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Abstract. 

For the last 60 years, Expected Utility Theory, Rational Expectations, and a tacit presumption of 

symmetry in outcome distributions have been the micro and macro foundations of decision-making 

paradigms which seek optimum risk tempered expected outcomes. The Sharpe ratio, in its use in 

evaluating portfolio performance and its focus on average returns, epitomizes the practice. When 

outcome distributions are symmetric unimodal, expected and most likely outcomes coincide, and 

choices can be construed as being made on the basis of either. However, when outcome distributions are 

asymmetric or multi-modal, expected outcomes are not the most likely and, in contradiction of rational 

expectations assumptions, expectations-based choice will engender systematic information laden 

surprises raising questions as to whether choice should be most likely or expected outcome based. Here, 

the impact of switching to a Most Likely view of the world is examined and “Most Likely” focused 

versions of the Sharpe and Sortino Ratios are introduced. Simple exercises performed on commonly used 

benchmark portfolio and stock returns data demonstrate that portfolio orderings change substantially 

when the focus is switched to most likely outcomes, all of which gives some pause for thought. 
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Introduction. 

Following von Neumann and Morgenstern (1944), Markowitz (1952, 1956, 1959), Muth (1961), Nerlove 

(1958) and Sharpe (1964), rational and adaptive expectations assumptions, expected utility theory, 

mean-variance analysis and a predisposition toward distributional symmetry have been the analytic 

underpinnings of choice under uncertainty models promoting the use of expected, i.e. average outcomes 

as the basis for choice. Such models have found expression in many micro and macro fields of 

economics, life-cycle income constrained consumption paths, human capital - career choice, capital asset 

pricing models and financial investment decisions of firms and portfolio selection to name but a few. 

Given historical information and a presumption that future patterns will be similar to past patterns, risk 

averse decision makers are assumed  to choose between available alternatives on the basis of what their 

expected outcomes and associated uncertainties will be by comparing the historical risk adjusted 

average outcome of each alternative under consideration. The question raised here is why focus on 

expected outcomes if they are not the most likely outcomes? 

 

For some intuition, suppose two gamblers, one a “Rational Expector”, the other a “Most Likely Hoper” 

are confronted with a potentially biased die with an unknown probability density function. They are 

allowed to observe and record repeated throws of the die before placing a bet on the outcome of the 

final throw. The Rational Expector would take the average value of the scores and base their bet on that 

value whereas the Most Likely Hoper would compute the relative frequency of the scores and bet on the 

most frequently observed value. If the true distribution was 1 (1/12) 2 (1/3) 3 (1/4) 4 (1/6) 5 (1/6) 6 (0) , 

the expected value- based bet would be 3 and be correct 25% of the time, the most likely based bet 

would be 2 and correct 1/3 of the time. An important issue to be addressed is when does the “expected” 

vs “most likely” distinction matter? It is readily shown that a gambler cannot do better than base the 

choice on the most likely outcome since when the outcome distribution is symmetric and unimodal the 

most likely outcome will be the expected outcome and when it is not, they are not. Even then, the 

distributional skewness may be so limited that the distinction is practically and empirically 

inconsequential, rendering the expected and the most likely good approximations of each other. 

Theoretically the distinction affects the way that models are formulated but practically it is of no 

consequence.  

 



In the case of portfolio selection, the Sharpe Ratio1 (Sharpe 1966, 1994) and its downside risk analogue 

the Sortino Ratio (Sortino and Price 1994) have been the workhorses, and each has an expected 

outcome focus. Much like its inverse, the Coefficient of Variation (Pearson 1896), the Sharpe Ratio is 

focused on the mean and a measure of variation around it, with the Expectations or “Averaging” 

Operator and its Variation2 looming large in the analyses. The relevance of the Sharpe Ratio and the 

associated statistical inference in this context is based upon assumptions of normality or at least 

symmetric unimodality (Kan and Zhou 2007, Tu and Zhou 2011) even though many historically based 

returns distributions are demonstrably asymmetric with mounting evidence that such skewness has 

been priced in the market3. Indeed, in order to retain the basic form of the Sharpe Ratio, analysts have 

gone to great lengths to adjust the inference process to accommodate non-normality of returns (see 

Bailey and López de Prado 2012, Kourtis 2016, Ledoit and Wolf 2008 for example). All of which begs the 

question, why use the Sharpe Ratio with its mean and standard deviation focus in the first place? Unless 

an outcome distribution is symmetric and unimodal, what is expected to happen will not be the same as 

what is most likely to happen.  

 

When investors base their judgements on expected outcomes in the context of skewed outcome 

distributions, contrary to the rational expectations hypothesis there will be systematic information laden 

surprises. Left skewness will result in investors being pleasantly surprised on average since they will 

receive better than expected returns relatively more frequently than worse than expected returns. On 

the other hand, for similar reasons, right skewness will result in investors being disappointed on average. 

Not that basing their judgements on Most Likely outcomes would result in the absence of systematic 

surprises, since only when the median outcome is the focus will it be the case that the relative frequency 

of pleasant and unpleasant surprises will be the same. However, when they are different, most likely 

 
1 or its squared value (Kourtis 2016) 
2 Given 𝑈(𝑥) an individuals’ Utility or Value Function is a monotonic increasing function of the random outcome 
variable 𝑥 that they confront, where the possible outcomes are described by the probability density function 𝑓(𝑥), 

Expected Utility (𝐸(𝑈(𝑥))) is defined as 𝐸(𝑈(𝑥)) = ∫ 𝑈(𝑥)𝑓(𝑥)𝑑𝑥 (effectively the Average Utility of 𝑥 generated 

by the outcome distribution 𝑓(𝑥)) and its standard deviation 𝑆𝐷(𝑈(𝑥)) = √∫ (𝑈(𝑥) − 𝐸(𝑈(𝑥)))
2

𝑓(𝑥)𝑑𝑥 . 

Letting 𝑈(𝑥) = 𝑥 establishes the connection with the Sharpe Ratio. 
3 Using a variety of techniques to measure skewness, several papers have confirmed the basic prediction that more 
positively skewed stocks will have lower average returns (Boyer, Mitton, and Vorkink 2010; Bali, Cakici, and 
Whitelaw 2011; Conrad, Dittmar, and Ghysels 2013). In essence skewness is being priced in the market – positively 
skewed securities will be overpriced relative to the price it would command in a market with expected utility 
investors and would thus earn a lower average return (Barberis and Huang 2008). 



based anticipated outcomes will always be realized more frequently than expectations based anticipated 

outcomes. 

The simplicity of the averaging operator has clearly been instrumental in the formulation of these 

indices, it is much easier to compute historical averages of alternative outcome variables than it is to 

compute their historically most likely outcomes by identifying their respective modal locations4. Indeed, 

when distributions are symmetric unimodal, the variation muted most likely outcome would be the 

same as the variation muted expected outcome. But, given the possibility of computing modal outcomes 

and the variation around them (Bickel 2003) and using the same process of projecting the past onto the 

future, would it not be more rational to compare the variation muted most likely outcomes, rather than 

the variation muted average (and somewhat less likely) outcomes? 

