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Abstract

In less developed economies the allocation of factor inputs to more productive farms is
often hindered. To analyze how distortions to factor reallocation a↵ect farm dynamics
and agricultural productivity, we develop a model of heterogeneous farms that make
cropping choices and invest in productivity improvements. We calibrate the model
using detailed farm-level panel data from Vietnam, exploiting regional di↵erences in
agricultural institutions and outcomes. We focus on south Vietnam and quantify the
e↵ect of higher measured distortions in the North on farm choices and agricultural
productivity. We find that the higher distortions in north Vietnam reduce agricultural
productivity by 41%, accounting for 61% of the observed 2.5-fold di↵erence between
regions. Moreover, two-thirds of the productivity loss is driven by farms’ choice of lower
productivity crops and reductions in productivity-enhancing investment, which more
than doubles the productivity loss from static misallocation.
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1 Introduction

The reallocation of resources across businesses is a salient feature of the growth process in

developed economies: successful businesses expand, while unsuccessful businesses contract

and even exit (Baily et al., 1992; Davis et al., 1998; Foster et al., 2001), contributing to a

more e�cient allocation of resources across producers. Business dynamism is also observed

in the agricultural sector in developed countries where land consolidation and farm exit are

important drivers of productivity (Key, 2019). In sharp contrast, the allocation of resources

across producers is hindered in less developed countries by a variety of regulations, policies,

and institutions (Adamopoulos and Restuccia, 2014; Restuccia and Rogerson, 2017). In this

paper, we examine how distortions to factor allocation a↵ect farm growth and the level of

agricultural productivity in the context of a model of farm heterogeneity and dynamics. Ex-

ploiting detailed farm-level panel data from Vietnam and regional di↵erences in agricultural

institutions, we find substantial di↵erences in agricultural productivity, farm dynamics, and

crop choice across regions, most of which can be accounted for by measured di↵erences in

distortions.

Vietnam o↵ers a valuable context to study these issues. Since the late 1980s, the country

has undergone major reforms—including decentralizing farm production to the household

and liberalizing output and input markets—that led to substantial improvements in produc-

tivity and growth. Reflecting unique historical legacies, institutional change has been uneven

across north and south Vietnam, allowing us to focus on regional di↵erences in the cost of

misallocation.

We start by showing di↵erences in factors related to productivity in north and south

Vietnam, where measured productivity is over twice as high in the South. First, we show

that farm inputs tend to be more correlated with farm productivity in the South than in the

North. The elasticity of land and labor use with respect to productivity is three to four times

higher in the South than in the North, indicating a more e�cient resource allocation among

farms in the South. Second, we show that crop productivity and selection into crops di↵ers
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across the regions. While farms in both regions primarily grow rice, farmers in the South are

much more likely to grow more productive perennial cash crops, such as co↵ee. Third, the

productivity of young farmers in the South grows faster than that of young farmers in the

North. Additionally, the productivity of the typical farmer in the South grows over twice as

fast as in the North.

We then develop a model of farm dynamics to understand productivity di↵erences between

south and north Vietnam. The model’s structure follows Lucas (1978) in which heterogeneous

farm managers hire land and labor in order to produce output using a decreasing returns

to scale production technology. This leads to a non-degenerate distribution of farms in equi-

librium where farm size and labor use depend on the productivity distribution. Our main

departure from the existing literature is to endogenize the productivity process of farms.

Farm productivity depends on four components that reflect empirical di↵erences observed

in the data. The first is a permanent farmer-specific productivity component. The second is

a random productivity component that varies between periods. The third is an ability com-

ponent that depends on endogenous investments that farmers make to improve productivity,

reflecting evidence that less distorted farmers invest more in farm improvements and expe-

rience faster productivity growth. Finally, there is a crop-specific productivity component

that depends on the farmer’s endogenous crop choice. Following Adamopoulos and Restuccia

(2020), this component captures factors that a↵ect the relative profitability of farms growing

di↵erent crops. Farmers select crops upon entry based on the expected value of each crop and

an idiosyncratic preference across crops, which allows us to match the substantial overlap in

farm productivity across di↵erent crops in the data (Appendix A.2).

We follow Restuccia and Rogerson (2008) by modeling institutional distortions as idiosyn-

cratic output wedges at the farm level. The farm-level distortions capture institutional factors

(e.g., land sale or rental restrictions, or insecure property rights) that a↵ect farmers’ input

choices relative to their first best. Institutional distortions depend on farmer productivity,

farmer crop choice, and a random stochastic component that varies over time. In addition,
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government land-use regulations, such as restrictions on crop choice, force farmers to grow

a crop independent of its relative profitability or the household’s idiosyncratic preferences.

This constraint on household choices is motivated by government restrictions on crop choice

captured by our data (see also, Le, 2020).

In the stationary equilibrium, aggregate productivity depends on both the extent of static

misallocation caused by farm-level distortions as well as the endogenous distribution of farm-

level productivities, which reflects farmers’ investment in ability and crop selection. To un-

derstand the quantitative importance of these factors, we calibrate the model to data on

south Vietnam from the Vietnam Access to Resources Household Survey (VARHS), a rich

household-level panel dataset covering 2006 to 2016. In the data, we group farms into three

types: Rice, Perennial, and Other Crop farms based on the farm production value in each of

these crops. We discipline the model’s parameters to match moments related to the produc-

tivity distribution across farms, productivity growth, and di↵erences across crop types. A

novel feature of our calibration is that we explicitly allow for measurement error in farm-level

output and inputs and use the model to examine the impact of measurement error on our

quantitative conclusions.

Our main experiment involves adjusting distortion parameters in the benchmark econ-

omy, which is calibrated to south Vietnam, to match measured distortions in north Vietnam.

Relative to the South, distortions in the North are more highly correlated with farm-level

productivity, implying the allocation of factors is less sensitive to farm productivity; peren-

nial crops are more distorted compared to rice and other crops; and a higher share of farms

face government-imposed crop restrictions. Imposing the North distortions on the benchmark

economy leads to: 1) productivity falling by 41% relative to the benchmark economy, repre-

senting over 60% of the observed TFP gap between the North and the South; 2) a reduction

in the average TFP growth rate of farmers by 1.6 percentage points, just under half of the

observed gap between the North and the South; 3) a reduction in farm TFP dispersion of

8 points, more than half the 14 percentage points lower dispersion in the North compared
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to the South; and 4) a drop in the share of perennial farmers from 33% to 9%, which is

similar to the observed 5% in the North. In our quantitative analysis, the key institutional

feature is the larger elasticity of distortions with respect to farm productivity in the North,

consistent with historical institutions placing more restrictions on the accumulation of land

in the North.

To understand the channels through which larger measured distortions in the North ac-

count for the North-South productivity gap, we examine the separate contributions of factor

misallocation, the endogenous farm productivity distribution, and crop choice. We find that

all channels are important, with factor misallocation accounting for one-third of the produc-

tivity loss, and the remaining two-thirds arising from the reallocation of economic activity

to lower-productivity crops (crop choice) and, more importantly, the shift in the within-crop

farm productivity distribution due to lower investment. The channels of dynamic misallo-

cation (crop choice and farm productivity) are the source for two-thirds of the productivity

loss in the model, more than doubling the impact of static factor misallocation.

Regarding measurement error, empirically we find a limited amount of measurement er-

ror in our data using the methodology in Bils et al. (2021), at least comparatively with

estimates for the manufacturing sector using the same methodology. Our result, however, is

consistent with estimates for the agricultural sector in other contexts (Adamopoulos et al.,

2022; Aragón et al., 2022), partially reflecting that our analysis makes within-country and

within-survey comparisons, where measurement error is less likely to be a factor. Neverthe-

less, while the impact of measurement error in our main result is limited due to our focus on

di↵erences in misallocation between north and sound Vietnam, we note that measurement

error does have a more substantial impact on the level of misallocation when comparing

reallocation gains associated with an economy without distortions. In our framework, the

relatively small impact of measurement error on static misallocation is amplified through

endogenous productivity dynamics.

Our work connects with several strands in the literature. We relate to the broad literature
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on resource misallocation across production units for understanding aggregate productivity

(Restuccia and Rogerson, 2008; Guner et al., 2008; Hsieh and Klenow, 2009), particularly

in agriculture (Adamopoulos and Restuccia, 2014) where important aspects of land institu-

tions are associated with the misallocation of land and other productive inputs, hampering

agricultural productivity (Adamopoulos et al., 2022; Bolhuis et al., 2021; Chen et al., 2022,

2023). We contribute to this literature in three important dimensions. First, we take advan-

tage of Vietnam’s unique historical context to quantify di↵erences in misallocation between

north and south Vietnam, rather than quantifying the level of misallocation relative to a hy-

pothetical undistorted economy. Second, to our knowledge, we provide the first assessment

of the broader impact of misallocation on producer dynamics in the agricultural sector,

through crop choice and farm investment. In this regard, our work joins a recent literature

studying the role of producer dynamics on aggregate outcomes (Hsieh and Klenow, 2014;

Bento and Restuccia, 2017; Guner et al., 2018; Akcigit et al., 2021; Da-Rocha et al., 2023;

König et al., 2022), and a literature in microeconomics studying the channels of firm-level

upgrading in developing countries (Verhoogen, 2021). Third, incorporating farm dynamics

into our model produces a number of falsifiable predictions about the impact of distortions

on farm dynamics and the farm distributions. Importantly, this provides a test to the model

that is often missing in static models of misallocation. We show that not only do distortions

explain a large share of the North-South productivity gap, but also di↵erences in average

farm TFP growth, the distribution of farm productivities, land holdings, and cropping deci-

sions. We also contribute to a growing literature investigating economic growth and regional

convergence in Vietnam (Benjamin and Brandt, 2004; Le, 2020; Ayerst et al., 2020).

The paper is organized as follows. Section 2 summarizes the institutional context. Section

3 summarizes the data, construction of key moments, and di↵erences between the north and

south Vietnam. Section 4 describes the model. Section 5 calibrates a benchmark economy

with distortions to panel farm-level data from the South, discussing the model’s quantitative

properties and goodness of fit. Section 6 presents the quantitative analysis where the main
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experiment involves applying measured distortions in the North to the benchmark economy,

and discusses the extent to which this counterfactual economy resembles key features of the

North. Section 7 concludes.

2 Institutional Context

Our analysis begins in 2006, nearly two decades after the start of economic reform in Vietnam.

Central to these e↵orts was the return to family farming. In the late 1980s, production

rights to land reverted to households, and over time expanded to include rights to transfer,

exchange, lease, inherit, and mortgage. Titling of land began in 1994 with the passing of the

1993 Land Law and by 1997 Land Use Certificates had been issued to approximately one-half

of all cultivated land (Benjamin and Brandt, 2004). By 2004, coverage extended to three-

quarters of all cultivated land (Brandt et al., 2006) but subsequently stalled (Markussen,

2017).

Property rights’ reforms were accompanied by liberalization of product markets, espe-

cially for rice, and input markets such as those for fertilizer (Benjamin and Brandt, 2004).

Restrictions on the volume of rice exports were relaxed, as were internal product market

barriers. Similarly, restrictions on fertilizer imports were removed. Prices came to be largely

market-determined. Geographic mobility barriers were also relaxed.

Often neglected in discussions of agricultural development in Vietnam are important re-

gional di↵erences in land institutions. Vietnam was under Chinese rule until 968 CE when an

independent kingdom was established in the north. Over time, control spread south. Histori-

cally, the state played an important role in determining land rights. Land was both privately-

and state-owned, with state ownership more prevalent in the north and in some of the more

densely populated regions in the south (Ho, 2023). State-owned land was largely used for

redistributive purposes, and assigned to landless households. This land could not be traded

however, and households retained usufruct rights only if they farmed the land themselves.
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By contrast, privately-owned land could be bought, sold and inherited.

These di↵erences were reinforced by institutional changes following the division of Viet-

nam into two countries in 1954. In the north, rural households were organized into communes

and agriculture collectivized for more than three decades until the reforms in the late 1980s.

By contrast, land in the south remained private, and farming continued to be carried out

at the household level, including during the short inter-regnum between reunification in

1975 and the agricultural reforms.1 Reflective of these di↵erences, nearly two-thirds of the

farmland currently held by households in the north was obtained directly from the commune

during the decentralization of land rights to households. In the south, inheritance, land sales,

and rental exert a much larger influence on patterns of landownership. We observe an espe-

cially sharp contrast between the Red River Delta in the north, where 82.8% of agricultural

land of households was allocated by the state, and the Mekong River Delta in the south,

where only 4.7% was (Brandt et al., 2006).

Regional di↵erences appear in other forms and are also likely a legacy of institutions and

the more important role of the state in the North prior to reform. Restrictions persist on crop

choice, largely related to rice production and national food security, and are more prominent

in the North (Markussen et al., 2011; Markussen, 2017). Risk of land expropriation remains,

with these risks negatively related to informal ties to local o�cials and cadres (Markussen

and Tarp, 2014). Land titling has expanded but in sub-regions in the north remains well

below national levels. Households in the north also are much more likely to report issues

with respect to access to water for irrigation, and problems of flooding.

Farm households in Vietnam carry out productivity-augmenting investments in land and

irrigation and acquire information on new technologies and markets through agricultural

extension services. We examine the e↵ect of these investments on farm productivity growth,

and their correlation with measures of market distortions discussed in the next section. In
1After the reunification in 1975 until the start of reforms in 1986, e↵orts to collectivize the south were

resisted and largely failed. For example, only 6% of farmers in the Mekong Delta joined cooperatives by 1986
(Pingali and Xuan, 1992).
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both the North and the South, more productive and less-distorted farmers invest significantly

more time and resources in improving farm productivity. However, the benefits of these

investments are much weaker in the North, with only participation in extension services

positively correlated with farm productivity growth. By contrast, in the South investments

in cash and in-kind (labor) in land and water, as well as acquisition of new knowledge through

extension services are positively correlated with farmer productivity growth.

3 Productivity in North and South Vietnam

We provide an overview of our dataset and construction of the main variables used in our

analysis. We use the constructed dataset to examine productivity di↵erences between north

and south Vietnam in (i) the misallocation of factors of production, (ii) crop productivity

and selection into crops, and (iii) farm dynamism. In Appendix A.1, we show that the

empirical comparisons between the north and the south hold if we restrict focus to the

rice-growing delta regions—the Mekong Delta in the South and the Red River Delta in the

North—where technology and geographic di↵erences are less likely to be a concern. These

empirical di↵erences act as the foundation for the model that we develop in the next section.

3.1 Data and Variable Construction

We use data from the Vietnam Access to Resources Household Survey (VARHS) that covers

households from 12 provinces in north and south Vietnam surveyed biennially between 2006

and 2016. We focus on a sub-sample of 2,118 households that are included in all six biennial

surveys from 2006 to 2016. We provide a brief overview of the data construction, a more

detailed documentation is provided in Ayerst et al. (2020). Our variables of interest are

output (value added) yf,t, land lf,t, and labor nf,t at the farm-year (f, t) level.

Farm-level output is measured as the sum of crop production, valued using a common

price for each crop, net of intermediate input expenditure. To construct the common price, we
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first calculate the median price for each crop, as reported by households. We then construct

the common price as the weighted sum of the median price across years, where weights

are the relative total quantity of that crop’s production for the year. We use crop sales

and quantities, when available, to compute prices and reported values and quantities when

sales are unavailable.2 Finally, we set observations with negative value added to zero, which

account for around 2.5% of our sample and are primarily in the North.

