
University of Toronto 
Department of Economics 

 

November 14, 2023

Working Paper 764

A Simple Specification Test for Models with Many Conditional
Moment Inequalities

By Mathieu Marcoux, Thomas Russell and Yuanyuan Wan



A Simple Specification Test for Models with Many Conditional

Moment Inequalities

Mathieu Marcoux*
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Abstract

This paper proposes a simple specification test for partially identified models with a large

or possibly uncountably infinite number of conditional moment (in)equalities. The approach

is valid under weak assumptions, allowing for both weak identification and non-differentiable

moment conditions. Computational simplifications are obtained by reusing certain expensive-

to-compute components of the test statistic when constructing the critical values. Because of

the weak assumptions, the procedure faces a new set of interesting theoretical issues which

we show can be addressed by an unconventional sample-splitting procedure that runs multiple

tests of the same null hypothesis. The resulting specification test controls size uniformly over a

large class of data generating processes, has power tending to 1 for fixed alternatives, and has

power against certain local alternatives which we characterize. Finally, the testing procedure is

demonstrated in three simulation exercises.
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1 Introduction

Despite requiring weaker assumptions than their point-identified counterparts, partially identified

models are not immune to misspecification. For partially identified models defined by moment

inequalities, misspecification occurs when no parameter vector satisfies all the inequalities simulta-

neously, leading to an identified set that is empty. In practice empty estimated identified sets are

common. While this may be a result of model misspecification, it can also occur due to sampling

uncertainty, especially when the model is close to being point-identified. These two alternatives

have very different implications, making specification testing an especially important topic in the

context of partially identified models.

This paper proposes a simple specification test for models defined by moment inequalities, and

makes three main contributions relative to the existing literature. First, we extend the existing

literature on specification testing in moment inequality models—which has focused primarily on

the case of a finite number of unconditional moment inequalities—by presenting a specification test

applicable to models with a continuum of conditional moment inequalities. For instance, this makes

our test applicable to moment inequalities derived from support-function based representations

of the identified set, a general and empirically relevant class of models. Second, we show our

specification test is able to control size uniformly over a large class of data generating processes

(DGPs) under weaker assumptions on the moment conditions compared to the existing literature;

in particular, we do not require the existence of a polynomial minorant, and allow for moment

functions that are not everywhere differentiable. After introducing our main results, we discuss

these conditions at length and provide simple examples where they can fail. Third, our testing

procedure is developed with computational concerns in mind, and so is computationally simpler

than existing moment inequality specification tests. The result is a specification test that is many

times faster to perform than it is to estimate the identified set or to construct a confidence set.

The proposed procedure uses a MinMax test statistic, with the minimum taken over the param-

eter space, and the maximum taken over a (possibly uncountable) collection of moment conditions.

Finding the parameter vector that minimizes the MinMax test statistic is the most computation-

ally intensive component of the procedure, a difficulty also shared by other specification tests in

this literature. However, our method obtains computational gains relative to existing procedures

by reusing the minimizing parameter vector when bootstrapping to compute the critical value.

Because of our weak assumptions, reusing the minimizer in the bootstrap procedure introduces

a new set of interesting theoretical issues which we show can be addressed by an unconventional

sample-splitting procedure that runs multiple tests of the same null hypothesis. For this reason, we

refer to our testing procedure as the split-sample multiple test (SSMT) procedure. We show that

the SSMT procedure controls size uniformly over a large class DGPs, has power tending to 1 for
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fixed alternatives, and has power against certain local alternatives.

The SSMT procedure requires selecting an appropriate subsample size in the sample splitting

step, which has a strong influence on the finite sample performance of the test. We discuss the effect

of the subsample size and other tuning parameters at length, illustrate the practical performance

of our method in three simulation examples, and provide some practical advice for potential users.

1.1 Previous Literature

A number of papers have explored specification testing in partially identified models, including

Guggenberger, Hahn, and Kim (2008) for linear moment inequalities, Santos (2012) for nonpara-

metric instrumental variable models, as well as Romano and Shaikh (2008), Andrews and Guggen-

berger (2009), Galichon and Henry (2009), Andrews and Soares (2010), and Bugni, Canay, and

Shi (2015) for more general models.1 Much of the previous literature has focused on specification

testing as a by-product of confidence set construction. A notable exception is Bugni, Canay, and

Shi (2015), who deal explicitly with specification testing in a general class of moment inequality

models, and use a test statistic similar to ours. They propose two tests: a re-sampling (RS) test,

and a recycling (RC) test. They also show that these tests have favorable power properties relative

to a conventional by-product test which is based on confidence set construction.

We build on the approach of Bugni, Canay, and Shi (2015) in three main ways. First, our focus

is on a continuum of conditional moment inequalities, where the focus of Bugni, Canay, and Shi

(2015) is on a finite number of unconditional moment inequalities.

Second, we show how to relax certain assumptions required by Bugni, Canay, and Shi (2015).

Specifically, the results in Bugni, Canay, and Shi (2015) rely on their Assumption A6. They show

that this assumption is implied by their Assumption A8, which posits the existence of a polyno-

mial minorant on the criterion function used to define the identified set, and requires a uniform

equicontinuity condition on the gradients of the moment functions. The polynomial minorant con-

dition is common in the literature on inference for partially identified models, although it rules

out a form of weak identification of the identified set, and is especially strong when applied to

conditional moment inequalities. We discuss this condition in Section 3.4, and show that it can

be violated in simple examples. Furthermore, the assumptions of Bugni, Canay, and Shi (2015)

rule out moment conditions that are not differentiable. This is often the case, for instance, for

moment conditions derived from support-function based characterizations of the identified set, a

leading example with an uncountable number of moments. In contrast, the SSMT procedure does

not require the existence of a polynomial minorant and does not assume the moment conditions

are everywhere differentiable.

1See Section 5 of Molinari (2020) for a review and discussion.
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Finally, the SSMT procedure has some computational advantages. For the RS test of Bugni,

Canay, and Shi (2015), the researcher must compute the infimum of a bootstrap test statistic for

each bootstrap sample, where the feasible region is given by the argmin set of a criterion function.2

In the absence of any special structure of the moment conditions (e.g. linearity, convexity, or

high-order differentiability and closed-form gradients), this problem can be difficult, and reaching

a global optimum at each iteration can be expensive.3 The problem is magnified in our setting

with a continuum of conditional moment inequalities, where even evaluating the test statistic at a

single parameter vector can be expensive.4 In contrast, we show that the parameter vector that

minimizes the test statistic can be reused when computing the critical value, saving substantial

computation time for the models we consider.

The theoretical techniques in this paper are most similar to Andrews and Shi (2013) and An-

drews and Shi (2017), who provide a method of inference for models defined by an uncountably

infinite number of conditional moment inequalities. They construct a test of a null hypothesis that

a fixed parameter vector satisfies all moment conditions, and invert this test to construct confidence

sets for the true vector of model parameters. In contrast, we construct a test of the null hypothesis

that there exists a parameter vector that satisfies all moment conditions, with a rejection of the test

signalling model misspecification. We use an MinMax test statistic, and the uniform asymptotic

analysis requires the consideration of a different set of drifting sequences than in Andrews and Shi

(2017). Our resulting testing procedure is also very different, relying on a new sample-splitting

procedure that runs multiple tests of a common null hypothesis.

There has been a longstanding interest in the misspecification of partially identified models.

Earlier papers on the topic include Ponomareva and Tamer (2011) and Kaido and White (2013).

More recently Kédagni, Li, and Mourifié (2020) study the problem of estimating outer sets—a

computationally convenient alternative to estimating the identified set—and show that outer sets

can provide misleading results when the underlying model is misspecified. Both Kédagni, Li, and

Mourifié (2020) and Masten and Poirier (2021) also study the problem of salvaging falsified models;

that is, salvaging models which have failed a test of correct specification. However, neither of these

papers focus on the topic of specification testing. In that sense, our test is complementary to

this literature. Other recent papers have also explored confidence sets that are robust to spurious

2This argmin set will typically be a singleton when the identified set is empty. When the researcher knows the
argmin set is a singleton, there is no computational benefit of the SSMT procedure relative to Bugni, Canay, and
Shi (2015) (at least in the case of a finite number of unconditional moments), since both procedures will reuse the
minimizer in the bootstrap procedure. However, with a complex model (e.g. non-convex moment inequalities), it
is typically not possible for the researcher to know if the argmin set is a singleton, in which case they must solve a
nonlinear constrained optimization problem either way.

3A similar comment applies to the RC test of Bugni, Canay, and Shi (2015), which has the same feasible region
as the RS test but instead computes the infimum of the GMS critical value.

4For instance, in our first simulation example in Section 4.1 with a continuum of moment inequalities and a three-
dimensional parameter vector, it takes over 22 hours just to evaluate the test statistic on a sparse uniform grid with
only 20 points in each dimension (or 8000 points total).

4



precision under model misspecification, including Andrews and Kwon (2019) and Stoye (2020).5

These procedures deliver valid inference for the true vector of model parameters when the identified

set is empty but the model is correctly specified, and provide valid inference for a pseudo-true vector

of model parameters when the model is misspecified. Recently, Andrews and Kwon (2021) also

provide a specification test for the case of a finite number of unconditional moment inequalities,

but where the null hypothesis is that the identified set is empty (that is, with the typical null

and alternative reversed). Their confidence set is constructed by inverting a level 1 − α upper

confidence set for a “misspecification index,” which is very close to our test statistic in the case of

a finite number of unconditional moments. A specification test similar to the one considered here

(that is, when the alternative hypothesis is that the identified set is empty) can be completed using

the 1 − α lower confidence set for their misspecification index, but similar to Bugni, Canay, and

Shi (2015) the validity of this procedure relies on a polynomial minorant condition and a uniform

equicontinuity condition on the gradients of the moment functions.6

1.2 Roadmap

The remainder of the paper proceeds as follows. Section 2 introduces the main environment and

motivating examples and then provides a high-level overview, including a discussion of the main

theoretical challenges and how they are addressed by the SSMT procedure. Section 3 focuses on

a formal presentation of the theoretical properties of the procedure, stating the main assumptions

and providing the results on size control and power against fixed and local alternatives. Section 3

also compares our assumptions and local power to existing procedures, and discusses computation

and the choice of tuning parameters. Section 4 presents three simulation examples to illustrate

the performance of our method, and compares our method to Bugni, Canay, and Shi (2015) and

Andrews and Shi (2017). Section 5 concludes. The proofs of the main results are provided in

Appendix A, and additional details for the proofs, background for the simulation examples, and

some additional simulation evidence is provided in the Online Supplementary Material.

2 Overview and Examples

In this section we begin with an overview of the testing environment, and introduce some motivating

examples. The main purpose of this section is to explain how the SSMT procedure is able to obtain

a computational advantage under weak assumptions, the new theoretical challenges that arise as

a result, and how the proposed procedure is able to overcome those challenges. To begin, let P
5A spuriously precise confidence set in this context is one that does not cover any parameter vector with the

desired coverage probability.
6See Theorem 7.1(b) in Andrews and Kwon (2021), which requires their Assumption A.8. Note that their As-

sumption A.8 is nearly identical to Assumption A.8 in Bugni, Canay, and Shi (2015).
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denote a class of DGPs (defined formally in Assumption 3.1), suppose that Wi ∼ P ∈ P, and let

Xi denote a subvector of Wi. Consider the following collection of conditional moment inequalities:

EP [m(Wi, θ, τ) | Xi ] ≤ 0 a.s., ∀τ ∈ T ⊂ Rdτ , (2.1)

where θ ∈ Θ ⊂ Rdθ is a vector of model parameters, and τ ∈ T is an index. Here the index set

T is arbitrary and may be uncountably infinite, leading to a model defined by an infinite number

of conditional moment inequalities. The parameter space Θ ⊂ Rdθ is also unrestricted, and may

be non-compact and non-convex. Note that this framework also accommodates moment equalities,

which can be expressed as two moment inequalities.7 The following examples illustrate applications

that fit this environment.

Example 1. Consider the environment in Beresteanu, Molchanov, and Molinari (2011). There is

a vector of observable random variables Wi and a vector of unobservable random variables εi defined

on a non-atomic probability space (Ω,F,P). The econometric model maps each realization (w, ε)

to a nonempty closed set Qθ(w, ε). It is assumed that the econometric model can be augmented

with a selection mechanism, giving rise to a measurable dτ−dimensional map ψ(Wi, εi, θ) satisfy-

ing ψ(Wi, εi, θ) ∈ Qθ(Wi, εi) a.s. Let Sel(Qθ) be the collection of all such measurable selections.

Beresteanu, Molchanov, and Molinari (2011) define the identified set as:

ΘI(P ) := {θ ∈ Θ : ∃ψ(Wi, εi, θ) ∈ Qθ(Wi, εi) s.t. EP [h(Wi) | Xi] = EP [ψ(Wi, εi, θ) | Xi] a.s. } ,

where h( · ) is a known function mapping Wi into Rdτ , and where Xi is a subvector of Wi. Theorem

2.1 in Beresteanu, Molchanov, and Molinari (2011) shows that, under some additional assumptions,

this identified set can be equivalently characterized as:

ΘI(P ) :=

{
θ ∈ Θ : max

τ∈Bdτ

(
τ>EP [h(Wi) | Xi ]− EP

[
sup

q∈Qθ(Wi,εi)
τ>q

∣∣∣∣ Xi

])
= 0 a.s.

}
,

where Bdτ is the dτ−dimensional unit ball, and where the second term is the expected support

function of the random set Qθ(Wi, εi). Thus, the set ΘI can instead be written as the set of all

θ ∈ Θ satisfying an uncountable collection of conditional moment inequalities of the form:

EP

[
τ>h(Wi)− EP

[
sup

q∈Qθ(Wi,εi)
τ>q

∣∣∣∣ Wi

] ∣∣∣∣ Xi

]
≤ 0 a.s. ∀τ ∈ Bdτ .

Furthermore, each moment condition is a concave function of τ .8 In this context, the model is

misspecified if ΘI = ∅. This support function characterization of the identified set is general,

and includes examples like best linear prediction (Beresteanu, Molchanov, and Molinari (2011)),

7In particular, the equality x = 0 can be written as x ≤ 0 and −x ≤ 0.
8This follows since τ 7→ supq∈Qθ(ω) τ

′q is convex in τ .
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static games with varying information structures (Magnolfi and Roncoroni (2023)) and solution

concepts (Beresteanu, Molchanov, and Molinari (2011)), discrete choice with heterogeneous choice

sets (Barseghyan, Coughlin, Molinari, and Teitelbaum (2021)), and others.

The previous example is our leading example of a model with a continuum of conditional moment

inequalities. Our approach is also applicable to models with finite but large number of conditional

moment inequalities, as illustrated in the next example.

Example 2. Consider the generalized instrumental variable (GIV) framework of Chesher and

Rosen (2017) and Chesher and Rosen (2020). In this framework, Wi := (Yi, Zi), where Yi is the

observed vector of endogenous variables and Zi is the observed vector of exogenous variables. There

is also a vector of latent variables Ui that satisfies the selection relation Ui ∈ U(Yi, Zi;h) a.s., where:

U(y, z;h) := {u ∈ U : h(y, z, u) = 0},

and where h : Y × Z × U → R is a known structural function. Let PU |Z denote the collection of

all conditional distributions of the latent variables Ui given Zi. The researcher’s model imposes the

constraints on the pair (h,PU |Z). For instance, the researcher may impose that both h and PU |Z
are parametrically specified up to some finite-dimensional parameter θ ∈ Θ ⊂ Rdθ , and that U ⊥⊥ Z.

In this case, Chesher and Rosen (2017) show that the identified set of model parameters is given

by:

ΘI =
{
θ ∈ Θ : PY |Z(U(Yi, Zi;h) ⊆ S | Zi) ≤ PU (S) a.s., for all S ∈ S

}
,

where S is some appropriate collection of “test sets.” When (Yi, Zi) is discrete, S can be taken as

a finite collection, in which case this provides a characterization of the model in terms of a finite

number of conditional moment inequalities. Applications of this framework include discrete choice

with heterogeneous choice sets, auctions, entry games, treatment effect estimation, among many

others.

Even when a model is not partially identified, conditional moment inequalities can be useful

when testing certain modelling assumptions, as the next example illustrates.

Example 3. Consider testing the local average treatment effect (LATE) assumptions, as in Kita-

gawa (2015) and Mourifié and Wan (2017). Let Di ∈ {0, 1} and Zi ∈ {0, 1} be the binary treat-

ment and instrument, respectively. Let Yi1 and Yi0 be two potential outcomes, let Di0 and Di1 be

two potential treatments, and let Xi be a vector of covariates. The LATE assumptions are: (i)

(Yi1, Yi0, Di0, Di1) ⊥⊥ Zi | Xi, (ii) P (Di = 1 | Zi = 1, Xi) 6= P (Di = 1 | Zi = 0, Xi) a.s., and

(iii) Di1 ≥ Di0 or Di0 ≥ Di1 a.s. Under these assumptions the conditional LATE is identified

by the Wald estimand. However, in the applied literature it is common for researchers to model
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the propensity score with a parametric model when the vector Xi is large.9 For instance, one can

assume (iv) P (Zi = 1 | Xi = x) = Λ(x, θ0) := exp(x′θ0)
1+exp(x′θ0) for some unknown finite-dimensional

parameter θ0 ∈ Rdθ . We can then formulate the testable implications of Assumptions (i)-(iv) as a

set of conditional moment inequalities. Define S = {[y, y′] : y < y′, y, y′ ∈ Y}. Then the LATE

assumptions imply:

E [1{Yi ∈ S} (Λ(Xi, θ)Di(1− Zi)− (1− Λ(Xi, θ0))DiZi) | Xi] ≤ 0, ∀S ∈ S,

E[1{Yi ∈ S} ((1− Λ(Xi, θ))(1−Di)Zi − Λ(Xi, θ0)(1−Di)(1− Zi)) | Xi] ≤ 0, ∀S ∈ S,

E[Λ(Xi, θ)− Zi | Xi] ≤ 0,

E[Zi − Λ(Xi, θ) | Xi] ≤ 0,

Xi−a.s. for some vector θ ∈ Θ. When Y is finite, we have a finite number of conditional moment

inequalities; otherwise, we have a continuum of conditional moment inequalities.

Inference for the true but partially identified vector θ0 ∈ Θ for models defined by moment

inequalities of the form (2.1) has been addressed by Andrews and Shi (2017). In contrast, we

develop a computationally simple method of specification testing for these models. In particular,

we focus on testing the null hypothesis:

H0 : P ∈ P0 versus H1 : P ∈ P \ P0, (2.2)

where P0 is the collection of null DGPs:

P0 := {P ∈ P : ∃θ ∈ Θ s.t. (θ, P ) satisfies (2.1) } .

Here P0 ⊂ P is the subset of DGPs for which there exists at least one vector θ ∈ Θ satisfying

the collection of moment inequalities in (2.1).10 In order to test the null hypothesis (2.2), our

approach first converts the conditional moment inequalities in (2.1) into the following collection of

unconditional moment inequalities:

EP [m(Wi, θ, τ)g(Xi)] ≤ 0, for all τ ∈ T , and g ∈ G, (2.3)

where g ∈ G is an instrument function. If the collection of instrument functions G is suitably rich,

converting the conditional moments in (2.1) to the unconditional moments in (2.3) is without any

loss of identifying information.11 This is the case, for instance, if G is a countable collection of

hypercubes (see Andrews and Shi (2013) p.621 or Andrews and Shi (2017) p.279) or boxes (see

9See discussions in S loczyński, Uysal, and Wooldridge (2022), among many others.
10In a partially identified model, it is possible for the identified set to be nonempty and for the model to be

misspecified. These cases are not detectable by any test, but they suggest some care must be taken when interpreting
the null hypothesis in (2.2) as “correct specification.”

11See Andrews and Shi (2013) Lemma 2.
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Andrews and Shi (2013) p.622). Continuing from (2.3), let {Wi}ni=1 be an i.i.d. sample from P ,

and define the sample analog unconditional moments as:

m̄n(θ, τ, g) =
1

n

n∑
i=1

m(Wi, θ, τ, g), where m(Wi, θ, τ, g) = m(Wi, θ, τ)g(Xi). (2.4)

To test the null hypothesis in (2.2), consider the following function:

Tn(θ) := sup
τ∈T

max
g∈Gn

√
nm̄n(θ, τ, g)

ς̂n(θ, τ, g)
, (2.5)

where ς̂n(θ, τ, g) is a positive data-dependent re-weighting of the moment function, and Gn ⊂ G is a

(growing) subset of the set of instrument functions. For example, ς̂n(θ, τ, g) could be taken as the

sample standard deviation of the moment conditions:

ς̂n(θ, τ, g) :=

√√√√ 1

n

n∑
i=1

(m(Wi, θ, τ, g)− m̄n(θ, τ, g))2.

Now for any sequence εn = o(1), let θ̂n ∈ Θ be any (measurable) vector of parameters satisfying:12

Tn(θ̂n) ≤ inf
θ∈Θ

Tn(θ) + εn. (2.6)

Note that the quantity Tn(θ̂n) serves as a natural MinMax test statistic of the null hypothesis in

(2.2). In particular, for sufficiently small values of εn, a large and positive value of Tn(θ̂n) indicates

at least one moment inequality in (2.3) is violated for every θ ∈ Θ. On the other hand, negative

values of Tn(θ̂n) indicate that there exists at least one θ ∈ Θ (namely, θ̂n) satisfying all of the

moment inequalities in (2.3).