In the following Section 1 explores the notion that most likely outcomes could differ from expected 

outcomes and develops most likely outcome-based Sharpe and Sortino Ratios. Section 2 reports a 

comparison of the two alternative  expectations based and most likely based Sharpe and Sortino 

measures for evaluating sets of portfolios drawn from the Fama and French data library and examines 

the daily stock returns of 441 stocks from the S&P500 for potential mean and modal differences. 

Conclusions are drawn in Section 3. Since these ideas are equally applicable to situations where outcome 

choices are ordered categorical in nature, the equivalent Most Likely Sharpe ratio for the ordinal 

outcome situation is developed in the appendix.  

Section 1. Introducing the  Most Likely Focused Sharpe and Sortino Ratios.  

To fix ideas, for a continuously measured excess return variable 𝑥, with finite lower and upper bounds 𝑊 

and 𝑌 respectively so that −∞ < 𝑊 < 𝑥 < 𝑌 < ∞,  denote the asset type 𝑡 excess returns distribution 

𝑓𝑡(𝑥) with a corresponding 𝐶𝐷𝐹: 𝑃𝑡(𝑋 < 𝑥) = 𝐹𝑡(𝑥) = ∫ 𝑓𝑡(𝑧)𝑑𝑧
𝑥

𝑊
, Survival Function 𝑆𝐹: 𝑃𝑡(𝑋 ≥ 𝑥) =

𝑆𝑡(𝑥) = 1 − 𝐹𝑡(𝑥), mean  𝜇𝑡 = 𝐸𝑓𝑡(𝑥)(𝑥) = ∫ 𝑥𝑓𝑡(𝑥)𝑑𝑥
𝑌

𝑊
 and variance 𝜎𝑡

2 = 𝐸𝑓𝑡(𝑥)((𝑥 − 𝜇𝑡)2) =

∫ (𝑥 − 𝜇𝑡)2𝑓𝑡(𝑥)𝑑𝑥
𝑌

𝑊
.  Note that integrating the mean formula by parts reveals it to be the integral of the 

 
4 Finding the average value of a collection of numbers is  a simple exercise when compared to estimating the mode 
via Half Sample techniques (Bickel and Frühwirth 2006) or locating the maximal value of the kernel estimate of a 
density function (Pagan and Ullah 1999).  



survival function5 so that 𝜇𝑡 = ∫ 𝑆𝑡(𝑥)𝑑𝑥
𝑌

𝑊
 which yields an alternative interpretation of the mean as the 

cumulated chances of higher outcomes than 𝑥 over its range which will be useful when contemplating 

ordinal data environments.  

Note that 𝜇𝑡 is very much the focus of the variance statistic and since: 

𝜕𝜎𝑡
2

𝜕𝜇𝑡
= −2 ∫ (𝑥 − 𝜇𝑡)

𝑌

𝑊
𝑓𝑡(𝑥)𝑑𝑥 = 0 => ∫ (𝑥)

𝑌

𝑊
𝑓𝑡(𝑥)𝑑𝑥 = ∫ 𝜇𝑡

𝑌

𝑊
𝑓𝑡(𝑥)𝑑𝑥 = 𝜇𝑡  , 𝑤ith 

𝜕2𝜎𝑡
2

𝜕𝜇𝑡
2 = 2 > 0 

it is the value of 𝑥 that minimizes 𝜎𝑡
2 which implies that a similar variation measure focused on any 

other value of 𝑥 would invariably be at least as large. Furthermore, unless the distribution is 

symmetric unimodal, 𝜇𝑡 is not the most likely excess return to be observed, indeed in heavily bimodal 

distributions it can be a very unlikely outcome which gives pause for thought as to why one would want 

to focus any risk adjusted returns measure on such an unlikely outcome. 

To illustrate these ideas, consider 𝑥 to be the net return on an investment, where for simplicity the 

monotonic increasing Utility or Value function is 𝑈(𝑥)  =  𝑥 and consider 𝑓𝑎(𝑥) and 𝑓𝑏(𝑥), two 

synthetically contrived negatively skewed excess returns distributions designed to make the point,  𝑓𝑎(𝑥) 

is an asymmetric unimodal distribution and 𝑓𝑏(𝑥) is an asymmetric bimodal distribution, each are 

illustrated in figures 1 and 2. In these examples, Expected or Average Value is given by 𝐸(𝑈(𝑥)) =

∫ 𝑈(𝑥)𝑓(𝑥)𝑑𝑥 = �̅�, which is the average or expected value of 𝑥 and the Most Likely Value is given by 

�̃�: 𝑓(�̃�) = max
𝑎𝑙𝑙 𝑥

𝑓(𝑥), which is the modal value of 𝑥. The Odds Ratio  𝑓(�̃�)/𝑓(�̅�) ≥ 1 indicates how 

much better the chance is of observing  �̃� rather than �̅�. Note that when 𝑓(𝑥) is unimodal and 

symmetric 
𝑓(�̃�)

𝑓(�̅�)
= 1, otherwise 

𝑓(�̃�)

𝑓(�̅�)
> 1. When 𝑓(𝑥) is left skewed �̃� > �̅� so the Average Return 

understates the Most Likely Return and when 𝑓(𝑥) is right skewed �̃� < �̅� so the Average Return 

overstates the Most Likely Return. Variation around the average return ∫(𝑥 − �̅�)2𝑓(𝑥)𝑑𝑥 (an estimate 

of the magnitude of risk associated with the average return) will always be lower than the corresponding 

variation around the most likely return ∫(𝑥 − �̃�)2𝑓(𝑥)𝑑𝑥 since the mean is the value which minimizes 

the variation function. 

 
5 Given the integration by parts rule: ∫ 𝑢(𝑥)𝑣′(𝑥)𝑑𝑥 = [𝑢(𝑥)𝑣(𝑥)]𝑊

𝑌 − ∫ 𝑢′(𝑥)𝑣(𝑥)𝑑𝑥
𝑌

𝑊

𝑌

𝑊
 letting 𝑢(𝑥) = 𝑥 and 

𝑣′(𝑥) = 𝑓(𝑥), it can be seen that 𝜇 = ∫ 𝑥𝑓(𝑥)𝑑𝑥 = [𝑥𝐹(𝑥)]𝑊
𝑌 − ∫ 𝐹(𝑥)𝑑𝑥

𝑌

𝑊

𝑌

0
= 𝑌 − 𝑊 − ∫ 𝐹(𝑥)𝑑𝑥 =

𝑌

𝑊

∫ (1 − 𝐹(𝑥))𝑑𝑥 =
𝑌

𝑊
∫ 𝑆(𝑥)𝑑𝑥

𝑌

𝑊
. 



Notice that, while Portfolio b yields a greater Expected Return than Portfolio a, its Most Likely return is 

lower, basically because the distributions have somewhat different topographies so the ordering of the 

portfolios could differ dependent on whether the ordering is based upon the most likely outcome or the 

average and expected outcome.  

