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opponent can reason to a higher level than they do. We propose an identification
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1 Introduction

The leading models of bounded rationality in games, as level-𝑘 and cognitive hierarchy,

are iterative ‘top-down’ models of reasoning: a player with a finite level of reasoning be-

lieves others can reason to a strictly lower level and best responds to that belief. This

restriction is critical in how the model is operationalized – it ensures that a player re-

quires only a finite number of steps of reasoning to optimally respond to their belief.

Importantly, a player who can do 𝑘 steps of iterated reasoning (i.e., 𝑘 steps of “I think,

you think, I think, ...”) can onlymodel others as being capable of doing atmost 𝑘−1 steps
of iterated reasoning.1 This ability tomodel the behavior of others is a key assumption in

these models. This, however, leads to a natural and interesting question: what happens

if a player believes others may reason to a higher level than they do? For example, how

will a player respond if they believe that their opponent is more sophisticated than them?

We propose a behavior that reveals to an analyst that Ann, who is playing a game

with Bob, is reasoning about Bob’s behavior outside of the iterative ‘top-down’ model of

reasoning. We then implement a novel experimental design that allows us to identify

this behavior experimentally and evaluate its pervasiveness in the population. We also

investigate whether Ann’s behavior depends on Bob’s observed characteristics that may

be correlated with his sophistication.

Recall that in iterative ‘top-down’ reasoning models players’ beliefs are anchored in

the behavior of a specific non-rational L0 type, and types are heterogeneous in their level

of reasoning. The L1 type performs one level of reasoning and best responds to the L0
type. In turn, the L2 type performs two levels of reasoning and best responds to some be-

lief over L0 and L1 types, and so on with the L𝑘 type best responding to some belief over

L0, ..., L(𝑘 − 1) types. But how would Ann behave if she believed that Bob may be more

sophisticated than her? Within the prism of the iterative ‘top-down’ model of reasoning,

it implies that although she would believe that Bob is rational (since she is rational), she

will not be able to model his behavior. Still, Ann’s behavior would be consistent with

2-rationalizability, which allows all actions that are consistent with rationality and belief
1Any player who can reason about their opponent doing 𝑚 steps must necessarily be able to do at least
𝑚 + 1 steps of reasoning themselves.
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in others’ rationality.

We design two diagnostic games that allow the analyst to identify this behavior. The

first is a dominance-solvable game (“𝐷𝑆”) in which Bob has a dominant strategy. This

game permits the analyst to identify if Ann “believes that Bob is rational.” Using the

second game – which we refer to as the iterative-reasoning game (“𝐼𝑅”) – the iterative

‘top-down’ model of reasoning together with belief in rationality makes the sharp predic-

tion that Ann would value 𝐼𝑅 strictly more than𝐷𝑆. However, if Ann only believes that

Bob is rational, but her reasoning process is not captured by the model (but is consistent

with 2-rationalizability), she may value𝐷𝑆more than 𝐼𝑅. Importantly, these inferences

do not depend on Ann’s risk or social preferences. This results in a conservative esti-

mate of the proportion of participants who are inconsistent with the iterative ‘top-down’

model of reasoning.

Our identification strategy uses amore general anchor than the standard L0 type. We

consider a rational, but non-strategic, L1 type to anchor the iterative ‘top-down’ model

of reasoning. This player concentrates only on their own payoff, without making any

strategic considerations. This increases the set of possible actions that are consistent

with the L1 type, includes the “standard” L1 type (that best-responds to uniform play of

the L0 type), and accommodates other focal behaviors.

Our test to identify if Ann’s behavior is consistent with the prediction of a generalized

iterative reasoning model may be extended to the case where Ann may not believe that

Bob is rational, if the form of irrationality considered is a random choice of action by Bob

(a uniform play by the L0 type, as is typical in many models). In this case, the ranking

of𝐷𝑆 and 𝐼𝑅 games is unaltered.

The novel experimental design we employ has four components. The first are the

two diagnostic games: 𝐼𝑅 and𝐷𝑆. The second are two control games that rule out other

confounding factors that can contribute to preferring 𝐷𝑆 over 𝐼𝑅. Third, we investigate

whether participants’ reasoning process (iterative ‘top-down’ models of reasoning or 2-

rationalizability) depends on their opponents’ observed characteristics. To achieve this,

we exogenously vary the participants’ opponent type: they face either a Ph.D. student in

Economics or an undergraduate student of any discipline. The fourth component is a
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preference-elicitation mechanism over the games. Rather than directly eliciting a choice

between the two diagnostic games, participants first choose their actions in each game

(and against each potential opponent), and then we elicit their respective valuations.2,3

This allows the analyst to infer both participants’ preferences between the two diagnostic

games and participants’ (confidence in their) beliefs about their opponents’ behavior.

Moreover, we can exploit the valuation data to isolate those participants who believe

that their opponent is rational, as the predictions in our games are the starkest for this

subset of participants.

We find that approximately half of the choices made by participants are inconsis-

tent with the iterative ‘top-down’ model of reasoning, especially for those who believe

that their opponents are rational – where the model’s prediction are inconsistent with

64% of choices. Moreover, roughly 72% of participants exhibit a stable model of reason-

ing irrespective of the opponent’s characteristics. Among the remainder, the results are

split: roughly 12%make choices consistent with iterative ‘top-down’ reasoning against an

undergraduate but not against a Ph.D. student, while roughly 16% exhibit the opposite

pattern.

Pioneering scholarly contributions in the iterative ‘top-down’ reasoning literature in-

cludeNagel (1995), Stahl andWilson (1994; 1995), Costa-Gomes, Crawford, andBroseta

(2001), Camerer, Ho, and Chong (2004), and Costa-Gomes and Crawford (2006). For a

survey of this literature, see Crawford, Costa-Gomes, and Iriberri (2013). By construc-

tion, these papers do not consider the questions we investigate here.

Arad and Rubinstein (2012a) and Kneeland (2015) developed novel experimental

designs to identify levels of reasoning in an iterative model. Moreover, in the former

design, the authors explicitly asked participants about their thought process when mak-

ing their choices to gain a better understanding of participants’ behavior. Arad (2012)

proposed a new allocation game to study iterative reasoning and the performance of

the level-𝑘 model, and showed that level-𝑘 thinking accounts for a smaller number of
2Heinemann, Nagel, and Ockenfels (2009), Coricelli and Nagel (2009), and Nagel, Brovelli, Heinemann,
and Coricelli (2018) use a related strategy to elicit certainty equivalents in coordination games, however,
in their context, the elicited valuations affect both the payoffs in the games and their value.

3To allow participants to recall their reasoning in the valuation stage, we encouraged them to write it down
in a text box. We use this information to gather further qualitative evidence on their choice process.
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choices made by participants than in other experiments. Further, Arad and Rubinstein

(2012b) studied how participants reason iteratively on few dimensions, or features, in

an allocation game (Colonel Blotto). Subsequently, Arad and Penczynski (2024) stud-

ied a few other environments of resource allocation with communication between par-

ticipants, and confirmed that many participants engage, in fact, in multi-dimensional

iterative reasoning.

Also related to our work is Agranov, Potamites, Schotter, and Tergiman (2012) who

manipulated participants’ beliefs about the cognitive levels of the players they are play-

ing against; and Alaoui and Penta (2016) who studied a model of iterative reasoning

where player’s depth of reasoning is endogenously determined. More recently, Alaoui,

Janezic, and Penta (2020) further developed an experimental design strategy to distin-

guish level-𝑘 behavior driven by participants’ beliefs from their cognitive bounds, and

found an interaction between participants’ own cognitive bound and reasoning about the

opponent’s reasoning process. Gill and Prowse (2016) investigated how cognitive ability

and character skills influence the evolution of play in repeated strategic interactions and

estimate a structural model of learning based on level-𝑘 reasoning.
The paper proceeds as follows. Section 2 introduces the design and the set of di-

agnostic games as well as the two control games. It builds the theoretical background

necessary for our experiment – discussed in Section 3 – and the identification strategy

used in the analysis conducted in Section 4. Section 5 offers a more formal analysis. Fi-

nally, Section 6 concludes with a brief discussion of the results. The Appendix contains

further analyses, details on participants’ individual behavior, the experimental instruc-

tions, and screenshots of the experimental interface.

2 The Design

We employ both an iterative ‘top-down’ model of reasoning, based on level-𝑘 and cogni-

tive hierarchy, and the solution concept of 2-rationalizability to guide our experimental

design, identification strategy, and analysis. We provide a brief description of the model

and the concept here and engage in a discussion on how these interact with our setup in

the next subsection. A more formal and general analysis is provided in Section 5.
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2.1 Building Intuition: Model and Solution Concept

Iterative ‘top-down’ model of reasoning In this model, players anchor their beliefs in a

naïve model of others’ behavior and adjust their beliefs by a finite number of iterated

best-responses. To date, these models have been anchored in an “irrational” (L0) player-
type who either plays each strategy with equal chance or chooses some salient action,

depending on the application. Players of level-𝑘 (𝑘 > 0) are rational in the sense of

best-responding to their beliefs, but players of different 𝑘 differ in their beliefs over the

action(s) played by their opponents.

We consider a more general model of reasoning, with a different cognitive interpre-

tation of L1. Our model is anchored in the behavior of a non-strategic L1 type who

makes decisions based solely on their own-payoff information. To build intuition for

this type, consider a decision maker who chooses an action to allow for the possibility

of achieving the highest possible payoff in a given game, or, alternatively, chooses an ac-

tion to maximize their average payoff. In both cases, the decision maker is non-strategic

as they never form beliefs about their opponents’ behavior. Nevertheless, their behav-

ior may very well reflect their own payoff information and primary focus therein. If

one views their choice of action independently of the strategic environment, L1-choices

could be viewed as “rational.” Since there are many possible criteria a decision maker

could employ to determine their action choice, selecting an action in order to ensure

the maximum or the average payoff being just two examples, we will use a partial-order

approach to formalize this behavior.4 Effectively, as long as an action is optimal under

some own-payoff criteria, we would allow our non-strategic type (L1) to play it.5

Since we want to capture all reasonable own-payoff criteria that our decision maker

could use, the only assumptions we impose are that the criteria must be non-strategic in

nature, and respect the notion that higher payoffs are preferred, i.e., strict monotonicity.
4Text data collected indicates that “average” and “maximum” payoff are terms with relatively high Term
Frequency-Inverse Document Frequency scores, a numerical statistic that is intended to reflect how im-
portant a word is to a comment in a collection.

5Coricelli and Nagel (2009) as well as Nagel, Brovelli, Heinemann, and Coricelli (2018) found that players
who do not engage in high-level strategic thinking have similar brain activation to decision makers who
make risky decisions in non-strategic environments, providing physical support to our typology of L1 as
rational but non-strategic.
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Consider two payoff vectors 𝑥𝑥𝑥 = (𝑥1,… , 𝑥𝑛) and 𝑦𝑦𝑦 = (𝑦1,… , 𝑦𝑛) such that 𝑥𝑥𝑥 is greater

than 𝑦𝑦𝑦; that is, 𝑥𝑖 ≥ 𝑦𝑖 for all 𝑖 ∈ {1,… , 𝑛} with strict inequality for at least one 𝑖. In

this case, it seems clear that 𝑥𝑥𝑥 should be preferred to 𝑦𝑦𝑦 if our decision maker prefers

higher payoffs. Further, since we are trying to capture the behavior of a non-strategic

type, we should ignore any information contained in the ordering of the payoff vectors,

as any concerns for ordering would reflect strategic considerations. Thus, we propose

the following partial order ≻1: 𝑥𝑥𝑥 is preferred to𝑦𝑦𝑦 if there exists a permutation of𝑥𝑥𝑥 that is
greater than 𝑦𝑦𝑦. We then allow our non-strategic type to play any action that is undomi-

nated according to ≻1.
Notice that the binary relation ≻1 is not, in general, complete. For example, consider

two payoff vectors 𝑎𝑎𝑎 = (20, 0, 10) and 𝑏𝑏𝑏 = (12, 8, 16). Here, neither 𝑎𝑎𝑎 is preferred to 𝑏𝑏𝑏
nor 𝑏𝑏𝑏 is preferred to 𝑎𝑎𝑎. This reflects the fact that strategy 𝑎might be optimal under one

criteria (e.g., it has the highest payoff), yet strategy 𝑏 might be optimal under another

criteria (e.g., it has the highest arithmetic mean).6 Alternatively, consider the two payoff

vectors 𝑐𝑐𝑐 = (20, 9, 14) and 𝑑𝑑𝑑 = (12, 8, 16) that are comparable according to ≻1; that is, 𝑐𝑐𝑐
is preferred to 𝑑𝑑𝑑.

In general, the partial order ≻1 incorporates many potential own-payoff heuristics

that seem both intuitive and reasonable. The set of actions an L1 type will choose from –

the actions that are undominated through ≻1 – must always contain an action that leads

to the highest payoff, an action with the highest minimum payoff, as well as the action

with the highest arithmetic mean.7 Further, notice that the action with the highest arith-

metic mean is equivalent to the action that maximizes a player’s expected payoffs under

the belief that others’ play each action with equal probability. As such, our approach

nests the standard level-𝑘 and cognitive hierarchy models as a special case as they typi-

cally assume that the L0 type plays uniformly random.8

The behavior of all higher types is then anchored in the behavior of the L1 type. A
6Note that probabilistic beliefs on the actions chosen by others, as is assumed in the literature to date,
induces a complete ranking on the player’s actions.

7All three of these own-payoff heuristics were shown to have explanatory value as part of a focal L0 type
in Wright and Leyton-Brown (2014).

8Moreover, our approach also nests many special cases of non-strategic behavior proposed in the level-𝑘
literature to express notions of ‘focal points’ such as playing 20 in Arad and Rubinstein (2012a)’s 11-20
game. Hence, in the current setup, the L1 type will play that strategy but beyond relabelling of levels –
nothing will change.
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level-2 (L2) type assumes that all other players are the L1 type and chooses accordingly a

strategy that maximizes their expected utility under some probability distribution over

L1 strategies.9 A level-3 (L3) type assumes that all other players are either L1 or L2 types

and chooses a strategy that maximizes their expected utility under some probability dis-

tribution over both L1 and L2 strategies. This process continues for higher-level types

ad infinitum and, more generally, with L𝑘 types choosing a strategy that maximizes ex-

pected utility given some belief over the play of strictly lower types.