Given the test statistic Tn(θ̂n), we can specify a test function φn by comparing Tn(θ̂n) to an

appropriate critical value. The conventional approach to obtain critical values is to approximate the

distribution Tn(θ̂n) under the null using a resampling procedure, which typically involves repeatedly

minimizing a bootstrap version of Tn(θ) over some approximation of the identified set. This is the

approach taken, for instance, by Bugni, Canay, and Shi (2015) in their re-sampling (RS) critical

value.13 However, minimizing Tn(θ) over any subset S ⊂ Θ is a MinMax problem, and so is

computationally expensive.14

Rather than repeatedly minimizing Tn(θ) when constructing a critical value, we propose reusing

the approximate minimizer θ̂n in the resampling procedure. This avoids the most computationally

12In particular, the infimum in (2.5) may not be obtained under our assumptions.
13See also Andrews and Kwon (2021). In the related context of subvector inference, a similar approach is also

taken by Bugni, Canay, and Shi (2017) and Belloni, Bugni, and Chernozhukov (2019).
14Even if Tn(θ) is replaced by another test statistic (e.g. as in Bugni, Canay, and Shi (2015)), or if an approach

based on subsampling is used, the need to repeatedly minimize (a version) of Tn(θ) remains the most computationally
burdensome aspect of constructing a critical value using a resampling procedure.
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burdensome component of constructing the critical value, although potentially at the cost of some

power loss in finite sample. However, without introducing strong assumptions, reusing θ̂n in the

construction of the critical value introduces some additional complications. To understand why,

suppose for simplicity that ς̂n(θ, τ, g) = 1. Then Tn(θ̂n) can be rewritten as:

Tn(θ̂n) = sup
τ∈T

max
g∈Gn

{√
n(m̄n(θ̂n, τ, g)− EP [m(Wi, θ̂n, τ, g)])︸ ︷︷ ︸

Empirical Process

+
√
nEP [m(Wi, θ̂n, τ, g)]︸ ︷︷ ︸

Recentering

}
. (2.7)

That is, Tn(θ̂n) is the supremum of the sum of an empirical process and a recentering term evaluated

at θ̂n. The distribution of the empirical process can be approximated under standard assumptions

using a variety of resampling procedures. However, the recentering term cannot be consistently

estimated in a uniform sense. Furthermore, since the recentering term is evaluated at the data-

dependent vector θ̂n, without stronger assumptions it is possible that the recentering term converges

to a value that is above, below, or equal to zero under the null hypothesis.15 Combined with our

desire to reuse θ̂n when resampling to compute the critical value, these features make an approach

based on generalized moment selection (GMS) difficult to apply.

Nevertheless, constructing an appropriate critical value requires some understanding of the

behavior of the recentering term under the null hypothesis. Lemma 3.1 provides the required

result. Under some additional assumptions, the recentering term satisfies:

max

{
sup
τ∈T

max
g∈Gn

√
nEP [m(Wi, θ̂n, τ, g)], 0

}
= OP0(1), (2.8)

where OP0(1) indicates stochastic boundedness, uniformly in P ∈ P0.16 As a result, for any

sequence {qn}∞n=1 satisfying qn/n = o(1) we have:

max

{
sup
τ∈T

max
g∈Gn

√
qnEP [m(Wi, θ̂n, τ, g)], 0

}
= oP0(1), (2.9)

where oP0(1) denotes convergence in probability to zero, uniformly in P ∈ P0. Intuitively, (2.8)

suggests that, even under weak assumptions on the moment conditions, the εn−minimizer θ̂n is of

sufficiently “high quality” that it prevents the recentering term from diverging to +∞. To take

advantage of the result in (2.9), consider the following modified test statistic:

Tqn(θ̂n) = sup
τ∈T

max
g∈Gn

{
√
qn(m̄qn(θ̂n, τ, g)− EP [m(Wi, θ̂n, τ, g)])︸ ︷︷ ︸

Modified Empirical Process

+
√
qnEP [m(Wi, θ̂n, τ, g)]︸ ︷︷ ︸

Modified Recentering

}
,

where qn satisfies qn/n→ 0 and the mean function m̄qn(θ̂n, τ, g) is computed using a random sub-

sample {Wik}
qn
k=1 from the original sample {Wi}ni=1. Here the distribution of the modified empirical

15See Section S.4.2 of the Online Supplementary Material for a simple example where the recentering term is
positive under the null.

16See Lemma 3.1 for a precise definition.
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process can still be approximated by a resampling procedure, using the subsample {Wik}
qn
k=1 rather

than the original sample {Wi}ni=1. Furthermore, the modified recentering term will converge in

probability uniformly over P0 to a value bounded above by zero. It follows that under the null the

quantiles of the distribution of Tqn(θ̂n) will be asymptotically (possibly over-)approximated by the

quantiles of the bootstrap distribution of the quantity:

T ]qn(θ̂n) = sup
τ∈T

max
g∈Gn

√
qn(m̄]

qn(θ̂n, τ, g)− m̄qn(θ̂n, τ, g))

ς̂n(θ, τ, g)
,

where m̄]
qn(θ̂n, τ, g) is the bootstrap moment function computed by sampling i.i.d. draws from

{Wik}
qn
k=1 with replacement. Using the 1− α quantile of the bootstrap distribution of T ]qn(θ̂n), we

can construct a critical value cqn(1− α) such that Tqn(θ̂n) > cqn(1− α) with probability at most α

uniformly over P ∈ P0.

A final issue to address is the use of the subsample {Wik}
qn
k=1 when constructing the modified

test statistic. While the full sample is needed to construct θ̂n, our final test statistic uses only

qn � n observations, even though the remaining observations not used in constructing our test

statistic Tqn(θ̂n) can still be informative. To make use of the remaining observations, in practice we

suggest dividing the sample into rn samples of size qn (with rn ·qn ≈ n), and repeating the procedure

described above for the r = 1, . . . , rn subsamples. The final SSMT procedure is as follows:

Step 1: Compute m̄n(θ, τ, g) and ς̂n(θ, τ, g), and find an approximate minimizer θ̂n (in the sense

of (2.6)) of the function Tn(θ) from (2.5).

Step 2: Fix qn and rn satisfying qn/n → 0 and rn · qn ≤ n. Divide the sample {Wi}ni=1 into rn

non-overlapping subsamples of size qn, and compute T
(1)
qn (θ̂n), . . . , T

(rn)
qn (θ̂n) using each

subsample, where:

T (r)
qn (θ) := sup

τ∈T
max
g∈Gn

√
qnm̄

(r)
qn (θ, τ, g)

ς̂n(θ, τ, g)
.

Step 3: Fix some large integer B. For r = 1, . . . , rn and each of the B bootstrap samples,

compute the bootstrap test statistic T
(r)]
qn (θ̂n) given by:

T (r)]
qn (θ̂n) := sup

τ∈T
max
g∈Gn

√
qn(m̄

(r)]
qn (θ̂n, τ, g)− m̄(r)

qn (θ̂n, τ, g))

ς̂n(θ̂n, τ, g)
,

where:

m̄(r)]
qn (θ, τ, g) =

1

qn

qn∑
i=1

m(W
(r)]
i , θ, τ)g(X

(r)]
i ).

Step 4: Fix some infinitesimal η > 0 and some constant or decreasing sequence ρn ∈ [1,∞), and

11



for r = 1, . . . , rn choose c
(r)]
n (1−α/ρn + η) as the 1−α/ρn + η quantile of the bootstrap

distribution of T
(r)]
qn (θ̂n).

Step 5: Reject the null hypothesis in (2.2) at level α if φn(ρn, α) = 1, where:

φn(ρn, α) := 1

{
1

rn

rn∑
r=1

1{T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρn + η) + η} ≥ 1

ρn

}
. (2.10)

The final step of the proposed procedure aggregates the results of the rn “sub-tests” on each

subsample to make a final rejection decision. The test function in (2.5) is designed to control the

probability of rejection under the null when aggregating multiple sub-tests while also allowing the

number of tests to grow indefinitely with the sample size. The test function also provides flexibility

on the method used to aggregate the multiple tests through the choice of ρn. For instance, setting

rn = ρn = r̄ for some fixed r̄, we obtain:

φn(ρn, α) =

r̄∨
r=1

1{T (r)
qn (θ̂n) > c(r)]

qn (1− α/r̄ + η) + η},

which is precisely the Bonferroni method of aggregating multiple tests, rejecting (approximately)

if at least one of r̄ tests rejects at level α/r̄. Furthermore, setting ρn = 1 for any rn we obtain:

φn(ρn, α) =
r̄∧
r=1

1{T (r)
qn (θ̂n) > c(r)]

qn (1− α+ η) + η}.

which rejects (approximately) if all of the r̄ tests reject at level α. Other intermediate cases are

also possible. For instance, setting ρn = 2 for any rn we obtain:

φn(ρn, α) = 1

{
1

rn

rn∑
r=1

1{T (r)
qn (θ̂n) > c(r)]

qn (1− α/2 + η) + η} ≥ 1

2

}
,

which rejects if half of the tests reject at the level α/2. A similar method of aggregating multiple

tests of a common null has been considered by Rüschendorf (1982) and Meng (1994). An extensive

discussion on the value of ρn is given in Section 3.6 where we argue that ρn should be set so

that rn/ρn ∈ N \ {1}. In Section 3.6 we also discuss the choice of qn, rn, and η, and recommend

qn = bn4/5c, rn = bn1/5c, and η = 10−6.

Note the use of multiple test statistics means that the SSMT procedure has some superficial

connections to the literature on multiple testing. However, the procedure deviates from the classic

multiple testing problem by it using many test statistics to test a common null hypothesis, rather

than many test statistics to test distinct null hypotheses. This makes most of the methods from the

literature on multiple testing inapplicable in this setting.17 However, our method of aggregating

17For instance, Holm’s method is equivalent to the Bonferroni method when all the null hypotheses are identical.
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tests statistics using the test function in (2.10) typically offers power improvements over the use of

a single test statistic, and also allows us to avoid the computationally expensive task of estimating

the joint distribution of the test statistics.

In summary, the SSMT procedure offers computational advantages relative to existing specifi-

cation tests by reusing the εn−minimizer of the MinMax test statistic when computing the critical

value. Under our weak assumptions, reusing the minimizer introduces a novel theoretical com-

plication, as it means that the recentering term can converge to a positive value under the null

hypothesis. To account for this aberrant behavior of the recentering term, we propose a sample-

splitting procedure and use multiple test statistics to test the null hypothesis, controlling size using

the test function from (2.10).

The purpose of this section was to introduce the intuition behind the SSMT procedure, describ-

ing the main theoretical challenges and how the procedure overcomes those challenges. The next

section focuses on the theoretical properties of the SSMT procedure, stating the formal assumptions

required for the approach, as well as the main results on size control and power against fixed and

local alternatives.

3 Methodology

In this section we first introduce the formal assumptions and main results on size control and power

against fixed and local alternatives. We then compare the assumptions and power results to other

approaches, and we provide some guidance on the tuning parameters and computation.

3.1 Main Assumptions

We begin by formally stating the main assumptions. The first assumption constrains the moment

conditions, the class of DGPs P, the parameter space Θ, the instrument functions G, and the

index set T . In the statement of the first assumption, ςP (θ, τ, g) represents a weight function. The

relation between ςP (θ, τ, g) and the data-dependent weight function ς̂n(θ, τ, g) from the previous

section is clarified in Assumption 3.2 ahead.

Assumption 3.1. The moment functions m(w, θ, τ, g) := m(w, θ, τ)g(x), the parameter space

(P,Θ), and the instrument functions g ∈ G satisfy the following conditions:

(i) {Wi : 1 ≤ i ≤ n} are i.i.d. under some P ∈ P.

(ii) ςP (θ, τ, g) > 0 for all θ ∈ Θ, τ ∈ T , g ∈ G.

(iii) |m(w, θ, τ, g)/ςP (θ, τ, g)| ≤M(w), ∀w ∈ Rdw , ∀θ ∈ Θ, ∀τ ∈ T , ∀g ∈ G, for some measurable,

finite envelope function M : Rdw → [0,∞) satisfying supP∈P EP [M(Wi)
2+δ] ≤ C for some

13



C <∞ and δ > 0.

(iv) The class of functions MP := {m( · , θ, τ, g)/ςP (θ, τ, g) : (θ, τ, g) ∈ Θ × T × G} is pointwise

measurable for every P ∈ P and satisfies Dudley’s entropy condition for the envelope M ,

uniformly in P ∈ P.

Condition (i) in Assumption 3.1 assumes that the data is drawn i.i.d. according to some

P ∈ P, and condition (ii) imposes that each weight ςP (θ, τ, g) is strictly positive. Condition (iii)

assumes the existence of a measurable envelope function for all moment conditions which has

a bounded 2 + δ moment uniformly over P, which is required for the application of a uniform

central limit theorem. Condition (iv) requires a weak measurability condition to hold for the

moment functions and restricts the complexity of the class of moment functions. Both pointwise

measurability and Dudley’s entropy condition are defined formally in the Online Supplementary

Material. Importantly, condition (iv) is satisfied by many examples in the moment inequalities

literature.18

To accommodate the conditional moment inequalities in (2.1), we follow Andrews and Shi (2013)

and Andrews and Shi (2017) and convert the conditional moment inequalities to an equivalent set

of unconditional moment inequalities using a collection of instrument functions. Assumption 3.1 is

stated for a class of instrument functions G, which should satisfy the conditions of Andrews and

Shi (2013) and Andrews and Shi (2017) to exhaust all identifying information from the conditional

moment inequalities.19 This is not necessary for the validity of the SSMT procedure, but is im-

portant for power. For instance, G could be the class of countable hyperrectangles or boxes.20 In

practice, it is computationally infeasible to work with most countable classes G, so all results ahead

are instead stated for any finite nested sequence Gn ⊂ G with the understanding that Gn ↑ G.

While the SSMT procedure is applicable to a continuum of moment inequalities, it also covers

a number of other special cases. For instance, taking T as a finite set, the framework covers a finite

number of moment inequalities. Furthermore, taking T = {1, . . . ,K} × T ′, the framework covers

moment functions of the form m(w, θ, τ, g)/ςP (θ, τ, g) = mk(w, θ, τ
′)gk(x)/ςP,k(θ), as considered in

Andrews and Shi (2017). This latter example is important, since it restricts ςP (θ, τ, g) to depend on

a finite index. In general, some care must be taken when ςP (θ, τ, g) is allowed to depend on g ∈ G
and τ ∈ T , since it can be zero or (arbitrarily close to zero) for some (g, τ), causing Assumption

3.1(iii) and (iv) to fail. Using a constant weight function, adding a small positive non-vanishing

constant to the weight function, or using a weight function that depends only on θ (as in Andrews

and Shi (2017)) can help guard against these failures.

18For instance, a sufficient (but not necessary) condition is that the weight function ςP (θ, τ, g) is uniformly bounded
away from zero, and that the class of moment functions are VC-type (see Giné and Nickl (2021) Definition 3.6.10).

19See Andrews and Shi (2013) Lemma 2.
20See Andrews and Shi (2013) p.621 - 622 and Andrews and Shi (2017) p.279.
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Some additional structure on the moment functions may be helpful in verifying Assumption

3.1 and in deriving other primitive conditions for the uniform size control result (see Remark 3.2).

However, the main results do not require the existence of a polynomial minorant, and do not require

that the moment functions be everywhere differentiable.21 These conditions are discussed further

in Section 3.4 after introducing the main theoretical results.

The second main assumption we require relates the data-dependent weights ς̂n(θ, τ, g) discussed

in the previous section to the weight function ςP (θ, τ, g) in Assumption 3.1.

Assumption 3.2. For any ε > 0:

lim sup
n→∞

sup
P∈P

PrP

(
sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςP (θ, τ, g)

ς̂n(θ, τ, g)
− 1

∣∣∣∣ > ε

)
= 0.

Assumption 3.2 requires that the quantities ς̂n(θ, τ, g) converge uniformly in probability to the

weight function ςP (θ, τ, g) satisfying Assumption 3.1. This requirement is relatively weak, and

allows for a variety of natural weighting schemes. For instance, a possible choice is to set ς̂n(θ, τ, g)

as a constant, as the sample standard deviation of the moment functions, or as an upper bound on

the moment functions. Reweighting the moment functions is not required for any of the theoretical

properties of the SSMT procedure to hold, although different weights may imply different finite-

sample properties.

3.2 The Testing Procedure and Size Control

To test the null hypothesis in (2.2), recall the function from (2.5):

Tn(θ) := sup
τ∈T

max
g∈Gn

√
nm̄n(θ, τ, g)

ς̂n(θ, τ, g)
,

where m̄n(θ, τ, g) is the sample average unconditional moment defined in (2.4). Let θ̂n denote any

εn−minimizer of Tn(θ), as in (2.6). The computational gains from the SSMT procedure come from

the fact that it reuses θ̂n when computing the critical value. However, as discussed in the previous

section, controlling size under weak assumptions while reusing θ̂n requires some understanding of

the recentering term from (2.7). The following Lemma formalizes the result stated in (2.8) in the

previous section.

Lemma 3.1. Suppose that Assumptions 3.1 and 3.2 hold, let Gn ⊂ G be a nested sequence, and

suppose that εn = o(1), where θ̂n and εn are from (2.6). Then for any nested sequence Gn ⊂ G:

lim
M→∞

lim sup
n→∞

sup
P∈P0

PrP

(
sup
τ∈T

max
g∈Gn

√
nEP [m(Wi, θ̂n, τ, g)]

ςP (θ̂n, τ, g)
> M

)
= 0.

21See Bugni, Canay, and Shi (2015) Assumption A.8, Bugni, Canay, and Shi (2017) Assumption A.3, Andrews and
Kwon (2021) Assumption A.8.
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Lemma 3.1 shows that the recentering term is stochastically bounded, uniformly over P0. As an

immediate consequence of this result we obtain (2.9) in the previous section, which can be formally

stated as:

lim sup
n→∞

sup
P∈P0

PrP

(
sup
τ∈T

max
g∈Gn

√
qnEP [m(Wi, θ̂n, τ, g)]

ςP (θ̂n, τ, g)
> M

)
= 0,

for any M > 0, where {qn}n≥1 ⊂ N is a diverging sequence satisfying qn = o(n). The SSMT

procedure described in Section 2 takes advantage of this result by running multiple tests of a

common null, before aggregating the results of each test using the test function from (2.10).

The following assumption collects the conditions discussed in Section 2 that are required for

the results ahead.

Assumption 3.3. (i) θ̂n is a measurable sequence satisfying (2.6) for some sequence εn = o(1), (ii)

Gn ⊂ G is a nested sequence, (iii) ρn ∈ [1,∞) is a (weakly) decreasing sequence, (iv) {qn}n≥1 ⊂ N
is a diverging sequence satisfying qn = o(n), (v) {rn}n≥1 ⊂ N is a (possibly diverging) sequence

satisfying qn · rn ≤ n, (v) α ∈ (0, 1/2), (vi) η ∈ (0, α/ρ1) is some infinitesimal constant, where ρ1

is the first element of the sequence {ρn}n≥1, (vii) the non-overlapping subsamples {W (r)
i }

qn
i=1 are

constructed by sampling i.i.d. uniformly without replacement from {Wi}ni=1, (viii) for r = 1, . . . , rn,

the bootstrap sample {W (r)]
i }qni=1 is constructed by sampling i.i.d. uniformly with replacement from

{W (r)
i }

qn
i=1.

With this assumption in hand, the first main result shows that the SSMT procedure described

in Section 2 controls size uniformly over P ∈ P0. To understand the statement, define:

h2,P := h2,P (θ, τ, g, θ†, τ †, g†) := Cov(m(Wi, θ, τ, g),m(Wi, θ
†, τ †, g†)),

and h3,P := h3,P (θ, τ, g) = ςP (θ, τ, g).

Now let H := {(h2,P , h3,P ) : P ∈ P}, equipped with the sup-norm.

Theorem 3.1. Suppose that Assumptions 3.1, 3.2 and 3.3 hold, and consider the test function

φn(ρn, α) from (2.10). Then for any compact subset Hcpt ⊂H :

lim sup
n→∞

sup
P∈P0: (h2,P ,h3,P )∈Hcpt

(PrP × P])(φn(ρn, α) = 1) ≤ α. (3.1)

Remark 3.1. Here PrP ×P] is the product measure over the sample space and the bootstrap sample

space, where PrP is the n−fold product distribution (i.e. the sampling distribution) and P] defines

the distribution of the bootstrap samples. See the end of Appendix A.1 for a formal description of

these objects.
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Remark 3.2. We follow Andrews and Shi (2013) and Andrews and Shi (2017) by restricting the

pair (h2,P , h3,P ) to a compact subset of H . This is a technical requirement which ensures we

can always extract a uniformly converging subsequence from any sequence {(h2,Pn , h3,Pn)}∞n=1.22

However, any other conditions ensuring the existence of a uniformly convergent subsequence can

be used; for instance, in the case of continuous (but possibly non-differentiable) moment functions,

the Arzela-Ascoli Theorem can be used to derive primitive conditions. Note the condition is also

trivially satisfied when considering pointwise asymptotics.

Theorem 3.1 represents one of the main theoretical results, showing that the SSMT procedure

for specification testing controls size uniformly over a large class of DGPs under weak assumptions.

