem has to drop global incentive compatibility constraints.

Our approach has to be validated by showing that solutions to the simplified problem

have nested-interval structures and satisfy the dropped global incentive compatibility

constraints.

Appendix: Omitted Proofs

Proof of Lemma 1

Part 1. First, we show that IRL and ICH bind at any solution to (RP). Suppose that

IRL is slack at some solution (aθ, pθ, σθ) to (RP). Raising aL slightly would not affect

any constraint in (RP). This would increase the profit given in the objective in (P),

contradicting the assumption that (aθ, pθ, σθ) solves (RP).

Now, suppose that ICH is slack at some solution (aθ, pθ, σθ) to (RP). Since IRL
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binds, the profit from type L in the objective of (P) can be rewritten as∫ ω

ω

(ω − c)σL(ω)fL(ω)dω.

Since ICH is slack, the solution to (RP) must have σL(ω) = 1 for all ω ≥ c and 0

otherwise. Given that IRL binds, the deviation payoff for type H is then at least∫ ω

c

(ω − pL)(fH(ω)− fL(ω))dω,

obtained by buying only after the BUY signal. The above is strictly positive because

FH(ω) first-order stochastic dominates FL(ω). Thus, IRH is also slack. But then the

seller’s profit can be increased by raising aH , a contradiction.

Part 2. Next, we show that NDH holds at any solution to (RP). Suppose that uL
H > pL

at some solution (aθ, pθ, σθ) to (RP). We claim that σL (ω) is a monotone partition,

given by 1{ω ∈ [kL, ω]} for some kL ∈ (ω, ω). Suppose this is not the case. Then,

we can find k1, k2 ∈ (ω, ω) and ε > 0 with k1 + ε < k2, such that σL(ω) > 0 for all

ω ∈ [k1, k1 + ε], and σL(ω) < 1 for all ω ∈ [k2, k2 + ε]. For each η > 0 sufficiently

small, consider σ̃L such that σ̃L(ω) = σL(ω) except for σ̃L(ω) = σL(ω)− η > 0 for all

ω ∈ [k1, k1 + ε] and σ̃L(ω) = σL(ω) + y(η) < 1 for all ω ∈ [k2, k2 + ε], where

y(η) =
η(FL(k1 + ε)− FL(k1))

FL(k2 + ε)− FL(k2)
.

By construction, σ̃L = σL when η = 0, and for all η > 0 sufficiently small,∫ ω

ω

σ̃L(ω)fL(ω)dω =

∫ ω

ω

σL(ω)fL(ω)dω.

Denoting as ṽLL(η) the mean of type L’s value ω conditional on the BUY signal under

σ̃L, we have that ṽLL(η)− vLL(0) has the same sign as

−η

∫ k1+ε

k1

ωfL(ω)dω + y(η)

∫ k2+ε

k2

ωfL(ω)dω

> −η(k1 + ε)(FL(k1 + ε)− FL(k1)) + y(η)k2(FL(k2 + ε)− FL(k2))

= η(k2 − (k1 + ε))(FL(k1 + ε)− FL(k1)),

which is strictly positive for all η > 0. Similarly, denoting as ũL
L(η) the mean conditional

on the PASS signal under σ̃L, we have ũL
L(η) < ũL

L(0) for all η > 0 sufficiently small. It
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follows that by keeping pL unchanged, the seller can ensure that OBL is still satisfied

under σ̃L for sufficiently small η. For any η > 0 sufficiently small, we obtain the

advance payment ãL(η) by binding IRL under σ̃L and pL, and we have

ãL(η)− aL

= −η

∫ k1+ε

k1

(ω − pL)fL(ω)dω + y(η)

∫ k2+ε

k2

(ω − pL)fL(ω)dω

> −η(k1 + ε− pL)(FL(k1 + ε)− FL(k1)) + y(η)(k2 − pL)(FL(k2 + ε)− FL(k2))

= η(k2 − (k1 + ε))(FL(k1 + ε)− FL(k1)),

which is strictly positive for all η > 0. Since uL
H > pL, under σ̃L type H continues to

strictly prefer to buy regardless of the signal after the deviation. Type H’s deviation

payoff is thus µH − pL − ãL, which is decreased, and so ICH remains satisfied. But

after the modifications, the seller’s profit from type L in the objective of (P) would

increase, because aL is increased to ãL, contradicting the assumption that (aθ, pθ, σθ)

solves (RP). This contradiction establishes that σL is given by a monotone partition

with some threshold kL.

