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1 Introduction

This paper derives testable implications of the identification assumptions for the local aver-

age treatment effect (LATE) in fuzzy regression discontinuity (FRD) designs and develops a

specification test for the implications. Since the seminal work of Thistlethwaite and Campbell

(1960), the regression discontinuity (RD) design has gained popularity in applied research to

identify causal effects (see Lee and Lemieux, 2010; Cattaneo and Escanciano, 2017, for surveys).

In a sharp RD design, the treatment assignment is deterministically determined by whether a

running variable exceeds a known cutoff. On the other hand, the probability of receiving the

treatment changes discontinuously at the cutoff in an FRD design but not necessarily from 0 to

1. In both designs, if units of the study located just above or below the cutoff are “comparable”,

then the RD design creates a “pseudo-random experiment” near the cutoff and thus enables us

to identify the causal effect of the treatment.

The identification idea is formalized by Hahn, Todd, and Van der Klaauw (2001) in the

potential outcome framework, where they provide conditions to identify the average treatment

effect (ATE) and LATE at the cutoff, respectively. These conditions are revisited later by Lee

(2008), Imbens and Lemieux (2008), Frandsen, Frölich, and Melly (2012), Dong (2018), and

Bertanha and Moreira (2020), among many others.

While the identification problem has been well studied, the credibility of identification as-

sumptions can be controversial in practice, which has motivated many specification tests in the

RD framework. There are two strands of tests. The first strand focuses on testing the identi-

fying assumptions for ATE-type parameters. For sharp designs, Lee (2008) proposes testable

implications: (i) the continuity of the density of a running variable at the cutoff, and (ii) the

continuity of the conditional distributions of predetermined variables given the running variable

at the cutoff. The testable implications in Lee (2008) are the foundation for many tests and

was generalized to fuzzy designs; see, for example, McCrary (2008), Otsu, Xu, and Matsushita

(2013), Cattaneo, Jansson, and Ma (2020), and Bugni and Canay (2021) for testing the conti-

nuity of the running variable density, and Canay and Kamat (2018) for testing the continuity of

the conditional distributions of predetermined variables given the running variable. A common

feature of these tests is that they utilize running variables (and other baseline variables) but not

the outcome or treatment variables.

The second strand focuses on testing the identifying assumptions of LATE-type parameters
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in FRD designs. Arai, Hsu, Kitagawa, Mourifié, and Wan (2022) show that if the parameter

of interest is the LATE or the local quantile treatment effects, then the continuity of the run-

ning variable density and the continuity of the predetermined variable distributions are neither

sufficient nor necessary (also see McCrary, 2008). They test sharp implications of identifying as-

sumptions that are similar to those used in Frandsen, Frölich, and Melly (2012), including (i) the

monotonicity of the treatment response to the running variable at the cutoff (local monotonicity

assumption), and (ii) the continuity of the conditional distributions of the potential outcomes

and complying status given the running variable at the cutoff (local continuity in distributions

assumption). These conditions, referred to as the “FRD distributional assumptions” hereafter,

are used to identify quantile or distributional treatment effects for compliers. Our paper con-

tributes to this second strand by proposing a specification test for identifying conditions for the

mean effect. The identification assumptions required for LATE replace the local continuity in

distributions with local continuity in means, i.e. the expectations of potential outcomes given

that the running variable is continuous near the cutoff. The local monotonicity and the local

continuity in means assumptions are referred to as the “FRD mean assumptions” hereafter.

We consider a test for the FRDmean assumptions a useful addition to the existing tests on the

distributional assumptions for the following reasons. First, the mean effect is of primary interest

in many empirical applications requiring weaker FRD mean assumptions. On the other hand,

it is possible that the FRD mean assumptions hold but not the distributional assumptions. For

example, if there is an unobserved program using the same running variable and if the unobserved

program changes the risk faced by individuals, then even if the true potential outcomes satisfy

the FRD distributional assumptions, the perceived potential outcomes (due to ignorance of the

unobserved program) by the researcher can violate the continuity in distributions while satisfying

the continuity in means. In Section 2, we postulate a simple model to demonstrate this point

further. Second, the disagreement between the mean and distribution tests can happen in real

RD data. For example, we applied our test to Columbia’s subsidized insurance program data

(analyzed by Miller, Pinto, and Vera-Hernández, 2013) in Section 5.1, and we find that the mean

test rejects but not the distribution test. Recently, Canay and Kamat (2018) find that in the

US House election data analyzed in the seminal paper of Lee (2008), the distribution of the past

vote margin (baseline variable) given current vote margin (running variable) is not continuous

at the cutoff. On the other hand, the continuity of the conditional mean is not rejected and is
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considered a reasonable assumption in the literature. While these results do not directly involve

the outcome variable (future vote margin), it suggests that we need to be cautious to assume

the continuity in distribution. Again, we will discuss this point in greater detail in Section 2.

Our test can provide an additional perspective and modelling reference for empirical researchers

in these scenarios. Third, statistically, there does not exist a subset of testable implications

for FRD distribution assumptions that are “dedicated” to the FRD mean assumptions. When

testing the FRD mean assumptions is desirable, naively applying the distributional test may

falsely reject the mean continuity. Therefore, having an easy-to-implement specification test

focusing directly on the FRD mean assumptions would be useful. Our paper fills this gap.

Specifically, we derive sharp testable implications for the FRD mean assumptions that share

the same spirit as Huber and Mellace (2015) for the binary IV setting. We construct sharp

(observable) bounds for the expectation of the potential outcome Y (1) for always-takers when the

running variable approaches the cutoff by applying the results in Horowitz and Manski (1995),

and Lee (2009). Therefore, its identifiable estimand must lie within the bounds as well. This

creates two inequality constraints on the observed data distribution. We can obtain another two

constraints by applying a similar argument for the expectation of the potential outcome Y (0) for

never-takers when the running variable approaches the cutoff. These four inequalities constitute

necessary (but not sufficient) conditions for FRD mean assumptions. Huber and Mellace (2015)

also use the idea of Horowitz and Manski (1995) and Lee (2009) to test the validity of instruments

(mean independence) in the binary treatment and binary IV setting. While drawing motivation

from Huber and Mellace (2015), we focus on the FRD framework. Therefore, our testable

implications are characterized by the limits of conditional expectations when the running variable

approaches the cutoff. For this reason, the test statistics, their asymptotic properties, and the

calculation of critical value are significantly different.1 Furthermore, built upon the results of

Laffers and Mellace (2017), we also show that if the observable data distribution satisfies our

testable implications, then there exists a joint distribution of potential outcomes and complying

status which (i) satisfies the FRD mean assumptions, and (ii) is observationally local-equivalent

to the observable data distribution. In this sense, the testable implication is sharp or the best

possible to detect the violation of FRD mean assumptions.

The proposed specification test is based on these inequality constraints. Our test statistic

1Horowitz and Manski (1995) and Lee (2009)’s idea is also applied to bound the treatment effect in RDD designs
with manipulation, see for instance Gerard, Rokkanen, and Rothe (2020). Our paper focus on specification test.
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is significantly different from that in Arai, Hsu, Kitagawa, Mourifié, and Wan (2022) because

the inequality constraints in our case involve nuisance parameters that need to be estimated

in advance. We need to account for the estimation effect when deriving the null distribution

of the test statistic. The critical value is constructed based on a weighted bootstrap and the

generalized moment selection (GMS) procedure that we use to approximate the null distribution.

We show that our test controls the size well under the null and is consistent against any fixed

alternatives.

Our paper also makes empirical contributions. We apply our test to four FRD designs in the

literature. The first is in Miller, Pinto, and Vera-Hernández (2013), who estimate the mean ef-

fect of a publicly subsidized insurance program on Columbian households’ welfare, measured by

various outcome variables. Arai, Hsu, Kitagawa, Mourifié, and Wan (2022) find that FRD distri-

butional assumptions are rejected for three outcome variables: household educational spending,

total spending on food, and total monthly expenditure. Since the monotonicity assumption is

likely to be satisfied by the institutional rules, the testing result implies that the distribution of

these variables is discontinuous near the cutoff. We revisit this empirical application and find

that our mean test does not reject the implication of local continuity in means. Our results and

findings in Arai, Hsu, Kitagawa, Mourifié, and Wan (2022) suggest that one needs to be espe-

cially cautious when estimating the quantile LATE for these outcome variables. In our second

empirical application, we consider Israel’s schooling data used in Angrist and Lavy (1999) to

study the effect of class size on students’ performance. In this application, Israel’s Maimonides’

rule creates a discontinuity of class size with respect to enrollment. Our results align with those

in Angrist, Lavy, Leder-Luis, and Shany (2019) and Arai, Hsu, Kitagawa, Mourifié, and Wan

(2022), and show no evidence to reject FRD mean assumptions and FRD distributional assump-

tions. In our third application, we revisit Romanian secondary school data, which Pop-Eleches

and Urquiola (2013) use to identify the effect of school quality on students’ academic perfor-

mance. The probability of enrollment into better schools changes discontinuously in transition

scores because the centralized allocation process first meets the need for “better students”. We

find no evidence to reject the FRD mean assumptions. The final application uses data from

Battistin, Brugiavini, Rettore, and Weber (2009), who study the effect of retirement on Italian

seniors’ consumption using the pension eligibility policy as the identification device. In their

data set, the retirement probability changes discontinuously at the eligibility cutoff for a pension
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because it provides an additional incentive to retire. Again, our test result does not reject the

validity of FRD design in this empirical study. It is not surprising that our test does not reject

the FRD mean assumptions in these data sets, as they are generated from classical FRD designs.

However, as we will illustrate in simulation (Section 4) using Battistin, Brugiavini, Rettore, and

Weber (2009)’s retirement consumption data, a modest “artificial distortion” of the real data

can be detected by our test if the distortion results in the discontinuity of mean.

In addition to Huber and Mellace (2015) and Laffers and Mellace (2017) mentioned above,

our paper also contributes to the growing literature on specification tests in causal inference

frameworks. For example, Kitagawa (2015) and Mourifié and Wan (2017) test the statistical

independence assumption and the monotonicity assumption in the framework of a binary in-

strument and a binary treatment; Sun (2020) considers models with a discrete but multi-valued

instrument and treatment. Kédagni and Mourifié (2020) derive a set of generalized inequalities

from Pearl (1995) to test the IV-independence assumption with discrete treatment with unre-

stricted outcomes and instruments. Acerenza, Bartalotti, and Kédagni (2023) test identifying

assumptions in bivariate Probit models.

The rest of the paper is organized as follows. We discuss the identifying assumptions and

derive the testable implications in Section 2. In Section 3, we describe the testing procedure

and establish the asymptotic proprieties of our test. In Section 4, we conduct several sets of

Monte Carlo experiments to show the finite sample performance of our test and report empirical

application results in Section 5. Section 6 discusses possible extensions of our test. We conclude

the paper in Section 7. All the proofs, additional simulations and empirical results are collected

in the appendix.

2 Model and Testable Implications

Let (Ω,F , P ) be the probability space, where Ω is the sample space with a generic element

denoted by ω, F is the σ-algebra, and the P is the probability distribution of all random variables.

Among all the variables, D(·) : Ω → {0, 1} is the observed binary treatment, Y (·) : Ω → Y is

the observed outcome of interest, and Z(·) : Ω → Z is a continuous running variable with a

known cut-off c.2 A given individual ω in the population is endowed with a potential treatment

2The treatment variable may take multiple values in empirical applications with multiple cutoffs for the running
variable. In such cases, we can apply our test to the specific cutoff of interest or test the identifying conditions
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function D(·, ω) : Z → {0, 1}. D(z, ω) represents the treatment that the individual ω would

have taken had his/her running variable been set to z. Likewise, let Y (d, ω) be his/her potential

outcome had the treatment been set to d. The observed treatment and outcome are connected

as D(ω) ≡ D(Z(ω), ω) and Y (ω) ≡ D(ω)Y (1, ω) + (1−D(ω))Y (0, ω), respectively.

Let ε > 0 be a small positive number and define Bε = {z ∈ Z : |z − c| ≤ ε} be an interval

centred at the cutoff. Following Arai, Hsu, Kitagawa, Mourifié, and Wan (2022), we define

compliance status Tε of an individual ω based on the shape of the potential treatment function

over Bε:

Tε(ω) =



A, if D(z, ω) = 1, for z ∈ Bϵ,

N, if D(z, ω) = 0, for z ∈ Bϵ,

C, if D(z, ω) = 1{z ≥ c}, for z ∈ Bϵ,

DF, if D(z, ω) = 1{z < c}, for z ∈ Bϵ,

I, if D(z, ω) takes any other forms,

(2.1)

where A, C, N and DF represent always-takers, compliers, never-takers, and defiers, respec-

tively. Here, I(ndeterminant) represents individuals whose potential treatment is a non-

constant function of z over (−ε− c, c) or (c, c+ ε). Introducing this type allows the probability

of treatment to be a non-constant function near the cutoff.3 Hereafter, we will suppress the

argument ω whenever it causes no confusion. Following Imbens and Lemieux (2008), we make

the following assumptions.

Assumption 2.1 (Local monotonicity) For t =DFDFDF or III,

lim
ε↓0

P (Tε = t|Z = c− ε) = lim
ε↓0

P (Tε = t|Z = c+ ε) = 0.

Assumption 2.1 requires that the potential treatment status be weakly increasing in the

running variable near the cutoff for all individuals in the population. Therefore, there are only

compliers, always-takers and never-takers when the running variable approaches the cutoff.

jointly for all cutoffs.
3There are other ways to define complying status while allowing the probability of treatment to be non-

constant near the cutoff. Fox example, Dong (2018) separated the role of “IV” from the running variable by
defining W = 1{Z ≥ c} and the observed treatment D = WD1 + (1 − W )D0, where Dw = hw(Z,Uw) is the
potential treatment and Uw is an unobserved latent variable. Finally, the complying status is defined based on the
combination of the pair of potential treatments (D1, D0). In our paper, we follow Arai, Hsu, Kitagawa, Mourifié,
and Wan (2022) because both papers focus on testing, and we do so for better comparison.
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Example 2.1 Consider the following single-threshold crossing specification of potential treat-

ment,

D(z) = 1 {z + 1{z ≥ c}+ V ≥ 0} , z ∈ [c− ε, c+ ε]

where V ∼ N(0, 1). Fixing ε > 0 and setting c = 0 (without loss of generality), the support

of V is divided into four groups, as shown in the following figure. Consider an individual

-1-ε ε-1 0

AN CI I

Figure 1: Complying Types

whose v = ε
2 . This person is not a compiler or an always-taker or a never-taker because his/her

potential treatment as a function of z is not constant over (−ε, 0): D
(
−3ε

4

)
= 0 but D

(
− ε

4

)
= 1.

Based on our definition in Equation (2.1), he/she belongs to III. In this example, Assumption 2.1

is satisfied because the probability of III, or equivalently the probability of V ∈ (−1− ε,−1)∪ (0, ε)

converges to zero as ε ↓ 0. Also, P (D = 1|Z = z) is not constant near the cutoff because of the

existence of type III.

For given ε, d and t, let fY (d)|Tε,Z(y|t, z) be the probability density function of Y (d) given

type Tε = t and Z = z (when Y (d) is discrete, these densities are understood as probability

mass functions).

Assumption 2.2 (Local continuity in means) For all t and d, we have

(i) limε↓0 fY (d)|Tε,Z(y|t, c − ε) and limε↓0 fY (d)|Tε,Z(y|t, c + ε) are proper densities. Further-

more, E[|Y (d)|
∣∣Tε = t, Z = z] < ∞ for all z ∈ Bδ for some δ > 0.

(ii) limε↓0E[Y (d)|Tε = t, Z = c − ε] = limε↓0E[Y (d)|Tε = t, Z = c + ε] and limε↓0 P (Tε =

t|Z = c− ε) = limε↓0 P (Tε = t|Z = c+ ε).

Assumption 2.2-(i) contains regularity conditions. It requires the conditional densities of

potential outcomes to have well-defined limits from above and below the cutoff, respectively,

but not necessarily equal to each other. It also requires the conditional (truncated or untrun-

cated) expectations of potential outcomes of each type to be finite in the limit. We make these

assumptions so that the quantities in our testable implication are well-defined. These condi-

tions can be supported by reasonable models. For instance, they are satisfied in Example 2.1
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if (Y (1), Y (0), V ) follows a joint normal distribution. In this example, the density function of

Y (d) given Tε = III exists for any ε and also exists when ε → 0, despite that the population size

of type III converges to zero as ε → 0. Assumption 2.2-(ii) is the key assumption. It requires the

continuity of the conditional mean of potential outcomes as a function of the running variable

in the neighbourhood of the cutoff for each type of individual and for the type probabilities.4 It

shares the same spirit of the Assumption LS1 of Dong (2018). Given limε↓0 fY (d)|T,Z(y|t, c− ε)

and limε↓0 fY (d)|Tε,Z(y|t, c + ε) are well-defined, Assumption 2.2-(ii) is weaker than the local

continuity assumption in distributions, which is tested in Arai, Hsu, Kitagawa, Mourifié, and

Wan (2022) and restated below.

Assumption 2.3 (Local continuity in distributions) For d ∈ {0, 1}, t ∈ {A,C,N}, and
all measurable subset V ⊆ Y, we have

lim
ε↓0

P (Y (d) ∈ V, Tε = t|Z = c− ε) = lim
ε↓0

P (Y (d) ∈ V, Tε = t|Z = c+ ε).

The following proposition re-states the results of Hahn, Todd, and Van der Klaauw (2001),

Frandsen, Frölich, and Melly (2012), and Arai, Hsu, Kitagawa, Mourifié, and Wan (2022).

It shows that the LATE at the cutoff is identified under the monotonicity assumption and

continuity in means assumption, and the distributional LATE is identified if the continuity in

means assumption is strengthened to continuity in the distributions assumption. For the purpose

of exposition, the proof is omitted. For generic random variables (R1, R2, R3), let E[R1|R2, R3 =

c+] = limε↓0E[R1|R2, R3 = c+ε] and E[R1|R2, R3 = c−] = limε↓0E[R1|R2, R3 = c−ε], whenever

these quantities are properly defined.

Proposition 2.1 Suppose Assumptions 2.1 and 2.2 are satisfied, and E[D|Z = c+] > E[D|Z =

c−], then LATE at the cutoff is identified by the fuzzy regression discontinuity estimand:

LATE ≡ E[Y (1)− Y (0)|CCC,Z = c] =
E[Y |Z = c+]− E[Y |Z = c−]
E[D|Z = c+]− E[D|Z = c−]

. (2.2)

If Assumption 2.3 holds in place of Assumption 2.2, then the complier’s potential outcome dis-

4Please note that if the continuity of the conditional mean is imposed on a known transformation κ(Y (d)), our
test can be adapted for it by using κ(Y ) in the place of Y . In practice, the choice of κ should be guided by the
specific needs of empirical research.
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tributions at the cutoff are identified by the following quantities:

FY (1)|C,Z=c(y) =
E[1{Y ≤ y}D|Z = c+]− E[1{Y ≤ y}D|Z = c−]

E[D|Z = c+]− E[D|Z = c−]
, (2.3)

FY (0)|C,Z=c(y) =
E[1{Y ≤ y}(1−D)|Z = c+]− E[1{Y ≤ y}(1−D)|Z = c−]

E[D|Z = c+]− E[D|Z = c−]
. (2.4)

Furthermore, the sharp testable implications for Assumptions 2.1 and 2.3 are characterized

by the following set of inequality constraints:

E[g(Y )D|Z = c−]− E[g(Y )D|Z = c+] ≤ 0 (2.5)

E[g(Y )(1−D)|Z = c+]− E[g(Y )(1−D)|Z = c−] ≤ 0, (2.6)

for any g belonging to the class of closed intervals: G = {g : g(Y ) = 1[y ≤ Y ≤ y′], y, y′ ∈ Y}.