2-rationalizability This solution concept can be intuitively understood via its relation-

ship with the notion of rationality and reasoning about rationality. A player is rational

if they play a best-response – maximize expected utility – given their subjective belief

about how the game is played. A player believes in rationality if they believe others are

rational. That is, if they believe others are playing a best-response given their subjective

beliefs about how the game is played. The solution concept of 2-rationalizable strate-

gies incorporates both the assumption of rationality and belief in rationality.10 The

2-rationalizable set is found by first finding the set of 1-rationalizable actions for each

player. These are the actions played by a rational player: any action that maximizes a

player’s expected utility given some utility function and some belief about the play of oth-

ers. The 2-rationalizable set comprises of all actions played by a rational player who be-

lieves others play actions in the 1-rationalizable set: any action that maximizes a player’s

expected utility given some utility function and some belief over the 1-rationalizable play

of others. This solution concept is formally defined in Section 5.

Iterative ‘top-down’ model of reasoning and 2-rationalizability Below we highlight the

relationship between the model and the solution concept introduced above. To start,

notice that the iterative ‘top-down’ model of reasoning implicitly imposes assumptions

about how types reason about rationality. We highlight three facts. First, all types with

𝑘 ≥ 2 are rational as they best respond to their beliefs about others’ play. Second, even
9Most iterative reasoning applications assume that players are risk-neutral and hence maximize expected
payoffs. Importantly, we allow instead for any expected-utility preferences.

10The relationship between reasoning about rationality and 𝑘-rationalizable strategies follows from stan-
dard results, e.g., Bernheim (1984), Brandenburger and Dekel (1987), and Tan and da Costa Werlang
(1988) among others.
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though the L1 type cannot be considered rational in the game-theoretic sense as they are

non-strategic and do not form beliefs about others’ strategies, they nevertheless do play

actions that are consistent with rationality. That is, any action that is undominated by ≻1
is also a best response to some belief about others’ play under some expected utility pref-

erences. Third, the behavior of any L𝑘 type with 𝑘 ≥ 2 is consistent with the assumption

of belief in rationality. This result follows naturally since any such type believes that the

behavior of others is, in fact, consistent with rationality.11

Further notice that the iterative ‘top-down’model of reasoning imposes an additional

assumption beyond reasoning about rationality. It imposes the assumption that beliefs

are anchored in non-strategic play. Put differently, the L2 type cannot hold arbitrary

beliefs about the play of the game. Rather, they must hold beliefs consistent with L1

play. While we use a generous definition of L1 play here to allow for a broad notion

of non-strategic behavior, in many games this set of actions may still be small, even a

singleton set. As such, one can interpret the L2 type here as a type that can model the

play of others. Naturally, the same holds true similarly for higher levels. The L3 type

that believes others are either L1 or L2 types cannot hold arbitrary beliefs about others’

rational play, but rather must hold beliefs that are consistent with L1 or L2 play, and so

on. Therefore, one can interpret the iterative ‘top-down’ model of reasoning as assuming

that players in fact can model the play of others.

This is in sharp contrast to the concept of 2-rationalizability. This approach is grounded

in the assumption that players can hold any beliefs about the play of others, and only re-

quires those beliefs to be consistent with the assumption that others are rational. The

assumption of rationality is less stringent than that imposed by L1 play. In this sense,

2-rationalizability can be interpreted as relaxing the assumption that players possess the

ability tomodel the play of others, in contrast to iterative ‘top-down’models of reasoning.

Key design assumptions In what follows, we will assume that players are strategic. For

the iterative ‘top-down’model of reasoning, thismeans that wewill focus on the behavior

of L𝑘 types for 𝑘 ≥ 2 and not the non-strategic L1 players. This restriction ismotivated by
11Notice that the model can easily be generalized if one wishes to allow for uncertainty over others’ ratio-
nality by simply introducing an additional non-strategic type that randomizes uniformly over the set of
actions. We shall discuss this in more detail in Section 5.
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ourmain research question –whether players canmodel the play of others. This question

is not applicable to non-strategic players who, by definition, do not reason about the play

of others. Moreover, players that are rational and believe in rationality will play a key role

in our design. As we assume that players themselves are rational since our focus is on

types with 𝑘 ≥ 2, and investigate if they believe that others may be more sophisticated

than them, it is natural to at least require them to believe that others are rational – even

if they cannot model their behavior. As such, our design will make stark predictions for

those participants who are rational and believe in rationality of others.

2.2 The Games

In order to identify behavior that reflects the player’s belief that other players may be

rational, but their behavior cannot be modeled, we judiciously designed two diagnostic

games. One where the ability to model the opponents’ behavior is important for how the

participant values the game, and the other where such an ability is less important.

The strategic form of these games is depicted in Figure 1.

IR Player 2
𝐴 𝐵 𝐶 𝐷

Pl
ay

er
1

𝑎
12
0

14
12

12
13

8
11

𝑏
0

4
0

14
16
0

4
6

𝑐
16
10

5
0

0
11

0
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𝑑
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11
8
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6

12
0

DS Player 2
𝐴 𝐵 𝐶

Pl
ay
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1 𝑎
6

0
3

12
4

11

𝑏
15
5

8
13

13
0

𝑐
10
12

9
8

9
0

Figure 1: The Iterative-Reasoning Game (𝐼𝑅) and the Dominance-Solvable Game (𝐷𝑆).
In every cell, Player 1’s payoff is displayed in the lower left, and the payoff to Player 2 is
on the upper right.

The iterative-reasoning game “IR” The iterative ‘top-down’ model of reasoning predicts

that Player 1 chooses an action in {𝑎, 𝑏} and Player 2 chooses an action in {𝐵, 𝐶}. To gain

intuition, consider first the simple case where for all 𝑘 ≥ 2, L𝑘 type believes others are

L(𝑘 − 1). Recall that Player 1 of type L1 considers their own payoffs but is non-strategic.
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This player chooses between the payoff vectors 𝑎𝑎𝑎 = (0, 12, 13, 11), 𝑏𝑏𝑏 = (4, 14, 0, 6), 𝑐𝑐𝑐 =
(10, 0, 11, 12), and 𝑑𝑑𝑑 = (13, 8, 6, 0). Thus, the L1 type plays actions 𝑎 or 𝑏, as actions 𝑐
and 𝑑 induce payoffs that are dominated by a permutation of 𝑎’s payoffs. Either action

𝑎 or 𝑏 could be a natural focal action: action 𝑎 is associated with the highest arithmetic

mean while action 𝑏 is associated with the highest payoff. Similarly, Player 2 of level-1

plays action 𝐶. This action dominates all other actions according to ≻1: it contains the

highest arithmetic mean and highest payoff, and is therefore a natural focal action.

Any new iteration (“the next level”) is a best response to the opponent’s behavior. For

example, the L2 type of Player 1 plays 𝑎 and the L2 type of Player 2 plays 𝐵 or 𝐶. Then,

the L3 type of Player 1 plays 𝑎 or 𝑏 and the L3 type of Player 2 plays 𝐵. This process

continues ad infinitum. Player 1’s best responses are always in {𝑎, 𝑏} and Player 2’s best

responses are always in {𝐵, 𝐶}.
The iterative ‘top-down’ model of reasoning is a more general model than this sim-

ple model. It explicitly allows players to hold arbitrary risk preferences within expected

utility. Moreover, players may hold any belief about the expected-utility preferences of

other players as well as over lower types L1, ..., L(𝑘 − 1) of other players. Even with these

generalizations it is still true that players will play actions in {𝑎, 𝑏} and in {𝐵, 𝐶}. For

details, see Section 5. As all strategic types (𝐿𝑘 where 𝑘 ≥ 2, i.e., those types that are ra-

tional and believe in rationality) of Player 1 in the generalized iterative ‘top-down’ model

of reasoning play an action in {𝑎, 𝑏} and expect Player 2 to choose an action in {𝐵, 𝐶},
their expected payoff must be strictly greater than 12.12

Thesolution concept of 2-rationalizability does not restrict Player 1 to value the game

𝐼𝑅 above 12. First, note that all actions of Player 2 in 𝐼𝑅 are 1-rationalizable, since for

any of their actions there exists some belief about Player 1’s play such that the action is

a best response.13 Second, if Player 1 believes that Player 2 is rational, they must believe

that Player 2 plays a 1-rationalizable action. Such a playermay reasonably hold any belief

over the distribution of {𝐴, 𝐵, 𝐶,𝐷}. For example, Player 1 who believes that Player 2 is
12Player 1 may value 𝐼𝑅 exactly at 12. This, however, can only occur with an extreme form of ambiguity
aversion coupled with the player’s set of priors including all degenerate priors. We elaborate on this point
in Section 5 and document that it is not an empirical concern.

13Beyond 𝐵 and 𝐶 discussed above, 𝐴 is a best-response to Player 1 playing 𝑐 and 𝐷 is a best response to
Player 1 playing 𝑑.
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rational and assigns equal probability to all actions of Player 2 will choose the action 𝑎,
and their expected payoff will be less than 12.

Thedominance-solvable game “DS” The second diagnostic game is dominance-solvable

in a single iteration, as 𝐴 is a strictly dominant strategy for Player 2. It obviously domi-

nates 𝐵 and 𝐶 according to ≻1, as strict domination does not require strategic reasoning.

That is, the L1 type and any higher type of Player 2 will play action 𝐴, which is a natural

focal point for Player 2.

Now consider Player 1’s behavior. If they are of level-1, they choose between payoff

vectors 𝑎𝑎𝑎 = (0, 12, 11), 𝑏𝑏𝑏 = (5, 13, 0), and 𝑐𝑐𝑐 = (12, 8, 0). Notice that a permutation of 𝑎𝑎𝑎
dominates 𝑐𝑐𝑐, thus 𝑎𝑎𝑎 ≻1 𝑐𝑐𝑐. However, neither 𝑎𝑎𝑎 ≻1 𝑏𝑏𝑏 nor 𝑏𝑏𝑏 ≻1 𝑎𝑎𝑎 is true. Either action 𝑎
or 𝑏 could be natural focal points for a Player 1 of type L1. Action 𝑎 is associated with

the highest arithmetic mean, while action 𝑏 is associated with the highest payoff. Since

Player 2 of type L𝑘 (𝑘 ≥ 1) plays 𝐴, it must be that any Player 1 of type L𝑘 (𝑘 ≥ 2), best
responds by playing 𝑐. From the argument above, it follows that the expected payoff of a

rational Player 1 who believes that Player 2 is rational (all types with 𝑘 ≥ 2) equals 12.

In contrast to the 𝐼𝑅 game, the solution concept of 2-rationalizability does restrict the

valuation of the𝐷𝑆 game. Any player who is rational and believes in rationalitymust still

behave exactly the same as in the iterative ‘top-down’model of reasoning. Thus, any such

player chooses action 𝑐 and has an expected payoff of exactly 12 irrespective of being an

iterative-reasoner or not.

Player 1’s preferences over IR and DS All players who are rational and believe that their

opponents are rational prefer playing 𝐼𝑅 over 𝐷𝑆 in the iterative ‘top-down’ model of

reasoning. The expected payoff of 12 in 𝐷𝑆 is strictly lower than the expected payoff in

𝐼𝑅. As a consequence, a ‘top-down’ iterative-reasoner should strictly prefer to play 𝐼𝑅
over 𝐷𝑆. However, a player who is rational and believes in rationality, yet falls outside

the iterative ‘top-down’ model of reasoning, may very well prefer to play 𝐷𝑆 over 𝐼𝑅.
This behavioral difference is the core of our identification strategy.

Up to this point, we have constrained beliefs of rationality somewhat tightly for our

strategic types (types with 𝑘 ≥ 2). In our iterative ‘top-down’model of reasoning, there is
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noway for such a type to be uncertain about rationality; that is, there is no sense in which

a type could believe others are playing actions that are not consistent with rationality.

However, we can easily account for that by introducing a second non-strategic type that

plays randomly, which we refer to as “level-0” (“L0 type”). We now simply permit a

strategic L𝑘 type to hold any beliefs over lower types {𝐿0, 𝐿1,… , 𝐿(𝑘 − 1)}. Importantly,

relaxing beliefs about rationality in such way does not alter the ranking of 𝐼𝑅 over 𝐷𝑆.
Put differently, any such strategic ‘top-down’ iterative-reasoner should still strictly prefer

to play 𝐼𝑅 over𝐷𝑆.14

Lastly, the comparative statics also hold in Nash equilibrium.15 𝐼𝑅 has a Nash equi-

librium in mixed strategies where the equilibrium actions coincide with the actions pre-

scribed by the iterative ‘top-down’ model of reasoning. The equilibrium payoff is also

strictly greater than 12 and strictly dominates the equilibrium payoff in 𝐷𝑆, which is

exactly 12. The Nash equilibrium of 𝐼𝑅 is ((8/9, 1/9, 0, 0), (0, 13/15, 2/15, 0)) with payoffs

(182/15, 112/9). 𝐷𝑆 has a Nash equilibrium in pure strategies: ((0, 0, 1), (1, 0, 0)) with pay-

offs (12, 10).

The control games The two control games are designed to rule out other confounding

factors that can potentially contribute to preferring 𝐷𝑆 over 𝐼𝑅. Their strategic form is

depicted in Figure 2. Notice that Player 1’s potential payoffs in the two control games

are identical to their payoffs in𝐷𝑆, so the only difference between the three games arises

from varying Player 2’s payoffs.
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Figure 2: The controls – The Mixed-Strategy Game (𝑀𝑆) and the Nash-Equilibrium
Game (𝑁𝐸)
14We elaborate on this in Section 5, where we present a more formal analysis.
15This is also true in logit Quantal Response Equilibrium. Details are available upon request.
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Our controls serve two purposes. First, we want to control for the size of the game;

that is, whether players prefer any smaller game over 𝐼𝑅 per se. To do so, we introduce

𝑀𝑆, which is a 3 × 3 bimatrix game with the iterative ‘top-down’ model of reasoning

prescribing to Player 1 actions ∈ {𝑎, 𝑏, 𝑐}.𝑀𝑆 has a Nash equilibrium in mixed strategies

similar to 𝐼𝑅 where players mix over actions ∈ {𝑎, 𝑏} (but not 𝑐), and Player 1’s equilib-

rium payoff is strictly lower than the equilibrium payoff in 𝐼𝑅.16

Second, we want to control for the fact that 𝐷𝑆 has a unique Nash equilibrium in

pure strategies. Thus, we consider𝑁𝐸 – a game with a unique Nash equilibrium in pure

strategies. In contrast to 𝐷𝑆, however, this game is not dominance-solvable. Here too,

the iterative ‘top-down’ model of reasoning prescribes player’s action ∈ {𝑎, 𝑏, 𝑐}. Once

again, Player 1’s equilibrium payoff in𝑁𝐸 is strictly lower than the equilibrium payoff in

𝐼𝑅. The Nash equilibrium in𝑁𝐸 is ((0, 0, 1), (1, 0, 0)) with equilibrium payoffs (12, 10),
which coincide with the equilibrium payoffs in𝐷𝑆.

