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Summary. 

Comparing the relative variation of ordinal variates defined on diverse populations is challenging. 

Pearsons’ Coefficient of Variation or its inverse (the Sharpe Ratio), each used extensively for comparing 

relative variation or risk tempered location in cardinal paradigms, cannot be employed in ordinal data 

environments unless cardinal scale is attributed to ordered categories. Unfortunately, due to the scale 

dependencies of the Coefficient of Variations denominator and numerator, such arbitrary attribution 

can result in equivocal comparisons. Here, based upon the notion of probabilistic distance, unequivocal, 

scale independent, Coefficient of Variation and Sharpe Ratio analogues for use with Multivariate 

Ordered Categorical Data are introduced and exemplified in an analysis of Canadian Human Resource 

distributions.  

  



Introduction. 

 

Is the diversity of a society’s political opinions similar to its diversity of views about the economy? Is the 

variation in self-reported happiness responses of a group matched by the variation in their responses to 

self-reported ill health? How can the diversity of treatment responses across treatment groups be 

compared when those responses are ordinal in nature? Is the variation in responses to a given 

categorical questionnaire common or dissimilar across respondent types? Does a group exhibit the same 

diversity in its response to distinctly different questionnaires? All such questions are posed in the 

generic context of analyzing and comparing the variability of ordered categorical responses of diverse 

groups. Usually, in cardinally measurable paradigms, the Coefficient of Variation (𝐶𝑂𝑉) has been used to 

answer the generic question but cardinality is of the essence and the equivocation inherent in the 

attribution of an arbitrary cardinal scale to ordinal outcomes (different, equally valid scales can yield 

substantively different conclusions) invalidates it as a solution. Thus, the ever-increasing use of Ordered 

Categorical Data in all spheres of the social and physical sciences presents a measurement challenge, 

particularly when analyzing between group differences of within group variability. 

 

First introduced by Pearson (1896) as the ratio of the standard deviation to the mean, 𝐶𝑂𝑉 is a unit free 

relative variation measure. It, or its inverse (the well-known Sharpe (1964,1994) Ratio used for 

examining risk adjusted Excess Returns1), have been used extensively in economics and finance as a 

measure of economic inequality and relative risk. Despite its disadvantages (Kvalseth 2017), it has also 

seen extensive use in the physical and biological sciences (Weber et. al 2004), engineering (Jalalibal et.al. 

2021) and Industrial Organization fields (Bedeian & Mossholder 2000) where cardinally measurable data 

abounds. Pearson proposed 𝐶𝑂𝑉 in response to Galtons’ practice of using the 13 to 12 male-female size 

ratio2 in his work on Natural Inheritance (Galton 1894) and used the mean focused variation measure 

standardized by the mean to address the comparative variation of organ sizes (usually skull and bone 

dimensions) across race and gender3. His rationale for standardizing the dispersion measure by the 

 
1 Following concerns that the standard deviation was not an adequate reflection of downside risk the Sortino Ratio 
(Sortino and Price 1994) modified the Sharpe Ratio by considering only the non-positive deviations from the mean 
in the standard deviation calculation. 
2 Galton would rescale a female organ size by 13/12 to obtain a comparable male equivalent. 
3 Pearson’s view of his new statistic (Pearson 1896 pp. 276-9) was circumspect but enthusiastic, he wrote: 

“Of course, it does not follow because we have defined in this manner our “coefficient of variation”, that this is 
really a significant quantity in the comparison of various races; it may be only a convenient mathematical 



mean was a concern for reliability and consistency across disparate distributions, that measurement 

should not be too variable or at least consistently variable i.e. sufficiently stable about the mean value, 

so as to be comparably useful across races and genders.  

 

In more recent times 𝐶𝑂𝑉 has seen a variety of extensions to multivariate environments (see Albert and 

Zhang 2010 for a survey) based on alternative approaches to dealing with the multiplicity of 

measurement units. Clearly cardinality is of the essence in establishing a mean value as well as variation 

about. Thus 𝐶𝑂𝑉 has no natural analogue in multivariate ordered categorical data environments since 

ordered categorical data are bereft of cardinal measure, unless it is arbitrarily endowed, but that 

presents problems of scale dependency and concomitant equivocation (Bond and Lang 2019, Schroder 

and Yitzhaki 2017) which raises questions about the viability of measurement of variation about a 

location measure in ordered categorical situations.  

 

In the absence of cardinal measure, researchers have used notions of probabilistic distance (Mendelson 

1987) and the construct of a median preserving spread in order to quantify variation for the purpose of 

measuring inequality and polarization (Blair and Lacy 2000, Allison and Foster 2004, Kobus and Kurek 

2019). The probabilistic distance of a given category from the median focus category is 

measured in terms of the likelihood of an outcome in the given or any other category between 

it and the median category, the higher that probability is, the further apart are the categories 

deemed to be. Inequality is then quantified as the average probabilistic distance from the 

median focus category of all non-median categories.  

 

If inequality is conceptualized as the antithesis of complete equality, the aggregate distance of 

subjects from a potential focus point of complete commonality would characterize it. In this 

context the Median or the Mean may not be very good focus points since they can often have low 

probabilistic density (for example in heavily skewed or strongly segmented bimodal distributions) which 

renders them unlikely candidates as point of complete equality and hence, given this antithetic view of 

inequality, less useful as focus points. Furthermore, in multivariate settings mean and median focal 

points are difficult to determine whereas the modal point is usually uniquely determined (even in a 

multiplicity of nodes there is usually one node with a density greater than the rest). Noting that, in a 

 
expression, but I believe there is evidence to show that it is a more reliable test of “efficiency”3 in a race than 
absolute variation.” 

https://onlinelibrary.wiley.com/authored-by/ContribAuthorRaw/Albert/Adelin
https://onlinelibrary.wiley.com/authored-by/ContribAuthorRaw/Zhang/Lixin


likelihood sense, the mode is the most likely point of complete equality, Anderson and 

Yalonetzki (2023) provide an alternative to the Median Preserving Spread formulation in the 

Modally Preserving Spread with the mode as a focal point. As an inequality measure it has a 

natural likelihood-based interpretation (average probabilistic distance from the most likely 

point of commonality), is well defined in multidimensional situations, and has a probabilistic 

unit of measurement which is common to all dimensions. Pearsons’ concern in ordered 

categorical data environments would have been that such measures of spread would not be 

“stable” for reliable comparison across groups without suitable locational standardisation. 

