Search, Screening and Sorting

By Xiaoming Cai, Pieter Gautier and Ronald Wolthoff

September 06, 2022
Search, Screening and Sorting

Xiaoming Cai† Pieter Gautier‡ Ronald Wolthoff§

August 30, 2022

Abstract

We investigate the effect of search frictions on labor market sorting by constructing a model which is in line with recent evidence that employers collect a pool of applicants before interviewing a subset of them. In this environment, we derive the necessary and sufficient conditions for sorting in applications as well as in matches. We show that positive sorting is obtained when production complementarities outweigh a force against sorting measured by a (novel) quality-quantity elasticity. Interestingly, we find that the required degree of production complementarity for positive sorting can be increasing in the number of interviews: for sorting to hold for any distribution of workers and firms, it ranges from square-root-supermodularity if each firm can interview a single applicant to log-supermodularity if each firm can interview all its applicants.

JEL codes: D82, D83, E24.
Keywords: sorting, complementarity, search frictions, information frictions, heterogeneity.

*We are grateful to Jim Albrecht, Axel Anderson and Katka Borovičková for insightful discussions of this paper. We further thank Steve Davis, Philipp Kircher, Robert Shimer, and various seminar and conference participants for valuable comments. Wolthoff gratefully acknowledges financial support from the Social Sciences and Humanities Research Council.
†Peking University HSBC Business School. E-mail: xmingcai@gmail.com.
‡VU University Amsterdam and Tinbergen Institute. E-mail: p.a.gautier@vu.nl.
§University of Toronto. E-mail: ronald.p.wolthoff@gmail.com.
1 Introduction

One of the most important tasks for any firm is to hire the right workers. A crucial part of this process consists of screening applicants through job interviews.¹ In this paper, we are interested in the question how this screening process affects sorting patterns in the labor market. That is, does the extent to which firms can interview workers affect whether the labor market exhibits positive (PAM) or negative assortative matching (NAM)? If technological innovations allow firms to screen more applicants with higher precision, does that make sorting more or less likely?²

Unfortunately, the economic literature is silent on these questions. The earliest work on assignment problems (Tinbergen, 1956; Shapley and Shubik, 1971; Becker, 1973; Rosen, 1974) considers frictionless environments with no role for screening because there is full information about types. More recent work by Shimer and Smith (2000), Shi (2001, 2002), Shimer (2005) and Eeckhout and Kircher (2010a) allows for search frictions but makes particular assumptions about the available information in the matching process and does not explore how outcomes depend on them.

To answer our question, we therefore present a new search model of the labor market. In line with recent evidence by Davis and Samaniego de la Parra (2017), we allow firms to interview multiple (but not necessarily all) applicants before making a job offer to the most profitable candidate. We show how the equilibrium allocation of workers to firms in this environment depends on the degree of production complementarities on the one hand and the extent to which firms can interview applicants on the other hand. Perhaps surprisingly, we find that reducing frictions by allowing firms to interview more workers can be a force against sorting.

To explain this result, we must first describe our setup in more detail. We consider a static environment in which heterogeneous firms compete for heterogeneous workers by posting menus of type-contingent wages. Workers direct their search to the menu that maximizes their expected payoff. This choice determines the expected number of applicants (the ‘queue length’) at each firm, although the actual number is stochastic.

¹See below for some empirical evidence regarding the recruiting process. Note that ‘screening’ in this context has a different meaning than the homonymous game-theoretic concept. In addition to job interviews, screening workers may involve other instruments like checking references, assessments, and job tests. We use ‘interview’ as shorthand for the entire collection of instruments.

²As an example of such a technological innovation, Hoffman et al. (2018) describe how some firms subject all applicants to an online job test. Based on their answers, every applicant is assigned a score, calculated from correlations between answers and job performance among existing employees.
due to coordination frictions. As mentioned, the key novelty in our setup is that we allow firms to interview a subset of applicants, which reveals their types. Firms hire the most profitable candidate among their interviewees and subsequently produce output according to a general production function.

Firms in this environment face a trade-off. Attracting low-type applicants can be beneficial because the search frictions imply that it is always possible that no high type applies, in which case hiring a low type is better than remaining unmatched. However, this kind of insurance comes at a cost, because the presence of low types makes it harder for the firm to identify the high types in the applicant pool. Clearly, the magnitude of the cost is smaller if firms can screen more, so firms’ decision what applicant pool to attract ex ante depends on the extent to which they can screen workers ex post.

We start our analysis by establishing that a firm’s problem can be rewritten as one in which it purchases queues of applicants at prices equal to workers’ expected payoffs. This reformulation implies that the market equilibrium is constrained efficient and simplifies exposition. Firms will purchase queues of applicants such that each worker’s marginal contribution to surplus equals his marginal cost. An applicant directly contributes to surplus if no other applicant with the same or better type is being interviewed. However, when firms cannot screen everyone, an applicant also affects surplus by making it harder for other (potentially more-productive) applicants to be interviewed.

We then turn to sorting. Given the meaningful distinction between applicants and hires in our environment, we analyze sorting along both dimensions. We define PAM as first-order stochastic dominance in the distribution of hires, and introduce positive assortative contacting (PAC) as the corresponding concept for the distribution of applicants.3

To analyze when the equilibrium exhibits positive or negative sorting, it is helpful to focus on the boundary between both cases where the equilibrium exhibits no sorting. At this boundary, complementarities in production imply that more-productive firms have longer queue lengths. This longer queue length reduces the probability that a high-type applicant creates surplus, which discourages more-productive firms from attracting such applicants and therefore forms a force against positive sorting.

3We also provide results for negative assortative contacting (NAC) and NAM. We omit intuition for those results here as it mirrors the intuition for PAC and PAM.
Whether positive sorting prevails in equilibrium then depends on whether the complementarities in production are large enough to offset this force.

We show that the force against positive sorting is strongest when worker types are arbitrarily close. Moreover, the conditions for PAC and PAM are particularly simple in this case. They boil down to a comparison between two elasticities: along the equilibrium path, the elasticity of complementarity of the production function must exceed a novel elasticity which we label the quality-quantity elasticity (and which differs between PAC and PAM).

The elasticity of complementarity describes the degree of supermodularity of the production function. The relevance of production complementarities for sorting has been known since Becker (1973). The quality-quantity elasticity, however, is novel and we view its characterization as one of our main contributions. It is economically intuitive as it measures the speed at which the probability that a high-type applicant increases surplus decreases across firm types relative to the decrease in the probability that a low-type applicant increases surplus: the larger it is, the stronger the force against sorting and the larger production complementarities therefore need to be to offset this force and induce positive sorting. It is also simple in the sense that it only depends on the meeting technology (queue length, queue composition, and the degree of screening).

To understand the dependence of the quality-quantity elasticity on the queue length and queue composition, consider the case where high-type workers are abundant in the economy. The probability that a high-type worker creates surplus decreases then more quickly along the equilibrium path, as productive firms with long queue lengths are increasingly likely to interview multiple high-type applicants (in which case the marginal contribution to surplus of each of these high-type applicants is zero). Hence, the force against positive sorting, as measured by the quality-quantity elasticity, is highest in this case. It therefore follows that we need to consider the bounds on the two elasticities if we wish to ensure sorting for any distribution of agents’ types. In particular, the supremum of the quality-quantity elasticity should not exceed the infimum of the elasticity of complementarity in that case. Since the force against positive sorting is largest when worker heterogeneity is small, this condition is not only necessary but also sufficient.

Finally, we then analyze how the quality-quantity elasticity varies with the degree of screening. Viewing increased screening as a relaxation of the frictions in the
environment, one may expect that it must facilitate sorting. We show that while this intuition is correct when high-type workers are scarce, it is wrong when they are abundant. To understand this result, note that there are two ways in which a high-type applicant can fail to create surplus: 1) he is not interviewed, or 2) he is interviewed, but at least one other high-type applicant is interviewed as well.

The first scenario is the relevant one when the applicant pool mainly consists of low-type workers: multiple interviews with high types are unlikely and the effect of a longer queue predominantly operates by making it less likely for a high-type applicant to be interviewed. This force is mitigated by an increase in firms’ screening ability. The second scenario is the relevant one when the applicant pool mainly consists of high types: multiple interviews with high-type applicants are a key concern and a longer queue makes this outcome more likely. This force is amplified by an increase in firms’ screening ability.

When deriving a sorting condition for any distribution of agents’ types, the tightest condition matters, which is the second. The elasticity of complementarity that is necessary and sufficient for sorting in this case is thus increasing in the expected number of interviews that firms can conduct, ranging from $\frac{1}{2}$ (square-root-supermodularity) with a single interview to 1 (log-supermodularity) when firms can interview all their applicants.

The paper is organized as follows. The remainder of this section discusses related literature. Section 2 introduces the model. Section 3 considers the market equilibrium and establishes that it is constrained efficient. Section 4 derives our main sorting results. In Section 5, we consider various extensions, including noisy signals for every applicant and endogenous choice of screening capacity. For the latter extension, we show that firms in the middle of the productivity distribution (rather than the most productive ones) have the strongest incentives to invest in screening. Finally, Section 6 concludes, while proofs and additional results can be found in the (online) appendix.

Related Literature. We primarily contribute to the theoretical literature on sorting in markets with search frictions. This literature builds on Becker (1973) who showed that supermodularity of the production function (i.e. the elasticity of complementarity being positive) is necessary and sufficient for PAM in a frictionless economy. A key insight is that this condition is no longer sufficient in the presence of search frictions. The reason is that the opportunity cost of remaining unmatched is larger for high types, which makes them more eager to match with a low type rather than
run the risk to not match at all. To undo this effect, the production function must exhibit stronger complementarities. For example, Shimer and Smith (2000) derive a set of conditions for PAM under random search that are even stronger than log-supermodularity (i.e. the elasticity of complementarity being larger than 1).

Most related to our work, Eeckhout and Kircher (2010a) show that under directed search (but with a single interview per firm) PAM requires that the elasticity of complementarity exceeds the elasticity of substitution of the aggregate meeting function. This latter elasticity is positive but bounded above by $\frac{1}{2}$ for common meeting technologies, making square-root-supermodularity of the production function (i.e. an elasticity of complementarity equal to $\frac{1}{2}$) sufficient for PAM.\footnote{Shi (2001) was the first to show that supermodularity is not enough for PAM under directed search.} Intuitively, while frictions still exist under directed search, they are weaker than under random search, because high types can avoid meeting low types.

As mentioned, the relevant threshold for sorting in our environment with simultaneous interviews is the \textit{quality-quantity elasticity}. Like the threshold in Eeckhout and Kircher (2010a), this elasticity depends on the properties of the meeting technology only. However, a crucial difference is that the quality-quantity elasticity depends not only on the queue length but also on the queue composition and the degree of screening. We show that it reduces to the threshold in Eeckhout and Kircher (2010a) when firms can only screen a single worker, but may increase as screening becomes easier.

Our results also have important implications for the empirical literature that deals with both the sign and the strength of sorting (Gautier and Teulings, 2006; Eeckhout and Kircher, 2011; Gautier and Teulings, 2015; Lise et al., 2016; Hagedorn et al., 2017; Lopes de Melo, 2018; Bartolucci et al., 2018; Bagger and Lentz, 2018; Borovičková and Shimer, 2020). An important aim of this literature is to identify the shape of the production function from observed matching patterns. In general, a particular meeting technology is assumed and then the strength and sign of sorting are used to identify key parameters of the production function.\footnote{Since wages for a given worker type are typically non-monotonic in firm types, the methodology by Abowd et al. (1999) of detecting sorting patterns from simply correlating worker and firm fixed effects fails; the cited papers propose various ways to deal with this.} Our findings imply however that such assumptions are not innocuous and that the meeting technology needs to be identified alongside the production function. Progress along this dimension is
facilitated by our theoretical results on PAC/PAM combined with recent empirical work by Banfi et al. (2020) who document evidence for PAC as well as PAM using data from a Chilean online job board. In a similar vein, the strength of sorting is often used to estimate how far an economy is from the frontier. Our results show that stronger sorting patterns do not necessary imply lower frictions.

Some papers have argued that increased sorting of high-type workers at high-wage firms has contributed to the observed increased inequality from the mid-nineties onwards (see e.g. Card et al., 2013; Song et al., 2019).\(^6\) Häkanson et al. (2018) argue that the increased sorting patterns are mainly due to increasing complementarities in production. Our results suggest that if during the same period, new technologies like automated resume screening made it easier to screen workers, then this would require even stronger complementarities in the production technology.

Our paper also adds to a recent macro literature that focuses on information frictions. Both Kurlat (2016) and Board et al. (2019) consider a competitive model with heterogeneity in productivity on the worker side and heterogeneity in screening ability on the firm side; workers essentially apply to every firm, so screening only takes place ex post.\(^7\) Unlike their work, we consider firms that are heterogeneous in productivity, making it possible to analyze varying degrees of complementarity in production and a more conventional notion of sorting. We further emphasize the frictional nature of most labor markets and allow for ex-ante screening through workers’ applications decisions in addition to ex-post screening, showing that firms typically use a combination.

Finally, although our focus is on the labor market, our results are also important for other markets with matching between heterogeneous agents and a role for screening, such as the housing market or the marriage market. Also in trade, there is a growing interest in deriving patterns of international specialization (i.e. under which conditions do exporters hire the most productive workers) from fundamental properties of the production technology, see Costinot (2009). More generally, the interaction between quality (attracting high-type workers) and quantity (attracting low types as well) has been little studied in economics and we expect our analysis to

\(^6\)Card et al. (2013) use education and occupational sorting.

\(^7\)The main difference between the two papers is that the screening outcomes of a worker at different firms are independent in Board et al. (2019), whereas in Kurlat (2016) they are conditionally perfectly correlated across firms (if an applicant passes one firm’s test, this candidate will pass the test of all firms with worse screening skills).
be useful beyond the questions we address here.

2 Model

Agents. A static economy is populated by a continuum of risk-neutral firms and workers. Each firm demands and each worker supplies a single unit of indivisible labor. Both types of agents are heterogeneous. In particular, each firm is characterized by a type \(y \in \mathcal{Y} = [y_-, y_+] \subseteq \mathbb{R}_+ \). The measure of firms with types less or equal to \(y \) is denoted by \(J(y) \), where the total measure \(J(\overline{y}) \) is normalized to one. Similarly, each worker is characterized by a type \(x \in \mathcal{X} = [x_-, x_+] \subseteq \mathbb{R}_+ \). There are two types of workers: a low type \(x_1 \) and a high type \(x_2 \), with \(0 < x_1 < x_2 \). The measure of workers with type \(x_i \) is denoted by \(\ell_i > 0 \). The distribution of agents’ types in the economy is thus given by \((x_1, x_2, \ell_1, \ell_2, J(y))\). Our main objective is to find a condition such that assortative matching holds for any distribution of agents’ types—i.e. for any \(\ell_1, \ell_2 > 0, x_1, x_2 \in \mathcal{X} \), and \(J(y) \) with support belonging to \(\mathcal{Y} \)—while fixing the production function and the search frictions (specified below).