The inequality constraints (2.5) and (2.6) can be interpreted as the “nonnegativity of the

potential outcome density functions for the compliers at the cutoff”. As shown in Arai, Hsu,

Kitagawa, Mourifié, and Wan (2022), if inequalities (2.5) and (2.6) are satisfied for all g ∈ G,
then we can construct a joint distribution for the potential outcomes and the running variable

which is observationally equivalent to the observed data distribution and satisfies the FRD

distributional assumptions, and hence the FRD mean assumptions.

However, (2.5) and (2.6) are not necessarily implied by FRD mean assumptions.5 In practice,

continuity in mean and discontinuity in distribution can coexist for various economic reasons.

For example, suppose that there are multiple programs (say D and D′) that are implemented

based on the same running variable Z. To fix the idea, take D as a job training program,

D′ = 1[Z ≥ c] as a government-subsidized insurance program, and the running variable as the

poverty index. Suppose that a researcher hopes to estimate the effect of the job training program

on labor income. In this case, the potential outcome should be defined as Ỹ (d, d′) for d ∈ {0, 1}
5For example, suppose Y ≥ 0. Note that Y (d) =

∫ Y (d)

0
dy =

∫∞
0

1{Y (d) ≥ y}dy and under suitable regularity
conditions, we have

E[Y (d)|Z = z] =

∫ ∞

0

E[1{Y (d) ≥ y}|Z = z]dy =

∫ ∞

0

P (Y (d) ≥ y|Z = z)dy.

It is possible that P (Y (d) ≥ y|Z = z) is discontinuous in z for some y, but the “averaged” version
∫∞
0

P (Y (d) ≥
y|Z = z)dy is continuous in z. We thank an anonymous referee for offering this perspective.
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and d′ ∈ {0, 1}, so that the observed outcome is

Y = Ỹ (1, 1)DD′ + Ỹ (1, 0)D(1−D′) + Ỹ (0, 1)(1−D)D′ + Ỹ (0, 0)(1−D)(1−D′)

= (Ỹ (1, 1)D′ + Ỹ (1, 0)(1−D′))︸ ︷︷ ︸
≡Y (1)

D + (Ỹ (0, 1)D′ + Ỹ (0, 0)(1−D′))︸ ︷︷ ︸
≡Y (0)

(1−D).

If the other program D′ were ignored, then the researcher would consider Y (d) = Ỹ (d, 1)D′ +

Ỹ (d, 0)(1−D′) as his/her potential outcome. In this case, the conditional distribution of Y (d)

given Z = z will not be continuous in z even if the distributions of Ỹ (d, d′) are. To see this,

observe that P (Y (1) ≤ y|Z = c + ε) = P (Ỹ (1, 1) ≤ y|Z = c + ε), whereas P (Y (1) ≤ y|Z =

z− ε) = P (Ỹ (1, 0) ≤ y|Z = c− ε). Therefore, P (Y (1) ≤ y|Z = z) is generally not continuous at

c as long as Ỹ (1, 1) and Ỹ (1, 0) have different distributions. However, if the insurance program

targets zero profit and thus an individual pays zero expected premium (since the government

subsidizes it), then Ỹ (1, 0) will be a mean-preserving spread of Ỹ (1, 1). The distributional

assumption is violated in this case, but the conditional expectation of Y (1) can still be continuous

at c.

The departure between continuity in mean and in distribution is also documented in other

scenarios of RD designs. In a seminal paper, Lee (2008) investigates the “incumbency advantage

of US House election”, where the treatment variable is the indicator of “Democratic party wins

at time t”, the potential outcome variable Y (d) is the Democratic party’s counterfactual winning

margin at time t+1, the running variable Z is the winning margin at t, and a baseline variable X

is the winning margin at t−1. Lee (2008, Condition 1b and 2b) assumes that (i): (Y (1), Y (0), X)

are measurable functions of underlying latent variable W ,

Y (1) = m1(W ), Y (0) = m0(W ), X = mx(W ),

and (ii): FZ|W is continuously differentiable at the cutoff. A necessary implication of these

assumptions is that the distribution of X given Z = z is continuous in z at the cutoff (Lee,

2008, Proposition 2). Despite that the continuity of E[X|Z = z] is not rejected, a recent study

by Canay and Kamat (2018) shows that the continuity of FX|Z(·|z) in z is actually rejected.6

6Examining the result of Canay and Kamat (2018, Figure 2(a)), one can note that fX|Z(·|Z = c−) puts
significantly more mass over the interval just below the cuooff value (50%) than fX|Z(·|Z = c+). Because the
future can not change the past, one possible explanation for the discontinuity is that persistent unobserved factors
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Such rejection implies that conditions (1b) and (2b) of Lee (2008) fail to hold for the conditional

distribution of period t − 1 vote margin. While it is not a piece of direct evidence against the

continuity of the conditional distribution of period t+1 (potential) vote margin, it does remind

us to be cautious in making such an assumption. On the other hand, the continuity in mean

appears to be a reasonable assumption (see Lee, 2008, Table 1).7

To state the proper set of testable implications for Assumptions 2.1 and 2.2, we first define

some notation. Let G1(y) = limε↓0 P (Y ≤ y|D = 1, Z = c+ ε) be the conditional distribution of

Y given D = 1 and Z = z when z converges to c from above. Note that G1(y) = limε↓0 P (Y (1) ≤
y|Tε ∈ {AAA,CCC}, Z = c+ε), and is well defined under Assumption 2.2-(i). Likewise, define G0(y) =

limε↓0 P (Y ≤ y|D = 0, Z = c − ε). We let q = P1|0/P1|1 be the relative size of always-takers

with respect to the combination of always-takers and compliers, where P1|0 = limε↓0 P (D =

1|Z = c − ε) and P1|1 = limε↓0 P (D = 1|Z = c + ε).8 Likewise, we define r = P0|1/P0|0, where

P0|1 = limε↓0 P (D = 0|Z = c+ ε) and P0|0 = limε↓0 P (D = 0|Z = z − ε). Note that G1, G0, q,

and r are all directly identifiable from the data. Finally, for a generic cumulative distribution

function F̃ and a τ ∈ (0, 1), define its τ -quantile as F̃−1(τ) = inf{y ∈ Y : F̃ (y) ≥ τ}.
Now, we are ready to present the testable implications of the FRD mean assumptions.

Applying the results in Horowitz and Manski (1995) and Lee (2009), we derive the bounds for

limε↓0E[Y (1)|Tε = AAA,Z = c − ε] and limε↓0E[Y (0)|Tε = NNN,Z = c + ε], respectively. Their

identifiable estimands must satisfy the bounds as well, and form restrictions on the distribution

of observed data. We summarize them in Proposition 2.2.

Proposition 2.2 Suppose that q ∈ (0, 1), r ∈ (0, 1), and the distributions of Y given (D =

1, Z = z) and Y given (D = 0, Z = z) are continuous.

affect voting margins over time. A thorough study of all possible reasons is beyond the scope of our paper.
7Because this empirical application is a sharp design, we can not apply our method to test it.
8If the local monotonicity condition holds with an “increasing” direction, then P1|0/P1|1 ≥ P1|1/P1|0 and thus

q = P1|0/P1|1 measures the ratio of always-takers against the combination of always-takers and compliers. If it
holds with a “decreasing” direction, then we define q = P1|1/P1|0 for this ratio. The same argument applies to
the definition for r below.
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(i) If Assumptions 2.1 and 2.2 are satisfied, then the following inequality constraints hold:

E[Y |D = 1, Y < G−1
1 (q), Z = c+] ≤ E[Y |D = 1, Z = c−], (2.7)

E[Y |D = 1, Z = c−] ≤ E[Y |D = 1, Y > G−1
1 (1− q), Z = c+], (2.8)

E[Y |D = 0, Y < G−1
0 (r), Z = c−] ≤ E[Y |D = 0, Z = c+], (2.9)

E[Y |D = 0, Z = c+] ≤ E[Y |D = 0, Y > G−1
0 (1− r), Z = c−]. (2.10)

(ii) If the joint distribution of (Y,D,Z) satisfies inequalities (2.7) to (2.10), then there

exists a collection of random variables (Ỹ (1), Ỹ (0), Z, D̃(z), z ∈ Z) whose distribution satisfies

Assumptions 2.1 and 2.2. Furthermore, let Ỹ ≡ Ỹ (1)D̃ + Ỹ (0)(1 − D̃) and D̃ ≡ D̃(Z). Then

the distribution of (Ỹ , D̃)|Z = z is the same as that of (Y,D)|Z = z.

The first part of the proposition shows that the FRD mean assumptions have empirical

content and generate the four inequalities as necessary (but not sufficient) conditions. The

inequalities constraints are intuitive. For example, under the FRD mean assumptions, the right-

hand side of inequality (2.7) identifies the expectation of Y (1) for always takers (approaching

the cutoff), while E[Y |D = 1, z = c+] is the expectation of Y (1) for both always-takers and

compliers ((approaching to the cutoff)). In one extreme case, all the always takers concentrate

on the left tail of the mixing distribution: this gives inequality (2.7). In another extreme case, all

the always takers concentrate on the left tail of the mixing distribution, which gives inequality

(2.8).

The first part of the proposition has a similar structure as the results of Huber and Mellace

(2015), who derive the bounds for the expectations of Y (1) for always takers and Y (0) for never

takers in the binary IV setting. In our case, we bounded these quantities at the cutoff. The

second part of the proposition states that the implications are sharp to detect the violations

in means. It is analogous to Laffers and Mellace (2017, Theorem 1-(i)), which shows that the

testable implication of Huber and Mellace (2015) is the best possible to detect violations of IV

assumptions in the binary IV settings.

Remark 2.1 In Proposition 2.2, we assume the distribution of the outcome is continuous. As

we will show in Corollary 6.1 in Section 6.1, the bounds in Proposition 2.2 are still valid but not

necessarily sharp when Y is discrete or a mixture of continuous and discrete parts. Corollary 6.1
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reports the sharp bounds at the cost of additional notation.

Remark 2.2 One temptation to test FRD mean assumptions is to change the function class of

Arai, Hsu, Kitagawa, Mourifié, and Wan (2022), for example, to replace g(Y ) by Y and check

whether the following inequalities hold,

E[Y D|Z = c−]− E[Y D|Z = c+] ≤ 0 (2.11)

E[Y (1−D)|Z = c+]− E[Y (1−D)|Z = c−] ≤ 0, (2.12)

This is, however, not a valid approach. The inequalities (2.11) and (2.12) can fail to hold even

when the FRD distributional assumptions are satisfied. Let πt be the size of subpopulation t at the

cutoff. A simple calculation shows that the left-hand side of inequality (2.11) is −E[Y (1)|CCC,Z =

c]πCCC . Its sign can not be determined unless Y (1) ≥ 0 or Y (1) ≤ 0 almost surely. When Y (d) is

nonnegative (e.g. test score) for d = 0, 1, the restriction in (2.11) can be implied by our testable

implication (2.8). To see this, note that (2.8) implies that

E[Y D|Z = c−] = πAAAE[Y |D = 1, Z = c−]

≤πAAAE[Y |D = 1, Y > G−1
1 (1− q), Z = c+]

=πAAA
E[Y |D = 1, Z = c+]− E[Y |D = 1, Y ≤ G−1

1 (1− q), Z = c+]P (Y ≤ G−1
1 (1− q)|D = 1, Z = c+)

P (Y > G−1
1 (1− q)|D = 1, Z = c+)

≤πAAA
E[Y |D = 1, Z = c+]

P (Y > G−1
1 (1− q)|D = 1, Z = c+)

=πAAA
E[Y |D = 1, Z = c+]

q

=πA∪CA∪CA∪CE[Y |D = 1, Z = c+]

=E[Y D|Z = c+],

where the first equality holds by Assumption 2.1, the first inequality holds by applying (2.8), the

second inequality holds because Y > 0, and the final two equalities hold because q = πAAA
πA∪CA∪CA∪C

. It is

exactly restriction (2.11). Hence, even when the sign of Y (d) is known to be positive or negative,

it is always more informative to use restriction (2.8).

Remark 2.3 From the inequalities in Proposition 2.2, we expect that our test be more powerful

when q and r are relatively large under the alternatives. The main reason is that, for example,
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the lower bound in (2.7) decreases when q decreases to zero (giving everything else equal). This

is the case when the size of compliers is close to one, and the size of the propensity score jump

at the cutoff is large. This feature is also shared in Arai, Hsu, Kitagawa, Mourifié, and Wan

(2022) for testing the distributional assumptions, where they show that their testable implication

always holds in sharp design (q = r = 0). For the mean test we study in this paper, when q = 0,

the inequalities (2.7) and (2.8) reduce to Y1,min ≤ Y1,max, where Y1,min and Y1,max are the lower

and upper bounds of the conditional distribution of Y |D = 1, Z = c+. Then (2.7) and (2.8) hold

automatically.

3 Proposed Test

In this section, we propose a test for the implications in Proposition 2.2. It turns out to be

useful to reformulate the inequalities. For inequality (2.7),

E[Y |D = 1, Y < G−1
1 (q), Z = c+]− E[Y |D = 1, Z = c−] ≤ 0

⇔ E[DY 1(Y < G−1
1 (q))|Z = c+]

E[D1(Y < G−1
1 (q))|Z = c+]

− E[DY |Z = c−]
E[D|Z = c−]

≤ 0

⇔ θ1 ≡ E[DY 1(Y < G−1
1 (q))|Z = c+] · E[D|Z = c−]

− E[DY |Z = c−] · E[D1(Y < G−1
1 (q))|Z = c+] ≤ 0. (3.1)

Similarly, the rest of the three inequalities (2.8)-(2.10) are equivalent to

θ2 ≡ E[DY |Z = c−] · E[D1(Y > G−1
1 (1− q))|Z = c+]

− E[DY 1(Y > G−1
1 (1− q))|Z = c+] · E[D|Z = c−] ≤ 0, (3.2)

θ3 ≡ E[(1−D)Y 1(Y < G−1
1 (r))|Z = c−] · E[1−D|Z = c+]

− E[(1−D)Y |Z = c+] · E[(1−D)1(Y < G−1
1 (r))|Z = c−] ≤ 0, (3.3)

θ4 ≡ E[(1−D)Y |Z = c+] · E[(1−D)1(Y > G−1
1 (1− r))|Z = c−]

− E[(1−D)Y 1(Y > G−1
1 (1− r))|Z = c−] · E[(1−D)|Z = c+] ≤ 0. (3.4)

Note that the inequalities in the reformulation are well-defined regardless the design is sharp
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or has one-sided compliance. To this end, we can formulate our null hypothesis H0 as

H0 : θj ≤ 0 for j = 1, 2, 3 and 4. (3.5)

The rest of the section gives the details of our testing precedure.

3.1 Estimation of θj’s

We first consider the estimation of θj for j = 1, . . . , 4 and derive the asymptotics of corresponding

estimators. For a generic random variable A, let Êh[A|Z = c+] and Êh[A|Z = c−] be the local

quadratic regression estimators for E[A|Z = c+] and E[A|Z = c−], respectively, with bandwidth

h and kernel function K(·). To be specific,

(Êh[A|Z = c+], β̂+, κ̂+) = argmin
a,b,k

n∑
i=1

1(Zi ≥ c) ·K
(
Zi − c

h

)[
Ai − a− b · (Zi − c)− k · (Zi − c)2

]2
,

(Êh[A|Z = c−], β̂−, κ̂−) = argmin
a,b,k

n∑
i=1

1(Zi < c) ·K
(
Zi − c

h

)[
Ai − a− b · (Zi − c)− k · (Zi − c)2

]2
.

We consider two-step estimators for θj ’s. For the first step, we respectively estimate G1(y) =

E[1(Y ≤ y)|D = 1, Z = c+] ≡ E[D1(Y ≤ y)|Z = c+]/E[D|Z = c+] and G0(y) ≡ E[1(Y ≤
y)|D = 0, Z = c−] = E[(1−D)1(Y ≤ y)|Z = c−]/E[1−D|Z = c−] by

Ĝ1(y) =
Êh1 [D1(Y ≤ y)|Z = c+]

Êh1 [D|Z = c+]
, Ĝ0(y) =

Êh1 [(1−D)1(Y ≤ y)|Z = c−]

Êh1 [1−D|Z = c−]
.

Let q ≡ E[D|Z = c−]/E[D|Z = c+] and r ≡ E[1−D|Z = c+]/E[1−D|Z = c−] be estimated by

q̂ =
Êh1 [D|Z = c−]

Êh1 [D|Z = c+]
, r̂ =

Êh1 [1−D|Z = c+]

Êh1 [1−D|Z = c−]
.

Then G−1
1 (q) and G−1

0 (r) are estimated by

Ĝ−1
1 (q̂) = inf{y ∈ Y : Ĝ1(y) ≥ q̂}, Ĝ−1

0 (r̂) = inf{y ∈ Y : Ĝ0(y) ≥ r̂}.

In the second step, θ1, θ2, θ3 and θ4 are estimated by

θ̂1 = Êh2 [DY 1(Y < Ĝ−1
1 (q̂))|Z = c+] · Êh2 [D|Z = c−]
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− Êh2 [DY |Z = c−] · Êh2 [D1(Y < Ĝ−1
1 (q̂))|Z = c+],

θ̂2 = Êh2 [DY |Z = c−] · Êh2 [D1(Y > Ĝ−1
1 (1− q̂))|Z = c+]

− Êh2 [DY 1(Y > Ĝ−1
1 (1− q̂))|Z = c+] · Êh2 [D|Z = c−],

θ̂3 = Êh2 [(1−D)Y 1(Y < Ĝ−1
0 (r̂))|Z = c−] · Êh2 [1−D|Z = c+]

− Êh2 [(1−D)Y |Z = c+] · Êh2 [(1−D)1(Y < Ĝ−1
0 (r̂))|Z = c−],

θ̂4 = Êh2 [(1−D)Y |Z = c+] · Êh2 [(1−D)1(Y > Ĝ−1
0 (1− r̂))|Z = c−]

− Êh2 [(1−D)Y 1(Y > Ĝ−1
0 (1− r̂))|Z = c−] · Êh2 [(1−D)|Z = c+].

Note that the two-step estimators for θj ’s involve two different bandwidths, h1 and h2. We

use h1 to estimate r, q, G−1
0 (r), G−1

0 (1 − r), G−1
1 (q) and G−1

1 (1 − q), and use h2 to estimate

the conditional means in the expressions of θ̂j ’s. As shown in details in Appendix B, we take h1

to be a larger bandwidth than h2 in that h2/h1 → 0, so the estimation effects in the first step

are asymptotically negligible when we derive the asymptotics of θ̂j ’s. In other words, we can

treat Ĝ−1
0 (r̂), Ĝ−1

0 (1− r̂), Ĝ−1
1 (q̂) and Ĝ−1

1 (1− q̂) as true values when we estimate θj ’s. In the

second step, we use a local quadratic regression to estimate the components in θ̂j ’s. By Remark

7 of Calonico, Cattaneo, and Titiunik (2014, CCT), a local quadratic regression estimator for a

conditional mean is numerically equivalent to a local linear bias-corrected estimator when the

pilot bandwidth is the same as h2. The implication of these results is that the resulting θ̂j ’s are

also bias-corrected estimators and we can set h2 = O(n−1/5). Note that the popular data-driven

bandwidths proposed in the literature, such as Imbens and Kalyanaraman (2012, IK), CCT and

Arai and Ichimura (2016, AI), all are of order n−1/5 and satisfy this rate condition. For h1, we

suggest to set h1 = h2 · n1/5 · n−1/6 and this ensures that h2/h1 → 0. These requirements are

summarized in Assumption B.5.