In Section 4 ahead we demonstrate the practical size control properties of the procedure in three

simulation examples.

3.3 Power Results

Although the SSMT procedure described in Section 2 is valid under weak assumptions and offers

computational advantages, researchers may be concerned about the potential loss of power that

arises from reusing θ̂n to compute the critical value. We now formally present our results on power

against both fixed and local alternatives. We then compare the power of the SSMT procedure to

other approaches in Section 3.5. For the first result, we require the following assumption on the

sequence of alternative distributions.

Assumption 3.4. The sequence of alternative distributions {Pn ∈ P \P0}n≥1 satisfy the following:

(i) h2,Pn
u→ h2,P0 and h3,Pn

u→ h3,P0 for some P0 ∈ P, (ii) ςPn(θ, τ, g) ≤ ∆ς < ∞ for all n and all

(θ, τ, g) ∈ Θ× T × G, (iii) there is some N ≥ 1 such that for every n ≥ N there exists a (possibly

θ-dependent) index τn,θ ∈ T , and a subset Xn(θ) ⊆ X such that PrPn (Xn(θ)) > ηv ∀θ ∈ Θ, and:

µn := inf
θ∈Θ

inf
x∈Xn(θ)

EPn [m(Wi, θ, τn,θ) | Xi = x], (3.2)

for some positive constant ηv > 0 and some positive sequence µn > 0, and (iv) there exists a

gn,θ ∈ G and a positive constant εv > 0 such that gn,θ(x) ≥ εv for all x ∈ Xn(θ).

Assumption 3.4 places some restrictions on the sequence of alternative distributions, which are

required to determine the local power properties of the SSMT procedure. Parts (i) and (ii) are

mild regularity conditions, and are trivially satisfied (for instance) under our other maintained

assumptions for any fixed alternative. Parts (iii) and (iv) formalize some properties of the violated

conditional moments under the alternative sequence, and introduce some constants (ηv and εv) that

appear in the proofs of the power results. Under this assumption, we have the following result.

22This is also closely related to Assumption (ii) in Theorem 3.1 in Sheehy and Wellner (1992).
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Theorem 3.2. Suppose Assumptions 3.1, 3.2, 3.3 and 3.4 are satisfied. If µn from (3.2) satisfies
√
qnµn →∞, then:

lim inf
n→∞

(PrPn × P])(φn(ρn, α) = 1) = 1.

Theorem 3.2 shows that the worst-case power for the SSMT procedure is asymptotically bounded

below by 1 along any sequence of local alternatives satisfying Assumption 3.4 with
√
qnµn → ∞.

Note that if µn > 0 is a fixed constant then
√
qnµn → ∞, so Theorem 3.2 demonstrates that the

SSMT procedure has power tending to 1 for any fixed alternative. Furthermore,
√
qnµn → ∞ for

any sequence of local alternatives where µn converges to zero slower than q
−1/2
n . For these local

alternatives, Theorem 3.2 also shows the SSMT procedure has power tending to 1.

To understand the source of power, suppose for simplicity that ς̂n(θ, τ, g) = 1 and consider the

test statistic T
(r)
qn (θ̂n):

T (r)
qn (θ̂n) = sup

τ∈T
max
g∈Gn

{
√
qn(m̄(r)

qn (θ̂n, τ, g)− EP [m(Wi, θ̂n, τ, g)])︸ ︷︷ ︸
Empirical Process

+
√
qnEP [m(Wi, θ̂n, τ, g)]︸ ︷︷ ︸

Recentering

}
.

The bootstrap is able to consistently approximate the distribution of the empirical process, so

the recentering term is ultimately responsible for the power of the test. The proof of Theorem

3.2 proceeds by showing that for suitable local alternatives T
(r)
qn (θ̂n) diverges due to a diverging

recentering term. This occurs while the empirical process remains stochastically bounded, so that

the bootstrap critical value remains asymptotically small relative to the test statistic. For any

sequence ρn satisfying Assumption 3.3, the proof of Theorem 3.2 shows that this will ultimately

force a rejection of the null hypothesis in (2.2) using the SSMT procedure.

While Theorem 3.2 provides a lower bound on the power for certain local alternatives, it is

silent on the power of the SSMT procedure for sequences that approach the null at rates faster

than q
−1/2
n . This case is addressed by Theorem 3.3 below. In place of Assumption 3.4, Theorem

3.3 requires the following alternative assumption.

Assumption 3.5. The sequence of alternative distributions {Pn ∈ P \P0}n≥1 satisfy the following:

(i) h2,Pn
u→ h2,P0 and h3,Pn

u→ h3,P0 for some P0 ∈ P, (ii) ςPn(θ, τ, g) ≥ ∆ς > 0 for all n and all

(θ, τ, g) ∈ Θ× T × G, (iii) there is some N ≥ 1 such that for every n ≥ N there exists a θn and a

(possibly θn-dependent) subset Xn(θn) ⊆ X such that PrPn (Xn(θn)) = 1, and:

µn ≥ sup
τ∈T

sup
x∈Xn(θn)

EPn [m(Wi, θn, τ) | Xi = x], (3.3)

for some positive sequence µn > 0, and (iv) the class of functions G is uniformly bounded by some

Ḡ <∞.

While Assumption 3.4 imposes that at least one conditional moment is sufficiently large (but
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possible violated), Assumption 3.5 requires that all conditional moments are sufficiently small (but

possibly violated). Intuitively, this is because Theorem 3.2 provides a lower bound on local power

for alternatives that are sufficiently distant from the null, where the following result provides an

upper bound on local power for alternatives that are close to the null.

Theorem 3.3. Suppose Assumptions 3.1, 3.2, 3.3 and 3.5 are satisfied. If µn from (3.3) satisfies
√
qnµn → 0, then:

lim sup
n→∞

(PrPn × P])(φn(ρn, α) = 1) ≤ α.

Theorem 3.3 shows that the SSMT procedure has no non-trivial local power against alternative

sequences that approach the null faster than q
−1/2
n . In contrast, in Section 3.5 we show that

competing methods have non-trivial power against some n−1/2−local alternatives. In this sense,

the result makes explicit the power loss associated with our proposed sample splitting method, and

quantifies the cost of using a procedure that is both computationally simple and valid under weaker

assumptions.

Note the power analysis makes it clear that the finite sample properties of the SSMT pro-

cedure under both fixed and local alternative sequences depends on the magnitude of the term

EP [m(Wi, θ̂n, τ, g)], and suggests that power against fixed and local alternatives is higher when qn

is larger. However, as discussed in Section 2, there can also exist null DGPs {Pn}∞n=1 along which

EPn [m(Wi, θ̂n, τ, g)] is always positive.23 For these DGPs a larger sequence qn may cause the SSMT

procedure to have poor finite sample size control properties. The tension between large and small

values of the subsample size qn means it is an important tuning parameter in our framework. We

discuss possible choices of qn in Section 3.6, and we explore the impact of various values for this

tuning parameter in the simulation exercises in the next section, as well as in Section S.4 of the

Online Supplementary Material.

3.4 Discussion of the Assumptions

One of the main advantages of the SSMT procedure for specification testing is that it is valid

under weaker assumptions than those required by other specification tests in the literature. In this

section we review two main assumptions in the existing literature that are not required by the

SSMT procedure.

3.4.1 The Existence of a Polynomial Minorant

One of the main assumptions that is not required by the SSMT procedure is the existence of

a polynomial minorant. This assumption is required in both Bugni, Canay, and Shi (2015) and

23See Section S.4.2 of the Online Supplementary Material.
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Andrews and Kwon (2021), among many others.24 To match with these papers, consider the case of

a finite number of unconditional moment inequalities, and let σP,k(θ) denote the standard deviation

of the kth moment. Furthermore, define:

ΘI(P ) :=

{
θ ∈ Θ : max

k=1,...,K

[
EP [mk(Wi, θ)]

σP,k(θ)

]
+

= 0

}
,

where [ · ]+ = max{0, · }. The polynomial minorant condition in Bugni, Canay, and Shi (2015) is

given by the following.

Assumption 3.6 (Polynomial Minorant). There exists constants c, δ > 0 such that for all (θ, P ) ∈
Θ× P0:

max
k=1,...,K

[
EP [mk(Wi, θ)]

σP,k(θ)

]
+

≥ cmin

{
δ, inf
θ̄∈ΘI(P )

||θ − θ̄||
}
.

To appreciate the strength of this condition, consider the special case when dθ = 1, K = 1, and

σP,k(θ) = 1. In this case Assumption 3.6 requires:

max{EP [mk(Wi, θ)], 0} ≥ cmin

{
δ, inf
θ̄∈ΘI(P )

|θ − θ̄|
}
.

Intuitively, the condition says that the moment EP [mk(Wi, θ)] must “lift off” the set ΘI(P ) at a

rate that is locally bounded below by a linear function in θ ∈ Θ. Furthermore, this must hold for

all (θ, P ) ∈ Θ× P0.

For a simple practical example when this fails, consider the linear regression model Yi = Xiθ+εi

where Yi is an outcome variable of interest, Xi is an endogenous variable and Zi is a candidate

instrumental variable. In the spirit of Nevo and Rosen (2012), suppose that Zi is an imperfect

instrument in the sense that it satisfies EPn [Ziεi] ≥ 0 rather than EPn [εi | Zi] = 0. Furthermore,

suppose that Zi is weak in the sense that EPn [ZiXi] = ηn ↓ 0. In this case, the model implies the

following moment inequality:

EPn [m(Wi, θ)] = EPn [Zi(Xiθ − Yi)] ≤ 0.

Then ΘI(Pn) = {θ ∈ R : θ ≤ EPn [ZiYi]/EPn [ZiXi]}. Let θ̃ = EPn [ZiYi]/EPn [ZiXi]. Then for any

θ /∈ ΘI(Pn) we have:

max{EPn [m(Wi, θ)], 0} = EPn [ZiXi]θ − EPn [ZiYi] = EPn [ZiXi](θ − θ̃) = ηn|θ − θ̃|.

24See Kaido, Molinari, and Stoye (2022) for a review of these conditions. The authors also show the connection
between these conditions and constraint qualifications from the optimization literature.
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But then clearly there does not exist universal constants (c, δ) such that

max{EPn [m(Wi, θ)], 0} ≥ cmin

{
δ, inf
θ̃∈ΘI(Pn)

|θ − θ̃|

}
.

More generally, this assumption can fail when the slope of the moment conditions drift to

zero near the identified set. In Section S.4.2 of the Online Supplementary Material we present

simulation results for a similar example, and show that the procedure of Bugni, Canay, and Shi

(2015) over-rejects under the null hypothesis, regardless of their choice of tuning parameters.

While this simple example shows that the polynomial minorant condition rules out certain null

DGP sequences, in more complicated examples it is not always clear which sequences are ruled out.

However, with conditional moment inequalities the polynomial minorant condition will generally

prevent the correlation between the instruments and the moment functions to drift to zero under

the null. This rules out weak identification of the identified set, a common occurrence with a large

number of weak instrument functions.

3.4.2 Uniformly Equicontinuous Derivatives

Existing procedures also require strong smoothness conditions on the moment functions which can

rule out some interesting models. In particular, both Bugni, Canay, and Shi (2015) and Andrews

and Kwon (2021) require a uniform equicontinuity assumption on the gradients of the moment

conditions. For the sake of comparison, consider again the case of a finite number of unconditional

moment inequalities.

Assumption 3.7 (Uniformly Equicontinuous Gradients). Each EP [mk(Wi, θ)]/σP,k(θ) is differ-

entiable in θ. Furthermore, if DP (θ) denotes the K × K diagonal matrix with σP,k(θ) in the kth

position, and ∇θD−1
P (θ)EP [m(Wi, θ)] denotes the K × dθ Jacobian matrix for the standardized

moment conditions, then the following holds:

lim
δ→0

sup
P∈P0

sup
(θ,θ′):||θ−θ′||≤δ

||∇θD−1
P (θ)EP [m(Wi, θ)]−∇θD−1

P (θ′)EP [m(Wi, θ
′)]|| = 0.

Requiring uniformly equicontinuous gradients can be quite strong; for instance, this condi-

tion is strictly stronger than uniform continuity of the map θ 7→ ∇θσ−1
P,k(θ)EP [mk(Wi, θ)]. A

possible sufficient condition is that each function θ 7→ ∇θσ−1
P,k(θ)EP [mk(Wi, θ)] is Lipschitz con-

tinuous with a common (i.e. for all P and k) Lipschitz constant. This holds, for instance, if

the functions θ 7→ ∇θσ−1
P,k(θ)EP [mk(Wi, θ)] are everywhere differentiable with a (P, k)-uniformly

bounded derivative. With an uncountable number of conditional moment inequalities this re-

quires θ 7→ ∇θς−1
P (θ, τ, g)EP [mk(Wi, θ, τ, g)] be everywhere differentiable with a (P, τ, g)-uniformly

bounded derivative.
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For a practical example of when Assumption 3.7 can fail, consider again the moment conditions

arising from the support function estimator in Example 1:

EP

[
τ>g(Wi)− EP

[
sup

q∈Qθ(Wi,εi)
τ>q

∣∣∣∣ Wi

] ∣∣∣∣ Xi

]
≤ 0 a.s. ∀τ ∈ Bdτ .

Here the parameter vector θ ∈ Θ enters only through the random set Qθ(Wi, εi), so that the

existence of a smooth derivative for each of the implied unconditional moments can be challenging

to establish unless the random set is sufficiently simple.

3.5 Power Comparisons with Previous Methods

In this section we compare the power of the SSMT procedure with previous methods. To limit the

scope, we focus on a comparison with an approach based on subsampling (e.g. Politis, Romano,

and Wolf (1999), Romano and Shaikh (2008)), and the approach of Bugni, Canay, and Shi (2015).

However, similar comments apply to by-product tests using the procedures of Andrews and Soares

(2010), Andrews and Shi (2013) and Andrews and Shi (2017), and others (see Remark 3.4).

3.5.1 Comparison with Subsampling

The sample-splitting aspect of the SSMT procedure means that it shares some superficial similarities

to subsampling. In this section we briefly introduce a subsampling approach to the specification

testing problem, and discuss the differences with the SSMT procedure. Consider the test statistic:

T ssn := inf
θ∈Θ

T ssn (θ), where T ssn (θ) := sup
τ∈T

max
g∈Gn

√
nm̄n(θ, τ, g)

ς̂n(θ, τ, g)
. (3.4)

Following Romano and Shaikh (2008), subsampling proceeds by selecting a subsample size qn � n

satisfying qn/n → 0 and qn → ∞. Now let N =
(
n
qn

)
, let {Sk}Nk=1 denote all possible subsets of

{Wi}ni=1 of size qn, and define the subsampled test statistic:

T ss]qn,k
= inf

θ∈Θ
T ss]qn,k

(θ), where T ss]qn,k
(θ) := sup

τ∈T
max
g∈Gn

√
qnm̄

ss]
qn (θ, τ, g)

ς̂n(θ, τ, g)
, (3.5)

where m̄ss]
qn,k

(θ, τ, g) is the sample average moment computed using only the observations in the

subsample Sk. The subsampling critical value is the 1−α quantile of the subsampling distribution

of T ss]qn,k
.25 Thus, subsampling uses the full sample to compute the test statistic (3.4), and uses

subsamples to compute the critical value. In contrast, the SSMT procedure uses the full sample to

compute θ̂n, uses subsamples to compute the sub-test statistics T
(r)
qn and the sub-test critical values

c
(r)]
qn (1− α/ρn + η), and then aggregates the results from the multiple tests.

25Following Politis, Romano, and Wolf (1999) and Remark 3.2 in Romano and Shaikh (2008), the subsampling
critical value can also be taken as the 1− α quantile of the subsampling distribution of

√
qn(T ss]qn,k

/
√
qn − T ssn /

√
n).
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Remark 3.3. To our knowledge, primitive conditions for the validity of the subsampling procedure

just described have never been established, and it is unclear whether this subsampling procedure

requires a polynomial minorant condition (or another similar condition). In particular, the validity

of subsampling established in Theorem 3.4 of Romano and Shaikh (2008) relies on their high-level

condition (38). Bugni, Canay, and Shi (2017) (Remark 4.3) conjecture that the existence of a

polynomial minorant may be required to satisfy this condition.

Unlike in the SSMT procedure, the vector θ̂n cannot be recycled when subsampling; that is, it is

not possible to use T ss]qn,k
(θ̂n) in place of T ss]qn,k

. This makes subsampling much more computationally

burdensome for the applications we have in mind, since the infimum in (3.5) must be recomputed

for every subsample. To see why subsampling fails when recycling θ̂n, suppose for simplicity that

T and Gn both contain a single element, suppose that ς̂(θ, τ, g) = 1, and suppose that θ̂n obtains

the infimum in (3.4). Then:

T ssn (θ̂n) =
√
n(m̄n(θ̂n, τ, g)− EP [m(Wi, θ̂n, τ, g)])︸ ︷︷ ︸

Empirical Process

+
√
nEP [m(Wi, θ̂n, τ, g)]︸ ︷︷ ︸

Recentering

, (3.6)

T ss]qn,k
(θ̂n) =

√
qn(m̄ss]

qn,k
(θ̂n, τ, g)− EP [m(Wi, θ̂n, τ, g)])︸ ︷︷ ︸

Empirical Process

+
√
qnEP [m(Wi, θ̂n, τ, g)]︸ ︷︷ ︸

Recentering

.

Now suppose that instead of using T ss]qn,k
, the subsampling critical value is based on the distribution

of T ss]qn,k
(θ̂n). Then:

T ss]qn,k
(θ̂n) =

√
qn

(
m̄qn,k(θ̂n, τ, g)− EP [m(Wi, θ̂n, τ, g)]

)
+ oP0(1), (3.7)

where oP0(1) represents a term that converges in probability to zero, uniformly over P0. In this case

we see that the distribution of (3.6) asymptotically dominates the distribution of (3.7) whenever
√
nEP [m(Wi, θ̂n, τ, g)]→ c > 0, which is possible under the null.26 In these cases, the critical values

based on the distribution of (3.7) will be asymptotically “too small,” leading to over-rejection.

However, although subsampling is more computationally demanding, it has power against some

local alternatives for which the SSMT procedure has no (non-trivial) local power. This can be

illustrated using a simple example. Consider a model with a single moment inequality of the

form EPn [m(Wi, θ, τ, g)] = EPn [Wi] ≤ 0, where EPn [Wi] = c/
√
n. Under some mild assumptions,

straightforward calculation shows, for any ε > 0, there exists a value of c > 0 large enough

such that a test based on subsampling has rejection probability exceeding 1 − ε. Furthermore,

if EPn [Wi] = c/
√
mn for mn/n → 0, then a test based on subsampling has rejection probability

tending to 1. This should be contrasted with Theorem 3.3, which suggests that the SSMT procedure

has no (non-trivial) local power against any such sequences whenever mn/qn →∞.

26See Section S.4.2 of the Online Supplementary Material for an example.
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3.5.2 Comparison with Bugni, Canay, and Shi (2015)

Here we briefly compare power with the approach of Bugni, Canay, and Shi (2015). To place our test

on equal footing, we focus on the case with a finite number of unconditional moment inequalities.

Consider the test statistic:

T bcsn := inf
θ∈Θ

max
1≤k≤K

[√
nm̄n,k(θ)

σ̂n,k(θ)

]
+

, (3.8)

where [ · ]+ = max{0, · }. Furthermore, consider the bootstrap test statistic:

T bcs]n := inf
θ∈Θ̂I

max
1≤k≤K

[√
n(m̄]

n,k(θ)− m̄n,k(θ))

σ̂n,k(θ)
+ ϕ

(
κ−1
n

√
nm̄n,k(θ)

σ̂n,k(θ)

)]
+

, (3.9)

where m̄]
n,k(θ) is the sample average moment computed on the bootstrap sample, Θ̂I := arg minT bcsn (θ),

κn is a sequence satisfying κn → ∞ and κn/
√
n → 0, and ϕ is a GMS function, satisfying the as-

sumptions in Andrews and Soares (2010). Examples of ϕ include ϕ(x) = −∞ · 1{x < −1} (where

−∞ · 0 = 0), ϕ(x) = min{x, 0}, and ϕ(x) = x. Test RS (“Re-Sampling”) in Bugni, Canay, and Shi

(2015) rejects when Tn exceeds the 1− α quantile of the bootstrap distribution of T bcs]n .

It is straightforward to show that, as in the SSMT procedure (but unlike subsampling), the

vector θ̂n can be recycled when computing the bootstrap test statistic T ]n in (3.9). Recycling θ̂n

improves the computational tractability of the procedure of Bugni, Canay, and Shi (2015), but

potentially at the cost of power. However, size control for the procedure of Bugni, Canay, and

Shi (2015) relies on their high-level assumption A.6, which they show is implied by a polynomial

minorant condition (e.g. see Assumption 3.6) and an equicontinuity condition on the gradients of

the moments (e.g. see Assumption 3.7). In Section S.4.2 of the Online Supplementary Material

we present an example where the polynomial minorant condition fails, and where the method of

Bugni, Canay, and Shi (2015) over-rejects under the null with or without GMS.