 

*This distribution was constructed from the log normal distribution of a random variable 𝑦 where  

ln(𝑦) ~𝑁(0,0.5) & 𝑥 = 3.5 − 𝑦 Mean   =    2.3669%   f(2.3669%)= 0.6852:  Mode =  2.7212%  f(2.7212)= 0.8990 
odds ratio 1.3120 

 

*This distribution was constructed from a mixture of two normals with an 8% chance of N(1,0.2) and a 92% chance 

of N(2.5,0.2). Mean= 2.38% f(2.38%)=0.3948; Mode= 2.5%; f(2.5%)=0.4105,  Odds Ratio 1.0398    

Sharpe and Sortino ratios (Sharpe 1966, Sortino and Van Der Meer 1991)6 epitomize characterizations of 

the return/risk relationship of interest in the portfolio choice problem. Implicitly assuming that asset 

 
6 Sortino Ratios use the magnitude of downside variation (basically the square root of the average squared 
deviations from the mean of all realizations below the mean) as a measure of risk whereas Sharpe Ratios use 
overall variation as a measure of risk. 
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returns distributions are stable over time, historical returns data are used to compute the average or 

expected excess return and its variation (measured in terms of the standard deviation which has the 

same unit of measurement as the mean) hence their ratio forms a unit free risk modulated expected rate 

of return for comparison purposes. When outcome distributions are symmetric and unimodal the 

expected outcome and the most likely outcome are coincident, but when distributions are asymmetric 

or multi-modal in nature, this is no longer true and a question arises as to whether the expected 

outcome or the most likely outcome should be the focus of the analysis. The Sharpe Ratio is the inverse 

of 𝐶𝑂𝑉, Pearsons Coefficient of Variation (Pearson 1896) applied to Excess Returns. Formally, for a 

random variable 𝑥 defined on the interval 𝑎. 𝑏 with PDF 𝑓𝑡(𝑥), the group 𝑡 𝐶𝑂𝑉 is given by: 

                                                        𝐶𝑂𝑉𝑓𝑡(𝑥)(𝑥) =
√𝜎𝑡

2

𝜇𝑡
=

√∫ (𝑥−𝜇𝑡)2𝑏

𝑎
𝑓𝑡(𝑥)𝑑𝑥

∫ 𝑆𝑡(𝑥)𝑑𝑥
𝑏

𝑎

                                            [1] 

and 𝑆𝑅, the Sharpe Ratio is given by: 

                                                                  𝑆𝑅 = (𝐶𝑂𝑉𝑓𝑡(𝑥)(𝑥))
−1

                                                 [1a] 

For the Sortino Ratio the numerator of [1] is replaced by √∫ (𝑥 − 𝜇𝑡)2𝜇𝑡

𝑎
𝑓𝑡(𝑥)𝑑𝑥 which interestingly 

defines a new “Downside Coefficient of Variation”. 

Practically, for a collection of 𝑁 randomly sampled cardinally measurable values 𝑥𝑖 , 𝑖 = 1, . . 𝑁, 

where the 𝑥𝑖’s are in rank order the basic 𝐶𝑂𝑉 is given by7: 

                            𝐶𝑂𝑉 =
√∑ (𝑥𝑖−𝑥)

2
/(𝑁−1)𝑁

𝑖=1

𝑥
=

�̂�

�̂�
; 𝑤ℎ𝑒𝑟𝑒 �̂� = 𝑥 = ∑ 𝑥𝑖

𝑁
𝑖=1 /𝑁         [2]  

And the version of COV used for the Sortino Ration is given by: 

                                           𝐶𝑂𝑉 =
√∑ (𝑥𝑖−𝑥)

2
/(𝑁𝜇)

𝑁𝜇
𝑖=1

𝑥
                         [2a] 

As a measure of relative variation, 𝐶𝑂𝑉 can be seen to be the square root of the variance 

estimate, which is the average of the squared distances of the 𝑥𝑖’s from the mean, divided by 

the mean. and division by it dilutes the standard deviation value rendering the statistic a unit 

 
7 When data are sampled from a set of K discrete cardinally measurable values 𝑥𝑘 𝑘 = 1, . . , 𝐾 where 𝑝𝑘 

is the proportion of the sample that took on the value 𝑥𝑘, [1] can be computed as: 

                            𝐶𝑂𝑉 =
√∑ (𝑥𝑘−𝑥)

2
𝑝𝑘

𝐾
𝑘=1

𝑥
=

�̂�

�̂�
; 𝑤ℎ𝑒𝑟𝑒 �̂� = 𝑥 = ∑ 𝑥𝑘

𝐾
𝑘=1 𝑝𝑘             [2a] 



free measure8, the Sharpe Measure is simply the inverse of this. It should be noted that there is 

a problem with the Coefficient of Variation when the mean is close to 0 but this is not a 

problem for the Sharpe measure. 

An investor may well prefer to base his judgement on what is most likely to arise in the future with 

regard to excess returns, so the question here is “From a likelihood perspective, is the mean a good 

measure of anticipated excess return and the standard deviation a good measure of risk and thus the 

Sharpe measure a good measure of the performance of an asset?”. When the excess returns distribution 

is unimodal and symmetric, the mean is the most likely return and the standard deviation a good 

measure of the uncertainty or risk with which it can be viewed, but when the excess returns distribution 

is not unimodal and symmetric, the mean is not the most likely return, the mode is, and the standard 

deviation will always be an underestimate of the uncertainty or risk associated with the most likely 

return. Here a Sharpe measure based upon the “Most Likely Excess Returns” and a Most Likely 

Risk Measure which has a “Most Likely Excess Returns” focus is argued for. Letting 𝜃𝑡 be “the 

most likely” or “modal” excess return where 𝜃𝑡 is the value of 𝑥 ∈ [𝑊, 𝑌] that maximises 

𝑓𝑡(𝑥). Basically 𝜃𝑡 is the value of 𝑥 where: 

                                        
𝜕𝑓𝑡(𝑥)

𝜕𝑥
= 0  ;    

𝜕2𝑓𝑡(𝑥)

𝜕𝑥2 < 0 & 𝑓𝑡(𝜃𝑡) ≥  𝑓𝑡(𝑥) ∀ 𝑥 ≠  𝜃𝑡  

Note that when 𝑓𝑡(𝑥) is symmetric unimodal 𝜃𝑡 = 𝜇𝑡, when 𝑓𝑡(𝑥) is right skewed 𝜃𝑡 < 𝜇𝑡 so that �̂� 

overestimates or exaggerates the most likely excess return and when 𝑓𝑡(𝑥) is left skewed 𝜃𝑡 > 𝜇𝑡, 

�̂� underestimates or diminishes the most likely excess return. 𝜃𝑡 can be estimated using kernel 

estimates of 𝑓𝑡(𝑥) and finding the maximum value over the range of 𝑥 (See Bickel 2003 for an 

alternative approach). 

