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1. INTRODUCTION

Wages for members of different groups (women versus men, blacks versus whites) frequently differ even
when their observable characteristics are the same. Is this the result of differential information that em-
ployers have across groups or instead, the consequence of employer bias? The answer to this question is
important as, in particular, the ability to distinguish between these explanations is needed to devise ap-
propriate corrective policies. The purpose of this paper is to theoretically establish the properties of wage
distributions that can possibly arise from statistical discrimination due to unbiased employers receiving
different signals about the productivity of the members of the two groups. Our theoretical condition
naturally lends itself to statistical testing and this in turn is useful, because a rejection of this test can be
interpreted as (micro-founded) evidence that wage differences are the result of bias.

Specifically, suppose a researcher observes the wage distributions (appropriately controlling for observ-
ables) for two groups. Is it ever possible to conclude, from such basic observational data, that these wage
distributions did not arise from statistical discrimination? If so, when? We provide precise answers to
these questions. To do so, we develop a simple but general reduced-formmodel of statistical discrimina-
tion in the spirit of Phelps (1972). There are two groups whose productivity distributions have identical
means, but can otherwise be different. The group identity is observable to employers, but productivities
are not. Instead, there are group-dependent “statistical experiments” that generate signals about the un-
derlying productivity. As an example, signals could be the information that employers receive from the
job screening process that includes interviews, tests, curricula vitae etc. Signals induce posterior produc-
tivity distributions (via Bayes’ rule) and, in particular, these can be used to compute posterior estimates
(themean of the productivity conditional on the signal) of the unobserved productivity. Therefore, each
group’s statistical experiment generates a (generically different) distribution over posterior productivity
estimates. Wages are determined via a strictly increasing, continuous function of the posterior produc-
tivity estimate that, importantly, does not depend on the group. The model is reduced form in that we
do not microfound the statistical experiments or the wage function (although foundations can easily be
provided) but very general in that both are completely unrestricted (as long as thewage function is strictly
increasing and continuous).

Formally, our question is the following. Suppose a researcher observes the wage distributions for two
different groups. When can we find productivity distributions, statistical experiments that can differ for
each group and a wage function that is common across groups (so, in other words, the ingredients of the
model) such that these generate the observed wage distributions? Our main result (Theorem 1) shows
that a researcher can conclude that two distinct wage distributions can possibly be the result of statistical
discrimination if, and only if, neither distribution first-order stochastically dominates the other. Impor-
tantly, this result is easy to describe and visualize. Consequently our hope is that non-specialists (such
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as bureaucrats, journalists and administrators) who frequently use wage gaps as evidence of discrimina-
tion will instead consider implementing this dominance test (for instance, by simply plotting the wage
distributions).

Before discussing the applied relevance of this result, it is worth situating it in the broader literature on
discrimination. One strand of this literature aims to cleanly empirically identify the presence of discrim-
ination. Field experiments (of both the audit and correspondence variety) are frequently employed to
uncover discrimination because the experimental methodology allows the researcher to fix all other ob-
servables and only vary the group characteristic. However, as Bertrand andDuflo (2017) observe in their
survey of the literature: “while field experiments have been overall successful at documenting that dis-
crimination exists, they have (with a few exceptions) struggledwith linking the patterns of discrimination
to a specific theory.”

One reason for this is pointed out inHeckman and Siegelman (1993) andHeckman (1998). As an exam-
ple, consider correspondence studies that send fictitious curricula vitae to employers measure whether
or not the candidate gets invited for an interview; a difference in the call back rates by group status is
interpreted as evidence of discrimination. Now suppose that the employer believes that the two groups
have the same mean productivity but that the variance of the advantaged group is higher (a feature that
our model allows). If employers only call back for interviews those candidates whose productivities they
think are above a certain threshold, the differential variance can lead to higher call back rate for the ad-
vantaged group. Of course, this could also be the result of taste-based discrimination but this cannot be
differentiated using this binary outcome.1

There is an alternate strand of the literature that aims to devise tests for statistical discrimination using
richer outcome data (than our test requires). Motivated by an insight of Becker (1957, 1993), papers in
this strand consider settings where the researcher has access not just to the decision (whether or not a loan
is granted, a driver is searcher by a police offer etc.) but also the post-decision result (whether or not the
loan is repaid, contraband is found on the driver etc.). Analogous data in our setting would correspond
to the researcher observing the productivity of the worker in addition to their wage. The key insight
is that even though the rates at which decisions are made may differ due to group differences, the post-
decision results of the marginal case should be the same if the decision maker is unbiased. This requires
devising empirical strategies to identify the post-decision results ofmarginal cases ormodels that provide
a systematic relationship between the average and marginal post-decision result.2

1Partly motivated by this difficulty, there is a nascent experimental literature that exploits dynamics (see, for instance Bohren,
Imas, and Rosenberg, 2019) to tease out the sources of discrimination. The key observation is that dynamics help because
beliefs respond to information whereas preferences do not.
2See, for instance, Knowles, Persico, and Todd (2001), Anwar and Fang (2006), Arnold, Dobbie, and Yang (2018) andCanay,
Mogstad, andMountjoy (2020).
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One way to view our main insight is that we show statistical discrimination can be tested on basic wage
data without having access to any further productivity information. The reason we can do so is because
we exploit the fact that the outcome variable we study (the wage) is not binary.3 In Section 4.2, we make
this point more formally by showing that a similar test is not possible with binary outcomes. Conversely,
while outcome tests are not our focus, a strength of our methodology is that it can naturally be extended
to devise tests on such richer data that, importantly, do not require the identification of themarginal case.
We view this to be a conceptual contribution of our paper that we demonstrate with Theorem 4.

Our tests rest on the assumption that the mean of the true unobserved type distributions of the two
group are identical. Of course, there is a large literature on statistical discrimination following Arrow
(1973) which studies how the different prior beliefs (or stereotypes) about unobservable characteristics
by group affect investments and therefore outcomes. In these “equilibrium” models of discrimination,
the disadvantaged group recognizes that prior beliefs are such that unobserved investments are not likely
to be rewarded and, therefore, they rationally invest less (so have lower average productivity) than the
advantaged group (in turn justifying the discriminatory beliefs). Thus, testing for discrimination based
on our model is only appropriate in settings where wage distributions are estimated subject to enough
control variables that net out the effect of differentiable investments.