While we provide formal results for the rates of h1 and h2, we do not develop the opti-

mal bandwidths for our case. There are four θj ’s, and each θj contains multiple conditional

expectations. The linearized version of
√
nh2(θ̂j − θj) is not of the form

√
nh2(Êh2 [A|Z =

c+] − Êh2 [A|Z = c−] − E[A|Z = c+] − E[A|Z = c−]) + op(1), so the results in CCT can not

be applied directly. Furthermore, we are unaware of any existing results for optimal bandwidth

choice for the specification test in such settings, and fully investigating it is not the focus of our

paper. Therefore, we leave this for future research. In our simulation and empirical study, we
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try three different bandwidths (IK, CCT, AI) of order n−1/5 and the testing results based on

these choices are quite similar, so we expect that the results based on an optimal bandwidth for

our case will be similar in practice.

In Appendix B, under suitable regularity conditions, we formally derive the asymptotic linear

representations of the estimators
√
nh2(θ̂ − θ) where θ = (θ1, θ2, θ3, θ4)

′ and θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4)
′.

We also show the joint asymptotic normality of the estimators in that
√
nh2(θ̂ − θ)

d→ N (0,Ω)

and Ω is a 4× 4 asymptotic covariance matrix.

3.2 Weighted Bootstrap

The analytical form of the variance estimator of the proposed estimators is complicated to

calculate even though we can ignore the estimation effect from the first step. To facilitate

implementation, as in Hsu and Shen (2022), we propose to use a weighted bootstrap procedure

first introduced in Ma and Kosorok (2005) to simulate the limiting distribution of the proposed

estimators under the assumptions in Appendix B. We consider two different approaches. In the

first approach, we consider a traditional two-step bootstrap procedure in which we repeat the

bootstrap estimation procedures in both steps. In the second approach, we consider a one-step

bootstrap procedure in which we take the first-step estimators as given and only consider the

bootstrap in the second-step estimation. The advantage of the second approach is that it is less

time-consuming because we do not need to calculate the bootstrapped first-stage estimators in

the bootstrap repetitions.

Let {Wi}ni=1 be a sequence of pseudo-random variables that is independent of the sample path

with both mean and variance equal to one. For a generic random variable A, let Êw
h [A|Z = c+]

and Êw
h [A|Z = c−] be the weighted bootstrap local quadratic estimators with bandwidth h for

E[A|Z = c+] and E[A|Z = c−], respectively. To be specific,

(Êw
h [A|Z = c+], β̂w

+, γ̂
w
+) = argmin

a,b,k

n∑
i=1

Wi · 1(Zi ≥ c) ·K
(
Zi − c

h

)[
Ai − a− b · (Zi − c)− k · (Zi − c)2

]2
,

(Êw[A|Z = c−], β̂w
−, γ̂

w
−) = argmin

a,b

n∑
i=1

Wi · 1(Zi < c) ·K
(
Zi − c

h

)[
Ai − a− b · (Zi − c)− k · (Zi − c)2

]2
.
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For the first bootstrap approach, let the weighted bootstrap estimators for G1(y) and G0(y) be

Ĝw
1 (y) =

Êw
h1
[D1(Y ≤ y)|Z = c+]

Êw
h1
[D|Z = c+]

, Ĝw
0 (y) =

Êw
h1
[(1−D)1(Y ≤ y)|Z = c−]

Êw
h1
[1−D|Z = c+]

.

Let the weighted bootstrap estimators for q and r be

q̂w =
Êw

h1
[D|Z = c−]

Êw
h1
[D|Z = c+]

, r̂w =
Êw

h1
[1−D|Z = c+]

Êw
h1
[1−D|Z = c−]

.

Let the weighted bootstrap estimators for G−1
1 (q), G−1

1 (1− q), G−1
1 (r), G−1

1 (1− r) be

Ĝ−1,w
1 (q̂w) = inf{y ∈ Y : Ĝw

1 (y) ≥ q̂w}, Ĝ−1,w
1 (1− q̂w) = sup{y ∈ Y : Ĝw

1 (y) ≤ 1− q̂w},

Ĝ−1,w
0 (r̂w) = inf{y ∈ Y : Ĝw

0 (y) ≥ r̂w}, Ĝ−1,w
0 (1− r̂w) = sup{y ∈ Y : Ĝw

0 (y) ≤ 1− r̂w}.

Then the weighted bootstrap estimators for θ1, θ2, θ3 and θ4 are

θ̂w1 = Êw
h2
[DY 1(Y < Ĝ−1,w

1 (q̂w))|Z = c+] · Êw
h2
[D|Z = c−]

− Êw
h2
[DY |Z = c−] · Êw

h2
[D1(Y < Ĝ−1,w

1 (q̂w))|Z = c+],

θ̂w2 = Êw
h2
[DY |Z = c−] · Êw

h2
[D1(Y > Ĝ−1,w

1 (1− q̂w))|Z = c+]

− Êw
h2
[DY 1(Y > Ĝ−1,w

1 (1− q̂w))|Z = c+] · Êw
h2
[D|Z = c−],

θ̂w3 = Êw
h2
[(1−D)Y 1(Y < Ĝ−1,w

0 (r̂w))|Z = c−] · Êw
h2
[1−D|Z = c+]

− Êw
h2
[(1−D)Y |Z = c+] · Êw

h2
[(1−D)1(Y < Ĝ−1,w

0 (r̂w))|Z = c−],

θ̂w4 = Êw
h2
[(1−D)Y |Z = c+] · Êw

h2
[(1−D)1(Y > Ĝ−1,w

0 (1− r̂w))|Z = c−]

− Êw
h2
[(1−D)Y 1(Y > Ĝ−1,w

0 (1− r̂w))|Z = c−] · Êw
h2
[(1−D)|Z = c+].

Next, we consider second bootstrap in which we do not use Ĝ−1,w
1 (q̂w), Ĝ−1,w

1 (1 − q̂w),

Ĝ−1,w
0 (r̂w) and Ĝ−1,w

0 (1 − r̂w) in the second step; instead, we use Ĝ−1
1 (q̂), Ĝ−1

1 (1 − q̂), Ĝ−1
0 (r̂)

and Ĝ−1
0 (1− r̂) from the first step of the estimation of θ̂. To be specific, let

θ̂b1 = Êw
h2
[DY 1(Y < Ĝ−1

1 (q̂))|Z = c+] · Êw
h2
[D|Z = c−]

− Êw
h2
[DY |Z = c−] · Êw

h2
[D1(Y < Ĝ−1

1 (q̂))|Z = c+],

θ̂b2 = Êw
h2
[DY |Z = c−] · Êw

h2
[D1(Y > Ĝ−1

1 (1− q̂))|Z = c+]
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− Êw
h2
[DY 1(Y > Ĝ−1

1 (1− q̂))|Z = c+] · Êw
h2
[D|Z = c−],

θ̂b3 = Êw
h2
[(1−D)Y 1(Y < Ĝ−1

0 (r̂))|Z = c−] · Êw
h2
[1−D|Z = c+]

− Êw
h2
[(1−D)Y |Z = c+] · Êw

h2
[(1−D)1(Y < Ĝ−1

0 (r̂))|Z = c−],

θ̂b4 = Êw
h2
[(1−D)Y |Z = c+] · Êw

h2
[(1−D)1(Y > Ĝ−1

0 (1− r̂))|Z = c−]

− Êw
h2
[(1−D)Y 1(Y > Ĝ−1

0 (1− r̂))|Z = c−] · Êw
h2
[(1−D)|Z = c+].

Under the same set of regularity conditions (see details in Appendix B), we derive the

asymptotic linear representations of both weighted bootstrap estimators
√
nh2(θ̂

w − θ̂) and
√
nh2(θ̂

b− θ̂). We can also show that both Φ̂w =
√
nh2(θ̂

w− θ̂) and Φ̂b =
√
nh2(θ̂

b− θ̂) converge

to the same limiting distribution as
√
nh2(θ̂− θ) conditional on the same path with probability

approaching one. That is, Φ̂w and Φ̂b can approximate the limiting distribution of
√
nh2(θ̂− θ)

well.

3.3 Test statistic, critical value and decision rule

We define the test statistic as

T̂n =
√
nh2 max

j=1,...,4

θ̂j
σ̂j

, (3.6)

where σ̂j is a consistent estimator for σj , the square root of the asymptotic variance of
√
nh1(θ̂j−

θj) for j = 1, 2, 3, 4. For σ̂j , we suggest using the weighted bootstrap estimators. To be

specific, let t = 1, . . . , T and say T = 1000. Then for each t, we get θ̂w,t and θ̂b,t. Let σ̂w
j =

√
nh2

(
T−1

∑T
t=1(θ̂

w,t
j − θ̂j)

2
)1/2

and σ̂b
j =

√
nh2

(
T−1

∑T
t=1(θ̂

b,t
j − θ̂j)

2
)1/2

. Then σ̂j can be σ̂w
j

or σ̂b
j .

Define the recentering parameters µ̂j ’s as µ̂j = θ̂j · 1(
√
nh2θ̂j ≤ −anσ̂j) where an is sequence

of positive numbers such that limn→∞ an = ∞ and limn→∞ an/
√
nh2 = 0. For significance level

α < 1/2, define the critical value as ĉwn (α) = max{c̃wn (α), 0} and ĉbn(α) = max{c̃bn(α), 0} where

c̃wn (α) and c̃bn(α) are defined as

c̃wn (α) = inf
c

{
c : P

(
max

j=1,...,4

{ ϕ̂w
j +

√
nh2µ̂j

σ̂j

}
≤ c

)
≥ 1− α

}
,

c̃bn(α) = inf
c

{
c : P

(
max

j=1,...,4

{ ϕ̂b
j +

√
nh2µ̂j

σ̂j

}
≤ c

)
≥ 1− α

}
.

20



The decision rule will be “Reject H0 if T̂n > ĉn(α),” where ĉn(α) can be ĉwn (α) or ĉ
b
n(α).

Proposition 3.3 Suppose that Assumptions B.1 to B.8 in Appendix B hold and let 0 < α < 1/2.

Then under H0 in (3.5), limn→∞ P (T̂n > ĉn(α)) ≤ α; under H1, limn→∞ P (T̂n > ĉn(α)) = 1.

For the implementation of our test, one can set Wi as normal distributions with mean and

variance both equal to 1, but we suggest setting Wi as a binary variable taking values on 0 and

2 with equal probability, so all the realized weights Wi will be non-negative. We also suggest

setting an =
√
2 log log n as in Donald and Hsu (2011) or an =

√
0.3 log n as in Andrews and Shi

(2013).

Remark 3.4 Another possible way to construct our test is to estimate the quantities in the in-

equalities in (2.7), (2.8), (2.9) and (2.10) by the truncated conditional mean estimators proposed

by Olma (2021), which is based on the Neyman-orthogonal moment. However, we consider the

advantage of our estimator is that if the quantile index in the truncated conditional mean is close

to zero, then the estimation can be less stable due to the fact that the estimated quantile index

is in the denominator. In our estimation, there is no fractional expression in the θj’s.

4 Simulation

4.1 Baseline Simulation

In this section, we consider a few numerical examples to illustrate the performance of our

procedure. For comparison purposes, our first set of DGPs are the same as the power designs

in Arai, Hsu, Kitagawa, Mourifié, and Wan (2022), which we listed below:

DGP1 Let Z ∼ N(0, 1) truncated at −2 and 2. The propensity score is given by

P (D = 1|Z = z) = 1{−2 ≤ z < 0}max{0, (z + 2)2/8− 0.01}

+ 1{0 ≤ z ≤ 2}min{1, 1− (z − 2)2/8 + 0.01}

Let Y |(D = 0, Z = z) ∼ N(0, 1) for all z ∈ [−2, 2], and Y |(D = 1, Z = z) ∼ N(0, 1) for all

z ∈ [0, 2]. Let Y |(D = 1, Z = z) ∼ N(−0.7, 1) for all z ∈ [−2, 0).

DGP2 Same as DGP1 except that Y |(D = 1, Z = z) ∼ N(0, 1.6752) for all z ∈ [−2, 0).
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DGP3 Same as DGP1 except that Y |(D = 1, Z = z) ∼ N(0, 0.5152) for all z ∈ [−2, 0).

DGP4 Same as DGP1 except that Y |(D = 1, Z = z) ∼ ∑5
j=1 ωjN(µj , 0.125

2) for all z ∈ [−2, 0),

where ω = (0.15, 0.2, 0.3, 0.2, 0.15) and µ = (−1,−0.5, 0, 0.5, 1).

Note that all four DGPs violate the null hypothesis in Arai, Hsu, Kitagawa, Mourifié, and Wan

(2022) because the conditional distributions of the potential outcome are not continuous near

the cutoff. DGP1 has a location shift, so it violates the FRD mean assumptions and therefore

violates our null hypothesis. On the other hand, DGP2, DGP3, and DGP4 satisfy our null

hypothesis. In DGP2 and DGP3, only the conditional variance changes but not the conditional

expectation. For DGP4, while the shape of the distribution changes from normal to a mixture

of normals, the conditional expectation is still zero on both sides of the cutoff.

For all the designs, we report results based on three sample sizes n ∈ {1000, 2000, 4000},
1000 bootstrap draws, 800 replications, and significance level α = 5%. We set an =

√
2 log log n

following Donald and Hsu (2016). For the bandwidth, as mentioned in Section 3, we choose

h1 = kn− 1
6 and h2 = kn− 1

5 , where the constant k are taken as the constants from three data-

driven choices of bandwidths: IK, CCT and AI.

Table 1 reports the results using θ̂b. The results of using θ̂w are qualitatively similar and

therefore omitted to save space. For the same reason, we only report the results at 5% level. The

northwest panel (DGP1) is the power design, where the local continuity in means assumption is

violated. We can see the rejection rate is low when the sample size is small (n = 1000), which is

not surprising because there are fewer observations near the cutoff to provide screening power.

However, the rejection rate increases as the sample size increases for all choices of bandwidths.

The remaining three panels of Table 1 are size designs in which both Assumptions 2.1 and 2.2

are satisfied. For these designs, all the rejection rates are below the nominal level of 5% for all

sample sizes, suggesting that the size is well controlled. The rejection rate being smaller than

the nominal level is due to some inequality are far away from binding, but the moment selection

procedure does not completely discard them in finite sample. This is a common phenomenon for

inference in inequality models. We do observe that, as the sample size increases, the rejection

rates get closer to the nominal rate. In contrast, the test of Arai, Hsu, Kitagawa, Mourifié, and

Wan (2022, Table 2) rejects DGP2-4 because either the variance or the shape of the potential

outcome distribution is not continuous near the cutoff.
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Table 1: Rejection Rate at 5% Level (based on θ̂b)

DGP1 (power) DGP2 (size)
n IK CCT AI IK CCT AI

1000 0.253 0.1050 0.197 0.018 0.008 0.010
2000 0.572 0.398 0.475 0.027 0.015 0.015
4000 0.873 0.718 0.797 0.023 0.035 0.030

DGP3 (size) DGP4 (size)
n IK CCT AI IK CCT AI

1000 0.000 0.000 0.013 0.018 0.003 0.020
2000 0.022 0.018 0.027 0.025 0.020 0.015
4000 0.038 0.023 0.028 0.033 0.020 0.028

4.2 Further Power Analysis

When implementing our test, the non-rejection can result from multiple factors. At the popula-

tion level, it can be the case that the FRDmean assumptions hold, or the FRDmean assumptions

do not hold, but the sharp testable implications hold. At the finite sample level, it could be

the case that the sample size is small relative to the magnitude of the violation so that the null

can not be rejected. In this subsection, we further examine a few factors that affect the finite

sample power of our test.

4.2.1 Magnitude of violation

We conduct another set of experiments to examine how the rejection rate varies with the “mag-

nitude” of violation.

DGP5 The same as DGP1 except that Y |(D = 1, Z = z) ∼ N(−τ, 1) for z ∈ [−2, 0), where

τ ∈ {0.1, 0.2, · · · , 1.0}.

In this design, τ measures the ratio of the violation size over the standard deviation of the

potential outcomes. Figure 2 plots the rejection rate of using IK bandwidth constant at different

values of τ and sample size n. The results of using other bandwidths are similar. When τ = 0,

the local continuity in the mean condition is satisfied, and we would expect the rejection rate to

be no larger than the nominal rate. As τ increases, the magnitude of violation is larger, and we

expect to see the rejection rate increase. For example, when the size of the violation is about
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Figure 2: Rejection frequency and the magnitude of violation (IK, α = 5%)
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half of the standard deviation, we already see a quite large rejection frequency at reasonable

sample sizes.

We also conduct the distribution test of Arai, Hsu, Kitagawa, Mourifié, and Wan (2022)

using DGP5. Figure 3 plots the rejection frequency of the mean and distribution tests at the

sample size n = 4000. For the distribution test, we use the under-smoothed IK bandwidth. The

mean test curve is copied from Figure 2 for the convenience of comparison. It lies above the

rejection curve of the distribution test for all the violation magnitude. It is interesting to note

that in DGP5, it is the location shift that drives the discontinuity in the distribution, and the test

designed for testing the mean discontinuity works better. Of course, this is just one simulation

study and there is not enough information to draw a more general conclusion. However, it does

suggest that the mean test can perform better in the finite sample over a reasonable class of

DGPs, particularly when the violation is on the means. If the violation is on other moments like

DGP2-4, the mean test will not have power, but the distribution test is still consistent against

those alternatives.

As our next simulation study, we examine how well our test performs in more realistic data

scenarios. As the benchmark, we use the data from Battistin, Brugiavini, Rettore, and Weber

(2009), who study the effect of retirement on consumption. As we will show later in Section 5,

neither our test nor the distributional test rejects the validity of the FRD design in Battistin,

Brugiavini, Rettore, and Weber (2009). Hence, we proceed to estimate the distribution of Y (1)

for always-takers and compliers, and the distribution of Y (0) for never-takers and compliers
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Figure 3: Rejection frequency and the magnitude of violation (IK, α = 5%)
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under the FRD distribution assumptions. Next, we artificially distort the mean of the estimated

distribution so that it violates the FRD mean assumptions and check the magnitude of the

distortion so that our test can reject. We chose this data set and the outcome variable of “food

consumption” (logs) to implement the exercise because it contains many observations, and the

distribution of outcome variables is approximately normal so that we can compare it with our

simulation design DGP5. The same message is obtained from other outcome variables.

To be more specific, we shifted never-taker’s Y (0) distribution given Z = c+ to the left by

the amount of τσY , where σY is the standard deviation of Y in data and τ ∈ {0.1, 0.2, · · · , 1.0}.
So τ measures the distortion’s magnitude relative to the observed outcome’s standard deviation.

Please see an illustration from Figure 4 with τ = 0.5, where the dotted line is the pdf of the

estimated distribution of Y (0)|NNN,Z = c+, and the solid line is the pdf of distorted distribution.

Figures 5a and 5b report the p-values for different distorted DGPs under different bandwidth

choices. Note that the bandwidth from the original Battistin, Brugiavini, Rettore, and Weber

(2009) paper was h = 10. There are a total of 30,689 observations, and 9,804 of them are within

[c−10, c+10] interval. For robustness concerns, we also consider bandwidths h ∈ {8, 9, 10, 11, 12}.
Not surprisingly, the p-values are decreasing in the distortion magnitude for all bandwidth

choices. When the distortion reaches roughly 0.5 times the standard deviation of Y , our test

starts to reject at 5% level. Again, these exercises show that because our test only tests necessary

conditions, it can not screen out all possible violations; however, it does have power when the

magnitude of the violation is reasonably large. This result matches our observation from the
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Figure 4: Distorting the potential outcome distribution at τ = 0.5
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simulation results based on DGP5 above.