Production inputs are land and labor. Land is constructed as the cultivated area of plots

owned and rented by households excluding land used for activities unrelated to crop pro-

duction (e.g., forestry, animal husbandry), left fallow for more than 48 months, or rented

out. Labor is constructed as the sum of hired labor and the labor supplied by household

members. Using information on family members that hire out in agriculture, we construct

wages controlling for individual characteristics (e.g., age, education, sex), the year of work,

and regional di↵erences that we use to convert household expenditure on hired labor into a

quantity of hired labor.

Following Hsieh and Klenow (2009), we construct the farm-level TFP and the farm-level

wedge for farm f as:

TFPf,t =
yf,t

(`↵
f,t
n1�↵

f,t
)�
, and Wedge

f,t
=

yf,t
`↵
f,t
n1�↵

f,t

. (1)

We use the term wedge, instead of TFPR (total factor revenue productivity), to highlight that

the wedge is a model-based measure of misallocation of land and labor across producers. In

an undistorted economy, marginal products and hence wedges are equalized across producers.

The variables in (1) are consistent with the model that we develop in the next section. We

2We make two adjustments to the output data for missing data and survey changes. First, the 2006 survey
only asks for the total value of a crop produced by the household for some crop categories. For most crops,
households are still asked to report both value and quantity. We regress crop prices on region, year, and crop
fixed e↵ects and then use the estimated fixed e↵ects to construct predicted prices for the crops with missing
quantity data. This allows us to impute a quantity for these crops in the 2006 survey. Second, the survey
treats potatoes, cassava and sweet potatoes as a single crop in 2006 and as unique crops in 2008 and later
surveys. For 2006, we treat this category as potatoes, noting that it only accounts for around 2.7% of total
production value and all three crops fall into the ‘Other Crop’ farmer type (see below).
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allow for measurement error in output and inputs in the quantitative analysis and show how

this impacts our main results.

We categorize households as either rice farms, perennial farms, or other (annual) crop

farms based on their most valuable crop grown over the survey.3 We categories farmers as a

rice or perennial farmer if more than 50% of their output value, across all years, is in rice

or perennial crops. We do not impose strict annual cuto↵s because of inter-cropping, crop-

rotation, and the fact that farms may devote some of their land to other crops. However,

cropping tends to be concentrated in these categories.4

Figure 1: Farm Crop Type and Age Distribution
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Figure 1a summarizes the empirical distribution of households across farm types. Unsur-

prisingly, most households are classified as rice farms as this is the most widely produced

crop in Vietnam. The remaining households are split between perennials and other crop

farms. Other crop farms grow, on average, around 30% of value in rice, but have a higher

3In the survey, perennials include: fruits, co↵ee, tea, cocoa, cashew nuts, sugarcane, pepper, rubber,
medicinal trees and plants, and other perennial crops. Other crops include maize, potatoes, sweet potatoes,
cassava, peanuts, soybeans, vegetables, and other annual crops. Farmers for whom more than half of their
average yearly crop output is from rice (perennials) are rice (perennial) farmers while the remainder are
“other crop” farmers.

4For example, over two-thirds of rice farmers have a rice share over 75% and just under half of rice farmers
have a rice share over 90%. For perennials, these numbers are slightly higher at 70% and 50% of farmers for
the same thresholds. In addition, more than 90% of rice and perennial farm-year observations would have the
same classification if classified year by year. Di↵erences are more common in the case of other crop farmers.
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production value in other annual crops.

We construct a measure of farm age for each household. Farm age is taken as an average

of individual household member age weighted by the number of days working in crop pro-

duction. Figure 1b reports the histogram of constructed farm ages in the North and South.

Most farms are between 20 and 60 years old and the South is slightly older than the North.

Finally, to minimize the influence of outliers, we winsorize the final set of variables at the

top and bottom 2% for both the North and South in each year.5

Land quality di↵erences. The productivity gap between the North and South is unlikely

to be explained by di↵erences in land suitability. Appendix A.4 examines the potential role

of land quality di↵erences between the South and the North using potential yield data from

the Global Agro-Ecological Zones (GAEZ) analyzed in Adamopoulos and Restuccia (2022).

We find minimal di↵erences in land quality between the two regions; if anything, land quality

is slightly higher in the North than the South.

3.2 Misallocation

The first source of productivity di↵erences between north and south Vietnam that we exam-

ine is the misallocation of factors of production. Figure 2 plots histograms of the TFP and

the wedge distributions, where both variables are normalized by the mean in each region

(North / South) year. Both TFP and wedges tend to be more dispersed in the South, as

documented in Ayerst et al. (2020).

Wedges are important because of their impact on the allocation of resources in the econ-

omy. In an undistorted economy, resource allocation is proportional to farm-level TFP. As

a simple measure of misallocation, we regress farm-level land and labor inputs on measured

TFP to examine the allocative e�ciency in each region. Table 1 reports the results.

5We winsorize rather than trim the data since trimming disproportionately a↵ects the share of perennial
farmers in the final dataset. Other than for the crop share, trimming the data implies similar moments
compared to winsorizing.
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Figure 2: TFP and Wedge Distribution
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Notes: Histogram of TFP and wedges for farm-year observations in north and south Vietnam. TFP and

wedges are normalized by the mean in each region (North / South) year. We calculate TFP and wedges

according to (1) with � = 0.70 and ↵ = 0.50.

Table 1: Farm Allocations

(1) (2)
log Land log Labor

log TFP (South) 0.554*** 0.382***
(0.0312) (0.0228)

log TFP (North) 0.152*** 0.122***
(0.0200) (0.0169)

North FE Yes Yes
R2 0.208 0.132
Observations 10526 10526

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the household level are

included in parentheses. All regressions include fixed e↵ects for the region (North/South) of the household.
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The results show that a one log point higher TFP results in three-to-four times more

factors allocated to a farm in the South compared with the North, pointing to substantially

larger misallocation in the North. It is also important to note that while the allocative

e�ciency of the South is much higher than that in the North, both economies face severe

misallocation. In the hypothetical undistorted economy, the elasticity between land or labor

and TFP is 1/(1� �) = 3.33 based on the model and calibrated parameters.

3.3 Crop Productivity Di↵erences

The second source of productivity di↵erences between north and south Vietnam that we

examine is crop selection. Table 2 provides summary statistics by farm type for north and

south Vietnam. An observation is a farm-year and only includes farm-years where TFP can

be calculated. Farm-level TFP and wedges are normalized to one in each region-year such

that reported values capture relative productivity and distortions within regions.

There are stark di↵erences within regions between crops. In the South, perennials tend to

outperform the other crop types in terms of production, productivity, and growth. This is

consistent with the fact that perennials are cash crops that incentivize investment. Among

perennials, co↵ee is the most important. Rice and other crops are more likely to be food

crops for the household’s own consumption, and underperform compared to perennials. In

contrast, in the North rice tends to overperform relative to the other crops. Farms in the

North also tend to be smaller in terms of land and labor inputs and output, and experience

lower growth. These di↵erences motivate our main quantitative experiment.

3.4 Farm Dynamism

The third source of productivity di↵erences between north and south Vietnam that we

examine is di↵erences in farm dynamism. Table 2 reports that farms in south Vietnam

tend to grow faster on average than farms in north Vietnam, on average and for each crop

types. Following Hsieh and Klenow (2014), we compare life cycles of farms in north and
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Table 2: Crop Di↵erences in North and South Vietnam

A. Vietnam, South

Crop Type Mean

Output Land Labor TFP Wedge TFP Growth Obs

Rice 9.9 2.4 154.2 �0.4 �0.3 4.9 2,293
Perennials 10.6 3.9 294.6 �0.2 �0.3 10.9 1,368
Other 9.6 1.9 184.4 �0.7 �0.6 1.8 726
Total 10.1 2.8 203.0 – – 6.2 4,387

B. Vietnam, North

Crop Type Mean

Output Land Labor TFP Wedge TFP Growth Obs

Rice 9.2 1.1 148.8 �0.2 �0.2 4.1 4,840
Perennials 8.7 0.7 126.7 �0.6 �0.4 �2.1 236
Other 9.0 1.2 155.4 �0.4 �0.4 �3.4 1,063
Total 9.2 1.1 149.1 – – 2.6 6,139

Notes: Observations are at the farm-year level. Output is reported as the log of total agricultural output

using real prices common across farms to sum di↵erent crops. Land is reported in acres. Labor is reported in

number of e↵ective worker days. TFP and wedges are reported in logs and constructed following the equation

(1). TFP and wedges in both the South and the North are normalized by the mean in each year. TFP Growth

is calculated over a two-year period as TFP Growtht = 100⇥ (TFPf,t�TFPf,t�2)/[0.5(TFPf,t+TFPf,t�2)]

before TFP is normalized where t is the calendar year.

south Vietnam by constructing synthetic life cycles using a measure of farm age. We use

the average age of household members weighted by their time working in crops since this

measure most closely aligns with our model. We find similar life cycle profiles using the

age of the head of households and the simple average age of household members (Appendix

A.3). Figure 3 reports the TFP of farms in di↵erent age bins obtained from regressions of

farm-level TFP on fixed e↵ects for the age bin. We remove region-by-year variation from

farm-level TFP so that the life cycle is not contaminated by time trends.

In both the North and the South, farm productivity increases rapidly until age 40 and

then begins to level o↵ before declining at much older ages. These trends are much more

pronounced in the South where the initial increase in productivity is steeper. Hsieh and

14



Figure 3: Farm-level productivity
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of age bin fixed e↵ects cRj (for R 2 {South,North}) from the regression log TFPf,t =
P

j2A cRj 1agef,t2j +

�R + �t + "f,t where �R and �t are region and year fixed e↵ects. The coe�cient estimates are normalized

such that the youngest bin has value zero.

Klenow (2014) similarly find that firms in less distorted economies experience more produc-

tivity growth over their life cycle, but do not find the decline at old ages. Prior to extensive

mechanization, we expect that the decline is likely driven by declining physical abilities of

older household members working in agriculture and by selection of households with older

members active in agriculture.

Investment and productivity. We develop a model in the next section in which farmers

invest in improving productivity to capture the productivity increase of young farmers. While

we do not observe a single comprehensive measure of investment, the survey asks households

about key farm investments and their participation in extension services on new technology

and farming methods. First, we construct a variable Invf,t that takes value one if farm f

has made any cash or labor investments in irrigation or soil and water conservation. Second,

we construct a variable Extf,t that takes a value of one if farm f participates in extension

services providing information on (a) new seeds, varieties, or breeds; (b) fertilizer use; (c)

irrigation; (d) pest infestation and blight; or (e) market conditions.

Table 3 reports the relationship between investment and extension services and farm
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Table 3: Investment and Farm Characteristics

A: Investment and Extension Services

South North

(1) (2) (3) (4)
Invf,t Extf,t Invf,t Extf,t

log TFPf,t 0.240*** 0.119*** 0.253*** 0.212***
(0.0173) (0.0180) (0.0235) (0.0206)

logWedgef,t -0.242*** -0.0910*** -0.225*** -0.196***
(0.0187) (0.0196) (0.0236) (0.0202)

Year FE Yes Yes Yes Yes
Province FE Yes Yes Yes Yes
R2 0.116 0.211 0.197 0.234
Observations 4387 4387 6139 6139

B: Farm TFP Growth

South North

(1) (2) (3) (4)
gf,t gf,t gf,t gf,t

Invf,t�2 14.94*** -3.961*
(3.047) (2.195)

Extf,t�2 15.28*** 8.567**
(4.079) (3.709)

log TFPf,t�2 -40.01*** -40.18*** -55.80*** -56.02***
(1.429) (1.465) (1.745) (1.747)

Year FE Yes Yes Yes Yes
Province FE Yes Yes Yes Yes
R2 0.263 0.262 0.320 0.320
Observations 3485 3485 4883 4883

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the household level

are included in parentheses. Invf,t takes value one if the household reports any cash or labor investment

in irrigation or soil and water conservation. Farm TFP Growth is calculated over a two-year period as

gf,t = 100 ⇥ (TFPf,t � TFPf,t�2)/[0.5(TFPf,t + TFPf,t�2)] (before TFP normalization), where t is the

calendar year.
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characteristics, following closely König et al. (2022). Panel A reports the relationship between

investment and extensions services and farm-level productivity and wedges. Panel B reports

the relationship between farm-level TFP growth and previous investment and extension

services. We include the farm’s previous productivity to control for more productive farms

growing slower in the data, which our model also replicates.

Investment and extension services are positively related to farm-level TFP and negatively

related to farm-level wedges, indicating that more distorted farms are less likely to take steps

to improve productivity. In the South, both investment and extension services are associated

with faster growth while the relationship is weaker in the North where only extension services

are associated with faster growth. These results continue to hold if we separate investment

in cash and in labor and if we include the intensive margin of investment.

4 Model

We develop a model of heterogeneous farms that make cropping decisions and invest in pro-

ductivity improvements. Farmers face idiosyncratic distortions, as in Restuccia and Rogerson

(2008), which a↵ects the choice of inputs relative to the first best allocation. In addition, the

government imposes crop restrictions on a set of farmers. Distortions, crop restrictions, and

crop-specific di↵erences a↵ect the allocation of resources across farms and crops, as well as the

productivity distribution through farmer incentives to invest in productivity improvements.

4.1 Economic Environment

Time is discrete and indexed by t 2 {0, 1, 2, ...,1}. The economy is populated by a mass

N of households, indexed by f , half that work as farm managers and half that supply labor

as farm workers. We abstract from sectoral occupational choice (structural transformation)

and selection, as the impact of distortions on these channels has been well-studied and are

known to amplify the productivity cost of distortions (e.g., Adamopoulos and Restuccia,
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2014, 2020; Adamopoulos et al., 2022). The economy is also endowed with a mass L of land

that is used in agricultural production.

Production technology. We model crops i 2 I as a technological choice to the farmer.

In this regard, we take all agricultural production to be a single final good and assume that

the choice of crop directly a↵ects farm productivity. This simplification provides tractability

while preserving the core economics of the farmer’s crop choice.

A farmer f that grows crop i 2 I produces output according to the following decreasing

returns to scale technology in variable inputs,

yi
f,t

= (si
f,t
)1��(`↵

f,t
n1�↵

f,t
)�,

where si
f,t

is the crop-specific productivity of farmer f in period t; `f,t is the land input; and

nf,t is the labor input. The productivity of farmer f growing crop i is equal to

log si
f,t

= log zf + log i + log af,t + vf,t,

where zf is a permanent component of farmer productivity with distribution �z(z); i is a

crop i specific component of productivity; af,t is the managerial ability of farmer f ; and vf,t

is a time varying stochastic component of farmer productivity with distribution �v(v). The

farmer’s ability is determined through their investment decisions as we discuss below.

Investment. A farmer f can improve their managerial ability af,t through investment.

Farmer ability follows a ladder, such that a farmer that has successfully improved their ability

h times has ability af,t = a(h) = �h. A farmer f that invests ef units of the final output

good improves their ability with probability xf,t = (ef/ af,t)
1/⇣ . Rewriting this expression
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shows that expenditure on improving ability with success rate xi is equal to

e(xf,t, af,t) =  x⇣

f,t
af,t,

where af,t is a scaling factor capturing that it is more costly for higher ability farmers to

further improve their ability. The parameter  captures the level of the investment function,

with the investment required to improve ability with the same probability increasing in  .

The parameter ⇣ > 1 captures the curvature of the investment function, which dictates how

quickly increasing the success rate of improving ability increases the cost of investment.

The investment function reflects the empirical evidence showing that farmers invest to

improve productivity and that younger farms experience rapid productivity improvements

while the productivity of middle-aged farms experience relatively slow or flat productivity

growth (Section 3). In Appendix C.7, we show a model extension that incorporates the

productivity decline of older farms. This extension does not significantly alter our results.