While our result is appealing because of the minimal data requirements and the fact that our model is
free of parametric assumptions, some readers might be concerned that first-order stochastic dominance
is a strong condition that is unlikely to ever be found in wage data. On the contrary, there is abundant
evidence that men’s wages are higher than those of women at all quantiles of the wage distributions
(which is an equivalent way of stating first-order stochastic dominance). See, for instance, Table 1 where
entries are the difference between log wages of men and women (positive values imply men’s wages are
higher). This table is taken from Arulampalam, Booth, and Bryan (2007) (Table 4 in their paper). They
analyze data from several European countries and use quantile regressions to show that men earn more
than women not just in average (the second column) but at different quantiles of the wage distribution
(columns three to seven). Similar evidence of wage gaps across the distribution in Europe is also found
by De la Rica, Dolado, and Llorens (2008) and Christofides, Polycarpou, and Vrachimis (2013). Most
recently, Maasoumi and Wang (2019) also find this pattern in most years in US data (1976-2013) even
after correcting for selection into employment. Our main result says that such wage distributions are
precisely the type of distributions that cannot arise from statistical discrimination alone and therefore
are evidence of biased employment practices.

Importantly, our test can be taken directly to data (without having to separately estimatewage gaps at dif-

3In influential work, Altonji and Pierret (2001) develop a test for statistical discrimination using the properties of wage evo-
lution due to employer learning. Unlike our setting, their model makes several functional form restrictions and their test
requires panel data.
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Country Mean 10% 25% 50% 75% 90%
Public Sector

Austria 0.227 0.191 0.163 0.191 0.221 0.266
Belgium 0.09 0.046 0.05 0.07 0.109 0.169
Britain 0.134 0.091 0.116 0.135 0.144 0.205
Denmark 0.07 0.058 0.051 0.059 0.086 0.136
Finland 0.216 0.115 0.14 0.203 0.269 0.319
France 0.096 0.092 0.077 0.078 0.108 0.167
Germany 0.122 0.111 0.11 0.118 0.14 0.147
Ireland 0.184 0.186 0.169 0.177 0.165 0.181
Italy 0.097 0.041 0.047 0.081 0.138 0.169
Netherlands 0.121 0.039 0.07 0.112 0.16 0.218
Spain 0.083 0.09 0.079 0.095 0.069 0.076

Private Sector
Austria 0.214 0.182 0.177 0.188 0.21 0.247
Belgium 0.132 0.1 0.121 0.131 0.148 0.185
Britain 0.19 0.155 0.172 0.188 0.213 0.227
Denmark 0.088 0.032 0.065 0.088 0.123 0.161
Finland 0.151 0.068 0.112 0.154 0.188 0.205
France 0.163 0.146 0.126 0.132 0.152 0.19
Germany 0.143 0.088 0.109 0.137 0.166 0.213
Ireland 0.163 0.081 0.143 0.184 0.195 0.206
Italy 0.173 0.148 0.135 0.152 0.179 0.22
Netherlands 0.131 0.059 0.091 0.123 0.168 0.222
Spain 0.181 0.173 0.178 0.184 0.189 0.176

Table 1: Estimated wage gap between men and women using data from 1995-2001 (Arulampalam et al.,
2007). All estimates are statistically significant at the 1% level. Models include dummies for whether
trainingwas received in the last year, age, education, tenure,marital status, health status, contracts, private
sector firm size, any experience of unemployment since 1989, part-time status, fixed term and casual size,
region (where possible), year, industry and occupation.

ferent quantiles) because there are well known non-parametric statistical tests of stochastic dominance
between two distributions. Our result provides a structural interpretation (in terms of statistical discrim-
ination) to such a test conducted on the wage distributions of an advantaged and disadvantaged group.
Recent important econometric developments (but are not limited to) Barrett and Donald (2003), Lin-
ton,Maasoumi, andWhang (2005), Linton, Song, andWhang (2010) andDavidson andDuclos (2013).
In fact, the aforementioned paper Maasoumi and Wang (2019) conducts precisely such an analysis and
concludes that “beyond the early 1990s (except for 2010), men’s earnings first-order dominate women’s
in the majority of the cases to a high degree of statistical confidence.” Our framework and result provide
a theory-driven interpretation of this result (that Maasoumi and Wang, 2019 do not) as discrimination
that is not statistical alone.4

4Our insight also uncovers a connection between the literature on discrimination and other empirical literatures that apply
tests of stochastic dominance (of first and higher orders). Examples are the literature that compares income distributions to
inferwhether poverty, inequality, or socialwelfare is greater in one distribution than in another (seeAnderson, 1996,Davidson
and Duclos, 2000) and the literature on efficient portfolio choice (see Post, 2003, Kuosmanen, 2004).
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Whilewe have described ourmodel and results above in terms of the labormarket, it is important to stress
that our framework (in its current form or natural extensions along the lines of Theorem 4) can capture
a variety of distinct settings. For instance, in the criminal justice system, one outcome is the monetary
bail amount assigned to different defendants. In this case, the unknown type is the likelihood of fleeing
or pre-trial misconduct if released (see Rehavi and Starr, 2014). A different outcome in this context is
the sentence duration. Here, the unknown type is the true severity of the crime (for instance, the extent
to which a murder/robbery was premeditated). In both cases, the signals are the arguments presented
in court. Statistical discrimination can arise because the disadvantaged group may have access to fewer
resources which could lead to worse legal representation and a lower ability to navigate the system (see
Abrams, Bertrand, andMullainathan, 2012).

Before proceeding to our model, it is worth acknowledging that, in addition to the papers already cited,
there are large insightful literatures in economics, psychology and sociology studying discrimination and
we will not attempt to provide a comprehensive description here. Instead, we refer the reader to several
excellent recent surveys in economics—Fang andMoro (2011), Lang andLehmann (2012), Bertrand and
Duflo (2017), Lang and Spitzer (2020), Onuchic (2022)—that cover both the theory and the empirical
evidence in a variety of different settings.

2. THE MODEL

To streamline the exposition, we present the model in the context of discrimination in the labor market.
However, as mentioned in the introduction, other applications, such as discrimination in policing or in
the justice system, also fit our model.

There are two groups—1 and 2—of workers; examples include female and male, black and white, junior
and senior, or disabled and able bodied. We do not take a stand on which of these two groups is advan-
taged/disadvantaged, if any. We observe two wage distributions G1 and G2, with Gi(w) ∈ [0, 1] the
fraction of workers in group i ∈ {1, 2} being paid a (hourly) wage of w ≥ 0 or less.5 The question
we address is: are the observed wage distributions consistent with a reduced-form model of statistical
discrimination? The model is simple, non-parametric, and general. In a nutshell, the model assumes
that workers differ in their productivities, but that there are no significant differences between the two
groups; that is, the average productivity is the same in both groups. Employers do not perfectly observe
the productivity ofworkers, acquire some information about it (for instance, through tests, interviews, or
referrals), and then pay workers accordingly. We only require that the higher the expected productivity,
the higher the wage.

We stress that the only source of discrimination is information. Hiring tools such as personality and

5Throughout, all distributions are right-continuous and have limits on the left.
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aptitude tests or algorithmic resume screeners are all examples of techniques, which may advantage one
group over another in signaling their productivity.

We now present the model in detail, starting with the productivity distributions.