Wage Menus and Search. Each firm commits to a wage menu \(w = (w_1, w_2) \), where \(w_i \) is the wage for a hire of type \(x_i \). Workers observe all wage menus and apply to one, taking into account that there will be more competition at high wages.\(^8\) We initially assume that workers also observe firm types, but then show that this assumption is redundant because workers only care about their expected payoff, which they can infer from the wage alone. We capture the anonymity of the large market with the standard assumption that identical workers must use symmetric strategies (see e.g. Shimer, 2005).

A submarket \((w, y)\) consists of the firms of type \(y \) that post a wage menu \(w \) and all workers who apply to such a menu. For each submarket, we denote the ratio of the number of high-type applicants to the number of firms by \(\mu(w, y) \), and the ratio of the total number of applicants (regardless of their type) to the number of firms by \(\lambda(w, y) \). Naturally, these ratios—or queue lengths—are endogenous and satisfy \(0 \leq \mu(w, y) \leq \lambda(w, y) \) for all \((w, y)\). For future reference, define \(\zeta(w, y) = \mu(w, y) / \lambda(w, y) \) as the

\(^8\)In Appendix B.8 we show how our results can be generalized to \(N \) worker types for a widely used class of meeting technologies, that includes the urn-ball and geometric.

\(^9\)A single chance to match (per period) is standard and captures the idea that (opportunity) costs are associated with applying. Work relaxing this assumption has focused on models with (ex ante) homogeneous agents (Albrecht et al., 2006; Galenianos and Kircher, 2009; Kircher, 2009; Wolthoff, 2018; Albrecht et al., 2019), except Auster et al. (2021) which considers one-sided heterogeneity.
fraction of high-type applicants in submarket \((w, y)\).

Benchmark Frictions. The matching process within a submarket is frictional and exhibits constant returns to scale, in the sense that outcomes only depend on queue lengths rather than the absolute measures of workers and firms. Within those boundaries, we can allow for a fairly wide class of matching processes, but we initially focus on a specific benchmark to simplify exposition.\(^{10}\)

This benchmark features two stages (applying and screening) and was introduced by Cai et al. (2022). To understand it, consider a particular submarket with queues \((\mu, \lambda)\). Workers and firms in the submarket are randomly located on the circumference of a circle according to a uniform distribution. Workers apply clockwise to the nearest firm.\(^{11}\) A firm therefore receives \(n\) applications with probability \(1 \times (\lambda / (1 + \lambda))^n\) for \(n = 0, 1, 2, \ldots\), which is a geometric distribution with mean \(\lambda\).\(^{12}\) In the screening stage, each firm interviews its applicants in a random order. An interview allows the firm to learn the type of the applicant, which is \(x_2\) with probability \(\mu / \lambda\). After every interview, and conditional on applicants remaining, there is an exogenous probability \(\sigma \in [0, 1]\) that the firm can conduct another interview, while interviewing stops with complementary probability.

Our setup nests two common but extreme specifications of the meeting technology as special cases. If \(\sigma = 0\), each firm can interview only a single applicant, as in the bilateral model of Eeckhout and Kircher (2010a). In this case, the presence of low-type applicants makes it harder for firms to identify a high type in their applicant pool. Increasing \(\sigma\) reduces this meeting externality. It disappears entirely when \(\sigma\) reaches 1 and firms can interview all their applicants. As in the urn-ball setup of Shimer (2005), firms’ chances of finding a high type in their applicant pool then become independent of the number of low-type applicants—a property known in the literature as invariance (see Lester et al., 2015; Cai et al., 2017).

Matching and Production. After the interviews have been conducted, matches are formed. Firms can only hire a worker which they have interviewed.\(^{13}\) If a firm has interviewed multiple applicants, it hires the most profitable one. A match between

\(^{10}\) In section 5, we consider various generalizations.

\(^{11}\) When workers cannot keep track of the distance they travel, this is merely a tie-breaking rule.

\(^{12}\) Note the subtle difference compared to an equidistant positioning of firms, which yields a Poisson number of applicants with mean \(\lambda\), as in an urn-ball technology. We discuss this case in Section 5.1.

\(^{13}\) This assumption can easily be rationalized by introducing a small chance that any given worker provides the firm with a sufficiently negative payoff when hired.
a worker of type \(x\) and a firm type of \(y\) produces output \(f(x, y) > 0\), which is twice continuously differentiable. The partial derivatives \(f_x(x, y)\) and \(f_y(x, y)\) are strictly positive for all \((x, y) \in \mathcal{X} \times \mathcal{Y}\), and the cross-partial is denoted by \(f_{xy}(x, y)\).\(^{14}\) From the produced output, the firm pays the worker the promised wage \(w_i\) and keeps the rest. Firms and workers which fail to match obtain a zero payoff.

Elasticity of Complementarity. For our analysis, a key characteristic of the production function is its *elasticity of complementarity* (Hicks, 1932, 1970), which is usually defined for constant-returns-to-scale production functions, and is the inverse of the elasticity of substitution. For general production functions, it is defined as

\[
\rho(x, y) \equiv \frac{f_{xy}(x, y)f(x, y)}{f_x(x, y)f_y(x, y)} \in \mathbb{R},
\]

with extrema \(\overline{\rho} \equiv \sup_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \rho(x, y)\) and \(\underline{\rho} \equiv \inf_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \rho(x, y)\).

Supermodularity. The elasticity of complementarity \(\rho(x, y)\) is closely related to the notion of \(n\)-root-supermodularity, as defined in Eeckhout and Kircher (2010a).\(^{15}\)

Definition 1. The function \(f(x, y)\) is \(n\)-root-supermodular if and only if \(\rho(x, y) \geq 1 - 1/n\) for all \((x, y) \in \mathcal{X} \times \mathcal{Y}\); special cases include supermodularity \((n = 1)\) and log-supermodularity \((n \to \infty)\). When \(\rho(x, y) \leq 1 - 1/n\) for all \((x, y) \in \mathcal{X} \times \mathcal{Y}\), \(f(x, y)\) is said to be \(n\)-root-submodular.

In other words, \(n\)-root-supermodularity is equivalent to \(\overline{\rho} \geq 1 - 1/n\) and \(n\)-root-submodularity is equivalent to \(\underline{\rho} \leq 1 - 1/n\).

Special Case. We will sometimes illustrate our results with a CES production function, because it has a constant elasticity of complementarity, \(\rho(x, y) = \rho\). That is, \(f(x, y) = (x^{1-\rho} + y^{1-\rho})^{1/(1-\rho)}\). This production function is submodular when \(\rho \leq 0\), \(\frac{1}{\rho}\)-root-supermodular when \(0 < \rho < 1\), and log-supermodular when \(\rho \geq 1\).

Beliefs. A firm of type \(y\) posting a wage menu \(w\) has to form beliefs about its queues \((\mu(w, y), \lambda(w, y))\). Following the standard approach in the literature, we restrict these

\(^{14}\)Although worker types are binary, we assume that \(f_x(x, y) > 0\) for all \((x, y) \in \mathcal{X} \times \mathcal{Y}\) instead of \(f(x_2, y) > f(x_1, y)\) for given \(x_1\) and \(x_2\), because our objective is to find a condition such that assortative matching holds for any distribution of agents’ types, which requires that \(f(x, y)\) is defined on the full domain \(\mathcal{X} \times \mathcal{Y}\).

\(^{15}\)Eeckhout and Kircher (2010a) define \(f(x, y)\) to be \(n\)-root-supermodular if \(\sqrt[n]{f(x, y)}\) is supermodular. Since \(\frac{1}{\sqrt[n]{f}} \sqrt[n]{f} = n^{-2}f^{1/n-2}(f_{xy} - \frac{1}{n}f_xf_y)\), our definition is equivalent.
beliefs in the spirit of subgame perfection through what is known as the *market utility condition* (see e.g. Eeckhout and Kircher, 2010b). To state this condition, consider a worker of type x_i. Define $V_i(w, \mu, \lambda, y)$ as his expected payoff in a submarket (w, y) with queues (μ, λ), and his *market utility* U_i as the maximum expected payoff that he can obtain in equilibrium, either by visiting one of the submarkets or by remaining inactive. Firms’ beliefs $(\mu(w, y), \lambda(w, y))$ must then satisfy

$$\begin{align*}
V_1(w, \mu, \lambda, y) &\leq U_1, \text{ with equality if } \lambda - \mu > 0, \\
V_2(w, \mu, \lambda, y) &\leq U_2, \text{ with equality if } \mu > 0.
\end{align*}$$

For common meeting technologies, including our benchmark as we will show in Lemma 2 below, (2) admits a unique solution (μ, λ), which is then the firm’s belief. For other technologies, there can be multiple solutions to (2). The standard assumption is then that firms are optimistic and expect the solution that maximizes their expected payoff $\pi(w, \mu, \lambda, y)$. Explicit expressions for π and V_i will be provided in Section 3.1.

Strategies. Let $G(w | y)$ denote the (conditional) probability that a firm of type y offers a wage menu $\tilde{w} \leq w$, where $\tilde{w} = (\tilde{w}_1, \tilde{w}_2), w = (w_1, w_2), \tilde{w}_1 \leq w_1$ and $\tilde{w}_2 \leq w_2$. Given market utilities (U_1, U_2), firm optimality means that every wage menu w in the support of $G(w | y)$ must maximize $\pi(w, \mu, \lambda, y)$ subject to the constraint (2).

Similarly, let $H_i(w, y)$ denote the probability that workers of type x_i apply to a firm with $\tilde{w} \leq w$ and $\tilde{y} \leq y$. The following accounting identities then link workers’ strategies $H_1(w, y)$ and $H_2(w, y)$ to the queues in different submarkets.

$$\begin{align*}
H_2(w, y) &= \frac{1}{\ell_2} \int_{\tilde{y} \leq y} \int_{\tilde{w} \leq w} \mu(\tilde{w}, \tilde{y}) dG(\tilde{w} | \tilde{y}) dJ(\tilde{y}), \\
H_1(w, y) &= \frac{1}{\ell_1} \int_{\tilde{y} \leq y} \int_{\tilde{w} \leq w} \left[\lambda(\tilde{w}, \tilde{y}) - \mu(\tilde{w}, \tilde{y}) \right] dG(\tilde{w} | \tilde{y}) dJ(\tilde{y}).
\end{align*}$$

Worker optimality requires that workers must obtain exactly U_i at any firm to which they apply with positive probability, and weakly less at other firms i.e. (2) must hold. Further, note that no firm will post a wage menu $w \geq \bar{w} \equiv (f(x_1, \bar{y}), f(x_2, \bar{y}))$. Thus, $H_i(\bar{w}, \bar{y})$ is the probability that workers of type x_i apply, which must equal 1 if $U_i > 0$, as the payoff from not sending an application is zero. This condition can be interpreted as “market clearing”: in equilibrium, demand for each type of applicant
must equal supply, which determines the “market prices” U_1 and U_2.

Equilibrium Definition. We can now define an equilibrium as follows.

Definition 2. A (directed search) equilibrium is a triple $(G, \{H_1, H_2\}, \{U_1, U_2\})$ satisfying ...

(i) **Firm Optimality.** Given (U_1, U_2), every wage menu w in the support of $G(\cdot | y)$ maximizes $\pi(w, \mu(w, y), \lambda(w, y), y)$ for each firm type y, where the queue lengths $(\mu(w, y), \lambda(w, y))$ are determined by (2).

(ii) **Worker Optimality.** Given (U_1, U_2), the application strategy of high-type and low-type workers satisfies (3) and (4), respectively, where the queue lengths $(\mu(w, y), \lambda(w, y))$ are determined by (2). Further, $H_i(\overline{w}, \overline{y}) = 1$ if $U_i > 0$.

3 Equilibrium

We start our equilibrium analysis by establishing an equivalence: the problem of a firm in our environment is equivalent to the problem of a firm that can buy queues of applicants directly in a competitive market. The consequence of this result is that the equilibrium in our environment is constrained efficient.

3.1 Surplus, Payoffs, and Efficiency

Ranking. In our model, how firms rank workers depends on which worker types are most profitable, which in turn depends on the wage contracts that firms post. To simplify exposition, assume for now that firms post wage menus (w_1, w_2) satisfying

$$f(x_2, y) - w_2 > f(x_1, y) - w_1,$$

i.e. more productive workers are more profitable and are therefore preferred by firms. Later, in Lemma 3, we will show that (5) must indeed hold when firms act optimally, making our assumption without loss of generality.

16 Hence, the difference with a “conventional” competitive market is that the firm buys a distribution of applicants rather than directly hiring a particular type of worker.
Interviewing Probability. Given (5), a firm will hire a high-type worker if and only if it interviews at least one such worker. The following lemma, which we borrow from Cai et al. (2022), derives the probability of this event.\footnote{Cai et al. (2022) study market segmentation in a world with homogeneous firms. Our focus is quite different, so we provide a derivation of $\phi(\mu, \lambda)$ for completeness.}

Lemma 1 (Cai et al., 2022). In a submarket with queues (μ, λ), the probability that a firm interviews at least one high-type worker equals

\[\phi(\mu, \lambda) = \frac{\mu}{1 + \sigma \mu + (1 - \sigma) \lambda}. \] (6)

Proof. See Appendix B.1. \hfill \Box

The key insight of Cai et al. (2022) is that $\phi(\mu, \lambda)$ is useful for multiple reasons. First, $\phi(\mu, \lambda)$ is sufficient to summarize the meeting process within a submarket. It not only describes the probability that the firm will hire a high-type worker, but—upon evaluation in $\mu = \lambda$—also the firm’s overall matching probability (regardless of the hire’s type), which we denote by $m(\lambda) \equiv \phi(\lambda, \lambda)$. Hence, the probability that the firm hires a low-type worker is given by $m(\lambda) - \phi(\mu, \lambda)$.

Second, the partial derivatives of $\phi(\mu, \lambda)$ have economically meaningful interpretations. The partial derivative $\phi_{\lambda}(\mu, \lambda) \leq 0$ captures externalities in the recruiting process as it describes how a firm’s chances to hire a high-type worker change if the queue of low-type workers gets longer. As discussed before, these externalities are absent, i.e. $\phi_{\lambda}(\mu, \lambda) = 0$, if and only if all applicants are interviewed (i.e. $\sigma = 1$).

In contrast, $\phi_{\mu}(\mu, \lambda)$ describes how a firm’s probability of hiring a high-type worker changes if the queue of such workers increases, while the total queue remains constant (i.e. changing the composition of the applicant pool). From the perspective of a high-type applicant, this partial derivative represents the probability that he or she is hired and increases surplus because no other high-type worker was interviewed.\footnote{To see this, note that $\phi_{\mu}(\mu, \lambda) \Delta \mu = \phi(\mu + \Delta \mu, \lambda) - \phi(\mu, \lambda)$ represents the probability that replacing $\Delta \mu$ low-type workers with high types generates additional surplus. Naturally, this is the case if and only if these $\Delta \mu$ workers are the only high types that are interviewed.}

Properties. The expression in equation (6) has the following intuitive properties:

A0. $\phi(\mu, \lambda)$ is strictly increasing and concave in μ, i.e. replacing low-type workers with high-type workers in a submarket increases a firm’s probability of interviewing at least one high-type worker, but at a decreasing rate;
A1. for any given $\zeta \in (0, 1]$, $\phi(\lambda \zeta, \lambda)$ is strictly increasing and strictly concave in λ, i.e. holding the fraction of high-type workers constant, adding more workers to the submarket increases a firm’s probability of interviewing at least one high type, but at a decreasing rate;

A2. for any given $\zeta \in (0, 1]$, $\phi_\mu(\lambda \zeta, \lambda)$ is strictly decreasing in λ, i.e. holding the fraction of high-type workers constant, adding more workers to the submarket reduces the probability that a high-type worker creates surplus.