Preferences and cropping decision. The economy is populated by a mass N of house-

holds, indexed by f , half of which are farm managers (farmers) while the remaining house-

holds are workers and supply a unit of labor to farms. With probability ⇠ a household survives

to the next period and with probability 1 � ⇠ a household exits and is replaced by a new

household. Household preferences are given by

U o

f
([Co

t
]) = E0

" 1X

t=0

(⇠�)tCo

t

#
⇥ bo

f
,

where o 2 {I,W} is the occupation of the household, which can either be a worker W or

a manager of a crop i 2 I farm. The value of bo captures an idiosyncratic preference for

occupation o. We normalize the preference parameters for workers such that bW
f

= 1. The

value of bi
f
is drawn by each farm manager from a Frechet distribution, H(b) = exp{�(b/

⌘i)�✓}, where ⌘i is a crop-specific preference shifter that captures a common component of
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the utility cost of growing a crop i. Higher values of ⌘i correspond to, on average, more utility

from growing crop i. The common crop-specific component ⌘i captures the average di�culty

or lost revenues from preparing plots for specific crops. For example, growing perennials

involves extensive investment and seasons in which the plot does not produce output, which

would be captured by lower ⌘i. The dispersion of preferences captures idiosyncratic factors

to the farmer (e.g., slope of land, access to irrigation, soil quality) that cause farmers to

prefer di↵erent crops even in the absence of market-based factors.

The idiosyncratic dispersion in the utility cost causes farmers to di↵er in their relative

preference for growing di↵erent crops. For example, some farmers prefer to grow perennials

while others prefer to grow rice, all else equal. This preference may be strong enough that

some farmers choose to grow rice even if rice is less profitable than perennials. In equilibrium,

this implies farmers select into crops based on both the relative market value and their relative

preference for each crop, where the elasticity of selection to market forces is determined by

the shape parameter ✓. Modeling crop choice as a utility cost allows us to replicate the overlap

in the productivity of farmers that grow di↵erent crops observed in the data (Appendix A.2).

For example, there are many productive rice farmers and unproductive perennial farmers,

despite perennial farmers being more productive on average.

Farmers that exit the economy are replaced by a new household that takes over man-

agement of their farm. We interpret exit as capturing both the exit of households from

agriculture as well as the inter-generational transfer of the farm within families. New farm-

ers enter the market with ability af,t = �0. In Appendix C.7, we extend the model to allow

for entrant ability to depend on the ability of exiting farms, capturing, for example, transfers

of skills from the old to the young. The extension has a negligible e↵ect on the final results.

4.2 Market Structure

The final agricultural good is the numeraire. Following Restuccia and Rogerson (2008), we

model institutional distortions in a reduced form as an idiosyncratic tax ⌧ on farm revenues,
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such that farm revenues net of the tax are (1�⌧ i
f,t
)yi

f,t
. While we model the wedge as a tax on

revenues, this is isomorphic to modeling wedges on factors inputs, which could capture, for

example, land transaction restrictions or lack of market access to intermediate inputs. Since

the relationship between land and labor and productivity is relatively similar (Table 1), we

choose to model wedges parsimoniously on output. The model distortions we define directly

correspond to the wedge defined in Section 3, Equation (1), as Wedge
f,t

= 1/(1� ⌧ i
f,t
).

Higher values of ⌧ i
f,t

imply that farmers operate smaller farms than they would in the

absence of the distortion. Distortions are distributed according to

log(1� ⌧ i
f,t
) = (1� �)

⇥
log ⌧̄ + log'i � ⇢ log

�
si
f,t

�
+ "f,t

⇤
, (2)

where 'i is a crop-specific distortion that captures institutional factors a↵ecting crop choice

(e.g., market access to sell or purchase specific inputs); ⇢ captures the elasticity of distortions

to the underlying productivity of the farm reflecting correlated distortions (e.g., land size

restrictions); and "f,t is a random idiosyncratic component of distortions with distribution

�"("). Distortions are scaled by (1� �) to simplify algebra in the solution. We assume that

the government’s budget constraint is balanced by a lump-sum transfer Tt to households that

is equal to the total amount collected from the idiosyncratic tax. Of particular importance

for the quantitative analysis is the elasticity of distortions ⇢ to the farm’s productivity si
f,t
.

This parameter determines the extent to which more productive farms can operate larger

amounts of labor and land inputs than less productive farms, with higher values of the

parameter indicating less correlation of operated inputs to farm productivity as documented

in the North relative to the South (see Section 3). Higher elasticities could reflect, for example,

historical di↵erences in land rights, such as those discussed in Section 2, that prevent more

productive farmers in the North from accumulating more land.

A fraction ! of farmers face government-imposed crop restrictions in which case the farmer

must grow rice for their crop, such that i = R. This reflects a direct cropping restriction im-
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posed by the Vietnamese government on individual farms that are quantitatively important

for aggregate production (Le, 2020). These types of land-use restrictions are not captured

by the standard misallocation wedges ⌧ i
f,t

since they do not impact the farm’s output or

choice of inputs. Farmers receive the government-imposed crop restriction prior to making

their crop choice, implying that some farmers facing the restriction would have still grown

rice. The probability of facing the government-imposed crop restriction is unrelated to the

distortions ⌧ i
f,t

that farmers face implying that restricted rice farmers are otherwise identical

to unrestricted rice farmers.

Timing. The timing of each period is: (i) new farmers enter; (ii) new farmers make crop

choices; (iii) farmer ability and period-specific shocks (v, ") are realized; (iv) farmers choose

production inputs and realize profits; (v) farmers invest in future managerial ability; and

(vi) farmers exit.

4.3 Equilibrium

We focus on the steady state equilibrium in which the distribution of farm types, allocations,

and prices are constant. We drop f and t subscript and write farmer outcomes in terms of

the farmer’s crop choice i 2 I, permanent farmer productivity z, current ability-level h, and

current shocks (v, ").

Production problem. Farmers choose resources (n, `) to maximize total profits. The

farmer’s production problem is

⇡i

z,h
(v, ") = max

n,`

(1� ⌧ i
z,h

(v, "))si
z,h

(v, ")1��(`↵n1�↵)� � q`� wn.

Profits depend on farmer’s idiosyncratic distortions ⌧ i
z,h

(v, ") and the farmer’s productivity
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si
z,h

(v, "). Solving the farmer’s production problem implies that inputs are

`i
z,h

(v, ") =

"
�↵

q

✓
1� ↵

↵

q

w

◆�(1�↵)
# 1

1��

(1� ⌧ i
z,h

(v, "))
1

1�� si
z,h

(v, "),

ni

z,h
(v, ") =


�(1� ↵)

w

✓
↵

1� ↵

w

q

◆�↵� 1
1��

(1� ⌧ i
z,h

(v, "))
1

1�� si
z,h

(v, ").

Given the above level of inputs, output is

yi
z,h

(v, ") = �
�

1��

✓
↵

q

◆ ↵�
1��
✓
1� ↵

w

◆ (1�↵)�
1��

(1� ⌧ i
z,h

(v, "))
�

1�� si
z,h

(v, ").

Investment problem. Farm profits are equal to ⇡i

z,h
(v, ") = (1��)(1�⌧ i

z,h
(v, "))yi

z,h
(v, ").

The farmer’s investment problem is to choose investment e, or equivalently the success rate

x, to maximize the expected value of their farm. The problem is

V i

z,h
(v, ") = max

x

�
⇡i

z,h
(v, ")� e(x,�h)

�
+ (⇠�)Ev0,"0

⇥
xV i

z,h+1(v
0, "0) + (1� x)V i

z,h
(v0, "0)

⇤
.

The investment decision of the farmer solves

xi

z,h
=

"
(⇠�)Ev0,"0

⇥
V i

z,h+1(v
0, "0)� V i

z,h
(v0, "0)

⇤

 ⇣�h

# 1
⇣�1

,

where the farmer’s investment decision does not depend on their current state (v, ").

Crop decision. Let V̄ i

z
denote the expected value of a new farm with crop i, permanent

productivity z, and ability-level h = 0 before the shock (v, ") is realized. Farmers with the

government-imposed crop restriction do not choose their crop and are forced to produce rice,

i = R. For unrestricted farmers, the crop decision is

max
i2I

V̄ i

z
⇥ bi.
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The resulting share of farmers that grow crop i is equal to

⌦i

z
=

8
><

>:

! + (1� !) (⌘iV̄ i
z )

✓
P

i02I(⌘
i0 V̄ i0

z )✓
for i = R

(1� !) (⌘iV̄ i
z )

✓
P

i02I(⌘
i0 V̄ i0

z )✓
for i 6= R

. (3)

See Appendix B for derivation of the above expression. The fraction of (unrestricted) farmers

that choose a specific crop depends on both the relative expected value of growing that crop

V̄ i

z
and the relative di�culty of growing that crop, captured by the preference parameter ⌘i,

where ✓ determines the elasticity of farmers to these factors.

Farm distribution. The evolution of farmer ability depends on the success rate xi

z,h
chosen

by farmers and the survival rate ⇠. The evolution of the distribution of farm abilities is

described by

�µi

z,h
=

8
><

>:

µi

E,z
� (1� ⇠)µi

z,0 � ⇠xi

z,h
µi

z,0 for h = 0,

�(1� ⇠)µi

z,h
+ ⇠

⇥
µi

z,h�1x
i

z,h�1 � xi

z,h
µi

z,h

⇤
for h > 0,

where µi

E,z
is the entry rate of farmers. In the stationary equilibrium the distribution is

defined by �µi

z,h
= 0 for all values of h and the entry rate is equal to µi

E,z
= 1� ⇠.

Aggregate output. Production of the agricultural good is given by

Y =

2

4

⇣R
v,"
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⌘ R

z

P
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P
h
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5

⇥N1��

F
(L↵N1�↵

W
)�, (4)

where NF = 0.5N is the mass of farm managers and NW = 0.5N is the mass of workers.

The expression in square brackets describes the average productivity of farms and the im-

pact of misallocation on aggregate productivity. In the undistorted economy, this expression

simplifies to average productivity raised to the exponent 1� �, and total output is equal to
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output of a farm with average productivity multiplied by the total mass of farms. Aggregate

productivity depends on (i) the misallocation of factors of production (n, `); (ii) the share of

farms growing each crop ⌦i

z
; and (iii) the distribution of farmer abilities µi

z,h
through farmer

investment decisions. Notably, aggregate output does not directly depend on the average

level of distortions ⌧̄ , which is canceled out by general equilibrium e↵ects. The rest of the

expression describes inputs of farm managers NF , land L, and farm workers NW to aggregate

output, where aggregate output has constant returns in all three factors.

Equilibrium definition. The stationary competitive equilibrium is the set of values

{CW , q, w, T, ni

z,h
(v, "), `i

z,h
(v, "), V i

z,h
(v, "), xi

z,h
, µi

z,h
,⌦i

z
}

for all z 2 Z, h 2 {0, 1, 2, ...,1}, i 2 I and values (v, ") such that:

(i) Taking prices as given, (ni

z,h
(v, "), `i

z,h
(v, ")) maximize farm profits and (V i

z,h
(v, "), xi

z,h
)

maximize farm value.

(ii) The lump-sum transfer T balances the government’s budget.

(iii) The distributions (µi

z,h
,⌦i

z
) are consistent with farm decisions and are stationary.

(iv) The land, labor, and output markets clear.

5 Calibration

We calibrate a benchmark economy with distortions to match characteristics of south Viet-

nam that we observe in the data. Our main experiment in the next section adjusts distortions

in the benchmark economy to match the higher measured distortions in the North.
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5.1 Measurement Error

A common concern in the misallocation literature is that the estimated wedges, such as those

in Section 3, reflect some degree of measurement error. For example, over-reported farm

output would result in a higher measured TFP and wedge. In Appendix C.1, we employ Bils

et al. (2021)’s empirical methodology to show that, at least comparatively with estimates for

the manufacturing sector, there is relatively limited measurement error, around 10% at most,

in our measured wedges in agriculture for both south and north Vietnam. Additionally, we

expect measurement error to be similar in both the South and North such that our main

experiment—which adjusts distortions in the South to match the North—should not be

drastically contaminated by measurement error. Nevertheless, measurement error can impact

the level and measurement of distortions and the dynamic productivity implications. As a

result, we extend our model to allow explicitly for measurement error in our calibration to

limit its impact on our conclusions.

We allow for measurement error on output and the composite input. Measured output

is now given by yf,t = y⇤
f,t

exp{◆out
f,t

} and measured inputs are given by `f,t = `⇤
f,t

exp{◆in
f,t
}

and nf,t = n⇤
f,t

exp{◆in
f,t
}, where we use stars to indicate unobserved true values. While we

interpret ◆out
f,t

and ◆in
f,t

as measurement error, these variables also capture any type of shock

to production or inputs that farmers are unable to fully adjust to, including, for example,

unexpected weather events. In this regard, the important di↵erence between ◆out
f,t

and ◆in
f,t

and

the random components of productivity vf,t and distortions "f,t is that farms cannot adjust

production and input decisions based on ◆’s. Measured farm-level TFP and Wedge are now:

TFPf,t =
yf,t

(`↵n1�↵

f,t
)�

= s1��

f,t
e◆

out
f,t ��◆

in
f,t , and Wedge

f,t
=

yf,t
`↵
f,t
n1�↵

f,t

=
e◆

out
f,t �◆

in
f,t

1� ⌧f,t
.

These expressions show that measured TFP and wedges depend on both the model funda-

mentals, captured by sf,t and ⌧f,t, but also the measurement errors, ◆out
f,t

and ◆in
f,t
. Measurement

error creates an upward bias in both the standard deviation of wedges and the elasticity of
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wedges with respect to farm-level productivity.

The measurement errors ◆out
f,t

and ◆in
f,t

are drawn from normal distributions with standard

deviations �◆out and �◆in . We jointly target these parameters along with other model parame-

ters in the calibration. We include moments on the standard deviation of farm land size and

the correlation between within farm changes in output and changes in land to discipline the

extent of measurement error. The correlation moment reflects intuition from Bils et al. (2021)

that co-movements in producer outcomes can be used to assess the extent of measurement

error, which tends to dampen this relationship. Appendix C.2 discusses the identification of

measurement error and other parameters in the calibration, and shows that measurement

error a↵ects moments di↵erently than other model parameters.

5.2 Estimated Distortions

Ignoring measurement error, the parameters related to distortions can be directly estimated

by regressing measured farm-level wedges on TFP and fixed e↵ects for the farm’s crop type,

following equation (2). Table 4 reports the results for south and north Vietnam.

Table 4: Estimating Distortions in the South and the North

National South North

(1) (2) (3)
log Wedge log Wedge log Wedge

log TFP 0.907*** 0.856*** 0.964***
(0.00473) (0.00717) (0.00491)

Perennials -0.0989*** -0.142*** 0.117***
(0.0167) (0.0178) (0.0301)

Other 0.00250 -0.0350 0.0262
(0.0142) (0.0230) (0.0183)

Year FE Yes Yes Yes
R2 0.907 0.905 0.917
Observations 10526 4387 6139

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the household level are

included in parentheses. All regressions include year fixed e↵ects.
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Measurement error implies that the estimates in Table 4 are biased upwards because mis-

measurement creates a positive mechanical correlation between measured TFP and wedges

(see also Ayerst et al., 2024). As a result, we use the estimates in Table 4 as targets in the

model calibration and jointly target other moments to discipline the extent of mismeasure-

ment. We also target the distribution of the random component of distortions in the joint

calibration.

The crop-specific distortions are not subject to the same source of mismeasurement bias,

and so we set these parameters directly. We normalize the crop-specific distortion of rice to

one, 'R = 1, and set the crop-specific distortions for perennial farmers to 'P = 1.61 and

for other crop farmers to 'O = 1.12 using the relationship 'i = exp(�Coe�cienti/(1 � �))

implied by the model. The estimated coe�cients indicate that distortions disincentivize

production by rice farmers (through higher ⌧) compared to perennial or other crop farmers.