4.2.2 Size of the propensity jump

Next, we consider DGP6, where the propensity score’s jump size π takes different values.

DGP6 The same as DGP1 except that

P (D = 1|Z = z) = 1{−2 ≤ z < 0}max
{
0, (z + 2)2/8− π

2

}
+ 1{0 ≤ z ≤ 2}min

{
1, 1− (z − 2)2/8 +

π

2

}
.

Here, π ∈ {0, 0.05, 0.1, 0.15, · · · , 0.6} and Y |(D = 1, Z = z) ∼ N(−d, 1) for z ∈ [−2, 0) for

d ∈ {0.7, 1.0, 1.5}. As we discussed earlier in Remark 2.3, when π increases, q (or r) will

decrease (given everything else equal). Therefore, the bounds in Proposition 2.2 will be wider,

and thus we will expect a lower rejection rate. Figure 6 verifies this point for bandwidth IK-

US and sample size n = 8000. Again, the results for other sample sizes and bandwidths are

qualitatively similar.

4.2.3 Non-constant regression function

In our baseline simulation, for both size and power designs, the regression function of the po-

tential outcomes on the running variable is constant on both sides of the cutoff. This subsection
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Figure 5: p-values and data distortion

Figure 6: Rejection frequency and propensity score jump size (IK, α = 5%)
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considers DGPs in which E[Y (d)|Z = z] are polynomials of z.

DGP7 Same as DGP1 expect that Y |(D = 1, Z = z) ∼ N(δ1z + δ2z
2, 1) for all z ∈ [0, 2], and

Y |(D = 1, Z = z) ∼ N(−0.7 + π1z + π2z
2, 1) for all z ∈ [−2, 0)

DGP8 Same as DGP7 except that Y |(D = 1, Z = z) ∼ N(π1z + π2z
2, 1.6752) for all z ∈ [−2, 0).

DGP9 Same as DGP7 except that Y |(D = 1, Z = z) ∼ N(π1z + π2z
2, 0.5152) for all z ∈ [−2, 0).

DGP10 Same as DGP7 except that Y |(D = 1, Z = z) ∼ ∑5
j=1 ωjN(µj +π1z+π2z

2, 0.1252) for all

z ∈ [−2, 0), where ω = (0.15, 0.2, 0.3, 0.2, 0.15) and µ = (−1,−0.5, 0, 0.5, 1).

In these designs, we set π1 = π2 = δ1 = δ2 = 1. DGP7 is the power design because the

conditional expectation of Y (1) given Z = z is discontinuous at the cutoff. DGP8-DGP10

are size designs because the conditional expectation of Y (1) is continuous despite not being a

constant function of z.

Table 2: Rejection Rate with non-constant regression function (θ̂b, 5%)

DGP7 (power) DGP8 (size)
n IK CCT AI IK CCT AI

1000 0.126 0.066 0.202 0.008 0.006 0.024
2000 0.364 0.282 0.372 0.026 0.018 0.022
4000 0.666 0.658 0.776 0.022 0.036 0.032

DGP9 (size) DGP10 (size)
n IK CCT AI IK CCT AI

1000 0.012 0.004 0.018 0.004 0.006 0.014
2000 0.016 0.020 0.024 0.012 0.016 0.022
4000 0.024 0.024 0.020 0.030 0.028 0.028

4.2.4 Discrete running variable

Last, we test the performance of our test when the running variable is discrete. For this, we

reuse DGP1-DGP4 but change them such that the running variable is generated by

z =
1

10
floor(10z∗),
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where z∗ is generated from truncated standard normal on [−2, 2] and floor(·) is the floor func-

tion that rounds a real number down to the maximum integer. So z has mass points on

{−2,−1.9, · · · , 1.9}. The rest of the design remains to be the same as DGP1-DGP4. We

implement the test by ignoring the fact that the running variable is discrete (so that we still

apply local polynomial regression and use bandwidths h1 and h2). The results are reported in

Table 3. We can see that the conclusion is qualitatively similar to the baseline design.

Table 3: Rejection rate with discrete running variable (θ̂w, 5%)

DGP1-discrete (power) DGP2-discrete (size)
n IK CCT AI IK CCT AI

1000 0.2450 0.1175 0.2000 0.0225 0.0125 0.0325
2000 0.5475 0.4450 0.4225 0.0275 0.0225 0.0250
4000 0.8175 0.6425 0.6950 0.0325 0.0275 0.0225

DGP3-discrete (size) DGP4-discrete (size)
n IK CCT AI IK CCT AI

1000 0.0150 0.0175 0.0075 0.0050 0.0225 0.0300
2000 0.0275 0.0150 0.0250 0.0275 0.0225 0.0300
4000 0.0250 0.0275 0.0225 0.0200 0.0100 0.0275

5 Empirical Application

In this section, we illustrate the use of our method in a few empirical applications.9

5.1 Effect of Enrolling in a Subsidized Insurance Program

We first access the validity of Assumptions 2.1 and 2.2 in the empirical context studied by

Miller, Pinto, and Vera-Hernández (2013), who use the FRD design to identify the causal effect

of enrolling in a publicly funded insurance program (Subsidized Regime, SR) on many household-

level outcome variables in Columbia. In Columbia, a household is eligible to enroll in SR if their

SISBEN score (Sistema de Identificación de Beneficiarios, a continuous index taking values from

0 to 100, with 0 being the poorest) is below a cutoff. The SISBEN score thus serves as the

9We thank the authors of Miller, Pinto, and Vera-Hernández (2013), Angrist and Lavy (1999), Pop-Eleches
and Urquiola (2013), and Battistin, Brugiavini, Rettore, and Weber (2009) for sharing the data or making the
data publicly available on journal websites. All errors in the empirical illustration are ours.
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running variable. In their empirical implementation, Miller, Pinto, and Vera-Hernández (2013)

use a simulated SISBEN score to alleviate the threat of possible manipulation on the score, and

the resulting density passes the density test and appears to be continuous at the cutoff.

Motivated by the observation that the continuity of running variable density is neither suffi-

cient nor necessary to identify the local average treatment effect (LATE), Arai, Hsu, Kitagawa,

Mourifié, and Wan (2022) test the set of (distributional) identifying assumptions for LATE-

type parameters. They find that the FRD distributional assumptions are rejected for three

dependent variables: “household educational spending”, “total spending on food”, and “total

monthly expenditure”. In this application, the monotonicity assumption appears to be rea-

sonable. Therefore, the rejection can be interpreted as the discontinuity of the conditional

distribution of potential outcomes of these three dependent variables given the running variable

(SISBEN score) near the cutoff.

Table 4: Testing Results for Columbia’s SR Data: p-values

Bandwidth/constant h Household edu.exp. Total exp.on food Total monthly exp.

2 0.838 0.696 0.178
3 0.988 0.779 0.592
4 0.465 0.555 0.766
IK 0.541 0.507 0.721
CCT 0.527 0.514 0.879
AI 0.696 0.553 0.685

However, discontinuity in the conditional distribution does not necessarily imply a discon-

tinuity in the conditional expectation. Table 4 reports the p-values of our test on the three

dependent variables under different bandwidth choices (including the three fixed bandwidths

used in Miller, Pinto, and Vera-Hernández, 2013). We observe no rejection across the board,

even at the 10% level. While our test is designed for the necessary (but not sufficient) implica-

tions of the FRD mean assumptions and non-rejection may also be caused by the sample size

being too small for the mean test to reject, this result can be considered supportive evidence for

credibly estimating the mean effect.
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5.2 Effect of Class Size

Our second empirical application is the one studied by Angrist and Lavy (1999) and Angrist,

Lavy, Leder-Luis, and Shany (2019), where Israel’s Maimonides’ rule creates an FRD design and

can be used to identify the effect of class size on students’ performance. Maimonides’ rule in

Israel’s public school system requires that the class size be no larger than 40 students. Whenever

the enrollment exceeds 40, the school must offer at least two classes. Under this policy, therefore,

the average class size of a grade as a function of enrollment is discontinuous at the multiples

of the upper limit (40, 80, 120 etc.). In practice, some schools choose smaller class sizes than

40. This creates an FRD design because the probability of dividing classes is larger than zero

before reaching the cutoff. In a seminal paper, Angrist and Lavy (1999) use this FRD design to

identify the causal effect of class size on students’ performance.

There are concerns about the validity of the identification strategy due to possible manipu-

lation of the enrollment (running variable). For example, Otsu, Xu, and Matsushita (2013) find

that the enrollment density is not continuous at some of the cutoffs. However, as discussed in

Angrist, Lavy, Leder-Luis, and Shany (2019), the discontinuity of running variable density is

likely caused by schools’ budgetary consideration and is independent of students’ potential per-

formance, and therefore need not violate the identifying assumptions for the LATE parameters.

This discussion is supported by Arai, Hsu, Kitagawa, Mourifié, and Wan (2022), who test the

(distributional) identifying assumptions for four dependent variables (grade 4 and 5’s math and

vocabulary) and did not find evidence for rejection.

Table 5: Testing Results for Israeli School Data (Grade 4): p-values

g4math g4verb
Bandwidth/constant 40 80 120 40 80 120

5 0.883 0.471 0.817 0.775 0.914 0.802
IK 0.459 0.557 0.209 0.384 0.845 0.763
CCT 0.505 0.988 0.988 0.852 0.985 0.997
AI 0.481 0.958 0.612 0.219 0.929 0.574

In this subsection, we revisit this empirical question. At the population level, if the data

distribution satisfies the sharp testable implications of the distributional assumption, an observa-

tionally equivalent potential distribution exists that satisfies the FRD distributional assumptions
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Table 6: Testing Results for Israeli School Data (Grade 5): p-values

g5math g5verb
Bandwidth/constant 40 80 120 40 80 120

5 0.909 0.646 0.985 0.685 0.739 0.988
IK 0.764 0.349 0.781 1.000 0.958 0.666
CCT 0.997 0.792 0.601 0.993 0.975 0.658
AI 0.908 0.998 0.999 0.992 0.997 0.975

and hence satisfies FRD mean assumptions. Therefore, the data distribution must also satisfy

the testable implications in this paper. However, the conclusions may differ in the finite sample

due to sampling error. In this example, the two tests agree with each other. As reported in

Tables 5 and 6, the p-values for the cutoff 40 are greater than 5% for all bandwidths choices and

all four dependent variables, and they are greater than 10% for nearly all combinations.

5.3 Effect of Attending Better Schools

Estimating the effect of school quality on student performance is one of the most important

research questions in labour/education economics. The difficulty lies in that students are het-

erogeneous in their ability and how much they can benefit from a higher-achievement school,

and they are not randomly allocated to different schools. Pop-Eleches and Urquiola (2013) apply

the FRD design to Romanian secondary school data and find that students who enroll in better

schools tend to perform better in the Baccalaureate exams, among other findings.

In Romania, students’ chances of enrolling in higher-ranked schools solely depend on a per-

formance measure in schools, which depends on their nationwide test outcome and their GPA.

The centralized allocation process satisfies the needs of students with higher scores first, thus

creating cutoff scores at which the enrollment probability (in better schools) changes discontin-

uously. Please see Pop-Eleches and Urquiola (2013) for detailed institutional background. If the

students who are just above the cutoff on average benefit from the higher-achievement school

the same way as those who are just below the cutoff, such jumps in enrollment probability can

provide identification power for the causal effect near the cutoff.

In our empirical illustration, the outcome variable is the continuous Baccalaureate exam

score. The running variable is the transition score, and the treatment variable is if a student

enrolls in a ”better school.” Here we consider two cutoffs: enrolling in the best school in town or
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avoiding the worst school in town. The validity of an FRD design using test scores as a cutoff

is not self-ensured and depends on specific empirical contexts. For example, if a school teacher

has a targeted group of students that he/she always prefers to put on the treatment (or on the

right-hand side of the cutoff), then the teacher may manipulate the cutoff to guarantee this.

If this group of students is different from other students in an unobserved way, then the local

continuity condition can be violated. See also discussions about running variable manipulation

in Gerard, Rokkanen, and Rothe (2020). The FRD design using the Romanian secondary school

transition test, however, is likely to be valid since the test is at the national level and the cutoffs

are quite difficult to manipulate.

The testing results are reported in Table 7. We see that the validity of Assumptions 2.1

and 2.2 are not rejected at 10% throughout different choices of bandwidths. As a comparison,

we also conduct the distributional test of Arai, Hsu, Kitagawa, Mourifié, and Wan (2022), and

obtain the same result qualitatively.10

Table 7: Testing Results for Romania High School Data: p-values

Attending best school Avoiding worst school
Bandwidth Mean Test Distr. Test Mean Test Distr. Test

0.100 0.566 0.900 1.000 0.271
0.200 0.832 0.999 0.466 0.838
0.300 0.806 1.000 0.907 0.967
IK 0.518 0.635 0.564 0.815
CCT 0.502 0.588 0.612 0.786
AI 0.512 0.590 0.983 0.848

5.4 Effect of Retirement on Consumption

As population aging accelerates in developed countries, there is an increasing number of studies

on the impact of retirement on personal physical health, psychological health, cognitive com-

petence, and family income and consumption. The key issue for identifying the causal effect is

the endogeneity of the retirement decision. One common solution is using RD designs based

on retirement-related policies or incentives. For example, many countries implement ”official

10Pop-Eleches and Urquiola (2013) reports that McCrary (2008)’s density test does not reject the continuity of
the running variable density at the cutoffs; we do not repeat the test here.
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retirement ages,” and such legislation provides exogenous variations for retirement decisions;

see Müller and Shaikh (2018) for a summary of OECD country retirement ages.

Our empirical illustration uses the data from Battistin, Brugiavini, Rettore, and Weber

(2009), which identifies the effect of Italy seniors’ retirement on consumption drop. The idea

is that becoming eligible for a pension provides an additional incentive for retirement; thus, as

empirically observed, the retirement probability changes discontinuously at the eligibility cutoff.

Suppose the seniors who are marginally younger than the cutoff age are comparable to those

who are marginally older in their average potential consumption behavior. In that case, such

an FRD design can identify the causal effect of retirement on consumption.

In our implementation, we follow Battistin, Brugiavini, Rettore, and Weber (2009) and

choose the running variable as the difference between the ”family head’s” age and the eligibility

age. The treatment variable is retirement. We consider three outcome variables. They are

log values of total expenditure, total non-durable goods consumption, and food consumption.

Because the running variable is discrete (age by year), we do not implement data-dependent

bandwidth choices. Instead, we consider a wide range of choices from 3 to 10. The test does not

reject Assumptions 2.1 and 2.2 for all three outcome variables across all bandwidth choices at

10%: the p-values are quite high. We observe nearly no rejection for the distributional test at

10% either (except that the p-value for food consumption is around 10% when the bandwidth

is small, but they are all above 5%). Overall, we do not see evidence against the validity of the

FRD design (either for the mean assumptions or for distributional assumptions).

Table 8: Testing Results for Italian Retirement Consumption Data: p-values

Mean Test Distribution Test
Bandwidth Total Exp Non Durable Food Total Exp Non Durable Food

3 0.705 0.768 0.982 0.709 0.831 0.121
4 1.000 1.000 0.960 0.941 0.883 0.087
5 1.000 1.000 0.884 0.970 0.940 0.106
6 0.988 0.819 0.928 0.998 0.491 0.067
7 0.748 0.813 0.932 0.990 0.382 0.358
8 0.789 0.771 0.938 0.911 0.495 0.884
9 0.926 0.944 0.936 0.904 0.875 0.988
10 0.967 0.933 0.973 0.731 0.795 0.985
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6 Extensions and Discussions

6.1 Sharp bounds when Y is not continuous

The bounds reported in Proposition 2.2 are not necessarily sharp when Y is discrete or a mixture

of continuous and discrete parts. In practice, it is not unreasonable to treat Y as continuous

if its support contains a large number of points. For example, although the exam score only

takes integer values, it is often treated as continuous. In such cases, one can apply our results

in Proposition 2.2. Alternatively, one can also similarly derive the sharp bounds, as shown in

the following corollary.

Corollary 6.1 Suppose Assumptions 2.1 and 2.2 are satisfied. (i) Suppose Y (d), d ∈ {0, 1},
are discrete and takes value from a countable set Y = {y1, y2, · · · , yJ}, where yj < yj+1 for any

1 ≤ j < J . Then, the bounds in Proposition 2.2 can be tightened to

LB+ ≤ E[Y |D = 1, Z = c−] ≤ UB+, (6.1)

LB− ≤ E[Y |D = 0, Z = c+] ≤ UB−, (6.2)

where

LB+ ≡
j∗∑
j=1

yj
P (Y = yj |D = 1, Z = c+)

q
+ yj∗+1

{
1−

∑j∗

j=1 P (Y = yj |D = 1, Z = c+)

q

}
,

UB+ ≡
J∑

j=j†

yj
P (Y = yj |D = 1, Z = c+)

q
+ yj†−1

{
1−

∑J
j=j† P (Y = yj |D = 1, Z = c+)

q

}
,

LB− ≡
j∗∑
j=1

yj
P (Y = yj |D = 0, Z = c−)

r
+ yj∗+1

{
1−

∑j∗

j=1 P (Y = yj |D = 1, Z = c−)

r

}
,

UB− ≡
J∑

j=j†

yj
P (Y = yj |D = 0, Z = c−)

q
+ yj†−1

{
1−

∑J
j=j† P (Y = yj |D = 0, Z = c−)

r

}
,

and the definitions for j∗ and j† are given in Equation (A.5) and Equation (A.8).

(ii) If Y (d)’s distribution contains both a continuous part and mass points, then depending

on the location of the mass points, the sharp bounds take either the form of the continuous case

or the discrete case, and are reported in (A.10) and (A.11) in the appendix.
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Example 6.2 Consider the lower bound for always-takers’ expectation in the special case of a

binary outcome variable: Y ∈ {y1, y2}. In this case, the bounds in the statement of Proposi-

tion 2.2 will be trivial because inequalities 2.7 and 2.8 would simply imply:

y1 ≤ E[Y |D = 1, Z = c−] ≤ y2.

However, the bounds derived in Equations (6.1) and (6.2) still have empirical content. To see

this, if P (Y = y1|Z = c+) > qP (D = 1|Z = c+), then j∗ = 0. This is the case where (condi-

tioning on Z = c+) the total size of always-takers is smaller than the size of the subpopulation

for which Y = yj. The smallest possible value of E[Y |AAA,Z = c+] would be generated by the

distribution such that all the always-takers are concentrated on the subpopulation of Y = y1,

which is just y1. On the other hand, if P (Y = y1|Z = c+) ≤ qP (D = 1|Z = c+), then j∗ = 1

and there are more always-takers than the size of the subpopulation Y = y1. Hence, the smallest

value of E[Y |AAA,Z = c+] would be generated by the distribution where we allocate always-takers

first to the cell Y = y1, and then the rest to the cell Y = y2, and it gives bound as

y1
P (Y = y1|D = 1, Z = c+)

q
+ y2

(
1− P (Y = y1|D = 1, Z = c+)

q

)
.

To summarize, in the binary outcome case, when P (Y = y1|Z = c+) ≤ qP (D = 1|Z = c+), the

lower bound of E[Y |D = 1, Z = c−] is nontrivial and equals

y1
P (Y = y1|D = 1, Z = c+)

q
+ y2

(
1− P (Y = y1|D = 1, Z = c+)

q

)
.

6.2 Including covariates X

Our testable implication can be extended if the local monotonicity and local continuity in means

assumptions hold when conditioning on covariates X. In particular, consider:

Assumption 6.1 (Conditional local monotonicity) limε↓0 P (Tε ∈ {DF, IDF, IDF, I}|Z = c+ ε,X =

x) = 0 and limε↓0 P (Tε ∈ {DF, IDF, IDF, I}|Z = c− ε,X = x) = 0 for all x ∈ X .