However, simple examples also show that the procedure of Bugni, Canay, and Shi (2015) has

power against some local alternatives for which the SSMT procedure has no (non-trivial) local

power. Indeed, in the same example from the comparison with subsampling where EPn [m(Wi, θ, τ, g)] =

EPn [Wi] = c/
√
mn for c > 0 and mn/n → 0, the approach of Bugni, Canay, and Shi (2015) has

power tending to 1 for any GMS function. In contrast, Theorem 3.3 shows that if mn/qn →∞ the

SSMT procedure has no (non-trivial) local power. Furthermore, the use of GMS in Bugni, Canay,

and Shi (2015) means their test is insensitive to moment conditions that are very “slack” at θ̂n,

whereas these slack moments can affect the critical value in the SSMT procedure and reduce power

in finite sample.

Remark 3.4. By-product specification tests reject when the null hypothesis H0 : θ ∈ ΘI is rejected

for every θ ∈ Θ. The latter null can be tested in various models using methods proposed by Andrews
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and Soares (2010), Andrews and Shi (2013) and Andrews and Shi (2017), among many others.

Following an argument analogous to the one presented above, these by-product tests also have power

against some local-alternatives for which the SSMT procedure has no non-trivial local power.

3.6 Tuning Parameter Selection

The main tuning parameters for the SSMT procedure are qn, rn, η, and ρn, although qn and ρn

are the most important. While any choice of these tuning parameters satisfying Assumption 3.3

are asymptotically valid, their choices may make a difference in finite samples. To summarize

our recommendations, we suggest setting qn = bn4/5c, rn = bn1/5c, η = 10−6, and ρn such that

rn/ρn ∈ N \ {1}. These recommendations are motivated by the theoretical considerations as

well as both reported and unreported simulation results. In addition to the simulation exercises

presented in the next section, some additional simulation exploration of various values for the

tuning parameters can be found in Section S.4 of the Online Supplementary Material.

For qn, we focus on choices that are polynomial in n. When qn is large, the finite sample

power properties tend to be improved, but the test may over-reject under the null in small samples.

On the other hand, setting qn too small can lead to under-rejection under alternatives that are

close to the null. In practice, we found that setting qn = bn4/5c balances these two concerns,

as is illustrated in the simulations in the next section and in the simulations in Section S.4 of the

Online Supplementary Material. We recommend that the parameter rn then be determined directly

from the choice of qn to ensure that qn · rn ≈ n. However, other methods of choosing qn are also

possible. For instance, despite the differences between the proposed approach and an approach

based on subsampling, the problem of choosing the tuning parameter qn shares some similarities

to the problem of choosing the subsample size. General methods for selecting the subsample size

have been developed (see Politis, Romano, and Wolf (1999) Chapter 9) and these methods are also

applicable to the choice of qn.

The parameter η is exactly the infinitesimal uniformity factor from Andrews and Shi (2013)

and Andrews and Shi (2017), which is required to avoid certain high level assumptions on the

asymptotic distribution of the test statistics.27 The parameter η is both added to the critical

value—which is required near the end of the proofs of Lemmas B.3 and B.5—and added to the

confidence level—which is required at the end of the proof of Lemma B.5.28 We experiment with

different values of η throughout the simulation results in the next section, and in Section S.4 of

the Online Supplementary Material. However, while η is useful in the main proofs, the simulation

exercises suggest that it plays a minor role in practice. This is consistent with Andrews and Shi

27See Andrews and Shi (2013) p. 625, or Andrews and Shi (2017) p. 281 and footnote 20.
28This constant is not required in Bugni, Canay, and Shi (2015), although they make additional assumptions on

the limiting distribution of the test statistic (see Bugni, Canay, and Shi (2015) Assumption A.7 and Remark B.2).
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(2013), who suggest it can be set to 10−6, and Andrews and Shi (2017), who suggest it can be set

to zero in applications. We recommend η = 10−6 for concreteness, although any value η ≤ 10−3

gives similar results.

For ρn, we find that different values have strong implications for finite sample power, although

simulation evidence suggests that the value of ρn becomes less important in large samples (see

Figure 4 in the Online Supplementary Material). Regardless of the sample size, some values of ρn

can be shown to unambiguously dominate the others. First, ρn should never be chosen outside the

interval [1, rn]. In particular, the SSMT procedure will never reject when ρn < 1. When ρn > rn

the test only rejects if at least one sub-test rejects at level α/ρn. But this test is dominated by

the test with ρ′n = rn, which only rejects if at least one sub-test rejects at level α/ρ′n > α/ρn.

Furthermore, in order to maximize power ρn should always be set so that rn/ρn is an integer. To

see why, note that when rn/ρn = m ∈ N the SSMT procedure rejects only if exactly m sub-tests

reject at level α/ρn. For slightly larger values ρ′n > ρn satisfying ρ′n · (m − 1) < rn < ρ′n ·m, the

test still rejects only if m sub-tests reject, but this time at level α/ρ′n < α/ρn. Since the required

number of sub-test rejections is the same, but the nominal level of each test has declined, power is

unnecessarily reduced using ρ′n relative to ρn.

Since ρn is required to be a decreasing sequence, and rn is an increasing sequence, the choice

of ρn = rn is not possible asymptotically. Furthermore, both the theoretical results (namely, the

proof of Theorem 3.1) and the simulation results (both examples in Section S.4.1 of the Online

Supplementary Material) warn against this choice. Thus, we never recommend setting ρn = rn.

However, there is a discontinuity in the rejection probability of the SSMT procedure at ρn = rn,

and larger values of ρn that may be close to (but are still strictly below) rn may still work well in

terms of both size control and power.

Combining everything, we recommend setting ρn so that rn/ρn ∈ N\{1}. Note these restrictions

already substantially limit the possible values for ρn; for instance, if n = 2000, then using the

recommended values for qn and rn we have qn = 437 and rn = 4, and our recommendations

for ρn are ρn ∈ {1, 1.33̄, 2}. Since ρn changes only the quantile for the critical value and the

aggregation of the sub-tests, the SSMT procedure can be run for multiple values of ρn at no

additional computational cost. Thus, researchers who prioritize transparency can easily report the

outcome of the SSMT procedure for all recommended values rn/ρn ∈ N \ {1}.
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3.7 Computational Details

To use the SSMT procedure, the researcher must obtain an approximate minimizer θ̂n in the

optimization problem:

inf
θ∈Θ

sup
τ∈T

max
g∈Gn

√
nm̄n(θ, τ, g)

ς̂n(θ, τ, g)
.

Once an approximate minimizer θ̂n is obtained, the researcher must repeatedly bootstrap the

quantity:

T (r)]
qn (θ̂n) = sup

τ∈T
max
g∈Gn

(√
qn(m̄

(r)]
qn (θ̂n, τ, g)− m̄n(θ̂n, τ, g))

ς̂
(r)
qn (θ̂n, τ, g)

)
. (3.10)

Beginning with the test statistic, we can break the problem into two stages, denoted as the inner

problem and the outer problem. The inner problem computes the profiled test statistic:

Tn(θ) := sup
τ∈T

max
g∈Gn

√
nm̄n(θ, τ, g)

ς̂n(θ, τ, g)
. (3.11)

The outer problem then computes an approximate infimum of the profiled test statistic over θ ∈ Θ.

In many examples, the inner problem can be efficiently computed for a fixed value θ ∈ Θ. This is

the case in models with a finite number of moment conditions (in which case (3.11) is simply the

maximum over a finite number of elements), or in models where the moment functions are concave

in the index parameter τ ∈ T . The latter occurs, for example, when using moment conditions

implied by support function characterizations of the identified set (see Example 1). In some cases,

concavity of the moment conditions can be directly exploited by specialized modeling software

like CVX for Matlab or CVXR for R to efficiently compute (3.11). For more complicated moment

functions, concavity can still be exploited by super-gradient ascent methods provided that the

researcher can provide a single super-gradient of the objective function with respect to τ . These

methods are applicable when the moment functions are not differentiable, do not require second-

order information on the objective function, and are guaranteed to converge to a global optimum

given a sufficiently large number of iterations. In the simulation section, we try a stochastic super-

gradient ascent algorithm based on the algorithm of Nemirovski, Juditsky, Lan, and Shapiro (2009),

and find that it is fast and reliable.

The outer problem (i.e. the minimization of (3.11) over θ ∈ Θ) is generally more difficult,

even when the inner problem (3.11) is relatively easy to solve. In particular, the value function of

the inner problem can easily fail to be differentiable in θ ∈ Θ, even when each moment function

is infinitely differentiable in θ ∈ Θ. When the inner problem is inexpensive, the outer problem
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can be solved by heuristic methods like simulated annealing, or differential evolution.29 When the

inner problem is expensive to solve, we find that Bayesian optimization algorithms work well. Our

own implementation is based on the efficient global optimization (EGO) algorithm popularized by

Jones, Schonlau, and Welch (1998) and recently used by Kaido, Molinari, and Stoye (2019).30

Turning to the construction of the critical values, the difficulty of computing (3.10) depends

on how the index parameter τ enters the moment functions. Computation is straightforward if

T is finite. Otherwise, some simplifications also arise if the moment functions are concave in τ ,

which is the case when using support function characterizations of the identified set. In this case,

(3.10) requires solving an optimization problem involving the difference of two concave functions.

The later can be reformulated as a minimization problem involving the difference of two convex

functions, which is a well-studied problem in convex analysis (see An and Tao (2005), Le Thi and

Pham Dinh (2018), Le Thi, Le, Phan, and Tran (2020)).

4 Simulation Examples

In this section we provide simulation results for three examples: (i) a static game of complete

information, (ii) a random coefficient binary choice model with endogenous regressors, and (iii)

a simple model with moment inequalities that are linear in parameters. For each example the

design of the DGPs is similar: by adjusting a single parameter, we are able to construct DGPs that

are partially identified, point-identified (or on the “boundary” between the null and alternative

hypothesis), and misspecified.

The main objective of the simulation exercises is to investigate the size control and power

properties of the SSMT procedure under various DGPs, to compare the procedure to existing

methods, and to illustrate the theoretical properties discussed in the previous sections. We in-

vestigate the sensitivity of the procedure to the subsample size by considering rn = bn1/rc and

qn = bn/rnc ≈ bn(r−1)/rc for r ∈ {4, 5, 6}. We also investigate the impact of ρn, and report results

for ρn ∈ {1, 2, . . . , rn}.31 For examples (ii) and (iii), we compare the SSMT procedure to the RS

test of Bugni, Canay, and Shi (2015), the by-product test using the method from Andrews and Shi

(2017), and the by-product test based on a least favorable critical values, which uses the method

of Andrews and Shi (2017) without GMS. We provide no comparison with previous methods for

example (i) since the method of Bugni, Canay, and Shi (2015) does not apply, and the by-product

tests are computationally intractable. For all examples we use B = 999 bootstrap samples and we

compute the rejection probabilities across 500 replications.

29We find the latter works well in our simulation examples, and use the DEOptim package in R by Mullen, Ardia,
Gil, Windover, and Cline (2011).

30See also Jones (2001) for a review of response-surface optimization methods.
31Note that some of these values (intentionally) do not match the recommended values from Section 3.6.
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4.1 Static Game of Complete Information Games

Here we apply the method to a static game of complete information with pure strategy Nash equi-

libria, using moment conditions derived from the support function characterization of the identified

set in Beresteanu, Molchanov, and Molinari (2011). In particular, we consider a two player game

and let Yi1, Yi2 ∈ {0, 1} denote the binary decisions of the two players. Players make the choice

that maximizes their payoff, and we assume the payoff function for player j in the ith game is given

by:

πj(Yij , Yi(−j), Xij , εij , θ) := Yij(Yi(−j)δj +Xijβ + εij),

where−j refers to player j’s competitor, and θ = (δ1, δ2, β). In all DGPs, Xi1, Xi2 ∼ Uniform[1/3, 2/3]

and εi1, εi2 ∼ Uniform[0, 1] for i = 1, . . . , n. Let Y = {(yk1 , yk2 )}4k=1, where:

(y1
1, y

1
2) = (0, 0), (y3

1, y
3
2) = (0, 1),

(y2
1, y

2
2) = (1, 0), (y4

1, y
4
2) = (1, 1).

Following Beresteanu, Molchanov, and Molinari (2011), the identified set of structural parameters

is the collection of vectors θ ∈ Θ that satisfy the moment inequalities:

EP [m(Wi, θ, τ, g)] ≤ 0, ∀(τ, g) ∈ T × G,

where T :=
{
τ ∈ R3 : ||τ || ≤ 1

}
is the unit ball, Wi = (Yi1, Yi2, Xi1, Xi2), and:

m(Wi, θ, τ, g) :=

(
3∑

k=1

τk1{(Yi1, Yi2) = (yk1 , y
k
2 )} − EP

[
max

σ∈Sθ(Xi1,Xi2,εi1,εi2)
〈τ, σ〉

∣∣∣∣ Xi1, Xi2

])
g(Xi1, Xi2).

Here Sθ(Xi1, Xi2, εi1, εi2) is a random set described in Section S.3.1 of the Online Supplementary

Material which contains the set of pure strategy Nash equilibria for a given realization of the vector

(Xi1, Xi2, εi1, εi2) at a fixed vector of structural parameters. In the simulation exercises, we impose

the parameter space constraints δ1, δ2 ≤ 0 when computing our test statistic, and we use Gn ⊂ G
with Gn = {g1, g2, g3, g4}, where:

g1(x) = 1{x ∈ (0, 0.5]2}, g3(x) = 1{x ∈ (0.5, 1]× (0, 0.5]},

g2(x) = 1{x ∈ (0, 0.5]× (0.5, 1]}, g4(x) = 1{x ∈ (0.5, 1]2}.

Notice that any rescaling of the moment functions is equivalent to a rescaling of T , so that the

scale of the moment functions in this example is implicitly determined by the fact that T is the

unit ball. Thus, for computational simplicity we set ς̂n(θ, τ, g) = 1 for all (τ, g).

We then consider four DGPs. The first DGP is correctly specified and partially identified.
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This DGP is denoted by GameDGP1, where we set (δ1, δ2, β) = (−0.2,−0.1,−0.6). The second

DGP is correctly specified and point identified. This DGP is denoted as GameDGP2, where we

set (δ1, δ2, β) = (−0.2, 0,−0.6). Finally, we consider two “alternative” DGPs where the model is

misspecified. The first alternative DGP is denoted as GameDGP3 with (δ1, δ2, β) = (0.1, 0,−0.6),

and the second alternative DGP is denoted as GameDGP4 with (δ1, δ2, β) = (0.2, 0,−0.6).

In Section S.3.1 of the Online Supplementary Material we prove that the identified set is a

singleton under GameDGP2, and is empty under both GameDGP3 and GameDGP4. In particular,

Proposition S.3.1(i) shows that θ is point-identified whenever δ2 = 0, regardless of the sign of δ1.

Applying this result, if the (point-identified) data-generating vector θ0 has δ1 > 0 and δ2 = 0, then

there can be no vector θ ∈ Θ with δ1, δ2 ≤ 0 that satisfies all moment conditions. This ensures that,

for any choice probabilities generated with δ1 > 0 and δ2 = 0 (as in GameDGP3 and GameDGP4),

the moment conditions are violated for all θ ∈ Θ with δ1, δ2 ≤ 0. Furthermore, among the al-

ternative DGPs, the violations of the moment conditions are more severe under GameDGP4 than

GameDGP3, so that we expect our test to have the highest power under GameDGP4. For compar-

ison, with n = 105 observations the minimum value of n−1/2Tn(θ), a (simulated) measure of the

level of misspecification, was −0.014 for GameDGP1, 0.000 for GameDGP2, 0.003 for GameDGP3

and 0.021 for GameDGP4

The results are displayed in Table 1. The results for GameDGP1 show that the simulated

rejection probability is below the nominal level for almost all sample sizes, all subsample sizes and all

test functions. In ChoiceDPG2 (correctly specified and point identified) the rejection probabilities

are below or around the nominal level for all sample sizes and all values of ρn except when ρn =

rn. However, as discussed in Section 3.6, this choice of ρn is not theoretically valid and is not

recommended, even in finite sample. The results for GameDGP3 and GameDGP4 show that the

SSMT procedure has substantial power against fixed alternatives, with the power increasing rapidly

with the subsample size.

We do not compare our approach with alternative methods for this example, since the test of

Bugni, Canay, and Shi (2015) does not apply to settings with a continuum of moment inequalities,

and by-product sets based on the procedure of Andrews and Shi (2017) are computationally in-

tractable. In particular, the average time to evaluate Tn(θ) at a single parameter vector is about 9.93

seconds, owing mainly to the difficulty of computing the supremum over τ ∈ T .32 By-product tests

then require repeated evaluation of the test statistic over a grid in the parameter space, and it takes

about 203 × 9.93 sec ≈ 22 hours to evaluate the test statistic for this example across a sparse grid

of 20 points in each dimension of the parameter space with three parameters. This does not include

the time required to compute the critical value at each point, which would require another 999 eval-

uations of the bootstrap test statistic at each point, or an additional 999× 203× 9.93 sec ≈ 22, 045

32This is the average time across 1000 evaluations.
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Table 1: SSMT rejection rates for the static game of complete information

GameDPG1 GameDPG2 GameDPG3 GameDPG4

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 500

rn = bn1/6c, ρn = 1 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.04 0.08 0.05 0.19 0.32

rn = bn1/6c, ρn = 2 0.00 0.00 0.01 0.00 0.01 0.01 0.06 0.18 0.29 0.17 0.42 0.58

rn = bn1/5c, ρn = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.07

rn = bn1/5c, ρn = 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.01 0.08 0.15

rn = bn1/5c, ρn = 3 0.00 0.01 0.02 0.00 0.00 0.02 0.02 0.09 0.16 0.08 0.24 0.38

rn = bn1/4c, ρn = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rn = bn1/4c, ρn = 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.03 0.09

rn = bn1/4c, ρn = 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.05

rn = bn1/4c, ρn = 4 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.04 0.09 0.03 0.11 0.19

n = 2000

rn = bn1/6c, ρn = 1 0.00 0.00 0.01 0.01 0.02 0.03 0.22 0.41 0.52 0.51 0.80 0.88

rn = bn1/6c, ρn = 2 0.02 0.04 0.06 0.03 0.07 0.10 0.37 0.59 0.68 0.73 0.94 0.97

rn = bn1/6c, ρn = 3 0.06 0.11 0.14 0.10 0.19 0.25 0.59 0.76 0.82 0.91 0.97 0.99

rn = bn1/5c, ρn = 1 0.00 0.00 0.01 0.00 0.01 0.01 0.07 0.22 0.31 0.20 0.52 0.69

rn = bn1/5c, ρn = 2 0.00 0.02 0.03 0.02 0.06 0.08 0.27 0.53 0.61 0.60 0.89 0.95

rn = bn1/5c, ρn = 3 0.00 0.02 0.02 0.01 0.04 0.07 0.22 0.45 0.56 0.53 0.81 0.91

rn = bn1/5c, ρn = 4 0.03 0.05 0.07 0.05 0.12 0.16 0.45 0.65 0.72 0.77 0.94 0.98

rn = bn1/4c, ρn = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.07 0.03 0.13 0.22

rn = bn1/4c, ρn = 2 0.00 0.02 0.03 0.01 0.03 0.05 0.06 0.24 0.39 0.18 0.51 0.72

rn = bn1/4c, ρn = 3 0.01 0.03 0.05 0.02 0.05 0.08 0.11 0.32 0.45 0.30 0.64 0.83

rn = bn1/4c, ρn = 4 0.01 0.02 0.04 0.01 0.04 0.06 0.10 0.29 0.41 0.26 0.56 0.75

rn = bn1/4c, ρn = 5 0.01 0.02 0.04 0.01 0.03 0.05 0.10 0.24 0.37 0.23 0.51 0.67

rn = bn1/4c, ρn = 6 0.02 0.05 0.07 0.06 0.10 0.14 0.25 0.48 0.60 0.47 0.75 0.88

Notes: The values displayed in the table are the proportion of tests rejected across 500 experiments using the SSMT pro-
cedure. Both ChoiceDPG1 and ChoiceDPG2 are correctly specified: ChoiceDPG1 is partially identified and ChoiceDPG2

is point identified. Both models ChoiceDPG3 and ChoiceDPG4 are misspecified.

hours for each replication.

4.2 Random Coefficient Binary Choice with Endogenous Regressors

Next we apply the SSMT procedure to a random coefficient binary choice model. This model was

studied in detail in Chesher and Rosen (2014), and was also used as an example in Andrews and

Shi (2017). We use a similar DGP to these papers. In particular, we set:

Yi = 1{βi0 + βi1Xi > 0}, (4.1)
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where βi0 and βi1 are random coefficients, and Xi is a scalar covariate. The researcher assumes that

Xi is endogenous (although this may not be the case), and has access to an instrumental variable

Zi. We assume: 
βi0

βi1

X∗i

 ∼ N


α0

α1

0

 ,


1 γ1 δ1

γ1 γ2 + γ2
1 δ1

δ1 δ1 1


 .

We then set Z∗i = X∗i + δ2ξi, where ξi ∼ N(0, 1). Letting Fx denote the distribution of X∗i , and Fz

the distribution of Z∗i , we then construct the covariate Xi and instrument Zi as follows:

Xi = (−1)1{X∗i ≤ F−1
x (0.25)}

+ (0)1{F−1
x (0.25) < X∗i ≤ F−1

x (0.5)}

+ (1)1{F−1
x (0.5) < X∗i ≤ F−1

x (0.75)}

+ (2)1{F−1
x (0.75) < X∗i },

Zi = (−1)1{Z∗i ≤ F−1
z (0.25)}

+ (0)1{F−1
z (0.25) < Z∗i ≤ F−1

z (0.5)}

+ (1)1{F−1
z (0.5) < Z∗i ≤ F−1

z (0.75)}

+ (2)1{F−1
z (0.75) < Z∗i }.