Sharpes’ concern would have been that the location measure would have not been diluted by 

an appropriate measure of uncertainty in essence it is a variation standardised location 

measure much like a standard normal statistic. All that remains for an Ordered Categorical 

Coefficient of Variation or its inverse (𝑂𝐶𝐶𝑂𝑉 or 𝑂𝐶𝐶𝑂𝑉-1) is to render such a measure unit 

free by standardising the modally focused variation measure with some relevant probability-

based measure of location.  

 

In the following, details of the conventional Coefficient of Variation and its multivariate 

versions are outlined in Section 1, Section 2 proposes an analogue for multivariate ordered 

categorical data environments and Section 3 provides an exemplifying application to the 

analysis of Canadian Human Resource Stock variation across gender and time (the 2006-2016 

decade). To anticipate the results, it was found that, whereas Female outcome relative 

variation was reasonably stable over time and initially similar to Male relative variation, Male 

outcomes exhibited a dramatic shift in both variation and location over the decade. Generally 

relative variation in education and training was greater than relative variation in experience. 

Conclusions are drawn in Section 4. 

  

1.The Coefficient of Variation. 

 

Consider a continuous cardinally measurable variable 𝑥 with 0 < 𝑥 < 𝑌 < ∞,  denote the group 𝑡 

distribution 𝑓𝑡(𝑥) with a corresponding 𝐶𝐷𝐹: 𝐹𝑡(𝑥) = 𝑃𝑡(𝑋 < 𝑥) = ∫ 𝑓𝑡(𝑧)𝑑𝑧
𝑥

0
, Survival Function 𝑆𝐹: 

𝑆𝑡(𝑥) = 𝑃𝑡(𝑋 ≥ 𝑥) = 1 − 𝐹𝑡(𝑥), group 𝑡 mean as 𝜇𝑡 = 𝐸𝑓𝑡(𝑥)(𝑥) = ∫ 𝑥𝑓𝑡(𝑥)𝑑𝑥
𝑌

0
 and group 𝑡 variance of 

𝑥 as 𝜎𝑡
2 = 𝐸𝑓𝑡(𝑥)((𝑥 − 𝜇𝑡)

2) = ∫ (𝑥 − 𝜇𝑡)
2𝑓𝑡(𝑥)𝑑𝑥

𝑌

0
.  Note that integrating the mean formula by parts 



reveals it to be equivalent to the integral of the survival function4 so that 𝜇𝑡 = ∫ 𝑆𝑡(𝑥)𝑑𝑥
𝑌

0
 which yields 

an alternative interpretation of the mean as the cumulation of chances of higher outcomes than 𝑥 over 

the range of 𝑥. 

Then 𝐶𝑂𝑉𝑓𝑡(𝑥)(𝑥), the group 𝑡 Coefficient of Variation may be written as: 

                                                        𝐶𝑂𝑉𝑓𝑡(𝑥)(𝑥) =
√𝜎𝑡

2

𝜇𝑡
=

√𝜎𝑡
2

∫ 𝑆𝑡(𝑥)𝑑𝑥
𝑌

0

                         [1] 

 

Practically, for a collection of 𝑁 randomly sampled cardinally measurable values 𝑥𝑖 , 𝑖 = 1, . . 𝑁, 

where for convenience 𝑥𝑖 ≥ 0, the basic 𝐶𝑂𝑉 is given by5: 

                            𝐶𝑂𝑉 =
√∑ (𝑥𝑖−𝑥)

2
/(𝑁−1)𝑁

𝑖=1

𝑥
=

𝜎̂

𝜇̂
; 𝑤ℎ𝑒𝑟𝑒 𝜇̂ = 𝑥 = ∑ 𝑥𝑖

𝑁
𝑖=1 /𝑁         [2] 

 

As a measure of relative variation, it can be seen to be the square root of the variance 

estimate, which is the average of the squared distances of the 𝑥𝑖’s from the mean, divided by 

the mean. The mean is very much the focus of the statistic, it is the value that minimises the 

magnitude of the variance estimate (a similar variation measure around any other value would 

always be larger) and division by it dilutes the standard deviation value and renders the 

statistic a unit free measure6. Its inverse, known as the Sharpe Ratio (Sharpe 1994), is 

employed in the finance field in risk vs. return scenarios, where the 𝑥𝑖’s are rates of excess 

return and 𝜎̂ is a measure of their riskiness level, 𝐶𝑂𝑉−1 can be seen to dilute the average 

excess return level by the level of riskiness (much like standardizing a normal random variable 

by its standard deviation to yield a standard normal variate). In the context of income 

 
4 Integration by parts yields: ∫ 𝑢(𝑥)𝑣′(𝑥)𝑑𝑥 = [𝑢(𝑥)𝑣(𝑥)]0

𝑌 − ∫ 𝑢′(𝑥)𝑣(𝑥)𝑑𝑥.
𝑌

0

𝑌

0
 Let 𝑢(𝑥) = 𝑥 and 𝑣′(𝑥) = 𝑓(𝑥),  

then: 𝜇 = ∫ 𝑥𝑓(𝑥)𝑑𝑥 = [𝑥𝐹(𝑥)]0
𝑌 − ∫ 𝐹(𝑥)𝑑𝑥

𝑌

0

𝑌

0
= 𝑌 − ∫ 𝐹(𝑥)𝑑𝑥 = ∫ (1 − 𝐹(𝑥))𝑑𝑥 =

𝑌

0

𝑌

0
∫ 𝑆(𝑥)𝑑𝑥

𝑌

0
. 

5 When data are sampled from a set of K discrete cardinally measurable values 𝑥𝑘 𝑘 = 1, . . , 𝐾 where 𝑝𝑘 

is the proportion of the sample that took on the value 𝑥𝑘, [1] can be computed as: 

                            𝐶𝑂𝑉 =
√∑ (𝑥𝑘−𝑥)

2
𝑝𝑘

𝐾
𝑘=1

𝑥
=

𝜎̂

𝜇̂
; 𝑤ℎ𝑒𝑟𝑒 𝜇̂ = 𝑥 = ∑ 𝑥𝑘

𝐾
𝑘=1 𝑝𝑘             [2a] 

6 Similar statistics can be contrived if other foci are of interest by making 𝑥 the median or modal value of 

the collection, indeed dividing the standard deviation by any quantile value would render it a unit free 
measure relative to the designated quantile. 



inequality and wellbeing measurement7, the Sharpe measure dilutes the average income level 

by a measure of the inequality with which incomes are distributed. 