Let fY (d)|Tε,Z,X(y|t, z, x) be the conditioning density of Y (d) given Tε = t, Z = z, and X = x.

Assumption 6.2 (Conditional local continuity in means) For all x ∈ X ,
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(i) limε↓0 fY (d)|Tε,Z,X(y|t, c−ε, x) and limε↓0 fY (d)|Tε,Z,X(y|t, c+ε, x) are proper densities and

admits finite expectations for |Y (d)|.
(ii) limε↓0E[Y (d)|Tε = t, Z = c − ε,X = x] = limε↓0E[Y (d)|Tε = t, Z = c + ε,X = x] and

limε↓0 P (Tε = t|Z = c− ε,X = x) = limε↓0 P (Tε = t|Z = c+ ε,X = x)

LetG1x(y) = limz↓c P (Y ≤ y|D = 1, Z = z,X = x) be the conditional distribution of Y given

D = 1, Z = z, X = x when z converges to c from above. Similarly, define G0x(y) = limz↑c P (Y ≤
y|D = 0, Z = z,X = x). We let qx = P1|0(x)/P1|1(x) where P1|0(x) = P (D = 1|Z = c−, X = x)

and P1|1(x) = P (D = 1|Z = c+, X = x). Likewise, we define rx = P0|1(x)/P0|0(x). Again, G1x,

G0x, qx, and rx are all directly identifiable from the data. Then we have the following results.

Corollary 6.2 Suppose that Assumptions 6.1 and 6.2 are satisfied, for all x ∈ X , qx ∈ (0, 1),

and rx ∈ (0, 1), and the distributions of Y given (D = 1, Z = c+, X = x), and Y given

(D = 0, Z = c−, X = x) are continuous, then the following inequality constraints hold:

E[Y |D = 1, Y < G−1
1x (qx), Z = c+, X = x] ≤ E[Y |D = 1, Z = c−, X = x], (6.3)

E[Y |D = 1, Z = c−, X = x] ≤ E[Y |D = 1, Y > G−1
1x (1− qx), Z = c+, X = x], (6.4)

E[Y |D = 0, Y < G−1
0x (rx), Z = c−, X = x] ≤ E[Y |D = 0, Z = c+, X = x], (6.5)

E[Y |D = 0, Z = c+, X = x] ≤ E[Y |D = 0, Y > G−1
0x (1− rx), Z = c−, X = x]. (6.6)

And the bounds for (E[Y |D = 1, Z = c−], E[Y |D = 0, Z = c+]) in Proposition 2.2 can be

tightened as

LB
+ ≤ E[Y |D = 1, Z = c−] ≤ UB

+
(6.7)

LB
− ≤ E[Y |D = 0, Z = c+] ≤ UB

−
(6.8)

where

LB
+
=

∫
E[Y |D = 1, Y < G−1

1x (qx), Z = c+, X = x]dHX|D,Z(x|1, z−)

UB
+
=

∫
E[Y |D = 1, Y > G−1

1x (1− qx), Z = c+, X = x]dHX|D,Z(x|1, z−),

LB
−
=

∫
E[Y |D = 1, Y < G−1

0x (rx), Z = c−, X = x]dHX|D,Z(x|0, z+)

UB
−
=

∫
E[Y |D = 1, Y > G−1

0x (1− rx), Z = c−, X = x]dHX|D,Z(x|0, z+).
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and HX|D,Z(x|d, z+) and HX|D,Z(x|d, z−), respectively, are the limits of the conditioning distri-

bution of X given D and Z = z when z approaches to c from above and below, respectively.

The bounds in (6.7) and (6.8) are tighter than those in Proposition 2.2 because the truncated

mean of the lower tail of the conditioning distribution (on X) is necessarily larger than the

truncated mean of the unconditioning distribution. This result shares the same spirit of Lee

(2009, Proposition 1b) and Gerard, Rokkanen, and Rothe (2020, Corollary 6), who also construct

bounds by conditioning on covariates and then integrated out X to obtain tighter bounds for

(reconditioning) treatment effect.

We can transform these inequalities as in Section 2 to implement the testable implication.

Take inequality (6.3) as an example. It implies that

E[Y |D = 1, Y < G−1
1 (q), Z = c+, X = x]− E[Y |D = 1, Z = c−, X = x] ≤ 0

⇔ E[DY 1(Y < G−1
1 (q))|Z = c+, X = x]

E[D1(Y < G−1
1 (q))|Z = c+, X = x]

− E[DY |Z = c−, X = x]

E[D|Z = c−, X = x]
≤ 0

⇔ θ1(x) ≡ E[DY 1(Y < G−1
1 (q))|Z = c+, X = x] · E[D|Z = c−, X = x]

− E[DY |Z = c−, X = x] · E[D1(Y < G−1
1 (q))|Z = c+, X = x] ≤ 0. (6.9)

Similarly calculating θj(x) for j = 2, 3, 4, we can then transform the null hypothesis as

H0 : sup
x∈X ,j∈{1,2,3,4}

θj(x) ≤ 0.

When X is discrete, our testing procedure in Section 3 can be easily extended by imple-

menting the test on each subsample defined by the value of covariates. When X is continuous,

it is possible to extend our results to this case by restricting x’s to a compact subset of interior

points of X , but it is more technically challenging. Alternatively, one can work with inequalities

(6.7) and (6.8).

Lastly, if the covariates X are predetermined and has conditional distribution given Z = z

that is continuous at the cutoff, then it must be the case that the expectation of X for always-

takers is bounded in the same manner as Y (1) in the Proposition 2.2, that is,

E[X|D = 1, X < G−1
X1(q), Z = c+] ≤ E[X|D = 1, Z = c−],

E[X|D = 1, Z = c−] ≤ E[X|D = 1, Y > G−1
X1(1− q), Z = c+].
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where G1X is defined in the same as G1 but with X replacing Y . Similar bounds can be created

for the expectation of X for never-takers. These inequalities can enhance the screening power

in the presence of pre-determined covariates X. We leave these discussions for future studies.

7 Conclusion

This paper proposes a specification test for researchers interested in estimating the mean causal

effect for compliers in FRD designs and complements the existing tests on distributions. The

test is easy to implement, has the asymptotic size control under the null and is consistent

against all fixed alternatives that violate the testable implication. We illustrate the use of this

new test in several empirical examples and show how it complements the existing tests that

target testing the continuity of potential outcome distributions, running variable densities, and

baseline variable distributions. The Monte Carlo simulation shows our test performs well in

finite samples with moderate sample sizes.
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APPENDIX

A Proofs of the Main Results

A.1 Proof of Proposition 2.2

The proof follows the approach of Horowitz and Manski (1995) and Lee (2009). Part (i) shows that

inequalities (2.7) to (2.10) are necessary conditions, and part (ii) shows that they are best to detect the

violation of FRD mean assumptions.

Part (i). We prove the first pair of inequalities (2.7) and (2.8); the other two hold analogously.

Inequalities (2.7) and (2.8) provide bounds for E[Y (1)|D = 1, Z = c−].

Let DF †DF †DF † denote the combination of DFDFDF and III. Let Ω†
ε = {ω : Tε(ω) =DFDFDF †}. By definition of DFDFDF †,

it must be case that Ω†
ε1 ⊆ Ω†

ε2 for any ε1 ≤ ε2. To see this, let ω∗ ∈ Ω†
ε1 . If Tε1(ω

∗) = III, then D(z, ω∗) is

neither constant over [c− ε1, c) nor over [c, c+ ε1], so it must be nonconstant over [c− ε2, c) or [c, c+ ε2]

as well, hence Tε2(ω
∗) = III and ω∗ ∈ Ω†

ε2 . If Tε1(ω
∗) =DFDFDF , then D(z, ω∗) = 1{z < c} for all z ∈ Bε1 . If

D(z, ω∗) = 1{z < c} for all z ∈ Bε2 as well, then Tε2(ω
∗) = DFDFDF , hence ω∗ ∈ Ω†

ε2 . If not, then D(z, ω∗)

is a nonconstant function on either [c − ε2, c) or [c, c + ε2], so Tε2(ω
∗) = III, hence ω∗ ∈ Ω†

ε2 . Regardless

which case, if we take an arbitrary ω∗ ∈ Ω†
ε1 , it must be that ω∗ ∈ Ω†

ε2 .

Note that the event of (D = 1, Z = c− ε) is equivalent to (Tε ∈ {AAA,DF †DF †DF †}, Z = c− ε). We will show

that E[Y |D = 1, Z = c−] can be written as

E[Y |D = 1, Z = c−] = lim
z↑c

E[Y |D = 1, Z = z]

= lim
ε↓0

E[Y (1)|D = 1, Z = c− ε] = lim
ε↓0

E[Y (1)|Tε ∈ {AAA,DF †DF †DF †}, Z = c− ε]

= lim
ε↓0

E[Y (1)|Tε = AAA,Z = c+ ε]. (A.1)

The first three equalities hold by definition. We will verify the last one. In the first case, if there exists

an ε̄ such that Ω†
ε̄ = ∅, then Ω†

ε = ∅ for all ε < ε̄. In this case, there is no type DF †DF †DF † near the cutoff, so

Equation (A.1) holds because

lim
ε↓0

E[Y (1)|Tε ∈ {AAA,DF †DF †DF †}, Z = c− ε] = lim
ε↓0

E[Y (1)|Tε = AAA,Z = c− ε] = lim
ε↓0

E[Y (1)|Tε = AAA,Z = c+ ε]

by Assumption 2.2. Here DFDFDF † drops out because Ω†
ε = ∅ for ε < ε̄, and the conditional expectation is

well defined because we assume q > 0 so always takers exist.

40



In the second case, if there does not exist an ε̄ such that Ω†
ε̄ = ∅, then

lim
ε↓0

E[Y (1)|Tε ∈ {AAA,DF †DF †DF †}, Z = c− ε]

= lim
ε↓0

{
E[Y (1)|Tε = AAA,Z = c− ε]P (Tε = AAA|Tε ∈ {AAA,DF †DF †DF †}, Z = c− ε)

+ E[Y (1)|Tε =DF †DF †DF †, Z = c− ε]P (Tε =DF †DF †DF †|Tε ∈ {AAA,DF †DF †DF †}, Z = c− ε)
}

= lim
ε↓0

E[Y (1)|Tε = AAA,Z = c− ε] = lim
ε↓0

E[Y (1)|Tε = AAA,Z = c+ ε], (A.2)

where the second equality holds because limε↓0 E[Y (1)|Tε = DF †DF †DF †, Z = c − ε] exists and is well-defined

by Assumption 2.2-(i), limε↓0 P (Tε = DF †DF †DF †|Tε ∈ {AAA,DF †DF †DF †}, Z = c − ε) = 0 under Assumption 2.1 (local

montononicity) and that always takers exist (q > 0). The third equality holds by Assumption 2.2-(ii)

(local continuity in means). Hence, the bounds for limε↓0 E[Y (1)|Tε = AAA,Z = c+ ε] is equivalent to the

bounds for E[Y |D = 1, Z = c−].

Likewise, under Assumptions 2.1 and 2.2,

q ≡ P (D = 1|Z = c−)
P (D = 1|Z = c+)

=
limε↓0 P (Tε = AAA|Z = c− ε)

limε↓0 P (Tε ∈ {AAA,CCC}|Z = c+ ε)
=

limε↓0 P (Tε = AAA|Z = c+ ε)

limε↓0 P (Tε ∈ {AAA,CCC}|Z = c+ ε)
. (A.3)

Since we assume the conditioning density of Y (d) is well-defined when a running variable converges

to the cutoff from either side, we have

G1(y) ≡ lim
z↓c

P (Y ≤ y|D = 1, Z = z) = lim
ε↓0

P (Y (1) ≤ y|Tε ∈ {AAA,CCC,III}, Z = c+ ε)

= lim
ε↓0

{
P (Y (1) ≤ y|Tε = AAA,Z = c+ ε)P (Tε = AAA|Tε ∈ {AAA,CCC,III}, Z = c+ ε)

+ P (Y (1) ≤ y|Tε = CCC,Z = z + ε)P (Tε = CCC|Tε ∈ {AAA,CCC,III}, Z = c+ ε)

+ P (Y (1) ≤ y|Tε = III, Z = z + ε)P (Tε = III|Tε ∈ {AAA,CCC,III}, Z = c+ ε)
}

= lim
ε↓0

P (Y (1) ≤ y|Tε = AAA,Z = c+ ε)q + lim
ε↓0

P (Y (1) ≤ y|Tε = CCC,Z = c+ ε)(1− q)

where the first equality is by definition, the second equality is by definition of the potential outcome and

the fact that when z approaches to c from above, the event {D = 1, Z = c + ε} is equivalent to the

event {Tε ∈ {AAA,CCC,III}, Z = c+ ε}, the third equality is by the law of total probabilities, Assumption 2.1,

and that all the probabilities are well-defined. Therefore, the observed distribution G1 is the mixture of

conditional distributions of Y (1) for always-takers and compliers, with mixing weight equalling to q and

1 − q, respectively. Note if there exists ε̄ such that the set {ω : Tε̄(ω) = III} = ∅, the same conclusion

follows, as we what we discussed for the right-hand side of Equation (A.1).

Now we characterize the bounds of expectation of the mixing component limε↓0 P (Y (1) ≤ y|Tε =

AAA,Z = c + ε). Since the conditional distribution of Y (1) given D = 1 and Z = z is continuous in y at
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its q-th quantile, we can apply Horowitz and Manski (1995, Corollary 4.1), and it follows that the sharp

bounds for limε↓0 E[Y (1)|Tε = AAA,Z = c+ ε] are given by

LB+ ≡ E[Y |D = 1, Y < G−1
1 (q), Z = c+] ≤ lim

ε↓0
E[Y (1)|Tε = AAA,Z = c+ ε],

lim
ε↓0

E[Y (1)|Tε = AAA,Z = c+ ε] ≤ E[Y |D = 1, Y > G−1
1 (1− q), Z = c+] ≡ UB+,

where the lower bound is generated by a DGP in which always-takers concentrate at the lower tail

{y : G1(y) ≤ q}, and the upper bound is achieved when always-takers are concentrated at its upper tail.

Using Equation (A.1) to replace limε↓0 E[Y (1)|Tε = AAA,Z = c + ε] by E[Y |D = 1, Z = c−], we obtain

inequalities (2.7) and (2.8).

Part (ii). Now suppose that the observed data distribution satisfies inequalities (2.7) to (2.10).

We will show that there exists a distribution of latent variables such that the FRD mean assumptions

hold, and is observationally equivalent to the observed data distribution. Our construction extends the

argument of Laffers and Mellace (2017) to the FRD setup.

Given the inequalities (2.7) to (2.10), let λ1 and λ0 be such that

E[Y |D = 1, Z = c−] = λ1E[Y |D = 1, Y < G−1
1 (q), Z = c+]+(1−λ1)E[Y |D = 1, Y > G−1

1 (1−q), Z = c+].

E[Y |D = 0, Z = c+] = λ0E[Y |D = 0, Y < G−1
0 (r), Z = c−]+(1−λ0)E[Y |D = 0, Y > G−1

0 (1−r), Z = c−].

By construction, λd ∈ [0, 1] for d = 0, 1, and they are uniquely determined and identifiable directly from

the data.

Let ε > 0 be an arbitrary positive number. To construct the distributions of potential variables

(Ỹ (1), Ỹ (0), T̃ε)|Z. We first construct the distribution of T̃ε|Z as follows.

P (T̃ε = AAA|Z = c± ε) = P (D = 1|Z = c− ε),

P (T̃ε =NNN |Z = c± ε) = P (D = 0|Z = c+ ε),

P (T̃ε = CCC|Z = c± ε) = P (D = 1|Z = c+ ε)− P (D = 1|Z = c− ε),

and

P (T̃ε ∈ {DFDFDF,III}|Z = c± ε) = 0.

By construction, Assumption 2.1 is satisfied and Assumption 2.2 is satisfied for type probabilities.

Next, we construct the distribution for Ỹ (1) and Ỹ (0) conditioning on T̃ε and Z. Let

P (Ỹ (1) ≤ y|T̃ε = AAA,Z = c− ε) = P (Y ≤ y|D = 1, Z = c− ε)
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P (Ỹ (1) ≤ y|T̃ε = AAA,Z = c+ ε) = λ1P (Y ≤ y|D = 1, Y < G−1
1 (q), Z = c+ ε)

+ (1− λ1)P (Y ≤ y|D = 1, Y > G−1
1 (1− q), Z = c+ ε)

P (Ỹ (0) ≤ y|T̃ε =NNN,Z = c+ ε) = P (Y ≤ y|D = 0, Z = c+ ε)

P (Ỹ (0) ≤ y|T̃ε =NNN,Z = c− ε) = λ0P (Y ≤ y|D = 0, Y < G−1
1 (r), Z = c− ε)

+ (1− λ0)P (Y ≤ y|D = 0, Y > G−1
1 (1− r), Z = c− ε)

Note that the distributions of Ỹ (1) for always takers and the distributions of Ỹ (0) for never takers are not

necessarily continuous at the cutoff. This differs significantly from the construction of Gerard, Rokkanen,

and Rothe (2020) and Arai, Hsu, Kitagawa, Mourifié, and Wan (2022). Next, let

P (Ỹ (1) ≤ y|T̃ε = CCC,Z = c± ε) =
P (Y ≤ y|D = 1, Z = c+ ε)− qεP (Ỹ (1) ≤ y|T̃ε = AAA,Z = c+ ε)

1− qε

where

qε =
P (D = 1|Z = c− ε)

P (D = 1|Z = c+ ε)

P (Ỹ (0) ≤ y|T̃ε = CCC,Z = c± ε) =
P (Y ≤ y|D = 0, Z = c− ε)− rεP (Ỹ (0) ≤ y|T̃ε =NNN,Z = c− ε)

1− rε

where

rε =
P (D = 0|Z = c+ ε)

P (D = 0|Z = c− ε)

By construction, the potential outcome distribution for compliers satisfies Assumption 2.2.

The conditioning distributions of Ỹ (1) given (T̃ε = NNN,Z = z), and the conditioning distribution of

Ỹ (0) given (T̃ε = AAA,Z = z) are left to be arbitrary distributions (chosen to satisfy Assumption 2.2).

Also, we leave Ỹ (1) and Ỹ (0) to be independent with each other conditioning on T̃ε and Z.

To this end, it remains to verify continuity holds for E[Ỹ (1)|T̃ε = AAA,Z = z] and E[Y (0)|T̃ε =NNN,Z =

z]. Consider E[Ỹ (1)|T̃ε = AAA,Z = z] first. Note that

lim
ε↓0

E[Ỹ (1)|T̃ε = AAA,Z = c+ ε] = lim
ε↓0

∫
ydFỸ (1)|(T̃ε,Z)(y|AAA, c+ ε)

= lim
ε↓0

∫
yd

{
λ1FY |(D,Y <G−1

1 (q),Z)(y|1, c+ ε) + (1− λ1)dFY |(D,Y >G−1
1 (1−q),Z)(y|1, c+ ε)

}
= λ1E[Y |D = 1, Y < G−1

1 (q), Z = c+] + (1− λ1)E[Y |D = 1, Y > G−1
1 (1− q), Z = c+]

= E[Y |D = 1, Z = c−] = lim
ε↓0

E[Y (1)|T̃ε = AAA,Z = c− ε],

where the second equality is by the construction of P (Ỹ (1) ≤ y|T̃ε = AAA,Z = c + ε), the third one holds

43



because we assume all the expectations and their limits are well-defined, and the fourth is by the definition

of λ1, and the fifth one holds by construction P (Ỹ (1) ≤ y|T̃ε = AAA,Z = c−ε) = P (Y ≤ y|D = 1, Z = c−ε).

