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Abstract 

The extensive use of multivariate ordered categorical data in the social sciences presents 

challenges for the measurement of socioeconomic inequities. The ambiguities inherently 

associated with artificial attribution of scale to ordinal categories, preclude the use of standard 

distance-based inequality and polarization measures. These issues have been surmounted in the 

univariate world by employing notions of likelihood distance (the increasing likelihood that an 

outcome between two categories will occur the bigger is their categorical gap) and aggregating 

outcome distances from the median category as a reference point, adapting the transfer principle 

using Hammond transfers, or with probability-based notions of status. Unfortunately, the median 

category is not always the ideal reference point of complete commonality and is not uniquely 

defined in multivariate environments. However, as the most frequently observed outcome, the 

modal category provides a natural measure of the extent of commonality or equity in the 

population, thus providing a readymade reference point from which to measure likelihood 

outcome distance. We provide axiomatic foundations and characterise classes of modally 

focused inequality measures for univariate and multivariate ordered categorical environments 

together with their asymptotic distributions for inference purposes. We also identify the partial 

ordering induced by our proposed mode-clustering transfers which provides a useful robustness 

test for inequality indices in the spirit of stochastic dominance conditions. In an empirical 

illustration we study the evolution of inequality in educational attainment and experience among 

men and women in Canada.    
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1. Introduction. 

The extensive use of survey information in multidimensional cardinal and ordered categorical 

formats, and the growing interest in understanding the extent of inequality across societies, calls 

for measures appropriate for such environments. When the outcomes have cardinal measure, 

measuring distance between them does not present a problem.1 However, when outcomes are 

ordered categories, distance measurement is problematic. One solution has been to attribute 

cardinal scale to the ordinal categories (Cantril 1965), but the arbitrary nature of the scaling and 

the scale-dependency of traditional inequality measures for cardinal variables, such as the Gini 

index, are each cause for concern (Bond and Lang 2019, Schroder and Yitzhaki 2017). Mendelsohn 

(1987) resolved this issue by positing the notion of likelihood distance from a quantile reference 

point, a construct employed by Allison and Foster (2004) and subsequent contributions to the 

paradigm of median-preserving spreads,2 as well as more recently by Cowell and Flachaire (2017) 

in their proposal to measure status inequality with ordinal variables.  

These proposals for ordinal variables capture the intuition of inequality as the extent to which 

observations are not located at a common reference point. In the context of prospect theory and 

decision making, Kahneman and Tversky stressed the importance of specifying an appropriate 

point of reference (Kahneman and Tversky 1979, Tversky and Kahneman 1991), a sentiment that 

is, arguably, equally pertinent in inequality measurement. From a likelihood perspective, the 

most likely candidate for a category in which all could potentially reside is the mode, the most 

frequently observed category, which provides an ideal, intuitively plausible, likelihood-based 

reference point for analysis. This likelihood approach is especially relevant in multidimensional 

spaces where unique median points of reference are difficult to conceptualize. All that remains 

is to quantify the extent to which the realized outcomes diverge from the reference point and 

relate these divergences to ethically meaningful distributional transformations. 

In ordered categorical spaces the absence of cardinal measure and the ambiguities inherently 

associated with artificial attribution of scale to ordered categories, precludes employment of 

standard distance-based inequality measures such as the Gini (Gini 1921) and its polarization 

analogue (Esteban and Ray 1994). Following Mendelsons’ (1987) foundational work on 

quantifying distance between categories in likelihood terms and given the importance of 

reference-dependent analysis, the Median Preserving Spread (MEPS) approach has become a 

popular workhorse in inequality measurement with single ordinal variables3 (Allison and Foster 

2004) which has been extended to multidimensional spaces. Typically, this work identifies the 

 
1 Alternatively, for cardinal data one can implement measures based on the Atkinson-Kolm-Sen paradigm. 
2 See e.g., Apouey (2007), Abul Naga and Yalcin (2008), Kobus and Milos (2012), Lazar and Silber (2013), Kobus (2015), 
Lv et al. (2015). These echo the seminal notion of mean-preserving spreads for continuous variables (Rothschild and 
Stiglitz, 1970). 
3 MEPS overcomes the scaling problems associated with measuring distance between categories when they have 
been artificially attributed cardinal value (Bond and Lang 2019, Schroder and Yitzhaki 2017). 



median category4 as the reference point and employs Mendelson’s notions of likelihood distance 

from it. However, from a likelihood perspective, given that inequality is measured as the extent 

to which agents do not universally reside in a unique single outcome, the median outcome may 

not be the best reference category since it is not always the most frequently inhabited and thus 

most likely point of commonality. Furthermore, extending the median category condition to 

multidimensional space usually results in an array of categories defining a probability contour on 

that space, of which the uniquely defined quantile category proposed by Kobus and Kurek (2019) 

may or may not be a member. 

An alternative is to employ the modal category as a reference point which is, under broad 

appropriate circumstances, readily conceptualized as unique in any multivariate measurement 

paradigm. Furthermore, since the mode is the most common outcome by definition, its 

frequency provides a natural, albeit incomplete, likelihood-oriented measure of the extent of 

commonality or equality of outcome inherent in a distribution; and its complement can be readily 

seen as an elementary measure of the extent of inequality or lack of commonality of outcome. 

Consider, for instance, ordered-categorical distributions 𝒑 = (0.4,0,0.2,0.2,0.2) and 𝒒 =

(0.45,0,0.15,0.2,0.2), where 𝒒 is obtained from 𝒑 through a transfer of 0.05 from the common 

median (the third category) to the common mode (the first category). Any inequality index 

satisfying the MEPS principle, would deem 𝒒 more unequal than 𝒑 as the left tail of q is thicker 

than p’s, ceteris paribus; i.e., there is a higher proportion of units further away from the common 

median. However, at the same time, there is a higher proportion of people in the most popular 

category, namely the mode. Moreover, the right tail has become slimmer; that is, fewer units are 

that far away from the mode as before. Thus, building on this intuition we can propose an 

inequality measurement criterion based on the mode as a reference point. 

Our main contribution is the proposal of axiomatic foundations and indices for the measurement 

of inequality with ordinal variables using the mode as the reference point for both univariate and 

multivariate settings. The axiomatically characterised indices are sensitive to transfers which 

decrease the likelihood distance from the mode. Thus, though the median and modal approaches 

to inequality measurement employ the same likelihood distance measures and agree in their 

identification of fully egalitarian distributions, they fundamentally differ in their notion of 

maximum inequality construct. With the median approach, extreme inequality exists when all 

the probability mass resides evenly and exclusively at the extreme categories, whereas extreme 

inequality in the modal approach arises when the distribution becomes uniform, for only then 

the modal category ceases to exist as such.  

We also identify the (incomplete) partial ordering induced by our proposed mode-clustering 

transfers which provides a useful robustness test for inequality indices in the spirit of stochastic 

dominance conditions. In fact, this partial ordering’s implementation conditions are remarkably 

similar to those of the MEPS partial ordering derived by Allison and Foster (2004), only differing 

 
4 The median is defined in a way that lower categories have jointly less than a 50% chance of occurring whilst the 
rest, including the median itself, have jointly at least a 50% likelihood of occurrence. 



in their reference point. Additionally, we provide analytical formulas for the standard errors of 

our flagship measures in the spirit of Abul Naga and Stapenhurst (2020).  

Finally, we illustrate the proposed measures with a study of the evolution of inequality in 

educational attainment among men and women in Canada. Even though in most comparisons, 

the trends in inequality between 2006 and 2016 coincide between mode-focused and median-

focused indices, we do find a couple of instances in the female sample in which the choice of 

reference point bears practical consequences.    