 

Multivariate Extensions of the Coefficient of Variation. 

 

Extending the coefficient of variation to the multivariate paradigm has seen several alternative 

formulations of a Multivariate 𝐶𝑂𝑉 proposed in the literature. Albert and Zhang (2010) 

reviewed some of the alternatives and proposed a novel formulation themselves, all amount to 

standardizing a function of the variance covariance matrix with the inner product of the 

dimension means and taking the square root thereof. The object being to reconcile the diverse 

units of measurement in the various dimensions to obtain a unit free measure. In a K >1 

dimension setting, letting 𝜇 be the 𝑄 x 1 vector of dimension means and 𝐶 be the 𝑄 x 𝑄 

covariance matrix, the alternatives (see inter alia Reyment 1960, Van Valen 1974, Voinov and 

Nikulin 1966 and Albert and Zhang 2010) considered by Albert and Zhang were: 

                                        √
𝑑𝑒𝑡(𝐶)

1
𝐾⁄

 𝜇′ 𝜇
;    √

𝑡𝑟𝐶

𝜇′ 𝜇
;    √

1

𝜇′𝐶−1 𝜇
;    √

𝜇′ 𝐶𝜇

(𝜇′ 𝜇)
2. 

It is worthy of note that when 𝑄 = 1 all of these formulae reduce to the conventional 

coefficient of variation yet in the multivariate empirical setting they can yield very different 

values for a given sample (Aerts, Haesbroeck and Ruwet 2015). 

 

2. A Coefficient of Variation Analogue for Multivariate Ordered Categorical Data. 

 

To develop Coefficient of Variation or a Sharpe-Ratio analogues for Ordered Categorical data, a 

means of measuring variation in the absence of cardinal measure is required together with a 

means of standardizing it with an appropriate location measure in that context. The notion of 

probabilistic distance, the sense that two ordered outcomes are further apart the greater is 

the probability of an outcome between them occurring, is useful in this case. 

 

 
7 𝐶𝑂𝑉 can be shown to satisfy the inequality measurement axioms of anonymity, scale invariance and population 
independence (Champernowne and Cowell 1999).  



When data are ordered categorical (suppose there to be K such ordered categories) it is not 

possible to compute a mean or the individual squared distances from it without arbitrary 

attribution of cardinal value to the respective categories which invites concerns with respect to 

ambiguity and scaling effects. To circumvent these problems in quantifying inequality, Allison 

and Foster (2004) resorted to the notion of probabilistic distance first introduced in Mendelson 

(1987). Contemplate 𝐾 ordered categories indexed 𝑘 = 1, . . , 𝐾 with a Probability Distribution Function 

𝑓 described by the probabilities 𝑝𝑓𝑘 , 𝑘 = 1, . . , 𝐾 where ∑ 𝑝𝑓𝑘
𝐾
𝑘=1 = 1. For a given outcome 𝑘∗ ∈ 1, . . , 𝐾 

and outcomes 𝑘 = 𝑘∗ + 1, . . , 𝐾, define the Upper Cumulants of 𝑓 with respect to 𝑘∗ as 𝐹𝑘
𝑈,𝑘∗

=

∑ 𝑝𝑓𝑖 
𝑘
𝑖=𝑘∗+1  (note for 𝑘 ≤ 𝑘∗ , 𝐹𝑘

𝑈,𝑘∗

= 0) and, for outcomes 𝑘 = 1, . . , 𝑘∗ − 1, define its Lower 

Cumulants as  𝐹𝑘
𝐿,𝑘∗

= ∑ 𝑝𝑓𝑖 
𝑘∗−1
𝑖=𝑘  (note for 𝑘 ≥ 𝑘∗ , 𝐹𝑘

𝐿,𝑘∗

= 0). It may be seen that  
𝐹𝑘

𝐿,𝑘∗

𝐹1
𝐿,𝑘∗  𝑘 = 1, . . , 𝑘∗ −

1 is in effect the  SF of the below 𝑘∗ conditional PDF, whereas 
𝐹𝑘

𝑈,𝑘∗

𝐹𝐾
𝑈,𝑘∗  𝑘 = 𝑘∗ + 1, . . , 𝐾 is the CDF of the 

above 𝑘∗ conditional PDF. When 𝑘 > 𝑘∗, 𝐹𝑘
𝑈,𝑘∗

 is the probability of an outcome between 𝑘∗ and 𝑘 + 1 

occurring which is monotonically non decreasing in 𝑘, when  𝑘 < 𝑘∗, 𝐹𝑘
𝐿,𝑘∗

 is the probability of an 

outcome between 𝑘∗ and 𝑘 − 1 occurring which is monotonically non-decreasing in 𝑘∗ − 𝑘. Each record 

a sense of probabilistic distance of 𝑘 from 𝑘∗ in terms of the chance that an outcome will emerge 

between 𝑘 and 𝑘∗ which increases with |𝑘∗ − 𝑘|. Similarly defining 𝐺𝑘
𝑈,𝑘∗

, 𝐺𝑘
𝐿,𝑘∗

, the Upper and Lower 

Cumulants of 𝑔 about 𝑘∗, then 𝑔 constitutes an increasing spread of 𝑓 with respect to outcome 

𝑘∗ when: 

 𝐺𝑘
𝐿,𝑘∗

≥ 𝐹𝑘
𝐿,𝑘∗

∀ 𝑘 = 1, . . , 𝑘∗ − 1 𝑎𝑛𝑑 𝐺𝑘
𝑈,𝑘∗

≥ 𝐹𝑘
𝑈,𝑘∗

∀ 𝑘 = 𝑘∗ + 1, . . , 𝐾 𝑤𝑖𝑡ℎ > 𝑠𝑜𝑚𝑒𝑤ℎ𝑒𝑟𝑒.          [3] 

The Mendelson (1987) condition [3] amounts to a first order stochastic dominance condition on the 

“downward looking” below 𝑘∗ conditional distributions (i.e. imagine the category orderings below 𝑘∗ 

were reversed) and the “upward looking” above 𝑘∗ conditional distributions where 𝑓 dominates 𝑔 in 

each context. Intuitively, with respect to 𝑘∗ inequality in 𝑔 distribution is greater than inequality in 𝑓 

distribution with respect to 𝑘∗ when the chance of below 𝑘∗ outcomes and the chance of above 𝑘∗ 

outcomes are both at least as great in 𝑔 as they are in 𝑓 with strictly greater than in at least one case8.  