Productivity distributions: Workers differ in their productivities, with θi ∈ [0, 1] =: Θ denoting the
productivity of a worker in group i ∈ {1, 2}.6 In group i, the (cumulative) productivity distribution is
Hi. We assume that

∫ 1

0
θ1dH1(θ1) =

∫ 1

0
θ2dH2(θ2). In words, the average productivity is the same in

the two groups. A case of particular interest is when the two distributions are identical, i.e.,H1 = H2.
As we shall see, there are no differences between amodel that assumes identical distributions and another
that assumes different distributions, but with identical means. It is, however, easier to test the hypothesis
of identical means than identical distributions. Note that we make no additional restrictions, so that we
can accommodate discrete distributions, continuous distributions, or mixtures of the two.

Information: Employers do not directly observe the productivity of workers, but receive informative
signals. For instance, employers read curricula vitae, interview job applicants, or conduct tests. Employ-
ers then form an expectation of the productivity of workers and pay them accordingly: the higher the
expected productivity, the higher the wage. Since wages only depend on the expected productivity, it is
without loss to restrict attention to unbiased statistical experiments.

An unbiased statistical experiment (Si, πi) for group i ∈ {1, 2} consists of a set of signals Si = Θ

and a joint distribution πi overΘ× Si, whose marginal distribution overΘ isHi. Denote the marginal
distribution of πi over Si as Fi. Moreover (to reflect the “unbiased” terminology), we require that the
posterior estimate Eπi

[θi | si] of the productivity satisfy

si = Eπi
[θi | si],

for all si in the support ofFi; that is, si is an unbiased estimate of the true meanEHi
[θi]. This is without

loss of generality, as we can always relabel signals to guarantee that they are unbiased in the above sense.
Accordingly, we will write θi for the posterior estimate (the signal) in what follows.

It is well-known thatFi is a distribution of posterior estimates arising from some statistical experiment if,
and only if, the prior distributionHi is amean-preserving spread of the posterior distribution Fi, which
we denote byHi <2 Fi. Formally, the mean-preserving spread condition requires that∫ θ

0

Hi(θi)dθi ≥
∫ θ

0

Fi(θi)dθi for all θ ∈ [0, 1], with equality at θ = 1.

Note that the requirement of equality at θi = 1 is the same as ensuring that Hi and Fi have the same
6The restriction of productivities to the set [0, 1] is a normalization.
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mean.7 If this inequality is strict for any θ ∈ (0, 1), we say Hi is a strict mean-preserving spread of Fi,
which we denote byHi �2 Fi.

Wage function: If an employer estimates the productivity of a worker to be θ, the employer pays the
workerW (θ), where the wage functionW : [0, 1] → R+ is continuous and strictly increasing. Observe
that this wage function does not depend on the group identity and, in this sense, there is no taste-based
bias.

Induced wage distributions: The distributionFi over posterior estimates induces thewage distribution
Gi via thewage functionW . Formally, for both i ∈ {1, 2},Gi(w) is themeasure of the set {θ : W (θ) ≤
w}, that is,Gi(w) = Fi(W

−1(w)) forw ∈ [W (0),W (1)],Gi(w) = 0 forw < W (0) andGi(w) = 1

forw > W (1).8 Note that, even though the wage function does not depend on group identity, the wage
distributionsG1 andG2 may vary across groups because the distributions of posterior estimates F1 and
F2 may differ. Moreover, because W is an arbitrary increasing function, G1 and G2 may not have the
same mean. In other words, the two groups may get different average wages.

Consistency with statistical discrimination: We say that the observed wage distributionsG1 andG2

are consistent with statistical discrimination if there exist prior distributionsHi, distributions of posterior
estimatesFi that satisfyHi <2 Fi for i ∈ {1, 2}, and a continuous and strictly increasing wage function
W , such that these jointly induce the observedwage distributions. (We assume throughout that thewage
distributions are bounded, i.e.,Gi(w) = 1 for somew, i = 1, 2.)

Before stating our main result, we comment on our reduced-form model. While our model is natural
and general, in the sense that we allow any statistical experiments and wage functions, we make two key
assumptions: (i) the prior distributions for both groups have identical means and (ii) the wages are a
function of the posterior estimate alone.

In the introduction, we discussed the first of these. To reiterate, we are implicitly assuming that the
wage distributionsG1 andG2 are estimated controlling for enough observables (and/or with additional
corrections for selection) tomake identicalmeanproductivity a reasonable assumption. That said, we can
in principle allow the productivity distributions to have different means. However, without additional
structure, this results in all wage distributions being consistent with statistical discrimination since the
model then becomes too general.9 A natural next step is to impose more structure on the productivity
distributions in order to restore non-trivial testable implications. One intuitive candidate is to restrict
productivity distributions that are shifted but otherwise identical; that is,Hi(θ) = Hj(θ + κ) for some
7Integration by parts implies that the mean satisfies

∫ 1

0
θidFi(θi) = θiFi(θi)|10 −

∫ 1

0
Fi(θi)dθi = 1−

∫ 1

0
Fi(θi)dθi.

8We defineW−1 as the inverse ofW on the domain [W (0),W (1)]. None of our results depend on the continuity ofW . It
would be enough to consider left-continuous and strictly increasingwage functionswith generalized inverse sup{θ : W (θ) ≤
w} atw.
9Take anyw such thatG1(w) = G2(w) = 1 and defineHi(θ) = Fi(θ) = Gi(wθ) for θ ∈ [0, 1] and i ∈ {1, 2}.
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constant κ ≥ 0 (that is unknown to the researcher), for i 6= j and all θ. It is possible to show that, even
in this case, all wage distributions are consistent with statistical discrimination.10

We end this sectionwith a brief discussion of the second assumption. Ourmodel is in the spirit of Phelps
(1972). He considers two populations, whose productivities are drawn from a normal distribution. Sig-
nals are also normally distributed, differ across groups, and the wage function is linear in the posterior
mean. If the means of the prior distributions for both groups are the same then, in this model, the ex-
pectedwage for both groupswill be the same because the posterior distributionmust have the samemean
as the prior. In this case, there is no discrimination at the group level even though the wage distributions
differ (so there is individual level discrimination). Aigner and Cain (1977) observe it is possible to gener-
ate discrimination at the group level via more general wage functions even when the prior distributions
for both groups are identical. In their model, wages depend both on the mean and the variance of the
posterior belief. In the normal learning environment, the variance is the same for all signal realizations so
they model the wage as just the difference between the posterior mean and some multiple of the (signal
independent) variance of the posterior belief. Hence, different normally distributed signals can generate
distinct mean wages.

Recall that we do not allowwages to depend on the higher moments ofFi. This is for two reasons. First,
we allow for any statistical experiments and so any further generality in the wage function might make
the testable implications of our model vacuous. Second, a general wage function will lead to additional
technical complications in the analysis. This is because it would require us to work with the entire joint
distribution πi as opposed to just the (marginal) distributions Fi of the posterior estimates.