Surplus and Payoffs. To derive expected surplus, consider a firm of type y facing a queue (μ, λ). With probability $m(\lambda) = \phi(\lambda, \lambda)$, the firm receives at least one application, hence generating at least a surplus $f(x_1, y)$; with probability $\phi(\mu, \lambda)$, the firm interviews at least one high-type worker, hence generating an additional surplus $f(x_2, y) - f(x_1, y)$. The expected surplus is therefore

$$S(\mu, \lambda, y) = m(\lambda) f(x_1, y) + \phi(\mu, \lambda) [f(x_2, y) - f(x_1, y)].$$

(7)

By the same logic, the expected payoff of the firm equals

$$\pi(w, \mu, \lambda, y) = \phi(\mu, \lambda) [f(x_2, y) - w_2] + [m(\lambda) - \phi(\mu, \lambda)] [f(x_1, y) - w_1].$$

(8)

Finally, the expected payoff of applicants of type x_i is $V_i(w, \mu, \lambda, y) = \psi_i(\mu, \lambda) w_i$, where, by a simple accounting identity, their matching probability $\psi_i(\mu, \lambda)$ equals

$$\psi_1(\mu, \lambda) = \frac{m(\lambda) - \phi(\mu, \lambda)}{\lambda - \mu} \text{ or } \psi_2(\mu, \lambda) = \frac{\phi(\mu, \lambda)}{\mu}.$$

(9)

The special cases $\mu = 0$ and $\mu = \lambda$ are obtained by taking the corresponding limits, which yields $\psi_1(\lambda, \lambda) = \phi_\mu(\lambda, \lambda)$ and $\psi_2(0, \lambda) = \phi_\mu(0, \lambda)$.

Uniqueness of Queues. In a submarket (w, y), the queues (μ, λ) are determined by the market utility condition (2). Since this is a system of non-linear equations, it is not immediate that there is a unique solution. Lemma 2 establishes this result.

Lemma 2. If ϕ is given by (6), there exists exactly one solution (μ, λ) to the market utility condition for any wage menu w.

Proof. See Appendix B.2.

\[\square \]
Competitive Market for Queues. As is standard in the literature, we can use the market utility condition (2) to substitute the wages \(w_1 \) and \(w_2 \) out of (8) and rewrite the firm’s problem with queue lengths as choice variables. This yields

\[
\max_{0 \leq \mu \leq \lambda} \Pi\left(\frac{\mu}{\lambda}, \lambda, y \right) \equiv S(\mu, \lambda, y) - \lambda U_1 - \mu (U_2 - U_1),
\]

(10)

where, for use in Section 3.2, the arguments of the firm profit function \(\Pi \) are the fraction of high-type applicants \(\mu/\lambda \) and the queue length \(\lambda \).\(^{19}\) Equation (10) has a straightforward interpretation: it is the payoff of a firm buying queues of low-type and high-type workers in a competitive market at prices equal to their respective market utilities. This formulation will be the starting point for our sorting analysis below.

Productivity versus Profitability. In the firm’s problem (10), we assume that firms can select a queue \((\mu, \lambda)\) directly while ignoring the constraint (5). The following lemma shows that this constraint is redundant: a solution to (10) can always be obtained with a wage menu \((w_1^*, w_2^*)\) that satisfies (5).

Lemma 3. Given a solution \((\mu^*, \lambda^*)\) (interior or corner) to the firm’s problem (10), the corresponding wage menu \((w_1^*, w_2^*) = (U_1/\psi_1(\mu^*, \lambda^*), U_2/\psi_2(\mu^*, \lambda^*))\) satisfies (5).

Proof. See Appendix A.1.

If the solution is interior \((0 < \mu^* < \lambda^*)\), then the wage menu that firms need to post to attract the optimal queue is unique. In a corner solution \((\mu^* = 0 \text{ or } \mu^* = \lambda^*)\), the wage menu is not unique, but Lemma 3 describes the maximum corresponding values satisfying (5).\(^{20}\)

Lemma 3 implies that it is without loss of generality to only consider wage menus satisfying (5). To see this, suppose that a firm posts a wage menu where low-type workers yield a higher profit ex post, i.e. \(f(x_2, y) - w_2 < f(x_1, y) - w_1 \), and attracts a queue \((\mu, \lambda)\) with \(0 < \mu < \lambda\). Workers must obtain their market utility, so the expected transfer from the firm to the workers equals \(\mu U_2 + (\lambda - \mu)U_1 \). However, giving priority to low- rather than high-type workers reduces the expected surplus

\[^{19}\text{We have implicitly assumed that } 0 < \mu < \lambda \text{ such that both market utility conditions hold with equality. However, it is easy to see that (10) also holds if } \mu = 0 \text{ or } \mu = \lambda.\]

\[^{20}\text{For example, if } \mu^* = \lambda^*, \text{ then the optimal } w_2 \text{ is uniquely given by } U_2/\psi_2(\lambda^*, \lambda^*), \text{ but the optimal } w_1 \text{ can take any value between zero and } w_1^* = U_1/\psi_1(\lambda^*, \lambda^*).\]
relative to $S(\mu, \lambda, y)$ in (7). Accordingly, the firm’s expected profit is strictly smaller than the maximum profit in (10); hence, those wage menus are strictly suboptimal.\footnote{A similar result appears in Shimer (2005) for the case of urn-ball meetings. Our proof of Lemma 3 generalizes his result to arbitrary meeting technologies.}

Observability of Firm Productivity. By Lemma 3, all firms will post wage contracts such that high-type workers are more profitable. Given the wage contract, the market utility condition then determines the queue length and composition. Since workers only care about their hiring probability and the wage, this then means that all our results carry through if they do not observe firm types.

Efficiency. In sum, we have demonstrated that the market equilibrium with wage menus coincides with the equilibrium in a competitive market where firms can buy queues directly at prices equal to workers’ market utility. Hence, by the first welfare theorem, we obtain the following efficiency result.

Proposition 1. The market equilibrium is constrained efficient.

3.2 Optimal Queue Length and Composition

In our sorting analysis, the fraction of high-type applicants across firms will play an important role. It is thus convenient to formulate the firm’s problem as in (10): firms choose the queue length λ and $\zeta = \frac{\mu}{\lambda} \in [0, 1]$, the fraction of high-type workers in the queue, to maximize their expected profit $\Pi(\zeta, \lambda, y) = S(\zeta\lambda, \lambda, y) - \lambda U_1 - \zeta \lambda (U_2 - U_1)$.

Optimal Queue Length. We first consider the choice of the queue length λ for a given $\zeta \in [0, 1]$. Since $\phi(\zeta\lambda, \lambda)$ is strictly concave in λ for all $\zeta > 0$ and $m(\lambda) = \phi(\lambda, \lambda)$, the payoff $\Pi(\zeta, \lambda, y)$ is strictly concave in λ for a given $\zeta \in [0, 1]$. Thus, assuming that firms of type y are active in hiring, their optimal queue is unique and determined by the first-order condition (FOC)

$$U_1 + \zeta(U_2 - U_1) = m'(\lambda) f^1 + \frac{\partial \phi(\zeta\lambda, \lambda)}{\partial \lambda} \Delta f,$$

(11)

where $\partial \phi(\zeta\lambda, \lambda) / \partial \lambda = \zeta\phi_{\mu}(\zeta\lambda, \lambda) + \phi_{\lambda}(\zeta\lambda, \lambda)$ and we set $f^1 \equiv f(x_1, y)$ and $\Delta f \equiv f(x_2, y) - f(x_1, y)$ to simplify notation. To understand (11), note that the first term on the right-hand side denotes the marginal contribution to surplus of a low-type applicant when all applicants are of a low type. The second term corrects for the fact that a fraction ζ of applicants has high productivity.
Optimal Queue Composition. When the optimal ζ for firm y is interior ($0 < \zeta < 1$), it must satisfy the FOC

$$\phi_\mu(\zeta \lambda, \lambda) \Delta f = U_2 - U_1.$$

(12)

The left-hand side of the above equation is exactly the difference between the marginal contribution to surplus of high-type and low-type workers, while the right-hand side is the difference in their cost. Intuitively, a larger ζ increases the firm’s probability of matching with a high-type worker, but comes at a cost as these workers are more expensive.\(^{22}\) Of course, the firm’s optimal ζ might be at a corner, i.e. $\zeta = 0$ or 1, in which case the appropriate complementary slackness condition must hold.

Concavity of Surplus. When a firm’s choice of queue composition is at a corner ($\zeta = 0$ or 1), then the second-order condition is always satisfied because the expected profit is $m(\lambda)f(x_i, y) - \lambda U_i$ for $i = 1, 2$ and $m(\lambda)$ is strictly concave. However, when ζ is interior, the surplus function $S(\mu, \lambda, y)$ is not necessarily strictly concave at a point (μ, λ). To see this, consider its Hessian $H(\mu, \lambda, y)$, which equals

$$H(\mu, \lambda, y) = \begin{pmatrix} \phi_{\mu\mu} \Delta f & \phi_{\mu\lambda} \Delta f \\ \phi_{\mu\lambda} \Delta f & m'' f^1 + \phi_{\lambda\lambda} \Delta f \end{pmatrix},$$

where we omit the arguments of the derivatives of $\phi(\mu, \lambda)$ and $m(\lambda)$ for simplicity.

In the bilateral case $\sigma = 0$, we have $\phi(\mu, \lambda) = m(\lambda)\mu/\lambda$ such that $\phi_{\mu\mu} = 0$, which means that the Hessian is never negative definite and surplus is never concave at points (μ, λ) with $0 < \mu < \lambda$. Hence, firms find it optimal to attract only one type of workers. Below, we will therefore focus on the case $\phi_{\mu\mu} < 0$, i.e. $\sigma > 0$; the results will extend to the bilateral case by continuity.\(^{23}\) Given $\phi_{\mu\mu} < 0$, the Hessian is negative definite if and only if its determinant is positive. Let $\kappa(y)$ be a measure of output dispersion, defined as the relative gain in output for a firm of type y from hiring a high- rather than a low-type worker, i.e.

$$\kappa(y) \equiv \frac{f(x_2, y) - f(x_1, y)}{f(x_1, y)} > 0.$$

(13)

\(^{22}\)The firm can increase ζ by $\Delta \zeta$ while keeping λ the same by increasing the queue length of high-type workers by $\lambda \Delta \zeta$ and decreasing the queue length of low-type workers by $\lambda \Delta \zeta$.

\(^{23}\)We will revisit the bilateral case in Section 5.1.
Then, we have the following result.

Lemma 4. Surplus $S(\mu, \lambda, y)$ is strictly concave at a point (μ, λ) with $0 < \mu < \lambda$ if

$$\frac{1}{\kappa(y)} > \frac{\phi_{\lambda\lambda} - \phi_{\mu\mu}^2/\phi_{\mu\mu}}{-m''},$$ \hspace{1cm} (14)

Proof. See Appendix A.2. \hfill \Box

Thus, if a firm of type y attracts a queue (μ, λ) in equilibrium with $0 < \mu < \lambda$, then a necessary (but not sufficient condition) for firm optimality is that (14) holds. Note that $\phi_{\mu\mu}\phi_{\lambda\lambda} - \phi_{\mu\lambda}^2$ is the determinant of the Hessian matrix of $\phi(\mu, \lambda)$. For our benchmark meeting process, it is zero if $\sigma = 1$ and strictly negative otherwise, making the right-hand side of (14) (weakly) positive.\(^{24}\)

Limit Case. The FOCs are necessary but not sufficient for the optimum because the firms’ problem is not concave, which implies that a firm may have multiple optimal queues. However, when worker heterogeneity is small, firms care primarily about matching probability, which implies a unique optimal queue length. Given this queue length, the firms’ problem is strictly concave in ζ. Hence, the optimal solution is unique. In this case, the first order conditions are sufficient and the solution is both unique and continuous. The following lemma formalizes this.

Lemma 5. Assume that ϕ is given by (6) with $\sigma > 0$. Fix a distribution of agents’ types and then let $x_2 \to x_1$. For sufficiently small $x_2 - x_1$, each firm has a unique optimal queue $(\mu(y), \lambda(y))$. Both $\mu(y)$ and $\lambda(y)$ are continuous in y, and if $0 < \mu(y_0) < \lambda(y_0)$ for some y_0, then both $\mu(y)$ and $\lambda(y)$—and therefore $\zeta(y) \equiv \mu(y)/\lambda(y)$—are continuously differentiable around point y_0.

Proof. See Appendix A.3. \hfill \Box

As we will demonstrate in the following section, this limit case is useful for deriving a necessary condition for sorting, which turns out to be also sufficient for any given x_1 and x_2. Note that Lemma 5 does not rely on the particular functional form of $\phi(\mu, \lambda)$; it only requires that: (i) $\phi(\mu, \lambda)$ is strictly concave in μ and (ii) $m(\lambda)$ is strictly concave.

\(^{24}\)Cai et al. (2017) describe meeting technologies for which $\phi(\mu, \lambda)$ is jointly concave in (μ, λ) such that firms’ second-order condition is always satisfied. However, as they show, such technologies feature weakly positive meeting externalities, making them unsuitable for the purpose of our paper.
4 Sorting

In this section, we analyze under what conditions the equilibrium exhibits sorting. Throughout, we simplify exposition by focusing on the case in which the optimal queue composition $\zeta(y)$ is unique for all y, but we show in Appendix B.3 that our results extend to the general case in which $\zeta(y)$ may not be unique for some firm types.

Below, we first provide our definitions of positive and negative sorting. Subsequently, we derive conditions for positive sorting; the analysis for negative sorting is similar with reversal of the relevant inequalities and therefore omitted. We show that in the limit case where $x_2 \to x_1$, the necessary and sufficient condition for sorting relates the elasticity of complementarity of the production function to a new quality-quantity elasticity. Although it may appear counterintuitive to think about screening and sorting when $x_2 \to x_1$, we subsequently show that the force against positive sorting is largest in this case, making our condition sufficient for any given x_1 and x_2.

4.1 Definition of Sorting

Much of the literature (see e.g. Becker, 1973; Shi, 2001; Eeckhout and Kircher, 2010a) defines sorting in terms of a monotonic matching function which maps each worker type x to their employer type y.\(^{25}\) This definition is not suitable in our environment, because firms do not necessarily hire a unique worker type. Instead, we require a set-based notion of sorting. Following Shimer and Smith (2000) and Shimer (2005), we therefore define sorting as first-order stochastic dominance (FOSD) in firms’ distributions of hires.\(^{26}\) In our environment, this definition can be expressed in terms of the probability that a firm hires a high-type worker, conditional on hiring someone,

$$h(\zeta(y), \lambda(y)) \equiv \frac{\phi(\zeta(y)\lambda(y), \lambda(y))}{m(\lambda(y))},$$ \hspace{1cm} (15)\(^{27}\)

\(^{25}\)See Lindenlaub (2017) for a generalization to multidimensional types.