 

Given the absence of cardinal measure, setting 𝑘∗ as the “median” category and using this notion of 

probabilistic distance has been the basis of inequality and bi-polarization measurement in univariate 

 
8 This construct is similar to notions of left and right distributional separation developed in Anderson (2004). 



ordered categorical paradigms (Blair and Lacy 2000, Allison and Foster 2004, Kobus 2015). However, 

the median outcome could well be an unlikely event and, if inequality is construed as the 

antithesis of complete commonality or equality in the population, it would not serve as a good 

focus point for a likelihood-based inequality measure.  

 

The Modal Preserving Spread.  

 

Define the Modal outcome of distribution 𝑓 as outcome 𝑘∗ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝𝑓𝑘∗ = max
𝑘

𝑝𝑓𝑘 . Determining 𝑘∗ 

by seeking that category for which 𝑝̂𝑓𝑘∗ = max
𝑘

𝑝̂𝑓𝑘  where 𝑝̂𝑓𝑘 , 𝑘 = 1, . . , 𝐾 are the maximum likelihood 

estimates of category densities, renders 𝑘∗ as the maximum likelihood estimate of the category most 

likely to command unanimity of membership. Since the smallest possible value of 𝑝𝑓𝑘∗  is  
1

𝐾
+ 𝜀 where 𝜀 

is an arbitrarily small positive value,   
1

𝐾
< 𝑝𝑓𝑘∗ ≤ 1 and, when 𝑝𝑓𝑘∗ is viewed as the chance that the 

whole population resides in outcome 𝑘∗, 𝐿𝐶(𝑓) = (𝐾𝑝𝑓𝑘∗ − 1)/(𝐾 − 1) is a very natural likelihood 

based measure or index on the unit interval of the extent of commonality or equality of outcome in the 

distribution at the modal outcome. When 𝐿𝐶(𝑓) → 0 there is little chance of equality of outcome, when 

𝐿𝐶(𝑓) → 1 there is every chance of equality of outcome. It follows that its complement, 𝐼𝐼(𝑓) = 1 −

𝐿𝐶(𝑓) = 𝐾(1 − 𝑝𝑓𝑘∗)/(𝐾 − 1) is an intuitive likelihood-based measure of the extent of inequality of 

outcome9. Unfortunately, it is not responsive to variation in spread in the rest of the distribution in the 

sense that a marginal shift in mass from 𝑘′ to 𝑘′′ where 𝑘′ , 𝑘′′ ≠ 𝑘∗ would leave it unaltered unless the 

shift rendered 𝑘′′ the new modal outcome. To capture this, the concept of a modal preserving spread 

needs to be considered. Basically 𝑔 constitutes a Modal Preserving Spread of 𝑓 if [3] holds and 

𝑘∗remains the modal outcome of 𝑔 i.e. 𝑝𝑔𝑘∗ = max
𝑘

𝑝𝑔𝑘. 

This can be readily checked by considering 𝑈𝐴𝑀𝐵𝐼(𝑓, 𝑔)  =
∑ ((𝐺𝑘

𝑈,𝑘∗
−𝐹𝑘

𝑈,𝑘∗
)+(𝐺𝑘

𝐿,𝑘∗
−𝐹𝑘

𝐿,𝑘∗
))𝐾

𝑘=1

∑ (|(𝐺𝑘
𝑈,𝑘∗

−𝐹𝑘
𝑈,𝑘∗

)|+|(𝐺𝑘
𝐿,𝑘∗

−𝐹𝑘
𝐿,𝑘∗

)|)𝐾
𝑘=1

 , when 

𝑈𝐴𝑀𝐵𝐼(𝑓, 𝑔) = 1, distribution 𝑔 constitutes an unambiguous Modal Preserving Spread of distribution 𝑓. 

Furthermore, given dispersion from the focus point 𝑘∗ is maximized when 𝑘∗/𝐾 mass is allocated to the 

lowest outcome and 
(𝐾−𝑘∗)

𝐾
 is allocated to the highest outcome: 

 
9 Indeed, in the unordered categorical world 𝐼𝐶 and 𝐼𝐼 provide equally useful indices of commonality and 
inequality.  



                          0 ≤ 𝐼𝑀𝑃𝑆(𝑔, 𝑓) =
∑ ((𝐺𝑘

𝑈,𝑘∗
−𝐹𝑘

𝑈,𝑘∗
)+(𝐺𝑘

𝐿,𝑘∗
−𝐹𝑘

𝐿,𝑘∗
))𝐾

𝑘=1

(
𝑘∗ ∑ 𝑖𝑘∗−1

𝑖=1
𝐾

+ 
(𝐾−𝑘∗) ∑ (𝑖−𝑘∗)𝐾

𝑖=𝑘∗+1
𝐾

−∑ (𝐹𝑘
𝑈,𝑘∗

+𝐹𝑘
𝐿,𝑘∗

)𝐾
𝑘=1 )

≤ 1               

provides an index measure on the unit interval of the extent of increased Modally Focused relative 

spread or inequality associated with a move from 𝑓 to 𝑔.  

 

A Modally Focused Inequality Index for Ordered Categorical Data. 

 

Suppose 𝑓𝑒 was the distribution of a completely equal society with all agents enjoying outcome 𝑘∗, then 

𝑝𝑓𝑘∗ = 1 and 𝑝𝑓𝑘 = 0 ∀ 𝑘 ≠ 𝑘∗ so that  𝐹𝑘
𝑈,𝑘∗

= 0 and 𝐹𝑘
𝐿,𝑘∗

= 0 ∀ 𝑘, then 𝐼𝑀𝑃𝑆(𝑔, 𝑓𝑒) becomes:  

                                       𝐼𝑀𝑃𝑆(𝑔, 𝑓𝑒) =
∑ (𝐺𝑘

𝑈,𝑘∗
+𝐺𝑘

𝐿,𝑘∗
)𝐾

𝑘=1

(
(𝑘∗−1) ∑ 𝑖𝑘∗−1

𝑖=1
𝐾

+ 
(𝐾−𝑘∗) ∑ (𝑖−𝑘∗)𝐾

𝑖=𝑘∗+1
𝐾

)