3. THE MAIN CHARACTERIZATION RESULT

Given the generality of ourmodel, the first natural question to ask is: are thereanywage distributions that
are not consistent with statistical discrimination? To this point, note that our model allows the posterior
estimate distribution of group one to be a strict mean-preserving spread of group two (or F1 �2 F2 in
our notation), inwhich case a strictly convexwage functionW will generate highermeanwages for group
one. In other words, differences inmean wages can arise purely via statistical discrimination even though
the prior distributions have the same mean. So, to find inconsistent distributions, we need to consider
higher moments. In fact, as we now argue, we need to consider allmoments.

The wage distribution Gi strictly first-order stochastically dominates the wage distribution Gj (or that
Gi �1 Gj) ifGi(w) ≤ Gj(w) for allw ∈ R+, with the inequality strict for somew.

Now, suppose that the wage distribution of group i strictly first-order stochastically dominates that of

10A proof is available upon request.
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group j (soGi �1 Gj). We now argue that these distributions are not consistent with statistical discrim-
ination. For contradiction, assume that these distributions are consistent. This implies that there exist
posterior estimate distributions Fi and Fj , and a wage functionW , such that

Fi(θ) = Gi(W (θ)) ≤ Gj(W (θ)) = Fj(θ) for all θ ∈ [0, 1]

with the inequality strict for some θ. Note that this implies that Fi �1 Fj (so Fi has a strictly higher
mean), which is a contradiction sinceFi andFj aremean-preserving contractions of some prior distribu-
tionsHi andHj , which both have the same mean.

The above argument shows that a necessary condition for a pair of wage distributions to be consistent
with statistical discrimination is that neither strictly first-order stochastically dominates the other. Our
main result shows that this condition is also sufficient. In fact, we show a stronger result, that is, if the
wage distributions are consistent with statistical discrimination, then they are consistent with statistical
discrimination and identical productivity distributions, that is,H1 = H2.

THEOREM 1. The following statements are equivalent.

(i) The wage distributionsG1 andG2 are consistent with statistical discrimination.

(ii) NeitherG1 norG2 strictly first-order stochastically dominates the other.

(iii) The wage distributionsG1 andG2 are consistent with statistical discrimination and identical pro-
ductivity distributions.

Before presenting a sketch of the proof, it is worth discussing the implication of the third statement. It
has been argued that, for the distributions of certain traits, men and women have the samemean, but the
former have a higher variance; this is sometimes referred to as the “variability hypothesis.” Theorem 1
implies that any two wage distributions that are not ordered by strict first-order stochastic dominance,
no matter how different, could have resulted from statistical discrimination on identical populations. In
other words, different variances of the productivity distributions have no additional explanatory power.

We now sketch the proof of the statement [(ii) =⇒ (iii)], with the help of a simple example. (Recall
that we have already argued that [(i) =⇒ (ii)], and [(iii) =⇒ (i)] is trivially true.) In Table 2,
we have two wage distributionsG1 andG2, with neither first-order stochastically dominating the other
(sinceG1(10) > G2(10), whileG1(15) < G2(15)).

The idea of the proof is to construct a wage function W such that the two distributions F1 and F2,
defined by Fi(θ) := Gi(W (θ)) for all θ, i ∈ {1, 2}, have the same mean.
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Table 2: Sketch of proof: An example

wage/hour $10 $15 $20
G1 1/3 5/12 1
G2 1/6 1/2 1

In this simple example, it suffices to find three points 0 ≤ θ1 < θ2 < θ3 ≤ 1 (on which F1 and F2 are
supported) such thatW (θ1) = 10,W (θ2) = 15,W (θ3) = 20, and

θ1
(
1

3
− 1

6

)
︸ ︷︷ ︸

>0

+θ2
(

1

12
− 1

3

)
︸ ︷︷ ︸

<0

+θ3
(

7

12
− 1

2

)
︸ ︷︷ ︸

>0

= 0,

which, inwords, ensures thatF1 andF2 have the samemean. Apossible solution is θ1 = 0, θ2 = 1/3 and
θ3 = 1. Notice that a solution exists precisely because neitherG1 norG2 strictly first-order dominates
the other, which is reflected in the alternating signs in the above expression.

To complete the argument, we need to construct a distributionH such thatH <2 Fi, i ∈ {1, 2}. We
now argue that the distributionH , defined byH(θ) = 7/18 for all θ < 1 andH(1) = 1, is one such
distribution. Note thatH is supported on {0, 1} with a probability of 11/18 on [θ = 1]. The mean of
H is 11/18, as is the mean of F1 and F2. Moreover,

∫ θ

0

H(x)dx−
∫ θ

0

F1(x)dx =


(

7
18

− 1
3

)
θ if 0 ≤ θ ≤ 1/3(

7
18

− 1
3

)
1
3
+
(

7
18

− 5
12

) (
θ − 1

3

)
if 1/3 < θ ≤ 1

.

It is easy to check that this is indeed positive for all θ, henceH <2 F1. Intuitively, to generate F1 from
H , we construct an experiment with three signals, which generate the posterior beliefs about the event
[θ = 1] of 0, 1/3 and 1 with probability 1/3, 1/12, 7/12, respectively. Since the expectation of the
posterior beliefs is equal to the prior belief (11/18), such a construction is possible. A similar argument
shows thatH <2 F2.

While the general construction for arbitrary distributions G1 and G2 is more elaborate, the same idea
works. Wefirst constructW such thatF1 := G1◦W has the samemean asF2 := G2◦W by transporting
“mass” from the region {w : G1(w) ≥ G2(w)} to the region {w : G1(w) < G2(w)}. We then
construct a common distributionH as the right derivative of the convex function

θ 7→ max
(∫ θ

0

F1(x)dx,

∫ θ

0

F2(x)dx

)
.

The proof is in the Appendix.
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4. DISCUSSION

Asmentioned earlier, we view Theorem 1 to be the main insight of the paper since, from an applied per-
spective, rejecting statistical discrimination provides suggestive evidence that differences in group out-
comes are the result of bias. In this discussion section, we explore three theoretical extensions of our
framework. In Section 4.1, we demonstrate how taste-based discrimination can be modeled within our
general reduced-form framework and we characterize wage distributions consistent with taste-based dis-
crimination. In Section 4.2, we consider a slight variation of ourmodel, where the outcome is binary and
we show that statistical discrimination has almost no empirical bite. Finally, in Section 4.3, we illustrate
the versatility of our approach by revisiting outcome tests à la Becker.

Those readers who are not interested in these theoretical extensions can directly proceed to our conclud-
ing remarks (Section 5).