The level of distortions, ⌧̄ , does not impact misallocation since it a↵ects all farmers equally.

However, the level ⌧̄ a↵ects profits and, consequently, the incentives for farmers to invest.

We set ⌧̄ such that the average value of the wedge is equal to one and hold ⌧̄ constant in the

counterfactual experiment. We find that this is a conservative assumption.

We set the government-imposed restriction ! = 23% for south Vietnam. In the data,

farmers with multiple plots may report that only some plots face restriction while crop

restrictions are a binary variable in the model. To construct the data moment, we take a

land-weighted average of crop-restrictions for each farmer and then average this value over all

farmers in south Vietnam in the dataset. This implies, for example, a farmer in the data with

one-third of their land restricted is captured in the model by three farmers with one farmer

having the entirety of their crop choice restricted and the other two being unrestricted. The

comparison between the North and the South remains similar with alternative constructions

of this moment. For example, the share of farmers that face crop restrictions on any plot

is 40.5% in the South and 61.5% in the North, whereas the share of farmers with crop

restrictions on greater than 50% of the land is 34.3% in the South and 51.6% in the North.
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5.3 Calibration Strategy

There are thirteen parameters common to all crops {L,N, �, ⇠, �,↵, ✓,�, , ⇣, ⇢, �◆out , �◆in},

three sets of crop-specific parameters {⌘i,i,'i}, and three distributions {�z,�v,�"}. We

calibrate the crop-specific parameters to match the three farm types described in Section 3.

Preliminaries. A period is set to one year. The discount factor is set to � = 0.96 to match

a discount rate of 4%. The total mass of households is set to N = 2 such that there is a unit

mass of farm managers and workers. The mass of land is set to L = 2.77 corresponding to

an average farm size of 2.77 acres in south Vietnam. The span-of-control parameter is set

to � = 0.7, implying the profit share of farm managers is 30%, which reflects the combined

return to the farm manager’s labor on the farm and their management expertise (see, for

example, Adamopoulos et al., 2022). The land share of output is set to ↵ = 0.5 based on the

land share from Ayerst et al. (2020). Finally, the survival rate is set to ⇠ = 0.955 to match

an annual exit rate of households from cropping of 1.2% and the implied inter-generational

transfer of the farm of 3.3% in the data, which is based on the minimum and average ages

of the head of household of 20 and 50 years old.

The three distributions describe the distributions of the permanent farmer productivity

�z, the idiosyncratic component of productivity �v, and the idiosyncratic component of

distortions �". The permanent farmer productivity z takes five values while the idiosyncratic

component of productivity v and distortions �" take fifteen values. We parameterize all

three distributions with a log-normal distribution and dispersion parameters {�z, �v, �"}

and with node ranges between two standard deviations above and below the mean value. For

computation, we restrict the maximum farmer ability to �99 and note that fewer than one

in ten thousand farmers are above the 25th node of the ability distribution in the stationary

equilibrium. The results are not sensitive to the number of grid points used for z, v, ", or a.

29



Jointly calibrated parameters. The remaining parameters are calibrated in two stages

to match the moments in Table 5. The first stage exploits the fact that the preference

shifters ⌘i can always be set such that the model exactly matches the farm share by crop

in the data, regardless of the other parameter values. As a result, holding the distribution

of crops fixed, the parameters {�, , ⇣,i, �z, �v, ⇢, �", �◆out , �◆in} with R normalized to one,

are jointly calibrated to minimize the distance between data moments and model moments

constructed from simulated data (described below). The second stage calibrates the crop-

specific preferences ⌘i, where ⌘R is normalized to one, and the preference curvature ✓. As in

the first stage, the crop-specific preferences ⌘i are always set such that the crop share matches

the data. The value of the shape parameter ✓ on the distribution of farmer preferences is

chosen to minimize the magnitude of the crop-specific preferences, given by
P

i
(⌘i � 1)2. In

this regard, the final moment is chosen to treat the crop-specific preference as a residual and

minimize the out-of-model factors that a↵ect crop choice.

Table 5: Calibration Moments

Model Data

Avg growth (%) 6.23 6.23
Std growth 75.2 75.2
Std log TFP 0.98 1.00
Std log land 1.18 1.21
Reg coe�cient: growth on log TFP �34.4 �34.4
Top 10% land share (%) 42.1 41.2
Measured elasticity 0.855 0.856
Std log Wedge 0.89 0.87
Corr(� log TFP,� log `) 0.084 0.084

Relative measured TFP (1.00 , 1.20 , 0.75) (1.00 , 1.20 , 0.75)
Farm share by crop (%) (49.1 , 33.1 , 17.8) (49.1 , 33.1 , 17.8)

Notes: For Relative Measured TFP and Farm Share by Crop, we report moments first for rice farms, fol-

lowed by those for perennials and then other crop farms. Farm share by crop is calculated based on (3).

All other moments are calculated using a simulation of 10,000 farms. Avg Growth and Std. Growth are

calculated for growth over a two-year (two-period) interval (i.e., growth is calculated from t to t + 2).

Corr(� log TFP,� log y) measures the correlation in the within-farm two-year change in log measured TFP

and change in log measured output.
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Other than the farm share by crop, the model moments are calculated using simulation

data generated for 10,000 farmers in the stationary equilibrium. We initialize the simulation

data for the 10,000 farmers using the stationary distribution of crop types i, permanent

abilities z, and ability nodes h. We then allow the productivity of the farmers to evolve

as in the stationary equilibrium—accounting for farmers transitioning to higher ability and

random shocks (v, ")—and allow for exit and entry of farmers for 103 periods. We then add

measurement error on output, ◆out
f,t

, and inputs, ◆in
f,t

for each simulated observations. Finally,

we drop the first 100 periods and construct model moments over the final three-period

window following the same procedure in the data. For comparability, we winsorize the top

and bottom 2% of the simulation data, remove exiting farms from the relevant statistics

(e.g., growth), and calculate moments using only data for the first (t) and last (t+2) periods

such that there is a year gap in the growth and change statistics.

5.4 Calibration Moments

Our theory describes the evolution and distribution of productivities and how these relate

to farm crop decisions and the institutional environment. We leverage the micro data to

construct moments that describe the joint distributions of TFP and growth, crop-specific

di↵erences across farms, and distortions to discipline the model parameters. We discuss the

construction of the moments and provide a qualitative discussion on their connection to pa-

rameters below. In Appendix C.2, we discuss the derived model expressions and their relation

to parameters, the sensitivity of model moments to a 10% change in calibrated parameters,

and report the sensitivity of calibrated parameters to changes in targeted moments (as in

Andrews et al., 2017; Fujimoto et al., 2023).

Avg TFP growth. The moment reports the average growth of measured farm-level TFP.

In the data, farm-level growth is calculated over a two-year period as gf,t = (TFPf,t �

TFPf,t�2)/(0.5 ⇤ (TFPf,t + TFPf,t�2)), averaged over all farm-years. In the simulated data,
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we similarly construct the growth in TFP from t to t+ 2 and report the average value over

all farms that remain active into t + 2. The moment relates to the size � and likelihood of

improving productivity, which depends on the investment technology (�, , ⇣).

Std TFP growth. The moment reports the standard deviation of gf,t calculated in the

previous moment across all active farms in both the empirical and simulated data. While the

moment depends on the size and likelihood of improving productivity, it is moment is closely

related to the idiosyncratic component of productivity through �v and the measurement

error parameters �◆out and �◆in .

Std log TFP. The moment reports the standard deviation of measured farm-level TFPf,t

across all active farms in both the empirical and simulated data. The moment acts as a

residual measure of farm-level TFP di↵erences to discipline the dispersion in the permanent

component of productivity �z but also relates to parameters that determine the productivity

distribution, such as the investment technology (�, , ⇣), the idiosyncratic component of

productivity through �v and the measurement error parameters �◆out and �◆in .

Std log land. The moment reports standard deviation of measured farm-level land `f,t

across all active farms in both the empirical and simulated data. The moment is closely

linked to parameters that cause variation in productivity, such as �z and �v, or distortions,

such as �". The moment also helps disciplines measurement error on inputs �◆in by explaining

cross-sectional variation in farm size not linked with productivity or distortions.

Reg coe�cient: TFP growth on log TFP. The moment measures the coe�cient from

regressing farm-level TFP growth on log TFP. The empirical specification is given by gf,t =

⌫ log TFPf,t�2 + �t + ✏f,t where �t is a year fixed e↵ect and ⌫ is the reported moment. The

moment is calculated similarly using the simulated data, without the time fixed e↵ect. The

moment helps discipline the investment technology (�, , ⇣) nad other parameters related

32



to the productivity distribution, such as (�z, �v). In particular, the moment helps discipline

curvature of the cost function since higher curvature ⇣ implies investment is less elastic to

incremental profitability. Correlated distortions lead to a flattening of profitability at higher

ability levels implying that higher curvature ⇣ increases relative investment by higher ability

farms. Less negative estimates of ⌫ then correspond to higher values of ⇣.

Top 10% land share. The moment is calculated as the share of land held by the 10%

largest farmers (by land size) in the empirical and simulated data. A farmer’s land size

is closely related to both productivity and distortions. The moment helps discipline the

size and likelihood of productivity improvements through investment, and is, consequently,

closely related to the investment technology (�, , ⇣). Intuitively, larger ability improvements

(higher �) by fewer farmers (higher costs  ) leads to a more skewed productivity distribution

and amore concentrated distribution of land.

Measured elasticity. The data moment is taken from Table 4. We construct the model

moment similarly by regressing measured farm-level wedges on measured farm-level TFP

where we incorporate measurement error in the construction of both variables. Despite the

bias, the data moment remains useful for disciplining the elasticity of distortions ⇢ in the

model and changes in the parameter elasticity ⇢ closely coincide with the measured elasticity.

Std log Wedge. The moment reports standard deviation of measured farm-level wedge

across all active farms in both the empirical and simulated data. The moment helps discipline

the standard deviation of the random component of wedges �" that is independent of the

systematic component that relates to dispersion in TFP.

Corr(� logTFP,� log `). The moment reports the correlation of within-farm changes in

measured farm-level TFP and measured farm-level land. In both the empirical and simu-

lated data, the moments are calculated over a two-year period, such that � log TFPf,t =
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log TFPf,t � log TFPf,t�2. The moment is used to discipline the measurement error param-

eters �◆out and �◆in and builds on the intuition from Bils et al. (2021) in using within-farm

changes in variables to identify measurement error. Intuitively, farms adjust land holdings

with measured TFP when it captures a true change in productivity (e.g., increasing z) but

not when it captures a change in measurement error (e.g., changing ◆out).

Relative measured TFP. The data moment is calculated by regressing farm-level TFP

on crop fixed e↵ects, log TFPf,t = kP ⇥ Peren.f,t + kO ⇥ Otherf,t + �t + ✏f,t where �t is a

year fixed e↵ect. The empirical estimates exp(kP ) and exp(kO) are used as targets, with

rice normalized to one. The corresponding model moments are calculated as average TFP of

perennial and other crop farmers normalized by the average TFP of rice farmers.

Farm share by crop. The data moment is calculated as the number of farmers that

qualify as Rice, Perennial, and Other farmers based on the definition in Section 3. The

model moment is calculated analytically as the share of farmers that choose to grow each

crop i. For a given share of government-imposed crop restrictions ! and farm values V̄ i

z,h
,

the crop-specific preferences ⌘i can be used to match directly the empirical distribution of

crops using equation (3).

5.5 Parameters

Table 6 summarizes the calibrated model parameters. The ability improvement � and the

crop-specific productivity component  need to be scaled by a factor of 1 � � to be con-

verted into TFP values. This implies that the increase in TFP from improving ability is 11%

(�1�� ⇡ 1.11) and that perennial (other crop) farmers are 10% more (23% less) productive

than rice farmers, all else equal. Relative to Adamopoulos and Restuccia (2020), we find

larger di↵erences in the crop-specific component of productivity despite smaller di↵erences

in measured TFP due to more productive farmers selecting into cash crops in Adamopoulos
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and Restuccia (2020). In contrast, we find substantial overlap in the productivity distribution

of farm types leading us to model crop selection at the time of entry (Appendix A.2).

Table 6: Model Parameters

Parameter Value Parameter Value

Discount rate � 0.96 Survival rate ⇠ 0.955
Span-of-control � 0.7 Land share ↵ 0.5
Land L 2.77

Crop restriction ! 0.23 Crop-specific distortion 'i (1.00 , 1.61 , 1.12)

Crop preference elasticity ✓ 1.40 Preference shifter ⌘i (1.00 , 0.64 , 0.83)
Investment level  1.51 Investment curvature ⇣ 1.74
Ability step size � 1.43 Crop-specific productivity i (1.00 , 1.37 , 0.41)
Permanent productivity �z 1.48 Random productivity �v 1.79
Elasticity ⇢ 0.79 Random distortion �" 0.98
Output mismeasurement �◆out 0.25 Input mismeasurement �◆in 0.47

In addition to productivity, the crop-specific distortions 'i tend to incentivize farmers

to grow crops other than rice, where recall that higher values of ' corresponds to lower

distortions ⌧ . The allocation of farmers across crops is o↵set by government-imposed crop-

restrictions !, which increase the share of rice farmers, and crop-specific preferences ⌘i, which

imply, on average, a utility cost for non-rice crops. The estimated value of ⌘P is consistent

with perennials requiring substantial investment by households in addition to the time that

passes before the crops mature and generate income.

The estimated parameter elasticity is ⇢ = 0.79, which is around 0.06 lower than the

measured elasticity of distortions in Table 4. The magnitude of the bias is consistent with

what we find using Bils et al. (2021)’s methodology (Appendix C.1). It is worth noting that

measurement error a↵ects other parameter estimates as well, but the impact on the elasticity

⇢ is the most relevant to our quantitative analysis. Overall, we find a relatively small but

nevertheless non-negligible role of measurement error.

The estimated curvature ⇣ on the ability investment is close to the quadratic value that

is typically found in the manufacturing sector (e.g., Bento and Restuccia, 2017; Acemoglu

et al., 2018; Ayerst, 2022). The estimated value implies that farm investment is comparatively
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more elastic to changes in profitability. We show that the results are robust to assuming a

quadratic curvature in Section 6.5.

5.6 Other Moments and Goodness-of-Fit

Figure 4 compares the median TFP and TFP growth by percentile in the empirical and

simulated data. Despite only targeting the dispersion of productivity and growth in the

calibration, the simulated distribution fits the empirical distribution well.

Figure 4: Farm Productivity Distribution
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Notes: Panel (a) reports log TFP for the median of each decile, i.e., the percentiles 5, 15, etc. Panel (b)

similarly reports TFP growth for the median farm of each decile.

Figure 5 provides a comparison of the farm land size in the simulated model data and the

data. The calibration sets the aggregate quantity L of land to match the average farm size

in the model, but does not target the distribution of farms by land size. Despite this, the

model almost perfectly replicates the distribution of farm land size observed in the data.

Table 7 compares other data moments with their corresponding moment constructed in

the simulated data. The first set of moments validate the modeled distortions. The first

row reports the fixed e↵ects from Table 4 that are directly targeted. The second moment

shows that the empirical autocorrelation of the farm-level wedge is smaller than that implied
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Figure 5: Farm Land-Size Distribution
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Notes: Share of farms in each farm land-size class. Land size refers to cultivated land by the farm.

by the model, supporting our choice to model " as transitory rather than permanent to the

farmer. The third moment considers a simple experiment in both the empirical and simulated

data. Holding the distribution of productivities si
f,t

fixed, we calculate the potential gain in

aggregate productivity from moving to the e�cient allocation of land and labor (as in, for

example Hsieh and Klenow, 2009). This moment tests the goodness of fit of the joint TFP

and wedge distribution in the model and data, which determines the gains from reallocation.