Then it is the spread around the most likely excess return that is the appropriate “most likely 

risk” measure viz √𝜎𝑡
2(𝜃𝑡) where9: 

                                         𝜎𝑡
2(𝜃𝑡) = 𝐸𝑓𝑡(𝑥)((𝑥 − 𝜃𝑡)2) = ∫ (𝑥 − 𝜃𝑡)2𝑓𝑡(𝑥)𝑑𝑥

𝑌

𝑊
 

 

8 Similar statistics can be contrived if other foci are of interest by making 𝑥 the median or modal value of 

the collection, indeed dividing the standard deviation by any quantile value would render it a unit free 
measure relative to the designated quantile. 

9 The Most Likely Sortino ratio would use 𝜎𝑡
2(𝜃𝑡) = ∫ (𝑥 − 𝜃𝑡)2𝑓𝑡(𝑥)𝑑𝑥

𝜃𝑡

𝑊
 

 



So 𝑆𝑀𝐿𝑅, the corresponding Sharpe “Most likely risk adjusted excess return ratio” would be: 

𝑆𝑀𝐿𝑅 =
𝜃𝑡

√𝜎𝑡
2(𝜃𝑡)

 

Note that unless 𝑓𝑡(𝑥) is unimodal symmetric 𝑆𝑀𝐿𝑅 ≠ 𝑆𝑅 and 𝜎𝑡
2(𝜃𝑡) > 𝜎𝑡

2 so that the level of most 

likely risk is generally understated by 𝜎𝑡
2. Generally, when distributions are right skewed 𝑆𝑀𝐿𝑅 < 𝑆𝑅 

since 𝜃𝑡 < 𝜇𝑡 and 𝜎𝑡
2(𝜃𝑡) > 𝜎𝑡

2, when distributions are left skewed things are less clear since 𝜃𝑡 > 𝜇𝑡 

and 𝜎𝑡
2(𝜃𝑡) > 𝜎𝑡

2. In terms of Rational Expectations, if investors base their judgements on expected 

returns, left skewness will result in them being systematically pleasantly surprised on average and right 

skewness will result in them being systematically disappointed on average, both of which contradict a 

rational expectations-based hypothesis of no systematic surprises. Basing their judgements on Most 

Likely outcomes would result in proportionately fewer pleasant surprises and proportionately more 

disappointments. If absence of systematic surprises is of great import then the coefficient should be 

based upon the median outcome but this would remove the “most likely outcome” basis for the statistic. 

To a large degree the crux of the matter is whether there is a substantive difference between the mean 

and the mode. The most commonly used modally based statistic for unimodal skewness is (𝜇𝑡 − 𝜃𝑡)/𝜎𝑡 

which is negative in the presence of left skewness, positive in the case of right skewness and zero in the 

absence of skewness but assessing significant magnitudes with this statistic is difficult without extensive 

simulations. A useful and simple alternative way of thinking about the difference is to examine the 

chance of an outcome between the mean and the mode being realized, in essence it is a measure of the 

probabilistic distance (Mendelson 1987) between the two. Given an independent random sample, �̂� the 

relative frequency of outcomes between two given points in a random variables range10, has a simple 

distribution, i.e. √𝑛(�̂� − 𝑝)~𝑁(0, 𝑝(1 − 𝑝)), so the significance of the event is easy to compute. 

Two Empirical Examples. 

The Fama and French (1992) Data Base. 

To examine what difference viewing portfolio selection from an average return view as opposed to a 

most likely return view would make, here the two benchmark portfolio data sets drawn from Kenneth 

French’s data library that were analyzed in Anderson et. al. (2020) are explored. Each set consists of the 

monthly historical returns on six active portfolios of US common stocks designed with a particular choice 

 
10 Let the estimated cumulative distribution function of the random variable 𝑥 be �̂�(𝑥) and the two points be 𝑎 and 

𝑏 where 𝑎 ≠ 𝑏, then �̂� = |�̂�(𝑎) − �̂�(𝑏)|. 



behavior in mind and choosing between these benchmark portfolios is considered without allowing for 

portfolio mixtures, since many active money managers specialize in security selection for a given market 

segment or investment style to exploit economies of scale and specialization. The first data set consists 

of 1082 monthly returns observations (up to 2016) on six active portfolios formed, and periodically re-

balanced, on the basis of the market capitalization of equity ('size') and book-to-market equity ratio 

('valuation'). The six portfolios are labeled as Small Growth (SG), Small Blend (SB), Small Value (SV), 

Large Growth (LG), Large Blend (LB) and Large Value (LV). The second benchmark set consists of 1076 

monthly returns observations on six portfolios that are based on market capitalization and recent past 

return: Small Loser (SL), Small Neutral (SN), Small Winner (SW), Large Loser (LL), Large Neutral (LN) and 

Large Winner (LW). Past return is measured using a one-month lagged trailing window of 11 months, to 

avoid the short-term reversal effect (Jegadeesh (1990)) and exploit the intermediate-term momentum 

effect (Jegadeesh and Titman (1993)). They are of particular interest, because a wealth of empirical 

research, starting with Banz (1981) and Basu (1983), suggests that the low historical average returns to 

SG stocks and high average for SV stocks defy rational explanations based on investment risk. 

Since unimodality, Symmetry and normality are of the essence for Sharpe Ratio comparisons, it is those 

aspects that are considered in the first instance. The excess returns data were N(0,1) standardized by 

subtracting their respective means and dividing by their respective standard deviations and the resultant 

data examined for Standard Normality and Symmetry using Pearson Goodness of Fit tests  over the 

partition points {-2, -1.5, -1, -0.667, -0.333, 0, 0.333, 0.667, 1, 1.5, 2}11. The Test for Normality is of the 

form (∑
(𝑂𝑏𝑠−𝐸𝑥𝑝)2

𝐸𝑥𝑝
) which yields a Chi Squared test statistic with 9 degrees of freedom (0.5% critical 

value of 23.6). The test for symmetry is of the form (∑
(𝑂𝑏𝑠(𝑖)−𝑂𝑏𝑠(12−𝑖+1))

2

𝐸𝑥𝑝(𝑖)
6
𝑖=1 ) which yields a Chi 

Squared test statistic with 3 degrees of freedom (0.5% critical value of 12.8).  

 

The results of this exercise are reported in Table 1. Normality is strongly rejected for all portfolios, but it 

could still be the case that the expected value would be coincident with the modal point and the 

appropriate focus if distributions are symmetric unimodal. However, symmetry is also rejected at most 

usual confidence regions (up to and including 99%) for all but two portfolios (Large Loser and Small 

Value).  

 

 
11 Under a null of standard normality these partition points yield 12 cells with respective cell probabilities of 
{0.0227, 0.0441, 0.0918, 0.0937, 0.1172, 0.1304, 0.1304, 0.1172, 0.0937, 0.0918, 0.0441, 0.0227}. 



 

 Table 1 Normality and Symmetry Tests for Growth and Value Portfolios. 