The rest of the paper proceeds as follows. Section 2 introduces the axiomatic foundations for 

inequality indices of ordinal variables focusing on the mode, chiefly the mode-clustering transfers 

principle, together with their respective motivation. Section 3 provides a simple axiomatic 

characterisation of inequality indices satisfying the key axioms, followed by an exemplary class 

of readily implementable measures, with particular emphasis on a `flagship’ member. Section 4 

derives the incomplete partial ordering induced by the mode-clustering transfers principle. This 

ordering relates to a stochastic dominance condition which is useful as a robustness test for 

inequality comparisons. Section 5 provides the analytical formulas for the standard errors of the 

flagship index introduced in section 3. Section 6 extends the framework to the multivariate 

environment. Section 7 provides the empirical illustration on the evolution of educational 

inequality by gender in Canada between 2006 and 2016. Finally, section 8 concludes with some 

remarks. 

 

2. Axiomatic foundations for inequality measures based on the mode.  

2.1 Notation 

Let 𝒑 ≡ (𝑝1, … 𝑝𝐾) be a distribution of frequencies where 𝐾 > 1 is the number of ordered 

categories, such that 0 ≤ 𝑝𝑖 ≤ 1 for all 𝑖 = 1, … , 𝐾 and ∑ 𝑝𝑖
𝐾
𝑖=1 = 1, with each category labelled 

by a natural number between 1 and 𝐾, just for reference purposes (i.e., these labels are not 

cardinal scales). Also let 𝑷 ≡ (𝑃1, … 𝑃𝐾) be the cumulative distribution function (CDF), such that 

𝑃𝑖 = ∑ 𝑝𝑗
𝑖
𝑗=1  for all 𝑖 = 1,… , 𝐾. The set of all possible distributions with 𝐾 categories is 𝒮𝐾. 

Additionally, let 𝑛 be a population size. 

As is well known for ordinal variables, the only two measures of central tendency that can be 

defined independently of arbitrary scales are the median and the mode. Following Kobus (2015), 

let the single median category 𝑚𝑒 exist and be defined whenever (1) 𝑃𝑚𝑒−1 < 0.5 and 𝑃𝑚𝑒 ≥

0.5 for 𝑚𝑒 > 1 or  (2) 𝑚𝑒 = 1 if 𝑃1 > 0.5.5 Meanwhile, let the single modal category 𝑚𝑜 exist 

and be defined whenever 𝑝𝑚0 > 𝑝𝑖 for all natural numbers 𝑖 ∈ {1, … , 𝐾}/{𝑚𝑜}. In the case of 

multimodal distributions, which are also possible, we have a set of categories {𝑚1
0, … ,𝑚𝐽

0} with 

 
5 There are also distributions with multiple median categories, but we do not consider them here for ease of 
presentation. Further details can be found in Kobus (2015).   



𝐽 ≤ 𝐾 such that:  𝑝𝑚1
0 = ⋯ = 𝑝𝑚𝐽

0 = max{𝑝1, … , 𝑝𝐾}. For ease of presentation, we focus mostly 

on unimodal distributions. 

Finally, let ℰ𝐾 ∈ 𝒮𝐾  be the set of 𝐾 degenerate distributions, i.e. egalitarian distributions 

characterised by 𝑝𝑖 = 1 for one 𝑖 ∈ {1,… , 𝐾}, 𝓾𝑲 be a uniform distribution with 𝐾 categories, 

and   𝐼: 𝒮𝐾 → ℝ+ be an inequality index for ordinal variables.  

2.2 Motivation and key axioms  

The median-preserving spread (MEPS) principle (Allison and Foster, 2004; Apouey 2007; Abul 

Naga and Yalcin, 2008; Kobus and Milos, 2012; Kobus, 2015) states that an inequality index 

should increase (or minimally not decrease) whenever frequency mass is moved away from the 

median category and toward the tails without changing the median category. Even though 

inequality indices respecting the MEPS principle only rank degenerate distributions as egalitarian, 

they will generally signal higher inequality as more frequency mass moves toward the tails 

irrespective of the formation of high frequencies in them. In this sense, borrowing the intuition 

and terminology from the polarization literature (starting with Esteban and Ray, 1994), we would 

say that the MEPS principle prioritises alienation from the median category irrespective of 

identification within alternative categories.  

Even though the MEPS principle is admittedly appealing, inequality measurement criteria based 

on alternative intuitions can also be proposed. Again, borrowing concepts from the polarization 

literature, we could conceive inequality for ordinal variables as the opposite of identification 

within one category, coupled with alienation from the most common category. In that case, the 

mode would be a more suitable measure of central tendency for an assessment of dispersion 

around it. 

Consider, for instance, 𝒑 = (0.4,0,0.2,0.2,0.2) and 𝒒 = (0.45,0,0.15,0.2,0.2), where 𝒒 is 

obtained from 𝒑 through a transfer of 0.05 from the common median (𝑚𝑒 = 3) to the common 

mode (𝑚𝑜 = 1). If 𝐼 satisfies the MEPS principle, then we would get 𝐼(𝒒) > 𝐼(𝒑) as the left tail 

of q is thicker than p’s, ceteris paribus; i.e., there is a higher proportion of units further away, or 

alienated from, the common median. However, at the same time identification with the common 

mode has also increased. That is, there is a higher proportion of people in the most popular 

category. Moreover, the right tail has become slimmer; that is, fewer units are alienated from 

the mode. Thus, building on this intuition we can propose an inequality measurement criterion 

based on the mode as a reference point. Then, an index satisfying such a property (to be formally 

defined below) would stipulate that  𝐼(𝒒) < 𝐼(𝒑). 

In order to formalise this intuition into a measurement proposal definition 1 introduces a mode-

preserving spread: 



Definition 1: Mode clustering transfers (MOCT): 𝒒 is obtained from 𝒑 through a mode clustering 

transfer if, for any pair of categories 𝑖, 𝑗 such that either  1 ≤ 𝑖 < 𝑗 ≤ 𝑚𝑜 or 𝑚𝑜 ≤ 𝑗 < 𝑖 ≤ 𝐾, 

𝑞𝑖 = 𝑝𝑖 −
1

𝑛
, 𝑞𝑗 = 𝑝𝑗 +

1

𝑛
, 𝑞𝑙 = 𝑝𝑙  ∀𝑙 ≠ 𝑖, 𝑗 , 𝑞𝑚𝑜 ≥ 𝑝𝑚𝑜  and 𝑚𝑜(𝒒) = 𝑚𝑜(𝒑). 

Note from definition 1 that the two distributions have the same mode, but 𝒒 features higher 

identification with it together with lower alienation away from it. Then we state the 

corresponding principle: 

Axiom 1 Mode clustering transfers (MOCT) principle: 𝐼(𝒒) ≤ 𝐼(𝒑) if 𝒒 is obtained from 𝒑 through 
a sequence of mode clustering transfers. 
 
Take any distribution and implement a sequence of MOCT; that is, clustering transfers around 
the mode. Then we invariably end up with a degenerate distribution featuring complete 
identification with the mode and nil alienation from it. Hence, for any 𝐾, the set of 𝐾 egalitarian 
distributions relevant to inequality measurement criteria based on MOCT is identical to the set 
based on MEPS. Furthermore, we can reasonably ask inequality indices to satisfy the mode-
centered version of the equality principle:    
 
Axiom 2 Equality principle: 𝐼(𝒑) = 0 if and only if  𝒑 ∈ ℰ𝐾, for any 𝐾 > 1. 
 
Likewise, within 𝒮𝐾  we can identify a set of distributions with maximal inequality. We know from 
the definition of a MOCT that the frequency of the invariant mode cannot decrease after an 
equality-inducing transformation (i.e. a MOCT). Therefore, maximal inequality must be 
associated with the lowest possible frequency in the mode, which is attained only in the case of 
a uniform distribution. Therefore, the set of distributions with maximal inequality contains one 
element and we can ask indices to satisfy the following axiom if we would like their values to be 
bound by the real interval [0,1]: 
 

Axiom 3 Maximality principle:  𝐼(𝒑) = 1 if and only if  𝒑 = 𝓾𝑲 for any 𝐾 > 1. 