As we are solely interested in participants’ behavior in the role of Player 1, all three

3 × 3 games (𝐷𝑆,𝑀𝑆, and 𝑁𝐸, respectively) are chosen to share common features. As

noted above, all payoffs for Player 1 are kept constant across these games to improve

control and ease of comparison. We only altered the payoffs associated with actions

∈ {𝐴, 𝐵, 𝐶} for Player 2. Moreover, notice that in the control games, like the 𝐼𝑅 game,

all actions are iteratively undominated. Thus,𝐷𝑆 stands alone as being the unique game

where reasoning about rationality alone is enough to predict the opponent’s play.

3 The Experiment

3.1 Implementation

Wedivided the experiment into two parts. In each part, participants faced four decision-

making problems in random order. We told participants that they would be randomly

matched with another participant, who already made their choices in a previous auxil-

iary session. The purpose of this design feature was to collect all data in an individual

decision-making setting, to ameliorate any form of social preferences when choosing
16The Nash equilibrium in𝑀𝑆 is ((7/9, 2/9, 0), (0, 11/12, 1/12)) with payoffs (143/12, 76/9).
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actions and participants engaging in forward-induction considerations.

We told participants that this other participant, whom we called “Player 𝑍,” is either

an undergraduate student from any year or discipline at the University of Toronto or a

Ph.D. student in Economics who took several advanced courses that are highly relevant

for this experiment. Participants would not learn their opponent type until the conclu-

sion of the experiment. Therefore, participants made always two choices: one if Player

𝑍 was an undergraduate student from any year or discipline and another if they were a

Ph.D. student in Economics.

Figure 3 visualizes the implementation of the two diagnostic games.

Figure 3: Game Implementation – 𝐼𝑅 (top) and𝐷𝑆 (bottom)

The matrices on the left represent participants’ payoffs in 𝐼𝑅 (top) and𝐷𝑆 (bottom).

The matrices on the right represent Player 𝑍’s payoffs in 𝐼𝑅 and 𝐷𝑆, respectively. The

opponent type was visualized via color (red = undergraduate and blue = Ph.D. student).

Our experimental implementation of the games makes it particularly salient for par-

15



ticipants that Player 𝑍 has a strictly dominant strategy in 𝐷𝑆. Moreover, in 𝐼𝑅, it high-
lights the attractiveness of action𝐶 for the L1 type of Player𝑍, even though it ismore nu-

anced compared to𝐷𝑆. As this type is non-strategic and does not take the other player’s

incentives into account, visualizing each player’s payoffs in a separate matrix directs at-

tention to the sequence of numbers or single entry that is the highest. Put differently,

both our design and implementationmake natural focal points for a non-strategic player

in both games particularly salient.

To improve participants’ experience and to assist in selecting an action, we imple-

mented a highlighting tool that used two colors: yellow and light green. When a partic-

ipant moved their mouse over a row in their matrix (“Your Earnings”), the action was

highlighted in yellow color in both matrices: a row in their matrix, and a column in

Player 𝑍’s matrix (“Player 𝑍’s Earnings”). By left clicking the mouse over a row it re-

mained highlighted, and participants could unhighlight it by clicking their mouse again

or clicking another row. Similarly, when participants moved their mouse over a row that

corresponds to an action of Player 𝑍 in “Player 𝑍’s Earnings,” the row was highlighted

in light green and the corresponding column was highlighted in light green in “Your

Earnings.” Clicking the mouse over the row kept it highlighted, and clicking it again (or

clicking another row) unhighlighted it.

We further told participants that Player 𝑍 participated in a previous auxiliary ex-

perimental session in which they were matched with another participant, called “Player

𝑌,” who participated in the same session and played their role. When Player 𝑍 was an

undergraduate student from any year or discipline, so was Player 𝑌; and when Player 𝑍
was a Ph.D. student in Economics, so was Player 𝑌. We used Player 𝑍’s decisions from

the auxiliary sessions to determine participants’ earnings in the main experiment.

In addition, we gave participants the opportunity to write notes to their “future self.”

Below each decision problem, participants could write down the reasoning behind their

choice of action in a text box. What they typed was displayed later on in the experi-

ment. We told participants that these notes would help them when making choices in

the second part of the experiment.

To account for possible order effects, we gave participants another opportunity to
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revisit their choices and confirm them.17 We displayed their notes and participants were

able to modify them. Afterwards, participants advanced to the next part of the experi-

ment.

Figure 4: The Valuation Task

In the second part of the experiment, we elicited participants’ approximate valuations

via choice lists. We asked them to make a series of choices between playing the four

decision problems against both Player 𝑍 types with their action choices from the first

part of the experiment and sure amounts. For example, suppose that in the first part of
17We find no evidence of order effects, using both parametric and non-parametric tests.
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the experiment a participant chose action 𝑐 in any given 3 × 3 game, as highlighted in

Figure 4. The payoff from the decision problem depends on the action chosen by Player

𝑍 and is either $12, $8, or $0 if Player 𝑍 chose 𝐴, 𝐵, or 𝐶, respectively.
The choice problems were organized in four pairs (4 × 2 = 8 lists), where Option 𝐴

changed across lists and represented participants’ payoffs from each of the four decision

problems against both opponent types from the first part of the experiment. Option 𝐵
paid with certainty and started at $8 in the decision of the choice list, and increased by

$0.25 as the participant moved from one line to the next until $14. For each decision

problem, we showed participants their notes from the first part of the experiment to

remind them of their reasoning behind their action choices.

Finally, one of the choice problems in one of the choice lists was randomly selected,

and the participants’ choice in that choice problem determined their payment. If a par-

ticipant chose the sure amount in Option 𝐵, then they received the payment specified in

Option𝐵 in that choice problem. If a participant opted for Option𝐴, then their payment

depended on the action chosen in the decision problem in the first part of the experi-

ment, if their Player 𝑍 was an undergraduate student or a Ph.D. student, and on the

action chosen by Player 𝑍.18

3.2 Participants and Procedure

We conducted the experiment in April 2020 with students enrolled at the University of

Toronto. Participants were recruited from Toronto Experimental Economics Labora-

tory’s (TEEL) subject pool using ORSEE (Greiner 2015). No one participated in more

than one session. Participants signed up ahead of time for a particular day, either the

4𝑡ℎ or 5𝑡ℎ of April 2020 for the auxiliary part of the experiment; or the 11𝑡ℎ, 13𝑡ℎ, and
15𝑡ℎ to 20𝑡ℎ of April 2020 for the main experiment. On the day of the experiment, we

sent participants an electronic link at 8 AM EDT, and they had to complete the tasks by

8 PM EDT. During this time window, participants could contact an experimenter any-

time via cell phone or Skype for assistance. After reading the instructions, participants

had to correctly answer nine incentivized comprehension questions before starting the
18The timeline of the experiment and the key features are visualized in the Online Appendix.
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first task, and further five incentivized comprehension questions before starting the sec-

ond task. We paid $0.25 for answering each question correctly on their first attempt. If

participants made a mistake, no payment was made for that question, but they had to

answer it correctly in order to proceed to the next question. The experiment was pro-

grammed in oTree (Chen, Schonger, and Wickens 2016). We recruited a total of 244

(9 for the auxiliary sessions and 235 for the main experiment) participants and all pay-

ments weremade via Interac e-transfer, a commonly used paymentmethod by Canadian

banks that only requires an e-mail address and a bank account. The average participant

earned approximately $18 (maximum payment was $22.50 and minimum payment was

$5.50), including a show-up payment of $5. All payments were in Canadian dollars. The

instructions and experimental interface are reproduced in the Online Appendix.19

3.3 Discussion of the Implementation and Procedure

The core idea of this paper is to identify a novel behavior that reflects whether reasoning

is outside the iterative ‘top-down’model of reasoning. Thus far, we developed an identifi-

cation strategy for such behavior and before presenting the results of the evaluation of its

pervasiveness, we briefly discuss some aspects of the experimental implementation and

its procedure. We collected Player 𝑍’s decisions on action choices in the four games in

two separate auxiliary sessions. This has the following advantages: First, we were able to

match participants (Player𝑌 and Player𝑍) with the same level of sophistication. Second,

we could collect all decisions in themain experiment in an “individual decision-making”

framework. As we collected the data during the lockdown in the COVID-19 pandemic,

we could not run any experiment sessions in the laboratory. Instead, undergraduate stu-

dents enrolled at the University of Toronto eagerly participated remotely. Thus, we were

able to avoid any coordination issues stemming from simultaneous strategic decision-

making in an online context. Lastly, as choices and payments in the auxiliary sessions

hadmaterialized already, this design can eliminate concerns that choicesmade by partic-

ipants in themain experimentweremotivated by social preferences or forward induction

considerations. To avoid quick heuristic-based decision-making, we forced participants
19A live version with all dynamic elements displayed to participants can be accessed upon request.
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to spent at least 10 minutes on each set of instructions and at least 3 minutes on each of

the four games against either opponent type before buttons were activated. Further, we

presented all four games in random order to avoid any order effects, and, in addition,

gave participants the opportunity to revise their decisions after they were exposed to all

four games and had selected an action choice. Remaining conscious of possible order ef-

fects, we also reversed the opponent order between the two parts of the experiment. That

is, if participants faced always an undergraduate student before a Ph.D. student in Eco-

nomics when choosing an action, then they always faced a Ph.D. student in Economics

before an undergraduate student in the valuation task and vice versa.

4 Results

We break the analysis into four sections. After a brief coherence examination of the val-

uation data, we begin our main analysis by presenting the experimental results focusing

first on preferences between 𝐼𝑅 and 𝐷𝑆, and then explore the valuation data across all

four games. Next, we focus on behavior conditional on the opponent’s identity; that

is, whether Player 𝑍 was an undergraduate student of any year or discipline or a Ph.D.

student in Economics. Lastly, we delve into the non-choice data embedded in the par-

ticipants’ notes.

4.1 Coherence of Elicited Valuations

Before turning to choice behavior and the ranking of 𝐼𝑅 and𝐷𝑆, we first present the em-

pirical valuation data from some of the games to illustrate both that participants exhibit

reasonable valuations and that there are powerful insights to be gained for an outside

observer by eliciting participants’ certainty equivalent for each game.

In total, we collected data from𝑁 = 235 participants. The only exclusion restriction

for valuations that we impose is consistency with rationality. That is, we exclude behavior

characterized by valuations that exceed the maximum possible payoff given their action

choice, for example, playing action 𝑏 with a valuation 𝑣 = 14 in𝐷𝑆,𝑀𝑆, or𝑁𝐸, respec-
tively. Figure 5 displays several empirical value distributions.
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Figure 5: Empirical Value Distributions of 𝐷𝑆 by action choice; and Empirical Value
Distributions of𝐷𝑆𝑀𝑆, and𝑁𝐸 conditional on Playing Action 𝑐 in𝐷𝑆

First, we show the empirical value distributions in𝐷𝑆 by action for 𝑛 = 455 choices;
namely, all choices with consistent valuations irrespective of opponent type. Roughly

76% of choices fall on action 𝑐, 17% play action 𝑏 and the remaining 7% choose action 𝑎.
Participants who play 𝑐 tend to value playing𝐷𝑆more than participants who chose 𝑎 or
𝑏. Recall that 𝑐 is dominated by 𝑎 according to ≻1, and that the highest payoff in 𝑏 (13) is
higher than the highest payoff in 𝑐 (12). This suggests that those who played 𝑐 have done

so due to strategic reasons.

Second, we highlight the empirical value distributions in𝐷𝑆 and both control games

conditional on playing action 𝑐 irrespective of opponent type, which leaves us with 𝑛 =
618 choices in total. Recall that participants face the exact same payoffs in these three

games, so different choices and valuations in these games must arise from the different

strategic structures. The frequency of action-𝑐 play in 𝐷𝑆 is approximately 2 − 3 times

higher compared to those in the two control games,𝑀𝑆 and𝑁𝐸, respectively. Further,

the empirical value distribution for𝐷𝑆 first-order stochastically dominates those for𝑁𝐸
and𝑀𝑆, suggesting that opponent behavior in𝐷𝑆 is easier to predict relative to𝑁𝐸 and
𝑀𝑆.
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4.2 𝐼𝑅 and𝐷𝑆 Valuations

We impose one additional exclusion restriction for the 𝐼𝑅 and 𝐷𝑆 choices in our main

analysis. That is, in addition to imposing consistency of rationality, we focus on observed

choices where only action 𝑐 is played in𝐷𝑆. Restricting attention to action 𝑐 in𝐷𝑆 allows

us to isolate the choices made by strategic participants, as the L1 non-strategic type only

plays actions 𝑎 or 𝑏 in𝐷𝑆 and never plays action 𝑐. Thus, we restrict attention to 𝑛 = 343
choices. That is, we focus on 179 participants facing an undergraduate student and 164

participants facing a Ph.D. student in Economics.20To give a first overview, we present

aggregate results of action choices in the diagnostic games. Table 1 offers a synopsis of

the frequency of action choices in 𝐼𝑅.

Table 1: Frequency of Action Choices in the 𝐼𝑅 Game

Action 𝐼𝑅
𝑎 242/343
𝑏 37/343
𝑐 37/343
𝑑 27/343

All choices made irrespective of opponent type.