We have already shown that IRL and ICH bind at any solution to the relaxed

problem. Given that σL is a monotone partition with kL, using uL
H > pL we can now

write the seller’s profit as

ϕH

∫ ω

ω

(ω − c)σH(ω)fH(ω)dω + ϕL

∫ ω

kL
(ω − c) fL(ω)dω

− ϕH

(
µH − pL −

∫ ω

kL

(
ω − pL

)
fL(ω)dω

)
.

It is increasing in pL. A slight increase in pL does not violate OBL, because σL is a

monotone partition with threshold kL, which implies that vLL ≥ kL ≥ uL
H > pL. IRH

remains satisfied too, because type H could always misreport his type and then buy

only after the BUY signal, obtaining a deviation payoff which is non-negative regardless

of pL because σL is a monotone partition with kL and FH first order stochastically

dominates FL. This is a contradiction to the assumption that (aθ, pθ, σθ) solves (RP).
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Proof of Lemma 2

Suppose that (pL, σL) solves (SP). Let aL bind IRL:

aL =

∫ ω

ω

(ω − pL)σL(ω)fL(ω)dω.

Next, let aH bind ICH , given that σH = 1{ω ∈ [c, ω]} and pH = c, and NDH holds:

aH = aL +

∫ ω

c

(ω − c)fH(ω)dω −
∫ ω

ω

(ω − pL)σL(ω)fH(ω)dω.

We claim that (aθ, pθ, σθ) solves (P).

Given that σH = 1{ω ∈ [c, ω]} and pH = c, OBH is satisfied. It remains to verify

that ICL is satisfied. Suppose not. Since uH
L < pH < vHL , we have∫ ω

ω

(ω − pL)σL(ω)(fH(ω)− fL(ω))dω >

∫ ω

c

(ω − c)(fH(ω)− fL(ω))dω.

Then, the alternative of p̂L = c and σ̂L(ω) = 1{ω ∈ [c, ω]} achieves a greater value

for the objective of (SP) than (pL, σL). This contradicts the assumption that (pL, σL)

solves (SP).

Proof of Proposition 1

Part 1. We first show by contradiction that, if (pL, σL) is a regular solution to (SP),

then σL = 1{ω ∈ [k, k]} with pL ∈ [k, k] ⊂ [ω, ω].

Suppose not. There are two cases. In the first case, there exist k1, k2 ∈ (ω, ω) and

ε > 0, with pL < k1 < k1 + ε < k2, such that σL(ω) < 1 for all ω ∈ [k1, k1 + ε] and

σL(ω) > 0 for all ω ∈ [k2, k2 + ε]. In the second case, there exist k1, k2 ∈ (ω, ω) and

ε > 0, with k1 + ε < k2 < k2 + ε < pL, such that σL(ω) > 0 for all ω ∈ [k1, k1 + ε] and

σL(ω) < 1 for all ω ∈ [k2, k2 + ε]. We will consider the first case only, as the second

case is symmetric.

In the text we have already argued that pL = vLL ≥ c. For each η ≥ 0 sufficiently

small, consider a perturbed information policy σ̃L such that σ̃L(ω) = σL(ω) except for

σ̃L(ω) = σL(ω) + η < 1 for all ω ∈ [k1, k1 + ε] and σ̃L(ω) = σL(ω) − y(η) > 0 for all

ω ∈ [k2, k2 + ε], where

y(η) =
η
∫ k1+ε

k1
(ω − pL)fL(ω)dω∫ k2+ε

k2
(ω − pL)fL(ω)dω

.
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By construction, σ̃L = σL when η = 0. Denote as ṽLL(η) the mean of type L’s value ω

conditional on the BUY signal under σ̃L. We have ṽLL(0) = vLL, and the derivative of

ṽLL(η) with respect to η has the same sign as∫ k1+ε

k1

(ω − ṽLL(η))fL(ω)dω − dy(η)

dη

∫ k2+ε

k2

(ω − ṽLL(η))fL(ω)dω.

Since ṽLL(0) = vLL = pL, the above is equal to 0 at η = 0 and therefore dṽLL(0)/dη = 0.

The perturbation we construct for the purpose of contradiction depends whether or

not NDH binds at the solution (pL, σL) to (SP).

Case (i). Suppose that NDH is slack at (pL, σL). For each η ≥ 0 sufficiently small,

consider the perturbation of (pL, σL) in (SP) given by (p̃L, σ̃L), with p̃L = ṽLL(η). Since

σ̃L = σL when η = 0, for η > 0 sufficiently small, NDH remains slack.