The parameters to be estimated are θ := (α0, α1, γ1, γ2), which control the distribution of the ran-

dom coefficients. We impose the parameter space constraints α0 ∈ [−2, 0], α1 ∈ [−2, 2], γ0 ∈ [−2, 2]

and γ1 ∈ [0, 2]. The parameter δ1 controls the correlation between the covariate and instrument

with the random coefficients. When δ1 = 0, both the covariate Xi and the instrument Zi are

independent of the random coefficients. In this case, Zi is a valid instrument for Xi. When δ2 = 0

we have Zi = Xi, so that Zi is a perfect instrument and Chesher and Rosen (2014) prove that

the parameter θ is point-identified.33 When δ2 > 0, Zi is a valid instrument, but is not perfectly

correlated with Xi, so that the model is partially identified. Finally, when δ2 = 0 and δ1 > 0 we

have Zi = Xi, but both Xi and the instrument Zi are not independent of the random coefficients.

In this case, the model is misspecified and the identified set is empty.34

Denote the distribution of the random coefficients as Fθ, and define the set-valued mapping:

T (x, y) := cl
{

(β0, β1) ∈ R2 : y = 1{β0 + xβ1 > 0}
}
. (4.2)

That is, T (x, y) delivers the set of all random coefficient values (β0, β1) that are consistent with

the observed pair (x, y) through the binary choice model in (4.1). Note that each set T (x, y) is a

closed halfspace through the origin in R2. Following Chesher and Rosen (2014), the identified set

is given by:

ΘI := {θ ∈ Θ : ∀S ∈ S, Fθ(S) ≥ P (T (X,Y ) ⊆ S | Z = z), PZ − a.s.} .

33See Appendix C of Chesher and Rosen (2014).
34See the Online Supplementary Appendix S.3.3 for a proof.
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Here S is a collection of test sets:

S := {T (x1, y1) ∪ T (x2, y2) : x1, x2 ∈ X , y1, y2 ∈ {0, 1}} ,

where X is the support of Xi. Notice that S contains all pairwise unions of halfspaces of the

form (4.2). Indexing the sets in S as S1, . . . , SK , the random coefficient binary choice model with

endogenous regressors has a non-empty identified set if and only if:

inf
θ∈Θ

max
k=1,...,K

sup
g∈G

EP [mk(Wi, θ, g)] ≤ 0,

where G is a sufficiently rich set of instrument functions, and:

mk(Wi, θ, g) = (1{T (Xi, Yi) ⊆ Sk} − Fθ(Sk)) g(Zi).

Since Zi is discrete, the instrument functions g : Z → [0, 1] are taken as indicator functions

g(Zi) = 1{Zi = zk} for zk ∈ {−1, 0, 1, 2}. Details on how to compute Fθ(Sk) are provided in

Chesher and Rosen (2014). In this simulation exercise the moment conditions have a natural scale,

being the difference of two probabilities. Thus, we set ς̂n(θ, τ, g) = 1 for all (τ, g). To generate the

data, we set the true parameter vector as θ0 := (0,−1,−1, 1). In this example, it is computationally

inexpensive to determine if the moment conditions are violated at a given value of the parameter

vector, so the infimum in the test statistic is computed using differential evolution.35

In our simulation exercises we consider four DGPs. The first DGP is “interior” to the null,

where the model is partially identified. This DGP is denoted as ChoiceDGP1, where we set δ1 = 0

and δ2 = 0.5. The second DGP is on the “boundary” of the null and alternative, where the model

is point identified. We denote this DGP by ChoiceDGP2 and set δ1 = 0 and δ2 = 0. The last

two DGPs fall under the alternative. The first alternative DGP is denoted ChoiceDGP3 with

δ1 = 0.2 and δ2 = 0, and the second alternative DGP is denoted as ChoiceDGP4 with δ1 = 0.4

and δ2 = 0. Of the two alternative DGPs, the violation of the moment conditions is most severe

under ChoiceDGP4, so we expect our test to reject the null most often under ChoiceDGP4. For

comparison, with n = 105 observations the minimum value of n−1/2Tn(θ), a (simulated) measure

of the magnitude of misspecification, was −0.039 for ChoiceDGP1, 0.000 for ChoiceDGP2, 0.026

for ChoiceDGP3 and 0.084 for ChoiceDGP4.

We also compare the SSMT procedure with three alternative approaches: the RS test of Bugni,

Canay, and Shi (2015), a by-product test using Andrews and Shi (2017) with GMS, and a “least-

favorable” by-product test using Andrews and Shi (2017) without GMS. When implementing the

RS test from Bugni, Canay, and Shi (2015), we use the criterion function from (3.8), which is the

35Note γ2 ≥ 0 is necessary to ensure the covariance matrix for (β0, β1) is positive semi-definite.
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criterion function that most closely matches our test statistic. We also use the GMS function:

ϕbcsk (θ, g) = −∞ · 1
{√

nm̄n,k(θ, g) < −0.1
√

log(n)
}
, (4.3)

which is the same one used in the simulations of Bugni, Canay, and Shi (2015).36 In our implemen-

tation we keep θ̂n fixed during the bootstrap procedure rather than reoptimizing the test statistic

in each bootstrap sample. This is done for computational tractability, although it means that the

simulation results likely underestimate the rejection rates for their test.

When performing the by-product test using Andrews and Shi (2017), we use the same criterion

function as the RS test, but use the GMS function:

ϕask (θ, g) = −
√

0.4 log(n)/ log(log(n))1
{√

nm̄n(θ, τ, g) < −
√

0.3 log(n)
}
, (4.4)

as recommended in Section 4 of Andrews and Shi (2017). Recall the by-product test rejects if the

null hypothesis H0 : θ ∈ ΘI(P ) is rejected for every vector θ in a grid over the parameter space.

For computational reasons, we use a coarse grid of 5 equally spaced points in each of the four

dimensions of the parameter space (625 points in total). In particular, the average time to evaluate

the test statistic Tn(θ) at a single parameter vector in this model is about 0.22 seconds, requiring

about 54 × 0.22 sec ≈ 2.3 min to evaluate all test statistics and 54 × 999 × 0.22 sec ≈ 38 hrs to

evaluate all bootstrap test statistics for each replication.37 Our use of a coarse grid means that the

simulation results likely overestimate the rejection rates for the by-product test.

Finally, when implementing the least-favorable by-product test we use the same method as the

previous by-product test, but with the GMS function set to 0 for all moment inequalities.

The results are displayed in Table 2 for sample sizes n ∈ {500, 2000}. For ChoiceDPG1 and

ChoiceDPG2, we see that the rejection frequencies are smaller than the nominal level for all sample

sizes, all subsample sizes, and all methods. In ChoiceDPG1 the model is partially identified, and

none of the tests ever reject. For ChoiceDPG2, the model is point identified, but the rejection

probabilities for the SSMT method are almost always below the rejection probabilities of the other

methods, which are closer to nominal. In ChoiceDPG3, the SSMT procedure and the RS test

have similar power, but both have lower power than the by-product tests. Finally, all tests have

substantially larger power in ChoiceDPG4.

4.3 Simple moment conditions linear in parameters

Our final example implements the SSMT procedure on a simple example from Bugni, Canay, and

Shi (2015). The simplicity of the final example allows us to obtain a closed-form expression for

36See Section 7 of Bugni, Canay, and Shi (2015).
37Average times are reported across 1000 evaluations. Our implementation of this example follows the instructions

in Chesher and Rosen (2014).
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Table 2: Rejection rates for the random coefficient discrete choice model.

ChoiceDPG1 ChoiceDPG2 ChoiceDPG3 ChoiceDPG4

Methods 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

n = 500

SSMT: rn = bn1/6c, ρn = 1 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.02 0.01 0.07 0.15

SSMT: rn = bn1/6c, ρn = 2 0.00 0.00 0.00 0.01 0.03 0.05 0.00 0.02 0.06 0.06 0.20 0.37

SSMT: rn = bn1/5c, ρn = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03

SSMT: rn = bn1/5c, ρn = 2 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.09

SSMT: rn = bn1/5c, ρn = 3 0.00 0.00 0.00 0.01 0.03 0.06 0.00 0.04 0.08 0.05 0.17 0.28

SSMT: rn = bn1/4c, ρn = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

SSMT: rn = bn1/4c, ρn = 2 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.01 0.00 0.03 0.09

SSMT: rn = bn1/4c, ρn = 3 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.06

SSMT: rn = bn1/4c, ρn = 4 0.00 0.00 0.00 0.01 0.03 0.05 0.01 0.04 0.07 0.03 0.16 0.28

BCS2015 0.00 0.00 0.00 0.02 0.04 0.05 0.00 0.02 0.02 0.10 0.35 0.53

AS2017 0.00 0.00 0.00 0.01 0.04 0.07 0.00 0.04 0.14 0.52 0.84 0.94

Least Favorable 0.00 0.00 0.00 0.00 0.03 0.05 0.00 0.02 0.08 0.42 0.77 0.90

n = 2000

SSMT: rn = bn1/6c, ρn = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.52 0.69

SSMT: rn = bn1/6c, ρn = 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.71 0.85

SSMT: rn = bn1/6c, ρn = 3 0.00 0.00 0.00 0.01 0.02 0.04 0.02 0.06 0.11 0.56 0.86 0.94

SSMT: rn = bn1/5c, ρn = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.18 0.38

SSMT: rn = bn1/5c, ρn = 2 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.03 0.22 0.64 0.82

SSMT: rn = bn1/5c, ρn = 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.15 0.53 0.71

SSMT: rn = bn1/5c, ρn = 4 0.00 0.00 0.00 0.00 0.02 0.04 0.01 0.07 0.14 0.47 0.78 0.89

SSMT: rn = bn1/4c, ρn = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07

SSMT: rn = bn1/4c, ρn = 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.27 0.54

SSMT: rn = bn1/4c, ρn = 3 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.03 0.09 0.42 0.66

SSMT: rn = bn1/4c, ρn = 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.33 0.54

SSMT: rn = bn1/4c, ρn = 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.28 0.47

SSMT: rn = bn1/4c, ρn = 6 0.00 0.00 0.00 0.01 0.03 0.06 0.01 0.04 0.11 0.28 0.60 0.76

BCS2015 0.00 0.00 0.00 0.00 0.02 0.03 0.01 0.05 0.12 0.94 1.00 1.00

AS2017 0.00 0.00 0.00 0.01 0.04 0.09 0.20 0.53 0.68 1.00 1.00 1.00

Least Favorable 0.00 0.00 0.00 0.00 0.03 0.07 0.15 0.47 0.62 1.00 1.00 1.00

Notes: The values displayed in the table are the proportion of tests rejected across 500 experiments. Both ChoiceDPG1 and
ChoiceDPG2 are correctly specified: ChoiceDPG1 is partially identified and ChoiceDPG2 is point identified. Both ChoiceDPG3

and ChoiceDPG4 are misspecified. BCS2015 refers to the RS test of Bugni, Canay, and Shi (2015) using the GMS function from
(4.3). AS2017 refers to the by-product test using Andrews and Shi (2017) with the GMS function from (4.4), implemented over
a uniform grid of 625 points from the four-dimensional parameter space. “Least Favorable” refers to a least favorable procedure
similar to AS2017 but with the GMS function set to 0.

the identified set, which in turn allows us to better understand the magnitude of misspecification

under each alternative DGP.

Let Wi = (Xi1, Xi2, Xi3) ∈ R3 be such that Wi ∼ N(µn,Σ) where Σ = I3×3 and µn = (0,−ζn, 0),
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Table 3: Rejection rates for the model with linear moment conditions.

LinearDGP1 LinearDGP2 LinearDGP3 LinearDGP4 LinearDGP5

Methods 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

SSMT: ρn = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.16 0.32 0.58 0.84 0.94
SSMT: ρn = 2 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.12 0.37 0.55 0.82 0.97 0.99
SSMT: ρn = 3 0.00 0.01 0.04 0.01 0.04 0.08 0.03 0.08 0.14 0.41 0.69 0.81 0.96 1.00 1.00

BCS2015 0.00 0.00 0.01 0.00 0.02 0.06 0.01 0.06 0.14 0.71 0.93 0.97 1.00 1.00 1.00

AS2017 0.00 0.03 0.04 0.01 0.11 0.18 0.07 0.26 0.37 0.81 0.97 0.99 1.00 1.00 1.00

Least Favorable 0.00 0.02 0.04 0.01 0.09 0.17 0.06 0.21 0.35 0.79 0.95 0.98 1.00 1.00 1.00

Notes: The values displayed in the table are the proportion of tests rejected across 500 experiments with n = 1000 observations. LinearDGP1

is correctly specified and strictly partially identified. All the other DGPs are misspecified. The SSMT procedure uses rn = bn1/5c = 3.
BCS2015 refers to the RS test of Bugni, Canay, and Shi (2015) using the GMS function from (4.3). AS2017 refers to the by-product test
using Andrews and Shi (2017) with the GMS function from (4.4), implemented using a grid of 252 equally spaced points belonging to [−1, 1]2.
“Least Favorable” refers to a least favorable procedure similar to AS2017 but with the GMS function set to 0.

where ζn is defined below. Now consider the following moment conditions:

EPn [Xi1 − θ1] ≤ 0, EPn [θ1 −Xi2] ≤ 0, EPn [Xi3 − θ2] ≤ 0.

In this model the identified set is given by ΘI(Pn) := {θ ∈ Θ : θ1 ∈ [0,−ζn] , θ2 ≥ 0}. The model

is therefore correctly specified and strictly partially identified if ζn = 0, a case we consider in

LinearDPG1. Furthermore, it is misspecified if ζn > 0, and we consider the cases ζn = 1/
√
n

in LinearDGP2, ζn = 1/
√
qn in LinearDGP3, ζn = 6/

√
n in LinearDGP4 and ζn = 6/

√
qn in

LinearDGP5. We set ς̂n(θ, τ, g) equal to the sample standard deviation of the moment functions,

and consider n = 1000, rn = bn1/5c = 3 and ρn ∈ {1, 2, 3} when implementing the SSMT procedure.

Since the identified set is easy to estimate in this example, we are able to minimize each bootstrap

test statistic over the estimated identified set when implementing the RS test of Bugni, Canay, and

Shi (2015). Furthermore, the simplicity of the example allows us to use a finer grid of 252 equally

spaced points over [−1, 1]2 when implementing the by-product tests. For these alternative methods,

we use the same criterion function and GMS functions as in the previous simulation example.

The results are reported in Table 3. As expected, all three tests deliver rejection rates below the

nominal level in LinearDGP1 where the model is correctly specified. Interestingly, while the SSMT

procedure has lower power than the RS test in LinearDGP3, LinearDGP4 and LinearDGP5, both

tests have rejection rates less than the nominal level in LinearDGP2. Overall, the performance of

the SSMT procedure against q
−1/2
n alternatives is consistent with the discussion in Section 3.5. The

procedure has non-trivial power against some distant q
−1/2
n alternatives, such as in LinearDGP5, but

has low power against alternatives that are close to the null, such as in LinearDGP2, LinearDGP3

and LinearDGP4.
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5 Conclusion

This paper proposes a simple specification test for models defined by conditional moment inequal-

ities. Our test is valid under weak assumptions on the moment conditions, and is especially useful

for models in which the identified set and associated confidence sets are difficult to compute. The

procedure obtains a computational advantage by reusing the minimizer of our MinMax test statis-

tic when computing the critical value using a bootstrap procedure. Under our weak assumptions,

reusing the minimizer introduces new theoretical complications which we overcome using a sample-

splitting procedure. We prove that the procedure controls size uniformly over a large class of data

generating processes, and has power tending to 1 for fixed and local alternatives. This paper con-

tinues an existing line of research that seeks to provide computationally accessible methods for

inference in partially identified models. We believe that developing computationally-minded meth-

ods of inference under weak assumptions requires novel solutions, and we hope our unconventional

testing procedure might inspire other researchers to develop unconventional procedures of their

own.
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Rüschendorf, L. (1982): “Random variables with maximum sums,” Advances in Applied Prob-

ability, 14(3), 623–632.

Santos, A. (2012): “Inference in nonparametric instrumental variables with partial identification,”

Econometrica, 80(1), 213–275.

Sheehy, A., and J. A. Wellner (1992): “Uniform Donsker classes of functions,” The Annals of

Probability, 20(4), 1983–2030.
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A Proofs of the Main Results

A.1 Preliminaries

Let (W,W ) be a measureable space, let {Pn}n≥0 ⊂ P, and let P denote the collection of all prob-

ability measures on W. To accommodate drifting sequences in the proofs, we take the underlying

probability space to be of the form (Ω,F,P) := (W1,W 1, P 1
1 )×(W2,W 2, P 2

2 )×. . .×(Wn,W n, Pnn )×
. . .× ([0, 1],L , λ), where λ denotes the Lebesgue measure, and L denotes the Lebesgue subsets of

[0, 1].38 We then view Wi : Ω→W as coordinate projections on the probability space (W,W , Pn)

for each i ∈ N. Note this implies W1, . . . ,Wn are independent and “row-wise” identically distributed

according to Pn. We denote the product probability Pnn on the measurable space (Wn,W n) as PrPn ,

and denote the expectation with respect to PrPn as EPn . Since we work with coordinate projec-

tions, along a fixed sequence {Pn}n≥0, probability statements with respect to PrPn are identical to

probability statements with respect to P. We often use PrPn instead of P in the proofs in order to

emphasize the underlying sequence {Pn}n≥0.

Define T := Θ×T ×G, and let t = (θ, τ, g) denote a typical element of T. Now define the class

of functions:

MP := {m( · , t)/ςP (t) : t ∈ T} .

The classMP can then be equipped with the envelope M from Assumptions 3.1. Under Assump-

tion 3.1, we have supft∈MP
|ft(w)−EP [ft(Wi)]| <∞ for all w ∈W and each P ∈ P. Furthermore,

under Assumption 3.1, the class MP is pointwise measurable and satisfies Dudley’s entropy con-

dition unformly in P ∈ P. The map t 7→ ft(w) − EP [ft(Wi)] for ft ∈ MP can thus be viewed as

an element of `∞(T), the Banach space of bounded real-valued functions on T equipped with the

sup norm. Throughout, `∞(T) is equipped with the Borel σ−algebra. We denote the (random)

empirical measure as:

Pn :=
1

n

n∑
i=1

δWi ,

where δWi is the Dirac-delta. We can then view the normalized empirical process:

vn,Pn(t) :=
1√
n

n∑
i=1

(
m(Wi, t)

ςP (t)
− EPn [m(Wi, t)]

ςP (t)

)
,

as an element of `∞(T). Along a given sequence {Pn ∈ P}n≥1, the map (t, n) 7→ fn(t) := fn( · , t) =

m( · , t)/ςPn(t) is onto. Thus, we will often switch between indexing the empirical process vn,Pn by

t (which is convenient for the main proofs) or by fn ∈ MPn (which is convenient for the proofs in

38A countable product of probability spaces is a probability space: see Dudley (2002) Theorem 8.2.2.
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the Online Supplementary Material). For P ∈P, t, t′ ∈ T, define the semi-metric:

ρ2
P (t, t′) := VarP

(
m(Wi, t)

ςP (t)
− m(Wi, t

′)

ςP (t′)

)
.

For every P ∈P, we let vP represent the mean-zero real-valued Gaussian process with covariance

kernel:

h2,P (t, t′) := Cov(vP (t), vP (t′)) = EP

[
m(Wi, t)

ςP (t)

m(Wi, t
′)

ςP (t′)

]
− EP

[
m(Wi, t)

ςP (t)

]
EP

[
m(Wi, t

′)

ςP (t′)

]
.

If there exists a version of vP , say ṽP , with ρP−uniformly continuous sample paths, then we set vP

equal to that version. The space of all covariance kernels on T is given by:

H2 := {h2,P ( · , · ) : P ∈ P} ,

equipped with the metric:

d(h
(1)
2 , h

(2)
2 ) = sup

t,t′∈T

∣∣∣h(1)
2 (t, t′)− h(2)

2 (t, t′)
∣∣∣ .

We often use “
u→” to denote convergence in the sup norm. We also use the notation:

h1,qn,P (θ, τ, g) :=

√
qnEP [m(Wi, θ, τ, g)]

ςP (θ, τ, g)
. (A.1)

Weak convergence of a sequence of (possibly non-measurable) random elements to separable limit

is metrizable by the bounded Lipschitz metric (see van der Vaart and Wellner (1996) Theorem

1.12.4). In particular, consider the metric space `∞(T) and let:

BL1(`∞(T)) := {h : `∞(T)→ R : ||h||∞ ≤ 1 and |h(x)− h(y)| ≤ |x− y| for all x 6= y}.

Then a sequence of stochastic processes Xn(t, ω) on T with bounded sample paths converges in law

to a measurable, separable process X(t, ω) along the sequence {Pn}n≥0 ⊂ P if and only if:

dBL1(Xn,X) := sup
h∈BL1(`∞(T))

|E∗Pnh(Xn)− EPnh(X)| → 0,

as n→∞, where E∗Pn denotes the outer expectation.