Approximately 71% of choices in 𝐼𝑅 are concentrated on action 𝑎, and the remainder

is roughly equally distributed among actions 𝑏, 𝑐, and 𝑑, respectively.
As a first pass, we summarize choice behavior and the ranking of 𝐼𝑅 and 𝐷𝑆 irre-

spective of the opponent type. Table 2 lists these results.

Table 2: Preferences between 𝐼𝑅 and𝐷𝑆
𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆

𝐼𝑅𝑀 Prediction all nil
Ratio 154/343 189/343

Percentage 44.9% 55.1%
All choices made irrespective of opponent type.
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

The observed choices are clearly at odds with the predictions of the iterative ‘top-

down’ model of reasoning (or Nash equilibrium). While players are predicted to strictly
20All analyses reported in the main text are replicated for all participants and choices in our sample. These
results are reported in the Online Appendix.
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prefer 𝐼𝑅 over 𝐷𝑆, less than half of all observed choices are in line with the prediction.

This is the first evidence at the aggregate choice-level suggesting that participants’ rea-

soning may fall outside the iterative ‘top-down’ model of reasoning.

Introducing controls As a next step, we include the two control games in our aggregate-

choice analysis. We are interested in those participants who weakly prefer 𝐷𝑆 over 𝐼𝑅,
and not those who may have a preference for smaller games or Nash equilibrium in pure

strategies per se.

Table 3: Controlling for Best-Response Consistency in All Games
and Equal Valuations of All Small Games

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Control #1 135/291 156/291
B-R Consistency 46.4% 53.6%

Control #2 138/268 130/268
NE Preference 51.5% 48.5%
Control #3 107/213 106/213

Equal Valuations 50.2% 49.8%
All choices made irrespective of opponent type excluding all choices that are inconsistent
with best-responding (“C#1”); preference for Nash equilibrium in pure strategies (“C#2”);

and value𝐷𝑆,𝑀𝑆, and𝑁𝐸 equally (“C#3”). 𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

To do so, we require that participants make choices consistent with best-responding

in both𝑀𝑆 and𝑁𝐸 games.21 As a result, we are now focussing on 153 participants fac-

ing an undergraduate student and 138 participants facing a Ph.D. student in Economics,

respectively. Table 3, Control #1 lists these results of 𝑛 = 291 observed choices irre-

spective of opponent type. As is evident, controlling for best-response consistency at the

aggregate choice level does not make a substantial dent on participants’ overall ranking

of 𝐼𝑅 and𝐷𝑆.
Next, we exploit the Nash equilibrium in pure strategies that characterizes both 𝐷𝑆

and𝑁𝐸. Here, we exclude those choices that play action 𝑐 in both games and value𝑁𝐸
21In this step, we remove participants’ choices of 𝑎 with a valuation 𝑣 > 12, and further exclude those
whose valuations that exceed the maximum possible payoff given their action choice in either of the two
control games.
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weakly above 𝐼𝑅. This allows us to control for those that may feature an intrinsic pref-

erence for Nash equilibrium in pure strategies per se. By doing so, we focus on 147 par-

ticipants playing against an undergraduate student and 78 participants playing against

a Ph.D. student in Economics, respectively. The summary statistics for this control are

listed as Control #2 in Table 3. Similar to the previous control, this control does not alter

the overall ranking of the diagnostic games either.

Last, we leverage𝑀𝑆 and 𝑁𝐸 and, in this step, exclude those choices that value all

small games equally; i.e., 𝑣𝐷𝑆 = 𝑣𝑀𝑆 = 𝑣𝑁𝐸. This allows us to control for those partic-

ipants who have high valuations in 𝐷𝑆 relative to 𝐼𝑅 because of an intrinsic preference

for smaller games or Nash equilibrium in pure strategies. This results in concentrating

on 113 participants playing against an undergraduate student and 100 participants play-

ing against a Ph.D. student in Economics. These results are reported in Table 3, Control

#3. Though this control slightly reduces the proportion of participants preferring the𝐷𝑆
game over the 𝐼𝑅 game, still about half of the participants make choice and valuation

decisions inconsistent with the iterative reasoning model. Overall, the inclusion of the

controls does not alter the results. While the ratio of those who weakly prefer 𝐷𝑆 over
𝐼𝑅 somewhat decreases, the big picture still suggests that participants’ reasoningmay fall

outside of the iterative ‘top-down’ model of reasoning.22

Belief that opponent is rational Here, we consider those participants that believe that

their opponents are rational and are confident that Player 𝑍 is rational. Recall that our

design makes the sharpest predictions for these types – unambiguously predicting that

participants using the iterative ‘top-down’ model of reasoning would strictly prefer to

play 𝐼𝑅 over 𝐷𝑆. Our design allows us to identify these participants by exploiting the

valuation data collected in the second part of our experiment. In particular, we now

include an additional exclusion restriction by requiring valuations of 12 ≤ 𝑣 ≤ 12.25 in
22A potential concern may arise because we used choice lists to elicit participants’ approximate valuation
for each game. As these lists are discrete we could potentiallymisclassify participants. Those participants
who valued both 𝐼𝑅 and 𝐷𝑆 exactly at 𝑣 = 12.25 could be classified as ranking 𝐷𝑆 weakly above 𝐼𝑅
even though being consistent with the iterative ‘top-down’ model of reasoning. Of the 𝑛 = 343 choices
presented in Table 2, only 29 choices value both games exactly at 𝑣 = 12.25. For the controls, this reduces
further to 10/291 in Control #1 and 7/213 in Control #3, respectively.
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𝐷𝑆.23 Table 4 summarizes the choice behavior by the ranking of 𝐼𝑅 and𝐷𝑆 irrespective
of the opponent type but conditional on believing in the opponent’s rationality.

Table 4: Belief that Opponent Is Rational

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Ratio 72/197 125/197
Percentage 36.5% 63.5%

All choices made irrespective of opponent type
conditional on believing in opponent’s rationality.
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

When requiring that players be confident that their opponent is rational (valuation

of 𝑐 in𝐷𝑆 is 12, indicating that Player 1 is confident that Player 2 will play the dominant

action), close to two-thirds of 𝑛 = 197 choices rank 𝐷𝑆 above 𝐼𝑅. This behavior reflects

reasoning that falls outside the iterative ‘top-down’ model of reasoning.

4.3 Opponent Type

We now turn to choices at the subject-level and discuss differences in behavior by op-

ponent type. We maintain all our exclusion restrictions discussed above but as we are

interested in participants that satisfy these exclusion restrictions against both opponent

types – the intersection – we thus concentrate now on 𝑛 = 144 participants. Thus far,

we have established that approximately half of the choices fall outside the iterative ‘top-

down’ model of reasoning. Recall that this turns out to be true especially if they believe

that their opponents are rational. Among this subset of choices, approximately two-

thirds of choices fall outside the model.

Table 5 shows the comparative statics of the ranking over the set of diagnostic games

conditional on the opponent’s identity; that is, whether participants played against an

undergraduate student of any year or discipline or a Ph.D. student in Economics.

These numbers are not overly sensitive to the opponent’s type: 71.5% of participants

exhibit a stable model of reasoning irrespective of the opponent’s characteristics. That

is, the majority of participants respond similarly to both undergraduate students and
23This results in concentrating on 106 (91) participants playing against an undergraduate student (a Ph.D.
student in Economics).
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Table 5: Ranking of 𝐼𝑅 and𝐷𝑆 by Opponent Type

Undergraduate
𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆

Ph
.D
.

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅𝑀 Prediction 𝑎𝑙𝑙 𝑛𝑖𝑙
Ratio 46/144 23/144

Percentage 31.9% 16.0%

𝐼𝑅 ≾ 𝐷𝑆 𝐼𝑅𝑀 Prediction 𝑛𝑖𝑙 𝑛𝑖𝑙
Ratio 18/144 57/144

Percentage 12.5% 39.6%
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

Ph.D. students in Economics. Specifically, about 32% of the participants’ choices are

consistent with the iterative ‘top-down’ model of reasoning against both undergraduate

students and Ph.D. students in Economics in 𝐼𝑅 and about 40% are inconsistent against

both.24 Among the remainder, of those who respond to the opponent’s type, the results

are split. 12.5% are consistent with the iterative ‘top-down’ model of reasoning against

undergraduate students and not Ph.D. students in Economics, while 16% are consistent

with the iterative reasoning model against Ph.D. students in Economics but not under-

graduate students.

4.4 Non-Choice Data

Recall that we gave participants the opportunity to write notes to their “future-self.” Be-

low each of the two diagnostic games as well as two control games against either oppo-

nent type, participants could write down the reasoning behind their choice of action in

a text box. If participants decided to type anything in these text boxes, then it was dis-

played later on again in the experiment: the first time when participants were prompted

to confirm their choice of action and a second time when facing the valuation task. We

did not force participants to write anything in these text boxes, however, we told them

that these notes would help them when making choices in the second part of the ex-

periment. As expected, not all participants made use of this opportunity. Those who
24These 57 participants value the𝐷𝑆 game (weakly) more than the 𝐼𝑅 game. Moreover, the valuation data
reveal that for these participants the 𝐼𝑅 game becomes relatively more valuable than the𝐷𝑆 game when
playing against a Ph.D. student rather than an undergraduate student.
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did, however, give us the opportunity to use their notes as “the window of the strate-

gic soul.”25 Using both action choice and valuation data, we documented evidence at

the aggregate choice-level that suggests that participants may value the predictability of

their opponents’ behavior. Moreover, we showed that this observation is even starker if

participants believe that their opponents are rational with 63.5% of choices ranking 𝐷𝑆
above 𝐼𝑅. Among this subset of participants, we are curious to see whether there is any

suggestive evidence of participants indicating that the opponents’ actions are predictable

in 𝐷𝑆 and 𝐼𝑅, and if there is any difference by the ranking of 𝐼𝑅 and 𝐷𝑆. We have es-

tablished that 197 choices are consistent with holding the belief that their opponent is

rational, meaning that the player is confident that Player 𝑍 is rational. In 105 (113) of

these choices, participants took notes in 𝐼𝑅 (𝐷𝑆). Table 6 provides summary statistics

for this subset of choices by the ranking of the set of diagnostic games.

Table 6: Notes – Belief that Opponent Is Rational

Indication that Player 𝑍’s Action Is Predictable
𝐼𝑅 𝐷𝑆

yes no yes no

𝐼𝑅 ≻ 𝐷𝑆 Ratio 22/52 14/53 18/60 25/53
Percentage 42.3% 26.4% 30.0% 47.2%

𝐼𝑅 ≾ 𝐷𝑆 Ratio 30/52 39/53 42/60 28/53
Percentage 57.7% 73.6% 70.0% 52.8%

If a participant indicated that the opponent’s choice is predictable in one of the games,

it increased the likelihood they would prefer that game. For example, out of the 105

participants who took notes in the 𝐼𝑅 game, 52 participants noted that Player Z’s action

is predictable. The likelihood of preferring 𝐼𝑅 to𝐷𝑆 increased from 26.4% to 42.3% (an

increase of approximately 60%). Similarly, out of 113 participants who took notes in𝐷𝑆,
60 wrote that Player Z’s action was predictable. The likelihood of preferring the 𝐼𝑅 game

to the𝐷𝑆 game among them was 30%, compared to 47.2% among participants who took

notes but did not mention the predictability of Player Z’s action in 𝐷𝑆 (a decrease of

more than 36.4%).

We complement this qualitative analysis with natural language processing tools to
25Vincent Crawford coined this term in Crawford (2008).
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gain additional insights on participants’ thought process. In line with the choice behav-

ior presented in Section 4, participants who rank one diagnostic game above the other

also express their reasoning inmore detail, use more complexity-related keywords to ex-

press more sophisticated reasoning, are more positive and optimistic, and feature more

determination and certainty in their preferred game compared to the other diagnostic

game. Moreover, differences in the ranking of games is associated with different topics

and clusters that can be recovered using natural language models.26 This lends further

qualitative support for the idea that the 𝐷𝑆 ≿ 𝐼𝑅 group and the 𝐷𝑆 ≺ 𝐼𝑅 group treat

the two diagnostic games systematically differently and employ fundamentally different

reasoning processes.

5 Theoretical Analysis

In Section 2, we provided intuitive explanations for our identification strategy. In this

section, we elaborate and present a formal analysis.

5.1 Theory

Let 𝐺 = (𝑆1, 𝑆2, 𝑢1, 𝑢2) be a finite 2-player game where 𝑆𝑖 is player 𝑖’s strategy set and

𝜋𝑖 ∶ 𝑆1 × 𝑆2 → ℝ is player 𝑖’s pecuniary payoff function, which depends on player 𝑖
and the other player’s (−𝑖) strategies. We allow for general expected-utility preferences

over monetary payoffs. LetU be the set of von Neumann-Morgenstern utility functions,

which are strictly increasing functions mapping ℝ to ℝ. For any 𝑢𝑖 ∈ U, the function

𝑢𝑖 ∘ 𝜋𝑖 ∶ 𝑆𝑖 × 𝑆−𝑖 → ℝ represents the utility of player 𝑖. Denote by 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖) player 𝑖’s
beliefs over player −𝑖’s strategies. Extend 𝑢𝑖(𝜋𝑖(𝑆𝑖, 𝑆−𝑖)) to 𝑢𝑖(𝜋𝑖(𝑆𝑖, 𝜇−𝑖)) in the usual way

to represent player 𝑖’s expected utility.

Let𝔹ℝ 𝑖 be the best response set for each player 𝑖. This set specifies the strategies that

are a best response for player 𝑖 given both player 𝑖’s preferences, 𝑢𝑖 ∈ U, and the belief
26We elaborate on this in detail in the Online Appendix.
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they hold about the play of the other player, 𝜇−𝑖. Formally, for 𝑢𝑖 ∈ U and 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖),

𝔹ℝ 𝑖[𝑢𝑖, 𝜇−𝑖] ∶= {𝑠𝑖 ∈ 𝑆𝑖 ∶ 𝑢𝑖(𝜋𝑖(𝑠𝑖, 𝜇−𝑖)) ≥ 𝑢𝑖(𝜋𝑖(𝑟𝑖, 𝜇−𝑖)), for each 𝑟𝑖 ∈ 𝑆𝑖}.