 

3. Indices of inequality for single ordinal variables respecting the MOCT principle. 

 

We can provide a simple characterisation of inequality indices for ordinal variables satisfying the 

three axioms introduced in the previous section: 

Proposition 1: For every natural number 𝐾 > 1, 𝐼: 𝒮𝐾 → ℝ+ satisfies the equality principle, the 

MOCT principle and the maximality principle if and only if for every 𝒑 ∈ 𝒮𝐾:  

 𝐼(𝒑) =
ℎ(𝒑) − ℎ(𝒒)

ℎ(𝓾𝑲) − ℎ(𝒒)
 

Where ℎ: 𝒮𝐾 → ℝ+ satisfies the MOCT principle and 𝒒 ∈ ℰ𝐾. 



Proof: Sufficiency: Since, for every natural number 𝐾 > 1, 𝒒 ∈ ℰ𝐾 has the mode with the highest 

possible frequency (𝑚𝑜(𝒒) = 1) and 𝓾𝑲 has the mode with the lowest possible frequency 

(𝑚𝑜(𝓾𝑲) =
1

𝐾
), then it is easy to show that any distribution 𝒑 ∈ 𝒮𝐾  can be obtained from 𝓾𝑲 

through a finite sequence of MOCT, while at least one of the 𝐾 possible 𝒒 ∈ ℰ𝐾 can be obtained 

from any distribution 𝒑 ∈ 𝒮𝐾  through a finite sequence of MOCT. Therefore, since ℎ satisfies the 

MOCT principle, we have ℎ(𝓾𝑲) ≥ ℎ(𝒑), ℎ(𝒑) ≥ ℎ(𝒒) and ℎ(𝓾𝑲) > ℎ(𝒒), which in turn implies  

1 = 𝐼(𝓾𝑲) ≥ 𝐼(𝒑) ≥ 𝐼(𝒒) = 0, for every 𝒑 ∈ 𝒮𝐾. Thus 𝐼(𝒑) satisfies the equality principle and 

the maximality principle. Also, it is straightforward to note that if ℎ satisfies the MOCT principle 

then so will 𝐼(𝒑) as 
1

ℎ(𝓾𝑲)−ℎ(𝒒)
 and 

−ℎ(𝒒)

ℎ(𝓾𝑲)−ℎ(𝒒)
 remain constant for a given 𝐾. 

Necessity: Without loss of generality, consider 𝐼(𝒑) = 𝑎ℎ(𝒑) + 𝑏 such that ℎ: 𝒮𝐾 → ℝ+, 𝑎 ∈

ℝ++ and 𝑏 ∈ ℝ. Since 𝐼 satisfies the MOCT principle then ℎ must satisfy it as well. Moreover, 

satisfaction of the equality principle requires 𝐼(𝒒) = 𝑎ℎ(𝒒) + 𝑏 = 0 → 𝑏 = −𝑎ℎ(𝒒). 

Meanwhile, satisfiaction of the maximality principle requires 𝐼(𝓾𝑲) = 𝑎ℎ(𝓾𝑲) − 𝑎ℎ(𝒒) = 1 →

𝑎 =
1

ℎ(𝓾𝑲)−ℎ(𝒒)
. Finally, replacing both 𝑎 and 𝑏 we obtain 𝐼(𝒑) =

ℎ(𝒑)−ℎ(𝒒)

ℎ(𝓾𝑲)−ℎ(𝒒)
.∎ 

Potentially, numerous functional forms for ℎ are admissible. For instance, with ℎ(𝒑) =

∑ 𝑤𝑖𝑃𝑖
𝑚𝑜−1
𝑖=1 + ∑ 𝑤𝑖(1 − 𝑃𝑖)

𝐾
𝑖=𝑚𝑜  such that 𝑤𝑖 > 0 for all 𝑖 = 1,… , 𝐾, we obtain the following 

subclass of inequality indices (noting that ℎ(𝒒 ∈ ℰ𝐾) = 0): 

𝐼(𝒑) = 𝐾
∑ 𝑤𝑖𝑃𝑖

𝑚𝑜−1
𝑖=1 +∑ 𝑤𝑖(1−𝑃𝑖)

𝐾
𝑖=𝑚𝑜

∑ 𝑤𝑖𝑖
𝑚𝑜−1
𝑖=1 +∑ 𝑤𝑖(𝐾−𝑖)𝐾

𝑖=𝑚𝑜
   (1) 

Where 𝑤𝑖 > 0 for all 𝑖 = 1,… , 𝐾.6 Furthermore, a convenient special case obtains when 𝑤1 =

⋯ = 𝑤𝐾: 

𝐼(𝒑) = 2𝐾
∑ 𝑃𝑖

𝑚𝑜−1
𝑖=1 +∑ (1−𝑃𝑖)

𝐾
𝑖=𝑚𝑜

𝑚0(𝑚𝑜−1)+(𝐾−𝑚0+1)(𝐾+𝑚0−2)
   (2) 

 

4. Partial orderings for single ordinal variables 

 

As mentioned, the class of inequality indices characterised in proposition 1 admits several 

members depending on the choice of functional form for ℎ. Then, as usual in other areas of 

distributional analysis, we can ask whether some distributions can be ordered robustly by all 

members of class 𝐼 in proposition 1. Theorem 1 provides the stochastic dominance condition for 

inequality measures for ordinal variables based on MOCTs.  

 
6 This is a popular choice among proposals for indices based on the MEPS paradigm (e.g., see Kobus and Milos, 2012; 
Lazar and Siber, 2013; Chakravarty and Maharaj, 2015). Note that the weights 𝑤𝑖  do not need to add up to 1. 



Theorem 1: For any 𝒑, 𝒒 ∈ 𝒮𝐾 , the following three statements are equivalent: 

(i) 𝐼(𝒑) ≥ 𝐼(𝒒) for every 𝐼: 𝒮𝐾 → ℝ+ satisfying the MOCT principle. 

(ii) 𝒒 is obtained from 𝒑 through a finite sequence of MOCT. 
(iii) 𝑃𝑖 ≥ 𝑄𝑖 for all 𝑖 = 1,… ,𝑚𝑜 − 1 and 𝑄𝑖 ≥ 𝑃𝑖  for all 𝑖 = 𝑚𝑜 , … , 𝐾. 

Proof: (𝑖𝑖) → (𝑖) is straightforward.  

(𝑖) → (𝑖𝑖𝑖): Since (𝑖) → (𝑖𝑖𝑖) if and only if ∼ (𝑖𝑖𝑖) →∼ (𝑖),  we prove the latter. First, consider 

that (i) implies that 𝐼(𝒑) ≥ 𝐼(𝒒) for all 𝐼 in equation 1, namely for all possible weighting vectors 

𝑤1, … , 𝑤𝐾, with strictly positive elements, since the class in equation 1 is a subset of all indices 

considered in statement (i). Second, let  ∼ (𝑖𝑖𝑖). Then for all categories 𝑖 < 𝑚𝑜 for which 𝑃𝑖 < 𝑄𝑖 

and 𝑖 ≥ 𝑚𝑜for which 𝑄𝑖 < 𝑃𝑖, we could respective weights 𝑤 high enough in order to render 

𝐼(𝒑) < 𝐼(𝒒) for at least one set of weights in equation 1.  