\(^{26}\)Strictly speaking, Shimer and Smith (2000) use a weaker notion of sorting which is based on the bounds of the support of the distribution of hires; however, their definition is equivalent to FOSD of this distribution in the random-search environment that they consider. In contrast, Shimer (2005) proves a stronger sorting result (high-type workers are more likely to be employed in high-type jobs than in low-type jobs) for a special case (multiplicatively separable production function and urn-ball meetings); however, he acknowledges that the data demands to test this result “may be unrealistic” and suggests FOSD of the distribution of hires as a “more easily testable” alternative.
where \((\zeta(y), \lambda(y))\) is the equilibrium choice of firms with type \(y\).

Definition 3. An equilibrium exhibits positive (resp. negative) assortative matching (PAM/NAM) if and only if \(h(\zeta(y), \lambda(y))\) is weakly increasing (resp. decreasing) in \(y\).

While the literature has traditionally restricted attention to sorting patterns in matches, our environment yields additional predictions. After all, given that firms may interview multiple applicants and subsequently select the most desirable one, there is a meaningful distinction between an application on the one hand and a match on the other hand. Hence, in addition to assortativeness of matches, we can also analyze the assortativeness of applications (or ‘contacts’), i.e. whether the fraction of high-type applicants \(\zeta(y)\) increases or decreases in \(y\).

Definition 4. An equilibrium exhibits positive (resp. negative) assortative contacting (PAC/NAC) if and only if \(\zeta(y)\) is weakly increasing (resp. decreasing) in \(y\).

4.2 Quality vs Quantity

We first present an intuitive derivation of our sorting conditions. To simplify exposition, we will focus on a CES production function with complementarities \((\rho > 0)\).

Understanding Sorting. To understand sorting patterns, it is helpful to first consider when the equilibrium displays no sorting in applications. That is, all firms choose the same queue composition \(\zeta\), in addition to a potentially type-dependent queue length \(\lambda(y)\).

For this allocation to be optimal, two conditions need to be satisfied. The first condition concerns *quantity*: firms’ choice of queue length \(\lambda(y)\) must be optimal, which means that the marginal contribution to surplus of an extra worker in the queue must be equalized across firms. Since \(\phi(\lambda z, \lambda)\) and hence \(m(\lambda)\) are strictly concave in \(\lambda\), it follows from equation (11) that this is the case when firms with higher productivity have longer queue lengths.

The second condition concerns *quality*: firms’ choice of the queue composition \(\zeta\) must be optimal, which requires that the marginal contribution to surplus from replacing a low-type worker in the queue by a high-type worker is equalized across firms. As shown in equation (12), this marginal contribution equals \(\phi_\mu(\zeta \lambda, \lambda) \Delta f\), i.e. the probability that the replaced worker is the only high-type interviewee multiplied by the increase in output this worker creates. The probability \(\phi_\mu(\zeta \lambda, \lambda)\) is decreasing...
in \(\lambda \) (and also in \(\zeta \)). Hence, \(\phi_\mu \) is lower at firms with higher productivity because of their longer queue lengths.

The left panel of Figure 1 illustrates this idea for two firm types, a low type \(y_1 \) and a high type \(y_2 \). Both types of firms have the same queue composition \(\zeta \) (vertical axis), but the quantity condition implies that the high-type firms have longer queue lengths, i.e. \(\lambda(y_2) > \lambda(y_1) \) (horizontal axis). The quality condition is represented by the level curves of \(\phi_\mu(\zeta, \lambda) \), which are downward sloping and decreasing in value from the bottom-left to the top-right.

The fact that \(\phi_\mu \) is lower at firms with higher productivity is a force against positive sorting which—everything else equal—causes high-type workers to be less valuable to such firms. So, for constant \(\zeta \) to be optimal, the increase in \(\Delta f \) across firm types must offset this effect. That is, the complementarities in production must be sufficiently large.

![Figure 1: Level Curves of \(\phi_\mu \)](image)

The gray curves represent level curves of \(\phi_\mu \), decreasing from bottom-left to top-right. The percentage decrease is the same between all adjacent level curves. To ease comparison, \(\lambda(y_1) \) and \(\lambda(y_2) \) are the same in both panels and \(\zeta(y_1) = \zeta(y_2) \).

How large the complementarities must be depends on two factors: 1) how quickly the queue length increases across firm types (i.e. the horizontal distance between \(\lambda(y_1) \) and \(\lambda(y_2) \) in the figure), and 2) how quickly this increase in queue length reduces \(\phi_\mu \).
(i.e. the distance between the level curves in the figure). To be precise, for $\phi_\mu \Delta f$ to be constant along the equilibrium path, the elasticity of Δf with respect to y must be equal to

$$\frac{d \log \Delta f}{d \log y} = - \frac{d \log \phi_\mu}{d \log y} = - \frac{d \log \phi_\mu}{d \log \lambda} \frac{d \log \lambda}{d \log y}, \quad (16)$$

where the elasticity of λ with respect to y follows from (11).

Worker Heterogeneity. Condition (16) depends on the distribution of agents in multiple ways. For example, as can be seen from (11), the elasticity of λ with respect to y depends on the degree of worker heterogeneity through Δf. In particular, this elasticity, and thus the force against sorting, is largest when $x_1 \to x_2$. Intuitively, when x_1 and x_2 are close, firms do not care much about which type they hire, so match probability is much more important than match quality. In this case, the marginal benefit of an extra worker in the queue, as given in (11), decreases less quickly with the queue length, making the elasticity of λ with respect to y larger.

The case in which $x_1 \to x_2$, and thus $f^1, f^2 \to f$, does not only provide the strongest force against sorting but also a particularly clean sorting condition. To see this, note that the marginal contribution of an extra worker in the queue converges to $m'(\lambda)f$ in this case, which must be constant across firm types. This implies

$$\frac{d \log m'}{d \log \lambda} \frac{d \log \lambda}{d \log y} = - \frac{d \log f}{d \log y}. \quad (17)$$

When combined with (16), we obtain

$$\frac{d \log \Delta f}{d \log f} = \frac{d \log \phi_\mu}{d \log m'} \quad (18)$$

Hence, if—relative to low-type firms—high-type firms produce 2% more output f, then by (17) they must have a longer queue length which makes $m'(\lambda)$ exactly 2% smaller. This longer queue length reduces ϕ_μ by, say, 1%, which then must be offset by a 1% increase in Δf, as described in (16). 27 In other words, as summarized in (18), the relative percentage changes in Δf and f must be equal to the relative percentage changes in ϕ_μ and $m'(\lambda)$, which are 1/2 in this case.

27 As we will show later, ϕ_μ is less elastic with respect to λ than $m'(\lambda)$.
Contact Quality-Quantity Elasticity. Note that when \(x_2 \to x_1 = x \), the left-hand side of (18) converges to \(\rho \), the elasticity of complementarity of the production function. We denote the elasticity on the right hand-side of (18) by \(a^c(\zeta, \lambda) \) and refer to it as the contact quality-quantity elasticity, because it holds constant the fraction of high type workers contacting (applying to) the firm. That is,

\[
a^c(\zeta, \lambda) \equiv \frac{\partial \log \phi_{\mu}(\zeta \lambda, \lambda)}{\partial \log m'(\lambda)} = \frac{\left(\zeta \phi_{\mu\mu} + \phi_{\mu\lambda} \right)}{m''/m'} > 0.
\]

(19)

Note that \(\phi_{\mu}(\zeta \lambda, \lambda) \) represents the probability that a high-type applicant turns out to be the only high-type worker that the firm interviews and \(m'(\lambda) \) describes the change in firms' matching probability. Thus the above elasticity measures the tradeoff between match quality and match likelihood when firms adjust the queue length \(\lambda \) but keep the queue composition \(\zeta \) fixed. It is strictly positive because \(m(\lambda) \) is strictly concave and \(\phi_{\mu}(\zeta \lambda, \lambda) \) is strictly decreasing in \(\lambda \). A large value means that the longer queue at firms with higher productivity results in a relatively large drop in the probability \(\phi_{\mu} \) that an extra high-type worker creates surplus, which constitutes a force for negative sorting. To nevertheless obtain constant \(\zeta \), this force must therefore be offset by the complementarities in production, i.e. \(\rho = a^c(\zeta, \lambda(y)) \). Naturally, when the complementarities in production are larger than the contact quality-quantity elasticity, PAC prevails.

Below, we show that \(a^c(\zeta, \lambda) \) is not constant. For example, as Figure 1 suggests and we will prove in Lemma 7, \(a^c(\zeta, \lambda) \) is strictly increasing in \(\zeta \). Intuitively, when a larger fraction of the applicants is of high type, an increase in the queue leads to a more rapid decline in the probability that a high-type applicant creates surplus, creating a stronger force against positive sorting. Hence, for PAC to hold for any distribution of agents’ types, \(\rho \geq \bar{a}^c \equiv \sup_{\zeta, \lambda} a^c(\zeta, \lambda) \) is necessary. The reverse, i.e. \(\rho \leq \underline{a}^c \equiv \inf_{\zeta, \lambda} a^c(\zeta, \lambda) \), is necessary for NAC to hold for any distribution of agents.

Sufficient Condition. As mentioned, when \(x_1 \) and \(x_2 \) are close, firms do not care much which type they hire and match likelihood is much more important than match quality. When \(x_1 \) and \(x_2 \) are far apart and hence match quality is important, high-productivity firms are willing to substitute match likelihood for match quality because of complementarity in production and negative externalities in the meeting process. That is, high-\(y \) firms would reduce their queue length (by offering low-type workers...
a worse deal) relative to the case where \(x_1 \) and \(x_2 \) are close to each other.\(^{28}\) This is a force towards positive sorting. Hence it is not surprising that the condition derived for the limit case where \(x_2 \to x_1 \) is sufficient for sorting for any \(x_1 \) and \(x_2 \).

Match Quality-Quantity Elasticity. To analyze PAM/NAM, one can follow a similar argument as above, but now starting from an equilibrium where firms have the same conditional probability \(h(\zeta(y), \lambda(y)) = \bar{h} \) of hiring a high-type worker. In this case, both the queue length \(\lambda \) and the queue composition \(\zeta \) will vary across firms of different types, as illustrated in the right panel of Figure 1. In particular, as the queue length \(\lambda \) increases, the planner must reduce the fraction of high types \(\zeta \) to keep \(h(\zeta(y), \lambda(y)) \) constant.

The key question for sorting is then how the probability \(\phi\mu \) varies along the curve \(h(\zeta, \lambda) = \bar{h} \). That is, the relevant elasticity is the following *match* quality-quantity elasticity, which holds constant the conditional probability that the firm matches with a high-type worker:

\[
a^m(\zeta, \lambda) \equiv \frac{d \log \phi\mu(\zeta, \lambda)}{d \log m'(\lambda)} \bigg|_{h(\zeta, \lambda) = \bar{h}} = a^c(\zeta, \lambda) \left(1 - \frac{\partial \phi\mu / \partial \zeta}{\partial \phi\mu / \partial \lambda} \frac{\partial h / \partial \lambda}{\partial h / \partial \zeta} \right) > 0, \quad (20)
\]

with extrema \(\bar{a}^m \equiv \sup_{\zeta, \lambda} a^m(\zeta, \lambda) \) and \(a^m \equiv \inf_{\zeta, \lambda} a^m(\zeta, \lambda) \). The factor in the parenthesis in (20) represents the relative effect of adjusting \(\zeta \) so that \(h(\zeta, \lambda) \) stays constant; as the right panel of Figure 1 suggests and we will prove in Lemma 7, it is always between 0 and 1. Intuitively, as the queue length increases, the associated decrease in the fraction of high-type workers \(\zeta \) mitigates the drop in \(\phi\mu \).

4.3 Conditions for Sorting

After developing the intuition above, we now give a formal analysis. Consider a firm type \(y \) with an interior \(\zeta(y) \); the FOCs (11) and (12) jointly determine \(\lambda(y) \) and \(\zeta(y) \). Differentiating (12) with respect to \(y \) along the equilibrium path yields

\[
 - \frac{1}{\phi\mu} \left(\frac{\partial \phi\mu}{\partial \zeta} \zeta'(y) + \frac{\partial \phi\mu}{\partial \lambda} \lambda'(y) \right) = \frac{\Delta f_y}{\Delta f}, \quad (21)
\]

\(^{28}\)More precisely, \(m'(\lambda(y)) f(x_1, y) \) is constant along the equilibrium path in the limit case \(x_2 \to x_1 \). When \(x_1 \) and \(x_2 \) are apart and \(\sigma < 1 \) (or equivalently \(\phi\lambda(\mu, \lambda) < 0 \), i.e. negative meeting externalities), it is increasing in \(y \).
which states that the percentage decrease in ϕ_μ must equal the percentage increase in Δf. Similarly, differentiating (11) with respect to y along the equilibrium path and combining the result with (21) yields the percentage change of $m'(\lambda)$ across firm types, i.e.

$$-m''(\lambda(y)) \lambda'(y) = f'^1 \frac{1 - \frac{1}{m^2} \left(\phi_\mu \phi_\mu - \phi_\lambda \right) \frac{\Delta f_\mu}{f_\mu^2}}{f^1 \left(\frac{\phi_\mu}{\phi_\mu - \phi_\lambda} \right) } \Delta f.$$ \tag{22}$$

See the proof of Lemma 6 for a detailed derivation of the above equation. When the meeting technology exhibits no congestion externalities (i.e. $\sigma = 1$), the second factor on the right-hand side reduces to 1. That is, when we move towards more productive jobs, the percentage decrease in $m'(\lambda)$ (as a result of a longer queue) is independent of ζ and simply equals the percentage increase in $f(x_1, y)$. When there are congestion externalities between heterogeneous workers, however, the optimal queue involves a trade-off between quantity and quality, and more of one affects the marginal contribution of the other. The second factor on the right-hand side of (22) represents this complex interplay between quality and quantity.

Dividing both sides of (21) by the corresponding side of (22) then gives the relative change in ϕ_μ and $m'(\lambda)$ across firm types along the equilibrium path,

$$\frac{1}{\phi_\mu} \left(\frac{\partial \phi_\mu}{\partial \zeta} \zeta'(y) + \frac{\partial \phi_\mu}{\partial \lambda} \lambda'(y) \right) = \frac{m''}{m'} \lambda'(y) = \frac{f'^1 \Delta f_\mu}{f^1 \Delta f} \frac{1 - \frac{1}{m^2} \left(\phi_\mu \phi_\mu - \phi_\lambda \right) \frac{\Delta f_\mu}{f_\mu^2}}{1 - \frac{1}{m^2} \left(\phi_\mu \phi_\mu - \phi_\lambda \right) } \frac{\Delta f_\mu}{f_\mu^2}.$$ \tag{23}$$

The left-hand side reflects the relative change in ϕ_μ and $m'(\lambda)$ across firm types. Recall that $a^c(\zeta, \lambda)$, as defined by equation (19), measures the relative change in ϕ_μ and $m'(\lambda)$, while fixing ζ. Thus if the right-hand side of (23) is larger than $a^c(\zeta(y), \lambda(y))$, then it must be the case that $\zeta'(y) \geq 0$. Similarly, if the right-hand side of (23) is larger than $a^m(\zeta(y), \lambda(y))$, as defined by equation (20), then it must be the case that $\frac{d}{dy} h(\zeta(y), \lambda(y)) \geq 0$. We can summarize this in the following Lemma.