Similarly, the continuity holds for E[Ỹ (0)|T̃ε =NNN,Z = z].

Proper Distributions. P (Ỹ (1) ≤ y|T̃ε = AAA,Z = c−ε) and P (Ỹ (0) ≤ y|T̃ε =NNN,Z = c+ε) and their

limits (of ε ↓ 0) are proper distributions by construction. P (Ỹ (1) ≤ y|T̃ε = AAA,Z = c+ ε) is a mixture of

two proper distributions; hence it is a proper distribution as well. Same for P (Ỹ (0) ≤ y|Tε =NNN,Z = c−ε).

For P (Ỹ (1) ≤ y|T̃ε = CCC,Z = c± ε), note that for any ε, when y → sup{Y}, P (Ỹ (1) ≤ y|T̃ε = CCC,Z =

c ± ε) → 1; when when y → inf{Y}, P (Ỹ (1) ≤ y|T̃ε = CCC,Z = c ± ε) → 0. It remains to verify the

non-decreasing property. Consider two cases. In the first case, we have G−1
1 (q) < G−1

1 (1 − q) or q < 1
2 ,

we have

(1−q) lim
ε↓0

P (Ỹ (1) ≤ y|T̃ε = CCC,Z = c±ε)
(1)
= P (Y ≤ y|D = 1, Z = c+)−q lim

ε↓0
P (Ỹ (1) ≤ y|T̃ε = AAA,Z = c+ε)

(2)
= qP (Y ≤ y|D = 1, Y < G−1

1 (q), Z = c+) + qP (Y ≤ y|D = 1, Y > G−1
1 (1− q), Z = c+)

+ (1− 2q)P (Y ≤ y|D = 1, G−1
1 (q) ≤ Y ≤ G−1

1 (1− q), Z = c+)− q lim
ε↓0

P (Ỹ (1) ≤ y|T̃ε = AAA,Z = c+ ε)

(3)
= (q − qλ1)P (Y ≤ y|D = 1, Y < G−1

1 (q), Z = c+) + qλ1P (Y ≤ y|D = 1, Y > G−1
1 (1− q), Z = c+)

+ (1− 2q)P (Y ≤ y|D = 1, G−1
1 (q) ≤ Y ≤ G−1

1 (q), Z = c+),

where the first equality is by the construction of P (Ỹ (1) ≤ y|T̃ε = CCC,Z = c± ε), the second one is by the

operation of conditional probabilities, and the third one is by substitution of P (Ỹ (1) ≤ y|T̃ε = AAA,Z =

c + ε). Therefore, the right-hand side is non-decreasing because it is the sum of three non-decreasing

functions (recall that q − qλ1 ≥ 0, qλ1 ≥ 0 and 1− 2q ≥ 0).
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In the second case, G−1
1 (q) ≥ G−1

1 (1− q) or q ≥ 1
2 , we have

(1−q) lim
ε↓0

P (Ỹ (1) ≤ y|T̃ε = CCC,Z = c±ε)
(1)
= P (Y ≤ y|D = 1, Z = c+)−lim

ε↓0
qP (Ỹ (1) ≤ y|T̃ε = AAA,Z = c+ε)

(2)
= (1− q)P (Y ≤ y|D = 1, Y < G−1

1 (1− q), Z = c+) + (1− q)P (Y ≤ y|D = 1, Y > G−1
1 (q), Z = c+)

+ (2q − 1)P (Y ≤ y|D = 1, G−1
1 (1− q) ≤ Y ≤ G−1

1 (q), Z = c+)− q lim
ε↓0

P (Ỹ (1) ≤ y|T̃ε = AAA,Z = c+ ε)

(3)
= (1− q)P (Y ≤ y|D = 1, Y < G−1

1 (1− q), Z = c+) + (1− q)P (Y ≤ y|D = 1, Y > G−1
1 (q), Z = c+)

+(2q−1)P (Y ≤ y|D = 1, G−1
1 (1−q) ≤ Y ≤ G−1

1 (q), Z = c+)−qλ1P (Y ≤ y|D = 1, Y < G−1
1 (q), Z = c+)

− q(1− λ1)P (Y ≤ y|D = 1, Y > G−1
1 (1− q), Z = c+)

(4)
= (1− q)P (Y ≤ y|D = 1, Y < G−1

1 (1− q), Z = c+) + (1− q)P (Y ≤ y|D = 1, Y > G−1
1 (q), Z = c+)

+(2q−1)P (Y ≤ y|D = 1, G−1
1 (1−q) ≤ Y ≤ G−1

1 (q), Z = c+)−(1−q)λ1P (Y ≤ y|D = 1, Y < G−1
1 (1−q), Z = c+)

−(2q−1)λ1P (Y ≤ y|D = 1, G−1
1 (1−q) ≤ Y ≤ G−1

1 (q), Z = c+)−(1−q)(1−λ1)P (Y ≤ y|D = 1, Y > G−1
1 (q), Z = c+)

− (2q − 1)(1− λ1)P (Y ≤ y|D = 1, G−1
1 (1− q) ≤ Y ≤ G−1

1 (q), Z = c+)

(5)
= (1−q)(1−λ1)P (Y ≤ y|D = 1, Y < G−1

1 (1−q), Z = c+)+(1−q)λ1P (Y ≤ y|D = 1, Y > G−1
1 (q), Z = c+),

where the first three equalities hold as in the previous case, the fifth is by simple calculation, and the

fourth equality holds by noting that

qλ1(Y ≤ y|D = 1, Y < G−1
1 (q), Z = c+)

= qλ1P (Y ≤ y|D = 1, G−1
1 (1−q) < Y < G−1

1 (q), Z = c+)P (G−1
1 (1−q) < Y < G−1

1 (q)|D = 1, Y < G−1(q), C = c+)

+ qλ1P (Y ≤ y|D = 1, Y < G−1
1 (1− q), Z = c+)P (Y < G−1

1 (1− q)|D = 1, Y < G−1
1 (q), Z = c+)

= (2q−1)λ1P (Y ≤ y|D = 1, G−1
1 (1−q) < Y < G−1

1 (q), Z = c+)+(1−q)λ1P (Y ≤ y|D = 1, Y < G−1
1 (1−q), Z = c+)

and

q(1− λ1)P (Y ≤ y|D = 1, Y > G−1
1 (1− q), Z = c+)

= q(1−λ1)P (Y ≤ y|D = 1, G−1
1 (1−q) < Y < G−1

1 (q), Z = c+)P (G−1
1 (1−q) < Y < G−1

1 (q)|D = 1, Y > G−1(1−q), C = c+)

+ q(1− λ1)P (Y ≤ y|D = 1, Y > G−1
1 (q), Z = c+)P (Y > G−1

1 (q)|D = 1, Y > G−1
1 (1− q), Z = c+)

= (2q−1)(1−λ1)P (Y ≤ y|D = 1, G−1
1 (1−q) < Y < G−1

1 (q), Z = c+)+(1−q)(1−λ1)P (Y ≤ y|D = 1, Y > G−1
1 (q), Z = c+).

In the end, the right-hand side is non-decreasing because it is the sum of two non-decreasing functions.

Matches the observed distribution. For the final step, we verify that the constructed latent
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variables distributions generate the same observed data distribution. First,

P (Ỹ ≤ y|D̃ = 1, Z = c+ ε) = P (Ỹ (1) ≤ y|T̃ε ∈ {AAA,CCC}, Z = c+ ε)

= P (Ỹ (1) ≤ y|T̃ε = AAA,Z = c+ε)
P (AAA|Z = c+ ε)

P (AAA ∪CCC|Z = c+ ε)
+P (Ỹ (1) ≤ y|T̃ε = CCC,Z = c+ε)

P (CCC|Z = c+ ε)

P (AAA ∪CCC|Z = c+ ε)

= P (Y ≤ y|D = 1, Z = c+ ε),

where the first equality is by definition, the second is by the total law of probabilities, and the third is

by construction.

Next, for P (Ỹ ≤ y|D̃ = 1, Z = c− ε), we have

P (Ỹ ≤ y|D̃ = 1, Z = c − ε) = P (Ỹ (1) ≤ y|T̃ε = AAA,Z = c − ε) = P (Y ≤ y|D = 1, Z = c − ε),

where the first equality is by definition, and the second is by construction.

For P (Ỹ ≤ y|D̃ = 0, Z = c+ ε), we have

P (Ỹ ≤ y|D̃ = 0, Z = c + ε) = P (Ỹ (0) ≤ y|T̃ε = NNN,Z = c + ε) = P (Y ≤ y|D = 0, Z = c + ε),

where the last equality holds because we set P (Ỹ (0) ≤ y|T̃ε =NNN,Z = c+ε) = P (Y ≤ y|D = 0, Z = c+ε).

P (Ỹ ≤ y|D̃ = 0, Z = c− ε) = P (Ỹ (0) ≤ y|T̃ε ∈ {NNN,CCC}, Z = c− ε)

= P (Ỹ (0) ≤ y|T̃ε =NNN,Z = c−ε)
P (NNN |Z = c− ε)

P (NNN ∪CCC|Z = c− ε)
+P (Ỹ (0) ≤ y|T̃ε = CCC,Z = c−ε)

P (CCC|Z = c− ε)

P (NNN ∪CCC|Z = c− ε)

= P (Y ≤ y|D = 0, Z = c− ε),

where the first equality is by definition, the second is by the total law of probabilities, and the third is

by construction.

A.2 Proof of Corollary 6.1

In this proof, to save space, we abuse the notation to write E[Y (d)|ttt, Z = c+] for limε↓0 E[Y (d)|Tε =

ttt, Z = c + ε], and write E[Y (d)|ttt, Z = c−] ≡ limε↓0 E[Y (d)|Tε = ttt, Z = c − ε]. Similarly, we write

P (ttt|Z = c+) for limε↓0 P (Tε = ttt|Z = c+ ε) and write P (ttt|Z = c−) for limε↓0 P (Tε = ttt|Z = c− ε).

(i) Suppose Y (d), d ∈ {0, 1}, is discrete and take values from a countable set Y = {y1, y2, · · · , yJ},
where yj < yj+1 for any 1 ≤ j < J . When the set Y takes infinitely many values, J is understood as

∞. Consider the lower bound for E[Y (1)|AAA,Z = c+] (or equivalently the lower bound of E[Y (1)|AAA,Z =
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c−] = E[Y |D = 1, Z = c−]). Again, the observed quantity E[Y |D = 1, Z = c+] can be expressed as:

E[Y |D = 1, Z = c+]

=

J∑
j=1

yjP (Y = yj |D = 1, Z = c+) =

J∑
j=1

yjP (Y = yj |AAA ∪CCC,Z = c+)

=

J∑
j=1

yj
P (AAA ∪CCC|Y = yj , Z = c+)P (Y = yj |Z = c+)

P (AAA ∪CCC|Z = c+)

=

J∑
j=1

yj

{
P (AAA|Y = yj , Z = c+)P (Y = yj |Z = c+)

P (AAA ∪CCC|Z = c+)

+
P (CCC|Y = yj , Z = c+)P (Y = yj |Z = c+)

P (AAA ∪CCC|Z = c+)

}
, (A.4)

where the first equality holds by the definition of conditional expectation, the second holds because as z

approaches c from above, the event {D = 1, Z = c+} is equivalent to {AAA∪CCC,Z = c+}, the third holds by

Bayes’ rule, and the fourth holds by the law of total probabilities. The lower bound for E[Y (1)|AAA,Z = c+],

or equivalently the lower bound of E[Y |AAA,Z = c+], is obtained by choosing P (AAA|Y = yj , Z = c+) ∈ [0, 1]

and P (CCC|Y = yj , Z = c+) ∈ [0, 1] for j = 1, · · · , J , to minimize

J∑
j=1

yjP (Y = yj |AAA,Z = z+) =

J∑
j=1

yj
P (AAA|Y = yj , Z = c+)P (Y = yj |Z = c+)

P (AAA|Z = c+)

subject to Equation (A.4), and by definition of q and Assumption 2.2, also subject to

J∑
j=1

P (AAA|Y = yj , Z = c+)P (Y = yj |Z = c+) = qP (D = 1|Z = c+).

J∑
j=1

P (CCC|Y = yj , Z = c+)P (Y = yj |Z = c+) = (1− q)P (D = 1|Z = c+).

The solution to the problem depends on an index j∗ ≥ 0 such that

j∗∑
j=1

P (Y = yj |Z = c+) ≤ qP (D = 1|Z = c+), (A.5)

but
j∗+1∑
j=1

P (Y = yj |Z = c+) > qP (D = 1|Z = c+)

Note that j∗ is identifiable from the data. Here we abuse the notation to define
∑0

j=1(·)j = 0 to

accommodate the case where j∗ = 0. Then to minimize E[Y |AAA,Z = c+], it is clear that we need to set
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P (AAA|Y = yj , Z = c+) = 1 for all j ≤ j∗, and then set

P (AAA|Y = yj∗+1, Z = c+) =
qP (D = 1|Z = c+)−∑j∗

j=1 P (Y = yj |Z = c+)

P (Y = yj∗+1|Z = c+)
.

Finally, set P (AAA|Y = yj , Z = c+) = 0 for all j > j∗ + 1.

In this case, the lower bound for E[Y |AAA,Z = c+] is achieved by

LB+ ≡
j∗∑
j=1

yj
P (Y = yj |Z = c+)

P (AAA|Z = c+)
+ yj∗+1

qP (D = 1|Z = c+)−∑j∗

j=1 P (Y = yj |Z = c+)

P (AAA|Z = c+)

=

j∗∑
j=1

yj
P (Y = yj |D = 1, Z = c+)

q
+ yj∗+1

{
1−

∑j∗

j=1 P (Y = yj |D = 1, Z = c+)

q

}
, (A.6)

where the second equality holds because

P (Y = yj |Z = c+)

P (AAA|Z = c+)
=

P (Y = yj |Z = c+)

qP (D = 1|Z = c+)
=

P (Y = yj |D = 1, Z = c+)

q
,

This lower bound can be relaxed to fit the same notation as the continuous case. To see this, note

LB+ ≥
∑j∗

j=1 yjP (Y = yj |D = 1, Z = c+)∑j∗

j=1 P (Y = yj |D = 1, Z = c+)
= E[Y |D = 1, Y < G−1

1 (q), Z = c+] (A.7)

where the inequality holds because yj∗+1 > yj∗ , and the equality holds by the definition ofG−1
1 . Therefore,

E[Y |D = 1, Y ≤ G−1
1 (q), Z = c+] is a valid lower bound for E[Y (1)|AAA,Z = c+].

Likewise, the upper bound for E[Y (1)|AAA,Z = c+] or equivalently the upper bound of E[Y |AAA,Z = c+],

is basically obtained by choosing P (AAA|Y = yj , Z = c+) ∈ [0, 1] and P (CCC|Y = yj , Z = c+) ∈ [0, 1] for

j = 1, · · · , J , to maximize

J∑
j=1

yjP (Y = yj |AAA,Z = z+) =

J∑
j=1

yj
P (AAA|Y = yj , Z = c+)P (Y = yj |Z = c+)

P (AAA|Z = c+)

subject to Equation (A.4) and

J∑
j=1

P (AAA|Y = yj , Z = c+)P (Y = yj |Z = c+) = qP (D = 1|Z = c+).

J∑
j=1

P (CCC|Y = yj , Z = c+)P (Y = yj |Z = c+) = (1− q)P (D = 1|Z = c+).
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let j† ≥ 0 be such that
J∑

j=j†

P (Y = yj |Z = c+) ≤ qP (D = 1|Z = c+) (A.8)

but
J∑

j=j†−1

P (Y = yj |Z = c+) > qP (D = 1|Z = c+)

To maximize E[Y |AAA,Z = c+], it is clear that we need to set P (AAA|Y = yj , Z = c+) = 1 for all j ≥ j†, and

set

P (AAA|Y = yj†−1, Z = c+) =
qP (D = 1|Z = c+)−∑J

j=j† P (Y = yj |Z = c+)

P (Y = yj†−1|Z = c+)

and set P (AAA|Y = yj , Z = c+) = 0 for all j < j† − 1.

In this case, the upper bound for E[Y |AAA,Z = c+] is achieved by

UB+ ≡
J∑

j=j†

yj
P (Y = yj |Z = c+)

P (AAA|Z = c+)
+ yj†−1

qP (D = 1|Z = c+)−∑J
j=j† P (Y = yj |Z = c+)

P (Y = yj†−1|Z = c+)

=

J∑
j=j†

yj
P (Y = yj |D = 1, Z = c+)

q
+ yj†−1

{
1−

∑J
j=j† P (Y = yj |D = 1, Z = c+)

q

}
. (A.9)

This bound can also be relaxed:

UB+ ≤
∑J

j=j† yjP (Y = yj |D = 1, Z = c+)∑J
j=j† P (Y = yj |D = 1, Z = c+)

= E[Y |D = 1, Y > G−1
1 (1 − q), Z = c+],

where the inequality holds because yj† > yj†−1, and the last equality holds by the definition of G−1
1 .

Therefore, E[Y |D = 1, Y > G−1
1 (1 − q), Z = c+] is a valid upper bound for E[Y (1)|AAA,Z = c+] or

equivalently E[Y |AAA,Z = c+].

Following the same reasoning, we can derive the sharp bounds for E[Y |NNN,Z = c−] as:

LB− =

j∗∑
j=1

yj
P (Y = yj |D = 0, Z = c−)

r
+ yj∗+1

{
1−

∑j∗

j=1 P (Y = yj |D = 1, Z = c−)

r

}
.

UB− =

J∑
j=j†

yj
P (Y = yj |D = 0, Z = c−)

q
+ yj†−1

{
1−

∑J
j=j† P (Y = yj |D = 0, Z = c−)

r

}
.

where the definitions for j∗ and j† are analogous to those in LB+ and UB+.

(ii) Suppose Y (1) is continuous but also has possibly mass points. If the q-th quantile is a continuous

point, then bounds can be derived following the same argument as in Proposition 2.2; if a mass point y∗
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is such that

P (Y < y∗|Z = c+) ≤ qP (D = 1|Z = c+),

but

P (Y ≤ y∗|Z = c+) > qP (D = 1|Z = c+)

then the lower bound can be derived following the same argument as in part (i) with y∗ playing the role

of yj∗ as

LB+ = E[Y |D = 1, Y < y∗, Z = c+]
P (Y < y∗|D = 1, Z = c+)

q
+ y∗

(
1− P (Y < y∗|D = 1, Z = c+)

q

)
≥ E[Y |D = 1, Y < y∗, Z = c+] = E[Y |D = 1, Y < G−1

1 (q), Z = c+]. (A.10)

If a mass point y† is such that

P (Y > y†|Z = c+) ≤ qP (D = 1|Z = c+),

but

P (Y ≥ y†|Z = c+) > qP (D = 1|Z = c+),

then the upper bound can be derived following the same argument as in part (ii) with y† playing the role

of yj† , and it is given by

UB+ = E[Y |D = 1, Y > y†, Z = c+]
P (Y > y†|D = 1, Z = c+)

q
+ y†

(
1− P (Y < y∗|D = 1, Z = c+)

q

)
≥ E[Y |D = 1, Y > y†, Z = c+] = E[Y |D = 1, Y > G−1

1 (1− q), Z = c+]. (A.11)

□□□

Example 1.3 Suppose Y = {y1, y2, y3, y4} and P (Y = yj |D = 1, Z = c+) = 0.25 for all j.