(𝑖𝑖𝑖) → (𝑖𝑖). Using the language and definitions of Gravel et al. (2020) we note that a MOCT from 

category 𝑖 to 𝑗 such that  1 ≤ 𝑖 < 𝑗 ≤ 𝑚𝑜 is essentially an increment, whereas a MOCT from 

category 𝑖 to 𝑗 such that 𝑚𝑜 ≤ 𝑗 < 𝑖 ≤ 𝐾 is a decrement. Hence, we know from Gravel et al. 

(2020) that 𝑃𝑖 ≥ 𝑄𝑖 for all 𝑖 = 1,… ,𝑚𝑜 − 1 implies that 𝒒 is obtained from 𝒑 through a finite 

sequence of increments involving categories 1 through 𝑚𝑜 (because it could be that 𝑃𝑚0−1 >

𝑄𝑚0−1). This can be ascertained by moving sequentially 𝑃𝑖 − 𝑄𝑖 to category 𝑖 + 1 in 𝒑 starting 

with 𝑖 = 1 all the way to 𝑖 = 𝑚𝑜 − 1. A mentioned, these increments are all MOCT because they 

occur to the left of the mode. Likewise, we know that 𝑄𝑖 ≥ 𝑃𝑖  for all 𝑖 = 𝑚𝑜, … , 𝐾 implies that 𝒒 

is obtained from 𝒑 through a finite sequence of decrements involving categories 𝑚𝑜 through 𝐾. 

This can be ascertained by moving sequentially 𝑄𝑖 − 𝑃𝑖  from category 𝑖 + 1 to category 𝑖 in 𝒑 

starting with 𝑖 = 𝐾 − 1 all the way to 𝑖 = 𝑚𝑜. A mentioned, these decrements are all MOCT 

because they occur to the right of the mode.  Hence if 𝑃𝑖 ≥ 𝑄𝑖 for all 𝑖 = 1, … ,𝑚𝑜 − 1 and 𝑄𝑖 ≥

𝑃𝑖  for all 𝑖 = 𝑚𝑜, … , 𝐾; then 𝒒 is obtained from 𝒑 through a finite sequence of MOCT.∎ 

Note the striking resemblance between the implementable condition (iii) and its testable 

counterpart for the MEPS principle derived by Allison and Foster (2004) and Kobus (2015). The 

key difference between the two is the measure of central tendency. The MEPS implementable 

condition relies on the median, whereas ours relies on the mode.  

 

5. Statistical Inference. 

The following establishes the sampling distributions of the inequality index estimates. To 

facilitate inference, note that given 𝒑 ∈ 𝒮𝐾  and a 𝐾-dimensional unit vector  𝟏𝑲, the vector of 

CDF values 𝑷  is given by 𝑷 =  𝒑𝑳 where 𝑳 is an upper-diagonal matrix of ones. The corresponding 

vector of Survival Function values 𝑷𝑪 with typical element 𝑃𝑘
𝐶  is given by 𝑷𝑪 = 𝟏𝑲 − 𝑷. Inference 

in this context is straightforward. Following Rao (2009) and Abul Naga and Stapenhurst (2015), 

given an independent random sample of size 𝑛, �̂�, the estimator of the vector of outcome 

probabilities 𝒑 is multivariate normal:  



                                                         √𝑛(�̂� − 𝒑)~𝑁(𝟎𝑲, 𝐕)                                                      

where: 

                                𝑽 =

[
 
 
 
 
𝑝1 0 0 . 0
0 𝑝2 0 . 0
0
.
0

0
.
0

𝑝3 . 0

. . 0
0 . 𝑝K]

 
 
 
 

−

[
 
 
 
𝑝1

𝑝2.
.

𝑝K]
 
 
 
[𝑝1 𝑝2 . . 𝑝𝐾]                  

So that: √𝑛(�̂� − 𝑷)~𝑁(0, 𝑳′𝑽𝑳).  

Given a focus category 𝑚0(which could be either the median or the mode), 𝐼(𝒑) from equation 

(2) may be written as 𝜑𝟏𝑲𝑪  where: 

        𝑪 =

[
 
 
 
 
 

𝑃1

.
𝑃𝑚0−1

1 − 𝑃𝑚𝑜

.
1 − 𝑃𝑘 ]

 
 
 
 
 

= 𝑷′𝑫 + (𝟎𝒎𝒐−𝟏, 𝟏𝑲−𝒎𝒐+𝟏)′,  where 𝑫 is a diagonal matrix with the first 

𝑚𝑜 elements equal to 1 and the rest equal to −1; and 𝜑 =
2𝐾

𝑚0(𝑚𝑜−1)+(𝐾−𝑚0+1)(𝐾+𝑚0−2)
. 

Then 𝐼(𝒑) may be shown to be asymptotically normal such that 

                                              √𝑛(𝐼(�̂�) − 𝐼(𝒑))~𝑁(0,𝜑2𝟏𝑲𝑫𝑳′𝑽𝑳′𝑫𝟏𝑲′) 

Modal Determination. 
 
A category is a Local Mode when its mass is greater than its immediate neighbors’, and it is a 
Universal mode when its mass is greater than that of all other categories. To examine this, 
consider 𝑘 a candidate modal category, then for it to be a local mode  𝑝k − 𝑝k−1 > 0 and 𝑝k −
𝑝k+1 > 0 and for it to be a universal mode 𝑝k − 𝑝j > 0 for all 𝑗 = 1, . . , 𝐾 𝑗 ≠ 𝑘. Letting 𝒅𝒌,𝒋 be a 

K x 1 vector with its 𝑘’th element 1 and its 𝑗’th element -1 with all other elements set to 0, this 
amounts to jointly testing 𝒑𝒅𝒌,𝒌−𝟏′ > 0 and 𝒑𝒅𝒌,𝒌+𝟏′ > 0 in the case of local modality and 
𝒑𝒅𝒌,𝒋′ > 0 for all 𝑗 = 1, . . , 𝐾 𝑗 ≠ 𝑘 in the universal case. Noting that generically since: 

                                                    √𝑛𝒅𝒌,𝒋(�̂�′ − 𝒑′)~𝑁(0, 𝒅𝒌,𝒋 𝑽𝒅𝒌,𝒋′)  

these may be examined using the Studentized Maximum Modulus Distribution (Stoline and Ury 

1979). Alternatively, the situation can be quickly assessed by forming the 2 𝑥 1 or 𝐾 − 1 𝑥 1 

vector 𝑑𝑝 = [𝒅𝒌,𝒋�̂�′] where 𝑗 =  𝑘 − 1 , 𝑘 + 1 in the local mode instance and 𝑗 = 1, . . , 𝐾 𝑗 ≠ 𝑘 

in the universal mode instance. Let s(.) be a vector element summation function and consider  

𝐴𝑀𝐵 = 𝑠 (𝑑𝑝) 𝑠 (|𝑑𝑝|)⁄ , if 𝐴𝑀𝐵 =  1 the corresponding modality hypothesis would never be 

rejected. 

 



6. Multivariate extension. 

Extending the Median Preserving Spread to many dimensions can be problematic since in that 

space there is rarely a unique multidimensional median category (the standard 𝐹(. )  <

 0.5, 𝐹(. ) ≥ 0.5 condition usually defines a contour of points). Kobus and Kurek (2019) resolve 

the problem by defining the unique “median category” in terms of the medians of the marginal 

distributions but that may result in a point that is not actually on the contour7. However, the 

modal based proposal can be extended for inequality comparisons with multiple ordinal variables 

because, in the absence of multidimensional uniformity and multiple equal probability modes, 

the multidimensional modal category is usually unique. However, the extension is not 

straightforward because if we have 𝐷 ordinal variables, then there are up to 2𝐷 directions toward 

which people can become more alienated from the mode. For instance, with 𝐷 = 1 as in the 

previous sections, further alienation can occur when either people initially at the mode or below 

move further downward toward the bottom category or people initially at the mode or above 

move further upward toward the top category. Meanwhile with 𝐷 = 2, someone at the mode 

could move away from it in four (22) possible directions if the mode is not in a bivariate category 

defined by one or two extreme univariate categories. Indeed, they could move toward the joint 

bottom bivariate category, the joint top bivariate category, or either of the two extreme lopsided 

categories.  