We will be interested in two solution concepts. First, the iterative ‘top-down’ model

of reasoning, which intuitively captures how players reason when they can model the

behavior of others. Second, the concept of 2-rationalizable strategies, which incorporates

the assumption that player 𝑖 is rational and believes player −𝑖 is rational and nothing

more. Intuitively, this solution concept captures how players reason when they cannot

model the behavior of others. We define both below.

Iterative ‘top-down’ model of reasoning This model is anchored by the non-strategic L1
behavior characterized by ≻1. Let 𝐿1𝑖 = {𝑠𝑖 ∈ 𝑆𝑖|∄ 𝑠𝑖′ ∈ 𝑆𝑖 where 𝑠𝑖′ ≻1 𝑠𝑖} be the set of

actions that can be played by the L1 type. This is the set of actions that are undominated

according to ≻1.
In Section 2, we discussed the possibility of extending the model to allow for uncer-

tainty over others’ rationality. We do this by defining an L0 type that is non-strategic and

plays all actions – even strictly dominated actions – with positive probability. Specifi-

cally, we impose the restriction that the L0 type plays uniformly random: 𝜇0𝑖 (𝑠) = 1|𝑆𝑖| for
all 𝑠 ∈ 𝑆𝑖. Strategic types that place positive probability on facing the L0 type will then

be uncertain about the rational play of others.

The behavior of all L𝑘 types can be defined recursively, anchored on the behavior of

the L0 and L1 types. Denote by 𝐿𝑘𝑖 the set of actions consistent with 𝑘 iterations of rea-

soning by player 𝑖. Then, for 𝑘 ≥ 2, the set 𝐿𝑘𝑖 is the set of strategies 𝑠𝑖 in𝔹ℝ 𝑖[𝑢𝑖, 𝜇−𝑖] such
that there exists some 𝑢𝑖 ∈ U and 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖) that satisfies the following two conditions.

First, beliefs over the play of othersmust take the following form: 𝜇−𝑖 = 𝑝⋅𝜇0−𝑖+(1−𝑝)⋅𝜂−𝑖
for some 𝑝 ∈ [0, 1) and 𝜂−𝑖 ∈ 𝛥(𝑆−𝑖) with 𝜂−𝑖(∪𝑘−1𝑗=1𝐿

𝑗
−𝑖) = 1 . This ensures that player 𝑖’s

beliefs about player −𝑖’s behavior are consistent with the assumption that players’ rea-

soning is organized in a ‘top-down’ fashion. Put differently, player 𝑖 can only assign

positive probability to actions played by types with levels strictly less than 𝑘. Second,

𝑠𝑖 ∈ 𝔹ℝ 𝑖[𝑢𝑖, 𝜇−𝑖]. This condition ensures that player 𝑖’s strategy 𝑠𝑖 maximizes their ex-
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pected utility given player 𝑖’s preferences 𝑢𝑖, and the belief that player −𝑖 plays according

to 𝜇−𝑖. We will refer to any action 𝑎𝑖 in 𝐿𝑘𝑖 as an action played by the L𝑘 type for player 𝑖.

2-rationalizability Thesolution concept of 2-rationalizable strategies incorporates both

the assumption of rationality and belief in rationality. Let 𝑆1𝑖 be the set of strategies 𝑠𝑖
such that there exists some 𝑢𝑖 ∈ U and 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖) with 𝑠𝑖 ∈ 𝔹ℝ 𝑖[𝑢𝑖, 𝜇−𝑖]. The set 𝑆1𝑖
includes all rational strategies for player 𝑖. These are a best response for player 𝑖 given
their preference 𝑢𝑖 and beliefs 𝜇−𝑖 about player −𝑖’s play. We refer to any action 𝑎𝑖 in 𝑆1𝑖 as
a 1-rationalizable strategy. Given this, we can define 𝑆2𝑖 as the set of strategies 𝑠𝑖 so that

there exists some 𝑢𝑖 ∈ U and 𝜇−𝑖 ∈ 𝛥(𝑆−𝑖) that satisfies the following conditions. First,

𝑠𝑖 ∈ 𝔹ℝ 𝑖[𝑢𝑖, 𝜇−𝑖], which ensures that 𝑠𝑖 maximizes player 𝑖’s expected utility given the

belief that player −𝑖 behaves according to 𝜇−𝑖. Second, 𝜇−𝑖(𝑆1−𝑖) = 1. This ensures that

player 𝑖 can only place positive probability on 1-rationalizable strategies, which are the

strategies consistent with the assumption that player −𝑖 is rational. We will refer to any

action 𝑠𝑖 in 𝑆2𝑖 as a 2-rationalizable strategy.27

5.2 Revisiting the Diagnostic Games

The iterative-reasoning game “𝐼𝑅” First, note that we can denote any probability mea-

sure 𝑝 ∈ 𝛥(𝑆1) (and 𝑝 ∈ 𝛥(𝑆2), respectively) as a 4-tuple (𝑝1, 𝑝2, 𝑝3, 𝑝4). This represents

the probabilities over {𝑎, 𝑏, 𝑐, 𝑑} (and {𝐴, 𝐵, 𝐶,𝐷}, respectively). Then in this game, L0
behavior is given by 𝜇0 = (1/4, 1/4, 1/4, 1/4) for both players. Further, recall from Section 2

that 𝐿11 = {𝑎, 𝑏} and 𝐿12 = {𝐶}.
The𝐿𝑘𝑖 sets can then be calculated recursively given the anchoring L0 andL1behavior.

Let 𝑘 ≥ 2. For Player 1, the L𝑘 type can hold any belief about Player 2’s behavior that is

a mixture between 𝜇0 and the two degenerate beliefs: (0, 1, 0, 0) and (0, 0, 1, 0). In other

words, beliefs take the form 𝜇2 = (𝑝0/4, 𝑝0/4+𝑝𝐵, 𝑝0/4+𝑝𝐶, 𝑝0/4) for some𝑝0, 𝑝𝐵, 𝑝𝐶 ∈ [0, 1]
with 𝑝0 + 𝑝𝐵 + 𝑝𝐶 = 1. A strategy 𝑠𝑖 is in 𝐿𝑘1 if there exists some 𝑢 ∈ U such that
27In order for the solution concept to be free of assumptions about risk preferences we explicitly allow
players to hold any expected utility preferences. The same result could be achieved by specifying a single
preference specification for each player with preferences characterized by extreme risk aversion. This
follows from Battigalli, Cerreia-Vioglio, Maccheroni, and Marinacci (2016) and Weinstein (2016) who
show that risk aversion expands the set of k-rationalizable actions (while risk loving contracts the set).
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𝑠𝑖 ∈ 𝔹ℝ1[𝑢, 𝜇2]. Clearly, actions 𝑎 and 𝑏 are in 𝐿𝑘1 as they maximizes the expected payoff

under the player’s belief when 𝑝𝐶 = 1 and 𝑝𝐵 = 1, respectively. Importantly, we also

need to ensure that 𝑎 and 𝑏 are the only choices that maximize expected utility for every

utility function 𝑢.28 We begin with the observation that a strategy 𝑠𝑖 ∈ 𝑆1 induces a

lottery through the belief 𝑝 ∈ 𝛥(𝑆2), which we denote 𝑠𝑖,𝑝. For example, the action 𝑎
induces the lottery 𝑎𝜇2 = (13, 𝑝0/4; 12, 𝑝0/4+𝑝𝐵; 11, 𝑝0/4+𝑝𝐶; 0, 𝑝0/4). This lottery first-order

stochastically dominates the lotteries 𝑐𝜇2 and 𝑑𝜇2 . It follows that actions 𝑐 and 𝑑 cannot
maximize the player’s expected utility for any utility function 𝑢. Thus, we conclude that

𝐿𝑘1 = {𝑎, 𝑏}.
For Player 2, the L𝑘 type can hold any belief about Player 1’s behavior that is amixture

between 𝜇0 and the two degenerate beliefs: (1, 0, 0, 0) and (0, 1, 0, 0). In other words,

beliefs take the form 𝜇1 = (𝑝0/4 + 𝑝𝑎, 𝑝0/4 + 𝑝𝑏, 𝑝0/4, 𝑝0/4) for some 𝑝0, 𝑝𝑎, 𝑝𝑏 ∈ [0, 1] with

𝑝0 + 𝑝𝑎 + 𝑝𝑏 = 1 and 𝑝0 < 1. Consider the case where 𝑝𝑎 ≠ 1, then the lottery 𝐶𝜇1
first-order stochastically dominates the lotteries 𝐴𝜇1 and 𝐷𝜇1 . Next, consider the case

where 𝑝𝑎 = 1, then the lottery 𝐵𝜇1 first-order stochastically dominates the lottery 𝑥𝜇1 for
𝑥 ∈ {𝐴, 𝐶,𝐷}. Thus, we conclude that 𝐿𝑘2 = {𝐵, 𝐶}.

𝐿𝑘1 = {𝑎, 𝑏} if 𝑘 ≥ 1 𝐿𝑘2 =
{{
{{
{

{𝐶} if 𝑘 = 1

{𝐵, 𝐶} if 𝑘 ≥ 2

We now turn to characterize the 2-rationalizable set for Player 1, which captures the

case of a player who is rational and believes that Player 2 is rational. Here, Player 1

believes that Player 2 plays a 1-rationalizable strategy. The 2-rationalizable set for Player

1 and the 1-rationalizable set for Player 2 are:

𝑆21 = {𝑎, 𝑏, 𝑐, 𝑑} 𝑆12 = {𝐴, 𝐵, 𝐶,𝐷}

It is straightforward to see that all actions for Player 2 are 1-rationalizable. This is the

case as each action maximizes expected payoffs under some degenerate belief about the
28For this we will rely on the following equivalence: a lottery 𝑝 first-order stochastically dominates lottery
𝑞 if and only if 𝑝 is preferred to 𝑞 for all 𝑢 ∈ U.
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play of Player 1. It follows that all actions are 2-rationalizable for Player 1 as each action

for Player 1 maximizes expected payoffs under some degenerate belief about Player 2’s

behavior.

Lastly, we elicited participants’ valuation for each game, i.e., their certainty equiva-

lent. Since a player’s utility function ismonotone, the analyst can infer their ranking over

the games. Moreover, the valuations reveal important information about participants’

beliefs.

In the iterative ‘top-down’ model of reasoning, restricting attention to types that are

rational and believe that their opponent is rational confines attention to types that assign

zeroweight on others being the L0 type. The expected payoff in 𝐼𝑅must be strictly greater

than 12 for these types. It is straightforward to confirm this claim by setting𝑝0 = 0 in the

above arguments. This means that any type holds a belief that is a mixture of (0, 1, 0, 0)
and (0, 0, 1, 0). For any such belief 𝜇2 = 𝑝(0, 1, 0, 0) + (1 − 𝑝)(0, 0, 1, 0), the certainty

equivalent of the lottery 𝑎𝜇2 = (12, 𝑝; 13, (1 − 𝑝)) is above 12 whenever 𝑝 ≠ 1, and

the certainty equivalent of the lottery 𝑏𝜇2 = (14, 𝑝; 0(1 − 𝑝)) is 14 whenever 𝑝 = 1. To

summarize, players who are rational and hold the belief that their opponents are rational

believe that they can guarantee themselves a payoff that is strictly greater than 12. It

follows that the certainty equivalent of 𝐼𝑅 for any expected utility player who believes

that their opponent is rational is strictly above 12.

Caution is potentially warranted if Player 1 is ambiguity averse as they may value

𝐼𝑅 at 12. This, however, can only occur under an extreme form of ambiguity aversion

coupled with the player holding degenerate beliefs. More precisely, it requires Player 1

to play the “safe” action 𝑎, to have maxmin expected-utility preferences and their set of

priors must include beliefs that Player 2 plays 𝐵 with certainty and a prior that assigns a

probability strictly less than 6/7 that Player 2 plays 𝐵.29

Moving to payoffs when applying the concept of 2-rationalizability. A player that

believes others are rational can hold any belief over Player 2 choosing a 1-rationalizable
29Whether this is an important concern is an empirical question. We can exploit participants’ actions and
valuations in the control games to evaluate if ambiguity aversion governs participants’ valuations. If we
allow for maxmin expected utility preferences, and allow that the set of priors of a player of level (𝑘 + 1)
includes all degenerate priors consistent with the strategies in 𝐿𝑘2 in the control games, then (for any
action in) both𝑀𝑆 and𝑁𝐸 have to be valued at 8. In our data, of all choices, only 1 choice exhibits such
extreme form of ambiguity aversion.
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action. This means that in 𝐼𝑅 Player 1 can hold any belief about the play of Player 2. In

this case, such players may not believe that they can guarantee themselves any certain

payoff. Moreover, one might reasonably conjecture the certainty equivalents of these

actions to be less than 12.

The dominance-solvable game “𝐷𝑆” In this game, the L0 behavior is given by the 3-

tuple 𝜇0 = (1/3, 1/3, 1/3) for both players. Further, recall from Section 2 that 𝐿11 = {𝑎, 𝑏}
and 𝐿12 = {𝐴}.

The𝐿𝑘𝑖 sets can then be calculated recursively given the anchoring L0 andL1 behavior.

Let 𝑘 ≥ 2. For Player 1, the L𝑘 type can hold any belief about Player 2’s behavior that is

a mixture between 𝜇0 and the degenerate belief: (1, 0, 0). In other words, beliefs take the

form 𝜇2 = (𝑝0/3 + 𝑝𝐴, 𝑝0/3, 𝑝0/3) for some 𝑝0, 𝑝𝐴 ∈ [0, 1] with 𝑝0 + 𝑝𝐴 = 1. A strategy 𝑠𝑖 is
in 𝐿𝑘𝑖 if there exists some 𝑢𝑖 ∈ U such that 𝑠𝑖 ∈ 𝔹ℝ 𝑖[𝑢𝑖, 𝜇−𝑖]. Clearly, action 𝑎 and 𝑐 are
in 𝐿𝑘1 as they maximizes the expected payoff under the player’s belief when 𝑝0 = 1 and
𝑝𝐴 = 1 respectively. Further, notice that the lottery 𝑏𝜇2 is not first-order stochastically

dominated by either lotteries 𝑎𝜇2 or 𝑐𝜇2 , this means we can find some 𝑢𝑖 ∈ U such that

𝑏 ∈ 𝔹ℝ1[𝑢𝑖, 𝜇2]. Thus, 𝐿𝑘1 = {𝑎, 𝑏, 𝑐}.
Turning to the behavior of the L𝑘 type of Player 2, this type can hold any belief about

Player 1’s behavior that is a mixture between 𝜇0 and the degenerate beliefs: (1, 0, 0),
(0, 1, 0) and (0, 0, 1). In other words, a L𝑘 type can hold any beliefs over Player 1’s play,

𝜇1 ∈ 𝛥(𝑆1). Notice, however, that Player 2 has a strictly dominant strategy, this means

that 𝐴 is always the best response for Player 2 regardless of her beliefs. In other words,

the lottery 𝐴𝜇1 first-order stochastically dominates the lotteries 𝐵𝜇1 and 𝐶𝜇1 . Thus we

conclude that 𝐿𝑘1 = {𝐴}.