We can rewrite the objective of (SP) under (p̃L, σ̃L) as∫ ω

ω

ϕL(ω − c)σ̃L(ω)fL(ω)dω −
∫ ω

ω

ϕH

(
ω − ṽLL(η)

)
(fH(ω)− fL(ω))σ̃

L(ω)dω.

The derivative of the first integral with respect to η is given by∫ k1+ε

k1

ϕL(ω − c)fL(ω)dω − dy(η)

dη

∫ k2+ε

k2

ϕL(ω − c)fL(ω)dω

=

∫ k1+ε

k1

ϕL(ω − c)fL(ω)dω −
∫ k1+ε

k1
(ω − pL)fL(ω)dω∫ k2+ε

k2
(ω − pL)fL(ω)dω

∫ k2+ε

k2

ϕL(ω − c)fL(ω)dω

>
k1 + ε− c

k1 + ε− c

∫ k1+ε

k1

ϕL(ω − pL)fL(ω)dω − k2 − c

k2 − pL

∫ k1+ε

k1

ϕL(ω − pL)fL(ω)dω

> 0,

where the first inequality follows because k1 > pL and pL ≥ c together imply that

(ω−c)/(ω−pL) is decreasing in ω, and the second inequality follows because k1+ε < k2.

The derivative of the second integral (without the minus sign) with respect to η is∫ k1+ε

k1

ϕH(ω − ṽLL(η))(fH(ω)− fL(ω))dω − dy(η)

dη

∫ k2+ε

k2

ϕH(ω − ṽLL(η))(fH(ω)− fL(ω))dω

− dṽLL(η)

dη

∫ ω

ω

ϕH σ̃
L(ω)(fH(ω)− fL(ω))dω.
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Since ṽLL(0) = 0 and dṽLL(0)/dη = 0, evaluated at η = 0 the above has the same sign as

∫ k1+ε

k1

(ω − pL)(fH(ω)− fL(ω))dω −
∫ k1+ε

k1
(ω − pL)fL(ω)dω∫ k2+ε

k2
(ω − pL)fL(ω)dω

∫ k2+ε

k2

(ω − pL)(fH(ω)− fL(ω))dω

< (λ(k1 + ε)− 1)

∫ k1+ε

k1

(ω − pL)fL(ω)dω − (λ(k2)− 1)

∫ k1+ε

k1

(ω − pL)fL(ω)dω

< 0,

where the inequalities follow from k2 > k1 + ε > k1 > pL and strict likelihood ratio

dominance. Thus, for η > 0 sufficiently small, the perturbation (p̃L, σ̃L) is profitable

and satisfies all constraints, contradicting to the assumption that (pL, σL) solves (SP).

Case (ii). Suppose that NDH binds at (pL, σL). We have uL
H = vLL = pL. Let ũL

H(η)

be the mean of type H’s value ω conditional on the PASS signal under σ̃L. For η ≥ 0

sufficiently small, the derivative of ũL
H(η) with respect to η has the same sign as

−
∫ k1+ε

k1

(ω − ũL
H(η))fH(ω)dω +

dy(η)

dη

∫ k2+ε

k2

(ω − ũL
H(η))fH(ω)dω.

Since ũL
H(0) = uL

H = pL, evaluated at η = 0 the above is given by

−
∫ k1+ε

k1

(ω − pL)fH(ω)dω +

∫ k1+ε

k1
(ω − pL)fL(ω)dω∫ k2+ε

k2
(ω − pL)fL(ω)dω

∫ k2+ε

k2

(ω − pL)fH(ω)dω

> −λ(k1 + ε)

∫ k1+ε

k1

(ω − pL)fL(ω)dω + λ(k2)

∫ k1+ε

k1

(ω − pL)fL(ω)dω

> 0,

where the inequalities follow from strict likelihood ratio dominance and k2 > k1 + ε.

Thus, for η > 0 sufficiently small, ũL
H(η) > uL

H(0) = pL.

By Lemma 2, (pL, σL), together with aL from binding IRL, a
H from binding ICH ,

pH = c and σH = 1{ω ≥ c}, solves (P). For each η ≥ 0 sufficiently small, consider

the perturbation of this solution to (P) given by (p̃L, σ̃L), with p̃L = ṽLL(η), together

with ãL from binding IRL, then ãH from binding ICH , p
H = c and σH = 1{ω ≥ c}.

We claim for η > 0 sufficiently small, this perturbation leads to a greater value for the

objective of (P) while satisfying all the constraints, which contradicts Lemma 2.