= 𝑀𝐹𝐼(𝑔)                 [4] 

[4] corresponds to a measure of the extent of inequality inherent in the ordered categorical 

distribution 𝑔 relative to a state of complete equality at the category most likely to command 

unanimous membership and thus provides a measure, 𝑀𝐹𝐼(𝑔), of the Modally Focused 

Inequality inherent in distribution 𝑔. Let the 𝑘∗ Focussed Probabilistic Distance vector 𝐺𝑃𝐷,𝑘∗ 
 , 

recording the chance of being in the collection of categories successively further distanced from 𝑘∗ , be 

given by: 

 

𝐺𝑃𝐷,𝑘∗ 
=

[
 
 
 
 
 
 

𝐺1
𝐿

.
𝐺𝑘∗ −1

𝐿

0
𝐺𝑘∗ +1

𝑈

.
𝐺𝐾−𝑘∗ 

𝑈 ]
 
 
 
 
 
 

 

Note that the Probabilistic Distance function is an increasing function of the categorical distance from 

the 𝑖∗ category which does not depend upon arbitrary attribution of value to a category in the form of a 

scale. Letting 𝜑(𝐾, 𝑘∗ ) = (
𝑘∗ ∑ 𝑖𝑘∗−1

𝑖=1

𝐾
+ 

(𝐾−𝑘∗)∑ (𝑖−𝑘∗)𝐾
𝑖=,𝑘∗+1

𝐾
) then, given a K dimensioned unit vector 𝑑, 

𝑀𝐹𝐼(𝑔) may be written as: 

                                                          𝑀𝐹𝐼(𝑔, 𝑘∗ ) =
1

𝜑(𝐾,𝑘∗ )
𝑑′𝐺𝑃𝐷,𝑘∗ 

                                                [5] 

Inference. 

Following Rao (2009), given an independent random sample of size 𝑛, 𝑝𝑔̂, the estimator of the vector of 

outcome probabilities 𝑝𝑔 is multivariate normal:  



                                                         √𝑛 (𝑝𝑔̂ − 𝑝𝑔)~𝑁(0, 𝑉𝑔)                                                      

where: 

                                𝑉𝑔 =

[
 
 
 
 
𝑝1,𝑔 0 0 . 0

0 𝑝2,𝑔 0 . 0

0
.
0

0
.
0

𝑝3,𝑔 . 0

. . 0
0 . 𝑝K,𝑔]

 
 
 
 

−

[
 
 
 
 
𝑝1,𝑔

𝑝2,𝑔
.
.

𝑝K,𝑔]
 
 
 
 

[𝑝1,𝑔 𝑝2,𝑔
. . 𝑝𝐾,𝑔]               

Given a 𝐾 dimensioned square cumulation matrix 𝐶𝑘∗ with typical element 𝑐𝑖,𝑗 𝑖, 𝑗 = 1, . . , 𝐼 where for 

𝑖, 𝑗 <  𝑘∗, 𝑐𝑖,𝑗 = 1 𝑤ℎ𝑒𝑛 𝑗 ≥ 𝑖 𝑎𝑛𝑑 0  otherwise, and for 𝑖, 𝑗 >  𝑘∗, 𝑐𝑖,𝑗 = 1 𝑤ℎ𝑒𝑛 𝑗 ≤ 𝑖 𝑎𝑛𝑑 0  otherwise, 

all other elements of the matrix are 0 10, and a summation vector 𝑑 which is a K x 1 column of ones, 

then  𝐺𝑃𝐷,𝑘∗ 
= 𝐶𝑘∗𝑝𝑔 and 𝐺̂𝑔

𝑃𝐷,𝑘∗

= 𝐶𝑘∗𝑝𝑔̂ so that: 

√𝑛(𝐺̂𝑔
𝑃𝐷,𝑘∗

− 𝐺𝑔
𝑃𝐷,𝑘∗

)~𝑁(0, 𝐶𝑘∗𝑉𝑔𝐶𝑘∗′) 

So that 𝑀𝐹𝐼̂(𝑔), estimates of 𝑀𝐹𝐼(𝑔) will be such that: 

√𝑛 (𝑀𝐹𝐼̂(𝑔) − 𝑀𝐹𝐼(𝑔))~√𝑛
1

𝜑(𝐾, 𝑘∗ )
𝑑′(𝐺̂𝑔

𝑃𝐷,𝑘∗

− 𝐺𝑔
𝑃𝐷,𝑘∗

)~𝑁(0,
1

𝜑(𝐾, 𝑘∗ )2
𝑑′𝐶𝑘∗𝑉𝑔𝐶𝑘∗′𝑑) 

 

A multivariate version. 

 

In a multidimensional ordered categorical context, one of the attractions of the probabilistic distance 

approach is that, unlike the corresponding cardinal environment, the unit of measure is a probability 

number that is common to all dimensions. For simplicity, consider the bivariate categorical case where 

both dimensions are ordered with 𝑝𝑓,𝑖,𝑗 ≥ 0: 𝑖 = 1, . . , 𝐼, 𝑗 = 1, . . , 𝐽 ∑ ∑ 𝑝𝑓,𝑖,𝑗
𝐽
𝑗=1 = 1𝐼

𝑖=1  with the 

ordering again following the dimension indexing, cumulative and counter cumulative density functions 

are well defined with  𝐹𝑖,𝑗 = ∑ ∑ 𝑝𝑓,𝑘,𝑙
𝑗
𝑙=1

𝑖
𝑘=1  𝑓𝑜𝑟 𝑖 = 1, . . , 𝐼, 𝑗 = 1, . . , 𝐽. 