Growth/Value 
Portfolio 

Chi-squared Normality Tests  
     Chi(9)                    P Value 

Chi-squared Symmetry Tests  
       Chi(3)                    P Value 

Passive market 
Small Growth 
Small Balanced  
Small Value 
Large Growth  
Large Balanced  
Large Value 

  80.43351         0.00000      
  81.22038         0.00000      
150.16763         0.00000      
207.71843         0.00000      
  61.06949         0.00000      
157.36789         0.00000      
166.74791         0.00000      

  36.33269           0.00000     
  31.67685           0.00000     
  26.21068           0.00001     
  10.87354           0.01243     
  25.74760           0.00001     
  31.83706           0.00000     
  26.28673           0.00001    

Winner/Loser 
Portfolio 

Chi-squared Normality Tests  
     Chi(9)                    P Value 

Chi-squared Symmetry Tests  
     Chi(3)                    P Value 

Passive market 
Small Loser 
Small Neutral  
Small Winner 
Large Loser  
Large Neutral  
Large Winner 

  82.50291          0.00000     
204.34989          0.00000     
185.81969          0.00000     
100.88078          0.00000     
210.65747          0.00000     
121.13209          0.00000     
  62.75851          0.00000   

  35.56202          0.00000     
  12.78940          0.00511     
  21.58750          0.00008     
  44.70748          0.00000     
    6.48721          0.09017     
  32.82973          0.00000     
  51.33177          0.00000    

 

Even if distributions are asymmetric, it may still be the case that the mode is sufficiently close to the 

mean so that the ordering of the portfolios is unaffected. Figures 1 and 2 facilitate visualization of the 

probability density functions of the various portfolios (each estimated using a univariate Epanichnikov (1969) 

kernel) and highlights the unimodality and left skewness of most of the distributions. Here modal values 

were conveniently determined by finding the point at which the kernel estimate of the pdf was 

maximized 12. Whilst variation around modes and means is quite similar in each portfolio, differences 

between mean and modal returns is somewhat greater ranging from 1.4 percentage points for the LW 

portfolio down to 0.03 percentage points for the SL portfolio. The crux of the matter is whether the 

mean differs significantly different from the mode. Here the difference is examined on the basis of the 

probabilistic distance between the mean and the mode (Mendelson 1987) – basically the chance that 

outcomes will occur between the estimated mean and mode, in essence if there is a significant chance, 

they will be deemed to be probabilistically different13.  

 
12 Bickel (2003) provides a discussion of estimation of the mode but given the availability of kernel estimates this 
approach was deemed sufficient for present purposes. 
13 A simple test of a unimodal distributions’ asymmetry is to consider (𝑝𝑑𝑖𝑓), the chance that two values which 

should be the same under symmetry (e.g. any pair of the mean, median or mode) are different. In the present case  



 

 

Tables 2 reports the results together with the Skewness Factor, a measure of the extent and direction of 

skewness ((mean-mode)/Standard Deviation). As can be seen, for all but the Small Loser portfolio, the 

probabilistic distance between the mean and the mode is significantly greater than 0 and for the Small 
 

𝑝𝑑𝑖𝑓 = |𝐹(𝜃𝑡) − 𝐹(𝜇𝑡)|, which is the probabilistic distance between 𝜃𝑡  and 𝜇𝑡 , estimates of which can readily be 

shown to be 𝑁(𝑝𝑑𝑖𝑓 ,
𝑝𝑑𝑖𝑓(1−𝑝𝑑𝑖𝑓)

𝑛
) where n is the sample size. 

0

0.02

0.04

0.06

0.08

0.1

0.12
-1

6
.1

7
9

2
7

-1
5

.2
8

9
1

-1
4

.3
9

8
9

2

-1
3

.5
0

8
7

5

-1
2

.6
1

8
5

7

-1
1

.7
2

8
4

-1
0

.8
3

8
2

2

-9
.9

4
8

0
5

-9
.0

5
7

8
7

-8
.1

6
7

7

-7
.2

7
7

5
2

-6
.3

8
7

3
5

-5
.4

9
7

1
7

-4
.6

0
7

-3
.7

1
6

8
2

-2
.8

2
6

6
5

-1
.9

3
6

4
7

-1
.0

4
6

3

-0
.1

5
6

1
2

0
.7

3
4

0
5

1
.6

2
4

2
3

2
.5

1
4

4

3
.4

0
4

5
8

4
.2

9
4

7
5

5
.1

8
4

9
3

6
.0

7
5

1

6
.9

6
5

2
8

7
.8

5
5

4
5

8
.7

4
5

6
3

9
.6

3
5

8

1
0

.5
2

5
9

8

1
1

.4
1

6
1

5

1
2

.3
0

6
3

3

1
3

.1
9

6
5

Figure 1. Growth-Value Portfolio Returns PDF's
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Figure 2. Winner-Loser Portfolio Returns PDF's*
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Loser portfolio at is significantly greater  for all confidence regions smaller than 95% and all but the Small 

Loser portfolio have negative skewness factors. 

Table 2. Mean Mode differences. 

Growth-
Value 

Probabilistic Standard    Z score  P(Distance>0)  Mean     Mode 
    Distance      Error 

Skewness 
Factor 

Passmar 
SmG  
SmB  
SmV  
LaG  
LaB  
LaV 

  0.1323       0.0103      12.8366        1.0000       0.6503   1.9506     
  0.0665       0.0076        8.7825        1.0000       0.6874   1.6539     
  0.0536       0.0068        7.8285        1.0000       0.9805   1.6539     
  0.0185       0.0041        4.5140        1.0000       1.1854   1.4462     
  0.0277       0.0050        5.5548        1.0000       0.6271   0.9714     
  0.0518       0.0067        7.6848        1.0000       0.6876   1.0604     

     0.0434       0.0062        7.0096        1.0000       0.9084   1.3275         

  -0.24183     
  -0.12777     
  -0.09602     
  -0.03185     
  -0.06463     
  -0.06541     
  -0.05840 

Winner-
Loser 

Probabilistic Standard    Z score  P(Distance>0)  Mean     Mode 
    Distance      Error 

Skewness 
Factor 

Passmar 
SmL  
SmN  
SmW  
LaL  
LaN  
LaW 

  0.1310       0.0103      12.7382        1.0000       0.6466   1.8884     
  0.0028       0.0016        1.7345        0.9586       0.5417   0.5075     
  0.0325       0.0054        6.0147        1.0000       0.9847   1.2966     
  0.0827       0.0084        9.8501        1.0000       1.3264   2.4802     
  0.0269       0.0049        5.4592        1.0000       0.3788   0.6390     
  0.0502       0.0067        7.5401        1.0000       0.6110   1.0336     

     0.1282       0.0102      12.5818       1.0000        0.9292  2.3158      

  -0.23042     
   0.00372     
  -0.04300     
  -0.15877     
  -0.03427     
  -0.07588     
  -0.25064 

 

The basic idea here is to use the modal return as the most likely return to be expected. Analogous to the 

use of the standard deviation as a measure of risk associated with the mean, the risk associated with the 

most likely return can be expressed as the square root of the variation around the mode. Table 3 reports 

the Mean and Modal values of the portfolio returns together with their respective standard deviations 

probability density function values, Sharpe and Sortino Ratios and respective ranks together with the 

Odds ratio. Note that with one exception (Small Loser) the modal value is always greater than the mean 

value so the distributions are generally left skewed. The standard deviation based upon the modal value 

is always greater than the standard deviation based upon the mean value which is as it should be since it 

is readily shown that the mean value minimizes the standard deviation function around it as the focus of 

that function.  