Case 1. Suppose q = 0.26. In this case, j∗ = 1 and the sharp lower bound is given by

LB+ =
0.25

0.26
y1 +

0.01

0.26
y2;

j† = 4 and the sharp upper bound is

UB+ =
0.25

0.26
y4 +

0.01

0.26
y3.

On the other hand, G−1
1 (0.26) = inf{y ∈ Y : G1(y) ≥ 0.26} = y2; hence, a valid but non-sharp lower
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bound is given by:

E[Y |D = 1, Y < G−1
1 (0.26), Z = c+] = E[Y |D = 1, Y < y2, Z = c+] = y1 < LB+.

G−1
1 (1− 0.26) = sup{y ∈ Y : G1(y) ≤ 0.74} = y2; hence, a valid but non-sharp upper bound is given by:

E[Y |D = 1, Y > G−1
1 (0.74), Z = c+] = E[Y |D = 1, Y > y2, Z = c+] =

y3 + y4
2

> UB+.

Case 2. Now if q = 0.5, then j∗ = 2 and the sharp lower bound is

LB+ =
0.25

0.5
y1 +

0.25

0.5
y2 =

y1 + y2
2

;

In this case, G−1
1 (0.5) = inf{y ∈ Y : G1(y) ≥ 0.5} = y2, and the valid but non-sharp lower bound is given

by:

E[Y |D = 1, Y < G−1
1 (0.5), Z = c+] = E[Y |D = 1, Y < y2, Z = c+] = y1 < LB+.

For the upper bound, we see j† = 3 and the sharp upper bound is

UB+ =
y3 + y4

2
.

In this case, G−1
1 (1− 0.5) = sup{y ∈ Y : G1(y) ≤ 0.5} = y3; hence, a valid but non-sharp upper bound is

given by:

E[Y |D = 1, Y > G−1
1 (0.5), Z = c+] = E[Y |D = 1, Y > y3, Z = c+] = y4 > UB+.

Case 3. In the third case, suppose q = 0.24, then j∗ = 0 and j† = 4.The sharp bounds are given by

LB+ = y1; UB+ = y4,

In this case, the sharp bounds are not informative. On the other hand, G−1
1 (0.24) = inf{y ∈ Y : G1(y) ≥

0.24} = y1. The valid but non-sharp lower bound E[Y |D = 1, Y < G−1
1 (0.24), Z = c+] = E[Y |D = 1, Y <

y1, Z = c+] is not well-defined and hence is understood as −∞. G−1
1 (1 − 0.24) = sup{y ∈ Y : G1(y) ≤

0.76} = y4; hence, the valid but non-sharp upper bound is given by: E[Y |D = 1, Y > G−1
1 (0.5), Z = c+] =

E[Y |D = 1, Y > y4, Z = c+]. It is also not well-defined and is understood as +∞.
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A.3 Proof of Proposition 3.3

By the results in Appendix B, we have

√
nh2


θ̂1 − θ1

θ̂2 − θ2

θ̂3 − θ3

θ̂4 − θ4


d→ N (0,Ω),

where Ωj,k = limn→∞ h−1
2 E[ϕθj ,h2,iϕθk,h2,i] for j, k = 1, 2, 3, 4. We also have

√
nh2


θ̂w1 − θ̂1

θ̂w2 − θ̂2

θ̂w3 − θ̂3

θ̂w4 − θ̂4


d→ N (0,Ω),

conditional on sample path with probability approaching one. Note that for j = 1, 2, 3, 4,

lim
T→∞

σ̂w
j = lim

T→∞

(
nh2T

−1
T∑

t=1

(θ̂w,t
j − θ̂j)

2
)1/2

=
(
(nh2)

−1
n∑

i=1

ϕ2
θj ,h2,i + op(1)

)1/2 p→ σj .

Then we can apply the results in Donald and Hsu (2011) to show Proposition 3.3 and we omit the details.

The proof for the second bootstrap method is the same and we omit the details.□

B Useful Lemmas

In this section, we provide regularity conditions, and show the asymptotic normality of the proposed

estimator θ̂ and the validity of the weighted bootstrap. We focus on the θ1 case and will briefly summarize

the results for θ2, θ3 and θ4.

Assumption B.1 Assume that 0 < q < 1.

Assumption B.2 Assume that density fz(z) is twice continuously differentiable in z on (c − ϵ, c + ϵ)

and δ ≤ fz(z) ≤ M on (c− ϵ, c+ ϵ) for some ϵ > 0 and 0 < δ < M .

Assumption B.3 Assume that for the same ϵ and M in Assumption B.2,

1. E[D|Z = z] is three-time continuously differentiable on z ∈ (c − ϵ, c) with absolute values of

corresponding derivatives bounded by M ;

2. E[D|Z = z] is three-time continuously differentiable on z ∈ [c, c+ ϵ) with absolute values of corre-

sponding derivatives bounded by M .
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Assumption B.4 Assume that for the same ϵ and M in Assumption B.2, for d = 0 and 1,

1. E[Y |D = d, Z = z] is three-time continuously differentiable on z ∈ (c− ϵ, c) with absolute values of

corresponding derivatives bounded by M ;

2. E[Y |D = d, Z = z] is three-time continuously differentiable on z ∈ (c, c+ ϵ) with absolute values of

corresponding derivatives bounded by M .

3. E[|Y |3|D = d, Z = z] ≤ M for z ∈ (c− ϵ, c+ ϵ).

Assumption B.5 Assume that

1. The kernel function K(·) is a non-negative symmetric bounded kernel with support [−1, 1];
∫
K(u)du =

1.

2. The bandwidth h1 satisfies that h1 → 0, nh2
1 → ∞, and nh7

1 → 0 as n → ∞.

3. The bandwidth h2 satisfies that h2 → 0, nh2
2 → ∞, and nh7

2 → 0 as n → ∞.

4. h2/h1 → 0.

Assumption B.6 (Continuous Case) Assume that G1(y) is continuous on (G−1
1 (q)−δ,G−1

1 (q)+δ) with

G1(G
−1
1 (q)) = q and the derivative of G1(y) is greater than δ for the same delta in Assumption B.2. In

addition, assume that for the same ϵ, ϵ and M in Assumption B.2, for all y ∈ (G−1
1 (q)− δ,G−1

1 (q) + δ),

E[DY 1(Y ≤ y)|Z = z] and E[D1(Y ≤ y)|Z = z] are three-time continuously differentiable on z ∈ (c, c+ϵ)

with absolute values of corresponding derivatives bounded by M .

Assumption B.6’ (Discrete Case) Assume that y1L,ℓ < y1L,u with G1(y1L,ℓ) < q < G1(y1L,u) and

limz↓c P (Y ∈ (y1L,ℓ, y1L,u)|D = 1, Z = z) = 0.

Assumption B.7 Assume that {Wi}ni=1 is a sequence of i.i.d. pseudo random variables independent of

the sample path with E[Wi] = V ar[Wi] = 1 for all i.

Assumption B.8 Assume that an is a sequence of positive number with an → ∞ and an/
√
nh2 → 0.

Lemma B.1 Suppose that Assumptions B.1-B.6 hold. Then

√
nh2(θ̂1 − θ1) ≡

1√
nh2

n∑
i=1

ϕθ1,h2,i + op(1), (B.1)

where ϕθ1,h2,i is given in Equation (B.7). Also,
√
nh2(θ̂1−θ1)

d→ N (0, Vθ1), where Vθ1 = limn→∞ h−1
2 E[ϕ2

θ1,h2,i
].
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Lemma B.2 Suppose that Assumptions B.1-B.7 hold. Then

√
nh2(θ̂

w
1 − θ̂1) ≡

1√
nh2

n∑
i=1

(Wi − 1)ϕθ1,h2,i + op(1), (B.2)

√
nh2(θ̂

b
1 − θ̂1) ≡

1√
nh2

n∑
i=1

(Wi − 1)ϕθ1,h2,i + op(1) (B.3)

where ϕθ1,h2,i is given in (B.7). Also,
√
nh2(θ̂

w
1 − θ̂1)

d→ N (0, Vθ1) and
√
nh2(θ̂

b
1 − θ̂1)

d→ N (0, Vθ1)

conditional on the sample path with probability approaching 1.

Lemma B.1’ Suppose that Assumption B.6’ is in place of Assumption B.6 in Lemma B.1. Then

√
nh2(θ̂1 − θ1) ≡

1√
nh2

n∑
i=1

ϕθ1,h2,i + op(1), (B.4)

where ϕθ1,h2,i is given in (B.7). Also,
√
nh2(θ̂1 − θ1)

d→ N (0, Vθ1), where Vθ1 = limn→∞ h−1
2 E[ϕ2

θ1,h2,i
].

Lemma B.2’ Suppose that Assumption B.6’ is in place of Assumption B.6 in Lemma B.2. Then,

√
nh2(θ̂

w
1 − θ̂1) ≡

1√
nh2

n∑
i=1

(Wi − 1)ϕθ1,h2,i + op(1), (B.5)

√
nh2(θ̂

b
1 − θ̂1) ≡

1√
nh2

n∑
i=1

(Wi − 1)ϕθ1,h2,i + op(1) (B.6)

where ϕθ1,h2,i is given in (B.7). Also,
√
nh2(θ̂

w
1 − θ̂1)

d→ N (0, Vθ1) and
√
nh2(θ̂

b
1 − θ̂1)

d→ N (0, Vθ1)

conditional on the sample path with probability approaching 1.

Let

∆z = fz(0) ·


µz,0 µz,1 µz,2

µz,1 µz,2 µz,3

µz,2 µz,3 µz,4

 with µz,j =

∫
u≥0

ujK(u)du, for j = 0, 1, 2, . . ..

Recall that for a general random variable Xi,

(Êh[X|Z = c+], β̂+, γ̂+) = argmin
a,b,r

n∑
i=1

1(Zi ≥ c)K

(
Zi − c

h

)[
Xi − a− b · (Zi − c)− r · (Zi − c)2

]2
,

(Êh[X|Z = c−], β̂−, γ̂−) = argmin
a,b,r

n∑
i=1

1(Zi < c)K

(
Zi − c

h

)[
Xi − a− b · (Zi − c)− r · (Zi − c)2

]2
.

Suppose that E[X|Z = z] is three-time continuously differentiable on z ∈ (c − ϵ, c) and z ∈ [c, c + ϵ)

with absolute values of corresponding derivatives bounded by M . Also, E[|X|3|D = d, Z = z] ≤ M for
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z ∈ (c− ϵ, c+ ϵ). Then by Chiang, Hsu, and Sasaki (2019) and Hsu and Shen (2022), we have

√
nh

(
Êh[X|Z = c+]− E[X|Z = c+]

)

=
1√
nh

n∑
i=1

(1 0 0)∆−1
z 1(Zi ≥ c)K

(
Zi − c

h

)
(Xi − E[Xi|Zi])


1

Zi−c
h(

Zi−c
h

)2

+ op(1)

≡ 1√
nh

n∑
i=1

ϕ+
X,h,i + op(1),

√
nh

(
Ê[X|Z = c−]− E[X|Z = c−]

)

=
1√
nh

n∑
i=1

(1 0 0)∆−1
z 1(Zi < c)K

(
Zi − c

h

)
(Xi − E[Xi|Zi])


1

Zi−c
h(

Zi−c
h

)2

+ op(1)

≡ 1√
nh

n∑
i=1

ϕ−
X,h,i + op(1).

Also, define H1,≤(y) = E[DY 1(Y ≤ y)|Z = c+], H1,≥(y) = E[DY 1(Y ≥ y)|Z = c+], H0,≤(y) =

E[(1 −D)Y 1(Y ≤ y)|Z = c−] and H0(y,≥) = E[(1 −D)Y 1(Y ≥ y)|Z = c−]. Let I1,≤(y) = E[D1(Y ≤
y)|Z = c+], I1(y,≥) = E[D1(Y ≥ y)|Z = c+], I0,≤(y) = E[(1 − D)1(Y ≤ y)|Z = c−] and I0,≥(y) =

E[(1−D)1(Y ≥ y)|Z = c−].

Proof of Lemma B.1: Recall that

q̂ =
Êh1

[D|Z = c−]

Êh1 [D|Z = c+]

Then by delta method, we have

√
nh1 (q̂ − q) =

1√
nh1

n∑
i=1

{ 1

E[D|Z = c+]
ϕ−
d,h1,i

− q

E[D|Z = c+]
ϕ+
d,h1,i

}
+ op(1)

≡ 1√
nh1

n∑
i=1

ϕq,h1,i + op(1).

It is true that
√
nh1(q̂ − q) = Op(1). Similarly,

Ĝ1(y) =
Êh1

[D1(Y ≤ y)|Z = c+]

Êh1 [D|Z = c+]
.

Because {1(Y ≤ y) : y ∈ R} is a Vapnik-Chervonenkis (VC) class of functions, we have uniformly over
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y ∈ R,

√
nh1

(
Ĝ1(y)−G1(y)

)
=

1√
nh1

n∑
i=1

1

E[D|Z = c+]
ϕ+
D1(Y≤y),h1,i

− G1(y)

E[D|Z = c+]
ϕ+
D,h1,i

+ op(1)

≡ 1√
nh1

n∑
i=1

ϕG1(y),h1,i + op(1).

In this case, G−1
1 (q) is differentiable and its derivative with respective to q is g1(G

−1
1 (q)). Then by

functional delta method, we have

√
nh1

(
Ĝ−1

1 (q̂)−G−1
1 (q)

)
=
√

nh1

(
Ĝ−1

1 (q̂)−G−1
1 (q̂)

)
+

√
nh1

(
G−1

1 (q̂)−G−1
1 (q)

)
=
√
nh1

(
Ĝ−1

1 (q)−G−1
1 (q)

)
+ op(1) + g1(G

−1
1 (q))

√
nh1 (q̂ − q) + op(1)

=
1√
nh1

n∑
i=1

−1

g1(G
−1
1 (q))

ϕG1(G
−1
1 (q)),h1,i

+ g1(G
−1
1 (q))ϕq,h1,i + op(1)

≡ 1√
nh1

n∑
i=1

ϕG−1
1 (q),h1,i

+ op(1).

Under the assumptions in Lemma B.1, we have
√
nh1

(
Ĝ−1

1 (q̂)−G−1
1 (q)

)
= Op(1). Note that under

Assumption B.6, G1(y) is continuous in a neighborhood of G−1
1 (q), and this implies that E[DY 1(Y <

G−1
1 (q))|Z = c+] = E[DY 1(Y ≤ G−1

1 (q))|Z = c+] and Êh2
[DY 1(Y < Ĝ−1

1 (q̂))|Z = c+] is asymptoti-

cally equivalent to Êh2
[DY 1(Y ≤ Ĝ−1

1 (q̂))|Z = c+]. Also, E[D1(Y < G−1
1 (q))|Z = c+] = E[D1(Y ≤

G−1
1 (q))|Z = c+] and Êh2 [D1(Y < Ĝ−1

1 (q̂))|Z = c+] is asymptotically equivalent to Êh2 [D1(Y ≤
Ĝ−1

1 (q̂))|Z = c+].

We have dH1,≤(y)/dy = P1|1 · y · g1(y) and dI1,≤(y)/dy = P1|1 · g1(y). Then by the delta method, we

have

√
nh2(Ĥ1,≤(Ĝ

−1
1 (q̂))−H1,≤(G

−1
1 (q)))

=
√

nh2(Ĥ1,≤(Ĝ
−1
1 (q̂))−H1,≤(Ĝ

−1
1 (q̂))) +

√
nh2(H1,≤(Ĝ

−1
1 (q̂))−H1,≤(G

−1
1 (q)))

=
√
nh2(Ĥ1,≤(G

−1
1 (q))−H1,≤(G

−1
1 (q))) + op(1) +

√
nh2(H1,≤(Ĝ

−1
1 (q̂))−H1,≤(G

−1
1 (q)))

=
1√
nh2

n∑
i=1

ϕ+

DY 1(Y≤G−1
1 (q)),h2,i

+ op(1) + P1|1 · ÿ · g1(ÿ) ·
√
nh2(Ĝ

−1
1 (q̂)−G−1

1 (q))

≡ 1√
nh2

n∑
i=1

ϕH1,≤(G−1
1 (q)),h2,i

+ op(1),

where ÿ is between Ĝ−1
1 (q̂) and G−1

1 (q), and ÿ is bounded above in probability. The last line holds by
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the fact that

√
nh2(Ĝ

−1
1 (q̂)−G−1

1 (q)) =

√
h2

h1

√
nh1(Ĝ

−1
1 (q̂)−G−1

1 (q)) = o(1)Op(1) = op(1).

In other words, the estimation effect from the first stage can be ignored asymptotically. Similarly, we

have

√
nh2(Î1,≤(Ĝ

−1
1 (q̂))− I1,≤(G

−1
1 (q))) =

1√
nh2

n∑
i=1

ϕ+

D1(Y≤G−1
1 (q)),h2,i

+ op(1)

≡ 1√
nh2

n∑
i=1

ϕI1,≤(G−1
1 (q)),h2,i

+ op(1).

To derive the asymptotics of θ̂1, note that

√
nh2(θ̂1 − θ1)

=
√
nh2(Ĥ1,≤(Ĝ

−1
1 (q̂)) · Êh2

[D|Z = c−]− Î1,≤(Ĝ
−1
1 (q̂)) · Êh2

[DY |Z = c−]

−H1,≤(G
−1
1 (q)) · E[D|Z = c−] + I1,≤(G

−1
1 (q)) · E[DY |Z = c−])

=
√
nh2(Ĥ1,≤(Ĝ

−1
1 (q̂)) · Êh2

[D|Z = c−]−H1,≤(G
−1
1 (q)) · E[D|Z = c−])

−
√
nh2(Î1,≤(Ĝ

−1
1 (q̂)) · Êh2

[DY |Z = c−]− I1,≤(G
−1
1 (q)) · E[DY |Z = c−])

=
1√
nh2,

n∑
i=1

{
E[D|Z = c−] · ϕH1,≤(G−1

1 (q)),h2,i
+H1,≤(G

−1
1 (q)) · ϕ−

D,h2,i

− E[DY |Z = c−] · ϕI1,≤(G−1
1 (q)),h2,i

− I1,≤(G
−1
1 (q)) · ϕ−

DY,h2,i

}
+ op(1)

≡ 1√
nh2,

n∑
i=1

ϕθ1,h2,i + op(1). (B.7)

Then, by the central limit theorem, we have
√
nh2(θ̂1 − θ1)

d→ N (0, Vθ1). This completes the proof.□

Proof of Lemma B.2: Recall that

q̂w =
Êw

h1
[D|Z = c−]

Êw
h1
[D|Z = c+]

.

Then by the same arguments for Theorem 5.2 of Hsu and Shen (2022) and by the arguments for Lemma

B.1, we have

√
nh1 (q̂

w − q) =
1√
nh1

n∑
i=1

Wi

( 1

E[D|Z = c+]
ϕ−
d,h1,i

− q

E[D|Z = c+]
ϕ+
d,h1,i

)
+ op(1)

≡ 1√
nh

n∑
i=1

Wi · ϕq,h1,i + op(1).
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This implies that
√
nh1(q̂

w − q) = Op(1). Similarly,

Ĝw
1 (y) =

Êw
h1
[D1(Y ≤ y)|Z = c+]

Êw
h1
[D|Z = c+]

.

and we have uniformly over y ∈ R,

√
nh1

(
Ĝw

1 (y)−G1(y)
)
=

1√
nh1

n∑
i=1

Wi

( 1

E[D|Z = c+]
ϕ+
D1(Y≤y),h1,i

− G1(y)

E[D|Z = c+]
ϕ+
D,h1,i

)
+ op(1)

≡ 1√
nh1

n∑
i=1

Wi · ϕG1(y),h1,i + op(1).