In the modal case where 𝑘∗ coordinates are {𝑖∗, 𝑗∗} so that max
𝑖,𝑗

𝑝𝑓,𝑖,𝑗 = 𝑝𝑓,𝑖∗,𝑗∗:  

                                            Let 𝑝𝑓,𝑖∗,𝑗
∗∗ = 𝑝𝑓,𝑖∗,𝑗 𝑗 = 1, . . , 𝐽 𝑎𝑛𝑑  𝑝𝑓,𝑖,𝑗∗

∗∗ = 𝑝𝑓,𝑖,𝑗∗  𝑖 = 1, . . , 𝐼 

 
10 As an example, for 𝐼 = 6 and 𝑘∗ = 3,  𝐶𝑘∗  is of the form: 

𝐶𝑘∗ =

[
 
 
 
 
 
1 1 0
0 1 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
1 1 0
1 1 1]

 
 
 
 
 

 

 



 𝐹𝑖,𝑗
∗∗ =  𝐹𝑖+1,𝑗

∗∗ + 𝑝𝑓,𝑖,𝑗 ∀ 𝑖 < 𝑖∗ 𝑎𝑛𝑑 𝐹𝑖,𝑗
∗∗ =  𝐹𝑖,𝑗

∗∗ + 𝑝𝑓,𝑖,𝑗 ∀ 𝑖 > 𝑖∗, ∀𝑗 = 1, . . , 𝐽 

 𝐹𝑖,𝑗
L𝑘∗

=  𝐹𝑖,𝑗+1
L𝑘∗

+  𝐹𝑖,𝑗
∗∗ ∀ 𝑗 < 𝑗∗ 𝑎𝑛𝑑 𝐹𝑖,𝑗+1

U𝑘∗
=  𝐹𝑖,𝑗

U𝑘∗
+  𝐹𝑖,𝑗

∗∗ ∀ 𝑗 > 𝑗∗, 𝑖 = 1, . . , 𝐼 

Again, when 𝑝𝑓,𝑖∗,𝑗∗  is viewed as the likelihood that the whole population resides in outcome {𝑖∗, 𝑗∗}, 

𝐼𝐶(𝑓) = (𝐼𝐽𝑝𝑓,𝑖∗,𝑗∗ − 1) (𝐼𝐽 − 1)⁄  is a very natural measure or index on the unit interval of the 

commonality or equality of outcome in the distribution, so that its complement, 𝐼𝐼(𝑓) = 𝐼𝐽(1 −

𝑝𝑓,𝑖∗,𝑗∗)/(𝐼𝐽 − 1) provides an intuitive likelihood based measure of inequality of outcome and it is an 

equally useful index of such in unordered categorical paradigms. 

The corresponding 2-dimensional version of [4] is given by: 

                            𝑀𝐹𝐼(𝑔) =
∑ ∑ (𝐺𝑖,𝑗

𝑈,𝑘∗
+𝐺𝑖,𝑗

𝐿,𝑘∗
)

𝐽
𝑗=1

𝐼
𝑖=1

(
𝑗∗𝑖∗ ∑ ∑ 𝑖𝑗

𝑗∗

𝑗=1
𝑖∗−1
𝑖=1

𝐼𝐽
+ 

(𝐼𝐽−𝑗∗𝑖∗)∑ ∑ (𝑖𝑗−𝑖∗𝑗∗)
𝐽
𝑗=𝑗∗+1

𝐼
𝑖=𝑖∗+1

𝐼𝐽
)

                             

Appropriately vectorized versions of the 𝐼 x 𝐽 matrices 𝐺.,.
𝑈,𝑘∗

 and 𝐺.,.
𝐿,𝑘∗

 and their corresponding 𝐼𝐽 square 

cumulation matrix 𝐶𝑖∗𝑗∗  can be constructed to form the 𝑖∗, 𝑗∗ Focused Probabilistic Distance vector 

𝐺𝑃𝐷,𝑖∗,𝑗∗
 , recording the chance of being in the collection of categories successively further distanced 

from 𝑖∗, 𝑗∗. Then, given an 𝐼𝐽 dimensioned unit vector 𝑑, 𝑀𝐹𝐼(𝑔) may be written as: 

                                                          𝑀𝐹𝐼(𝑔) =
1

𝜑(𝐼𝐽,𝑖∗,𝑗∗)
𝑑′𝐺𝑃𝐷,𝑖∗,𝑗∗

                                          [6] 

 

Standardization. 

 

All that remains is to standardize 𝑀𝐹𝐼(𝑔) with an appropriate probability-based distance 

measure factor to render it unit free. Analogous to the continuous paradigm formulation of the 

mean as the integral of the survival function over the range of x (see [1] above) the sum of the 

SF values over all categories ∑ (1 − 𝐺(𝑘))𝐾
𝑘=1  could be considered so that: 

                                           𝑂𝐶𝐶𝑂𝑉 = 𝑀𝐹𝐼(𝑔, 𝑘∗ )/(∑ (1 − 𝐺(𝑘))𝐾
𝑘=1 )                                   [7] 

would provide an ordered categorical Coefficient of Variation analogue appropriate to for the situation 

at hand11. 

 
11 [7] is clearly dependent upon K this is of no consequence when variates with a common K are being compared, 
but when variates with different K’s are being compared their respective values of [7] should be rescaled by 

𝛾(𝐾) =
(𝐾 − 1)

𝐾⁄  

  



The inverse of 𝑂𝐶𝐶𝑂𝑉 is the ordered categorical paradigm equivalent of the Sharpe Ratio which is a risk 

or uncertainty adjusted average returns measure. Thus, it can be viewed as an outcome level measure 

diluted by a measure of uncertainty surrounding outcome levels.   

 

As for inference with respect to the denominator, given 𝐺(𝑘∗ ) = ∑ 𝑝i,𝑔
𝑘∗ 

𝑖=1 , letting ℎ be a 𝐾𝑥1 vector 

whose first 𝑘∗ elements are ones and the rest zeros, 𝐺(𝑘∗ ) = ℎ′𝑝𝑔 and 𝐺(𝑘∗ ) = ℎ′𝑝𝑔̂ , so that 

√𝑛(𝐺̂(𝑘∗ ) − 𝐺(𝑘∗ ))~𝑁(0, ℎ′𝑉𝑔ℎ) and similarly for the Survival Function Value. For ∑ (1 − 𝐺(𝑘))𝐾
𝑘=1 , 

construct a 𝐾 𝑥 𝐾 matrix 𝑆 whose above diagonal elements are ones with all other elements 

zeros, then ∑ (1 − 𝐺(𝑘))𝐾
𝑘=1 = 𝑑′𝑆𝑝𝑔 so that in a similar fashion: 

√𝑛 (∑ (1 − 𝐺̂(𝑘))
𝐾

𝑘=1
− ∑ (1 − 𝐺(𝑘))

𝐾

𝑘=1
)~𝑁(0, 𝑑′𝑆𝑉𝑔𝑆′)𝑑 

 

Axiomatics. 