Lemma 6. Assume that in equilibrium $0 < \zeta(y) < 1$ for some firm type y. Then
\(\zeta'(y) \geq 0 \) (resp. \(\frac{d}{dy} h(\zeta(y), \lambda(y)) \geq 0 \)) if and only if

\[
\frac{f_1 \Delta f_y}{f_y \Delta f} \geq a^i 1 - \frac{1 - \frac{1}{m'}}{m'' \phi_{\mu \lambda} - \phi_{\mu \mu} \phi_{\mu \lambda}} \frac{\Delta f_y}{f_y} ,
\tag{24}
\]

where \(i = c \) (resp. \(i = m \)), and we suppress the arguments of \(\phi(\zeta(y), \lambda(y)) \), \(m(\lambda(y)) \) and \(a^i(\zeta(y), \lambda(y)) \).

Proof. See Appendix A.4.

As mentioned above, condition (24) becomes particularly simple when \(x_2 \to x_1 \). In that case, the second term on the right-hand side of reduces to 1 and the condition reduces to \(\rho(x, y) \geq a^i(\zeta(y), \lambda(y)) \). Hence, we obtain a simple necessary condition for PAC and PAM to hold for any distribution of agents’ types. The following proposition formalizes this idea; it relies on the exact same mild assumptions on the meeting technology as Lemma 5, i.e. i) \(\phi(\mu, \lambda) \) is strictly concave in \(\mu \), and ii) \(m(\lambda) \) is strictly concave.

Proposition 2. A necessary condition for PAC (resp. PAM) to hold for any distribution of agents’ types is that for \(i = c \) (resp. \(i = m \)), we have

\[
\rho \equiv \inf_{x,y} \rho(x, y) \geq \sup_{\zeta, \lambda} a^i(\zeta, \lambda) \equiv \bar{a}^i .
\tag{25}
\]

Similarly, a necessary condition for NAC (resp. NAM) to hold for any distribution of agents’ types is that for \(i = c \) (resp. \(i = m \)), we have

\[
\bar{\rho} \equiv \sup_{x,y} \rho(x, y) \leq \inf_{\zeta, \lambda} a^i(\zeta, \lambda) \equiv \underline{a}^i .
\tag{26}
\]

Proof. See Appendix A.5.

As we argued informally above, the degree of complementarity required for positive sorting is larger when worker heterogeneity is smaller. Thus the above necessary condition for sorting is also sufficient for any distribution of agents’ types, including the case where \(x_1 \) and \(x_2 \) are far apart. In the following section, we formally establish this result in Proposition 3 for our benchmark meeting technology. In Section 5, we show that this conclusion extends to other examples of meeting technologies.
4.4 How Screening Affects Sorting

Our sorting analysis so far has been quite general and has not made use of the specific functional form of $\phi(\mu, \lambda)$ given by (6), except that it needs to satisfy regularity conditions A0 and A1. The following lemma establishes that this functional form yields very simple expressions for the right-hand side of equations (25) and (26).

Lemma 7. If ϕ is given by (6), then i) $a^c(\zeta, \lambda)$ and $a^m(\zeta, \lambda)$ are strictly increasing in ζ; ii) $a^m(\zeta, \lambda) < a^c(\zeta, \lambda)$ when $\zeta \in (0, 1)$ and $\sigma > 0$; and iii)

$$a^c = a^m = 1 + \frac{\sigma}{2} \quad \text{and} \quad a^c = a^m = 1 - \frac{\sigma}{2}. \quad (27)$$

Proof. See Appendix A.6.}

As argued above and established in this Lemma, the infimum (resp. supremum) of a^c and a^m can be reached or approached with $\zeta = 0$ (resp. $\zeta = 1$) for our benchmark meeting technology (and various others). It is worth highlighting that $a^m(\zeta, \lambda)$ reduces to $a^c(\zeta, \lambda)$ in those cases, i.e. $a^m(\zeta, \lambda) = a^c(\zeta, \lambda)$ when $\zeta = 0$ or $\zeta = 1$.\(^{29}\) Hence, $a^c = a^m$ and $a^c = a^m$, which means that the conditions for PAC/NAC will coincide with those for PAM/NAM.

Together with Proposition 2, this lemma implies that $\rho \geq (1 + \sigma)/2$ is necessary for PAC/PAM to hold for any distribution of agents’ types. Similarly, $\overline{\rho} \leq (1 - \sigma)/2$ is necessary for NAC/NAM. The following proposition establishes that these two conditions are also sufficient. For ease of exposition, the proof in Appendix A.7 assumes that the equilibrium choice of queues for each firm type is unique. In Appendix B.3, we extend the proof to the case where in equilibrium $\zeta(y)$ is not unique for some firm types and show that the result continues to hold.

Proposition 3. Assume that ϕ is given by (6) with $\sigma > 0$. The equilibrium then exhibits PAC/PAM (resp. NAC/NAM) for any distribution of agents’ types if and only if $\rho \geq (1 + \sigma)/2$ (resp. $\overline{\rho} \leq (1 - \sigma)/2$).

Proof. See Appendix A.7. \(\Box\)

Given Definition 1, we can alternatively state Proposition 3 as follows.

\(^{29}\)To see this, note that $\phi(0, \lambda) = 0$ and $\phi(\lambda, \lambda) = m(\lambda)$ for any λ. Both imply $\partial h/\partial \lambda = 0$.

26
Figure 2: Combinations of ρ and σ that give rise to PAC/PAM (blue) or NAC/NAM (red) for any distribution of agents’ types, assuming a CES production function.

Corollary 1. Assume that ϕ is given by (6) with $\sigma > 0$. The equilibrium then exhibits PAC/PAM (resp. NAC/NAM) for any distribution of agents’ types if and only if $f(x, y)$ is $2/(1 - \sigma)$-root-supermodular (resp. $2/(1 + \sigma)$-root-submodular).

Two special cases are worth highlighting. When $\sigma \to 0$ and meetings are bilateral, PAC/PAM requires square-root supermodularity, in line with the results in Eeckhout and Kircher (2010a). At the other extreme, log-supermodularity is required for PAC/PAM when $\sigma = 1$ and firms can interview all their applicants. In contrast, a stronger degree of substitutability is required for NAC/NAM as the expected number of interviews goes up: the production function should be square-root-submodular if $\sigma = 0$ and submodular when $\sigma = 1$. Figure 2 illustrates these results.

Intuition. To understand how screening affects sorting, consider again the contribution to surplus by a high-type applicant. There are two distinct cases in which a high-type applicant fails to create surplus: 1) he is not interviewed, or 2) he is interviewed, but at least one other high-type applicant is interviewed as well. Each of these two cases becomes more likely as the queue length increases, i.e. ϕ_μ is decreasing in λ, which is a force against sorting.

However, the exact impact of an increase in the queue length depends on whether primarily low types or high types are being added (as measured by ζ) as well as whether types can easily be distinguished (as measured by σ). After all, when the
queue mainly consists of low types (ζ is low), multiple interviews with high types are unlikely and the effect of a longer queue predominantly operates by making it less likely for a high-type applicant to be interviewed. Clearly, this force is *mitigated* by an increase in firms’ screening ability σ: When σ is high, a high-type applicant is likely to be interviewed regardless of whether there are many or few other applicants.

In contrast, when the queue mainly consists of high types (ζ is high), multiple interviews with high-type applicants are a key concern. A longer queue makes this outcome more likely and this force is *amplified* by an increase in firms’ screening ability σ, since it increases every applicant’s interviewing probability.

Figure 3 illustrates this idea by presenting the level curves of φµ for a larger value of σ than Figure 1. A comparison of the two figures reveals that σ increases the curvature of the level curves. As a result, the level curves become closer together for large ζ but further apart for small ζ. So, for a given increase in the queue length, φµ now decreases more rapidly when ζ is high but more slowly when ζ is low. In other words, increasing firms’ ability to screen makes sorting easier when there are few high-type workers, but harder when there are many of such workers. Since Proposition 3 derives a sorting condition for any distribution of agents’ types, the latter case is the relevant one.\(^\text{30}\)

5 Extensions

In this section, we explore various extensions of our environment.

5.1 Alternative Meeting Technologies

We have derived our main result, Proposition 3, for a specific micro-foundation of the meeting technology, such that φ(μ, λ) was given by (6). The search literature offers various alternatives.\(^\text{31}\) Since most of our analysis is presented in a general way, such alternatives can be analyzed by updating φ(μ, λ). In particular, the necessary conditions in Proposition 2 continue to apply under very mild restrictions on φ(μ, λ), as discussed there. Proving that these conditions are also sufficient is more involved because one needs to verify that φ(μ, λ) satisfies the regularity conditions specified

\[\rho \geq \pi^c \]

This intuition suggests that the necessary condition ρ ≥ π^c continues to hold with an arbitrary number of worker types. The difficulty in analyzing this case rather lies in proving sufficiency, as dealing with the multiplicity points where the optimal ζ is not unique is manageable with two types but quickly becomes intractable when the number of types increases.\(^\text{31}\)

See Lester et al. (2015) and Cai et al. (2017) for examples.
in the proofs of Proposition 3. We briefly discuss the two most common classes of meeting technologies in the literature, bilateral and invariant technologies, for which establishing sufficiency is straightforward due to the simple functional form of $\phi(\mu, \lambda).^{32}$

Bilateral Technologies. Bilateral technologies can be interpreted as firms being able to interview only a single applicant ($\sigma = 0$ in our benchmark technology).\(^{33}\) In that case, $\phi(\mu, \lambda) = m(\lambda)\mu/\lambda$, where, as before, $m(\lambda)$ is the probability that a firm receives at least one applicant. The following lemma establishes that $a^c(\zeta, \lambda)$ and $a^m(\zeta, \lambda)$ then become independent of ζ and both reduce to the elasticity of substitution of the total number of matches in a submarket, which is precisely the object that Eeckhout and Kircher (2010a) show to be important in their study of sorting patterns for bilateral technologies.

\(^{32}\)For the meeting technology of Wolthoff (2018), in which workers send their applications according to an urn-ball process while screening remains geometric, we can show sufficiency numerically.

\(^{33}\)Examples include Moen (1997) and Acemoglu and Shimer (1999).
Lemma 8. When the meeting technology is bilateral, we have

\[a^c(\zeta, \lambda) = a^m(\zeta, \lambda) = \frac{m'(\lambda)(\lambda m'(\lambda) - m(\lambda))}{\lambda m(\lambda)m''(\lambda)}. \]

(28)

Proof. See Appendix B.4.

With bilateral technologies, firms always find it optimal to attract either only low-type or only high-type workers. In this case, PAC/PAM simply requires that for some \(y^{EK} \), we have \(\zeta(y) = 0 \) for all \(y < y^{EK} \), \(\zeta(y) = 1 \) for all \(y > y^{EK} \), and \(\zeta(y^{EK}) \) is not unique and can be either 0 or 1. For NAC/NAM the reverse must hold. Appendix B.5 demonstrates for our case with two worker types that we recover the sorting results of Eeckhout and Kircher (2010a), who assume a continuum of worker types.

Invariant Technologies. Invariant technologies, such as urn-ball or geometric, exhibit perfect screening in the sense that the presence of low types does not make it harder (or easier) for a firm to identify a high-type applicant. That is, \(\phi_\lambda(\mu, \lambda) = 0 \) for all \(\mu \) and \(\lambda \), or equivalently, \(\phi(\mu, \lambda) = \phi(\mu, \mu) \equiv m(\mu) \), where \(m(\mu) \) is always assumed to be strictly concave (see Cai et al., 2017). Furthermore, one can show that \(\lim_{\mu \to 0} \mu m''(\mu) = 0 \).\(^{34}\) The surplus function \(S(\mu, \lambda, y) \) defined in (7) simplifies to \(m(\lambda)f(x_1, y) + m(\mu)\left[f(x_2, y) - f(x_1, y) \right] \). The firms’ problem becomes strictly concave in \((\mu, \lambda)\), which implies that for each \(y \), there exists exactly one optimal queue \((\mu(y), \lambda(y))\).

To analyze this case, we first introduce two elasticities:

\[\varepsilon_0(\mu) = \frac{\mu m'(\mu)}{m(\mu)} \quad \text{and} \quad \varepsilon_1(\mu) = \frac{\mu m''(\mu)}{m'(\mu)}. \]

(29)

The following lemma then presents \(a^c(\zeta, \lambda) \) and \(a^m(\zeta, \lambda) \) for invariant technologies in terms of \(\varepsilon_0(\cdot) \) and \(\varepsilon_1(\cdot) \).

\(^{34}\)For common invariant technologies such as urn-ball and geometric, this is trivially satisfied because \(m''(0) \) is finite. A general proof—based on the observation that \(m(\mu) \) is a Bernstein function for invariant technologies, so it admits the Lévy–Khintchine representation (see Theorem 3.2 in Schilling et al., 2012)—is available upon request.
Lemma 9. When the meeting technology is invariant, we have
\[a^c(\zeta, \lambda) = \frac{\varepsilon_1(\lambda \zeta)}{\varepsilon_1(\lambda)} \quad \text{and} \quad a^m(\zeta, \lambda) = \frac{\varepsilon_1(\lambda \zeta) \varepsilon_0(\lambda)}{\varepsilon_1(\lambda) \varepsilon_0(\lambda \zeta)}, \]
with extrema \(a^c = a^m = 0 \) and \(\bar{a}^c, \bar{a}^m \geq 1 \).

Proof. See Appendix B.6.

Recall that the contact quality-quantity elasticity \(a^c(\zeta, \lambda) \) measures the relative percentage changes of \(\phi_\mu(\lambda \zeta, \lambda) \) and \(m'(\lambda) \) while holding \(\zeta \) constant. For invariant technologies, \(\phi_\mu(\lambda \zeta, \lambda) = m'(\lambda \zeta) \); thus, \(a^c(\zeta, \lambda) \) is simply \(\varepsilon_1(\lambda \zeta)/\varepsilon_1(\lambda) \).

Next, note that \(a^m(\zeta, \lambda) \) measures the same relative percentage changes while holding \(m(\lambda \zeta)/m(\lambda) \) constant. The latter requires the percentage changes of \(m(\lambda \zeta) \) and \(m(\lambda) \) to be equal, that is, the percentage change of \(\lambda \zeta \) equals \(\varepsilon_0(\lambda)/\varepsilon_0(\lambda \zeta) \) times the percentage change of \(\lambda \); thus, \(a^m(\zeta, \lambda) = a^m(\zeta, \lambda)\varepsilon_0(\lambda)/\varepsilon_0(\lambda \zeta) \).

Proposition 4. Suppose the meeting technology is invariant. The equilibrium then exhibits PAC (resp. PAM) for any distribution of agents’ types if and only if \(\rho \geq \bar{a}^c \) (resp. \(\rho \geq \bar{a}^m \)). In contrast, the equilibrium exhibits NAC/NAM for any distribution of agents’ types if and only if \(f(x, y) \) is submodular.