𝐿𝑘1 =
{{
{{
{

{𝑎, 𝑏} if 𝑘 = 1

{𝑎, 𝑏, 𝑐} if 𝑘 ≥ 1

𝐿𝑘2 = {𝐴} if 𝑘 ≥ 1

Lastly, we briefly discuss the 2-rationalizable predictions. Again, since 𝐴 is strictly

dominant for Player 2, it is the unique 1-rationalizable action. It follows that the only

2-rationalizable action for Player 1 is 𝑐.
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𝑆21 = {𝑐} 𝑆12 = {𝐴}

In this game, a rational type who believes that their opponent is rational must hold

beliefs of the form (1, 0, 0). Such players believe that they can guarantee themselves a

payoff of exactly 12 with certainty. Notice that reasoners who cannot model and hence

predict Player 2’s behavior – beyond the belief that Player 2 should play a 1-rationalizable

strategy – might reasonably rank𝐷𝑆 above 𝐼𝑅.
If Player 1 plays 𝑐 and values the game less that 12 it reveals to the analyst that the

player is not confident that Player 2 is rational as the certainty equivalent of the lottery

induced by 𝑐 is lower than 12 only if it assigns a strictly positive probability that Player 2

will choose a dominated action. Further, such valuations shed light on whether the sim-

pler iterative reasoning model from Section 2 or the more general iterative ‘top-down’

model of reasoning that explicitly allows for uncertainty over rationality predicts partic-

ipants’ behavior more accurately.

Player 1’s preferences over 𝐼𝑅 and 𝐷𝑆 We first restrict attention to players that are ra-

tional and believe that their opponents are rational. Consider the preferences of such

types over the two diagnostic games: 𝐼𝑅 and 𝐷𝑆. Although 𝐷𝑆 has a smaller strat-

egy space compared to 𝐼𝑅 and is dominance-solvable, the game’s expected payoff of

12 is strictly lower than the expected payoff of 𝐼𝑅 in the iterative ‘top-down’ model

of reasoning. In other words, a ‘top-down’ iterative-reasoner should strictly prefer to

play 𝐼𝑅 over 𝐷𝑆. We now relax the assumption of belief in rationality. When con-

sidering the iterative ‘top-down’ model of reasoning, this means that we allow players

to place positive weight on the L0 type. Fix 𝑝0 ∈ [0, 1) as the probability assigned

to the L0 type. In 𝐼𝑅, the belief of a ‘top-down’ reasoner takes the following form:

𝜇𝐼𝑅2 = 𝑝0(1/4, 1/4, 1/4, 1/4) + 𝑝𝐵(0, 1, 0, 0) + 𝑝𝐶(0, 0, 1, 0) for some 𝑝𝐵, 𝑝𝐶 ∈ [0, 1] with

𝑝0+𝑝𝐵+𝑝𝐶 = 1. In𝐷𝑆, the belief of such reasoner is𝜇𝐷𝑆2 = 𝑝0(1/3, 1/3, 1/3)+(1−𝑝0)(1, 0, 0).
First, notice that the lottery 𝑎𝐼𝑅𝜇𝐼𝑅2 = (0, 𝑝0/4; 12, 𝑝0/4+𝑝𝐵; 13, 𝑝0/4+𝑝𝐶; 11, 𝑝0/4)first-order

stochastically dominates the lottery 𝑎𝐷𝑆𝜇𝐷𝑆2 = (0,
𝑝0/3+𝑝𝐴; 12, 𝑝0/3; 11, 𝑝0/3) for all 𝑝0, 𝑝𝐵 and
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𝑝𝐶. Further, the lottery 𝑎𝐼𝑅𝜇𝐼𝑅2 also first-order stochastically dominates the lottery 𝑐𝐷𝑆𝜇𝐷𝑆2 =
(12, 1 − 2𝑝0/3; 8, 𝑝0/3; 0, 𝑝0/3; ) for all 𝑝0, 𝑝𝐵 and 𝑝𝐶. Thus, any iterative ‘top-down’ reasoner

prefers to play 𝐼𝑅 over actions 𝑎 or 𝑐 in the𝐷𝑆 game, regardless of risk preferences.30

6 Concluding Remarks

In iterative reasoning models, each player best-responds to the belief that other play-

ers reason to some finite level. In this paper, we propose a novel behavior that captures

the idea that players may believe that others are rational, yet cannot model their behav-

ior. Reverting to our example from the introduction, it encompasses a situation where a

player believes that their opponent can reason to a higher level than they do. We devel-

oped a novel experimental design that permits us to identify such behavior, and evaluate

it experimentally.

We find that approximately half of the participants made choices inconsistent with a

very general and permissive model of iterative ‘top-down’ reasoning. This is true espe-

cially if they believe that their opponents are rational. Among those, 64% behave incon-

sistently with the iterative ‘top-down’ model.

Interestingly, approximately 72% of participants exhibit a stable model of reasoning

irrespective of the opponent’s characteristics. Among the remainder, the results are split:

around 12% (16%) made choices (in)consistent with iterative reasoning when playing

against an undergraduate (Ph.D.) student but not when playing against a Ph.D. (under-

graduate) student.

To conclude, we document strong evidence that behaviormay fall outside an iterative

‘top-down’model of reasoning, yet playersmay still use alternativemodels, which rely on

belief in their opponent’s rationality, to reason and choose optimal strategies in games.

30The only potential caveat here is that there may be an iterative ‘top-down’ reasoner who is extremely
risk seeking and at the same time very pessimistic about the rationality of others (high 𝑝0), and as such
prefers the lottery 𝑏𝐷𝑆𝜇𝐷𝑆

2
= (5, 𝑝0/3; 13, 1 − 2𝑝0/3; 0, 𝑝0/3) over any lotteries induced by 𝐼𝑅. Such choices are

extremely rare in our data. Of 470 choices in total, only 8 participants choose to play 𝑏 in 𝐷𝑆 and value
the game at 13 ≤ 𝑣 ≤ 13.25. As in the analysis presented in Section 4, if we control for such players by
focusing on those who play 𝑐 in𝐷𝑆, the iterative ‘top-down’ model of reasoningmakes the unambiguous
prediction that such players rank 𝐼𝑅 above𝐷𝑆.
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A Experimental Results of All Participants

In this section, we replicate and report all results reported in the main text. Table A.1

presents the distribution of actions in the two diagnostic games.

Table A.1: Frequency of Action Choices in the Diagnostic Games

Action 𝐼𝑅 𝐷𝑆
𝑎 298/470 36/470
𝑏 63/470 82/470
𝑐 59/470 352/470
𝑑 50/470 —

All choices made irrespective of opponent type.

We begin by summarizing choice behavior and the preference relation over 𝐼𝑅 and

𝐷𝑆 irrespective of the opponent type. Table A.2 lists these results.

Table A.2: Preferences between 𝐼𝑅 and𝐷𝑆
𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆

𝐼𝑅𝑀 Prediction all nil
Ratio 212/470 258/470

Percentage 45.1% 54.9%
All choices made irrespective of opponent type.
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

As a next step, we control for participants whose behavior is inconsistent with best-

responding across all games and either type. For example, we now remove participants
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who play 𝑎 with a valuation 𝑣 > 12, and further exclude those whose valuations exceed

the maximum possible payoff given their action choice; e.g., playing 𝑏 with a valuation

𝑣 > 13.25 or 𝑐with a valuation 𝑣 > 12.25 in either of the two control games,𝑀𝑆 and𝑁𝐸.
As a result, we are now focussing on 186 participants playing against an undergraduate

student of any year or discipline and 180 participants playing against a Ph.D. students in

Economics, respectively. Table A.3 lists these results of 𝑛 = 366 choices irrespective of

opponent type.

Table A.3: Controlling for Best-Response Consistency

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Ratio 166/366 200/366
Percentage 45.4% 54.6%

All choices made irrespective of opponent type excluding
all choices that are inconsistent with best-responses in𝑀𝑆 and𝑁𝐸.

𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

Next, we control for participants whose behavior is consistent with a preference for

Nash equilibrium in pure strategies and either type. That is, we now remove participants

who play 𝑐 in both𝐷𝑆 and𝑁𝐸 as well as value this control game weakly above 𝐼𝑅. This

lets us focus on 173 participants playing against an undergraduate student of any year or

discipline and 161 participants playing against a Ph.D. students in Economics, respec-

tively. Table A.4 lists these results of 𝑛 = 318 choices irrespective of opponent type.

Table A.4: Controlling for Nash Equilibrium Preference

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Ratio 163/334 171/334
Percentage 48.8% 51.2%

All choices made irrespective of opponent type excluding
all choices that play 𝑐 in𝐷𝑆 and𝑁𝐸 and value𝑁𝐸 weakly above𝐷𝑆.

𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

Last, we leverage𝑀𝑆 and𝑁𝐸 and, in this step, exclude only those choices that value

all small games equally; that is, 𝑣𝐷𝑆 = 𝑣𝑀𝑆 = 𝑣𝑁𝐸. This results in concentrating on

137 participants playing against an undergraduate student and 126 participants playing

against a Ph.D. students in Economics, respectively. Table A.5 lists these results.
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Table A.5: Controlling for Equal Valuations of All Smaller Games

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆
𝐼𝑅𝑀 Prediction all nil

Ratio 129/263 134/263
Percentage 49.0% 51.0%

All choices made irrespective of opponent type excluding
all choices that value𝐷𝑆,𝑀𝑆, and𝑁𝐸 equally.
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

Overall, the inclusion of the controls does not alter the results. Similar to the results

reported in themain text, while the ratio of thosewhoweakly prefer𝐷𝑆 over 𝐼𝑅 increases
to some extent, using the entire sample also suggests that participants may value the

predictability of their opponents’ actions.

Turning to choices at the subject-level and a brief discussion of differences in behav-

ior by opponent type. We have established that approximately half of the choices made

by these participants are consistent with difficulty of predicting others’ behavior. On

the full sample, this turns out to be even stronger when we control for valuing all smaller

games equally as highlighted above. Table A.6 shows the comparative statics of the rank-

ing over the set of diagnostic games conditional on the opponent’s identity (i.e., either

an undergraduate student or a Ph.D. student in Economics).

Table A.6: Ranking of 𝐼𝑅 and𝐷𝑆 by Opponent Type

Undergraduate
𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅 ≾ 𝐷𝑆

Ph
.D
.

𝐼𝑅 ≻ 𝐷𝑆 𝐼𝑅𝑀 Prediction 𝑎𝑙𝑙 𝑛𝑖𝑙
Ratio 67/235 49/235

Percentage 28.5% 20.9%

𝐼𝑅 ≾ 𝐷𝑆 𝐼𝑅𝑀 Prediction 𝑛𝑖𝑙 𝑛𝑖𝑙
Ratio 29/235 90/235

Percentage 12.3% 38.3%
𝐼𝑅𝑀 ≡ Iterative ‘top-down’ model of reasoning.

Lastly, we ran ordinary least-square regressions with random effects controlling for

order effects as well as the opponent order. In particular, we regressed the difference in

valuations of 𝐼𝑅 and𝐷𝑆 (𝑣𝐼𝑅−𝑣𝐷𝑆) on the opponent dummyPhD, which is 0 for facing an

undergraduate student and 1 for playing against a Ph.D. student in Economics, and the
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valuations for both𝑀𝑆 and𝑁𝐸. Further, we include the game order dummy DS before

IR, which is 0 if 𝐼𝑅 is displayed before𝐷𝑆 and 1 if𝐷𝑆 is displayed before 𝐼𝑅. In addition,

we also include the opponent order dummy PhD before UG, which is 0 if participants

played first against an undergraduate student and afterwards against a Ph.D. student in

Economics in the first part of the experiment and 1 if the order is reversed.

Table A.7: OLS Estimations with Random Effects of Difference in Valuations of 𝐼𝑅 and
𝐷𝑆

Ranking by UG: 𝐼𝑅 ≻ 𝐷𝑆 UG: 𝐼𝑅 ≾ 𝐷𝑆 UG: 𝐼𝑅 ≻ 𝐷𝑆 UG: 𝐼𝑅 ≾ 𝐷𝑆 All
Opponent PhD: 𝐼𝑅 ≻ 𝐷𝑆 PhD: 𝐼𝑅 ≻ 𝐷𝑆 PhD: 𝐼𝑅 ≾ 𝐷𝑆 PhD: 𝐼𝑅 ≾ 𝐷𝑆

𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆
Intercept 2.474∗∗∗ −1.075 2.498∗ −1.597∗∗ 0.069

(0.831) (1.101) (1.379) (0.685) (0.682)
PhD −0.190 3.642∗∗∗ −3.418∗∗∗ 0.206 0.360∗

(0.186) (0.290) (0.350) (0.148) (0.170)
𝑣𝑀𝑆 −0.116 −0.043 0.007 0.037 −0.039

(0.076) (0.090) (0.111) (0.054) (0.055)
𝑣𝑁𝐸 0.070 0.019 -0.007 0.030 0.067

(0.078) (0.094) (0.115) (0.057) (0.058)
𝐷𝑆 before 𝐼𝑅 0.009

(0.215)
𝑃ℎ𝐷 before 𝑈𝐺 -0.225

(0.219)
𝜎𝜖 1.059 1.435 1.286 0.995 1.839
𝜎𝑢 0.897 0.750 0.812 0.961 1.002
N 134 98 58 180 470
(Between) R-squared 0.009 0.019 0.009 0.013 0.010

∗∗∗Significant at the 1 percent level; ∗∗Significant at the 5 percent level; ∗Significant at the 10 percent
level

We first split our sample by preference relation over the set of diagnostic games and

opponent type (= 2 × 2) as in Table A.6 and then estimate the model using the full

sample. Unlike in the main text, we do not exclude participants from our analysis whose

valuations exceed the maximum possible payoff given their action and those who are

inconsistent with best-responding in𝐷𝑆. Table A.7 lists the results from this analysis.