For ease of presentation, we present the bivariate extension here, but the results can be 

extended to 𝐷 > 2. Let 𝐾1 and 𝐾2 be the numbers of categories of the first and second ordinal 

variables, respectively. Then 𝒑 = (𝑝11, … , 𝑝𝐾1𝐾2
) denotes the bivariate distribution, with 0 ≤

𝑝𝑖𝑗 ≤ 1 for all 𝑖 = 1,… , 𝐾1 and 𝑗 = 1,… , 𝐾2 and ∑ ∑ 𝑝𝑖𝑗
𝐾2
𝑗=1

𝐾1
𝑖=1 . If there is a single bivariate mode 

then it will be characterised by 𝑝𝒎𝒐 > 𝑝𝑖𝑗for all (𝑖, 𝑗) ∈ {1,… , 𝐾1} × {1, … , 𝐾2}/{𝒎
𝒐}, where  

 
7 For example, consider a discrete uniform ordered categorical bivariate distribution 𝑓(𝑥𝑖 , 𝑦𝑗) with 𝐾 categories in 

each dimension (for convenience assume 𝐾 is odd), each ordered by their respective subscripts so that, given a value 

ordering <𝑉, 𝑖’ < 𝑖’’ ↔  𝑥𝑖’ <𝑉 𝑥𝑖’’ and similarly, 𝑗’ < 𝑗’’ ↔  𝑦𝑗’ <𝑉 𝑦𝑗’’ and 𝑓(𝑥𝑖 , 𝑦𝑗) = 1 𝐾2⁄  ∀ 𝑖, 𝑗 = 1, . . , 𝐾 so that 

𝐹(𝑥𝑖 , 𝑦𝑗) = (𝑖 ∗ 𝑗) 𝐾2⁄ . In two dimensions an array of pairs (𝑥𝑖
∗, 𝑦𝑗

∗) satisfy the median category condition, that 

surrounding lower valued outcomes have a strictly less than 0.5 chance of occurring whereas equally or higher valued 

outcomes have at least a 0.5 chance of occurring, i.e., 𝐹(𝑥𝑖−1
∗ , 𝑦𝑗

∗) < 0.5 &  0.5 <  𝐹(𝑥𝑖
∗, 𝑦𝑗

∗) and 𝐹(𝑥𝑖
∗, 𝑦𝑗−1

∗ ) <

0.5 &  0.5 <  𝐹(𝑥𝑖
∗, 𝑦𝑗

∗) and 𝐹(𝑥𝑖−1
∗ , 𝑦𝑗−1

∗ ) < 0.5 &  0.5 <  𝐹(𝑥𝑖
∗, 𝑦𝑗

∗). It is this array which describes the median 

contour in the two dimensional space of the Joint distribution. When 𝐾 = 5 the (𝑖, 𝑗) location of these outcomes is 
(3,5), (4,4) and (5,3). Kobus and Kurek (2019) define their unique multidimensional median category 𝐾𝐾 =

(𝑥𝑚𝑖
, 𝑦𝑚𝑗

) as the outcome where 𝑚𝑖  is the median category of the marginal distribution 𝑓(𝑥𝑖) = ∑ 𝑓(𝑥𝑖 , 𝑦𝑗)
𝐾
𝑗=1  and 

𝑚𝑗  is the median category of the marginal distribution 𝑓(𝑦𝑗) = ∑ 𝑓(𝑥𝑖 , 𝑦𝑗)
𝐾
𝑖=1 . In the current example 𝑚𝑖 = 𝑚𝑗 =

(𝐾 + 1)/2 so that 𝐾𝐾 would not coincide with any median contour outcome (for 𝐾 = 5 it would be outcome (3,3) 
with a cumulative density value of 0.36 which is surrounded from above by outcomes (4,3), (4,4), (3,4) with 
correspondingly higher probability values 0.48, 0.64, 0.48 which do not comply with the median contour condition). 



𝒎𝒐 = {𝑚1, 𝑚2} is a two-element vector containing the categories from each variable which, 

combined, yield the mode’s joint category. 8  

Since there are up to 4 directions of alienation in the bivariate case, we need to define four 

cumulative sums of relative frequencies: (1) the bivariate CDF, 𝑷 ≡ (𝑃11, … , 𝑃𝐾1𝐾2
) such that 

𝑃𝑖𝑗 = ∑ ∑ 𝑝𝑢𝑣
𝑗
𝑣

𝑖
𝑢=1  for all 𝑖 = 1,… , 𝐾1 and 𝑗 = 1,… , 𝐾2; (2) the reverse bivariate CDF, 𝑷′ ≡

(𝑃′11, … , 𝑃′𝐾1𝐾2
) such that 𝑃′𝑖𝑗 = ∑ ∑ 𝑝𝐾1−𝑢+1,𝐾2−𝑣+1

𝑗
𝑣=1

𝑖
𝑢=1  for all 𝑖 = 1, … , 𝐾1 and 𝑗 = 1,… , 𝐾2; 

(3) the first lopsided CDF 𝑳 ≡ (𝐿11, … , 𝐿𝐾1𝐾2
) such that 𝐿𝑖𝑗 = ∑ ∑ 𝑝𝑢,𝐾2−𝑣+1

𝑗
𝑣=1

𝑖
𝑢=1  for all 𝑖 =

1, … , 𝐾1 and 𝑗 = 1,… , 𝐾2; and (4) the second lopsided CDF 𝑳′ ≡ (𝐿′11, … , 𝐿′𝐾1𝐾2
) such that 𝐿′𝑖𝑗 =

∑ ∑ 𝑝𝐾1−𝑢+1,𝑣
𝑗
𝑣=1

𝑖
𝑢=1  for all 𝑖 = 1,… , 𝐾1 and 𝑗 = 1,… , 𝐾2. 

Continuing with the adaptation of the notation to the bivariate case, the set of all possible 

distributions with 𝐾1 categories in the first variable and 𝐾2 in the second one is 𝒮𝐾1𝐾2. Likewise, 

let ℰ𝐾1𝐾2 ∈ 𝒮𝐾1𝐾2  be the set of 𝐾1𝐾2 degenerate distributions, i.e. egalitarian distributions 

characterised by 𝑝𝑖𝑗 = 1 for one (𝑖, 𝑗) ∈ {1,… , 𝐾1} × {1, … , 𝐾2}, 𝓾𝑲𝟏𝑲𝟐  be a bivariate uniform 

distribution with 𝐾1𝐾2 categories, and   𝐼: 𝒮𝐾1𝐾2 → ℝ+ be an inequality index for two ordinal 

variables. 

The next key step is to adapt the definition of a MOCT to the bivariate case bearing in mind the 

up to four possible alienation paths: 

Definition 2: Bivariate mode clustering transfers (BMOCT): 𝒒 is obtained from 𝒑 through a mode 

clustering transfer if, for any cuadruplet of categories 𝑖, 𝑗, 𝑘, 𝑙 such that either (1) 1 ≤ 𝑖 < 𝑗 ≤ 𝑚1 

and 1 ≤ 𝑘 < 𝑙 ≤ 𝑚2, or (2) 𝑚1 ≤ 𝑗 < 𝑖 ≤ 𝐾1 and 𝑚2 ≤ 𝑙 < 𝑘 ≤ 𝐾2 , or (3) 1 ≤ 𝑖 < 𝑗 ≤ 𝑚1 and 

𝑚2 ≤ 𝑙 < 𝑘 ≤ 𝐾2,, or (4) 𝑚1 ≤ 𝑗 < 𝑖 ≤ 𝐾1 and 1 ≤ 𝑘 < 𝑙 ≤ 𝑚2: 𝑞𝑖𝑘 = 𝑝𝑖𝑘 −
1

𝑛
, 𝑞𝑗𝑙 = 𝑝𝑗𝑙 +

1

𝑛
, 𝑞𝒕 = 𝑝𝒕  ∀𝒕 ≠ {𝑖, 𝑘}⋃{𝑗, 𝑙} , 𝑞𝒎𝒐 ≥ 𝑝𝒎𝒐 and 𝒎𝒐(𝒒) = 𝒎𝒐(𝒑).  