For the bootstrap results, we also require a precise description of the underlying probability

space. Suppose W
(r)
1 , . . . ,W

(r)
qn are independent and identically distributed with distribution Pqn

on (W,W ), and recall that Pqn denotes the empirical distribution for a sample of size qn. Now

let W
(r)]
1 , . . . ,W

(r)]
qn denote random variables that are independent and identically distributed with

42



distribution Pqn on (W,W ), and define:

v(r)]
qn (t) =

1
√
qn

qn∑
i=1

(
m(W

(r)]
i , t)

ς̂n(t)
−
m(W

(r)
i , t)

ς̂n(t)

)
, (A.2)

v
(r)]
qn,Pn

(t) =
1
√
qn

qn∑
i=1

(
m(W

(r)]
i , t)

ςPn(t)
−
m(W

(r)
i , t)

ςPn(t)

)
. (A.3)

Then we can take the underlying probability space to be the product of (Ω,F,P) with a probability

space (Ω],F],P]) on which we can define the random variables i
(r)
1 , . . . , i

(r)
qn with uniform distribution

on {1, . . . , qn} for all r. Then take W
(r)]
j (ω, ω]) := W

(r)

i
(r)
j (ω])

(ω).39 Note that v
(r)]
qn (t) depends on ω],

and implicitly depends on ω ∈ Ω through the empirical measure Pqn = Pqn(ω). Occasionally it will

be useful to emphasize this dependence, in which case we write v
(r)]
qn (ω], ω)(t).

Throughout the proofs, we ignore measurability issues for simplicity unless they are crucial to

the argument, in which case we use a superscript ∗ to denote an outer measure, outer expectation,

or measurable majorant, depending on the context. Throughout the proofs we use the fact that:∣∣∣∣sup
x∈X

f(x)− sup
x∈X

g(x)

∣∣∣∣ ≤ sup
x∈X
|f(x)− g(x)| . (A.4)

We also repeatedly use the fact that:∣∣∣∣ inf
y∈Y

sup
x∈X

f(x, y)− inf
y∈Y

sup
x∈X

g(x, y)

∣∣∣∣ ≤ sup
y∈Y

sup
x∈X
|f(x, y)− g(x, y)| . (A.5)

A.2 Proofs

Proof of Lemma 3.1. Condition (B.1) in Lemma B.1 is trivially satisfied for every sequence {Pn ∈
P0}n≥1. The result then follows immediately from Lemma B.1 and B.2. �

Proof of Theorem 3.1. Consider the limit in (3.1). Since ρn ∈ [1,∞) is a decreasing sequence

bounded from below, the monotone convergence theorem implies that ρn ↓ ρ for some ρ ∈ [1,∞).

Thus we have:

lim sup
n→∞

sup
P∈P0: (h2,P ,h3,P )∈Hcpt

(PrP × P])(φn(ρn, α) = 1)

= lim sup
n→∞

sup
P∈P0: (h2,P ,h3,P )∈Hcpt

(PrP × P])

(
1

rn

rn∑
r=1

1{T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρn + η) + η} ≥ 1

ρn

)
(1)

≤ lim sup
n→∞

sup
P∈P0: (h2,P ,h3,P )∈Hcpt

∫
ρn
rn

rn∑
r=1

1{T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρn + η) + η} d(PrP × P])

(2)
= lim sup

n→∞
sup

P∈P0: (h2,P ,h3,P )∈Hcpt

ρn
rn

rn∑
r=1

∫
1{T (r)

qn (θ̂n) > c(r)]
qn (1− α/ρn + η) + η} d(PrP × P])

39See Dudley (2014) p. 324.
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= lim sup
n→∞

sup
P∈P0: (h2,P ,h3,P )∈Hcpt

ρn
rn

rn∑
r=1

(PrP × P])
(
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρn + η) + η
)

(3)
= lim sup

n→∞
sup

P∈P0: (h2,P ,h3,P )∈Hcpt

ρn(PrP × P])
(
T (1)
qn (θ̂n) > c(1)]

qn (1− α/ρn + η) + η
)

(4)

≤ ρ · lim sup
n→∞

sup
P∈P0: (h2,P ,h3,P )∈Hcpt

(PrP × P])
(
T (1)
qn (θ̂n) > c(1)]

qn (1− α/ρ+ η) + η
)
,

where (1) follows from Markov’s inequality, (2) follows from Tonelli’s theorem, and (3) follows from

the fact that:

(PrP × P])
(
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρn + η) + η
)

= (PrP × P])
(
T (q)
qn (θ̂n) > c(q)]

qn (1− α/ρn + η) + η
)
,

for all r, q ∈ N by the i.i.d. assumption in Assumption 3.1, and by construction of the test statistics

and critical values. Finally, (4) follows from the fact that lim sup(an ·bn) ≤ (lim sup an) ·(lim sup bn)

for any sequences {an}n≥1 and {bn}n≥1. The rest of the proof continues for a fixed r ∈ {1, . . . , rn}
and ρ ∈ [1,∞). Fix any ε ∈ (0, η) and let An,P denote the event:

An,P :=

{
sup
τ∈T

max
g∈Gn

√
qnEP [m(Wi, θ̂n, τ, g)]

ςP (θ̂n, τ, g)
≤ ε

}
. (A.6)

We have:

lim sup
n→∞

sup
P∈P0: (h2,P ,h3,P )∈Hcpt

(PrP × P])
(
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρ+ η) + η
)

≤ lim sup
n→∞

sup
P∈P0: (h2,P ,h3,P )∈Hcpt

(PrP × P])
({
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρ+ η) + η
}
∩An,P

)
+ lim sup

n→∞
sup

P∈P0: (h2,P ,h3,P )∈Hcpt

(PrP × P])
({
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρ+ η) + η
}
∩Acn,P

)
≤ lim sup

n→∞
sup

P∈P0: (h2,P ,h3,P )∈Hcpt

(PrP × P])
({
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρ+ η) + η
}
∩An,P

)
+ lim sup

n→∞
sup

P∈P0: (h2,P ,h3,P )∈Hcpt

PrP
(
Acn,P

)
.

By Lemma 3.1 we have:

lim sup
n→∞

sup
P∈P0: (h2,P ,h3,P )∈Hcpt

PrP
(
Acn,P

)
= 0.

Now there exists a sequence {(Pn, h2,Pn , h3,Pn) ∈ P0 ×Hcpt : n ≥ 1} such that:

lim sup
n→∞

sup
P∈P0: (h2,P ,h3,P )∈Hcpt

(PrP × P])
({
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρ+ η) + η
}
∩An,P

)
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= lim sup
n→∞

(PrPn × P])
({
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρ+ η) + η
}
∩An,Pn

)
.

Furthermore, by compactness of Hcpt there exists a further subsequence {an}n≥1 ⊂ {n}n≥1, some

P0 ∈ P and some corresponding (h2,P0 , h3,P0) ∈Hcpt such that h2,Pan
u→ h2,P0 and h3,Pan

u→ h3,P0 .

We continue the proof along this subsequence. By Lemma B.5 we have for any δ ∈ (ε, η):

lim sup
n→∞

(PrPan × P])
({
T (r)
qan

(θ̂an) > c(r)]
qan

(1− α/ρ+ η) + η
}
∩Aan,Pan

)
≤ lim sup

n→∞
PrPan

({
T (r)
qan

(θ̂an) > c
(r)
0 (θ̂an , 0, h2,P0 , h3,P0 , 1− α/ρ) + δ

}
∩Aan,Pan

)
,

where c
(r)
0 (θ̂an , 0, h2,P0 , h3,P0 , 1− α/ρ) is the 1− α/ρ quantile of the distribution of:

T0(θ̂an , 0, h2,P0 , h3,P0) = sup
τ∈T

max
g∈Gn

{
vP0(θ̂an , τ, g)

}
,

where vP0 is a mean zero Gaussian process on Θ×T ×G with covariance kernel h2,P0 . Furthermore,

by Lemma B.6 we have:

lim sup
n→∞

PrPan

({
T (r)
qan

(θ̂an) > c
(r)
0 (θ̂an , 0, h2,P0 , h3,P0 , 1− α/ρ) + δ

}
∩Aan,Pan

)
≤ lim sup

n→∞
PrPan

({
T (r)
qan

(θ̂an) > c
(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0 , 1− α/ρ) + δ − ε

}
∩Aan,Pan

)
,

where c
(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0 , 1− α/ρ) is the 1− α/ρ quantile of the distribution of:

sup
τ∈T

max
g∈Gn

{
vP0(θ̂an , τ, g) + h1,qan ,Pan (θ̂an , τ, g)

}
.

Finally, from Lemma B.4 we have:

lim sup
n→∞

PrPan

(
T (r)
qan

(θ̂an) > c
(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0 , 1− α/ρ) + δ − ε

)
≤ α/ρ.

This completes the proof. �

Proof of Theorem 3.2. Since ρn ∈ [1,∞) is decreasing, it is bounded from above by ρ1. Note that

for any M > 0:

(PrPn × P])(φn(ρn, α) = 1)

= (PrPn × P])

(
rn∑
r=1

1

{
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρn + η) + η
}
≥ rn
ρn

)

≥ (PrPn × P])

(
rn∑
r=1

1

{
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρn + η) + η
}
≥ rn

)
= (PrPn × P])

(
T (1)
qn (θ̂n) > c(1)]

qn (1− α/ρn + η) + η, . . . , T (rn)
qn (θ̂n) > c(rn)]

qn (1− α/ρn + η) + η
)
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≥ max

{
rn∑
r=1

(PrPn × P])
(
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρn + η) + η
)
− (rn − 1), 0

}
= max

{
rn · (PrPn × P])

(
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρn + η) + η
)
− (rn − 1), 0

}
≥ max

{
rn · (PrPn × P])

(
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρ1 + η) + η
)
− (rn − 1), 0

}
,

where the first inequality follows from the fact that ρn ≥ 1, the second inequality follows from the

Frechet-Hoeffding bounds, and the final inequality follows from the fact that ρn ≤ ρ1. Thus, it

suffices to show that, if
√
qnµn →∞, then:

lim inf
n→∞

(PrPn × P])
(
T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρ1 + η) + η
)

= 1.

To this end, note that:

(PrPn × P])(T (r)
qn (θ̂n) > c(r)]

qn (1− α/ρ1 + η) + η)

≥ (PrPn × P])(T (r)
qn (θ̂n) ≥M, c(r)]

qn (1− α/ρ1 + η) + η < M)

≥ max
{

(PrPn × P])(T (r)
qn (θ̂n) ≥M)

+(PrPn × P])(c(r)]
qn (1− α/ρ1 + η) + η < M)− 1, 0

}
,

where the last inequality follows from the Frechet-Hoeffding bounds. The proof now consists of two

steps. In the first step we show that:

lim
M1→∞

lim sup
n→∞

(PrPn × P])(c(r)]
qn (1− α/ρ1 + η) + η > M1) = 0.

In the second step we show that for any M2 > 0:

lim sup
n→∞

(PrPn × P])(T (r)
qn (θ̂n) ≤M2) = 0.

Step 1: We begin by showing that c
(r)]
qn (1 − α/ρ1 + η) is stochastically bounded from above. By

definition (holding fixed ω ∈ Ω):

c(r)]
qn (1− α/ρ1 + η) := inf

{
x : P]

(
sup
τ∈T

max
g∈Gn

∣∣∣v(r)]
qn (θ̂n, τ, g)

∣∣∣ ≤ x) ≥ 1− α/ρ1 + η

}
= inf

{
x : P]

(
sup
τ∈T

max
g∈Gn

∣∣∣v(r)]
qn (θ̂n, τ, g)

∣∣∣ > x

)
≤ α/ρ1 − η

}
≤ inf

{
x : P]

(
sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn (θ, τ, g)

∣∣∣ > x

)
≤ α/ρ1 − η

}
, (A.7)

where v
(r)]
qn (θ, τ, g) is defined in (A.2). Furthermore, by Lemma S.2.3, we have for any M > 0:

P]
(

sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn,Pn

(θ, τ, g)
∣∣∣ > M

)
≤ 1

M
E]
[
sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn,Pn

(θ, τ, g)
∣∣∣] ≤ C]

M
,
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where v
(r)]
qn,Pn

(θ, τ, g) is defined in (A.3), and C] is a constant (i.e. does not depend on either n or

ω ∈ Ω). Conclude that, for any ε > 0 there is an M such that:

P]
(

sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn,Pn

(θ, τ, g)
∣∣∣ > M

)
< ε,

for all n ≥ 1 and ω ∈ Ω, and thus:

(PrPn × P])
(

sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn,Pn

(θ, τ, g)
∣∣∣ > M

)
< ε.

Conclude that:

lim
M1→∞

lim sup
n→∞

(PrPn × P])
(

sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn,Pn

(θ, τ, g)
∣∣∣ > M1

)
= 0. (A.8)

Now consider the events (for any δ > 0):

Bn,M1,Pn :=

{
sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn (θ, τ, g)

∣∣∣ > M1

}
, Fn,δ,Pn :=

{
sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςPn(θ, τ, g)

ς̂n(θ, τ, g)
− 1

∣∣∣∣ > δ

}
.

Then by Assumption 3.2 we have:

lim
M1→∞

lim sup
n→∞

(PrPn × P]) (Bn,M1,Pn) ≤ lim
M1→∞

lim sup
n→∞

(PrPn × P])
(
B

(1)
n,M1,Pn

∩ F cn,δ,Pn
)
.

Furthermore, note that on the event B
(1)
n,M1,Pn

∩ F cn,δ,Pn :

sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn (θ, τ, g)

∣∣∣ ≤ sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣∣ ςP (θ, τ, g)

ς̂n(θ, τ, g)

∣∣∣∣ · sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn,Pn

(θ, τ, g)
∣∣∣

≤
(

sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣∣ ςP (θ, τ, g)

ς̂n(θ, τ, g)
− 1

∣∣∣∣+ 1

)
· sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn,Pn

(θ, τ, g)
∣∣∣

≤ (1 + δ) · sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn,Pn

(θ, τ, g)
∣∣∣ .

Combining this with (A.7) and (A.8), conclude that:

lim
M1→∞

lim sup
n→∞

(PrPn × P])
(
c(r)]
qn (1− α/ρ1 + η) + η > M1

)
≤ lim

M1→∞
lim sup
n→∞

(PrPn × P])
(

sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn (θ, τ, g)

∣∣∣ > M1

)
≤ lim

M1→∞
lim sup
n→∞

(PrPn × P])
(

(1 + δ) · sup
θ∈Θ

sup
τ∈T

max
g∈G

∣∣∣v(r)]
qn,Pn

(θ, τ, g)
∣∣∣ > M1

)
= 0,

for any α > 0 and ρ1 ∈ [1,∞).
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Step 2: We will show that for every M2 > 0:

lim sup
n→∞

(PrPn × P])(T (r)
qn (θ̂n) ≤M2) = 0.

Note that:

T (r)
qn (θ̂n) ≥ T (r)

qn := inf
θ∈Θ

sup
τ∈T

max
g∈Gn

√
qnm̄

(r)
qn (θ, τ, g)

ς̂n(θ, τ, g)

= inf
θ∈Θ

sup
τ∈T

max
g∈Gn

{√
qn(m̄

(r)
qn (θ, τ, g)− EPn [m(Wi, θ, τ, g)])

ς̂n(θ, τ, g)
+

√
qnEPn [m(Wi, θ, τ, g)]

ς̂n(θ, τ, g)

}
.

Thus it suffices to show that for any M2 > 0 and any ε > 0 there exists an N such that ∀n ≥ N :

(PrPn × P])(T (r)
qn ≤M2) < ε.

To do so, fix arbitrary M2 > 0 and ε > 0, let ςPn(θ, τ, g) be as in Assumption 3.2, and define:

Tn := inf
θ∈Θ

sup
τ∈T

sup
g∈G

√
qnEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
.

By Assumption 3.4, we have:

Tn
(1)

≥ inf
θ∈Θ

√
qnEPn [m(Wi, θ, τn,θ, gn,θ)]

ςPn(θ, τn,θ, gn,θ)

(2)

≥ 1

∆ς
inf
θ∈Θ

√
qnEPn [m(Wi, θ, τn,θ, gn,θ)]

(3)

≥
√
qnµn

∆ς
inf
θ∈Θ

EPn [gn,θ(X)]

(4)

≥
√
qnµn

∆ς
inf
θ∈Θ

∫
x∈Xn(θ)

gn,θ(x)dPX

(5)

≥
√
qnµnεv

∆ς
inf
θ∈Θ

PrPn(Xn(θ))

(6)

≥
√
qnµnηvεv

∆ς
> 0, (A.9)

where the third inequality holds by Assumption 3.4 and the law of iterated expectations, and the

remaining inequalities follow from Assumption 3.4. Fix any δ > 0 (the role of δ is clarified at the

end of the proof). Now set κ ∈ (0, ηvεv/2∆ς), set c = M2/κ(1 + δ), and note that for all n ≥ N

(where N is from Assumption 3.4):

(PrPn × P])(T (r)
qn ≤M2)

= (PrPn × P])
(

1

c
T (r)
qn ≤

M2

c

)
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≤ (PrPn × P])
(

1

c
T (r)
qn ≤

M2

c
,
1

c
Tn −

1

c(1 + δ)
T (r)
qn ≤ κ

)
+ (PrPn × P])

(
1

c(1 + δ)
T (r)
qn −

1

c
Tn > κ

)
≤ (PrPn × P])

(
1 + δ

c
Tn ≤

M2

c
+ κ(1 + δ)

)
+ (PrPn × P])

(
1

c(1 + δ)
T (r)
qn −

1

c
Tn > κ

)
= (PrPn × P])

(
1 + δ

c
Tn ≤ 2κ(1 + δ)

)
+ (PrPn × P])

(
κ

M2
T (r)
qn −

κ(1 + δ)

M2
Tn > κ

)
≤ 1

{√
qnµnηvεv

c∆ς
≤ 2κ

}
+ (PrPn × P])

(
T (r)
qn − (1 + δ)Tn > M2

)
,

where the first inequality follows from the union bound, the second equality follows by taking

c = M2/κ(1 + δ), and the last inequality follows from (A.9). By assumption
√
qnµn → C > c.

Taking N larger if necessary, we can assume
√
qnµn > c for all n ≥ N . In this case we have:

1

{√
qnµnηvεv

c∆ς
≤ 2κ

}
= 1

{
Cηvεv
c∆ς

≤ 2κ

}
≤ 1

{
ηvεv
∆ς
≤ 2κ

}
= 0,

which follows from our choice of κ < ηvεv/2∆ς . Thus, it remains only to show that:

(PrPn × P])

((
T

(r)
qn

1 + δ
− Tn

)
>

M2

(1 + δ)

)
< ε.

By Assumption 3.2 we have for any M2, δ > 0 (taking N larger if necessary):

PrPn

((
T

(r)
qn

1 + δ
− Tn

)
>

M2

(1 + δ)

)

≤ PrPn

((
T

(r)
qn

1 + δ
− Tn

)
>

M2

(1 + δ)
, sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςPn(θ, τ, g)

ς̂n(θ, τ, g)
− 1

∣∣∣∣ ≤ δ
)

+ PrPn

((
T

(r)
qn

1 + δ
− Tn

)
>

M2

(1 + δ)
, sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςPn(θ, τ, g)

ς̂n(θ, τ, g)
− 1

∣∣∣∣ > δ

)

≤ PrPn

((
T

(r)
qn

1 + δ
− Tn

)
>

M2

(1 + δ)
, sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςPn(θ, τ, g)

ς̂n(θ, τ, g)
− 1

∣∣∣∣ ≤ δ
)

+ PrPn

(
sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςPn(θ, τ, g)

ς̂n(θ, τ, g)
− 1

∣∣∣∣ > δ

)

≤ PrPn

((
T

(r)
qn

1 + δ
− Tn

)
>

M2

(1 + δ)
, sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςPn(θ, τ, g)

ς̂n(θ, τ, g)
− 1

∣∣∣∣ ≤ δ
)

+ ε/2

= PrPn

((
1

1 + δ

)(
inf
θ∈Θ

sup
τ∈T

max
g∈Gn

√
qnm̄

(r)
qn (θ, τ, g)

ς̂n(θ, τ, g)

)

−

(
inf
θ∈Θ

sup
τ∈T

sup
g∈G

√
qnEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)

)
>

M2

(1 + δ)
, sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςPn(θ, τ, g)

ς̂n(θ, τ, g)
− 1

∣∣∣∣ ≤ δ
)

+ ε/2

≤ PrPn

((
inf
θ∈Θ

sup
τ∈T

max
g∈Gn

√
qnm̄

(r)
qn (θ, τ, g)

ςP (θ, τ, g)

)
−

(
inf
θ∈Θ

sup
τ∈T

sup
g∈G

√
qnEPn [m(Wi, θ, τ, g)]

ςP (θ, τ, g)

)
> M2

)
+ ε/2
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≤ PrPn

(
sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣∣
√
qn(m̄

(r)
qn (θ, τ,g)− EPn [m(Wi, θ, τ, g)])

ςP (θ, τ, g)

∣∣∣∣∣ > M2

)
+ ε/2

< ε,

where the second last inequality follows from the fact that Gn ⊂ G, and the last inequality follows

from Lemma B.2, taking N larger if necessary. Combining the results above, the conclusion follows.

�

Proof of Theorem 3.3. Note that Lemmas B.4, B.5, and B.6 hold for any sequence {Pn ∈ P : n ≥
1}. Thus, repeating an identical proof to the proof of Theorem 3.1, it suffices to show that:

lim sup
n→∞

PrPn
(
Acn,Pn

)
= 0,

where:

Acn,P :=

{
sup
τ∈T

max
g∈Gn

√
qnEP [m(Wi, θ̂n, τ, g)]

ςP (θ̂n, τ, g)
> ε

}
.