The second set of moments show that the model replicates the distribution of output, land,

and labor across both crops and farms. Relative output, land, and labor are calculated in the

simulated data as the average of the respective outcomes for each farm type. In the data, the

corresponding moments are based on the regressions reported in Appendix A.2. The moments

are indirectly related to the distribution of productivities and distortions across crops and

farms in the calibration. The third set of moments compares the standard deviations of

measured farm output and labor inputs in the data and model. Similar to Figure 5, the

moments show that the calibrated model is able to replicate the overall size distribution

of farms in the data. The final set of moments shows the correlation between changes in

farm-level TFP and output and labor. The calibrated model generates a similar magnitude

of correlation between change in farm-level TFP and output as in the data. The model also
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Table 7: Other Model Moments

Model Data

Crop-specific fixed e↵ect⇤ (0.000 , �0.142 , �0.035) (0.000 , �0.142 , �0.035)
Autocorrelation wedge 0.45 0.34
Gains from reallocation (%) 72.2 62.0

Relative output (1.00 , 1.68 , 0.73) (1.00 , 1.97 , 0.77)
Relative land (1.00 , 1.70 , 0.92) (1.00 , 1.96 , 0.39)
Relative labor (1.00 , 1.70 , 0.92) (1.00 , 1.65 , 1.07)

Std log output 1.52 1.47
Std log labor 1.18 1.07

Corr(� log TFP,� log y) 0.679 0.868
Corr(� log TFP,� log n) 0.084 �0.094

Notes: Where applicable, we first report moments for rice farms, followed by those for perennials and then

other crop farms. Moments with a * indicate moments that are directly targeted in the calibration.

generates a near-zero correlation between change in farm-level TFP and employment.

6 Quantitative Analysis

The agricultural sector in north Vietnam is comparatively more distorted than south Viet-

nam. We also observe considerably less farm dynamism in north Vietnam and lower agricul-

tural productivity. We assess the importance of institutional distortions in explaining these

di↵erences by imposing distortions that reflect conditions in north Vietnam on the bench-

mark economy, which is calibrated to match south Vietnam. Appendix C.4 reports a fully

recalibrated model to the north Vietnam data.

6.1 Counterfactual Distortions

The benchmark economy has four parameters related to distortions: (1) the elasticity of

distortions to farm-level productivity ⇢; (2) crop-specific distortions 'i; (3) the government-

imposed crop restriction !; and (4) the random component of distortions �". Table 8 summa-
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rizes the values estimated for the first three of these for the counterfactual experiment. Other

parameters, including the random component of distortions, are held fixed at the benchmark

economy values.

Table 8: Counterfactual Distortions

Benchmark (South) Counterfactual (North)

Elasticity ⇢ 0.79 0.91
Crop-Specific Distortion 'i (1.00 , 1.61 , 1.12) (1.00 , 0.68 , 0.92)
Crop Restriction (%) ! 23 43

Notes: Distortions are ordered for Rice, Perennial, Other crop farm types. Crop-specific distortions are

implied by the coe�cient estimates in Table 4 as 'i = exp(�Coe�cienti/(1� �)).

We follow the same procedure as in the benchmark economy calibration and base the

crop-specific distortions on the regression coe�cients in Table 4. We adjust the elasticity of

distortions ⇢ until the measured elasticity implied by the counterfactual economy matches

the north Vietnam data. Relative to south Vietnam, distortions are more correlated with

farm-level productivity, reflecting the greater di�culty productive farmers face in operating

larger farm sizes, and growing perennial crops. We find a similar value of ⇢ when we fully

recalibrate the model to the North data (Appendix C.4), suggesting that di↵erences in ⇢ are

not driven by di↵erences in measurement error. We also find similar di↵erences between the

measured elasticity of distortions targeted in the calibration using only the two rice-growing

delta regions (Appendix A.1), suggesting that the estimated gap in ⇢ is not being driven

by technology or geographic di↵erences. We set ! = 43% to reflect the share of farmers

reporting crop restriction in north Vietnam in our data. Finally, we hold the idiosyncratic

component of distortions, governed by �", fixed at the benchmark economy level, but note

that this parameter does not have a large impact on any of the results. Appendix C.5 reports

the productivity costs relative to the undistorted economy.
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6.2 Comparison with the Data

We start by examining whether the counterfactual economy moves the model moments closer

to those for north Vietnam compared to the benchmark economy. Incorporating dynamics

into misallocation models produces falsifiable predictions about how changes in distortions

a↵ect farm dynamics and the farm distribution. This acts as an important validation of our

theory and captures an important contribution of our analysis in using farm dynamics to

validate the impact of distortions more broadly. Table 9 compares the calibration moments

and agricultural productivity in the benchmark and counterfactual economies as well as in

the data for north Vietnam. We do not expect the counterfactual model to replicate fully

the data moments for the North since other factors (e.g., average farm size) that impact the

moments di↵er between regions. Nevertheless, Table 9 shows that the counterfactual economy

is more similar to the data moments for north Vietnam than the benchmark economy.

Table 9: Comparing Counterfactual Moments with the Data for the North

Benchmark Counterfactual Data

Productivity 1.00 0.59 0.42
Avg growth (%) 6.23 4.60 2.62
Std growth (%) 75.2 75.0 89.2
Std log TFP 0.98 0.90 0.84
Std log land 1.18 1.00 0.98
Reg coe�cient: growth on log TFP �34.4 �39.6 �48.2
Top 10% land share (%) 42.1 35.9 38.3
Measured elasticity 0.855 0.963 0.964
Std log wedge 0.89 0.92 0.81
Corr(� log TFP,� log `) 0.084 �0.064 �0.022

Relative measured TFP (1.00 , 1.20 , 0.75) (1.00 , 0.99 , 0.74) (1.00 , 0.69 , 0.80)
Farm share by crop (%) (49.1 , 33.1 , 17.8) (72.9 , 9.4 , 17.8) (75.1 , 5.0 , 19.9)

Notes: Where applicable, moments are first reported for rice farms, followed by those for perennials and then

other crop farms.

Our main result is the implied productivity gap between the counterfactual and bench-

mark economy, which is a measure of how much of the observed productivity gap can be

explained by di↵erences in the distortions between the North and South. We find that aggre-
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gate TFP in the counterfactual economy (North) is 59% of the benchmark economy (South),

implying that the model accounts for almost two-thirds (61% ⇡ log(0.59)/ log(0.42)) of the

productivity gap between the North and the South.

In addition, the model accounts for just under half ((6.23 � 4.60)/(6.23 � 2.62)) of the

gap in the average productivity growth rate of farmers between the South and the North.

The model also accounts almost entirely for di↵erences in the farm share by crop in the

data as well as around half of the relative measured TFP of perennial farmers. The model

accounts for around half of the gap in the standard deviation of log TFP and one-third of

the regression coe�cient of growth on log TFP. The model over-predicts the decline in the

land share of the top 10% of farmers and the impact on the correlation between the change

in farm TFP and change in land. The similarity of the counterfactual economy and the north

Vietnam data shows that farm-level distortions correctly predict the directions of changes in

moments in the data and that changes in farm-level distortions are important for explaining

variation in these outcomes.

The model does not generate an increase in the standard deviation of growth, which is

relatively unchanged in the counterfactual economy. This is because the standard deviation

of growth is mostly driven by the idiosyncratic dispersion in productivity �v (Appendix

C.2), which is held fixed in the counterfactual economy. The model also does not have a

large impact on the standard deviation of wedges, although the measured gap between the

South and the North is relatively modest.

6.3 Drivers of the North-South Productivity Gap

Di↵erences in measured distortions between north and south Vietnam produce a productiv-

ity loss of 41%. What channels account for this productivity loss? Following equation (4),

productivity in the model depends on factor misallocation, the crop distribution, and the

ability distribution. Note that the change in output is equivalent to the change in productiv-

ity in our framework since aggregate inputs are held constant. Figure 6 compares the crop
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and ability distributions in the benchmark and counterfactual economies. Consistent with

evidence in north and south Vietnam (Ayerst et al., 2020), the figure shows that the ability

distribution has more mass at higher productivity levels in the South.

Figure 6: Farm Distributions in Benchmark and Counterfactual Economies
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To better understand the three components of productivity, we design experiments to

decompose the relative contributions of factor misallocation, crop choice, and farm ability.

Table 10 summarizes the loss in aggregate productivity from changing channels individually

from the benchmark economy to match the counterfactual economy. The sum of the losses

does not equal the total gap between the benchmark and counterfactual economy because of

interactions between the channels. For example, changes in the ability or crop distributions

also a↵ect the potential scope for factor misallocation through their e↵ect on the productivity

distribution. We discuss each channel and its calculation below.

Factor misallocation. We calculate the loss from factor misallocation as the change in

aggregate output when distortions, ⌧ i
f,t
, are adjusted to match the counterfactual economy

but the crop and ability distributions remain fixed at the benchmark distributions. Starting

from the distribution of farm-level productivities si
f,t

in the benchmark economy, we recal-

culate the distortions ⌧ i
f,t

that farmer f would receive with the counterfactual correlation ⇢
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Table 10: Output Loss by Channel

Change in Output (%)

Factor Misallocation �19.4
Crop Choice �8.0
Farm Ability �31.6
Sum of Channels �59.0
Total �40.8

Notes: The change in output is equivalent to the change in productivity since aggregate inputs are constant.

and crop-specific distortions 'i. We find that factor misallocation lowers agricultural output

by 19.4%, accounting for just under half of the productivity gap between the counterfactual

and benchmark economies.

Partitioning the interaction e↵ects proportionately to each channel, factor misallocation

accounts for around one-third (⇡ �19.4/ � 59.0) of the resulting productivity loss. Factor

misallocation has a negative interaction with the other two channels explaining why the sum

of the losses from the individual channels is larger than the total loss in productivity. This is

because factor misallocation has a smaller e↵ect on aggregate productivity when productivity

is less dispersed, as is the case in the counterfactual economy.

Crop distribution. We calculate the loss from the crop distribution as the change in

aggregate output when the crop shares ⌦i

z
are adjusted to match the counterfactual economy.

We fix the within-crop ability distribution µi

z,h
to that of the benchmark economy. However,

the aggregate ability distribution, equal to µi

z,h
⌦i

z
�z(z), changes due to changes in the crop

distribution. Average ability falls since perennial farmers are, on average, higher ability than

rice farmers and the experiment redistributes around 25% of farmers from perennials to

rice. We find that the change in the crop distribution has a relatively small contribution to

the overall gap between the counterfactual and benchmark economies compared with the

other channels. Nevertheless the output loss from the change in the crop distribution is a

non-trivial �8.0%.
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Farmer ability. We calculate the loss from farmer ability as the change in aggregate output

when the ability distribution is adjusted to match the counterfactual economy. We adjust the

farmer ability distribution µi

z,h
, conditional on crop i and permanent productivity z, to the

counterfactual economy and hold the crop shares ⌦i

z
fixed to that of the benchmark economy.

The ability distribution in the counterfactual economy results from lower investment by

farmers due to more correlated distortions, which makes higher ability levels less profitable.

We find that the change in farm ability generates a loss in agricultural output of 31.6%,

accounting for around three-quarters of the productivity gap between the counterfactual

and benchmark economies. The e↵ect of crop choice and farm ability together, representing

the broader e↵ects of misallocation, account for over half of the productivity loss from the

sum of channels, almost double the impact of factor misallocation.

The farmer ability channel also depends on the value of the elasticity of distortions ⇢.

At the extreme, farmer ability investment goes to zero as the elasticity of distortions ⇢ goes

to one, because distortions at ⇢ = 1 eliminate any profit increase that farmers receive from

higher productivity. The impact of changes in ⇢ are asymmetric, with productivity changing

more when ⇢ increases than when ⇢ decreases (see Appendix C.6). Consequently, the impact

of increasing ⇢ from the South to the North value implies a large productivity loss despite

the change in ⇢ being small when compared with the overall value of ⇢.

6.4 Role of Individual Distortions

We also examine the role of the individual distortions, rather than channels. We measure

the impact on output of individual distortions from unilaterally changing ⇢, 'i, or ! in the

benchmark economy to match the North. Table 11 summarizes the results.

Table 11: Output Loss from Individual Distortions

⇢ ' ! (⇢,',!)

Change in Output (%) �38.3 �7.5 �1.4 �40.8
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The main driver of the gap between the benchmark and counterfactual economies is the

elasticity of distortions. The elasticity of distortions has a large impact on factor misallocation

by reallocating resources from high productivity to low productivity farms. The increase in

elasticity also dampens the increase in profits associated with increasing farm productivity,

which results in weaker incentives for farmers to invest in ability or select crops based on

market factors as opposed to preferences. Our results point to a large productivity e↵ect

from seemingly small variation in the elasticity of distortions ⇢ between the North and the

South due to the asymmetric productivity e↵ects from changes in ⇢ that are magnified as ⇢

approaches one.

The crop-specific distortions have a more moderate e↵ect on the productivity gap between

the benchmark and counterfactual economies. Crop-specific distortions increase factor mis-

allocation by reallocating resources across di↵erent farm types. Crop-specific distortions also

a↵ect the relative incentives for farmers to invest in improving ability since it changes the

relative profitability of crops. Finally, crop-specific distortions a↵ect the crop distribution

through changing the relative market value of farm types.

Government-imposed crop restrictions have the smallest impact on productivity. Part

of the reason is that crop restrictions are implemented before farmers make crop choices

implying that some farmers would choose to grow rice independent of the restriction. Since

around half of farmers grow rice in the benchmark economy, this reduces the impact by

a comparable amount. As a back-of-the-envelope calculation, the change in productivity is

approximately equal to reducing the productivity of 7% (the change in �! = 0.2 times

the 33.1% share of perennial farmers) of farmers by 20% (the measured productivity of

perennials farmers relative to rice farmers). This calculation highlights the limited impact of

crop restrictions on aggregate productivity despite the relatively large measured di↵erences

across crops.
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6.5 Robustness

The results show that the interactions between distortions and farm dynamics lead to large

productivity di↵erences between north and south Vietnam. Higher distortions prevent higher

ability farmers from increasing production and disincentivize investment by farmers, mag-

nifying the overall costs of misallocation. We evaluate the robustness of our results under

alternative calibrations and model extensions.

Alternative calibrations. We consider two sets of exercises related to the calibrated

ability distribution to examine the robustness of our results. Table 12 reports the productivity

gap generated by the model using the alternative calibration parameters.

Table 12: Robustness of Main Results to Alternative Calibrations

Relative Counterfactual Output (%)
Baseline 59.2
Alternative calibrations:
Fix investment-cost curvature ⇣ = 2 58.8
Avg growth target 6.23%� 2% 58.6
Avg growth target 6.23%� 4% 62.4

Notes: Compares the agricultural output (productivity) e↵ect of the counterfactual relative to the benchmark

economies in the baseline and alternative calibrations of the model.

First, we consider a re-calibration of the model that fixes the ability investment curvature

to be quadratic, ⇣ = 2. The remaining parameters are re-calibrated to match the moments

in Table 5. The productivity gap in the re-calibrated model implies a larger gap between the

counterfactual and benchmark economies than in the baseline experiment.

Second, we consider a re-calibration of the model using alternative targets for the average

growth rate in south Vietnam. Lowering the targeted growth rate results in a more com-

pressed ability distribution relative to the benchmark calibration since the model requires

that farms either grow by less or less frequently to match the moment. A concern in our

baseline calibration is that part of the growth captured in the target represents economy-

wide factors (e.g., technology improvements) unrelated to the ability improvements in the
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model. If these other factors are large, then the ability distribution may be more compact

than assumed in our baseline calibration and the results overstated.