Finally, we just reinstate the three axioms for the univariate case, but bearing in mind that: (1) 

now we have a BMOCT principle referring to definition 2, whereby 𝐼(𝒒) ≤ 𝐼(𝒑) if 𝒒 is obtained 

from 𝒑 through a sequence of bivariate mode clustering transfers; (2) the equality principle now 

states that 𝐼(𝒑) = 0 if and only if  𝒑 ∈ ℰ𝐾1𝐾2, for any 𝐾1 > 1 𝐾2 > 1; (3) the maximality principle 

now states that 𝐼(𝒑) = 1 if and only if  𝒑 = 𝓾𝑲𝟏𝑲𝟐  for any 𝐾1 > 1 and 𝐾2 > 1. 

Likewise, we will have a version of proposition 1, whereby 𝐼 satisfies the BMOCT principle and 

the adaptations of the equality and maximality principle if and only if  

𝐼(𝒑) =
ℎ(𝒑) − ℎ(𝒒)

ℎ(𝓾𝑲𝟏𝑲𝟐) − ℎ(𝒒)
 

 
8 Note that 𝒎𝒐 does not generally necessarily coincide with {𝑚1

𝑜, 𝑚2
0}, namely the univariate 

modes of the two variables.  

 



Where ℎ: 𝒮𝐾1𝐾2 → ℝ+ satisfies the BMOCT principle and 𝒒 ∈ ℰ𝐾1𝐾2 . Then an example of a class 

of indices from proposition 2 is: 

𝐼(𝒑) =

∑ ∑ 𝑤𝑖𝑗𝑃𝑖𝑗
𝑚2
𝑗=1

𝑚1
𝑖=1 + ∑ ∑ 𝑤𝑖𝑗𝑃

′
𝑖𝑗

𝐾2+1−𝑚2
𝑗=1

𝐾1+1−𝑚1
𝑖=1 +

∑ ∑ 𝑤𝑖𝑗𝐿𝑖𝑗
𝐾2+1−𝑚2
𝑗=1

𝑚1
𝑖=1 + ∑ ∑ 𝑤𝑖𝑗𝐿′𝑖𝑗

𝑚2
𝑗=1

𝐾1+1−𝑚1
𝑖=1 − 4𝑤𝑚1𝑚2

𝑝𝒎𝒐

𝑈
 

Where 𝑤𝑖𝑗 > 0 for all (𝑖, 𝑗) ∈ {1,… , 𝐾1} × {1,… , 𝐾2}, and: 

 

𝑈 =

∑ ∑ 𝑤𝑖𝑗𝑖𝑗
𝑚2
𝑗=1

𝑚1
𝑖=1 + ∑ ∑ 𝑤𝑖𝑗𝑖𝑗

𝐾2+1−𝑚2
𝑗=1

𝐾1+1−𝑚1
𝑖=1 +

∑ ∑ 𝑤𝑖𝑗𝑖𝑗
𝐾2+1−𝑚2
𝑗=1

𝑚1
𝑖=1 + ∑ ∑ 𝑤𝑖𝑗𝑖𝑗

𝑚2
𝑗=1

𝐾1+1−𝑚1
𝑖=1 − 4𝑤𝑚1𝑚2

𝐾1𝐾2
 

 

And a special case is given by 𝑤11 = ⋯ = 𝑤𝐾1𝐾2
: 

 

𝐼(𝒑) =

∑ ∑ 𝑃𝑖𝑗
𝑚2
𝑗=1

𝑚1
𝑖=1 + ∑ ∑ 𝑃′

𝑖𝑗
𝐾2+1−𝑚2
𝑗=1

𝐾1+1−𝑚1
𝑖=1 +

∑ ∑ 𝐿𝑖𝑗
𝐾2+1−𝑚2
𝑗=1

𝑚1
𝑖=1 + ∑ ∑ 𝐿′𝑖𝑗

𝑚2
𝑗=1

𝐾1+1−𝑚1
𝑖=1 − 4𝑝𝒎𝒐

𝑈
 

 

With  

𝑈

=

𝑚1𝑚2(𝑚1 + 1)(𝑚2 + 1)/4 + (𝐾1 + 1 − 𝑚1)(𝐾2 + 1 − 𝑚2)(𝐾1 + 2 − 𝑚1)(𝐾2 + 2 − 𝑚2)/4 +
𝑚1(𝐾2 + 1 − 𝑚2)(𝑚1 + 1)(𝐾2 + 2 − 𝑚2)/4 + 𝑚2(𝐾1 + 1 − 𝑚1)(𝑚2 + 1)(𝐾1 + 2 − 𝑚1)/4 − 4

𝐾1𝐾2
 

 

7. Empirical illustration. 

An individuals’ human resources, the agglomeration of their experience, and embodied human 

capital (their education and training,) combined with their efforts (their hours and intensity of 

work) are the primary drivers of their incomes and inequalities in the distribution of those 

resources will be a fundamental source of income inequality in incomes and an impediment to 

growth and social cohesion (Galor 2011, Milanovic 2011). Like many other developed economies, 

Canada has experienced “a Grand Gender Convergence in Incomes” (Goldin 2014) though it is 

not so clear that it has been the result of a convergence in human resources since gender-based 

distributions of human resources appear to be going in different directions (Anderson 2022). If 



there were a Gender convergence in human capital stocks, there should be an increasing 

similarity across gender in human-resource inequality within each gender. Here differences in 

those inequalities across the gender divide in Canada are examined over the 2006-2016 decade. 

Both experience and embodied human capital are at best ordered categorical variates, bereft of 

cardinal measure which, given the arbitrary nature of scaling and weighting, renders their 

combination to cardinally measure individual human resource levels awkward and questionable. 

Inequalities in human resource levels are thus best studied in terms of the joint ordered 

categorical distribution of experience and embodied human capital in a given population.  

To examine the progress of human resource inequalities, we compute and compare the index of 

equation (2) using both the mode and the median as reference point (the latter becomes an 

inequality measure respecting the MEPS principle). Data on the age, education and training status 

of individuals has been drawn from the Census of Canada Individual Files for the years 2006 and 

2016. Everyone over the age of 19 who received an income and reported age and educational 

status were included in the study resulting in 312405 female and 296133 male observations in 

2006 and 326676 female and 283670 male observations in 2016. Experience is proxied for by age 

group category with 20-29, 30-39, 40-49, 50-59, 60-69 and ≥70 being the designated experience 

groups. Education and training embodied human capital levels are based on 5 ordered 

categories:- EDU1:  No certificate, diploma or degree, EDU2: Secondary (high) school diploma or 

equivalency certificate, EDU3: Trades certificate or diploma, Certificate of Apprenticeship or 

Certificate of Qualification, Program of 3 months to 2 years (College, CEGEP and other non-

university certificates or diplomas), EDU4: Program of more than 2 years (College, CEGEP and 

other non-university certificates or diplomas), University certificate or diploma below bachelor 

level or Bachelor’s degree, and EDU5: University certificate or diploma bachelor level and above, 

Degree in medicine, dentistry, veterinary medicine or optometry, Master's degree or Earned 

doctorate. 