Proof. See Appendix B.7.

With two mild assumptions, which are satisfied by both the urn-ball and the geometric technology, the sorting results become particularly simple.\(^{35}\)

Assumption INV-1. \(\varepsilon_1(\mu) \) is decreasing in \(\mu \).

Assumption INV-2. \(\varepsilon_1(\mu)/\varepsilon_0(\mu) \) is decreasing in \(\mu \).

Assumption INV-1 (resp. INV-2) implies that \(a^c(\zeta, \lambda) \) (resp. \(a^m(\zeta, \lambda) \)) is increasing in \(\zeta \) so that \(\bar{a}^c = 1 \) (resp. \(\bar{a}^m = 1 \)). This yields the following result.

Corollary 2. When the meeting technology is invariant and satisfies Assumption INV-1 (resp. INV-2), the equilibrium exhibits PAC (resp. PAM) for any distribution of agents’ types if and only if \(f(x, y) \) is log-supermodular.

\(^{35}\)However, one can construct invariant technologies that do not satisfy these assumptions, e.g. a mixture between urn-ball and geometric: \(m(\mu) = t(1 - e^{-\mu}) + (1 - t)\mu/(1 + \mu) \) with \(t \in [0, 1] \). Numerically, one can see that \(\bar{a}^c > 1 \) and \(\bar{a}^m = 1 \) when \(t = 0.2 \), while \(\bar{a}^c, \bar{a}^m > 1 \) when \(t = 0.98 \).
Because invariance implies that the optimal queue composition is always unique, these sorting results can be generalized to an arbitrary number of worker types in a straightforward manner. We demonstrate this in Appendix B.8.

5.2 Signals

In our benchmark model, firms have no information about applicants’ types when selecting interviewees. In practice, there often exist relatively easy ways to obtain a signal, e.g. from a quick look at applicants’ resumes. As we show in this section, our baseline environment can be extended quite easily to capture this idea.

Environment with Signals. Consider an environment like our benchmark model, except that firms can costlessly observe a signal for every applicant. For high-type applicants, the signal is positive with certainty. In contrast, a low-type applicant generates a negative signal with probability $\tau \in [0, 1]$ and a positive signal with complementary probability. Hence, the signal is perfect if $\tau = 1$, but pure noise if $\tau = 0$. Using this information, firms will first interview applicants with positive signals and only interview applicants with negative signals if interview capacity remains. As before, an interview reveals the applicant’s true type.

Isomorphism. The following proposition establishes that this modified environment is isomorphic to our baseline model, as long as we transform the parameter σ to account for the fact that firms also obtain information from signals.

Proposition 5. In our environment with signals, consider a firm with queues (μ, λ). Let $\hat{\sigma} = 1 - (1 - \tau)(1 - \sigma) \in [0, 1]$, then the probability that the firm interviews at least one high-type worker equals

$$\phi(\mu, \lambda) = \frac{\mu}{1 + \hat{\sigma} \mu + (1 - \hat{\sigma}) \lambda}.$$

Proof. See Appendix B.9.

As a direct consequence of this proposition, all our earlier results carry over to the environment with signals, except that they apply to $\hat{\sigma}$ instead of σ to account for the fact that the signal precision τ is a substitute for the screening intensity σ.

32
5.3 Endogenous Screening

The screening intensity σ was exogenous in our baseline model. However, firms can generally influence the number of applicants that they interview. In this section, we therefore endogenize σ and discuss how it affects our results. We keep the discussion concise and refer to the proof of Proposition 6 for details.

Environment with Endogenous Screening. Consider an environment which is like our benchmark model, except that firms additionally choose (and post) their recruiting intensity $\sigma \in [0, 1]$ at a linear cost $c\sigma$, where $c \geq 0$. That is, they solve

$$
\max_{\sigma, \mu, \lambda} \frac{\lambda}{1 + \lambda} f^1 + \frac{\mu}{1 + \sigma \mu + (1 - \sigma) \lambda} \Delta f - \lambda U_1 - \mu \Delta U - c\sigma. \tag{31}
$$

Since the second term above is convex in σ and $c\sigma$ is linear, the above profit function is convex in σ. The maximum is therefore reached at a corner, i.e. when $\sigma = 0$ or 1. To determine firms’ choice, we compare the profits from the two options.

Profits with No Screening. Consider a firm of type y choosing $\sigma = 0$. This firm’s optimal queue then consists of either low-type workers or high-type workers, but not both. Suppose the firm attracts workers of type x_i. Equation (31) then reduces to $\max_{\lambda_i} m(\lambda_i) f(x_i, y) - \lambda_i U_i$. Because $m(\lambda)$ is strictly concave, the FOC of this problem is both necessary and sufficient. Assuming that $f(x_i, y) > U_i$, the optimal queue length is $\lambda_i = \sqrt{f(x_i, y)/U_i} - 1$, which yields an expected payoff of

$$
\pi_i(y) = \left(\sqrt{f(x_i, y)} - \sqrt{U_i}\right)^2. \tag{32}
$$

Naturally, the firm chooses the type of workers it wishes to attract based on whether $\pi_1(y)$ or $\pi_2(y)$ is higher, which requires comparing $\sqrt{f(x_2, y)} - \sqrt{f(x_1, y)}$ with $\sqrt{U_2} - \sqrt{U_1}$. If the former is strictly increasing in y, i.e. f is strictly square-root supermodular, then there exists a unique y^{EK} such that $\pi_2(y) > \pi_1(y)$ if $y > y^{EK}$ and vice versa. This result is a special case of Section 5.1 or Eeckhout and Kircher (2010a).

36Posting contracts that include σ in addition to wages is necessary for constrained efficiency in this environment. More restrictive contract spaces and more general cost functions are left for future research. Wolthoff (2018) endogenizes σ in a similar way as us, but with a cost function that is sufficiently convex (in an otherwise quite different model). In the random search model of Birinci et al. (2020), firms have the option to learn all their applicants’ types after paying a fixed cost.
Profits with Perfect Screening. When the firm chooses \(\sigma = 1 \), (31) reduces to

\[
\pi(y) \equiv \max_{0 \leq \mu \leq \lambda} \frac{\lambda}{1 + \lambda} f^1 + \frac{\mu}{1 + \mu} \Delta f - \lambda U_1 - \mu \Delta U.
\] (33)

This problem is strictly concave in \((\mu, \lambda)\), so that the FOCs are both necessary and sufficient. The only complexity lies in the constraint \(0 \leq \mu \leq \lambda\), which implies that there are four possibilities with respect to the optimal applicant pool: a firm choosing \(\sigma = 1\) may attract (i) no applicants, such that \(\pi(y) = 0\); (ii) only low-type applicants, such that \(\pi(y) = \pi_1(y)\); (iii) only high-type applicants, such that \(\pi(y) = \pi_2(y)\); or (iv) both types of applicants, in which case the FOCs imply \(\mu = \sqrt{\Delta f / \Delta U} - 1\) and \(\lambda = \sqrt{f_1 / U_1} - 1\), such that

\[
\pi(y) = \left(\sqrt{f^1} - \sqrt{U_1}\right)^2 + \left(\sqrt{\Delta f} - \sqrt{\Delta U}\right)^2.
\] (34)

Choice of Screening Intensity. The characterization of \(\pi_1(y), \pi_2(y), \) and \(\pi(y)\) completes the analysis of the firm’s problem (31): the firm chooses \(\sigma = 1\) if \(\pi(y) - c \geq \max\{\pi_1(y), \pi_2(y)\}\) and \(\sigma = 0\) otherwise.

An Auxiliary Function. To simplify exposition, we introduce a transformation \(\Omega(\cdot)\) of \(\kappa(y)\), the output dispersion parameter defined by equation (13), and establish that this transformation is strictly decreasing:

\[
\Omega(\kappa) \equiv \frac{1}{2} + \frac{\ln(\sqrt{\kappa} + \sqrt{1 + \kappa})}{\ln(1 + \kappa)}.
\] (35)

Lemma 10. \(\Omega(\kappa)\) is strictly decreasing with \(\lim_{\kappa \to 0} \Omega(\kappa) = \infty\) and \(\lim_{\kappa \to \infty} \Omega(\kappa) = 1\).

Proof. See Appendix B.10.

Sorting. In our main analysis, we showed that—relative to a bilateral world—allowing firms to interview multiple applicants makes it harder to obtain sorting for any distribution of agents’ types; in particular, we found that log-supermodularity is necessary and sufficient to obtain PAC/PAM for any distribution of agents’ types and any screening intensity \(\sigma\), while submodularity is the corresponding condition for NAC/NAM.

We now analyze whether these conditions carry over to an environment with endogenous screening in the sense that they are also necessary and sufficient to obtain
sorting for any distribution of agents’ types and any screening cost \(c \). Necessity is immediate: when \(c = 0 \), all firms choose \(\sigma = 1 \) and the results of Proposition 4 and Corollary 2 apply. For NAC/NAM, sufficiency is also relatively straightforward: we find that strict submodularity is sufficient for NAC/NAM for any distribution of agents’ types and any screening cost \(c \). PAC/PAM is more complicated. The following proposition summarizes the results.

Proposition 6. In our environment with endogenous screening, the following holds:

(i) The equilibrium exhibits NAC/NAM for any distribution of agents’ types and any cost \(c \) if (resp. only if) \(f(x,y) \) is strictly (resp. weakly) submodular.

(ii) Given any log-supermodular function \(f \), we can find a distribution of agents’ types and a screening cost \(c \) such that PAC/PAM fails in equilibrium. However, given a distribution of agents’ types and \(c \), PAC/PAM holds in equilibrium as long as

\[
\rho \geq \Omega(\kappa(y)). \tag{36}
\]

Proof. See Appendix B.11.

The sufficient condition (36) depends only on \(\rho \), the lower bound of the production complementarities, and \(\kappa(y) \), the lower bound of the output dispersion.\(^{37}\) Hence, PAC/PAM requires that either production complementarity or output dispersion is sufficiently large. Note that condition (36) is quite sharp: in the proof of Proposition 6, we show that with CES production we can construct counterexamples where PAC/PAM fails in equilibrium whenever \(\rho < \Omega(\kappa(y)) \).

At first, our result regarding PAC/PAM may seem puzzling. One may have expected that, with strong complementarities, firms’ incentives to invest in (ex post) screening are increasing in their productivity and that since the least-productive firms can only afford to attract low-type workers, PAC/PAM arises. This intuition turns out to be wrong. When \(x_1 \) and \(x_2 \) are sufficiently close, the most-productive firms find it optimal to attract high-type applicants only. They are not willing to provide low-type workers with their market utility, because compensating them for the low matching probability that results from the presence of many high-type workers requires a very high wage. Therefore, firms in the middle of the productivity distribution have the strongest incentives to screen ex post. Although those firms also

\(^{37}\)Since \(f \) is log-supermodular, \(\kappa(y) \) is smallest at \(y = y \). Also, by Lemma 10, (36) requires \(\rho > 1 \).
prefer to hire high-type workers, they can only afford to offer modest wages to them and therefore they attract relatively few of them. As a consequence, they can attract low-type workers for a relatively low wage (since they offer them a high hiring probability). However, some firm types below those screening firms are not productive enough to be willing to pay the screening cost as an insurance device (since the opportunity costs of remaining unmatched is lower for those firms), but conditional on not screening ex-post, they are productive enough to target high-type applicants. When this happens, PAC/PAM fails in the middle. In the limit where $x_1 \to x_2$, we can always find a distribution of agents’ types and a screening cost c such that PAC/PAM fails in equilibrium, even for log-supermodular production functions.

This scenario does not arise when either the degree of complementarity ρ or output dispersion $\kappa(y)$ is large, i.e. (36) holds. In that case, the incentive to attract low-type workers as insurance against failing to hire is decreasing in firms’ type. Then, the most-productive firms attract only high-type workers, firms in the middle attract both types and screen ex post, and the least-productive firms attract only low-type workers. More precisely, the gains from ex-post screening are first increasing in y, reach their maximum at y^{EK} (defined by $\pi_1(y^{EK}) = \pi_2(y^{EK})$) and from then onwards are decreasing in y.

6 Conclusion

A firm with a vacancy typically has multiple instruments to screen applicants. By announcing the terms of trade ex ante, it can discourage certain types of workers from applying, while ex post—after receiving applications—it can interview applicants in an attempt to identify the most profitable hire. In this paper, we show how these instruments jointly determine equilibrium outcomes, including sorting patterns. Perhaps surprisingly, we find that if ex post screening is easier (firms can screen more applicants), this makes sorting harder. That is, stronger complementarities in the production technology are necessary to get positive assortative matching. The more workers a firm can screen, the stronger the incentives for high-type workers are to avoid ending up in the same pool of applicants and this is a force against sorting which is by itself efficient (a social planner also wants to reduce the probability that valuable resources are wasted because they end up in the same pool).

There are several promising avenues for future research. On the theoretical side, in markets with a long hiring cycle, like the academic job market, workers may have
relatively strong incentives to send multiple applications simultaneously. This would reduce the cost for high-type workers to end up in the same queue as other high-type workers. However, even in those markets, high-type workers have incentives to diversify and not only apply to the top places.

On the empirical side, an important implication of our model is that sorting patterns are driven both by the production function and the meeting process. In order to identify complementarities in production, we may need—besides data on matches—additional information on the entire pool of applicants. This way, we can first identify the parameters of the meeting technology (i.e. how many workers apply, which workers apply and how many are screened) and then, conditional on the meeting technology, matching patterns are informative on production complementarities.