With a sample standard error in the region of 0.2, the sample mean rarely sees the mode within its 95% 

confidence band and the odds ratio always records a greater likelihood of observing the modal value 

rather than the expected or mean value when they are different. Even if the Mode and the Mean are 



different, they may be sufficiently close together so that the ranking of the portfolios is unaffected. 

Tables 3 and 3a report the Most Likely or Modal focused Sharpe Ratio along with the Standard Expected 

Value or Mean focused Sharpe ratio together with their respective portfolio rankings.  

Table 3. Growth/Value Sharpe Ratio Analysis 

   Mode   𝜎Mode f(mode)  Sharpe  rank   Mean    𝜎Mean   f(mean)   Sharpe rank   odds 

Passive Market 
Small Growth 
Small Balanced 
Small Value 
Large Growth 
Large Balanced 
Large Value 

 1.9506  5.5322   0.0905    0.3526           0.6503    5.3771    0.0885    0.1209           1.0229  
 1.6539  7.6256   0.0654    0.2169    2     0.6874    7.5640    0.0643    0.0909    6    1.0172  
 1.6539  7.0453   0.0773    0.2348    1     0.9805    7.0131    0.0762    0.1398    2    1.0138  
 1.4462  8.1923   0.0714    0.1765    6     1.1854    8.1881    0.0713    0.1448    1    1.0016  
 0.9714  5.3385   0.0873    0.1820    5     0.6271    5.3274    0.0867    0.1177    5    1.0061  
 1.0604  5.7127   0.0970    0.1856    3     0.6876    5.7005    0.0965    0.1206    4    1.0058  
 1.3275  7.1889   0.0782    0.1847    4     0.9084    7.1767    0.0776    0.1266    3    1.0077 

Growth/Value Sortino Ratio Analysis  

   Mode   𝜎Mode f(mode)  Sharpe  rank   Mean    𝜎Mean   f(mean)   Sharpe rank   odds 

Passive Market 
Small Growth 
Small Balanced 
Small Value 
Large Growth 
Large Balanced 
Large Value 

 1.9506  5.8878   0.0905   0.3313             0.6503   5.6681   0.1147     0.0885           1.0229  
 1.6539  7.7257   0.0654   0.2141     2      0.6874   7.5058   0.0916     0.0643    6    1.0172  
 1.6539  6.9977   0.0773   0.2363     1      0.9805   6.8889   0.1423     0.0762    4    1.0138  
 1.4462  7.5387   0.0714   0.1918     4      1.1854   7.4961   0.1581     0.0713    5    1.0016  
 0.9714  5.7126   0.0873   0.1701     6      0.6271   5.6251   0.1115     0.0867    2    1.0061  
 1.0604  5.6364   0.0970   0.1881     5      0.6876   5.6736   0.1212     0.0965    1    1.0058  
 1.3275  6.8859   0.0782   0.1928     3      0.9084   6.8923   0.1318     0.0776    3    1.0077 

 

Table 3a Winner/Loser Sharpe Ratio Analysis  

   Mode   𝜎Mode f(mode)  Sharpe  rank   Mean    𝜎Mean   f(mean)   Sharpe rank   odds 

Passive Market 
Small Loser 
Small Neutral 
Small Winner 
Large Loser 
Large Neutral 
Large Winner 

 1.8884   5.5306   0.0900   0.3414            0.6466   5.3893    0.0882    0.1200           1.0200  
 0.5075   9.1801   0.0647   0.0553    6     0.5417   9.1800    0.0647     0.0590    5    1.0000  
 1.2966   7.2610   0.0787   0.1786    4     0.9847   7.2543    0.0784     0.1357    3    1.0044  
 2.4802   7.3580   0.0677   0.3371    2     1.3264   7.2669    0.0664     0.1825    1    1.0200  
 0.6390   7.5991   0.0775   0.0841    5     0.3788   7.5947    0.0773     0.0499    6    1.0018  
 1.0336   5.5847   0.0930   0.1851    3     0.6110   5.5687    0.0926     0.1097    4    1.0046  
 2.3158   5.7035   0.0854   0.4060    1     0.9292   5.5322    0.0815     0.1680    2    1.0484 

Winner/Loser Sortino Ratio Analysis  

   Mode   𝜎Mode f(mode)  Sharpe  rank   Mean    𝜎Mean   f(mean)   Sharpe rank   odds 

Passive Market 
Small Loser 
Small Neutral 
Small Winner 
Large Loser 
Large Neutral 
Large Winner 

1.8884   5.8613   0.0900    0.3222            0.6466   5.6797    0.1138    0.0882           1.0200  
0.5075   8.0370   0.0647    0.0631    6     0.5417   8.0390    0.0674     0.0647    6    1.0000  
1.2966   6.9146   0.0787    0.1875    3     0.9847   6.9247    0.1422     0.0784    3    1.0044  
2.4802   7.7398   0.0677    0.3204    2     1.3264   7.5206    0.1764     0.0664    5    1.0200  
0.6390   7.0274   0.0775    0.0909    5     0.3788   7.0370    0.0538     0.0773    4    1.0018  
1.0336   5.6027   0.0930    0.1845    4     0.6110   5.5872    0.1094     0.0926    1    1.0046  
2.3158   6.3115   0.0854    0.3669    1     0.9292   6.0480    0.1536     0.0815    2    1.0484 

 

Notice that, within the Growth / Value portfolio set, the orderings of the portfolios change substantially 

under the Most Likely Sharpe measure ordering as opposed to the Standard Expected Sharpe measure 



ordering but not so much under the Loser / Winner portfolio set. Indeed, in the latter, the “winner 

preferred to neutral preferred to loser” ordering is preserved under both Most Likely and Expected 

comparators the only change in the ordering is that Large is preferred to Small in corresponding 

Winner/Loser designations in the Most Likely paradigm whereas Small is preferred to Large in the 

Expected Return paradigm. Table 4 gives a sense of the magnitude of the differences in rankings (if  

outcomes were unimodal and symmetric and rankings were consistent these would all be 0.) 

Table 4. Square Root of average squared difference of Ranks. 

 Sharpe 
Mode v Mean 

Sortino 
Mode v Mean 

 Sharpe v Sortino 
Mode 

Sharpe v 
Sortino Mean 

Growth/Value 
Winner/Loser 

2.7080      
1.0000      

3.1091      
1.8257    

Growth/Value 
Winner/Loser 

1.2910      
2.5166     

0.5774      
2.2361  

 

The Standard and Poor 500  

It could be argued that the Fama-French portfolio returns data was constructed with a particular 

objective in mind i.e. studying portfolio returns patterns when the portfolios were designed to reflect 

particular market behaviour patterns with skewness properties effectively being self-selected. To check 

where similar results prevail more generally, 2732 daily returns on 441 SP500 stocks over the period 

January 2005 to November 2015 were studied for potential Expected vs Most Likely return differences. 