Marginal analysis 

Table 1 reports the gender-based Education and Training pdf’s and cdf’s 𝑝(𝑖) and 𝑃(𝑖)  for the 
observation years 2006 and 2016 highlighting their respective Modal and Median categories.  

Table 1 Education and Training Marginal Density and Cumulative Distribution Functions 2006-2016 

 Marginal Density Distribution p(category i) Marginal Cumulative Distribution P(category i) 

Girls   EDU 1         EDU 2        EDU 3         EDU 4         EDU 5     EDU 1         EDU 2        EDU 3         EDU 4         EDU 5 

2006  0.21037     0.27925    0.31087#     0.05704      0.14246    0.21037      0.48962    0.80049*   0.85754     1.00000  

2016  0.16808     0.30349#   0.27514      0.03985      0.21344    0.16808      0.47157    0.74671*   0.78656     1.00000  

Boys.   EDU 1         EDU 2        EDU 3         EDU 4         EDU 5    EDU 1         EDU 2        EDU 3         EDU 4         EDU 5 

2006  0.21387     0.25909    0.35024#     0.04464      0.13216    0.21387      0.47296    0.82320*   0.86784     1.00000  

2016  0.20104     0.33734#   0.23106      0.03140      0.19916    0.20104      0.53838*  0.76944     0.80084     1.00000 
#Modal Education *Median education  
 

Noting that, for two distributions 𝐹𝐴 and 𝐹𝐵, satisfaction of the First Order Stochastic Dominance 
condition 𝐹𝐴(𝑖) ≤ 𝐹𝐵(𝑖) ∀ 𝑖 = 1, . . , 𝐾 − 1 and 𝐹𝐴(𝑖) < 𝐹𝐵(𝑖)  some 𝑖 indicates unambiguous 
superiority of 𝐹𝐴 over 𝐹𝐵 in terms of the overall level of Embodied Human Capital (at every level 



there is at least as great a proportion of the population at a higher level in Population 𝐴 than in 
Population 𝐵). Thus, comparisons between observation years with respect to a particular gender 
and comparisons between genders within an observation year can be made. 
  

Table 1a. First-order dominance comparisons 

Comparison. ∑ (𝐹𝐵(𝑖) − 𝐹𝐴(𝑖))𝐾
𝑖=1

∑ |𝐹𝐵(𝑖) − 𝐹𝐴(𝑖)|𝐾
𝑖=1

 

Girls 2016 (A) vs 2006 (B) 1.00000 

Boys 2016 (A) vs 2006 (B) 0.34255 

Girls (A) vs Boys (B) 2006 0.37333 

Girls (A) vs Boys (B) 2016 1.00000 

 

Table 1a reports the dominance comparisons in terms of the sum of CDF differences 

∑ (𝐹𝐵(𝑖) − 𝐹𝐴(𝑖))𝐾
𝑖=1  divided by the sum of absolute CDF differences which, if positive and equal 

to one, suggests First Order Dominance of A over B. It indicates that, whereas Girls experienced 
an unequivocal improvement in embodied human capital stocks over the period the same is not 
true for Boys. In a similar vein there is no unequivocal superiority of one gender-based 
distribution over the other in 2006; however, the improvement in the girls’ distribution over the 
period resulted in their unequivocal superiority of their embodied human capital stock 
distribution boys in 2016. To see how this has changed Inequality in the distribution of embodied 
human capital stocks in the two populations, Table 1b reports modally focused and median 
focused inequality measures together with their standard errors for the respective populations. 
 

Table 1b. Inequality Measures 

 2006 2016 

 Modal Focus Median Focus Modal Focus Median Focus 

Girls      Measure 
(Standard Error) 

0.3703 
(0.0015) 

0.3703 
(0.00152) 

0.3542 
(0.0017) 

0.4139 
(0.0015) 

Boys      Measure 
(Standard Error) 

0.3470 
(0.0016) 

0.3470 
(0.0016) 

0.3500 
(0.0017) 

0.3641 
(0.0022) 

 

When the Median and Modal focus categories differ, MEPS-compliant inequality measures are 
greater than MOCT-compliant measures within gender and female Embodied Human Capital 
Stock distributions appear to be more diverse than the corresponding male distributions. Note 
that the gender differences are significant but while the MOCT-compliant measure records a 
diminished difference the MEPS-compliant measure records an increase. 
 
A similar analysis can be performed with respect to the distribution of experience in the 
respective populations. Table 2 reports the corresponding gender-based Experience pdf’s and 
cdf’s for the observation years 2006 and 2016. 
 

Table 2 Experience Marginal Density and Cumulative Distribution Functions 2006-2016 

 Marginal probability mass Distribution Marginal Cumulative Distribution 

Girls 20-29      30-39      40-49       50-59       60-69      > 69 20-29       30-39       40-49      50-59      60-69       > 69 

2006 0.16891  0.17486  0.21694# 0.17505  0.12034  0.14390 0.16891  0.34377  0.56071* 0.73576  0.85610  1.00000 



2016 0.16737  0.16248  0.16473  0.19208# 0.16086  0.15248 0.16737  0.32985  0.49458  0.68666* 0.84752  1.00000 

Boys. 20-29      30-39       40-49      50-59      60-69       > 69 20-29      30-39       40-49       50-59      60-69        > 69 

2006 0.18066  0.17816  0.22322# 0.18716  0.11954  0.11127 0.18066  0.35881  0.58203* 0.76919  0.88873  1.00000 

2016 0.19039  0.16895  0.16848  0.19588# 0.15376  0.12254 0.19039  0.35934  0.52782* 0.72370  0.87746  1.00000 
#Modal Experience *Median experience 
 
Table 2a. First-order dominance comparisons 

Comparison. ∑ (𝐹𝐵(𝑖) − 𝐹𝐴(𝑖))𝐾
𝑖=1

∑ |𝐹𝐵(𝑖) − 𝐹𝐴(𝑖)|𝐾
𝑖=1

 

Girls 2016 (A) vs 2006 (B) 1.00000 

Boys 2016 (A) vs 2006 (B) 0.83073 

Girls (A) vs Boys (B) 2006 1.00000 

Girls (A) vs Boys (B) 2016 1.00000 

 

Table 2a shows that both genders appear to have gained experience over the decade (a natural 
consequence of increasing life expectancy with survival functions increasing almost at every 
experience level). Girls experience levels have increased unequivocally whereas boys 2016 
outcomes are only almost dominant over 2006 (Leshno and Levy 2004). Girls unequivocally have 
more experience than boys in both observation periods. 
 

Table 2b. Inequality Measures 

 2006 2016 

 Modal Focus Median Focus Modal Focus Median Focus 

Girls        Measure 
(Standard Error) 

0.3903 
(0.0017) 

0.3903 
(0.0017) 

0.4149 
(0.0017) 

0.4149 
(0.0017) 

Boys        Measure 
(Standard Error) 

0.3706 
(0.0017) 

0.3706 
(0.0017) 

0.4093 
(0.0018) 

0.3998 
(0.0017) 

 

Experience inequality patterns are very similar to Embodied Human Capital Patterns with Girls 
distributions more diverse than the corresponding Boys distributions and again MOCT-compliant 
measures record a greater similarity between the genders in 2016 than do the MEPS-compliant 
measures and both types of measures record an increase in inequality over the decade.  
 

Multidimensional Analysis. 
 
However, Human Resources are a complex combination of experience and embodied human 
capital and rather than considering marginal distributions independently and formulating a 
weighted view of the respective outcomes, inequalities in human resources should be examined 
in the context of their joint distribution in a multidimensional analysis. One of the challenges of 
MEPS-based inequality measurement in multidimensional environments is that the “median 
category” is not uniquely defined; it is in fact a contour. Kobus and Kurek (2019) resolve the 
problem by defining the median category in terms of the medians of the respective marginal 
distributions.  
 