To give a sense of the quantitative importance of this factor, we re-calibrate the model

using targets for average growth rates that are two and four percentage points lower than in

the baseline calibration (Appendix C.2 reports the change in parameters). Table 12 shows

that despite the relatively drastic changes in the targeted growth rate, the productivity gap

explained by the model remains economically significant in both cases. Lowering the targeted

average growth rate by two percentage points, around one third of the targeted value, has

almost no impact on the relative productivity of the counterfactual economy compared to the

baseline experiment. Decreasing the targeted growth rate by four percentage points lowers

the productivity gap to 62.4% between the North and the South.

Model extensions. We consider two model extensions and summarize the results (see

Appendix C.7 for details). First, we consider an extension of the model that replicates the

hump shaped productivity life-cycle profile in Figure 3. The extended model allows for farmer

ability af,t to also depend on a state variable that takes values young or old. Entrants start

as young farmers and transition to old farmers over time, which is the absorbing state.

We recalibrate the model to match the life-cycle profile found in the data. The relative

counterfactual output is around 57%, similar to the value found in the baseline experiment.

Second, we consider an extension of the model that allows for entrants to draw ability

from a distribution that depends on the ability of the predecessor (the farm that the entrant

replaces). Intuitively, this could be thought of as capturing the passing of knowledge between

generations. We recalibrate the model and repeat the same experiment as in the baseline

model. We find stronger productivity losses in this model extension due to the positive

spillover of investment on the entrant productivity distribution.
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7 Conclusion

We develop a model of heterogeneous production to capture two important aspects of farm

dynamics in developing countries: crop choices and productivity investments. Using panel

farm-level data from Vietnam, we apply this framework to study the e↵ect of di↵erences in

institutional distortions between north and south Vietnam. Through the lens of the model,

measured distortions in the North relative to the South account for 61% of the productivity

gap, which represents a substantial 41% productivity loss, and around half the di↵erence

in farm dynamics, as measured by farm productivity growth. Farm ability and crop choice

(dynamic misallocation) account for almost two-thirds of the productivity loss, with the

remaining one-third coming through the standard channel of factor misallocation. Decom-

posing the sources of the productivity loss, the key institutional feature is the higher elasticity

of distortions to farmer productivity in the North, which captures the weaker relationship

between factor inputs and productivity in the North relative to that in the South.

While our main results on the di↵erence between the South and North are not substantially

a↵ected by the extent of measurement error in the data, the role of measurement error is

more substantial in the level e↵ects relative to an undistorted economy. In particular, we

find that the aggregate productivity e↵ect of removing distortions in a calibrated economy

that abstracts from measurement error is more than twice as large than in our calibrated

model allowing for measurement error. This suggests an important role for measurement

error in models with dynamic decisions that amplify the broader productivity e↵ects from

static misallocation.

Our results in the context of Vietnam agriculture provide novel quantitative evidence of

the broader e↵ects of misallocation emphasized in Restuccia and Rogerson (2017), especially

when the pattern of misallocation most heavily penalizes the most productive producers,

e↵ectively lowering the return to productivity investment and growth. A promising area for

future work is to examine the e↵ects of distortions on producer dynamics in other contexts,

joining recent e↵orts assessing the role of size-dependent policies on innovation and growth
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(Aghion et al., 2021; Akcigit et al., 2022). It will also be insightful to study the dynamic

consequences of misallocation in the context of reform episodes in either agriculture (Chari

et al., 2021; Chen et al., 2022; Beg, 2022) or industry (Asturias et al., 2023), as well as

episodes of trade reform (Pavcnik, 2002).

Finally, more work is needed in identifying the specific channels of dynamic misalloca-

tion which will facilitate a deeper understanding of the broader role of policies and reform,

including the importance for productivity growth of technology adoption and di↵usion, the

adoption of improved managerial practices, and other productivity-enhancing investments

at the producer level.

49



References

Acemoglu, D., Akcigit, U., Alp, H., Bloom, N., and Kerr, W. (2018). Innovation, reallocation

and growth. American Economic Review, 126(4):1374–1443.

Adamopoulos, T., Brandt, L., Leight, J., and Restuccia, D. (2022). Misallocation, selection,

and productivity: A quantitative analysis with panel data from china. Econometrica,

90(3):1261–1282.

Adamopoulos, T. and Restuccia, D. (2014). The size distribution of farms and international

productivity di↵erences. American Economic Review, 104(6):1667–97.

Adamopoulos, T. and Restuccia, D. (2020). Land reform and productivity: A quantitative

analysis with micro data. American Economic Journal: Macroeconomics, 12(3):1–39.

Adamopoulos, T. and Restuccia, D. (2022). Geography and agricultural productivity: Cross-

country evidence from micro plot-level data. The Review of Economic Studies, 89(4):1629–

1653.

Aghion, P., Bergeaud, A., and Van Reenen, J. (2021). The impact of regulation on innovation.

Technical report, National Bureau of Economic Research.

Akcigit, U., Akgunduz, Y. E., Alp, H., Cilasun, S. M., and Quintero, J. M. (2022). Cost

of size-dependent regulations: The role of informality and firm heterogeneity. Technical

report, University of Chicago.

Akcigit, U., Alp, H., and Peters, M. (2021). Lack of selection and limits to delegation: firm

dynamics in developing countries. American Economic Review, 111(1):231–75.

Andrews, I., Gentkow, M., and Shapiro, J. (2017). Measuring the sensitivity of parameter

estimates to estimation moments. Quarterly Journal of Economics, 132:1553–1592.

Aragón, F. M., Restuccia, D., and Rud, J. P. (2022). Assessing misallocation in agriculture:

plots versus farms. Technical report, National Bureau of Economic Research.

Asturias, J., Hur, S., Kehoe, T. J., and Ruhl, K. J. (2023). Firm entry and exit and aggregate

growth. American Economic Journal: Macroeconomics, 15(1):48–105.

Ayerst, S. (2022). Distorted technology adoption. Technical report.

Ayerst, S., Brandt, L., and Restuccia, D. (2020). Market constraints, misallocation, and

productivity in vietnam agriculture. Food Policy, 94:1–16.

50



Ayerst, S., Nguyen, D., and Restuccia, D. (2024). The micro and macro productivity of

nations. Technical report.

Baily, M. N., Hulten, C., Campbell, D., Bresnahan, T., and Caves, R. E. (1992). Productiv-

ity dynamics in manufacturing plants. Brookings papers on economic activity. Microeco-

nomics, 1992:187–267.

Beg, S. (2022). Digitization and development: Property rights security, and land and labor

markets. Journal of the European Economic Association, 20(1):395–429.

Benjamin, D. and Brandt, L. (2004). Agriculture and income distribution in rural Vietnam

under economic reforms: a tale of two regions, volume 842. World Bank Publications.

Bento, P. and Restuccia, D. (2017). Misallocation, establishment size, and productivity.

American Economic Journal: Macroeconomics, 9(3):267–303.

Bils, M., Klenow, P., and Ruane, C. (2021). Misallocation or mismeasurement? Journal of

Monetary Economics, 124:39–56.

Bolhuis, M. A., Rachapalli, S. R., and Restuccia, D. (2021). Misallocation in indian agricul-

ture. Technical report, National Bureau of Economic Research.

Brandt, L., Le, D., Huong, G., Trang, C., Pham, G., Nguyen, N., and Luu, V. (2006). Land

access, land markets, and their distributive implications in rural vietnam. Department of

Economics, University of Toronto, Toronto. Photocopy.

Chari, A., Liu, E. M., Wang, S.-Y., and Wang, Y. (2021). Property rights, land misallocation,

and agricultural e�ciency in china. The Review of Economic Studies, 88(4):1831–1862.
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On-line Appendix

A Data Details

A.1 Comparing the Red River and Mekong Deltas

Our baseline analysis compares the agricultural sectors in north and south Vietnam. Our

theory shows how institutional di↵erences, captured by wedges, distort farm-level decisions

to lower productive investments and aggregate productivity. An advantage of our approach

is that we exploit historical di↵erences between the north and south to make within-country

comparisons. Nevertheless, di↵erences in climate and geography may still imply gaps in

production capabilities across regions. In this Appendix, we show that the main empirical

di↵erences between the south and north in our analysis hold if we restrict focus only on the

comparison between the two rice-growing delta regions: the Red River Delta in the north

and Mekong Delta in the south, where technology and geographic di↵erences are less likely

to be a concern.

Table A.1: Red River and Mekong Delta Comparison

Red River Delta Mekong Delta
(North) (South)

TFP growth 7.07 8.50
Std log TFP 0.75 1.02
Std log output 0.82 1.63
Std log land 0.74 1.29
Std log empployment 0.83 1.15
Measured elasticity 0.94 0.79
Std log wedge 0.73 0.85
Crop share (88.1, 2.5 9.4) (71.4, 15.0 , 13.6)

Table A.1 compares key moments from the two regions. The comparison shows the same

patterns emphasized in our main analysis between the north and the south. Growth in the

south is higher, accompanied by more dispersion in TFP, in output, and landholdings. The
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gap in the measured elasticity of distortions between the south and north is also larger than

in the baseline analysis. Finally, while these are both primarily rice-growing regions, we find

a higher share of perennial farms in the south.

A.2 Di↵erences by Farm Type

Tables A.2 and A.3 report cross-crop di↵erences for output, land, labor, TFP, and TFP

growth by farm type. The results are consistent with the summary statistics presented in

the main text. In the South, perennials farmers tend to be larger in terms of both output

and inputs, more productive, and higher growth. Other crop farmers tend to be smaller,

at least in terms of output, and less productive. In the North, perennial farmers perform

comparatively worse than rice farmers.

Table A.2: Farm Type Comparison in South Vietnam

(1) (2) (3) (4) (5)
log Output log Land log Labor log TFP TFP Growth

Perennials 0.679*** 0.675*** 0.499*** 0.180*** 6.028***
(0.104) (0.0836) (0.0687) (0.0608) (1.723)

Other -0.267*** -0.0935 0.0700 -0.287*** -2.973
(0.103) (0.100) (0.0759) (0.0609) (2.610)

Year FE Yes Yes Yes Yes Yes
Observations 4406 4406 4406 4387 3485

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the household level are

included in parentheses. All regressions include year fixed e↵ects.

Figure A.1 reports the TFP distribution by crop for south Vietnam. The figure highlights

a key empirical observation that motivates how we model selection into di↵erent crops:

a substantial productivity overlap between the three farm types. That is, while perennial

farmers are on average more productive than the other farm types, there is a significant mass

of perennial farmers that are less productive than the typical rice or other crop farmers. In

contrast, selection based on farmer ability (as in Adamopoulos and Restuccia, 2020) would

imply a discrete productivity cuto↵ in contrast with the data.
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Table A.3: Farm Type Comparison in North Vietnam

(1) (2) (3) (4) (5)
log Output log Land log Labor log TFP TFP Growth

Perennials -0.583*** -0.478*** -0.413*** -0.376*** -5.541
(0.148) (0.114) (0.109) (0.0993) (4.859)

Other -0.222*** -0.108 -0.113** -0.222*** -7.064***
(0.0686) (0.0772) (0.0527) (0.0453) (2.427)

Year FE Yes Yes Yes Yes Yes
Observations 6348 6348 6348 6139 5034

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the household level are

included in parentheses. All regressions include year fixed e↵ects.

Figure A.1: Distributions of Farm TFP by Crop

A.3 Farm Life Cycle with Di↵erent Age Definitions

Table A.4 reports the productivity life cycle of farms in North and South Vietnam using

three di↵erent measures of age. The baseline measure, discussed in the main text, constructs

household age as the average of household members weighted by their time spent working

on household crops. The Household Head measure constructs age as the age of the member

identified as the household head. The Average measure constructs age as the simple average

across household members. The productivity measure is normalized in each region and year

such that the regressions do not capture time trends.

We find that in all three cases the two main observations in the main text hold. First,

56



Table A.4: Farm Life Cycle

(1) (2) (3)
log TFP log TFP log TFP

Age (North) 0.0218*** 0.0333*** 0.0137**
(0.00696) (0.0117) (0.00535)

Age (South) 0.0435*** 0.0451** 0.0235***
(0.0112) (0.0221) (0.00851)

Age2 (North) -0.000305*** -0.000374*** -0.000229***
(0.0000740) (0.000119) (0.0000629)

Age2 (South) -0.000570*** -0.000542** -0.000373***
(0.000109) (0.000219) (0.0000921)

Age Definition Baseline Household Head Average
R2 0.0327 0.0141 0.0257
Observations 10203 9201 10520

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors clustered at the household level are

included in parentheses. All regressions include a region fixed e↵ect. log TFP is normalized at the region-

by-year level. Household Head measures age as the age of the household member identified as the head

of household. Average measures age as the average age of all household members. Column (2) excludes

households where the head of household is older than 70.

household productivity life cycles in both the North and the South display a hump-shaped

pattern where households quickly increase productivity when they are young and then decline

at old ages. Second, the dynamics of farms in the South are much sharper than in the North,

where productivity tends to be flatter over the farm’s life cycle.

A.4 Di↵erences in Land Quality

Table A.5 compares the quality of land across Vietnamese provinces using the FAO’s Global

Agro-Ecological Zones data analyzed in Adamopoulos and Restuccia (2022). We follow

Adamopoulos and Restuccia (2022) by measuring land quality as the average potential

yield of land (across cells) within the province. We focus on two measures: an average of

27 crops and wet rice, the most prevalent crop in Vietnam. We use the rainfed, low input

potential yield which most closely reflects the land quality without human intervention, see

Adamopoulos and Restuccia (2022) for details and discussion.
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Panel A of Table A.5 describes land quality di↵erences between the North and South for

all provinces in the country. Panel B focuses on only the twelve provinces that are included

in the VARHS dataset. Panel C adjusts the mean values of land quality for the relative

frequency of observations in our final dataset.

Table A.5: Comparison of Land Quality

A. All Provinces

Mean Sd R9010 Mean Sd R9010
Avg. Avg. Avg. Rice Rice Rice

North 88.8 0.4 3.2 1.6 0.8 6.6
South 87.3 0.3 2.0 2.1 0.5 3.2
Total 88.0 0.4 2.2 1.9 0.7 5.3

B. In Final Dataset

Mean Sd R9010 Mean Sd R9010
Avg. Avg. Avg. Rice Rice Rice

North 67.4 0.6 3.7 1.1 1.0 12.4
South 94.9 0.3 2.1 1.7 0.5 4.1
Total 81.2 0.5 3.5 1.4 0.9 11.3

C. In Final Dataset (observation-weighted means)

Mean Sd R9010 Mean Sd R9010
Avg. Avg. Avg. Rice Rice Rice

North 87.2 0.6 3.7 1.7 1.0 12.4
South 86.3 0.3 2.1 1.8 0.5 4.1
Total 86.8 0.5 3.5 1.8 0.9 11.3

Notes: Values calculated using provinces as unit of observation. “Avg.” refers to statistics calculated on the

average potential yield of 27 common crops. “Rice” refers to statistics calculated on the average potential

yield of wet rice. “Sd” is the standard deviation of the log variable. “R9010” is the ratio between the 90th and

10th percentile observations. Panel C constructs the mean values using the relative frequency of farm-year

observations in our data as weights.