Since ũL
H(η) > uL

H(0) = pL and p̃L = ṽLL(η), with ṽLL(0) = pL and dṽLL(0)/dη = 0,

under the proposed perturbation for η > 0 sufficiently small, after misreporting as type

L, type H prefers to buy regardless of the signal. The objective of (P) is therefore the
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sum of the surplus from type H

ϕH

∫ ω

c

(ω − c)fH(ω)dω,

and the difference between the surplus from type L and the information rent to H

ϕL

∫ ω

ω

(ω − c)σ̃L(ω)fL(ω)dω − ϕH

(
µH − ṽLL(η)−

∫ ω

ω

(
ω − ṽLL(η)

)
σ̃L(ω)fL(ω)dω

)
.

By assumption NDH binds at (pL, σL), and so the objective achieved under (pL, σL) is

the same as the above evaluated at η = 0. The surplus from type H is unaffected by

the perturbation. In case (i) we have already shown that the surplus from type L is

increasing in η. The derivative of the information rent from type H with respect to η

has the same sign as

−dṽLL(η)

dη

(
1−

∫ ω

ω

σ̃L(ω)fL(ω)dω

)
−
∫ k1+ε

k1

(ω−ṽLL(η))fL(ω)dω+
dy(η)

dη

∫ k2+ε

k2

(ω−ṽLL(η))fL(ω))dω.

Since dṽLL(0)/dη = 0, the above is 0 evaluated at η = 0 by the construction of y(η).

Thus, for η > 0 sufficiently small, the proposed perturbation is profitable. It remains

to show that ICL continues to hold under the perturbation. As in the proof of Lemma

2, ICL is equivalent to∫ ω

ω

(ω − p̃L)σ̃L(ω)(fH(ω)− fL(ω))dω ≤
∫ ω

c

(ω − c)(fH(ω)− fL(ω))dω.

As we have already shown in case (i) where NDH is slack, the derivative of the left-hand

side in the above condition is negative at η = 0, and thus ICL continues to hold under

the perturbation for η > 0 sufficiently small. We have the desired contradiction to

Lemma 2 for η > 0 sufficiently small.

Part 2. Fix a regular solution (pL, σL) to (SP) with σL = 1{ω ∈ [k, k]} and pL ∈ [k, k].

We show that k > c.

Suppose by contradiction that k ≤ c. We use the interval form to rewrite the

objective in (SP) as

ϕL

∫ k

k

(ω − c)fL(ω)dω − ϕH

∫ k

k

(ω − pL)(fH(ω)− fL(ω))dω.

Consider increasing k marginally and at the same time we increase pL so as to keep it
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equal to vLL. The effect of the proposed change on the first term in the above objective

is given by

−ϕL(k − c)fL(k) ≥ 0.

Since
∂pL

∂k
=

∂vLL
∂k

=
(vLL − k)fL(k)

FL(k)− FL(k)
,

the effect on the second term (without the negative sign) is equal to

− ϕH(k − vLL)(fH(k)− fL(k))− ϕH

(vLL − k)fL(k)

FL(k)− FL(k)

(
(FH(k)− FL(k))− (FH(k)− FL(k))

)
=− ϕH

(
vLL − k

)(FH(k)− FH(k)

FL(k)− FL(k)
− λ(k)

)
fL(k).

The above expression is negative because vLL > k, and because strict likelihood ratio

dominance implies that the difference in the last bracket is positive. It follows that the

objective of (SP) is increased, contradicting the assumption that (pL, σL) solves (SP).

Proof of Corollary 2

For any ϕL ≥ 0 sufficiently small, let k and k satisfy the first order conditions FOC.

Taking derivatives, we have

∂Γ(k, k)

∂k
=

[
−ϕL(k − c) + (1− ϕL)

(
vLL − k

) (
Λ(k, k)− λ(k)

)]
fL(k);

∂Γ(k, k)

∂k
=

[
ϕL(k − c)− (1− ϕL)

(
k − vLL

) (
λ(k)− Λ(k, k)

)]
fL(k),

where for all k1 ≤ k2

Λ(k1, k2) =
FH(k2)− FH(k1)

FL(k2)− FL(k1)
.

Suppose by contradiction that we have k = ω for all sufficiently small ϕL. We establish

two claims.

First, we have limϕL→0 k = ω. Otherwise, for ϕL > 0 and arbitrarily small, we have

k is bounded away from k = ω. The first term in ∂Γ(k, k)/∂k is arbitrarily close to 0,

but the second term is bounded away from 0. This contradicts the FOC with respect

to k. Second, we have k < k = ω for ϕL sufficiently close to 0 but strictly positive.