(Note this does not follow from Lemma 3.1, which holds only for null sequences {Pn ∈ P0 : n ≥ 1}).
However, note that:

inf
θ∈Θ

sup
τ∈T

max
g∈Gn

√
qnEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
≤ inf

θ∈Θ
sup
τ∈T

sup
g∈G

√
qnEP [m(Wi, θ, τ, g)]

ςP (θ, τ, g)

≤ 1

∆ς

inf
θ∈Θ

sup
τ∈T

sup
g∈G

√
qnEP [m(Wi, θ, τ, g)]

≤ 1

∆ς

inf
θ∈Θ

sup
τ∈T

sup
g∈G

√
qnEX [EP [m(Wi, θ, τ) | Xi]g(Xi)]

≤ Ḡ

∆ς

inf
θ∈Θ

sup
τ∈T

√
qnEX [EP [m(Wi, θ, τ) | Xi]]

≤ Ḡ

∆ς

√
qnEX

[
sup
τ∈T

EP [m(Wi, θn, τ) | Xi]

]
≤ Ḡ

∆ς

√
qnµn

→ 0.

Thus, the sequence {Pn ∈ P \P0}n≥1 satisfies condition (B.1) from Lemma B.1. Applying Lemma

B.1 and Lemma B.2, the result follows. �
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B Additional Results

Lemma B.1. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Fix any ε > 0 and any sequence

{an}∞n=1 ⊂ N, and let {Pn ∈ P}n≥1 be any sequence satisfying:

lim sup
n→∞

1

{
inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
> ε

}
= 0. (B.1)

Then for any M > 0:

lim sup
n→∞

PrPn

(
sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
> M

)
≤

3∑
j=1

lim sup
n→∞

PrPn

(
Ĉn,Pn,j

)
,

where:

Ĉn,Pn,j :=

{
sup
θ∈Θ

sup
τ∈T

sup
g∈Gn

∣∣∣∣an(m̄n(θ, τ, g)− EPn [m(Wi, θ, τ, g)])

ςPn(θ, τ, g)

∣∣∣∣ > M · Cj

}
,

for j = 1, 2, 3, where each constant Cj > 0 can be chosen independent of n.

Remark B.1. Under the null we have:

inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
≤ 0,

for every sequence {an}∞n=1 and every Gn ⊂ G, so that (B.1) is trivially satisfied for every sequence

{Pn ∈ P0}n≥1, which makes the result useful in the proof of Lemma 3.1. However, (B.1) can also

be satisfied by some alternative sequences, which makes the result useful for the proof of Theorem

3.3.

Proof of Lemma B.1. Define:

B̂
(0)
n,M,Pn

:=

{
sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
> M

}

B̂
(1)
n,Pn

:=

{
sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)
≥ 0, inf

θ∈Θ
sup
τ∈T

max
g∈Gn

anm̄n(θ, τ, g)

ςPn(θ, τ, g)
≥ 0

}
,

B̂
(2)
n,Pn

:=

{
sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)
≥ 0, inf

θ∈Θ
sup
τ∈T

max
g∈Gn

anm̄n(θ, τ, g)

ςPn(θ, τ, g)
< 0

}
,

B̂
(3)
n,Pn

:=

{
sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)
< 0

}
.

Then:

lim sup
n→∞

PrPn

(
sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
> M

)
= lim sup

n→∞
PrPn

(
B̂

(0)
n,M,Pn

)
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≤ lim sup
n→∞

PrPn

(
B̂

(0)
n,M,Pn

∩ B̂(1)
n,Pn

)
+ lim sup

n→∞
PrPn

(
B̂

(0)
n,M,Pn

∩ B̂(2)
n,Pn

)
+ lim sup

n→∞
PrPn

(
B̂

(0)
n,M,Pn

∩ B̂(3)
n,Pn

)
,

which follows from the union bound, and the fact that B̂
(1)
n,Pn

, B̂
(2)
n,Pn

and B̂
(3)
n,Pn

exhaust all possible

cases. Since ςPn(θ, τ, g) > 0 ∀(θ, τ, g) by Assumption 3.1, on the event B̂
(0)
n,M,Pn

∩ B̂(3)
n,Pn

we have:

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)

(1)
< sup

τ∈T
max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
− sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)

≤

∣∣∣∣∣sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
− sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)

∣∣∣∣∣
(2)

≤ sup
τ∈T

max
g∈Gn

∣∣∣∣∣anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
− anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)

∣∣∣∣∣
≤ sup

θ∈Θ
sup
τ∈T

max
g∈Gn

∣∣∣∣anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
− anm̄n(θ, τ, g)

ςPn(θ, τ, g)

∣∣∣∣ ,
where (1) follows since we are on the event B̂

(3)
n,Pn

, and (2) follows from (A.4). Thus we have

B̂
(0)
n,M,Pn

∩ B̂(3)
n,Pn
⊂ Ĉn,Pn,1, where:

Ĉn,Pn,1 :=

{
sup
θ∈Θ

sup
τ∈T

max
g∈Gn

∣∣∣∣an(m̄n(θ, τ, g)− EPn [m(Wi, θ, τ, g)])

ςPn(θ, τ, g)

∣∣∣∣ > M

}
.

Now consider the events B̂
(0)
n,M,Pn

∩ B̂(1)
n,Pn

and B̂
(0)
n,M,Pn

∩ B̂(2)
n,Pn

. Along the sequence {Pn ∈ P}n≥1

we have:

lim sup
n→∞

1

{
inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
> ε

}
= 0.

Now define:

B̂
(4)
n,ε,Pn

:=

{
inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
≤ ε
}
.

Then:

lim sup
n→∞

PrPn

(
B̂

(0)
n,M,Pn

∩ B̂(1)
n,Pn

)
= lim sup

n→∞
PrPn

(
B̂

(0)
n,M,Pn

∩ B̂(1)
n,Pn
∩ B̂(4)

n,ε,Pn

)
,

lim sup
n→∞

PrPn

(
B̂

(0)
n,M,Pn

∩ B̂(2)
n,Pn

)
= lim sup

n→∞
PrPn

(
B̂

(0)
n,M,Pn

∩ B̂(2)
n,Pn
∩ B̂(4)

n,ε,Pn

)
.
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Now fix any δ ∈ (0, 1), and consider the event:

Fn,δ,P :=

{
sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςP (θ, τ, g)

ς̂n(θ, τ, g)
− 1

∣∣∣∣ > δ

}
.

Note that, on F cn,δ,P , we have:

1− δ ≤ ςP (θ, τ, g)

ς̂n(θ, τ, g)
≤ 1 + δ, ∀(θ, τ, g) ∈ Θ× T × G,

which implies:

1

ςP (θ, τ, g)
≤ (1− δ)−1

ς̂n(θ, τ, g)
, ∀(θ, τ, g) ∈ Θ× T × G, (B.2)

1

ς̂n(θ, τ, g)
≤ (1 + δ)

ςP (θ, τ, g)
, ∀(θ, τ, g) ∈ Θ× T × G. (B.3)

By Assumption 3.2 we have:

lim sup
n→∞

PrPn

(
B̂

(0)
n,M,Pn

∩ B̂(1)
n,Pn
∩ B̂(4)

n,M,Pn

)
= lim sup

n→∞
PrPn

(
B̂

(0)
n,M,Pn

∩ B̂(1)
n,Pn
∩ B̂(4)

n,M,Pn
∩ F cn,δ,Pn

)
,

lim sup
n→∞

PrPn

(
B̂

(0)
n,M,Pn

∩ B̂(2)
n,Pn
∩ B̂(4)

n,M,Pn

)
= lim sup

n→∞
PrPn

(
B̂

(0)
n,M,Pn

∩ B̂(2)
n,Pn
∩ B̂(4)

n,M,Pn
∩ F cn,δ,Pn

)
.

Now on B̂
(0)
n,M,Pn

∩ B̂(1)
n,Pn
∩ B̂(4)

n,M,Pn
∩ F cn,δ,Pn we have:

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)

≤ sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
− inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
+ ε

= sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
− sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)

+ sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)
− inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
+ ε

(1)

≤ sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
− sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)

+ (1− δ)−1 sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ς̂n(θ̂n, τ, g)

− inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
+ ε

(2)

≤ sup
θ∈Θ

∣∣∣∣sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
− sup
τ∈T

max
g∈Gn

anm̄n(θ, τ, g)

ςPn(θ, τ, g)

∣∣∣∣
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+ (1− δ)−1 inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anm̄n(θ, τ, g)

ς̂n(θ, τ, g)
+ (1− δ)−1εn

− inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
+ ε

(3)

≤ sup
θ∈Θ

sup
τ∈T

max
g∈Gn

∣∣∣∣anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
− anm̄n(θ, τ, g)

ςPn(θ, τ, g)

∣∣∣∣
+

(
(1 + δ)

(1− δ)

)
inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anm̄n(θ, τ, g)

ςPn(θ, τ, g)
+ (1− δ)−1εn

− inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
+ ε

(4)

≤ sup
θ∈Θ

sup
τ∈T

max
g∈Gn

∣∣∣∣anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
− anm̄n(θ, τ, g)

ςPn(θ, τ, g)

∣∣∣∣
+

(
(1 + δ)

(1− δ)

)
inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anm̄n(θ, τ, g)

ςPn(θ, τ, g)
+ (1− δ)−1εn

−
(

(1 + δ)

(1− δ)

)
inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
+

(
(1 + δ)

(1− δ)

)
ε

(5)

≤ sup
θ∈Θ

sup
τ∈T

max
g∈Gn

∣∣∣∣anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
− anm̄n(θ, τ, g)

ςPn(θ, τ, g)

∣∣∣∣
+

(
(1 + δ)

(1− δ)

)
sup
θ∈Θ

sup
τ∈T

max
g∈Gn

∣∣∣∣anm̄n(θ, τ, g)

ςPn(θ, τ, g)
− anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)

∣∣∣∣
+ (1− δ)−1εn +

(
(1 + δ)

(1− δ)

)
ε

(6)

≤ (2 + δ)

(1− δ)
sup
θ∈Θ

sup
τ∈T

max
g∈Gn

∣∣∣∣anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
− anm̄n(θ, τ, g)

ςPn(θ, τ, g)

∣∣∣∣+
εn

1− δ
+

(
(1 + δ)

(1− δ)

)
ε,

where (1) follows from (B.2) and the fact that we are on event B̂
(1)
n,Pn

, (2) follows from the definition

of θ̂n from (2.6), (3) follows from (A.4) and from (B.3) coupled with the fact that we are on event

B̂
(1)
n,Pn

, (4) follows from the fact that P ∈ P0 (implying the last term is negative), (5) follows from

(A.5), and (6) follows after collecting terms. Thus we have B̂
(0)
n,M,Pn

∩ B̂(1)
n,Pn
∩ B̂(4)

n,M,Pn
∩ F cn,δ,Pn ⊂

Ĉn,Pn,2, where:

Ĉn,Pn,2 :=

{
sup
θ∈Θ

sup
τ∈T

max
g∈Gn

∣∣∣∣an(m̄n(θ, τ, g)− EPn [m(Wi, θ, τ, g)])

ςPn(θ, τ, g)

∣∣∣∣+

(
1

2 + δ

)
εn +

(
(1 + δ)

(2 + δ)

)
ε >

M(1− δ)
(2 + δ)

}
.

Similarly, on B̂
(0)
n,M,Pn

∩ B̂(2)
n,Pn
∩ B̂(4)

n,M,Pn
∩ F cn,δ,Pn :

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)

≤ sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
− inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
+ ε

= sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
− sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)
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+ sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)
− inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
+ ε

(1)

≤ sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ̂n, τ, g)]

ςPn(θ̂n, τ, g)
− sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ςPn(θ̂n, τ, g)

+ (1− δ)−1 sup
τ∈T

max
g∈Gn

anm̄n(θ̂n, τ, g)

ς̂n(θ̂n, τ, g)

− inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
+ ε

(2)

≤ sup
θ∈Θ

∣∣∣∣sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
− sup
τ∈T

max
g∈Gn

anm̄n(θ, τ, g)

ςPn(θ, τ, g)

∣∣∣∣
+ (1− δ)−1 inf

θ∈Θ
sup
τ∈T

max
g∈Gn

anm̄n(θ, τ, g)

ς̂n(θ, τ, g)
+ (1− δ)−1εn

− inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
+ ε

(3)

≤ sup
θ∈Θ

sup
τ∈T

max
g∈Gn

∣∣∣∣anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
− anm̄n(θ, τ, g)

ςPn(θ, τ, g)

∣∣∣∣
+ inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anm̄n(θ, τ, g)

ς̂n(θ, τ, g)
+ (1− δ)−1εn

− inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anEPn [m(Wi, θ, τ, g)]

ς̂n(θ, τ, g)
+ ε

(4)

≤ 2 sup
θ∈Θ

sup
τ∈T

max
g∈Gn

∣∣∣∣anEPn [m(Wi, θ, τ, g)]

ςPn(θ, τ, g)
− anm̄n(θ, τ, g)

ςPn(θ, τ, g)

∣∣∣∣+ (1− δ)−1εn + ε,

where (1) follows from (B.2) and the fact that we are on event B̂
(2)
n,Pn

, (2) follows from the definition

of θ̂n from (2.6), (3) follows from the fact that we are on B̂
(2)
n,Pn

, which implies:

inf
θ∈Θ

sup
τ∈T

max
g∈Gn

anm̄n(θ, τ, g)

ς̂n(θ, τ, g)
≤ 0,

and (4) follows from (A.5) and collecting terms. Thus we have B̂
(4)
n,ε,Pn

∩ B̂(2)
n,Pn
∩ F cn,δ,Pn ⊂ Ĉn,Pn,3,

where:

Ĉn,Pn,3 :=

{
sup
θ∈Θ

sup
τ∈T

max
g∈Gn

∣∣∣∣an(m̄n(θ, τ, g)− EPn [m(Wi, θ, τ, g)])

ςPn(θ, τ, g)

∣∣∣∣+
1

2(1− δ)
εn +

ε

2
>
M

2

}
.

This completes the proof. �

Lemma B.2. Suppose that Assumption 3.1 holds. Then:

lim
M→∞

lim sup
n→∞

sup
P∈P

PrP (Bn,M,P ) = 0,
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where:

Bn,M,P :=

{
sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣√n (m̄n(θ, τ, g)− EP [m(Wi, θ, τ, g)])

ςP (θ, τ, g)

∣∣∣∣ > M

}
.

Proof of Lemma B.2. Define:

||vn,P ||T := sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣√n(m̄n(θ, τ, g)− EP [m(Wi, θ, τ, g)])

ςP (θ, τ, g)

∣∣∣∣ .
It suffices to show that for any ε > 0 there exists an M > 0 and an N such that:

sup
n≥N

sup
P∈P

PrP
(
||vn,P ||T > M

)
< ε. (B.4)

By Markov’s inequality, we have:

sup
P∈P

PrP
(
||vn,P ||T > M

)
≤ sup

P∈P

EP ||vn,P ||T
M

. (B.5)

The remainder of the proof will show that EP ||vn,P ||T is bounded above by a constant that is

independent of both n and P . To this end, note that under Assumptions 3.1, the class MP is

pointwise measurable and satisfies Dudley’s entropy condition for the envelope M uniformly in

P ∈ P. In particular:

sup
P∈P

∫ ∞
0

sup
Q∈Q

√
logN(ε · ||M ||Q,2,MP , L2(Q)) dε

= sup
P∈P

∫ 1

0
sup
Q∈Q

√
logN(ε · ||M ||Q,2,MP , L2(Q)) dε <∞, (B.6)

with the inner supremum taken over all probability measures with finite support. Now define:

J(δ,MP ) := sup
Q∈Q

∫ δ

0

√
1 + logN(ε · ||M ||Q,2,MP , || · ||Q,2) dε.

Then (B.6) implies that supP∈P J(1,MP ) <∞. By Theorem 2.14.1 in van der Vaart and Wellner

(1996), we have:

EP ||vn,P ||T ≤ C
′J(1,MP )||M ||P,2, (B.7)

for some finite constant C ′. By Assumption 3.1, there exists an η > 0 such that supP∈P EP [M2+η] ≤
C ′′ for some C ′′ <∞, so that by Hölder’s inequality supP∈P ||M ||P,2 ≤ supP∈P(EP [M2+η])2/(2+η) ≤
(C ′′)2/(2+η). Thus, conclude that supP∈P C

′J(1,MP )||M ||P,2 ≤ supP∈P C
′J(1,MP )(C ′′)2/(2+η) <

∞. Combining this with (B.4), (B.5) and (B.7) completes the proof. �

The following Lemma is similar to Theorem 1 in Andrews and Shi (2013) and Theorem D.3 in

Andrews and Shi (2017), although adapted to accommodate our infimum test statistic.
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Lemma B.3. Suppose Assumptions 3.1, 3.2 and 3.3 hold, let {Pn ∈ P : n ≥ 1} be any sequence,

and let {an}n≥1 be any subsequence along which h2,Pan
u→ h2,P0 and h3,Pan

u→ h3,P0 for some P0 ∈ P.

Then for all xan := xan(ω) ∈ R and δ > 0 we have:

lim sup
n→∞

[
PrPan (T (r)

qan
(θ̂an) > xan)− PrPan (T

(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0) + δ > xan)

]
≤ 0,

where:

T
(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0) := sup

τ∈T
max
g∈Gan

{
vP0(θ̂an , τ, g) + h1,qan ,Pan (θ̂an , τ, g)

}
, (B.8)

where vP0 is a real-valued tight normalized Gaussian process on T with covariance kernel h2,P0, and

where h1,qan ,Pan (θ, τ, g) is as defined in (A.1).

Proof of Lemma B.3. There exists a further subsequence {bn}n≥1 ⊂ {an}n≥1 such that:

lim sup
n→∞

[
PrPan (T (r)

qan
(θ̂an) > xan)− PrPan (T

(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0) + δ > xan)

]
= lim

n→∞

[
PrPbn (T (r)

qbn
(θ̂bn) > xbn)− PrPbn (T

(r)
0 (θ̂bn , h1,qbn ,Pbn

, h2,P0 , h3,P0) + δ > xbn)
]
.

We continue the proof along this subsequence. Note that:

sup
τ∈T

max
g∈Gbn

(√
qbnm̄

(r)
qbn (θ, τ, g)

ς̂bn(θ, τ, g)

)

= sup
τ∈T

max
g∈Gbn

√qbn
(
m̄

(r)
qbn (θ, τ, g)− EPbn [m(Wi, θ, τ, g)]

)
ς̂bn(θ, τ, g)

+

√
qbnEPbn [m(Wi, θ, τ, g)]

ς̂bn(θ, τ, g)


= sup

τ∈T
max
g∈Gbn

(
ςPbn (θ, τ, g)

ς̂bn(θ, τ, g)

)√qbn
(
m̄

(r)
qbn (θ, τ, g)− EPbn [m(Wi, θ, τ, g)]

)
ςPbn (θ, τ, g)

+

√
qbnEPbn [m(Wi, θ, τ, g)]

ςPbn (θ, τ, g)

)
= sup

τ∈T
max
g∈Gbn

(
ςPbn (θ, τ, g)

ς̂bn(θ, τ, g)

)(
v

(r)
qbn ,Pbn

(θ, τ, g) + h1,qbn ,Pbn
(θ, τ, g)

)
,

where:

v
(r)
qbn ,Pbn

(θ, τ, g) :=

√
qbn

(
m̄

(r)
qbn (θ, τ, g)− EPbn [m(Wi, θ, τ, g)]

)
ςPbn (θ, τ, g)

.

By Lemma S.2.1 in the Online Supplementary Material we have v
(r)
qbn ,Pbn

 vP0 in `∞(T) where

vP0 is a tight Gaussian process with covariance kernel h2,P0 with almost all sample paths bounded

and in UC(T, ρP0), the space of uniformly continuous real-valued functions on (T, ρP0) equipped

with the sup norm. It follows from Assumption 3.2 and Slutsky’s Theorem (e.g. Kosorok (2007)
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Theorem 7.15) that:

v
(r)
qbn ,Pbn

:= (ςPbn (θ, τ, g)/ς̂bn(θ, τ, g))v
(r)
qbn ,Pbn

 vP0 ,

in `∞(T) as n → ∞. By the almost-sure representation theorem (e.g. Dudley (2014) Theorem

3.24) there exists a probability space (Ω̃, F̃, P̃) and perfect measurable functions sbn from (Ω̃, F̃) to

(Ω,F) for each n = 0, 1, . . . such that P̃ ◦ s−1
bn

= P on F for each n and:(
sup
θ∈Θ

sup
τ∈T

sup
g∈G
||ṽbn(ω̃)(θ, τ, g)− ṽ(ω̃)(θ, τ, g)||

)∗
→ 0 almost surely as n→∞, (B.9)

where ṽbn(ω̃)( · ) := v
(r)
qbn ,Pbn

(sbn(ω̃))( · ) and ṽ(ω̃) := vP0(sb0(ω̃))( · ) for ω̃ ∈ Ω̃, and where ( · )∗

denotes the measurable majorant. Now define θ̃bn(ω̃) := θ̂bn ◦sbn(ω̃) and x̃bn(ω̃) := xbn ◦sbn(ω̃) ∈ R,

and set:

T̃bn(ω̃) := sup
τ∈T

max
g∈Gbn

(
ṽbn(ω̃)(θ̃bn(ω̃), τ, g) + h1,qbn ,Pbn

(θ̃bn(ω̃), τ, g)
)
,

T̃0,bn(ω̃) := sup
τ∈T

max
g∈Gbn

(
ṽ(ω̃)(θ̃bn(ω̃), τ, g) + h1,qbn ,Pbn

(θ̃bn(ω̃), τ, g)
)
.