References

Appendix A Proofs

A.1 Proof of Lemma 3

This proof is based on Shimer (2005), but extends his result to arbitrary \(\phi(\mu, \lambda) \). Because \(\phi(\mu, \lambda) \) is concave in \(\mu \), we have

\[
\psi_1(\mu^*, \lambda^*) \leq \phi_\mu(\mu^*, \lambda^*) \leq \psi_2(\mu^*, \lambda^*),
\]

where \(\psi_1 \) and \(\psi_2 \) are defined by equation (9). Consequently, the wages must satisfy

\[
w_1^* = \frac{U_1}{\psi_1(\mu^*, \lambda^*)} \geq \frac{U_1}{\phi_\mu(\mu^*, \lambda^*)} \quad \text{and} \quad w_2^* = \frac{U_2}{\psi_2(\mu^*, \lambda^*)} \leq \frac{U_2}{\phi_\mu(\mu^*, \lambda^*)}.
\]

Moreover, the FOC of (10) with respect to \(\mu \) implies \(\phi_\mu(\mu^*, \lambda^*)(f(x_2, y) - f(x_1, y)) = \phi(\mu^*, \lambda^*) \). Combining this FOC with (38) implies

\[
w_2^* - w_1^* \leq \frac{U_2 - U_1}{\phi_\mu(\mu^*, \lambda^*)} = f(x_2, y) - f(x_1, y)
\]

The strict inequality in \(f(x_2, y) - w_2^* > f(x_1, y) - w_1^* \) then follows because the two inequalities in (37) cannot hold simultaneously; that would imply that \(\phi(\mu, \lambda^*) \) is linear for \(\mu \in [0, \lambda^*] \), in which case the firm's problem never has an interior solution (see Section 5.1 for an extensive discussion of this case).

\[\square\]

A.2 Proof of Lemma 4

Given \(\phi_{\mu \mu} < 0 \), the Hessian is negative definite if and only if its determinant is positive, i.e. \(\Delta f \left[m'' \phi_{\mu \mu} f_1 + (\phi_{\mu \mu} \phi_{\lambda \lambda} - \phi_{\mu \lambda}^2) \Delta f \right] > 0 \). Using \(\Delta f > 0 \) and the definition of \(\kappa(y) \), this gives condition (14).

\[\square\]
A.3 Proof of Lemma 5

As \(x_2 \to x_1 \), \(U_2 \) and \(U_1 \) approach a common value \(U \) and total surplus (7) converges to \(m(\lambda)f(x_1, y) \), which implies that firms’ expected profit tends to \(m(\lambda)f(x_1, y) - \lambda U \). Since \(0 \leq m(\lambda)f(x_1, y) - \lambda U < f(x_1, y) - \lambda U \), this means that—when \(x_2 \) is sufficiently close to \(x_1 \)—firms’ choice of queue length \(\lambda \) is bounded from above; in particular \(\lambda < \bar{\lambda}(y) \equiv \frac{U}{f(x_1, y)} \), such that we can restrict each firm’s choice of queues to be in the convex set \(\Delta(y) \equiv \{ (\mu, \lambda) \mid 0 \leq \mu \leq \lambda \leq \bar{\lambda}(y) \} \).

On this set, the right-hand side of the firm’s SOC (14) is bounded due to continuity. Hence, (14) will hold for all \((\mu, \lambda) \) in \(\Delta(y) \) when \(0 < \mu(y) < \lambda(y) \), or equivalently \(x_2 - x_1 \) is sufficiently small. That is, for each firm type \(y \), the surplus function is concave on the set \(\Delta(y) \). Therefore, each firm’s solution \((\mu(y), \lambda(y)) \) is unique, and by the Theorem of the Maximum, it is also continuous. Furthermore, when \(\mu(y) \) and \(\lambda(y) \) satisfy \(0 < \mu(y) < \lambda(y) \), they are jointly determined by the FOCs (11) and (12). Hence, by the implicit function theorem, they are both continuously differentiable around that point. The same then applies to \(\zeta(y) = \mu(y)/\lambda(y) \).

A.4 Proof of Lemma 6

Differentiating (11) along the equilibrium path yields

\[
\zeta'(y)(U_2 - U_1) = m' f_y^1 + m'' \lambda' f^1 + (\zeta(y) \phi_\mu + \phi_\lambda) \Delta f_y \\
+ \left[\zeta'(y) \phi_\mu + \zeta \frac{\partial \phi_\mu}{\partial \zeta} \zeta'(y) + \zeta \frac{\partial \phi_\mu}{\partial \lambda} \lambda'(y) + \frac{\partial \phi_\lambda}{\partial \zeta} \zeta'(y) + \frac{\partial \phi_\lambda}{\partial \lambda} \lambda'(y) \right] \Delta f,
\]

where we have suppressed the arguments \(\mu(y) \) and \(\lambda(y) \) from the functions \(m \) and \(\phi \). By (12), we can substitute \(\phi_\mu \Delta f \) for \(U_2 - U_1 \) on the left-hand side. The resulting equation and equation (21) are two linear equations in \(\zeta'(y) \) and \(\lambda'(y) \). A simple but tedious calculation then yields (22).

Rearranging equation (23) gives

\[
-\frac{1}{\phi_\mu} \frac{\partial \phi_\mu}{\partial \zeta} \zeta'(y) = \frac{f_y^1}{f^1} \left[f_y^1 \frac{\Delta f_y}{f^1} - \frac{1}{\phi_\mu} \frac{\partial \phi_\mu}{\partial \lambda} \left(\phi_\mu \phi_{\mu \mu} - \phi_\lambda \right) \frac{\Delta f_y}{f_y^1} \right] \frac{\Delta f_{y}}{f_y^1}
\]

where we used equation (22) to substitute out \(\lambda'(y) \). Since \(\phi(\mu, \lambda) \) is strictly concave, \(\frac{\partial \phi_\mu}{\partial \zeta} = \lambda \phi_{\mu \mu} < 0 \), which implies that \(\zeta'(y) \geq 0 \) if and only if the term in the parenthesis
on the right-hand side is positive, i.e. (24) holds with \(i = c \).

By definition, PAM is equivalent to \(\frac{\partial h}{\partial \lambda} \zeta'(y) + \frac{\partial h}{\partial x} \lambda'(y) \geq 0 \). Combining (22) and (39) then shows that PAM is obtained if and only if (24) holds with \(i = m \).

A.5 Proof of Proposition 2

First consider PAC. We show that if the necessary condition fails, we can construct a counterexample in which worker heterogeneity is small and PAC fails. The other cases (PAM, NAC and NAM) follow the same logic.

Suppose that (25) does not hold for \(i = c \), so that there exist \(x', y', \mu' \), and \(\lambda' \) such that \(\rho(x', y') < a^c(\mu', \lambda') \). By continuity, we can then assume that \(0 < \mu' < \lambda' \) (note the strict inequality), and that there exists a small \(\epsilon_0 \in (0, (\lambda' - \mu')/2) \) such that the above inequality holds for all \(x \in [x' - \epsilon_0, x' + \epsilon_0], y \in [y' - \epsilon_0, y' + \epsilon_0] \), \(\mu \in [\mu' - \epsilon_0, \mu' + \epsilon_0] \), and \(\lambda \in [\lambda' - \epsilon_0, \lambda' + \epsilon_0] \). Fix \(\epsilon_0 \) from now on.

Set \(x_1 = x' \), and \(\ell_2 = \mu' \) and \(\ell_1 = \lambda' - \mu' \), where \(\ell \) is the total measure of \(x_i \) workers, \(i = 1, 2 \). Next, pick \(x_2, y, \bar{y} \) such that \(x_2 - x' = y' - y = \bar{y} - y' \) (i.e. \(y' \) is the midpoint of \(y \) and \(\bar{y} \)). We denote this difference by \(\epsilon_1 \) and let \(\epsilon_1 \to 0 \). Note that when \(\epsilon_1 = 0 \), both firm and worker heterogeneity disappear. For sufficiently small \(\epsilon_1 \), the equilibrium \(\lambda(y) \) is unique and continuous by Lemma 5. Since the aggregate ratio of workers and firms is \(\lambda' \), for sufficiently small \(\epsilon_1 \), we have \(\lambda(y) \in [\lambda' - \epsilon_0, \lambda' + \epsilon_0] \) for all \(y \). Furthermore, \(\mu(y) \) is continuous and the average \(\mu(y) \) is \(\mu' \), i.e. \(\int_y \mu(y) dJ(y) = \mu' \). Therefore, by continuity there exists some \(y_0 \) such that \(\mu(y_0) = \mu' \). To sum up, at point \(y_0 \) we have \(\mu' = \mu(y_0) < \lambda(y_0) \in (\lambda' - \epsilon_0, \lambda' + \epsilon_0) \). Since \(\zeta(y_0) \) is both unique and interior, \(\zeta(y) \) is differentiable at point \(y_0 \) (see Lemma 5). Hence, the assumptions of Lemma 6 are satisfied at point \(y_0 \).

When \(\epsilon_1 \to 0 \), the left-hand side of (24) approaches \(\rho(x', y') \). On the right-hand side, \(a^c(\mu(y_0), \lambda(y_0)) \to a^c(\mu', \lambda') \) (note that the choice of \(y_0 \) depends on the value of \(\epsilon_1 \)). Furthermore, at point \(y_0 \), we have

\[
1 - \frac{1}{m'} \left(\phi_{\mu} \phi_{\mu\lambda} - \phi_{\lambda} \right) \frac{\Delta f_y}{f_y^1} \approx 1 - \frac{1}{m'} \left(\phi_{\mu} \phi_{\mu\lambda} - \phi_{\lambda} \right) \frac{f_{xy}(x', y')}{{f_y}^2(x', y')} \epsilon_1 \to 1,
\]

where we suppress the arguments of \(m(\lambda') \) and \(\phi(\mu', \lambda') \). Similarly, the denominator on the right-hand side of (24) also goes to 1. Therefore, for (24) to hold at point \(y_0 \), we need \(\rho(x', y') \geq a^c(\mu', \lambda') \), which yields a contradiction. \(\square \)
A.6 Proof of Lemma 7

We first consider \(a^c(\zeta, \lambda) \). Since \(\phi(\mu, \lambda) \) is given by equation (6) and \(a^c(\zeta, \lambda) \) is defined by equation (19), direct calculation yields

\[
a^c(\zeta, \lambda) = \frac{1 + \lambda}{2\lambda} \left(1 + \frac{1}{1 + (1 - \sigma)\lambda} - \frac{2}{1 + \sigma \zeta \lambda + (1 - \sigma)\lambda} \right).
\] (40)

Note that \(a^c(\zeta, \lambda) \) is strictly increasing in \(\zeta \). Thus, we have \(\max_\zeta a^c(\zeta, \lambda) = a^c(1, \lambda) \) and \(\min_\zeta a^c(\zeta, \lambda) = a^c(0, \lambda) \). Moreover, (40) reveals that \(a^c(1, \lambda) = a^c(0, \lambda) + a^c(1, \lambda) = 1 \) and \(a^c(0, \lambda) \) approaches its supremum when \(\lambda \to 0 \) and \(a^c(1, \lambda) \) approaches its infimum when \(\lambda \to 0 \). Hence, we have \(\sup_{\zeta, \lambda} a^c(\zeta, \lambda) = \lim_{\lambda \to 0} a^c(1, \lambda) = (1 + \sigma)/2 \) and \(\inf_{\zeta, \lambda} a^c(\zeta, \lambda) = 1 - \sup_{\zeta, \lambda} a^c(\zeta, \lambda) = (1 - \sigma)/2 \), where neither the infimum nor the supremum can be reached because we require \(\lambda > 0 \).

Next, we consider \(a^m(\mu, \lambda) \). Analogous to above, direct computation yields

\[
a^m(\zeta, \lambda) = \frac{\lambda(1 + \lambda)(1 - \sigma) + 2\sigma \zeta \lambda}{2\lambda(1 + (1 - \sigma)\lambda)}.
\] (41)

Note that \(a^m(\zeta, \lambda) \) is strictly increasing in \(\zeta \). For a given \(\lambda \), \(a^m(\zeta, \lambda) \) therefore reaches its minimum at \(\zeta = 0 \) and its maximum at \(\zeta = 1 \). Because \(a^m(0, \lambda) = a^c(0, \lambda) \) and \(a^m(1, \lambda) = a^m(1, \lambda) \), the rest of the proof is the same as for \(a^c(\zeta, \lambda) \).

Finally, note that

\[
a^c(\zeta, \lambda) - a^m(\zeta, \lambda) = \frac{\zeta(1 - \zeta)\sigma^2 \lambda}{(1 + (1 - \sigma)\lambda)(1 + \sigma \zeta \lambda + (1 - \sigma)\lambda)} \geq 0.
\]

Thus, when \(\sigma > 0 \), \(a^c(\zeta, \lambda) = a^m(\zeta, \lambda) \) if and only if \(\zeta = 0 \) or \(\zeta = 1 \). ☐

A.7 Proof of Proposition 3

We focus here on the case where \(\zeta(y) \) is unique for all \(y \); the more complicated case where \(\zeta(y) \) is not unique for some firm types is analyzed in Appendix B.3.

First, we present two helpful results; then, we show that the necessary conditions derived from the limit case \(x_2 \to x_1 \) in Proposition 2 are also sufficient for any distribution of agents’ types, under some regularity conditions; finally, we show that our benchmark technology satisfies these regularity conditions.
A.7.1 The Elasticity of Complementarity Revisited.

Note that \(\rho(x,y) \) is the ratio of the percentage change in \(f_y(x,y) \) (the marginal output by firms) and the percentage change in \(f(x,y) \) caused by increasing the worker type to \(x + \Delta x \). That is, for sufficiently small \(\Delta x > 0 \), we have

\[
\frac{f_y(x + \Delta x, y)}{f_y(x, y)} \approx 1 + \rho(x,y) \frac{f_x(x,y)}{f(x,y)} \Delta x \approx \left(\frac{f(x + \Delta x, y)}{f(x, y)} \right)^{\rho(x,y)}.
\]

In general, when \(x \) is discrete and \(\rho(x,y) \) is not necessarily constant, the elasticity of \(f_y \) with respect to \(f \) is bounded by \(\rho \) and \(\rho \), as summarized by the following lemma.

Lemma 11. For given \(y \), \(f_y(x,y)/f(x,y) \) is increasing in \(x \), and \(f_y(x,y)/f(x,y) \) is decreasing in \(x \). That is,

\[
\left(\frac{f(x_2, y)}{f(x_1, y)} \right)^\rho \leq \frac{f_y(x_2, y)}{f_y(x_1, y)} \leq \left(\frac{f(x_2, y)}{f(x_1, y)} \right)^{\bar{\rho}},
\]

where the first (resp. second) inequality holds as equality if and only if \(\rho \) (resp. \(\bar{\rho} \)) is equal to \(\rho(x,y) \) for all \(x \in [x_1, x_2] \).

Proof. Given \(\rho_0 \), the derivative of \(\log f_y(x,y) - \rho_0 \log f(x,y) \) with respect to \(x \) equals

\[
\frac{\partial}{\partial x} \left(\log f_y - \rho_0 \log f \right) = \frac{f_{xy}}{f_y} - \rho_0 \frac{f_x}{f} = \frac{f_{xy}f - \rho_0 f_x f_y}{ff_y},
\]

where we suppress the arguments of \(f(x,y) \) and its partial derivatives for simplicity. The right-hand side is weakly positive (resp. negative) if \(\rho_0 = \rho \) (resp. \(\rho_0 = \bar{\rho} \)), which means that \(\log f_y(x_2, y) - \rho \log f(x_2, y) \geq \log f_y(x_1, y) - \rho \log f(x_1, y) \), and \(\log f_y(x_2, y) - \bar{\rho} \log f(x_2, y) \geq \log f_y(x_1, y) - \bar{\rho} \log f(x_1, y) \), which jointly imply (42).

\[
\square
\]

A.7.2 A Technical Lemma

The first two parts of the following lemma are trivial, whereas the third part is non-trivial and critical for our results.

Lemma 12. (i) If \(\rho > 1 \), then \(\frac{1}{\kappa}((1 + \kappa)^\rho - 1) \) is strictly increasing for \(\kappa > 0 \); (ii) if \(\rho \in (0,1) \), then \(\frac{1}{\kappa}((1 + \kappa)^\rho - 1) \) is strictly decreasing for \(\kappa > 0 \); and (iii) if \(\rho \in (0,1) \), then \(\left(\frac{1}{\kappa} + \frac{1-\rho}{2} \right)((1 + \kappa)^\rho - 1) \) is strictly increasing for \(\kappa > 0 \).
Proof. For (i) and (ii), define \(g(\kappa) = (1 + \kappa)^\rho \), which is strictly concave if \(\rho \in (0, 1) \) and strictly convex if \(\rho > 1 \). Observe that \(((1 + \kappa)^\rho - 1)/\kappa = (g(\kappa) - g(0))/(\kappa - 0) \), which is strictly increasing in \(\kappa \) if \(g(\kappa) \) is strictly convex, and strictly decreasing in \(\kappa \) if \(g(\kappa) \) is strictly concave.