Then by functional delta method, we have

√
nh1

(
Ĝ−1,w

1 (q̂w)−G−1
1 (q)

)
=
√

nh1

(
Ĝ−1,w

1 (q̂w)−G−1
1 (q̂w)

)
+
√

nh1

(
G−1

1 (q̂w)−G−1
1 (q)

)
=
√
nh1

(
Ĝ−1,w

1 (q)−G−1
1 (q)

)
+ op(1) + g1(G

−1
1 (q))

√
nh1 (q̂

w − q) + op(1)

=
1√
nh1

n∑
i=1

Wi

( −1

g1(G
−1
1 (q))

ϕG1(G
−1
1 (q)),h1,i

+ g1(G
−1
1 (q))ϕq,h1,i

)
+ op(1)

≡ 1√
nh1

n∑
i=1

Wi · ϕG−1
1 (q),h1,i

+ op(1).

Under the assumptions in Lemma B.1, we have
√
nh1

(
Ĝ−1,w

1 (q̂w)−G−1
1 (q)

)
= Op(1).Also, Êw

h2
[DY 1(Y <

Ĝ−1,w
1 (q̂w))|Z = c+] is asymptotically equivalent to Êw

h2
[DY 1(Y ≤ Ĝ−1,w

1 (q̂w))|Z = c+] and Êw
h2
[D1(Y <

Ĝ−1,w
1 (q̂w))|Z = c+] is asymptotically equivalent to Êw

h2
[D1(Y ≤ Ĝ−1,w

1 (q̂w))|Z = c+]. Therefore, we

have

√
nh2(Ĥ

w
1,≤(Ĝ

−1,w
1 (q̂w))−H1,≤(G

−1
1 (q)))

=
√

nh2(Ĥ
w
1,≤(Ĝ

−1,w
1 (q̂w))−H1,≤(Ĝ

−1,w
1 (q̂w))) +

√
nh2(H1,≤(Ĝ

−1,w
1 (q̂w))−H1,≤(G

−1
1 (q)))

=
√
nh2(Ĥ

w
1,≤(G

−1
1 (q))−H1,≤(G

−1
1 (q))) + op(1) +

√
nh2(H1,≤(Ĝ

−1,w
1 (q̂w))−H1,≤(G

−1
1 (q)))

=
1√
nh2

n∑
i=1

Wi · ϕ+

DY 1(Y≤G−1
1 (q)),h2,i

+ op(1) + P1|1 · ÿ · g1(ÿw) ·
√
nh2(Ĝ

−1,w
1 (q̂w)−G−1

1 (q))

≡ 1√
nh2

n∑
i=1

Wi · ϕH1,≤(G−1
1 (q)),h2,i

+ op(1),

where ÿw is between Ĝ−1,w
1 (q̂w) and G−1

1 (q), and ÿw is bounded above in probability. The last line holds
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by the fact that

√
nh2(Ĝ

−1,w
1 (q̂w)−G−1

1 (q)) =

√
h2

h1

√
nh1(Ĝ

−1,w
1 (q̂w)−G−1

1 (q)) = o(1)Op(1) = op(1).

In other words, in the weighted bootstrap estimation, the estimation effect from the first stage can be

ignored asymptotically as well. Similarly, we have

√
nh2(Î

w
1,≤(Ĝ

−1,w
1 (q̂w))− I1,≤(G

−1
1 (q))) =

1√
nh2

n∑
i=1

Wi · ϕ+

D1(Y≤G−1
1 (q)),h2,i

+ op(1)

≡ 1√
nh2

n∑
i=1

Wi · ϕI1,≤(G−1
1 (q)),h2,i

+ op(1).

To derive the asymptotics of θ̂w1 , note that

√
nh2(θ̂

w
1 − θ1)

=
√

nh2(Ĥ
w
1,≤(Ĝ

−1,w
1 (q̂w)) · Êw

h2
[D|Z = c−]− Î1,≤(Ĝ

−1,w
1 (q̂w)) · Êw

h2
[DY |Z = c−]

−H1,≤(G
−1
1 (q)) · E[D|Z = c−] + I1,≤(G

−1
1 (q)) · E[DY |Z = c−])

=
√

nh2(Ĥ
w
1,≤(Ĝ

−1,w
1 (q̂w)) · Êw

h2
[D|Z = c−]−H1,≤(G

−1
1 (q)) · E[D|Z = c−])

−
√
nh2(Î

w
1,≤(Ĝ

−1,w
1 (q̂w)) · Êw

h2
[DY |Z = c−]− I1,≤(G

−1
1 (q)) · E[DY |Z = c−])

=
1√
nh2

n∑
i=1

Wi

{
E[D|Z = c−] · ϕH1,≤(G−1

1 (q)),h2,i
+H1,≤(G

−1
1 (q)) · ϕ−

D,h2,i

− E[DY |Z = c−] · ϕI1,≤(G−1
1 (q)),h2,i

− I1,≤(G
−1
1 (q)) · ϕ−

DY,h2,i

}
+ op(1)

≡ 1√
nh2,

n∑
i=1

Wi · ϕθ1,h2,i + op(1).

It follows that

√
nh2(θ̂

w
1 − θ̂1) ≡

1√
nh2

n∑
i=1

(Wi − 1) · ϕθ1,h2,i + op(1).

In the last step, note that Wi − 1 has a mean of zero and variance of one, so we can apply the multiplier

bootstrap arguments in Chiang, Hsu, and Sasaki (2019) and obtain that
√
nh2(θ̂

w
1 − θ̂1)

d→ N (0, V d
θ1
)

conditional on the sample path with probability approaching 1.

Next, we consider the asymptotics of θ̂b1. We first consider Êw
h2
[DY 1(Y < Ĝ−1

1 (q̂))|Z = c+]. Similarly,

we have

√
nh2(Ĥ

w
1,≤(Ĝ

−1
1 (q̂))−H1,≤(G

−1
1 (q)))

=
√

nh2(Ĥ
w
1,≤(Ĝ

−1
1 (q̂))−H1,≤(Ĝ

−1
1 (q̂))) +

√
nh2(H1,≤(Ĝ

−1
1 (q̂))−H1,≤(G

−1
1 (q)))
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=
√
nh2(Ĥ

w
1,≤(G

−1
1 (q))−H1,≤(G

−1
1 (q))) + op(1) +

√
nh2(H1,≤(Ĝ

−1
1 (q̂))−H1,≤(G

−1
1 (q)))

=
1√
nh2

n∑
i=1

Wi · ϕ+

DY 1(Y≤G−1
1 (q)),h2,i

+ op(1) + P1|1 · ÿ · g1(ÿ) ·
√
nh2(Ĝ

−1
1 (q̂w)−G−1

1 (q))

≡ 1√
nh2

n∑
i=1

Wi · ϕH1,≤(G−1
1 (q)),h2,i

+ op(1),

where ÿ is between Ĝ−1
1 (q̂) and G−1

1 (q) which is the same in the proof of Lemma B.1. The last line holds

by the fact that
√
nh2(Ĝ

−1
1 (q̂)−G−1

1 (q)) = op(1). Similarly, we have

√
nh2(Î

w
1,≤(Ĝ

−1
1 (q̂))− I1,≤(G

−1
1 (q))) =

1√
nh2

n∑
i=1

Wi · ϕ+

D1(Y≤G−1
1 (q)),h2,i

+ op(1)

≡ 1√
nh2

n∑
i=1

Wi · ϕI1,≤(G−1
1 (q)),h2,i

+ op(1).

Finally,

√
nh2(θ̂

b
1 − θ1)

=
√
nh2(Ĥ

w
1,≤(Ĝ

−1
1 (q̂)) · Êw

h2
[D|Z = c−]− Î1,≤(Ĝ

−1
1 (q̂)) · Êw

h2
[DY |Z = c−]

−H1,≤(G
−1
1 (q)) · E[D|Z = c−] + I1,≤(G

−1
1 (q)) · E[DY |Z = c−])

=
√
nh2(Ĥ

w
1,≤(Ĝ

−1
1 (q̂)) · Êw

h2
[D|Z = c−]−H1,≤(G

−1
1 (q)) · E[D|Z = c−])

−
√
nh2(Î

w
1,≤(Ĝ

−1
1 (q̂)) · Êw

h2
[DY |Z = c−]− I1,≤(G

−1
1 (q)) · E[DY |Z = c−])

=
1√
nh2

n∑
i=1

Wi

{
E[D|Z = c−] · ϕH1,≤(G−1

1 (q)),h2,i
+H1,≤(G

−1
1 (q)) · ϕ−

D,h2,i

− E[DY |Z = c−] · ϕI1,≤(G−1
1 (q)),h2,i

− I1,≤(G
−1
1 (q)) · ϕ−

DY,h2,i

}
+ op(1)

≡ 1√
nh2,

n∑
i=1

Wi · ϕθ1,h2,i + op(1).

It follows that

√
nh2(θ̂

b
1 − θ̂1) ≡

1√
nh2

n∑
i=1

(Wi − 1) · ϕθ1,h2,i + op(1),

and
√
nh2(θ̂

w
1 − θ̂1)

d→ N (0, V d
θ1
) conditional on the sample path with probability approaching 1. This

completes the proof.□

Proof of Lemma B.1’: Assumption B.6’ assumes that y1L,ℓ < y1L,u with G1(y1L,ℓ) < q < G1(y1L,u) and

limz↓c P (Y ∈ (y1L,ℓ, y1L,u)|D = 1, Z = z) = 0. In this case, we have G−1
1 (q) = y1L,u. Therefore, it is true

that Ĝ1(y1L,ℓ) < q̂ < Ĝ1(y1L,u) with probability approaching one and this implies that Ĝ−1
1 (q̂)) = y1L,u
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with probability approaching one. That is, we have
√
nh2(Ĝ

−1
1 (q̂)) − y1L,u) = op(1). In addition,

E[DY 1(Y < y1L,u)|Z = c+] = E[DY 1(Y ≤ y1L,ℓ)|Z = c+], and Êh2
[DY 1(Y < Ĝ−1

1 (q̂))|Z = c+]

is asymptotically equivalent to Êh2 [DY 1(Y < y1L,u)|Z = c+] = Ê[DY 1(Y ≤ y1L,ℓ)|Z = c+]. Sim-

ilarly, E[D1(Y < y1L,u)|Z = c+] = E[D1(Y ≤ y1L,ℓ)|Z = c+], and Êh2 [D1(Y < Ĝ−1
1 (q̂))|Z = c+]

is asymptotically equivalent to Êh2
[D1(Y < y1L,u)|Z = c+] = Ê[D1(Y ≤ y1L,ℓ)|Z = c+]. Because

√
nh2(Ĝ

−1
1 (q̂))−y1L,u) = op(1), the estimation effect of Ĝ−1

1 (q̂)) will be asymptotically negligible. There-

fore,

√
nh2(Ĥ1,≤(Ĝ

−1
1 (q̂)))−H1,≤(y1L,ℓ)) =

√
nh2(Ĥ1,≤(y1L,ℓ)−H1,≤(y1L,ℓ)) + op(1)

=
1√
nh2

n∑
i=1

ϕ+
DY 1(Y≤y1L,ℓ),h2,i

+ op(1) ≡
1√
nh2

n∑
i=1

ϕH1,≤(y1L,ℓ),h2,i + op(1),√
nh2(Î1,≤(Ĝ

−1
1 (q̂))− I1,≤(y1L,ℓ)) =

√
nh2(Î1,≤(y1L,ℓ)− I1,≤(y1L,ℓ)) + op(1)

=
1√
nh

n∑
i=1

ϕ+
D1(Y≤y1L,ℓ),h2,i

+ op(1) ≡
1√
nh

n∑
i=1

ϕI1,≤(y1L,ℓ),h2,i + op(1).

As a result,

√
nh2(θ̂1 − θ1)

=
√
nh2(Ĥ1,≤(Ĝ

−1
1 (q̂)) · Êh2

[D|Z = c−]− Î1,≤(Ĝ
−1
1 (q̂)) · Êh2

[DY |Z = c−]

−H1,≤(G
−1
1 (q)) · E[D|Z = c−] + I1,≤(G

−1
1 (q)) · E[DY |Z = c−])

=
√
nh2(Ĥ1,≤(Ĝ

−1
1 (q̂)) · Êh2 [D|Z = c−]−H1,≤(G

−1
1 (q)) · E[D|Z = c−])

−
√
nh2(Î1,≤(Ĝ

−1
1 (q̂)) · Êh2

[DY |Z = c−]− I1,≤(G
−1
1 (q)) · E[DY |Z = c−])

=
1√
nh2,

n∑
i=1

{
E[D|Z = c−] · ϕH1,≤(G−1

1 (q)),h2,i
+H1,≤(G

−1
1 (q)) · ϕ−

D,h2,i

− E[DY |Z = c−] · ϕI1,≤(G−1
1 (q)),h2,i

− I1,≤(G
−1
1 (q)) · ϕ−

DY,h2,i

}
+ op(1)

≡ 1√
nh2,

n∑
i=1

ϕθ1,h2,i + op(1),

and the influence function is identical to the continuous case. Then by the central limit theorem, we have
√
nh2(θ̂1 − θ1)

d→ N (0, Vθ1). This completes the proof.□

Proof of Lemma B.2’: The proof is similar to that for Lemma B.2, so we omit the details.□

To conclude this section, we provide the influence function representations for θ̂2, θ̂3 and θ̂4. For

brevity, we do not write down the regularity conditions for these estimators because they are similar to

those for θ1 case.

Let H1,≥(y) = E[DY 1(Y ≥ y)|Z = c+], H0,≤(y) = E[(1 − D)Y 1(Y ≤ y)|Z = c−] and H0(y,≥
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) = E[(1 − D)Y 1(Y ≥ y)|Z = c−]. Let I1(y,≥) = E[D1(Y ≥ y)|Z = c+], I0,≤(y) = E[(1 − D)1(Y ≤
y)|Z = c−] and I0,≥(y) = E[(1 − D)1(Y ≥ y)|Z = c−]. In addition, for the continuous case, We

have dH1,≥(y)/dy = −P1|1 · y · g1(y), dH0,≤(y)/dy = P0|0 · y · g0(y), dH0,≥(y)/dy = −P0|0 · y · g0(y),
dI1,≥(y)/dy = −P1|1 · g1(y), dI0,≤(y)/dy = P0|0 · g0(y), and dI0,≥(y)/dy = −P0|0 · g0(y). Note that

√
nh2(Ĥ1,≥(Ĝ

−1
1 (1− q̂))−H1,≥(G

−1
1 (1− q)))

=
1√
nh2

n∑
i=1

ϕ+

DY 1(Y≤G−1
1 (1−q)),h2,i

+ op(1) ≡
1√
nh

n∑
i=1

ϕH1,≥(G−1
1 (1−q)),h2,i

+ op(1)√
nh2(Ĥ0,≤(Ĝ

−1
0 (r̂))−H0,≤(G

−1
0 (r)))

=
1√
nh2

n∑
i=1

ϕ−
(1−D)Y 1(Y≤G−1

0 (r)),h2,i
+ op(1) ≡

1√
nh

n∑
i=1

ϕH0,≤(G−1
0 (r)),h2,i

+ op(1),√
nh2(Ĥ0,≥(Ĝ

−1
0 (1− r̂))−H1,≥(G

−1
0 (1− r)))

=
1√
nh2

n∑
i=1

ϕ−
(1−D)Y 1(Y≤G−1

1 (1−r)),h2,i
+ op(1) ≡

1√
nh

n∑
i=1

ϕH0,≥(G−1
0 (1−r)),h2,i

+ op(1).

We also have

√
nh2(Î1,≥(Ĝ

−1
1 (1− q̂))− I1,≥(G

−1
1 (1− q)))

=
1√
nh2

n∑
i=1

ϕ+

D1(Y≤G−1
1 (1−q)),h2,i

+ op(1) ≡
1√
nh2

n∑
i=1

ϕI1,≥(G−1
1 (1−q)),h2,i

+ op(1),√
nh2(Î0,≤(Ĝ

−1
0 (r̂))− I0,≤(G

−1
0 (r)))

=
1√
nh2

n∑
i=1

ϕ−
(1−D)1(Y≤G−1

0 (r)),h2,i
+ op(1) ≡

1√
nh2

n∑
i=1

ϕI0,≤(G−1
0 (r)),h2,i

+ op(1),√
nh2(Î0,≥(Ĝ

−1
0 (1− r̂))− I1,≥(G

−1
0 (1− r)))

=
1√
nh2

n∑
i=1

ϕ−
(1−D)1(Y≤G−1

1 (1−r)),h2,i
+ op(1) ≡

1√
nh2

n∑
i=1

ϕI0,≥(G−1
0 (1−r)),h2,i

+ op(1).

Finally, for the continuous case, we have

√
nh2(θ̂2 − θ2) =

√
nh2(Î1,≥(Ĝ

−1
1 (1− q̂)) · Êh2

[DY |Z = c−]− Ĥ1,≥(Ĝ
−1
1 (1− q̂)) · Êh2

[D|Z = c−]

− I1,≥(G
−1
1 (1− q)) · E[DY |Z = c−] +H1,≥(G

−1
1 (1− q)) · E[D|Z = c−])

=
1√
nh2

n∑
i=1

{
E[DY |Z = c−]ϕI1,≥(G−1

1 (1−q)),h2,i
− I1,≥(G

−1
1 (1− q))ϕ−

DY,h2,i

− E[D|Z = c−]ϕH1,≥(G−1
1 (1−q)),h2,i

+H1,≥(G
−1
1 (1− q))ϕ−

D,h2,i

}
+ op(1)

≡ 1√
nh2

n∑
i=1

ϕθ2,h2,i + op(1),
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√
nh(θ̂3 − θ3) =

√
nh2(Ĥ0,≤(Ĝ

−1
0 (r̂)) · Êh2

[1−D|Z = c+]− Î0,≤(Ĝ
−1
0 (r̂)) · Êh2

[(1−D)Y |Z = c+]

−H0,≤(G
−1
0 (r)) · E[1−D|Z = c+] + I1,≤(G

−1
1 (q)) · E[(1−D)Y |Z = c+])

=
1√
nh2

n∑
i=1

{
E[(1−D)|Z = c+]ϕH0,≤(G−1

0 (r)),h2,i
+H0,≤(G

−1
0 (r))ϕ+

1−D,h2,i

− E[(1−D)Y |Z = c+]ϕI0,≤(G−1
0 (r)),h2,i

− I0,≤(G
−1
0 (r))ϕ+

(1−D)Y,h2,i

}
+ op(1)

≡ 1√
nh2

n∑
i=1

ϕθ3,h2,i + op(1),√
nh2(θ̂4 − θ4) =

√
nh2(Î0,≥(Ĝ

−1
0 (1− r̂)) · Êh2 [(1−D)Y |Z = c+]− Ĥ0,≥(Ĝ

−1
0 (1− r̂)) · Êh2 [1−D|Z = c+]

− I0,≥(G
−1
0 (1− r)) · E[(1−D)Y |Z = c+] +H0,≥(G

−1
0 (1− r)) · E[1−D|Z = c+])

=
1√
nh2

n∑
i=1

{
E[DY |Z = c+]ϕI0,≥(G−1

0 (1−r)),h2,i
− I0,≥(G

−1
0 (1− r))ϕ+

(1−D)Y,h2,i

− E[D|Z = c+]ϕH0,≥(G−1
0 (1−r)),h2,i

+H0,≥(G
−1
0 (1− r))ϕ+

1−D,h2,i

}
+ op(1)

≡ 1√
nh2

n∑
i=1

ϕθ4,h2,i + op(1).

For discrete case, the expressions are identical to those for continuous cases based on Lemma B.1’.
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