By construction, T̃bn(ω̃) and T
(r)
bn

(θ̂bn) are identically distributed and T̃0,bn(ω̃) and T
(r)
0 (θ̂bn , h1,qbn ,Pbn

, h2,P0 , h3,P0)

are identically distributed. Thus it suffices to prove:

A := lim
n→∞

[
P̃
(
T̃bn(ω̃) > x̃bn(ω̃)

)
− P̃

(
T̃0,bn(ω̃) + δ > x̃bn(ω̃)

)]
≤ 0.

We have: ∣∣∣T̃bn(ω̃)− T̃0,bn(ω̃)
∣∣∣

=

∣∣∣∣sup
τ∈T

max
g∈Gbn

{
ṽbn(ω̃)(θ̃bn(ω̃), τ, g) + h1,qbn ,Pbn

(θ̃bn(ω̃), τ, g)
}

− sup
τ∈T

max
g∈Gbn

{
ṽ(ω̃)(θ̃bn(ω̃), τ, g) + h1,qbn ,Pbn

(θ̃bn(ω̃), τ, g)
}∣∣∣∣

≤ sup
θ∈Θ

∣∣∣∣sup
τ∈T

max
g∈Gbn

{
ṽbn(ω̃)(θ, τ, g) + h1,qbn ,Pbn

(θ, τ, g)
}

− sup
τ∈T

max
g∈Gbn

{
ṽ(ω̃)(θ, τ, g) + h1,qbn ,Pbn

(θ, τ, g)
}∣∣∣∣

≤ sup
θ∈Θ

sup
τ∈T

max
g∈Gbn

∣∣ṽbn(ω̃)(θ, τ, g)− ṽ(ω̃)(θ, τ, g)
∣∣

≤ sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣ṽbn(ω̃)(θ, τ, g)− ṽ(ω̃)(θ, τ, g)
∣∣

≤

(
sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣ṽbn(ω̃)(θ, τ, g)− ṽ(ω̃)(θ, τ, g)
∣∣)∗
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−→ 0,

almost surely as n → ∞ by (B.9). Conclude that there exists a measurable sequence Bbn(ω̃) such

that |T̃bn(ω̃)− T̃0,bn(ω̃)| ≤ Bbn(ω̃)→ 0 almost surely as n→∞. Now define:

∆̃bn(ω̃) = 1{T̃bn(ω̃) > x̃bn(ω̃)} − 1{T̃0,bn(ω̃) + δ > x̃bn(ω̃)}

= 1{T̃0,bn(ω̃) + T̃bn(ω̃)− T̃0,bn(ω̃) > x̃bn(ω̃)} − 1{T̃0,bn(ω̃) + δ > x̃bn(ω̃)}.

Note that:

∆̃bn(ω̃) ≤ (∆̃bn(ω̃))∗ ≤ ∆̃†bn(ω̃) := 1{T̃0,bn(ω̃) +Bbn(ω̃) > x̃bn(ω̃)} − 1{T̃0,bn(ω̃) + δ > x̃bn(ω̃)}.

Furthermore, let ∆̃+
bn

(ω̃) := max{∆̃†bn(ω̃), 0}, and note that ∆̃†bn(ω̃) ≤ ∆̃+
bn

(ω̃). Since Bbn(ω̃) → 0

a.s., ∆̃+
bn

(ω̃) → 0 a.s. Let Ẽ denote the expectation with respect to P̃. Then by dominated

convergence we have:

A = lim sup
n→∞

Ẽ∗[∆̃bn ] ≤ lim sup
n→∞

Ẽ[∆̃†bn ] ≤ lim sup
n→∞

Ẽ[∆̃+
bn

] = 0.

This completes the proof.

�

Let c
(r)
0 (θ, h1,qan ,Pan , h2,P0 , h3,P0 , 1−α) denote the 1−α quantile of T

(r)
0 (θ, h1,qan ,Pan , h2,P0 , h3,P0),

where the statistic T
(r)
0 (θ, h1,qan ,Pan , h2,P0 , h3,P0) is as defined in (B.8). The following result is a

direct consequence of Lemma B.3 and is similar to Lemma A2 in Andrews and Shi (2013).

Lemma B.4. Suppose Assumptions 3.1, 3.2 and 3.3 hold, let {Pn ∈ P : n ≥ 1} be any sequence,

and let {an}n≥1 be any subsequence along which h2,Pan
u→ h2,P0 and h3,Pan

u→ h3,P0 for some P0 ∈ P.

Then for every δ > 0:

lim sup
n→∞

PrPan (T (r)
an (θ̂an) > c

(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0 , 1− α) + δ) ≤ α.

Proof of Lemma B.4. Note that for every δ > 0 we have:

lim sup
n→∞

PrPan (T (r)
an (θ̂an) > c

(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0 , 1− α) + δ)

= lim sup
n→∞

PrPan (T
(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0) > c

(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0 , 1− α))

+ lim sup
n→∞

(
PrPan (T (r)

an (θ̂an) > c
(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0 , 1− α) + δ)

− PrPan (T
(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0) > c

(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0 , 1− α))

)
≤ α+ 0,
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where the last inequality follows from Lemma B.3, taking xan = c
(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0 , 1−

α) + δ, and from the fact that c
(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0 , 1 − α) is the 1 − α quantile of

T
(r)
0 (θ̂an , h1,qan ,Pan , h2,P0 , h3,P0), by definition.

�

The following result is similar to Lemma D.4 in Andrews and Shi (2017).

Lemma B.5. Suppose Assumptions 3.1, 3.2 and 3.3 hold, let {Pn ∈ P : n ≥ 1} be any sequence,

and let {an}n≥1 be any subsequence along which h2,Pan
u→ h2,P0 and h3,Pan

u→ h3,P0 for some P0 ∈ P.

Then for every δ ∈ (0, η):

lim sup
n→∞

(PrPan × P])(ĉ(r)]
an (1− α+ η) ≤ c(r)

0 (θ̂an , 0, h2,P0 , h3,P0 , 1− α) + δ − η) = 0,

where ĉ
(r)]
an (1 − α + η) is the 1 − α + η quantile of the distribution of T

(r)]
qan (θ̂an), and where

c
(r)
0 (θ̂an , 0, h2,P0 , h3,P0 , 1− α) is the 1− α quantile of the distribution of:

T
(r)
0 (θ̂an , 0, h2,P0 , h3,P0) = sup

τ∈T
max
g∈Gan

vP0(θ̂an , τ, g),

where vP0 is a mean zero Gaussian process on T with covariance kernel h2,P0.

Proof of Lemma B.5. Lemma S.2.2 implies that for any ε > 0:

lim sup
n→∞

PrPan

(
dBL1(v

(r)]
qan ,Pan

, vP0)∗ > ε
)

= 0, (B.10)

where v
(r)]
qan ,Pan

is defined in (A.3), and where vP0 = vP0(ω], ω) is a tight Gaussian-process defined

on the probability space (Ω,F,P) × (Ω],F],P]) that is constant in its ω]−coordinate. Now note

that:

v(r)]
qan

(θ, τ, g) = ςPan (θ, τ, g)ς̂−1
an (θ, τ, g)v

(r)]
qan ,Pan

(θ, τ, g),

where v
(r)]
qan is defined in (A.2). Define the shorthand notation:(

ςPan
ς̂an

)
v

(r)]
qan ,Pan

:= ςPan (θ, τ, g)ς̂−1
an (θ, τ, g)v

(r)]
qan ,Pan

(θ, τ, g).

By Assumption 3.2 we have for any ε′ > 0:

lim sup
n→∞

PrPan

(
dBL1

(
v(r)]
qan

, vP0

)∗
> ε
)

= lim sup
n→∞

PrPan

(
dBL1

((
ςPan
ς̂an

)
v

(r)]
qan ,Pan

, vP0

)∗
> ε

)
= lim sup

n→∞
PrPan

(
dBL1

((
ςPan
ς̂an

)
v

(r)]
qan ,Pan

, vP0

)∗
> ε, sup

θ∈Θ
sup
τ∈T

sup
g∈G

∣∣∣∣ ςPan (θ, τ, g)

ς̂an(θ, τ, g)
− 1

∣∣∣∣ > ε′

)
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+ lim sup
n→∞

PrPan

(
dBL1

((
ςPan
ς̂an

)
v

(r)]
qan ,Pan

, vP0

)∗
> ε, sup

θ∈Θ
sup
τ∈T

sup
g∈G

∣∣∣∣ ςPan (θ, τ, g)

ς̂an(θ, τ, g)
− 1

∣∣∣∣ ≤ ε′
)

≤ lim sup
n→∞

PrPan

(
sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςPan (θ, τ, g)

ς̂an(θ, τ, g)
− 1

∣∣∣∣ > ε′

)

+ lim sup
n→∞

PrPan

(
dBL1

((
ςPan
ς̂an

)
v

(r)]
qan ,Pan

, vP0

)∗
> ε, sup

θ∈Θ
sup
τ∈T

sup
g∈G

∣∣∣∣ ςPan (θ, τ, g)

ς̂an(θ, τ, g)
− 1

∣∣∣∣ ≤ ε′
)

= lim sup
n→∞

PrPan

(
dBL1

((
ςPan
ς̂an

)
v

(r)]
qan ,Pan

, vP0

)∗
> ε, sup

θ∈Θ
sup
τ∈T

sup
g∈G

∣∣∣∣ ςPan (θ, τ, g)

ς̂an(θ, τ, g)
− 1

∣∣∣∣ ≤ ε′
)
. (B.11)

Furthermore:

dBL1

((
ςPan
ς̂an

)
v

(r)]
qan ,Pan

, vP0

)
= sup

h∈BL1(`∞(T))

∣∣∣∣E]h(( ςPanς̂an

)
v

(r)]
qan ,Pan

)
− EPanh(vP0)

∣∣∣∣
≤ sup

h∈BL1(`∞(T))

∣∣∣∣E]h(( ςPanς̂an

)
v

(r)]
qan ,Pan

)
− E]h(v

(r)]
qan ,Pan

)

∣∣∣∣
+ sup
h∈BL1(`∞(T))

∣∣∣E]h(v
(r)]
qan ,Pan

)− EPanh(vP0)
∣∣∣

≤ E]
[

sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣( ςPan (θ, τ, g)

ς̂an(θ, τ, g)

)
v

(r)]
qan ,Pan

(θ, τ, g)− v(r)]
qan ,Pan

(θ, τ, g)

∣∣∣∣
]

+ sup
h∈BL1(`∞(T))

∣∣∣E]h(v
(r)]
qan ,Pan

)− EPanh(vP0)
∣∣∣

≤ E]
[

sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςPan (θ, τ, g)

ς̂an(θ, τ, g)
− 1

∣∣∣∣ sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣v(r)]
qan ,Pan

(θ, τ, g)
∣∣∣]

+ sup
h∈BL1(`∞(T))

∣∣∣E]h(v
(r)]
qan ,Pan

)− EPanh(vP0)
∣∣∣

= sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςPan (θ, τ, g)

ς̂an(θ, τ, g)
− 1

∣∣∣∣ · E]
[

sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣v(r)]
qan ,Pan

(θ, τ, g)
∣∣∣]

+ sup
h∈BL1(`∞(T))

∣∣∣E]h(v
(r)]
qan ,Pan

)− EPanh(vP0)
∣∣∣

≤ C] · sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣ ςPan (θ, τ, g)

ς̂an(θ, τ, g)
− 1

∣∣∣∣
+ sup
h∈BL1(`∞(T))

∣∣∣E]h(v
(r)]
qan ,Pan

)− EPanh(vP0)
∣∣∣ , (B.12)

where C] is the constant from Lemma S.2.3. Combine (B.10), (B.11) and (B.12) and conclude that
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for 0 < ε′ < ε:

lim sup
n→∞

PrPan

(
dBL1

(
v(r)]
qan

, vP0

)∗
> ε
)

= lim sup
n→∞

PrPan

(
dBL1

((
ςPan
ς̂an

)
v

(r)]
qan ,Pan

, vP0

)∗
> ε

)
= 0.

Now by Lemma 1.9.2 in van der Vaart and Wellner (1996) there exists a further subsequence

{bn}∞n=1 ⊂ {an}∞n=1 along which:

dBL1

(
v(r)]
qbn

, vP0

)∗
→ 0 almost surely on Ω,

as n→∞. We will now prove that for any ξ > 0:

lim
n→∞

[
(P× P])(T (r)]

bn
(θ̂bn) ≤ xbn)− P(T

(r)
0 (θ̂bn , 0, h2,P0 , h3,P0) ≤ xbn + ξ)

]
≤ 0, (B.13)

where, importantly, xbn = xbn(ω) may depend on ω. To this end, let Ω0 denote the set of all ω ∈ Ω

such that:

dBL1

(
v(r)]
qbn

, vP0

)∗
→ 0,

as n→∞. The discussion above implies P(Ω0) = 1. For a fixed ω ∈ Ω0, we can apply the almost-

sure representation theorem (e.g. Dudley (2014) Theorem 3.24): there exists a probability space

(Ω̃, F̃, P̃) and perfect measurable functions sbn from (Ω̃, F̃, P̃) to (Ω],F],P]) for each n = 0, 1, . . .

such that P̃ ◦ s−1
bn

= P] on F] for each n and:(
sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣∣∣∣ṽ(r)
bn

(ω̃, ω)(θ, τ, g)− ṽ(ω̃, ω)(θ, τ, g)
∣∣∣∣∣∣)∗ → 0 almost surely on Ω̃ as n→∞, (B.14)

where ṽ
(r)
bn

(ω̃, ω)( · ) := v
(r)]
qbn (sbn(ω̃), ω)( · ) and ṽ(ω̃, ω) := vP0(sb0(ω̃), ω)( · ) for each ω̃ ∈ Ω̃. Now

define:

T̃0,bn = sup
τ∈T

max
g∈Gbn

ṽ(θ̂bn , τ, g), T̃
(r)]
bn

= sup
τ∈T

max
g∈Gbn

ṽ
(r)
bn

(θ̂bn , τ, g).

By construction T̃
(r)]
bn

and T
(r)]
bn

are identically distributed, and T̃0,bn and T
(r)
0 (θ̂bn , 0, h2,P0 , h3,P0)

are identically distributed. Now note (B.13) follows by dominated convergence if we can show:

A := lim sup
n→∞

[
P̃(T̃

(r)]
bn

> xbn | ω)− P̃(T̃0,bn + δ > xbn | ω)
]
≤ 0, (B.15)

where “| ω” is meant to emphasize that the ω−coordinate is held fixed. We have:

T̃
(r)]
bn
− T̃0,bn = sup

τ∈T
max
g∈Gbn

ṽ
(r)
bn

(θ̂bn , τ, g)− sup
τ∈T

sup
g∈Gbn

ṽ(θ̂bn , τ, g)

≤ sup
τ∈T

sup
g∈G

∣∣∣ṽ(r)
bn

(θ̂bn , τ, g)− ṽ(θ̂bn , τ, g)
∣∣∣
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≤

(
sup
θ∈Θ

sup
τ∈T

sup
g∈G

∣∣∣ṽ(r)
bn

(θ, τ, g)− ṽ(θ, τ, g)
∣∣∣)∗

−→ 0,

almost surely as n→∞ by (B.14). Conclude that there exists a measurable sequence Bbn(ω̃) such

that T̃
(r)]
bn

(ω̃)− T̃0,bn(ω̃) ≤ Bbn(ω̃)→ 0 almost surely as n→∞. Now define:

∆̃bn(ω̃) = 1{T̃ (r)]
bn

(ω̃) > xbn} − 1{T̃0,bn(ω̃) + δ > xbn}

= 1{T̃0,bn(ω̃) + T̃
(r)]
bn

(ω̃)− T̃0,bn(ω̃) > xbn} − 1{T̃0,bn(ω̃) + δ > xbn}.

Note that:

∆̃bn(ω̃) ≤ (∆̃bn(ω̃))∗ ≤ ∆̃†bn(ω̃) := 1{T̃0,bn(ω̃) +Bbn(ω̃) > xbn} − 1{T̃0,bn(ω̃) + δ > xbn}.

Furthermore, let ∆̃+
bn

(ω̃) := max{∆̃†bn(ω̃), 0}, and note that ∆̃†bn(ω̃) ≤ ∆̃+
bn

(ω̃). Since Bbn(ω̃) → 0

almost surely, ∆̃+
bn

(ω̃) → 0 almost surely. Let Ẽ[ · | ω] denote the expectation with respect to the

marginal P̃, holding fixed ω. Then by dominated convergence we have:

A = lim sup
n→∞

Ẽ∗[∆̃bn | ω] ≤ lim sup
n→∞

Ẽ[∆̃†bn | ω] ≤ lim sup
n→∞

Ẽ[∆̃+
bn
| ω] = 0.

This completes the proof of (B.15). The result (B.13) then follows by dominated convergence.

We now proceed in a similar manner to the proof of Lemma D.4 in Andrews and Shi (2017). In

particular, since δ ∈ (0, η), the interval (0, η − δ) is non-empty, so using (B.13) we have for all

ξ ∈ (0, η − δ):

lim sup
n→∞

(P× P])(T (r)]
bn

(θ̂bn) ≤ c(r)
0 (θ̂bn , 0, h2,P0 , h3,P0 , 1− α) + δ − η)

= lim sup
n→∞

P(T
(r)
0 (θ̂bn , 0, h2,P0 , h3,P0) ≤ c(r)

0 (θ̂bn , 0, h2,P0 , h3,P0 , 1− α) + δ − η + ξ)

+ lim sup
n→∞

[
(P× P])(T (r)]

bn
(θ̂bn) ≤ c(r)

0 (θ̂bn , 0, h2,P0 , h3,P0 , 1− α) + δ − η)

− P(T
(r)
0 (θ̂bn , 0, h2,P0 , h3,P0) ≤ c(r)

0 (θ̂bn , 0, h2,P0 , h3,P0 , 1− α) + δ − η + ξ)

]
≤ 1− α,

where the last inequality follows from (B.13) taking xbn = c
(r)
0 (θ̂bn , 0, h2,P0 , h3,P0 , 1 − α) + δ −

η, and from the fact that c
(r)
0 (θ̂bn , 0, h2,P0 , h3,P0 , 1 − α) is the 1 − α quantile of the statistic

T
(r)
0 (θ̂bn , 0, h2,P0 , h3,P0). But by definition of ĉ

(r)]
bn

(1− α+ η), for all n we have:

ĉ
(r)]
bn

(1− α+ η) := inf
{
c : (P× P])(T (r)]

bn
(θ̂bn) ≤ c) ≥ 1− α+ η

}
.
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Thus the result above implies that:

c
(r)
0 (θ̂bn , 0, h2,P0 , h3,P0 , 1− α) + δ − η < ĉ

(r)]
bn

(1− α+ η),

asymptotically with P× P]−probability 1. This completes the proof. �

The following lemma plays the same role as Lemma A3 in Andrews and Shi (2013).

Lemma B.6. Suppose Assumptions 3.1, 3.2 and 3.3 hold. Let the event An,P be as defined in

(A.6), and let {Pn ∈ P : n ≥ 1} be any sequence. Then:

lim sup
n→∞

PrPn

({
c

(r)
0 (θ̂n, 0, h2,P0 , h3,P0 , 1− α) + ε < c

(r)
0 (θ̂n, h1,qn,Pn , h2,P0 , h3,P0 , 1− α)

}
∩An,Pn

)
= 0,

where c
(r)
0 (θ̂n, 0, h2,P0 , h3,P0 , 1 − α) is the 1 − α quantile of the distribution of the test statistic

T
(r)
0 (θ̂n, 0, h2,P0 , h3,P0) and c

(r)
0 (θ̂n, h1,qn,Pn , h2,P0 , h3,P0 , 1−α) is the 1−α quantile of the distribution

of T
(r)
0 (θ̂n, h1,qn,Pn , h2,P0 , h3,P0).

Proof of Lemma B.6. Note that on the event An,Pn we have h1,qn,Pn(θ̂n, τ, g) ≤ ε for all (τ, g) ∈
T × Gn, which implies:

T
(r)
0 (θ̂n, 0, h2,P0 , h3,P0) = sup

τ∈T
max
g∈Gn

vP0(θ̂n, τ, g)

= sup
τ∈T

max
g∈Gn

(
vP0(θ̂n, τ, g)− h1,qn,Pn(θ̂n, τ, g) + h1,qn,Pn(θ̂n, τ, g)

)
≥ sup

τ∈T
max
g∈Gn

(
vP0(θ̂n, τ, g) + h1,qn,Pn(θ̂n, τ, g)

)
− ε

= T
(r)
0 (θ̂n, h1,qn,Pn , h2,P0 , h3,P0)− ε.

This in turn implies that c
(r)
0 (θ̂n, 0, h2,P0 , h3,P0 , 1− α) + ε ≥ c(r)

0 (θ̂n, h1,qn,Pn , h2,P0 , h3,P0 , 1− α). �
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