Table 3. Girls Education and Training and Experience Joint Mass and Cumulative Distribution Functions 
2006-2016 



  2006    EDU 1       EDU 2      EDU 3       EDU 4       EDU 5   EDU 1       EDU 2      EDU 3       EDU 4       EDU 5 

 20-29 
 30-39 
 40-49 
 50-59 
 60-69 
   > 69 

  0.01807   0.05517   0.05427    0.00767   0.03372  
  0.01822   0.03897   0.06664    0.01050   0.04054  
  0.02939   0.06283   0.07952#   0.01286   0.03234  
  0.03202   0.05403   0.05574    0.01135   0.02192  
  0.04079   0.03211   0.03042    0.00806   0.00895  
  0.07188   0.03614   0.02429    0.00660   0.00499  

 0.01807   0.07325  0.12752   0.13519   0.16891  
 0.03629   0.13043  0.25134   0.26951   0.34377  
 0.06568   0.22265  0.42308& 0.45411   0.56071*  
 0.09770   0.30869  0.56486* 0.60724* 0.73576  
 0.13849   0.38160  0.66818* 0.71863   0.85610  
 0.21037   0.48962  0.80049* 0.85754   1.00000  

  2016    EDU 1       EDU 2      EDU 3       EDU 4       EDU 5   EDU 1       EDU 2      EDU 3       EDU 4       EDU 5 

 20-29 
 30-39 
 40-49 
 50-59 
 60-69 
  >69 

  0.01369   0.05881   0.04362    0.00515   0.04608  
  0.01354   0.03642   0.05109    0.00667   0.05477  
  0.01658   0.04041   0.05440    0.00746   0.04589  
  0.02715   0.06376#  0.05968    0.00796   0.03353  
  0.03320   0.05795   0.04075    0.00662   0.02235  
  0.06392   0.04614   0.02559    0.00600   0.01082 

 0.01369   0.07250  0.11613   0.12128   0.16737  
 0.02724   0.12246  0.21718   0.22900   0.32985  
 0.04381   0.17945  0.32855   0.34783   0.49458  
 0.07096   0.27035  0.47914& 0.50638* 0.68666*  
 0.10416   0.36150  0.61104* 0.64490   0.84752  
 0.16808   0.47157  0.74671* 0.78656   1.00000 

 Boys Education and Training and Experience Joint Mass and Cumulative Distribution Functions 2006-
2016 

  2006    EDU 1       EDU 2      EDU 3       EDU 4       EDU 5    EDU 1       EDU 2      EDU 3       EDU 4       EDU 5 

 20-29 
 30-39 
 40-49 
 50-59 
 60-69 
   > 69 

  0.02645   0.06727   0.05650   0.00667   0.02378  
  0.02443   0.04441   0.06749   0.00829   0.03353  
  0.03904   0.05572   0.08735#  0.01005   0.03106  
  0.03724   0.04727   0.06831   0.00927   0.02507  
  0.03742   0.02450   0.04003   0.00593   0.01166  
  0.04930   0.01993   0.03056   0.00443   0.00706  

  0.02645   0.09372   0.15021    0.15688   0.18066  
  0.05088   0.16255   0.28654    0.30150   0.35881  
  0.08992   0.25731   0.46864&  0.49366   0.58203*  
  0.12715   0.34182   0.62146*  0.65575* 0.76919  
  0.16457   0.40373   0.72341*  0.76362   0.88873  
  0.21387   0.47296   0.82320*  0.86784   1.00000  

  2016    EDU 1       EDU 2      EDU 3       EDU 4       EDU 5   EDU 1       EDU 2      EDU 3       EDU 4       EDU 5 

 20-29 
 30-39 
 40-49 
 50-59 
 60-69 
  >69 

  0.02361   0.08549   0.03969   0.00414   0.03746  
  0.02234   0.05254   0.04543   0.00508   0.04356  
  0.02459   0.05240   0.04460   0.00613   0.04076  
  0.04124   0.06342#  0.04940   0.00623   0.03559  
  0.03727   0.05070   0.03334   0.00554   0.02690  
  0.05198   0.03280   0.01860   0.00428   0.01488 

  0.02361   0.10910   0.14879    0.15292   0.19039  
  0.04595   0.18398   0.26910    0.27831   0.35934  
  0.07054   0.26097   0.39068&  0.40603   0.52782*  
  0.11178   0.36563   0.54474* 0.56632*  0.72370  
  0.14906   0.45360   0.66606* 0.69319    0.87746  
  0.20104   0.53838* 0.76944   0.80084    1.00000 

#Modal Focus Category *Median category contour &Median Focus Category   
 

Table 3 reports the joint probability masses and respective marginal distributions and identifies 
the Modal categories, the Median contours and the Kobus-Kurek “Median category”. As will be 
seen the median category so defined is never on the median contour but is always below it with 
a cumulative mass lower than 0.5. Table 3a reports the first-order dominance comparisons, for 
the ALEP substitutability case, of the respective joint masses recording the gender differences in 
the observation years and the progress of human resource stock acquisition over the period.  
 
Table 3a. Joint distribution comparisons 

Comparison. ∑ ∑ (𝑝𝐵(𝑖, 𝑗) − 𝑝𝐴(𝑖, 𝑗))𝐾
𝑖=1

𝐽
𝑗=1

∑ ∑ |𝑝𝐵(𝑖) − 𝑝𝐴(𝑖)|𝐾
𝑖=1

𝐽
𝑗=1

 

Girls 2016 (A) vs 2006 (B) 1.00000  

Boys 2016 (A) vs 2006 (B) 0.61956 

Girls (A) vs Boys (B) 2006 0.95910 

Girls (A) vs Boys (B) 2016 1.00000 

 



While Girls have made a clear unequivocal advance in human resource stocks boys somewhat 
strikingly have not so that while girls only almost first order dominate boys in 2006, they 
unequivocally dominate them in 2016. As for the multidimensional modally and median focused 
inequality measures reported in Table 3b, we see a stridently different set of results from the 
marginal analysis with girls having substantially higher inequality measures than boys in 2006 and 
lower measures in 2016 with the absolute differences widening over the period.    
 

Table 3b. Inequality Measures 

 2006 2016 

 Modal Focus Median Focus Modal Focus Median Focus 

Girls 0.2761 
(0.0008) 

0.2761 
(0.0008) 

0.3242 
(0.0008) 

0.2757 
(0.0008) 

Boys 0.2433 
(0.0008) 

0.2433 
(0.0008) 

0.4571 
(0.0009) 

0.3290 
(0.0009) 

 

8. Conclusions. 
 
The important takeaway from these results is that the choice of reference point for inequality 
measurement with ordinal variables has both conceptual and empirical implications, as so does 
a marginal versus joint analysis. Different measures have different motivations and answering 
the question as to which measure should be employed will depend upon the purpose of analysis. 
As usual, it is a normative call. The median-focused measure is concerned with differences from 
a notion of “the middle” of the collection of outcomes with mass polarized at the extremes 
resulting in maximal inequality, whereas the modally focused measure is concerned with 
differences from “the most likely” complete commonality outcome with mass uniformly 
distributed across the outcomes resulting in maximal inequality. In joint analyses identifying the 
unique median joint outcome is problematic whereas identifying a unique mode is less so except 
in the unusual case of multiple modes with identical mass values.     
 
As for the application, irrespective of reference points, the inequality indices nearly universally 
pointed to increases in educational inequality in both genders. However, the indices did not 
always agree in their trends. What is clear throughout is that gender-based human resource stock 
inequalities in Canada have changed significantly over the period. 
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