Comparing Panel A and Panel C shows that after adjusting the means for the relative

frequency of observations there is little di↵erence between our final dataset and the average

province in the North and South. The observed di↵erences in land quality are not large

enough to explain the productivity gap that we observe between farms in the North and
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South. Taking the production function in Section 4 implies that the impact of land quality

on TFP requires di↵erences to be scaled by a factor ↵� = 0.35. This would further reduce

the potential impact of any di↵erences between the North and the South.

B Cropping Decision

Let V̄ i

z
be the expected utility from consumption of choosing crop i. Then, the probability

that household f chooses crop i is given by:
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C Other Quantitative Results

C.1 Measurement Error

Bils et al. (2021) develop a methodology to assess the importance of additive measurement

error in misallocation models. Following Adamopoulos et al. (2022), we estimate:

� log yf,t = �1 logWedgef,t + �2� log inputf,t + �3 logWedgef,t� log inputf,t + Ft + �f,t,

(C.1)

where inputf,t = `↵
f,t
n1�↵

f,t
is the Cobb-Douglas aggregate of farm inputs, Ft is a year fixed

e↵ect, and �f,t is an error term. Following Bils et al. (2021), the estimated value �̂BKR =

1 + �̂3/�̂2 captures the ratio of dispersion in the true farm-level distortions (i.e., ⌧f,t in the

model) to the dispersion in the distortions plus dispersion in the wedge due to measurement

error. Estimates of �̂BKR close to one indicate little measurement error, while values close

to zero indicate that dispersion in the observed wedge is mostly due to measurement error.

Without measurement error, high and low wedge farms adjust output and inputs similarly

to changes in productivity and distortions, so the cross-term, �3, is zero. With measurement

error, the cross-term becomes negative as over-reporting output (under-reporting inputs)

farms appear to have higher wedges but adjust inputs by less (output by more) than would

be implied by the change in output (inputs).

Table C.6 reports the estimated value of �̂BKR from (C.1) and the estimated standard

errors. The results indicate a relatively limited role of measurement error in both south and

north Vietnam, consistent with estimates for agriculture in other contexts (Adamopoulos

et al., 2022; Aragón et al., 2022).

We emphasize that while measurement error biases the estimated elasticity of distortions,

from a calibrated ⇢ = 0.79 to a measured elasticity of 0.86 for south Vietnam, the quantitative

impact of this bias in our results is limited by the fact that our main experiment involves

assessing the aggregate productivity e↵ects of di↵erences in misallocation between the South
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Table C.6: Estimates of Additive Measurement Error

South North

�̂BKR 0.906 0.987
(0.030) (0.022)

and the North. However, it is important to note that the bias induced by measurement error

has a more substantial impact on the level of misallocation measured by the reallocation

gains associated with the removal of distortions, as we discuss in Appendix C.5.

C.2 Identification of Model Parameters

We expand on the discussion in Section 5 by deriving the relationship between model pa-

rameters, discussing the sensitivity of the moments to changes in model parameters, and

examining the robustness of calibration results.

Model moments. We derive the relationship between the calibration moments and pa-

rameters. Most moments do not have explicit closed-form solutions and so we use this to

highlight the intuition provided in the main text rather than as a proof on identification.

Our quantitative analysis focuses on 11 moments.

The measured elasticity of distortions and the standard deviation of measured wedges are

given by:

elas(Wedge, TFP ) =
⇢(1� �)2�2

s
+ �2

◆out
+ ��2

◆in

(1� �)2�2
s
+ �2

◆out
+ �2�2

◆in

,

�2
logWedge

= (1� ⇢)�2
s
+ (�2

◆out + �2
◆in
) + �2

"
.

The above expression shows that the measured elasticity of distortions depends directly on

the elasticity parameter ⇢ but measurement error terms can bias the estimate towards one.

Similarly, the standard deviation of the wedge depends on variation of the fundamental farm

productivity s and the wedges �" but also on the measurement error terms.
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The variance of measured TFP and land are given by:

�2
log TFP

= (1� �)2�2
s
+ �2

◆out + �2�2
◆in

= (1� �)2[�2
a
+ �2

z
+ �2


+ �2

v
] + �2

◆out + �2�2
◆in
,

�2
log ` = (1� ⇢)2

⇥
�2
a
+ �2

z
+ �2


+ �2

v

⇤
+ �2

"
+ �2

◆in
.

The above expressions show that the variance of both TFP and land depends on the un-

derlying drivers of productivity: the farm’s fundamental productivity a, the crop-specific

productivity , and the random component v. Additionally, both the TFP and labor vari-

ance depend on the measurement error term for inputs ◆in.

We use the change in log TFP to illustrate the identification of the model, rather than

the growth rate calculated in the baseline model since it provides simpler expressions. The

next three moments are equal to:

E[� log TFP ] =

Z

z

X

i,h

xi

z,h
((1� �) log �)µi

z,h
⌦i

z
d�z(z)

�2
� log TFP =

(1� �)2

0

@
Z

z

X

i,h

0

@(xi

z,h
)2 �

 Z

z

X

i,h

xi

z,h

!2
1

A (log �)2µi

z,h
⌦i

z
+ 2�2

v

1

A+ 2(�2
◆out + �2�2

◆in
)

elas(1 + g, TFP ) =

(1� �)2[(Cov(x, log z) + Cov(x, log a) + Cov(x, log )) log �� �2
v
]� �2

◆out
� �2�2

◆in

�2
log TFP

,

where 1 + g = TFP 0/TFP . Average TFP growth depends on the step size � and the

relative incentives to improve productivity through xi

z,h
, which itself depends on a collection

of parameters. Dispersion in TFP growth depends on farm-level investment choices but

also on variation in the random component of productivity v and the measurement error

terms. Finally, the elasticity between growth and TFP depends on the covariance between

farm investment x and endogenous farm productivity z. This term is more negative if more

productive farmers invest less.

62



We include the correlation between the change in farm-level TFP and the change in farm

land to discipline the measurement error terms. The moment is given by:

Corr(� log TFP,� log `) =
(1� ⇢)(1� �)(�2

� log z + 2�2
v
)� 2��2

◆in

�� log TFP

q
(�2

� log z + 2�2
v
+ 2�2

◆out
+ 2�2

◆in
)
,

where �2
� log z =

R
z

P
i,h


(xi

z,h
)2 �

⇣R
z

P
i,h

xi

z,h

⌘2�
(log �)2µi

z,h
⌦i

z
d�z(z). The above expres-

sion shows that measurement error for inputs enters the expression di↵erently than the

random component of productivity and the output measurement error term.

The relative TFP of perennials and other crops are given by:

Rel TFP peren = [log z̄P � log z̄R] + log P ,

Rel TFP other = [log z̄O � log z̄R] + log O.

These expressions are directly linked with the crop-specific productivities i and also through

the investment decisions made by di↵erent farm types, through the average values of z̄i.

While the expression for land share is di�cult to write in the full model, the intuition can

be understood through a simpler model in which there is no misallocation, crop di↵erences,

or dispersion in the permanent or random components of farm productivity or measurement

error. In this context, all farms choose a common investment rate x, then the distribution

of farms across h is approximately �/(x + �)[x(1 � �)/(x + �)]h. Farms with production

technology h have land size �h. The land share held by farms with productivity above some

node h̄ is then given by:

Land Share(h̄) ⇡ C
X

n�n̄

�

x+ �

✓
�x(1� �)

x+ �

◆h

,

for constant C = (� � (� � 1)x)/�. It is straightforward to see from the above expression

that the land share by the top farms becomes larger as either farms become more likely to

63



improve productivity (i.e., higher x) or improve productivity by more (i.e., higher �).

Sensitivity of model moments. Table C.7 summarizes the changes in moments to a 10%

change in the model parameters, highlighting that the moments are highly interconnected

with the set of parameters. The table also shows that no individual moment identifies an

individual parameter. Nevertheless, the table shows that the chosen moments for calibration

are informative about the values of parameters in the calibration. The relationship between

the moments and parameters is discussed in detail in Section 5.

Table C.7: Sensitivity of Moments to Calibrated Parameters (%)

 ⇣ � P O �z �v �" ⇢ �◆out �◆in

Land share -0.2 0.3 0.1 0.3 -0.1 1.3 0.7 4.7 -10.4 0.0 1.2
Reg coe↵ -0.0 -1.9 -0.7 -0.5 0.5 -9.1 6.1 0.0 8.9 1.2 2.1
Avg growth -2.6 3.7 4.8 -0.1 0.0 -0.8 -1.5 0.7 -13.8 -0.3 -0.5
Corr(� log TFP,� log `) 0.4 0.2 0.9 0.1 -0.0 0.3 54.0 -5.3 -117.9 -0.8 -49.8
Meas elas 0.0 -0.2 -0.1 -0.0 0.0 -0.7 -0.3 -0.1 8.6 0.2 1.3
Std log TFP -0.2 1.1 0.7 0.2 -0.2 4.6 2.4 0.0 -4.7 0.5 0.9
Std log land -0.1 0.4 0.2 0.3 -0.0 1.5 0.8 5.6 -10.4 0.0 1.3
Std log wedge -0.2 0.8 0.5 0.0 -0.1 3.5 1.8 0.8 2.5 0.6 2.3
TFP - peren 0.3 -0.3 0.2 3.2 0.1 -0.3 -0.0 0.0 -0.8 -0.0 -0.0
TFP - other 0.3 0.1 0.2 0.2 3.5 0.2 0.2 0.1 2.3 0.0 -0.1
Std growth -0.0 -0.0 0.1 0.0 -0.0 -0.0 4.9 -0.0 -0.1 1.1 1.8

Notes: Percent change in the moments from a 10% change in each parameter relative to the benchmark

calibration value. For � the change is calculated only on the value above one.

Sensitivity to calibration targets. As highlighted in Table C.7, the model parameters

are jointly chosen to match the calibration moments. There are no parameters that are identi-

fied by individual moments. That said, some moments are more useful for identifying specific

parameters. To explore this further, we show the sensitivity of the calibrated parameters to

changes in the targeted moments, as suggested by Fujimoto et al. (2023) and Andrews et al.

(2017). Table C.8 reports the sensitivity of the model parameters.

The table results highlight the relationship between the calibration moments and parame-

ter values. Increasing the land share of the top 10% of farms increases the size of productivity
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Table C.8: Sensitivity of Parameters to Moments (%)

 ⇣ � P O �z �v �" ⇢ �◆out �◆in

Land share ⇥1.25 59.6 -0.8 9.2 -2.6 -1.1 -4.0 1.5 17.2 -0.5 -14.1 2.5
Reg coe↵ +10 216.1 -10.3 55.9 -10.1 -4.2 17.6 -9.5 6.0 3.0 -17.4 -15.7
Avg growth �2% 140.0 -12.5 0.1 -4.7 -0.1 4.0 1.3 -0.5 -0.5 0.5 2.1
Avg growth �4% 216.1 -12.5 -14.4 -1.3 -1.3 10.7 -1.7 1.5 -0.5 27.5 -2.8
Corr(� log TFP,� log `) ⇥1.5 0.1 0.6 1.2 0.4 -1.9 0.3 -5.0 10.1 1.9 48.9 -25.9
Meas elas �0.1 -22.6 -21.3 -4.6 -13.6 12.7 -9.0 -34.6 -55.0 -19.3 116.1 -14.6
Std log land ⇥1.25 -55.3 -34.6 -5.4 4.2 -3.6 1.8 7.8 21.3 0.8 -96.8 2.5
Std log tfp ⇥1.25 -7.9 -7.4 2.3 0.8 -0.3 9.4 0.4 -8.3 -1.1 41.9 4.2

Notes: Percent change in the calibrated parameter from alternative calibration in which the indicated data

moment is adjusted and all other moments are held at their benchmark values.

improvements � and the cost of investment  such that productivity improvements become

relatively more infrequent but result in a large shift of resources. Lowering the negative re-

lationship between growth and farm TFP or lowering the growth rate results in shifts in the

investment technology parameters ( ,�, ⇣). The correlation between within-farm changes in

TFP and land is mostly absorbed by changes in the measurement error terms. Lowering

the measured elasticity of distortions results in a similar, albeit larger, shift in the elasticity

parameter ⇢ as well as compensating shifts in other parameters.

C.3 Value and Policy Function

Figure C.2 plots the value and policy functions for farmers in each of the three crop types.

The value functions are averaged across idiosyncratic shocks (v, ") and plotted for a common

permanent productivity z = 1.

The value functions of the three crops reflect di↵erences in relative profitability stemming

from di↵erences in productivity i and distortions 'i. Despite di↵erences in i and 'i, the

value of rice and other crop farmers are similar because the two parameters have o↵setting

e↵ects on profitability. The success rate x, and the corresponding investment in ability,

are driven by the incremental increase in farm value that farmers receive from successfully

improving ability. More productive and less distorted farmers invest more in improving ability

because of the complementarity in profits between ability, other sources of productivity (i.e.,
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Figure C.2: Value and Policy Function by Crop Specialization
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the permanent farmer component z or the crop-specific component i), and lower distortions.

However, di↵erences in the policy functions across crops decrease at higher abilities because

distortions become a limiting factor that discourage further investment.

A key feature of the policy function is that the success rate of improving ability declines

as farmers become more productive. The correlation of distortions with productivity implies

that the incremental increase in profitability is lower than that of investment costs as farmers

improve ability. Models of firm dynamics (e.g., Klette and Kortum, 2004) typically assume

that profits and investment costs grow at the same rate in order for Gibrat’s law to hold in

equilibrium. In contrast, we find that more productive farms tend to grow more slowly as

evident by the negative relationship between TFP growth and farm productivity in Table 5.

C.4 Calibration to the North

The baseline experiment applies distortions that are set to match north Vietnam to the

benchmark economy, which is calibrated to match south Vietnam. We show that the coun-

terfactual economy moves towards the north Vietnam data moments, relative to the bench-

mark economy. An alternative approach is to re-calibrate the model to match the full set of
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moments from north Vietnam and then use this to compare with south Vietnam. We explore

this approach in this section.

Calibration moments and parameters. The calibration follows the same procedure as

in the baseline calibration. We adjust the total stock of land to be L = 1.10 to reflect the

smaller average farm size in the North. The jointly calibrated parameters are selected to

target the same moments as in the baseline calibration, where the values for the North are

reported in Table C.9. The one di↵erence is that we set the preference curvature ✓ to the

value calibrated in South Vietnam and use the crop-specific preferences ⌘i to match the farm

crop share.

Table C.9: Moments Calibrated to North Vietnam

Model Data

Avg growth (%) 2.62 2.62
Std growth 80.1 89.2
Std log TFP 0.85 0.84
Std log land 1.01 0.98
Reg coe�cient: growth on log TFP �49.9 �48.2
Top 10% land share (%) 36.3 38.3
Measured elasticity 0.959 0.964
Std log Wedge 0.87 0.81
Corr(� log TFP,� log `) �0.025 �0.022

Relative measured TFP (1.00 , 0.69 , 0.80) (1.00 , 0.69 , 0.80)
Farm share by crop (%) (75.1 , 5.0 , 19.9) (75.1 , 5.0 , 19.9)

Notes: Where applicable, moments are first reported for rice farms, followed by those for perennials and then

other crop farms.

The parameters in the re-calibrated model are summarized in Table C.10. Overall, the

parameter values in the re-calibrated model are relatively similar to those in the baseline

calibration. This reflects the overall ability of the benchmark economy to match the North

data moments when the North distortions were imposed. The main di↵erence between the

North and South parameters is in the ability investment function, (�, , ⇣). Relative to

the South, investment in the North is substantially cheaper but also has a smaller payo↵.
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The lower return to investment through � explains the lower farm dynamism in the North

compared with the South.