Figure 3 illustrates their respective Probability Density Functions which look reasonably normal with 

similar location parameters. 

Figure 3. 

 



 Their skewness was initially investigated in terms of their cumulative distribution function values at the 

mean (𝐹𝜇) and at the mode (𝐹𝜃). When the distribution is symmetric unimodal  𝐹𝜇 = 𝐹𝜃 , when left 

skewed  𝐹𝜇 < 𝐹𝜃  and when right skewed 𝐹𝜇 > 𝐹𝜃.  

Table 5. 𝐹𝜇  , 𝐹𝜃 Cumulative Distribution Differences Proportion of rejections of 𝐻0: 𝐹𝜇 = 𝐹𝜃.  

% 𝐹𝜇 ≠ 𝐹𝜃 % 𝐹𝜇 > 𝐹𝜃 % Rejects 0.1% CV % Rejects 0.5% CV % Rejects 1.0% CV 

  96.8254   54.1950       87.0748       90.7029      91.8367 

 

As Table 5 reports, a large portion of the stocks have statistically significant mean and modal difference 

values with right skewness being predominant. The average negative 𝜇 − 𝜃 value was   -0.0006713 with 

a standard error of  0.00004615  yielding a significantly below zero Z score of 14.5435 and the average 

positive 𝜇 − 𝜃 value was  0.0005518 with a standard error of  0.00002574  yielding a significantly above 

zero Z score of 21.4411.  

Figure 4. 95% confidence interval around the mean for the 441 stocks over 2005-2015 ordered from 
left to right by the level of the mean with modes identified as blue scatter plots. 

 

Clearly there are many stocks for which the mode is outside the mean 95% confidence interval. To get a 

sense of the mean and modal juxtapositions, a simple regression over the 441 stocks of the mean - 



mode difference on the median value (to see if there is a location effect) and the PDF value at the mode 

(to see if there is a concentration effect) was performed. Table 6 presents the results which indicate a 

clearly negative relationship between the mean modal difference and the location of the distribution, 

concentration around the mode seems to have little effect.  

Even though means and medians are clearly different, what really matters is whether the differences are 

sufficient to affect the ordering of the stocks. The Spearman (1904) Rank Correlation statistic is 0.08813 

with an asymptotic standard normal  value of 1.8537995  which is significant at any confidence region 

smaller than 0.96812 indicating that the ordering is affected by whether choice is based upon Expected 

as opposed to Most Likely outcomes. 

Table 6. 

         Mean-mode                            Median                              f(mode) 

Mean 
Maximum 
Minimum 

     0.0000304120                   -0.00044238525                    28.611449  
     0.0020356613                     0.00087602500                    54.266055  
    -0.0040077035                   -0.0013302900                      14.926926 

Regression         Constant                                 Median                                f(mode) 

Coefficient 
Standard error 
Z score 
P(Z>|Z score|) 

   -0.0006345674                        -1.3656496                       0.00000213  
    0.0001219894                          0.0904584                       0.00000409  
      -5.2018222                          -15.096987                         0.51980483  
    0.0000000987                          0.0000000                       0.30159981  

Sigma    0.0000004117  R squared  0.34797067 
 
Conclusions. 

For the longest time, based upon notions of  rational expectations, expected utility theory and a 

presumed symmetry of outcome distribution, investment decisions have been based upon risk adjusted 

expected outcomes with Sharp and Sortino ratios being the embodiment of this approach in portfolio 

selection. However, when the future returns to an investment are asymmetrically distributed, the 

expected return will not be the same as the most likely return and, contrary to the rational expectations 

hypothesis, investors who have based their decisions on expected outcomes will experience systematic 

surprises. The question then arises as to whether the investment decision should be based upon 

perceived expected outcomes or perceived most likely outcomes. Even when expected outcomes and 

most likely outcomes are demonstrably different, they may be sufficiently close together so that 

operating on the basis of the former is a good approximation to operating on the basis of the latter. 

Here, introducing the notion of a “Most Likely Focused” Sharpe ratio, these distinctions have been 



explored using two sets of portfolios, one formed on the basis of growth and value and the other formed 

on the basis of winners and losers, each drawn from the Fama and French data set. Portfolio returns 

were found to be decidedly asymmetric and usually left skewed. Ordering the portfolios on the basis of 

the most likely return made a difference in almost every case when compared to ordering on the basis of 

the Expected Return which gives some pause for thought when employing standard Sharpe Ratio 

methods. The Fama French portfolios were designed for a purpose which may have affected the 

skewness properties of their respective distributions. To counter this, daily returns on 441 stocks were 

examined and similar deviations from unimodal symmetry revealed in both left and right directions, 

furthermore, ordering the stocks on the basis of Expected Returns as opposed to Most Likely Returns 

was seen to change the ordering significantly. All in all this gives much pause for thought as to whether 

choice should be based on the Expected or Most Likely outcomes of alternatives.  
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Appendix 1. A Most Likely Focused Coefficient of Variation and Sharpe Ratio for Ordered 

Categorical Data. 

Sometimes investment returns may be ordinal in nature and ranked as very low, low, medium, high and 

very high  for example. Anderson (2023) developed a Coefficient of Variation and corresponding Sharpe 

Ratio for such ordered categorical data environments. The problem in that paradigm is that ordinal data 

does not possess cardinal measure unless it is artificially endowed and there are problems with 

ambiguity and equivocation associated with such a practice (Bond and Lang 2019). However, by 

appealing to the notion of probabilistic distance (Mendelson 1987) it is possible to develop 

unambiguous and unequivocal measurement in ordinal paradigms. Suppose 𝑲 ≥ 𝟑 ordered 

categories indexed 𝒌 = 𝟏, . . , 𝑲 with higher 𝒌 implying higher category. Endow the categories with a 

Probability Density Function 𝒇 described by the probabilities 𝒑𝒇𝒌, 𝒌 = 𝟏, . . , 𝑲 , of being in the 𝒌’th 

category under 𝒇 where 𝒑𝒇𝒌 ≥ 𝟎 and ∑ 𝒑𝒇𝒌
𝑲
𝒌=𝟏 = 𝟏. For 𝒌 = 𝟏, . . , 𝑲, the Cumulative Distribution 

Function 𝑭 is given by 𝑭𝒌 = ∑ 𝒑𝒇𝒊
𝒌
𝒊=𝟏  and the Survival Function 𝑺 is given by 𝑺𝒌 = 𝟏 − 𝑭𝒌. Analogous 

to the continuous paradigm formulation of the mean as the integral of the survival function 

over the range of 𝒙, the sum of the Survival Function values over all categories could be 

considered as a “Mean Ordered Categorical” or 𝑴𝑶𝑪 location measure14 where: 

 
14Note that, with a potential minimum value of 0 (when all probability mass is in the lowest category) 
and a maximum potential value of 𝐾 − 1 (when all probability mass is in the highest category), 𝑀𝑂𝐶 is 
not independent of 𝐾, the number of categories. While this is of no consequence when group outcomes 
are being compared across a common number of categories, it does matter when different groups have 

https://en.wikipedia.org/wiki/Journal_of_Investing
https://en.wikipedia.org/wiki/Journal_of_Investing
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.3905%2Fjoi.3.3.59
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:155042092


𝑀𝑂𝐶 = ∑ 𝑆𝑘

𝐾

𝑘=1
 

 

An ordered categorical measure of variation. 