Otherwise, for ϕL sufficiently close to 0 but strictly positive, we have k = k = ω and
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thus
∂Γ(k, k)

∂k
|k=k=ω = −ϕL(ω − c)fL(ω) < 0,

contradicting the FOC with respect to k.

It follows from the above two claims that the first-order condition with respect to

k can be rewritten as

ϕL

1− ϕL

(k − c)−
(
vLL − k

)
(Λ(k, ω)− λ(k)) = 0,

and the first-order condition with respect to k evaluated at ω as

ϕL

1− ϕL

(ω − c)−
(
ω − vLL

)
(λ(ω)− Λ(k, ω)) ≥ 0.

The corollary follows immediately once we show that, under the stated condition, for

ϕL sufficiently small, for any k satisfying first-order condition with respect k, the first-

order condition with respect to k evaluated at ω is violated. That is, defining

Ψ(k) = (k − c)
(
ω − vLL

)
(λ(ω)− Λ(k, ω))− (ω − c)

(
vLL − k

)
(Λ(k, ω)− λ(k)) ,

we just need to show that Ψ(k) > 0 for k sufficiently close to but strictly below ω.

We have Ψ(ω) = 0, and taking derivatives of Ψ(ω),

Ψ′(k) =
(
ω − vLL

)
(λ(ω)− Λ(k, ω))− (k − c)

(
(λ(ω)− Λ(k, ω))

∂vLL
∂k

+
(
ω − vLL

) ∂Λ(k, ω)
∂k

)
− (ω − c)

(
(Λ(k, ω)− λ(k))

(
∂vLL
∂k

− 1

)
+
(
vLL − k

)(∂Λ(k, ω)

∂k
− λ′(k)

))
,

where

∂vLL
∂k

=
fL(k)

1− FL(k)
(vLL − k);

∂Λ(k, ω)

∂k
=

fL(k)

1− FL(k)
(Λ(k, ω)− λ(k)) .

Using L’Hopital’s rule, we have

lim
k→ω

∂vLL
∂k

=
1

2
; lim

k→ω

∂Λ(k, ω)

∂k
=

1

2
λ′(ω).
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Thus, Ψ′(ω) = 0. Taking derivatives of Ψ′(ω), we have

Ψ′′(k) = −2 (λ(ω)− Λ(k, ω))
∂vLL
∂k

− 2
(
ω − vLL

) ∂Λ(k, ω)
∂k

+ 2(k − c)
∂vLL
∂k

∂Λ(k, ω)

∂k

− (k − c)

(
(λ(ω)− Λ(k, ω))

∂2vLL
∂(k)2

+
(
ω − vLL

) ∂2Λ(k, ω)

∂(k)2

)
− 2(ω − c)

(
∂vLL
∂k

− 1

)(
∂Λ(k, ω)

∂k
− λ′(k)

)
− (ω − c)

(
(Λ(k, ω)− λ(k))

∂2vLL
∂k2 +

(
vLL − k

)(∂2Λ(k, ω)

∂k2 − λ′′(k)

))
,

where

∂2vLL
∂(k)2

=
f ′
L(k)

fL(k)

∂vLL
∂k

+
fL(k)

1− FL(k)

(
2
∂vLL
∂k

− 1

)
;

∂2Λ(k, ω)

∂(k)2
=

f ′
L(k)

fL(k)

∂Λ(k, ω)

∂k
+

fL(k)

1− FL(k)

(
2
∂Λ(k, ω)

∂k
− λ′(k)

)
.

Using L’Hopital’s rule, the limits of ∂vLL/∂k and ∂Λ(k, ω)/∂k, we have

lim
k→ω

∂2vLL
∂k2 =

f ′
L(ω)

6fL(ω)
; lim

k→ω

∂2Λ(k, ω)

∂(k)2
=

f ′
L(ω)λ

′(ω)

6fL(ω)
+

λ′′(ω)

3
.

Thus, Ψ′′(ω) = 0. Taking derivatives of Ψ′′(k) and evaluating at k = ω, using the limits

of ∂vLL/∂k and ∂2vLL/∂(k)
2, and the limits of ∂Λ(k, ω)/∂k and ∂2Λ(k, ω)/∂k2, we have

Ψ
′′′
(ω) =

(
3

2
+ (ω − c)

f ′
L(ω)

fL(ω)

)
λ′(ω)− 1

2
(ω − c)λ′′(ω).

Under the condition stated in the corollary, we have Ψ
′′′
(ω) < 0, and thus Ψ(k) > 0

for k sufficiently close to ω.
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