Table C.10: Parameters Calibrated to North Vietnam

Parameter North South

Discount rate � 0.96 0.96
Survival rate ⇠ 0.955 0.955
Land L 1.10 2.77
Span-of-control � 0.7 0.7
Land share ↵ 0.5 0.5

Crop-specific distortion 'i (1.00 , 0.68 , 0.92) (1.00 , 1.61 , 1.12)
Crop restriction ! 0.43 0.23

Investment level  1.20 1.51
Investment curvature ⇣ 2.32 1.74
Ability step size � 1.25 1.43
Crop preference elasticity ✓ 1.4 1.4
Preference shifter ⌘i (1.00 , 0.44 , 0.85) (1.00 , 0.64 , 0.83)
Crop-specific productivity i (1.00 , 0.41 , 0.49) (1.00 , 1.37 , 0.41)
Permanent productivity �z 1.22 1.48
Random productivity �v 1.68 1.79
Elasticity ⇢ 0.879 0.789
Random distortion �" 1.00 0.98
Output mismeasurement �◆out 0.44 0.25
Input mismeasurement �◆in 0.45 0.47

Notes: Where applicable, parameters are first reported for rice farms, followed by those for perennials and

then other crop farms.

Aggregate productivity. The re-calibrated model generates a productivity gap between

north and south Vietnam that matches closely the data. Following equation (4) for aggregate

output, aggregate total factor productivity in the calibrated economy is calculated as:

ANorth

ASouth
=

Y North/(LNorth)↵�

Y South/(LSouth)↵�
= 40.7%,

whereas this ratio is 42% in the data. This implies that the re-calibrated model is able to

account for the entirety of productivity di↵erences between north and south Vietnam.
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C.5 Undistorted Economy

The undistorted economy represents a hypothetical first-best economy that could be achieved

if all institutional distortions were removed. In practice, it is unclear whether this economy is

achievable since some baseline distortions may be unavoidable. With that caveat in mind, we

find the undistorted economy useful as a benchmark to understand the full potential gains

in productivity.

We calculate the undistorted economy by setting the parameters as in the baseline cal-

ibration and setting the government-imposed crop restrictions to ! = 0, the elasticity of

distortions to ⇢ = 0, the crop-specific distortions to 'i = 1 for all crops i, and the random

component of distortions �" = 0. Table C.11 presents the comparison with the benchmark

economy.

Table C.11: Comparison with Undistorted Economy

Benchmark Undistorted Economy

Productivity 1.00 3.37
Avg growth (%) 6.23 0.44
Std growth (%) 75.2 74.8
Std log TFP 0.98 0.87
Std log land 2.66 2.66
Reg coe�cient: growth on log TFP �34.4 �40.6
Top 10% land share (%) 42.1 83.6
Measured elasticity 0.855 0.228
Std log Wedge 0.89 0.47
Corr(� log TFP,� log `) 0.084 0.650

Relative measured TFP (1.00 , 1.20 , 0.75) (1.00 , 1.20 , 0.72)
Farm share by crop (%) (49.1 , 33.1 , 17.8) (48.1 , 41.8 , 10.2)

Notes: Where applicable, moments are first reported for rice farms, followed by those for perennials and then

other crop farms.

The undistorted economy is over three times as productive as the benchmark economy.

Table 7 shows that the gains from removing static misallocation in the benchmark economy

is around 70% implying that the remaining gains are coming from improving the produc-
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tivity distribution through higher investment in ability and selecting into more productive

crops. Nevertheless, di↵erences in the productivity distribution alone do not account for the

remainder of the gains because of complimentarities between the channels.

Another noticeable di↵erence between the benchmark and undistorted economy is in the

average growth rate. This can be understood through two channels. First, removing corre-

lated distortions causes investment in ability to become flat with respect to the farmer’s

ability because farmers are not disincentivized by larger distortions at higher abilities. All

else equal, this causes higher ability farmers to invest more than in the benchmark economy.

Second, removing distortions improves productivity and, consequently, the wage rate w and

cost of land q, which results in lower profits for a given ability level. Lower profits disincen-

tivize investment in ability for all farmers. The net impact is that lower ability farmers invest

less in the undistorted economy while higher ability farmers invest more. This results in both

more low ability farmers and more very high ability farmers in the undistorted economy. The

productivity gains are then driven by these increases in the top end of the productivity distri-

bution, which is consistent with the concentration of agricultural production in large, highly

productive farms in advanced economies.

Finally, despite setting the elasticity of distortions to ⇢ = 0, the measured elasticity

remains positive and larger than zero. This is also the case for the standard deviation of

wedges, which only falls to around half its initial value. These results are due to the inclu-

sion of the input and output measurement errors, which are held at their benchmark values

in the undistorted economy. Measurement error tends to have a larger bias in the undistorted

economy, which is also found by Ayerst et al. (2024). We emphasize that while our main

results on the di↵erence between the South and North are not substantially a↵ected by the

extent of measurement error in the data, the role of measurement error is more substantial

in the level e↵ects relative to an undistorted economy. In particular, we find that the aggre-

gate productivity e↵ect of removing distortions in a calibrated economy that abstracts from

measurement error is more than twice as large than in our calibrated model allowing for
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measurement error. This suggests an important role for measurement error in models with

dynamic decisions that amplify the broader productivity e↵ects from static misallocation.

C.6 Asymmetric E↵ects of Elasticity of Distortions

The baseline experiment shows that increasing the elasticity of distortions ⇢ from 0.86 in the

South to 0.96 in the North can explain a large share of the productivity gap between the

two regions, despite the increase being relatively small. Mechanically, the large productivity

cost from increasing ⇢ is driven by the disincentivizing e↵ect of correlated distortions on

investment (Farm Ability). As ⇢ increases farms invest less because the incremental increase

in profits becomes smaller. At the extreme, when ⇢ ! 1 farms have no incentive to invest

because the entirety of additional profits is absorbed by higher distortions. This leads to an

increasing impact of ⇢ on productivity that is maximized as ⇢ gets closer to one.

Table C.12: Increasing and Decrease Elasticity of Distortions

Increase Decrease
⇢ = ⇢+�⇢ ⇢ = ⇢��⇢

Factor Misallocation �0.16 0.13
Crop Choice �0.02 0.02
Farm Ability �0.27 0.21
Total �0.42 0.39

Notes: Values report the log change in output. The elasticity of distortions is set to the South benchmark

value, and the change in ⇢ is set equal to �⇢ = 0.1, which is the observed di↵erence in the measured elasticity

of the North and South in the data. All other parameters are set to the benchmark calibration values.

Table C.12 shows the asymmetric impact of increasing and decreasing ⇢ on productivity

through each channel. The values are reported as log changes in productivity (rather than

percent changes) for comparability. The di↵erence in the e↵ects is mainly driven by the farm

ability channel due to the disincentivizing e↵ect of ⇢ on ability investment.
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C.7 Model Extensions

We consider two model extensions to capture the full farm life-cycle dynamics of productivity

and the potential intergenerational transmission of ability.

C.7.1 Farm Life Cycle Dynamics

In Section 3, we show that farm productivity is hump shaped over the life cycle with the

productivity of young farms increasing quickly and then deteriorating as the farm reaches

older ages. Our baseline model focuses on the initial buildup of farm productivity through

investments in farm ability but does not account for the decline in productivity of older

farmers. We show that the main model results are relatively unchanged if we extend the

model to incorporate this feature.

Model. We extend the model to allow for life cycle dynamics following a similar structure

of aging as in Acemoglu et al. (2018). Farmers initially enter as young age (j = Y ) farmers

and then with probability � transition to old age (i = O) farmers. Old age acts as an

absorbing state that all farmers eventually reach (if they do not exit), albeit at di↵erent

points of time. Young farmers operate as described in the main text while old farmers have

ability af,t = 1, regardless of their previous ability h or investment. Farm ability is now given

by

aj
f,t

= 1j=Y �
h + 1j=O. (C.2)

The age structure allows us to capture the dynamics observed in the data in a reduced form.

Intuitively, the transition to old age could capture the deterioration of physical abilities of

older farmers.

The model is otherwise as described in the main text. The equilibrium characterization

is similar with the exceptions that the value function now accounts for the possibility of
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transitioning to old age and the type distribution now accounts for farms in old age.

Quantitative analysis. We consider an alternative calibration of the model to focus more

on the farm productivity life cycle. The preference shifters ⌘i, preference curvature ✓ and

all other parameters follow the baseline calibration procedure. We re-calibrate the jointly

chosen parameters {�, , ⇣,i, �z, �v} as well as the transition probability � to target a new

set of moments. In addition to the baseline moments, we add two moments: (i) the average

productivity of 36-40 year old farmers is 0.45 log points higher than the average productivity

of 25 and younger farmers and (ii) the average productivity of 65 and older farmers is equal

to average productivity of 25 and younger farmers (both from Figure ??). We also remove the

moments on the average TFP growth of farms. Table C.13 reports the parameter estimates.

Table C.13: Parameters with Farm Life Cycle Targets

Parameter Value

Transition to Old � 0.03
Investment Level  0.6
Investment Curvature ⇣ 1.85
Ability Step Size � 1.45
Crop Preference Elasticity ✓ 1.21
Preference Shifter ⌘i (1.00 , 0.63 , 0.83)
Crop-Specific Productivity i (1.00 , 1.54 , 0.38)
Permanent Productivity �z 1.41
Random Productivity �v 1.71
Elasticity ⇢ 0.91
Random distortion �" 0.94
Output mismeasurement �◆out 0.30
Input mismeasurement �◆in 0.49

Notes: Where applicable, parameters are first reported for rice farms, followed by those for perennials and

then other crop farms.

The estimated transition to old age is around 3% indicating that farms spend an average

of 33 years at young age. The main di↵erence relative to the baseline parameters is that the

estimated ability step size increases from 1.51 in the baseline to 1.68 in the extended model,

which is necessary to o↵set some of the negative growth from aging. Figure C.3 reports

73



the relationship between farm TFP and age. The figure highlights the same hump-shaped

dynamics as in the data.

Figure C.3: Farm Productivity Life Cycle
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Notes: Age bins are { 25, 26 � 30, 31 � 35, 36 � 40, 41 � 45, 46 � 50, 51 � 55, 56 � 60, > 60} and plotted

according to the oldest age in the group and 65 for the oldest group. The average of farm-level log TFP is

calculated using simulated data (as described in Section 5) for 100,000 farms.

The shape of farm dynamics is by construction since key features of the life-cycle pro-

ductivity profile are targeted in the calibration. The purpose of the recalibration is to assess

its impact on the main results. The main experiment adjusts distortions in the benchmark

economy, calibrated to south Vietnam, to match distortions in north Vietnam. Table C.14

compares moments in the extended model benchmark economy, calibrated to the South, with

the counterfactual economy, which adjusts distortions to match the values in the North.

The table highlights that the results in the extended model are in line with the baseline

model. Aggregate productivity drops by 43%, similar to the baseline experiment (41%). We

also find similar dynamics when comparing the other moments with the baseline experiment.

The counterfactual economy is almost able to replicate entirely the farm crop distribution,

in addition to accounting for around half of the change in the standard deviation of TFP,

the regression’s coe�cient of growth on TFP, and the top 10% land share.

The table also shows the average growth rate in the benchmark calibration economy and
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Table C.14: Comparing Counterfactual Moments with Life Cycle Targets

Benchmark Counterfactual Data

Productivity 1.00 0.57 0.42
Avg growth (%) 3.56 2.43 2.62
Std growth (%) 76.7 76.2 89.2
Std log TFP 0.97 0.89 0.84
Std log land 1.18 0.97 0.98
Reg coe�cient: growth on log TFP �34.3 �40.6 �48.2
Top 10% land share (%) 42.9 35.2 38.3
Measured elasticity 0.850 0.973 0.964
Std log wedge 0.88 0.92 0.81
Corr(� log TFP,� log `) 0.084 �0.088 �0.022

Relative measured TFP (1.00 , 1.19 , 0.75) (1.00 , 1.03 , 0.74) (1.00 , 0.69 , 0.80)
Farm share by crop (%) (49.1 , 33.1 , 17.8) (71.5 , 10.5 , 18.0) (75.1 , 5.0 , 19.9)

Notes: Where applicable, moments are first reported for rice farms, followed by those for perennials and then

other crop farms.

the counterfactual economy. Unlike the main text, this is no longer a moment that is directly

targeted in the calibration. As discussed in Section 6.5, the growth rate of productivity

is potentially related to factors unrelated to ability investment in the model. Table C.14

provides an extreme view on the magnitude of these other factors since it attributes none

of the non-life cycle growth to farmer investment. The growth rate lies within the bounds

considered in the robustness exercise in Section 6.5. Overall, the evidence in Table C.14 is

reassuring about the robustness of the main results.

C.7.2 Entrant Ability

In the baseline model, entrants start at the lowest ability node and then progress to higher

nodes through investment. In practice, we might expect that some ability is passed on through

generational learning, such that some entrants are more productive than others. We show a

simple extension of the model that incorporates this feature and find that the quantitative

results remain relatively unchanged.
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Model. Rather than entering with ability a = �0, we allow entrants to draw ability a = �h

where h 2 {0, 1, ..., h̃} is drawn from distribution m(h, h̃) and h̃ is the ability node of the

exiting farmer the entrant replaces. We include h̃ as the upper bound to capture the intuition

that entrants are learning from the previous generation of (exiting) farmers and note that

the distribution would be the same if we instead had entrants learn from active farms, since

exit is random. Since our goal is to show the robustness of the baseline results, we set the

distribution of entrant productivity to be uniform between 0 and h̃, where we expect that

this would tend to overstate the persistence in ability over time.

The model is otherwise as described in the main text. The equilibrium characterization is

similar with the exception that the type distribution now accounts for entry into higher nodes.

Additionally, we assume that entrants draw their predecessors’ permanent productivity z and

preferences ⌘i and that entrants can only deviate from the crop choice of their predecessor by

accepting ability h = 0, for tractability. However, quantitatively, this assumption has little

impact on the results.

Quantitative analysis. Given that the model parameters are the same as in the main text,

the calibration procedure is unchanged. The main di↵erence with the baseline parameters is

that the step size of ability improvements � increases. This is necessary to match the same

average growth rate since entrants now start at higher nodes where investment, and growth,

would otherwise be lower (see Figure C.2).

The main experiment adjusts distortions in the benchmark economy, calibrated to south

Vietnam, to match distortions in north Vietnam. Table C.15 compares moments in the ex-

tended model benchmark economy, calibrated to the South, with the counterfactual economy,

adjusting distortions to match values in the North.

The results show that allowing for entrants with higher ability results in a larger produc-

tivity loss (57%) than the benchmark calibration because the transfer of ability to entrants

creates a positive spillover in which investment further shifts the productivity distribution
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Table C.15: Comparing Counterfactual Moments with Entrant Ability

Benchmark Counterfactual Data

Productivity 1.00 0.43 0.42
Avg growth (%) 6.20 4.08 2.62
Std growth (%) 74.5 74.2 89.2
Std log TFP 0.97 0.86 0.84
Std log land 1.18 0.98 0.98
Reg coe�cient: growth on log TFP �34.8 �42.9 �48.2
Top 10% land share (%) 42.2 35.2 38.3
Measured elasticity 0.855 1.013 0.964
Std log wedge 0.89 0.92 0.81
Corr(� log TFP,� log `) 0.088 �0.137 �0.022

Relative measured TFP (1.00 , 1.20 , 0.75) (1.00 , 0.96 , 0.75) (1.00 , 0.69 , 0.80)
Farm share by crop (%) (49.1 , 33.1 , 17.8) (72.2 , 9.1 , 18.7) (75.1 , 5.0 , 19.9)

Notes: Where applicable, moments are first reported for rice farms, followed by those for perennials and then

other crop farms.

through improving entrants’ productivity. Otherwise, the results are consistent with the

baseline results and show the same conclusions.
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