 

Suppose that 𝑥 is the n x 1 dimensioned list of the category locations of n sampled individuals upon 

which the estimates of 𝑝̂𝑓𝑘 , 𝑘 = 1, . . , 𝐾 are based, then 𝑂𝐶𝐶𝑂𝑉 is readily shown to satisfy the axioms of 

Anonymity (i.e. it is independent of the ordering of the list 𝑥); Scale Invariance (it is independent of any 

arbitrary scale accorded the categories) and Population Independence (it will not change when the 

population is replicated and added to itself) it can also be shown to satisfy a weak version of the Pigou-

Dalton Transfer Principal (when the presence in a higher category is reduced by 1 and the presence in a 

lower category increased by 1 without altering the mode, it will not increase). However, 𝑂𝐶𝐶𝑂𝑉 is not 

independent of K, the number of categories. The maximum value the numerator could take on is 

0.25(𝐾2 − 1) and the maximum value the denominator could take on is 𝐾 − 1  so the value of 𝑂𝐶𝐶𝑂𝑉 

could be of the order of 0.25(𝐾 + 1). While this is of no consequence when groups are being compared 

over the same number of categories, it does need attention when groups are being compared over 

different numbers of categories so that when comparing groups based upon different numbers of 

categories, it may be prudent to multiply 𝑂𝐶𝐶𝑂𝑉 by 1/(𝐾 + 1) for comparison purposes.      

 

3. An Example: Relative Variation in the distribution of Human Resources across the gender 

divide. 

 



A nations Human Resource Stock (𝐻𝑅𝑆), the aggregation of its constituent agents 𝐻𝑅𝑆, is an amorphous 

amalgam of their Embodied Human Capital and Cumulated Experience. The fact that males and females 

face different labour market and life cycle circumstances and have different knowledge acquisition traits 

suggests that the nations 𝐻𝑅𝑆 has been acquired and employed differently across the gender divide 

(Goldin 2014) and differences between the genders of the within gender level and variability of its 

possession is of interest. To this end an analysis of the corresponding Coefficient of Variation can be 

informative regarding the relative variation and the Sharpe ratio can reveal something about the 

uncertainty diluted level of human resources.   

 

Assessing the levels is difficult since both components are fundamentally latent and unobservable. 

Experience - the agents productivity enhancing skills acquired by practice and learning by doing - can be 

proxied for by the passage of time or the recorded age group of the individual. Embodied Human Capital 

– the agents’ education and training augmented innate abilities– can be proxied for by the Education 

and Training level they have received. Both proxies are ordered categorical variates and, beyond the 

afore-mentioned issues associated with using and combining artificially attributed cardinal scales to 

ordinal variates, their combination in some simple algebraic form is problematic. To examine the 

progress of Human Resource Stocks in Canada, data on the age, education and training status of 

individuals have been drawn from the Census of Canada Individual Files for the years 2006 and 201612. 

The joint probability distributions (PDF) and survival functions (SF) over experience and education and 

training level groups for Canadian Males and Females in 2006 and 2016 are reported in the appendix.  

 
Table 1. Bivariate Ordered Categorical Coefficient of Variation 
 Modal Experience, 

Training Location 
Variation Location Value 𝑂𝐶𝐶𝑂𝑉 Sharpe 

Females 2006 3,3 3.0662 18.2842 0.1677 5.9630 

Females 2016 4,2 3.6889 19.4335 0.1865 5.3619 

Males 2006 3,3 3.0592 17.5026 0.1748 5.7208 

Males 2016 1,2 10.5715 18.1212 0.5834 1.7140 

 
12 All agents over the age of 19 who received an income and reported age and educational status were included in 
the study resulting in 608538 observations in 2006 (312405 of which were female) and 610346 in 2016 (326676 of 
which were female). An individual’s experience is proxied for by their age group category with 20-29, 30-39, 40-49, 

50-59, 60-69 and ≥ 70 being the designated experience categories. The education and training embodied 
human capital levels are based on 5 ordered categories:- EDU1:  Did not finish high school, EDU2: 
Completed High school, EDU3: Trade or Apprentice certification or University certification or diploma 
below bachelor degree level and EDU5: University certificate or diploma bachelor level and above, 
including masters and doctorates. EDU3 and 40-49 age group were deemed the Sufficient Human 
Resource level. 



 

Table 1 reports 𝑂𝐶𝐶𝑂𝑉3 and Sharpe Ratios together with their components for the joint density for 

Males and Females in 2006 and 2016. What may be gleaned from Table 1 is that relative variation of 

human resource stocks increased for both Females and Males over the decade, but much more so for 

Males, a result of the substantial shift downwards in the Male modal location engendering a substantial 

increase in relative variation and a sharp reduction in the uncertainty moderated level of human 

resources.  

Table 2. Education Ordered Categorical Coefficient of Variation 
     EDU1     EDU2      EDU3     EDU4      EDU5      𝑂𝐶𝐶𝑂𝑉 Sharpe 

Females 2006 PDF 
Survival Function 

  0.2104   0.2792   0.3109   0.0570   0.1425  
  0.7896   0.5104   0.1995   0.1425   0.0000  

 0.6346  
 

1.5758 

Females 2016 PDF 
Survival Function 

  0.1681   0.3035   0.2751   0.0399   0.2134  
  0.8319   0.5284   0.2533   0.2134   0.0000  

 0.6367  
 

1.5706 

Males 2006 PDF 
Survival Function 

  0.2139   0.2591   0.3502   0.0446   0.1322  
  0.7861   0.5270   0.1768   0.1321   0.0000  

 0.6139  
 

1.6289 

Males 2016 PDF 
Survival Function 

  0.2010   0.3374   0.2311   0.0314   0.1992  
  0.7990   0.4616   0.2306   0.1992   0.0000 

 0.6462 1.5475 

 
Table 3. Experience Ordered Categorical Coefficient of Variation 

     20-29     30-39     40-49     50-59     60-69      >  69 𝑂𝐶𝐶𝑂𝑉 Sharpe 

2006 
Female 

PDF 
Survival Func 

  0.1689   0.1749   0.2169   0.1751   0.1203   0.1439  
  0.8311   0.6562   0.4393   0.2642   0.1439   0.0000  

0.5825  
 

1.7167 

2016 
Female 

PDF 
Survival Func 

  0.1673   0.1625   0.1647   0.1921   0.1609   0.1525  
  0.8327   0.6702   0.5054   0.3133   0.1525   0.0000  

0.5891  
 

1.6975 

2006 
Male 

PDF 
Survival Func 

  0.1807   0.1782   0.2232   0.1872   0.1195   0.1113  
  0.8193   0.6412   0.4180   0.2308   0.1113   0.0000  

0.5853  
 

1.7085 

2016 
Male 

PDF 
Survival Func 

  0.1904   0.1689   0.1685   0.1959   0.1537   0.1225  
  0.8096   0.6407   0.4722   0.2763   0.1225   0.0000  

0.6360  
 

1.5723 

 

When the marginal Education and Experience distributions are considered in Tables 2 and 3 

respectively, a greater increase in relative variation in both Education and Experience for males relative 

to females can be observed in both dimensions. Notice that, when viewed separately, the individual 

dimension mode changes over time are similar across genders (mode levels lowering in the case of 

education and increasing in the case of experience), a pattern that is not reflected in the bivariate 

distribution (increasing experience, decreasing education for women, both decreasing for men).  