4.1. TASTE-BASED DISCRIMINATION

In this section, wemodel taste-based discrimination within our framework and we show that taste-based
discrimination imposes qualitatively different testable restrictions on observed wage distributions. We
begin with our definition.

Wage distributionsG1 andG2 are consistent with taste-based discrimination if there exist productivity dis-
tributionsH1 andH2 (that have identical means) and continuous and strictly increasing wage functions
W1 andW2 such that these jointly yield the observed wage distributions, i.e., Gi(w) = Hi(W

−1
i (w))

for allw ∈ [Wi(0),Wi(1)],Gi(w) = 0 for allw < Wi(0) andGi(w) = 1 for allw > Wi(1).

If we furthermore require the two groups to have the same productivity distribution, i.e.,H1 = H2, we
say thatG1 andG2 are consistent with taste-based discrimination and identical productivity distributions.

Note the differences of this notion with that of statistical discrimination. We have now removed the
noisy signal (the source of statistical discrimination) and instead discrimination is directly introduced via
the different wage functions. We do not impose any structure on these wage functions; discrimination
is “taste-based” because two workers from different groups with the same expected productivity can be
offered different wages.

We need one last piece of notation to present our next result. Letwi = inf{w ∈ R+ | Gi(w) > 0} and
wi = sup{w ∈ R+ | Gi(w) < 1}. In words, [wi, wi] is the smallest closed interval that contains the
support of thewage distributionGi. We are now ready to present the theorem characterizing consistency
with taste-based discrimination.

THEOREM 2. (i) Every pair of wage distributionsG1 andG2 is consistent with taste-based discrimination.

11



(ii)Wage distributionsG1 andG2 are consistentwith taste-based discrimination and identical productivity
distributions if, and only if, there exists a strictly increasing, continuous bijection φ : [w1, w1] → [w2, w2]

such thatG1(w) = G2(φ(w)) for allw ∈ [w1, w1].

The first part of Theorem 2 shows that, if we allow productivity distributions of both groups to differ
(while maintaining the assumption of identical means), then all wage distributions could be the result of
taste-based discrimination. This is unsurprising since allowing for different wage functions in addition
to distinct productivity distributions introduces a lot of freedom into the model. But importantly, this
implies that a rejection of the first-order stochastic dominance condition of Theorem 1 can be in fact
interpreted as evidence of bias. This interpretation would not always be correct if there existed wage
distributions that were consistent with neither statistical nor taste-based discrimination.

This result also implies that all wage distributions can be explained with a combination of statistical and
taste-based discrimination even if the productivity distributions are identical. This is because the statis-
tical experiments can first introduce heterogeneity into the posterior estimate distributions and then we
can apply the part (i) of Theorem 2.

When the productivity distributions of both groups are the same, the empirical content of taste-based
discrimination is not vacuous. Part (ii) ofTheorem2 shows that thewagedistributionsmust be related via
themonotone transformationφ. Thenecessity is clear sinceG1(w) = H(W−1

1 (w)) = G2(W2(W
−1
1 (w))

when the twodistributions are consistentwith tasted-baseddiscrimination and identical productivity dis-
tribution, so that φ := W2 ◦W−1

1 . Moreover, if the two distributionsG1 andG2 are strictly increasing
and continuous, i.e., have no atoms and no null sets, then the existence ofφ is guaranteed. We can simply
choose φ := G−1

2 ◦G1. The proof of Theorem 2 is in the Appendix.

This result has two important empirical implications. First, if the range of wages (wi, w
′
i) belongs to the

same quantile q, i.e., Gi(wi) = Gi(w
′
i) = q, then there exists a range of wages (wj, w

′
j) belonging to

the q-th quantile ofGj . In other words, if a range of wages is not observed for group i, a corresponding
range is not observed for group j at the same quantile. Second, if the distributionGi has an atom at wage
wi of size s > 0, i.e., s = Gi(wi) − limw↑wi

Gi(w), then the distributionGj has an atom at the wage
wj = φ(wi) of the same size s. In other words, atoms ofGi are in bijection with the atoms ofGj : ifGi

has an atom of size s, so doesGj , and conversely. Geometrically, the flat parts and the jumps ofGi are in
bijection with the flat parts and the jumps ofGj .

As an illustration, consider the two distributions in Table 3. Clearly,G2 first-order stochastically domi-
natesG1, so that the two distributions are not consistent with statistical discrimination. Moreover, G1

and G2 are neither consistent with taste-based discrimination and identical productivity distributions.
Indeed, G1 has an atom at $15 of size 5/12, but G2 has no atoms of size 5/12. Intuitively, since the
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fraction 5/12 of workers from group 1 are paid $15 per hour, there must exist some productivity level
corresponding to this wage. Moreover, the fraction ofworkers with that productivity levelmust be 5/12.
However, since the productivity distribution is identical for group 2, the same fraction of workers from
group 2 must appear in the wage distribution for group 2, possibly at a different wage. This is not the
case.

Table 3: Inconsistency with statistical and taste-based discrimination

wage/hour $10 $15 $20 mean
G1 1/3 3/4 1 175/12
G2 1/6 1/2 1 200/12

Finally, note that our definition of taste-based discrimination does not imply that one group is system-
atically advantaged over another, i.e., we didn’t imposeWi ≤ Wj . Group i may be advantaged at low
productivities, while group jmay be at higher productivities. Imposing the restrictionW1 ≤ W2 would
translate into the bijection φ : [w1, w1] → [w2, w2] satisfying φ(w) ≥ w for all w ∈ [w1, w1]. In
words, at all quantile q, workers from group 2 are paid more than workers from group 1.

4.2. BINARY OUTCOMES

In the introduction, we noted that research studies frequently rely on the differences in binary outcomes
to document discrimination. For instance, call-back rates from correspondence studies are often used to
document discrimination in the labor market. Other instances include mortgage approval rates, credit
card approval rates, job promotion and university admission. We stated that statistical discrimination has
little bite in such binary setting. We now formalize this statement in the context of ourmodel. Through-
out, we use the same notation as in the previous section, but replace the term “wage” with the term
“outcome.”

There are two outcomes, labelled w = 0 and w = 1. The distributionGi is thus a binary distribution,
with Gi(0) the probability of outcome w = 0. We say that the binary distributions G1 and G2 are
consistent with statistical discrimination if there exist prior distributions H1 and H2, distributions of
posterior estimates F1 and F2 that satisfy Hi <2 Fi and a cutoff θ such that Fi(θ) = Gi(0) for i ∈
{1, 2}.

In words, the only difference between this binary outcome setting and the model in Section 2 is that
instead of a strictly increasing wage function, there is a group-independent cutoff θ ∈ [0, 1] such that
outcome w = 1 occurs only if the posterior estimate is strictly above it. In the context of the labor
market, this says that an employer calls back a job candidate only if the candidate’s expected productivity
is sufficiently high.
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The next result characterizes binary outcome distributions that are consistent with statistical discrimina-
tion.