For a given outcome 𝑘∗ ∈ 1, . . , 𝐾 and outcomes 𝑘 = 𝑘∗ + 1, . . , 𝐾, define the Upper Cumulants of 𝑓 with 

respect to 𝑘∗ as 𝐹𝑘
𝑈,𝑘∗

= ∑ 𝑝𝑓𝑖 
𝑘
𝑖=𝑘∗+1  (note for 𝑘 ≤ 𝑘∗ , 𝐹𝑘

𝑈,𝑘∗

= 0) and, for outcomes 𝑘 = 1, . . , 𝑘∗ − 1, 

define its Lower Cumulants as  𝐹𝑘
𝐿,𝑘∗

= ∑ 𝑝𝑓𝑖 
𝑘∗−1
𝑖=𝑘  (note for 𝑘 ≥ 𝑘∗ , 𝐹𝑘

𝐿,𝑘∗

= 0). It may be seen that  

𝐹𝑘
𝐿,𝑘∗

𝐹1
𝐿,𝑘∗  𝑘 = 1, . . , 𝑘∗ − 1 is in effect the  SF of the below 𝑘∗ conditional PDF, whereas 

𝐹𝑘
𝑈,𝑘∗

𝐹𝐾
𝑈,𝑘∗  𝑘 = 𝑘∗ + 1, . . , 𝐾 

is the CDF of the above 𝑘∗ conditional PDF. When 𝑘 > 𝑘∗, 𝐹𝑘
𝑈,𝑘∗

 is the probability of an outcome 

between 𝑘∗ and 𝑘 + 1 occurring which is monotonically non decreasing in 𝑘, when  𝑘 < 𝑘∗, 𝐹𝑘
𝐿,𝑘∗

 is the 

probability of an outcome between 𝑘∗ and 𝑘 − 1 occurring which is monotonically non-decreasing in 

𝑘∗ − 𝑘. Each record a sense of probabilistic distance of 𝑘 from 𝑘∗ in terms of the chance that an 

outcome will emerge between 𝑘 and 𝑘∗ which increases with |𝑘∗ − 𝑘|. Similarly defining 𝐺𝑘
𝑈,𝑘∗

, 𝐺𝑘
𝐿,𝑘∗

, 

the Upper and Lower Cumulants of 𝑔 about 𝑘∗, then 𝑔 constitutes an increasing spread of 𝑓 with respect 

to outcome 𝑘∗ when: 

 𝐺𝑘
𝐿,𝑘∗

≥ 𝐹𝑘
𝐿,𝑘∗

∀ 𝑘 = 1, . , 𝑘∗ − 1 𝑎𝑛𝑑 𝐺𝑘
𝑈,𝑘∗

≥ 𝐹𝑘
𝑈,𝑘∗

∀ 𝑘 = 𝑘∗ + 1, . , 𝐾 𝑤𝑖𝑡ℎ > 𝑠𝑜𝑚𝑒𝑤ℎ𝑒𝑟𝑒.     [3] 

The Mendelson (1987) condition [3] amounts to a first order stochastic dominance condition on the 

“downward looking” below 𝑘∗ conditional distributions (i.e. imagine the category orderings below 𝑘∗ 

were reversed) and the “upward looking” above 𝑘∗ conditional distributions where 𝑓 dominates 𝑔 in 

each context. Intuitively, with respect to 𝑘∗ inequality in 𝑔 distribution is greater than inequality in 𝑓 

distribution with respect to 𝑘∗ when the chance of below 𝑘∗ outcomes and the chance of above 𝑘∗ 

outcomes are both at least as great in 𝑔 as they are in 𝑓 with strictly greater than in at least one case.  

These ideas can be employed to develop the concept of a modal preserving spread. Basically 𝑔 

constitutes a Modal Preserving Spread of 𝑓 if [3] holds and 𝑘∗remains the modal outcome of 𝑔 i.e. 

𝑝𝑔𝑘∗ = max
𝑘

𝑝𝑔𝑘. Given dispersion from the focus point 𝑘∗ is maximized when 𝑘∗/𝐾 mass is allocated to 

the lowest outcome and 
(𝐾−𝑘∗)

𝐾
 is allocated to the highest outcome: 

                          0 ≤ 𝐼𝑀𝑃𝑆(𝑔, 𝑓) =
∑ ((𝐺𝑘

𝑈,𝑘∗
−𝐹𝑘

𝑈,𝑘∗
)+(𝐺𝑘

𝐿,𝑘∗
−𝐹𝑘

𝐿,𝑘∗
))𝐾

𝑘=1

(
𝑘∗ ∑ 𝑖𝑘∗−1

𝑖=1
𝐾

+ 
(𝐾−𝑘∗) ∑ (𝑖−𝑘∗)𝐾

𝑖=𝑘∗+1
𝐾

−∑ (𝐹𝑘
𝑈,𝑘∗

+𝐹𝑘
𝐿,𝑘∗

)𝐾
𝑘=1 )

≤ 1               

 
different numbers of categories. This can be resolved by dividing 𝑀𝑂𝐶 by 𝐾 − 1 rendering it a number 
on the unit interval for all possible 𝐾.  



provides an index measure on the unit interval of the extent of increased Modally Focused relative 

spread or inequality associated with a move from 𝑓 to 𝑔. Suppose 𝑓𝑒 was the distribution of a 

completely equal group with all elements experiencing outcome 𝑘∗, then 𝑝𝑓𝑘∗ = 1 and 𝑝𝑓𝑘 = 0 ∀ 𝑘 ≠

𝑘∗ so that  𝐹𝑘
𝑈,𝑘∗

= 0 and 𝐹𝑘
𝐿,𝑘∗

= 0 ∀ 𝑘, then 𝐼𝑀𝑃𝑆(𝑔, 𝑓𝑒) a measure of variation around an ordered 

categorical mode becomes:  

                                       𝐼𝑀𝑃𝑆(𝑔, 𝑓𝑒) =
∑ (𝐺𝑘

𝑈,𝑘∗
+𝐺𝑘

𝐿,𝑘∗
)𝐾

𝑘=1

(
(𝑘∗−1) ∑ 𝑖𝑘∗−1

𝑖=1
𝐾

+ 
(𝐾−𝑘∗) ∑ (𝑖−𝑘∗)𝐾

𝑖=𝑘∗+1
𝐾

)

                 [4]  

 

And the Ordered Categorical Coefficient of Variation becomes 𝐼𝑀𝑃𝑆(𝑔, 𝑓𝑒)/𝑀𝑂𝐶 with its inverse  

becoming an Ordered Categorical Most Likely Sharpe Ratio. 

 