We find a strong effect of the observed characteristic of the opponent, Ph.D., on the

difference in valuations of 𝐼𝑅 and 𝐷𝑆 for all ranking as long as 𝐷𝑆 ≿ 𝐼𝑅 against one

opponent type only. This is alsomildly true for the full sample, irrespective of the ranking
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over the set of diagnostic games. As expected, we do not find a strong effect when𝐷𝑆 ≺
𝐼𝑅. Here, we also do not observe a strong effect when𝐷𝑆 ≿ 𝐼𝑅. Overall, these estimation

results for all 𝑁 = 235 are in line with the difference in differences of valuations by

opponent type and by ranking of 𝐼𝑅 and 𝐷𝑆 too. Using the full sample, we also do not

find any indication of order effects, either due to presenting participants 𝐼𝑅 or𝐷𝑆 before
the other as well as playing each of the four games first against an undergraduate student

or a Ph.D. student in Economics in the first part of the experiment.

B Further Analysis of Empirical Value Distributions

Moving beyond summary statistics, we now turn to the empirical distribution of val-

uations by the ranking of 𝐼𝑅 and 𝐷𝑆 induced by the valuations. We now enrich our

discussion by leveraging the cardinal information obtained in the valuation task. Figure

B.1 visualizes the empirical distributions of the valuations of the two diagnostic games,

𝐼𝑅 and 𝐷𝑆, as well as the two control games, 𝑀𝑆 and 𝑁𝐸. For this analysis we again

focus on the 343 choices as summarized in Table 1 in the main text.

For the diagnostic games, the value distribution for 𝐷𝑆 (𝐼𝑅) is significantly higher

(lower) in stochastic dominancewhen𝐷𝑆 ≿ 𝐼𝑅 than𝐷𝑆 ≺ 𝐼𝑅: two-sampleKolmogorov-

Smirnov test produces 𝑝 < 0.001.1 While differences between how the two “groups”

value 𝐼𝑅 and 𝐷𝑆 are expected given how the groups are defined, the value distributions

provide further support for the idea that the behavior of the𝐷𝑆 ≿ 𝐼𝑅 group refelcts rea-

soning that falls outside of the iterative ‘top-down’ model of reasoning. First, the large

differences between the empirical value distributions in 𝐼𝑅 indicate that the 𝐷𝑆 ≿ 𝐼𝑅
participants face difficulties in modeling and predicting the opponents’ behavior in 𝐼𝑅 –
a game where reasoning about rationality plays no predictive role. Second, participants’

valuations in 𝐷𝑆 allows the analyst to infer their (confidence in their) beliefs about ra-

tionality: we can infer that participants with 12 ≤ 𝑣 ≤ 12.25 believe that their opponents

are rational. Thus, the large difference between the empirical value distributions in 𝐷𝑆
indicates that the 𝐷𝑆 ≿ 𝐼𝑅 group is more likely to believe in rationality relative to the
1In this discussion of empirical value distributions, all reported 𝑝-values are associated with two-sample
Kolmogorov-Smirnov tests.
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Figure B.1: Empirical Value Distributions of All Games by the Ranking of 𝐼𝑅 and𝐷𝑆 for
All 𝑛 = 343Choices. Top Row: The diagnostic games. Left: 𝐼𝑅; Right: 𝐷𝑆. Bottom Row:
The control games. Left: 𝑀𝑆; Right: 𝑁𝐸.

𝐷𝑆 ≺ 𝐼𝑅 group.
For the two control games, the empirical value distributions by ranking of 𝐼𝑅 and

𝐷𝑆, the two groups of interest, overlap and cross each other several times as well. Thus,

it is not surprising that no statistically significant differences can be detected (𝑝 ≥ 0.481).
This also supports the hypothesis that the relative preference for𝐷𝑆 over 𝐼𝑅 between the

two groups is not driven by a preference for small games or Nash equilibrium in pure

strategies per se as these two groups value𝑀𝑆 and𝑁𝐸 similarly.

So far we only visualized the empirical value distributions separately for each game

by the ranking of the set of diagnostic games. In Figure B.2, we show the empirical value
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distributions for all games by the ranking of 𝐼𝑅 and𝐷𝑆.

Figure B.2: Empirical Value Distributions of 𝐼𝑅,𝐷𝑆,𝑀𝑆, and𝑁𝐸 by Ranking of 𝐼𝑅 and
𝐷𝑆

For the 𝐷𝑆 ≿ 𝐼𝑅 group, the valuation distribution for 𝐷𝑆 first-order stochastically

dominates the valuation distributions of the two control games (both 𝑝 < 0.001). Fur-

ther, no statistical differences are observed when comparing the distributions of the two

control games (𝑝 = 0.429). By contrast, when 𝐷𝑆 ≺ 𝐼𝑅, the valuation distributions of

all small games overlap and are statistically indistinguishable from each other with the

exception of 𝐷𝑆 and 𝑁𝐸 (𝑝 = 0.035).2 We interpret these findings as further evidence

that for approximately half of our participants, 𝐷𝑆 is indeed very attractive because it

permits easier modeling and hence predicting the opponent’s choices. The other half of

participants, however, appear not to distinguish between the small games and, inter alia,

have strictly higher valuations for 𝐼𝑅 than𝐷𝑆.

C Further Analysis of Opponent Type

By exploiting the cardinal information collected in the valuation task, we are able to

detect not only ordinal differences in the ranking over the diagnostic games but alsomore

nuanced differences: whether 𝐷𝑆 becomes relatively more or less attractive conditional
2Differences in valuation distributions are not significant: 𝑝 = 0.244 from comparing games 𝐷𝑆 vs. 𝑀𝑆
and 𝑝 = 0.305 for𝑀𝑆 vs. 𝑁𝐸, respectively.
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on both the preference relation over𝐷𝑆 and 𝐼𝑅 as well as the opponent’s sophistication.

The corresponding difference in differences of valuations 𝑣𝐼𝑅 −𝑣𝐷𝑆 by opponent type are

depicted in Figure C.1.

PhD: IR ≻ DS & UG: IR ≻ DS PhD: IR ≻ DS & UG: IR ≾ DS

PhD: IR ≾ DS & UG: IR ≻ DS PhD: IR ≾ DS & UG: IR ≾ DS

Figure C.1: Difference in Differences of Valuations of 𝐼𝑅 and 𝐷𝑆 by Ranking of 𝐼𝑅 and
𝐷𝑆 and by Opponent Type

As visualized in Figure C.1, depending on the preference relation over the games

by opponent type, participants indeed value the games differently when facing either

an undergraduate student or a Ph.D. student in Economics. On one hand, when 𝐷𝑆 ≿
𝐼𝑅 against both types, 𝐷𝑆 becomes relatively less valuable when playing against a Ph.D.

student in Economics. This difference is statistically significant at the 5%-level using both

t-test and Wilcoxon’s signed-rank test (𝑝 < 0.026). On the other hand, when 𝐷𝑆 ≺ 𝐼𝑅
against both types of opponents, 𝐷𝑆 becomes relatively more valuable when facing a

Ph.D. student in Economics. This difference, however, is not statistically significant (𝑝 >
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0.257 for both tests). Naturally, whenever 𝐷𝑆 ≺ 𝐼𝑅 against one opponent type but not

the other, the differences are statistically significant at the 1%-level (all 𝑝 < 0.001). The

direction of these asymmetries in the observed choices by opponent type surprised us.

If anything, we conjectured𝐷𝑆 becoming relativelymore attractive when playing against

a Ph.D. student in Economics conditional on ranking 𝐷𝑆 above 𝐼𝑅 (possibly because

experiencing difficulties in predicting the opponent’s choices).3

D Robustness Test

As a further robustness test and to complement the non-parametric analysis and key

elements discussed in Section 4, we ran ordinary least-square regressions with random

effects controlling for order effects as well as the opponent order. In particular, we re-

gressed the difference in valuations of 𝐼𝑅 and 𝐷𝑆, 𝑣𝐼𝑅 − 𝑣𝐷𝑆, on the opponent dummy

PhD, which is 0 when facing an undergraduate student and 1 when playing against a

Ph.D. student in Economics, and the valuations for both𝑀𝑆 and 𝑁𝐸. Further, we in-

clude the game order dummy DS before IR, which is 0 if 𝐼𝑅 is displayed before𝐷𝑆 and 1

if 𝐷𝑆 is shown before 𝐼𝑅. In addition, we also include the opponent order dummy PhD

before UG, which is 0 if participants played first against an undergraduate student and

afterwards against a Ph.D. student in Economics in the first part of the experiment and

1 if the order is reversed.

To account for the fact that we observe each participant repeatedly and behavior

across games for the same participant is not independent, we treat each participant as our

units of statistically independent observations. We first split our sample by preference

relation over the set of diagnostic games and opponent type (= 2 × 2) as in Table ?? and

then estimate the model using the full sample. As above, we exclude participants from

our analysis whose valuations exceed the maximum possible payoff given their action,
3The findings do not qualitatively change when we restrict attention to those participants who hold the
belief that their opponent is rational. When 𝐷𝑆 is ranked above 𝐼𝑅 against both types, 𝐷𝑆 still becomes
relatively less enticing when playing against a Ph.D. student in Economics. This difference is statistically
significant at the 5%-level using both t-test and Wilcoxon’s signed-rank test (𝑝 < 0.034). When 𝐷𝑆
is ranked below 𝐼𝑅, 𝐷𝑆 still becomes relatively more alluring when facing a Ph.D. student. It is not
statistically significant (𝑝 > 0.160 for both tests), as in the aggregate-choice analysis. As above, when
𝐷𝑆 is ranked above 𝐼𝑅 against one opponent type but not the other, the differences are also statistically
significant at the 1%-level (all 𝑝 < 0.008).
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those who played any other action than 𝑐 in 𝐷𝑆, and those who are inconsistent with

best-responding in𝑀𝑆 and𝑁𝐸.4 Table D.1 lists the results from this analysis.

Table D.1: OLS Estimations with Random Effects of Difference in Valuations of 𝐼𝑅 and
𝐷𝑆

Ranking by UG: 𝐼𝑅 ≻ 𝐷𝑆 UG: 𝐼𝑅 ≾ 𝐷𝑆 UG: 𝐼𝑅 ≻ 𝐼𝑅 UG: 𝐼𝑅 ≾ 𝐷𝑆 All
Opponent PhD: 𝐼𝑅 ≻ 𝐷𝑆 PhD: 𝐼𝑅 ≻ 𝐷𝑆 PhD: 𝐼𝑅 ≾ 𝐷𝑆 PhD: 𝐼𝑅 ≾ 𝐷𝑆

𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆 𝑣𝐼𝑅 − 𝑣𝐷𝑆
Intercept 2.571∗∗∗ −0.743 2.772 −1.566∗ 0.246

(0.933) (1.338) (1.742) (0.925) (0.866)
PhD −0.038 3.308∗∗∗ −2.620∗∗∗ 0.357∗∗ 0.291∗

(0.135) (0.378) (0.502) (0.179) (0.173)
𝑣𝑀𝑆 -0.050 -0.119 -0.216 0.079 -0.071

(0.091) (0.111) (0.174) (0.065) (0.067)
𝑣𝑁𝐸 -0.018 0.046 0.105 -0.025 0.073

(0.088) (0.119) (0.160) (0.076) (0.073)
𝐷𝑆 before 𝐼𝑅 -0.030

(0.277)
𝑃ℎ𝐷 before 𝑈𝐺 -0.197

(0.281)
𝜎𝜖 0.619 1.276 1.141 0.884 1.375
𝜎𝑢 1.241 0.549 1.215 1.025 1.471
N 96 53 33 109 291
(Between) R-squared 0.030 0.514 0.426 0.031 0.012

∗∗∗Significant at the 1 percent level; ∗∗Significant at the 5 percent level; ∗Significant at the 10 percent
level

We find a strong effect of the observed characteristic of the opponent, Ph.D., on the

difference in valuations of 𝐼𝑅 and 𝐷𝑆 for all ranking as long as 𝐷𝑆 ≿ 𝐼𝑅 against at least
one opponent type. This is alsomildly true for the full sample, irrespective of the ranking

over the set of diagnostic games. As expected, we do not find a strong effect of type

when 𝐷𝑆 ≺ 𝐼𝑅. These estimation results are in line with the difference in differences of

valuations by opponent type and by ranking of 𝐼𝑅 and𝐷𝑆, as depicted in Figure C.1. We

do not find any indication of order effects, either due to presenting participants 𝐼𝑅 or𝐷𝑆
before the other as well as playing each of the four games first against an undergraduate

student or a Ph.D. student in Economics in the first part of the experiment.
4We replicated the same analysis on the entire sample and report the results in the Online Appendix.
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E Detailed Non-Choice Data Analysis

In this section, we report detailed results that were only concisely presented in the main

text in Section 4.4. As text data required more data cleaning and preprocessing, we per-

formed the following steps. For normalization, we converted the data to a consistent for-

mat, e.g., lowercasing. Next, in terms of tokenization we split text into words, phrases,

symbols, or other meaningful elements. Further, we removed common words that may

not add value to the analysis, i.e., stop word removal. In addition, we reduced words to

their base or root form, that is, stemming or lemmatization. Lastly, in order to handle

special characters and punctuation, we removed or replaced non-alphanumeric charac-

ters as necessary.

E.1 Exploratory Data Analysis

In order to identify the most common words or phrases, we begin with a simple and

straightforward frequency analysis. The top ten most common words across the entire

dataset, excluding common English stop words are “player” (200 occurrences), followed

by “choose (198), “highest” (113), “12” (66), “option” (64), “best” (56), “action” (49),

“earnings” (48), “pick” (48), and “row” (47), respectively.