The relative variation in education as apposed to experience outcomes is examined in table 4. To make 

this comparison the ordered categorical coefficient of variation needs to be adjusted bye the number of 

categories in the respective variates. When this is done it can be observed that with the exception of 

males in 2016 education has greater relative variation phone does experience so the position is reversed 

for 2016 males.  



Table 4. Education and Experience comparison. 

         𝑂𝐶𝐶𝑂𝑉    𝐾 adjusted 𝑂𝐶𝐶𝑂𝑉   𝐾 adjusted  Sharpe 

Education 2006  Female 
Education 2016 Female 
Education 2006 Male 
Education 2016 Male 

        0.6346                  0.5077                         1.9697  
        0.6367                  0.5094                         1.9632  
        0.6139                  0.4911                         2.0362  
        0.6462                  0.5170                         1.9344 

Experience 2006  Female 
Experience 2016 Female 
Experience 2006 Male 
Experience 2016 Male 

        0.5825                  0.4854                         2.0601  
        0.5891                  0.4909                         2.0370  
        0.5853                  0.4878                         2.0502  
        0.6360                  0.5300                         1.8868 

 

4. Conclusions.  

By invoking the notion of probabilistic distance and developing a measure of level analogous to the 

mean in cardinal paradigms, it is possible to measure the relative ordinal variation in a population which 

is unit free and comparable across populations In spite of the lack of cardinal measure. Furthermore, the 

measures are easily implemented in multidimensional environments. An exemplifying application of the 

measure to examine the relative variability in human resources across the gender divide in 21st century 

Canada revealed substantial differences. Both genders increased in relative variation over the decade 

with males exhibiting greater variation than females with the decanal increase being much greater for 

males. Generally, relative variation in education and training exceeded that of experience. 
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Apppendix. Joint PDF’s and Survival Functions.   

                                 Joint PDF                                               Survival Function 

     EDU1     EDU2      EDU3     EDU4      EDU5     EDU1     EDU2      EDU3     EDU4      EDU5 

Females 
2006 

20-29 
30-39 
40-49 
50-59 
60-69 
 >  69 

  0.0181   0.0552   0.0543   0.0077   0.0337   0.9819   0.9268   0.8725   0.8648   0.8311  
  0.0182   0.0390   0.0666   0.0105   0.0405   0.9637   0.8696   0.7487   0.7305   0.6562  
  0.0294   0.0628   0.0795   0.0129   0.0323   0.9343   0.7773   0.5769   0.5459   0.4393  
  0.0320   0.0540   0.0557   0.0114   0.0219   0.9023   0.6913   0.4351   0.3928   0.2642  
  0.0408   0.0321   0.0304   0.0081   0.0089   0.8615   0.6184   0.3318   0.2814   0.1439  
  0.0719   0.0361   0.0243   0.0066   0.0050   0.7896   0.5104   0.1995   0.1425   0.0000 

Females 
2016 

20-29 
30-39 
40-49 
50-59 
60-69 
 >  69 

  0.0137   0.0588   0.0436   0.0052   0.0461   0.9863   0.9275   0.8839   0.8787   0.8327  
  0.0135   0.0364   0.0511   0.0067   0.0548   0.9728   0.8775   0.7828   0.7710   0.6702  
  0.0166   0.0404   0.0544   0.0075   0.0459   0.9562   0.8206   0.6714   0.6522   0.5054  
  0.0272   0.0638   0.0597   0.0080   0.0335   0.9290   0.7296   0.5209   0.4936   0.3133  
  0.0332   0.0580   0.0408   0.0066   0.0223   0.8958   0.6385   0.3890   0.3551   0.1525  
  0.0639   0.0461   0.0256   0.0060   0.0108   0.8319   0.5284   0.2533   0.2134   0.0000 

Males 
2006 

20-29 
30-39 
40-49 
50-59 
60-69 
 >  69 

  0.0265   0.0673   0.0565   0.0067   0.0238   0.9736   0.9063   0.8498   0.8431   0.8193  
  0.0244   0.0444   0.0675   0.0083   0.0335   0.9491   0.8374   0.7135   0.6985   0.6412  
  0.0390   0.0557   0.0873   0.0100   0.0311   0.9101   0.7427   0.5313   0.5063   0.4180  
  0.0372   0.0473   0.0683   0.0093   0.0251   0.8728   0.6582   0.3785   0.3442   0.2308  
  0.0374   0.0245   0.0400   0.0059   0.0117   0.8354   0.5962   0.2766   0.2364   0.1113 
  0.0493   0.0199   0.0306   0.0044   0.0071   0.7861   0.5270   0.1768   0.1321   0.0000   

Males 
2016 

20-29 
30-39 
40-49 
50-59 
60-69 
 >  69 

  0.0236   0.0855   0.0397   0.0041   0.0375   0.9764   0.8909   0.8512   0.8471   0.8096  
  0.0223   0.0525   0.0454   0.0051   0.0436   0.9540   0.8160   0.7309   0.7217   0.6407  
  0.0246   0.0524   0.0446   0.0061   0.0408   0.9295   0.7390   0.6093   0.5940   0.4722  
  0.0412   0.0634   0.0494   0.0062   0.0356   0.8882   0.6344   0.4552   0.4337   0.2763  
  0.0373   0.0507   0.0333   0.0055   0.0269   0.8509   0.5464   0.3339   0.3068   0.1225  
  0.0520   0.0328   0.0186   0.0043   0.0149   0.7990   0.4616   0.2306   0.1992   0.0000  

 