THEOREM 3. Binary outcome distributions G1, G2 are consistent with statistical discrimination if, and
only if, it is not the case thatGi(0) = 1 andGj(0) = 0 for i 6= j, i, j ∈ {1, 2}.

In words, this simply says that the outcomes for the two groups are 0 and 1 respectively, with probability
1. Again in the context of the labor market, this says that either all job candidates from group 1 are called
back and none from group 2 are, or vice versa. Needless to say, such extreme discrimination is seldom
observed and therefore, in practice, statistical discrimination cannot be disentangled frombias in a setting
with binary outcomes.

We end the section by providing a simple argument for this result. By contradiction, suppose that dis-
tributionsG1(0) = 1 andG2(0) = 0 are consistent with statistical discrimination. Then, the mean of
F1 must be less than or equal to θ (since F1(θ) = 1), whereas the mean of F2 must be strictly greater
(since F2(θ) = 0). This is, of course, not possible since both distributions must have the same mean. A
symmetric argument applies whenG1(0) = 0 andG2(0) = 1.

Conversely, suppose that 0 < G1(0) < G2(0) < 1. (It is easy to adapt the arguments to treat the other
cases.) Let F1 have binary support {0, 1} and assign probabilityG1(0) to 0 and therefore 1−G1(0) to
1. Note that F1 has mean 1 × (1 − G1(0)) + 0 × G(0) = 1 − G1(0). Let F2 have binary support{
1−G1(0)− ε

G2(0)
, 1−G1(0) +

ε
1−G2(0)

}
where ε > 0 is sufficiently small to ensure both points

of the support lie in [0,1]. Assign probability G2(0) to 1 − G1(0) − ε
G2(0)

and therefore 1 − G2(0)

to 1 − G1(0) +
ε

1−G2(0)
. Note that F2 has mean G2(0) ×

(
1−G1(0)− ε

G2(0)

)
+ (1 − G2(0)) ×(

1−G1(0) +
ε

1−G2(0)

)
= 1−G1(0). Thus, the two distributionsF1 andF2 have the samemean. The

second step in the proof of Theorem 1 then shows how to construct a priorH such thatH <2 Fi, as
required. The argument is completed by setting the threshold θ = 1−G1(0).

4.3. OUTCOME TESTS

The methodology we have introduced is versatile enough to study discrimination in a wide range of set-
tings. As a “proof of concept,” we now present one such application— the Becker outcome test — and
hope to examine others in future work. To ease the presentation, we frame the application in the con-
text of bail decisions and closely follow Arnold, Dobbie, and Hull (2022). See also Arnold, Dobbie, and
Yang (2018), Canay,Mogstad, andMountjoy (2020),Hull (2021) and Simoiu, Corbett-Davies, andGoel
(2017). Several other contexts such as police search decisions and loan decisions also fit the model.

In the context of bail decisions, judges have to decide whether or not to release defendants prior to trials,
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with w = 1 denoting the decision to release a defendant. Upon being released, the defendant may
subsequently fail to appear in court or commit another crime, which we model with a binary variable
Y ∈ {0, 1}; Y = 1 indicates a pre-trial misconduct. We–the analyst–observe the fraction ri ∈ (0, 1) of
defendants from group i released by a judge, and qi ∈ (0, 1) the fraction of the released defendants, who
committed a pre-trial misconduct.

Unlike the analysis in Section 4.2 where only a single piece of information was observed, the analyst now
observes two pieces of information: the release decision along with the post-decision result, that is, if the
released defendant committed pre-trial misconduct. Now suppose that the judge releases a defendant if,
and only if, the information she possesses signals that the likelihood of pre-trial misconduct is smaller
than a given threshold. The Becker outcome test is based on the observation that if the cutoff is the same
across groups, the rate of misconduct of themarginal defendant of each group should be the same (and
equal to the cutoff). Of course, the problem with implementing this test in practice is that the analyst
does not observe the identity of the marginal defendant.

So instead, is it possible todetect bias using the averages (r1, q1) and (r2, q2)? Since the shapes of the signal
distributionsmay differ, the release rates r1 and r2may not be the same even if the judge uses the identical
cutoff for both groups. This is the issuewith “benchmarking tests” thatwediscussed in Section4.2. What
ifwe consider the rates q1 and q2 atwhichmisconduct occurs conditional onbeing released onbail? These
too can depend on the shape of the signal distributions and a higher rate ofmisconduct for either group is
possible even if the judge uses a group-neutral cutoff. This is a well known problemwith such “outcome
tests” (often referred to as the infra-marginality problem). In the remainder of this section, we show that
it is possible to derive a test for statistical discrimination that depends jointly on both ri and qi provided
we assume that, were all defendants to be released, both groups would commit pre-trial misconduct at
the same average rate.

We assume that Yi is distributed with (unknown) probability θi ∈ [0, 1] in group i, withHi the prior
distribution of θi. Thus, the ex-ante probability of pre-trial misconduct is EHi

[θi]. Prior to deciding
whether to bail a defendant, the judge obtains some information about the likelihood of pre-trial mis-
conduct, and grants the bail only if the perceived probability of misconduct is smaller than the group-
independent threshold θ. As in previous sections, we assume that the judge receives an unbiased signal
about θi, with Fi being the distribution of the signal. The distribution Fi is a mean-preserving contrac-
tion ofHi. Therefore, the release rate in group i isFi(θ), while the pre-trial misconduct rate conditional
on release isEFi

[θi|θi ≤ θ].

Analogous to our previous definitions, we say that the outcomes (r1, q1) and (r2, q2) are consistent with
statistical discrimination if there exist prior distributionsH1 andH2, posterior distributions F1 and F2,
and a threshold θ such that (i) EH1 [θ1] = EH2 [θ2], (ii) Hi <2 Fi, and (iii) ri = Fi(θ) and qi =
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EFi
[θi|θi ≤ θ] for i ∈ {1, 2}. With this definition in hand, we have the following characterization.

THEOREM 4. The outcomes (r1, q1) and (r2, q2) are consistent with statistical discrimination if, and only
if, q1 < r2q2 + (1− r2)1 and q2 < r1q1 + (1− r1)1.

The above result shows that, under the assumption that both groups commit pre-trial misconduct at the
same rate on average, we canprecisely identify the conditions underwhich the outcomes couldhave arisen
from statistical discrimination. As with the rest of this paper, this result requires no further assumptions
on the prior distributions or the signals. It is fully non-parametric and easy to implement. It is worth not-
ing that the aforementioned Simoiu, Corbett-Davies, and Goel (2017) take a different approach. They
estimate a parametric model (all distributions lie in certain families parametrized by variables that they
estimate), but allow the means of the prior distributions to differ.