Next we turn to length analysis, which involves examining the distribution of text

lengths across our dataset to gain insights into the structure and the nature of the text by

ranking over the two diagnostic games and for each game separately. Figure E.1 visual-

izes the implementation of the two diagnostic games. It appears that participants tend

to write more detailed comments, measured by average word and sentence count, about

their reasoning in games that they prefer. For example, participants who rank 𝐼𝑅 above
𝐷𝑆 write, on average, 35.03 (1.5) words (sentences) in 𝐼𝑅 but only 29.33 (1.14) words

(sentences) in 𝐷𝑆. By contrast, those who rank 𝐷𝑆 above 𝐼𝑅 write 31.53 (1.33) words

(sentences) in𝐷𝑆 and just 30.25 (0.97) words (sentences) in 𝐼𝑅.
We move on to visualize key terms and their frequencies as word clouds in Figure

E.2.

In the next step of our exploratory analysis, we focus on differences in participants’
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Figure E.1: Average Word Count (top) and Average Sentence Count (bottom)

Figure E.2: Word Clouds by the Ranking of 𝐼𝑅 and 𝐷𝑆. Top Row: 𝐼𝑅 Game; Bottom
Row: 𝐷𝑆 Game. Left Column: 𝐼𝑅 ≻ 𝐷𝑆; Right Column: 𝐼𝑅 ≾ 𝐷𝑆.
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notes. In particular, we highlight the unique words most commonly used within each

ranking over the games. Figure E.3 illustrates these unique keywords by ranking and for

each game separately.

Figure E.3: Unique Keywords Used by the Ranking of 𝐼𝑅 and 𝐷𝑆. Left Column: 𝐼𝑅
Game; Right Column: 𝐷𝑆 Game.

Before we conclude our exploratory analysis, we delve into complexity indicators.

As we have seen in Figure E.1, participants’ ranking over the two diagnostic games, as

inferred by their choices, is associated with higher average word and sentence counts.

The frequency of complexity-related keywords within notes written could serve as a

proxy for participants’ ability to express more complex reasoning processes in the di-

agnostic game that they rank above the other. Here, we focus on two specific measures

that can serve as proxies for the complexity discussed: complexity keyword frequency

and average comment length. First, the frequency of predefined complexity-related key-

words within participants’ notes can serve as a direct indicator of a strategic complexity

discussion. Higher frequencies of these keywords may suggest more in-depth strate-

gic considerations. The complexity keywords used in the analysis are terms that hint at

strategic thinking, decision-making processes, and considerations of various options or

outcomes. Examples of such keywords are “strateg,” “decid,” “choos,” “option,“ “think,”

“consider,” “outcome,” “possibl,” or “predict.” Second, longer comments might indicate

more elaborate discussions, potentially reflecting the ability to express higher strategic

complexity. The average note length for each ranking over 𝐷𝑆 and 𝐼𝑅 can thus serve as

a proxy for the level of detail and complexity in the discussions. Figure E.4 illustrates
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these two complexity measures.

Figure E.4: Complexity Measures by Ranking of 𝐼𝑅 and𝐷𝑆 and 𝐼𝑅 and𝐷𝑆 Game. Left:
Complexity Keyword Frequency; Right: Average Length of Notes Taken.

In𝐷𝑆, notes made by those who rank𝐷𝑆 above 𝐼𝑅 tend to includemore complexity-

related keywords and are slightly longer on average compared to notes taken by partici-

pantswho rank𝐷𝑆 below 𝐼𝑅. This is suggestive evidence that discussions involving those

who prefer 𝐷𝑆 over 𝐼𝑅 might delve deeper into strategic deliberation when it comes to

predicting behavior in𝐷𝑆. In 𝐼𝑅, however, both ranking types show a higher frequency

of complexity keywords compared to𝐷𝑆, with those who rank 𝐼𝑅 above𝐷𝑆 notes being

significantly longer on average. This is suggestive evidence that 𝐼𝑅 prompts more com-

plex strategic deliberations, especially for 𝐼𝑅 ≻ 𝐷𝑆, where the discussions are not only

more frequent in terms of complexity-related keywords but also more detailed, as indi-

cated by the longer comment length. Overall, these findings suggest that the strategic

complexity discussed in participants’ notes varies by both diagnostic game and ranking

over the games, with discussions in𝐷𝑆 by those who rank𝐷𝑆 above 𝐼𝑅 and discussions

in 𝐼𝑅 by those who rank 𝐼𝑅 above𝐷𝑆 exhibiting higher levels of complexity, as indicated

by both the frequency of complexity-related keywords and the average comment length.
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E.2 Feature Extraction

We now proceed with feature extraction such as Bag-of-Words (BoW) to represent the

notes to “their future-self ” as amatrix of token counts; Term-Frequency-Inverse-Document-

Frequency (TF-IDF) to reflect the importance of a term to a comment relative to the over-

all corpus; as well as Word-Embeddings and thus use pre-trained vectors like Word2Vec

and GloVe to capture semantic meanings of words. In Figure E.5, we highlight and visu-

alize theword embeddings forwords found in our dataset, projected into twodimensions

using principal component analysis (PCA) for ease of visualization. Each point repre-

sents a word, and its position in the space is determined by the PCA transformation

of the document-term matrix, simulating how words might be represented in a high-

dimensional embedding space.

This serves as a visual approximation of word relationships based on their occur-

rence across notes written by participants. Words that are closer together in this two-

dimensional space are more likely to have similar contexts within the dataset. By con-

trast, words that are further apart are less related.e22

E.3 Modeling and Analysis

Let us now turn tomore elaboratemodeling and techniques. Webeginwith topic analysis

on participants’ notes and use Latent-Dirichlet-Allocation (LDA), a popular method for

topic modeling. This approach allows us to identify distinct topics present in the notes

and to understand the distribution of these topics across the two games and rankings

over the games.

In turn, we examine what topics are most relevant or correlate with participants’

ranking over the two diagnostic games and the two games of interest, respectively. To

do so, we study the distribution of topics within each note to participants’ “future self ”

and then aggregate this information by ranking and game. We assign themost dominant

topic to each note based on the LDA model output and compute the proportion of each

topic within each type–game combination.5 Figure E.6 visualizes the topic distribution
5In this section of the Appendix, we use the terms “type” and “ranking over the games” interchangeably.
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IR Game: IR ≻ DS IR Game: IR ≾ DS

DS Game: IR ≻ DS DS Game: IR ≾ DS

Figure E.5: Simulated Word Embeddings by the Ranking of 𝐼𝑅 and 𝐷𝑆. Top Row: 𝐼𝑅
Game; Bottom Row: 𝐷𝑆 Game. Left Column: 𝐼𝑅 ≻ 𝐷𝑆; Right Column: 𝐼𝑅 ≾ 𝐷𝑆.

of the two diagnostic games by participants’ ranking over these.

These proportions indicate qualitative evidence that a higher emphasis on Topic 3

(in both games) is associated with ranking 𝐷𝑆 above 𝐼𝑅, while ranking 𝐼𝑅 above 𝐷𝑆 is
associated with more emphasis on Topic 2 in𝐷𝑆 and Topics 4 and 5 in 𝐼𝑅.

In the next step, we focus on sentiment analysis to determine the sentiment expressed

in the notes, in particular, whether participants are more positive, negative, or neutral in

their expressions. Average sentiment polarities by ranking over the two diagnostic games

differ significantly. For those who rank 𝐷𝑆 above 𝐼𝑅, the average sentiment polarity is

approximately 0.162 while those participants who prefer 𝐼𝑅 over 𝐷𝑆 display an average
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Table E.1: Topic Analysis Using Latent Dirichlet Allocation

Topic Keywords Interpretation

1 choose, option, think, player, best, Seems to be about making decisions or choices,
highest, ll, possible, thinks, going considering the best or highest options available.

2 12, choice, 13, 10, 15, 11, Appears to focus on numerical aspects or
action, earnings, choices, ca quantitative choices, potentially related to

specific actions or earnings.

3 player, highest, chose, option, choose, Similar to Topic 1, this topic also revolves around
pick, best, earning, earnings, make decision-making, focusing on choosing the best

or highest earning options.

4 player, row, highest, choose, Could be discussing strategies involving rows or
action, best, 12, possible, 14, second positions, with a focus on choosing the best

or highest-ranking actions.

5 earn, pick, earning, player, choose, highest, Centered around maximizing earnings or benefits,
column, earnings, maximize, max with emphasis on picking or choosing options that

yield the highest earnings.

Figure E.6: Topic Distribution by Ranking of 𝐼𝑅 and𝐷𝑆. Games on the Left: 𝐷𝑆 Game;
Games on the Right: 𝐼𝑅 Game.

sentiment polarity of roughly 0.128.

These results suggest that participants who rank 𝐷𝑆 above 𝐼𝑅, on average, express
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Figure E.7: Average Sentiment Polarity by Ranking of 𝐼𝑅 and𝐷𝑆. Left: 𝐷𝑆Game; Right:
𝐼𝑅 Game.

comments with slightly more positive sentiment compared to those who prefer 𝐼𝑅 over
𝐷𝑆. However, as Figure E.7 highlights and in line with participants ranking over the

games, whenever𝐷𝑆 is ranked above (below) 𝐼𝑅 the notes to their “future-self ” indicate

that they are also more positive (negative) in𝐷𝑆 compared to 𝐼𝑅.
We complement our sentiment analysis by analyzing the use of modal verbs that

might indicate certainty or predictions in participants’ notes to further explore confi-

dence and prediction behavior. Figure E.8 illustrates the average certainty modal verbs

count by ranking over the games and𝐷𝑆 and 𝐼𝑅, respectively.
The analysis ofmodal verbs that offers suggestive evidence of certainty or predictions

shows that whenever a given participant ranks one diagnostic game over the other, then

their choices are also associated with more certainty modal verbs per note written. For

those who rank 𝐷𝑆 above 𝐼𝑅, the average verbs count decreases from 0.914 to 0.478

when moving from 𝐷𝑆 to 𝐼𝑅, suggesting a stronger confidence or a greater willingness

to make firm predictions in𝐷𝑆. By contrast, participants who prefer 𝐼𝑅 over𝐷𝑆 feature
an increase in their average certainty modal verbs count from 0.698 in𝐷𝑆 to 0.889 in 𝐼𝑅,
potentially indicating an increased confidence or predictive stance in 𝐼𝑅.

Finally, we conclude our in-depth text analysis with a cluster analysis where we group

texts based on similarity of content. We perform a cluster analysis on participants’ notes,
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Figure E.8: Average Certainty Modal Verbs Count by Ranking of 𝐼𝑅 and 𝐷𝑆. Left: 𝐷𝑆
Game; Right: 𝐼𝑅 Game.

use the document-termmatrix (DTM), and apply a clustering algorithm to group partic-

ipants’ notes to their “future-self ” based on their textual content. The common approach

for clustering textual data that we follow here is the𝐾-Means algorithm, which partitions

the notes into clusters with similar word usage patterns. In a first step, we use both the

elbow method and the silhouette score based on our dataset’s characteristics to deter-

mine the appropriate number of clusters, eventually settling on five clusters.6 Next, we

apply the𝐾-Means clustering algorithm to the DTM. To understand the content of each

cluster identified, we offer here the most frequent and distinctive words in participants’

notes belonging to each cluster. This involves analyzing the text data to identify key-

words that are particularly representative of the comments within each cluster. These

are summarized in Table E.2.

These keywords offer some qualitative insights into the thematic content of each clus-

ter. While Clusters 1 and 4 seem to focus on numeric values and options, possibly re-

lated to strategic decisions or evaluations within games, other clusters like Cluster 2 em-

phasize decision-making with terms like “choose” and “chooses,” alongside positional

references like “highest” and “table.” By contrast, Cluster 3 reflects contemplation and
6Details are available upon request.
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Table E.2: Cluster Analysis Keywords

Cluster Keywords

1 player, row, 12, value, gets, 10, option, 13, highest, 16
2 highest, player, choose, possible, option, table, chooses, chose, column, assuming
3 choose, player, think, best, will, earnings, thinks, option, highest, maximize
4 choose, 12, highest, pick, player, best, choice, 10, chose, earn
5 player, action, choose, earnings, highest, best, think, pick, chose, option

strategy with words like “think,” “best,” and “maximize,” possibly indicating a focus on

optimizing outcomes. Lastly, Cluster 5 mixes elements of decision-making like “choose”

or “option” with an emphasis on outcomes as, e.g., “earnings” or “highest.” Figure E.9

visualizes the discussions and considerations present within participants’ notes, catego-

rized by the clustering algorithm based on textual content similarities by ranking over

the diagnostic games and for each of the games individually.

Figure E.9: Topic Distribution by Ranking of 𝐼𝑅 and𝐷𝑆. Games on the Left: 𝐷𝑆 Game;
Games on the Right: 𝐼𝑅 Game.

As can be seen in Figure E.9, clusters are differently distributed across the two diag-

nostic games and across the ranking over the games. In particular, positive sentiment to

Cluster 1 is associated with ranking 𝐼𝑅 above 𝐷𝑆, while positive sentiment to Cluster 3

is associated with ranking𝐷𝑆 above 𝐼𝑅.

20



Magic Mirror on the Wall,
Who Is the Smartest One of All?

Online Appendix: Experimental Interface
— Implementation and Main Experiment —

Yoram Halevy Johannes C. Hoelzemann Terri Kneeland
January 12, 2025

𝑡 = 0

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

𝑡 = 5

𝑡 = 6

𝑡 = 7

𝑡 = 8

Decisions for Player 𝑍 collected:
– auxiliary sessions with UG & Econ Ph.D. students

Instructions for Part I:
– screen locked for ten minutes

Nine incentivized quiz questions

Four decision problems facing Player 𝑍 of two types:
– decision problems in random order
– opponent’s order randomized
– notes to (future) self
– action choice buttons locked for three minutes
Four decision problems revisited:
– confirmation of action choices
– editable notes to (future) self displayed

Instructions for Part II:
– screen locked for ten minutes

Five incentivized quiz questions

Valuation task:
– four decision problems in same order
– opponent’s order reversed
– notes to (future) self displayed

Payment details determined and displayed

↓ indicates tasks in chronological order; ↷ indicates decisions used for
later task; 99K indicates decisions used to determine payment.

Figure 1: Timeline of the Experiment
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