5. CONCLUDING REMARKS

In this paper, we introduced a newnon-parametricmethodology to test whether two distinct wage distri-
butions could have been generated by statistical discrimination alone. A rejection of our test—that one
wage distribution first-order stochastically dominates the other—implies that the differences in wage dis-
tributions are possibly the result of bias. Ourmodel is a significantly generalized version of Phelps (1972)
and Aigner and Cain (1977): we only require the unobserved productivity distributions to have identi-
cal means, the signals from which employers get information about the workers’ productivities are un-
restricted and wages can be determined by any continuous, strictly increasing function of the posterior
productivity estimate. Because our main assumption is that the productivity distributions have identical
means, the wage distributions on which our test is conducted should be estimated with enough control
variables to make this assumption realistic.

To the best of our knowledge, this paper is the first to analyze the problem of testing for discrimination
without resorting to any functional form assumptions and we view this to be one of our main contri-
butions. In casual discussions of wage gaps, the mean wages of two groups are typically compared and
differences are often interpreted (without justification) as taste-based discrimination. Our test is micro-
founded and uses the entire wage distribution but importantly, is just as easy to visualize and implement
by non-specialists.

Finally, we hope one consequence of this paper is that the methodology is extended to study discrimina-
tion in other settings, possibly with richer data. We have already sketched some possible extensions such
as the Becker outcome test, and hope to study more in future works.
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A. PROOFS

We start with a preliminary remark. The distribution Gi is supported on a closed subset of [wi, wi],
where 0 ≤ wi = inf{w ∈ R+ | Gi(w) > 0} and wi = sup{w ∈ R+ | Gi(w) < 1} < ∞ (since the
wage distributions have bounded support). LetWi be the random variable with distribution Gi. The
random variableW ′

i :=
1
wi
Wi is then supported on a closed subset of [0, 1]with distributionG′

i, where
G′

i(w) = Gi(wiw). Hence, we can assume without loss of generality that the wage distributions are
supported on a subset of [0, 1]. To ease notation, we will do so throughout the proofs.

PROOF OF THEOREM 1. We have already argued that the first statement implies the second statement.
To prove the theorem, we only need to show that the second statement implies the third (since the third
obviously implies the first).

The proof consists of two steps. In the first, we show that there exists a strictly increasing and continuous
wage functionW such that the two distributions defined byFi(θ) = Gi(W (θ)) for i ∈ {1, 2} have the
samemean. In the second step, we show that for any two distributions with a commonmean, there exists
a common productivity distributionH such thatH <2 Fi for both i ∈ {1, 2}.

Step 1: There exists a strictly increasing and continuous functionW : [0, 1] → [0, 1] such that the two distri-
butions defined by Fi(θ) = Gi(W (θ)) for θ ∈ [0, 1] and i ∈ {1, 2} satisfy

∫ 1

0
F1(θ)dθ =

∫ 1

0
F2(θ)dθ.

First, observe that if ∫ 1

0

G1(w)dw =

∫ 1

0

G2(w)dw,

thenW (θ) = θ is trivially the requisite function.

So, without loss, suppose that ∫ 1

0

G1(w)dw >

∫ 1

0

G2(w)dw.

(A symmetric argument applies if we interchange 1 and 2.) Define the function

∆G(w) = G1(w)−G2(w)

and note the above inequality is simply
∫ 1

0
∆G(w)dw > 0.

SinceG2 doesnot strictly first-order stochastically dominateG1, there exists anon-empty interval [w,w] ⊂
(0, 1) such that

∫ w

w
∆G(w)dw < 0. (This follows from the right-continuity ofG1 andG2.) Therefore,
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there must exist strictly positive constants γ+ > 0 and γ− > 0 such that

1

γ+

∫ w

0

∆G(w)dw +
1

γ−

∫ w

w

∆G(w)dw +
1

γ+

∫ 1

w

∆G(w)dw = 0.

Define

κ =
w − w(1− (γ−/γ+))

γ− +
1− w

γ+
=

γ+(w − w) + γ−(1− (w − w))

γ+γ− > 0.

Note the inequality follows from the fact thatw > w,w − w < 1, γ− > 0 and γ+ > 0.

Using this κ, we define
θ =

w

κγ+
> 0,

and
θ =

w − w(1− (γ−/γ+))

κγ− =
w − w

κγ− + θ > θ.

Also note that
θ < 1,

since
κγ− > w − w(1− (γ−/γ+)).

Now consider the following piecewise linear wage function

W (θ) =


κγ+θ if 0 ≤ θ < θ,

κγ−θ + w(1− (γ−/γ+)) if θ ≤ θ ≤ θ,

κγ+θ + 1− κγ+ if θ < θ ≤ 1.

Few observations are worth making. First,W is continuous because

lim
θ↑θ

W (θ) = κγ+θ = w = κγ−θ + w(1− (γ−/γ+)) = W (θ),

W (θ) = κγ−θ + w(1− γ−/γ+) = κγ−w − w(1− γ−/γ+)

κγ− + w(1− γ−/γ+) = w

and

lim
θ↓θ

W (θ) = κγ+θ + 1− κγ+
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= κγ+w − w(1− γ−/γ+)

κγ− + 1− κγ+

= γ+w − w(1− γ−/γ+)

γ− + 1− γ+

(
w − w(1− γ−/γ+)

γ− +
1− w

γ+

)
= w.

Second,W (0) = 0 andW (1) = 1. To summarize, the piecewise linear wage functionW : [0, 1] →
[0, 1] is bijective, strictly increasing and continuous.

Using the constructedW , define Fi(θ) = Gi(W (θ)) for i ∈ {1, 2}. Define∆F (θ) = F1(θ)− F2(θ).

Finally, observe that

∫ 1

0

∆F (θ)dθ =

∫ θ

0

∆F (θ)dθ +

∫ θ

θ

∆F (θ)dθ +

∫ 1

θ

∆F (θ)dθ

=

∫ θ

0

∆G(W (θ))dθ +

∫ θ

θ

∆G(W (θ))dθ +

∫ 1

θ

∆G(W (θ))dθ

=
1

κγ+

∫ w

0

∆G(w)dw +
1

κγ−

∫ w

w

∆G(w)dw +
1

κγ+

∫ 1

w

∆G(w)dw

=0,

where the second last equality follows from the change of variables from θ to w. Therefore, the con-
structed distributionsF1 andF2 have the samemean as required, which completes the proof of this step.

Step 2: Suppose
∫ 1

0
F1(θ)dθ =

∫ 1

0
F2(θ)dθ. Then, there exists a prior distributionH such that

∫ θ

0

H(x)dx ≥ max
{∫ θ

0

F1(x)dx,

∫ θ

0

F2(x)dx

}
with equality at θ = 1.

Define the function

M(θ) = max
{∫ θ

0

F1(x)dx,

∫ θ

0

F2(x)dx

}
.

Observe thatM is an increasing, convex function since each
∫ θ

0
Fi(x)dx is increasing and convex (because

Fi is increasing). Also note that

M(1) =

∫ 1

0

F1(x)dx =

∫ 1

0

F2(x)dx.
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LetH be the right derivative ofM (the right derivative always exists and, moreover,M(θ) = M(0) +∫ θ

0
H(x)dx sinceM is convex, hence absolutely continuous). This function is increasing, satisfiesM(0) =

0,M(1) = 1 and is, therefore, the requisite prior distribution. (Recall the the right derivative of a convex
function is right continuous and has limits on the left.) This completes the proof. �

PROOF OF THEOREM 2. (i) Without loss, suppose the mean wage of group 1 is the highest; that is,
there exists α ≥ 1 such that

∫ 1

0
wdG1(w) = α

∫ 1

0
wdG2(w).

Construct the wage functionsW1 andW2 as:

W1(θ1) = α θ1 andW2(θ2) = θ2.

Construct the corresponding prior distributionsH1 andH2 as follows:

Hi(θi) = Gi(Wi(θi)) for i ∈ {1, 2}.

Since G1(1) = 1, H1(1/α) = 1 and, therefore, H1 is supported on a subset of [0, 1]. Similarly, H2 is
supported on [0, 1] sinceG2 is.

It remains to verify that the distributionsH1 andH2 have the same mean. We have:∫ 1

0

θ1dH1(θ1) =
1

α

∫ α

0

w1dG1(w1) =
1

α

∫ 1

0

w1dG1(w1) =

∫ 1

0

w2dG2(w2) =

∫ 1

0

θ2dH2(θ2).

(ii) We begin with the if direction. Assume that there exists a strictly increasing continuous bijection
φ : [w1, w1] → [w2, w2] such thatG1(w) = G2(φ(w)). For future reference, note that we must have
φ(w1) = w2 and φ(w1) = w2.

We define the wage functions W1 and W2 and the productivity distribution H as follows: for all θ ∈
[0, 1],

W1(θ) = (w1 − w1)θ + w1, H(θ) = G1(W1(θ)) andW2(θ) = φ((w1 − w1)θ + w1).

Notice that for allw ∈ [W1(0),W1(1)],W−1
1 (w) =

w−w1

w1−w1
, henceG1(w) = H(W−1

1 (w)). Moreover,
for all w < W1(0), G1(w) = 0 sinceW1(0) = w1. Similarly, for all w > W1(1), G1(w) = 1 since
W1(0) = w1.
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Similarly, for allw ∈ [W2(0),W2(1)],W−1
2 (w) =

φ−1(w)−w1

w1−w1
. Therefore,

G2(w) = G1(φ
−1(w)) = H

(
φ−1(w)− w1

w1 − w1

)
= H(W−1

2 (w)).

Moreover, for all w < W2(0),G2(w) = 0 sinceW2(0) = φ(w1) = w2. Similarly, for all w > W2(1),
G1(w) = 1 sinceW2(1) = φ(w1) = w2.

For the only if direction, we can construct the φ function directly from the definition. For any w ∈
[W1(0),W1(1)], observe that

G2(W2(W
−1
1 (w))) = H(W−1

1 (w))) = G1(W1(W
−1
1 (w)))) = G1(w).

Since, [w1, w1] ⊆ [W1(0),W1(1)], the function φ : [w1, w1] → [W2(0),W1(0)] defined by φ(w) =
W2(W

−1
1 (w)) is an injection (sinceW1 andW2 are strictly increasing and continuous). Moreover, for any

decreasing sequence in [W1(0),W1(1)] converging tow1,G1(w) = G2(φ(w)) > 0, hence limw↓w1
φ(w) =

φ(w1) ≥ w2. Similarly, φ(w1) ≤ w2.

Interchanging the indices, for anyw ∈ [W2(0),W2(1)], we have that

G1(W1(W
−1
2 (w))) = H(W−1

2 (w))) = G2(W2(W
−1
2 (w)))) = G2(w).

Since, [w2, w2] ⊆ [W2(0),W2(1)], the functionφ−1 : [w2, w2] → [W1(0),W2(0)]definedbyφ−1(w) =

W1(W
−1
2 (w)) is an injection (sinceW1 andW2 are strictly increasing andcontinuous). Moreover,φ−1(w2) ≥

w1 and φ−1(w2) ≤ w1.

Therefore, φ is a bijection from [w1, w1] to [w2, w2]with the property that φ(w1) = w2 and φ(w1) =

w2. The function φ is clearly strictly increasing and continuous.

�

PROOF OF THEOREM 4. (Only if.) Suppose that the outcomes are consistent with statistical discrim-
ination. Since EFi

[θi|θi ≤ θ] = qi, we must have θ ≥ qi. Therefore, the mean of Fi must be at least qi
since

EFi
[θi] = Fi(θ)EFi

[θi|θi ≤ θ] + (1− Fi(θ))EFi
[θi|θi > θ] > riqi + (1− ri)θ.

Similarly, themean ofFj , j 6= i, is at most rjqj+(1−rj)1. Finally, sinceFi andFj have the samemean,
it must be the case that

qi < rjqj + (1− rj)1,

for all (i, j), j 6= i.
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(If.) The proof is constructive. Without loss of generality, assume that qi ≥ qj . It follows that riqi +
(1− ri)1 > qj is automatically satisfied (since ri < 1 and qi < 1). Assume that rjqj + (1− rj)1 > qi

is also satisfied.

Let θ = qi + δ for some δ > 0, and Fi a binary distribution which takes values qi and qi + ε with
probability ri and 1 − ri, respectively, where ε > δ. By construction, the mean of Fi is qi + (1 − ri)ε

and Fi(θ) = ri.

We now construct Fj such that its mean is the same as the mean of Fi. The second step in the proof of
Theorem 1 then shows how to construct a priorH such thatH <2 Fi andH <2 Fj . The distribution
Fj is again binary and takes values qj and

qi−rjqj+(1−ri)ε

1−rj
with probability rj and (1 − rj), respectively.

The mean of Fj is:

rjqj + (1− rj)
qi − rjqj + (1− ri)ε

1− rj
= qi + (1− ri)ε,

the same as the mean of Fi.

Finally, we need to choose δ and ε, with ε > δ, such that (i) qi + ε ≤ 1, (ii) qi−rjqj+(1−ri)ε

1−rj
≤ 1, and (iii)

qi−rjqj+(1−ri)ε

1−rj
> qi + δ. The conditions (i) and (ii) guarantee that Fi and Fj are supported on a subset

of [0, 1], while condition (iii) guarantees that Fj(θ) = rj . Since qi ≥ qj and
qi−rjqj
1−rj

< 1, it is routine to
verify that we can indeed choose ε and δ as required.

�
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