For (iii), direct computation gives

\[
\frac{d}{d\kappa} \left[\left(\frac{1}{\kappa} + \frac{1 - \rho}{2} \right) ((1 + \kappa)^\rho - 1) \right] = \frac{2(1 + \kappa)^{1-\rho} - 2 - \kappa(1 - \rho)(2 - \kappa\rho)}{2\kappa^2(1 + \kappa)^{1-\rho}}.
\]

The numerator on the right-hand side equals zero for \(\kappa = 0 \). Moreover, its derivative is

\[
\frac{d}{d\kappa} \left[\frac{2(1 + \kappa)^{1-\rho} - 2 - \kappa(1 - \rho)(2 - \kappa\rho)}{2\kappa^2(1 + \kappa)^{1-\rho}} \right] = \frac{2(1 - \rho)}{(1 + \kappa)^{1-\rho}} \left[(1 + \kappa)^{-\rho} - (1 - \kappa\rho) \right] > 0,
\]

because convexity of \((1 + \kappa)^{-\rho} \) implies \((1 + \kappa)^{-\rho} - (1 - \kappa\rho) > 0 \). Hence, the numerator on the right-hand side is strictly positive for \(\kappa > 0 \), which proves (iii).

A.7.3 Sufficiency of the Necessary Conditions

Since we have assumed that \(\zeta(y) \) is unique for all \(y \), it is continuous in \(y \) by the Theorem of the Maximum. Next, consider the differentiability of \(\zeta(y) \). When \(\zeta(y) \) is interior, it is determined by the corresponding FOCs (11) and (12) (jointly with \(\lambda(y) \)); hence by the implicit function theorem, \(\zeta(y) \) is differentiable. However, when \(\zeta(y) = 0 \) or \(1 \), \(\zeta(y) \) is not necessarily differentiable.\(^{38}\) In that case, as long as \(\zeta'(y) \geq 0 \) (resp. \(\frac{d}{dy} h(\zeta(y), \lambda(y)) \geq 0 \)) when \(\zeta(y) \) is interior, \(\zeta(y) \) (resp. \(h(\zeta(y), \lambda(y)) \)) is weakly increasing, which is the definition of PAC (resp. PAM). Because of this observation and our focus on sorting, we only consider firms with an interior \(\zeta(y) \) in what follows.

The following lemma establishes that—subject to regularity conditions—the necessary condition (25) implies that PAC/PAM holds locally at all interior points, so it is also sufficient. The same conclusion also applies to the case of NAC/NAM.

Lemma 13. Let \(i = c \) or \(i = m \). If, for any \(\mu \) and \(\lambda \), we have

\[
\frac{1}{m'} \left(\delta_{\mu} \frac{\phi_{\mu\lambda}}{\phi_{\mu\mu}} - \phi_{\lambda} \right) - \frac{1}{m''} \left(\frac{\phi_{\mu\lambda}^2}{\phi_{\mu\mu}} - \phi_{\lambda\lambda} \right) \geq \max(1 - \alpha, 0),
\]

then (25) implies that (24) always holds in equilibrium (i.e. PAC/PAM).

\(^{38}\)For example, let \(y = 1 \) and \(\gamma = 4 \). We can construct examples where in equilibrium, \(\zeta(y) = 0 \) for \(y \leq 2 \), \(\zeta(y) = y - 2 \) for \(y \in [2, 3] \), and \(\zeta(y) = 1 \) for \(y \geq 3 \). In this case, \(\zeta(y) \) is not differentiable at \(y = 2 \) and 3.
If (i) \(\phi_\lambda / \phi_\mu \) is weakly decreasing in \(\mu \), (ii) \(0 \leq a^i < 1 \), and (iii) for any \(\mu \) and \(\lambda \),

\[
a^i \frac{1}{m'} \left(\phi_\mu \frac{\phi_\mu \lambda}{\phi_\mu \mu} - \phi_\lambda \right) - \frac{1}{m''} \left(\phi_\mu \frac{\phi_\mu \lambda}{\phi_\mu \mu} - \phi_\lambda \lambda \right) \leq 0,
\]

then (26) implies that (24) holds in equilibrium with \(\leq \) instead of \(\geq \) (i.e. NAC/NAM).

Proof. Recall \(\kappa(y) \equiv \Delta f / f^1 \). Throughout this proof, we will then use the following inequalities which result from rewriting (42):

\[
\frac{\left(1 + \kappa(y)\right)^2 - 1}{\kappa(y)} \leq \frac{f^1 \Delta f_y}{f_y^1 \Delta f} \leq \frac{\left(1 + \kappa(y)\right)^2 - 1}{\kappa(y)}.
\]

(45)

First, consider PAC/PAM. Assume the necessary condition (25) holds, i.e. \(\rho \geq \overline{\alpha}^i \). Since \(\overline{\alpha}^i \geq 0 \), this implies that \(\Delta f_y \geq 0 \) (i.e. \(f \) is supermodular) such that the left-hand side of (24) is positive. We now prove a stronger version of (24), i.e.

\[
\frac{f^1 \Delta f_y}{f_y^1 \Delta f} \geq \frac{1}{\overline{\alpha}^i} \frac{1}{1 - \frac{1}{m'} \left(\phi_\mu \frac{\phi_\mu \lambda}{\phi_\mu \mu} - \phi_\lambda \right) \frac{\Delta f_y}{f_y^1}} - \frac{1}{m''} \left(\phi_\mu \frac{\phi_\mu \lambda}{\phi_\mu \mu} - \phi_\lambda \lambda \right) \frac{\Delta f_y}{f_y^1},
\]

where \(a^i (\zeta, \lambda) \) is replaced by its supremum \(\overline{\alpha}^i \). This is justified because if the second factor on the right-hand side is negative then we have nothing to prove; if it is positive, then we have a stronger version of the original inequality. Firms’ SOC implies that the denominator of this factor is positive. Rearranging terms therefore gives

\[
\frac{f^1 \Delta f_y}{f_y^1 \Delta f} + \frac{\Delta f_y}{f_y^1} \left[\frac{1}{\overline{\alpha}^i} \frac{1}{1 - \frac{1}{m'} \left(\phi_\mu \frac{\phi_\mu \lambda}{\phi_\mu \mu} - \phi_\lambda \right) \frac{\Delta f_y}{f_y^1}} - \frac{1}{m''} \left(\phi_\mu \frac{\phi_\mu \lambda}{\phi_\mu \mu} - \phi_\lambda \lambda \right) \right] \geq \overline{\alpha}^i.
\]

(46)

Consider now two subcases, determined by the value of \(\rho \). If \(\rho \geq 1 \), then

\[
\frac{f^1 \Delta f_y}{f_y^1 \Delta f} \geq \frac{(1 + \kappa(y))^2 - 1}{\kappa(y)} \geq \rho \geq \overline{\alpha}^i,
\]

where inequalities follow from of Lemma 11, \(\rho \geq 1 \) (see part (i) of Lemma 12), and the necessary condition (25), respectively. Since (43) implies that the term in square brackets in (46) is positive, (46) holds, which then implies (24).

In contrast, if \(\rho \in (0, 1) \), then (43) implies that the term in the square brackets in (46) is greater than \(1 - \overline{\alpha}^i \), which is greater than \(1 - \rho \geq 0 \), because of the necessary
condition (25). Hence, the left-hand side of (46) is greater than
\[
\frac{(1 + \kappa(y))\rho - 1}{\kappa(y)} + ((1 + \kappa(y))\rho - 1)(1 - \rho),
\]
which reaches its minimum value at \(\kappa(y) = 0 \), by part (iii) of Lemma 12. Hence, (46) holds (recall we assume \(\rho \geq a_i \)), which subsequently implies (24).

Next, consider NAC/NAM. Note that condition (i), i.e. \(\phi_\lambda/\phi_\mu \) being weakly decreasing in \(\mu \), is equivalent to \(\phi_\mu \frac{\phi_\mu \phi_\lambda}{\phi_\mu \phi_\mu} - \phi_\lambda \geq 0 \), as can be seen by taking the derivative with respect to \(\mu \). We now distinguish two subcases based on the sign of \(\Delta f_y \).

If \(\Delta f_y \leq 0 \), then the left-hand side of (24) is negative. The numerator on the right-hand side is positive because \(\phi_\mu \frac{\phi_\mu \phi_\lambda}{\phi_\mu \phi_\mu} - \phi_\lambda \geq 0 \), while the denominator is positive because of the firm’s SOC. Thus, it follows immediately that (24) holds with \(\leq \).

In contrast, if \(\Delta f_y \geq 0 \), we prove the inequality
\[
1 \leq \frac{1}{1 - \frac{1}{m'} \left(\phi_\mu \frac{\phi_\mu \phi_\lambda}{\phi_\mu \phi_\mu} - \phi_\lambda \right) \frac{\Delta f_y}{f_y}} - \frac{1}{m''} \left(\phi_\mu \frac{\phi_\mu \phi_\lambda}{\phi_\mu \phi_\mu} - \phi_\lambda \phi_\mu \phi_\mu \phi_\mu - \phi_\lambda \phi_\lambda \right) \Delta f \leq 0. \quad (47)
\]
which is equivalent to
\[
\frac{f^1 \Delta f_y}{f_y^1 \Delta f} \frac{1}{m'} \left(\phi_\mu \frac{\phi_\mu \phi_\lambda}{\phi_\mu \phi_\mu} - \phi_\lambda \right) - \frac{1}{m''} \left(\phi_\mu \frac{\phi_\mu \phi_\lambda}{\phi_\mu \phi_\mu} - \phi_\lambda \phi_\mu \phi_\mu \phi_\mu - \phi_\lambda \phi_\lambda \right) \leq 0. \quad (48)
\]
To do so, note that \(\frac{f^1 \Delta f_y}{f_y^1 \Delta f} \leq \frac{(1 + \kappa(y))\rho - 1}{\kappa(y)} \leq \bar{\rho} \leq a_i \), where the three inequalities follow from (45), part ii) of Lemma 12, and our assumption \(\bar{\rho} \leq a_i \), respectively. Hence, (48) and (47) follow from (44). Therefore,
\[
\frac{f^1 \Delta f_y}{f_y^1 \Delta f} \leq \bar{\rho} \leq a_i \leq a_i \leq a_i \frac{1}{1 - \frac{1}{m'} \left(\phi_\mu \frac{\phi_\mu \phi_\lambda}{\phi_\mu \phi_\mu} - \phi_\lambda \right) \frac{\Delta f_y}{f_y}} + \frac{1}{m''} \left(\phi_\mu \frac{\phi_\mu \phi_\lambda}{\phi_\mu \phi_\mu} - \phi_\lambda \phi_\mu \phi_\mu \phi_\mu - \phi_\lambda \phi_\lambda \right) \Delta f. \]

Hence, we have proved the case of NAC/NAM. \(\square \)
A.7.4 Verification of the Regularity Conditions in Lemma 13

If \(\phi(\mu, \lambda) \) satisfies \((6) \), \(\bar{\pi} = \bar{\pi}^m = (1 + \sigma)/2 \) and \(\bar{a}^c = \bar{a}^m = (1 - \sigma)/2 \), by Lemma 7. Plugging \((6) \) into the left-hand side of \((43) \) yields

\[
\frac{(1 - \sigma)(1 + \lambda)^2(2 + (1 - \sigma)\lambda)}{4(1 + (1 - \sigma)\lambda)(1 + \sigma\mu + (1 - \sigma)\lambda)} \geq \frac{(1 - \sigma)(1 + \lambda)(2 + (1 - \sigma)\lambda)}{4(1 + (1 - \sigma)\lambda)} \geq \frac{(1 - \sigma)^2}{2},
\]

where the first inequality is because the denominator reaches its maximum at \(\mu = \lambda \), and the second one is because \(1 + \lambda \geq 1 + (1 - \sigma)\lambda \). This proves \((43) \).

The regularity conditions for NAC/NAM in Lemma 13 are satisfied because (i) \(\phi_\lambda/\phi_\mu = -(1 - \sigma)\mu/(1 + (1 - \sigma)\lambda) \) which is decreasing in \(\mu \), (ii) \(a^i = (1 - \sigma)/2 \in [0, 1) \), and (iii) plugging \((6) \) into the left-hand side of \((44) \) yields

\[
-\frac{\lambda(1 + \lambda)^2(1 - \sigma)^2}{4(1 + (1 - \sigma)\lambda)(1 + \sigma\mu + (1 - \sigma)\lambda)} \leq 0.
\]

Hence the necessary conditions in Proposition 2 are also sufficient. \(\square \)
Appendix B Online Appendix

B.1 Proof of Lemma 1

Given queue length λ, a firm’s number of applicants n_A in our benchmark model follows a geometric distribution with support \mathbb{N}_0 and mean λ, i.e. $\mathbb{P}[n_A \geq n \mid \lambda] = \left(\frac{\lambda}{1+\lambda}\right)^n$ for $n = 0, 1, 2, \ldots$. We will make this proof more general by assuming that the application process is governed by a general invariant technology, which Lester et al. (2015) and Cai et al. (2017) define as follows: applications are invariant if and only if the probability that a firm with queues (μ, λ) receives at least one high-type applicant depends only on μ (and not on λ). Hence, it equals the probability $\mathbb{P}[n_A \geq 1 \mid \mu]$ that a firm receives at least one applicant when the queue has length μ and consists only of high-type workers. That is,

$$\mathbb{P}[n_A \geq 1 \mid \mu] = 1 - \sum_{n=0}^{\infty} \mathbb{P}[n_A = n \mid \lambda] \left(1 - \frac{\mu}{\lambda}\right)^n$$

$$= 1 - \sum_{n=0}^{\infty} \mathbb{P}[n_A \geq n \mid \lambda] \left(1 - \frac{\mu}{\lambda}\right)^n + \sum_{n=0}^{\infty} \mathbb{P}[n_A \geq n + 1 \mid \lambda] \left(1 - \frac{\mu}{\lambda}\right)^n$$

$$= \sum_{n=1}^{\infty} \mathbb{P}[n_A \geq n \mid \lambda] \frac{\mu}{\lambda} \left(1 - \frac{\mu}{\lambda}\right)^{n-1}. \quad (49)$$

where the first equality uses the definition of invariance and the fact that the probability that an applicant is high-type is μ/λ and is independent across applicants, while the second and the third equality follow from summation by parts.

A firm’s potential number of interviews, n_C, follows a geometric distribution with support \mathbb{N}_1 and mean $(1 - \sigma)^{-1}$. That is, $\mathbb{P}[n_C \geq n \mid \sigma] = \sigma^{n-1}$ for $n = 1, 2, \ldots$. Since interviewing might be constrained by the number of applications, the firm’s actual number of interviews is $n_I = \min\{n_A, n_C\} \in \mathbb{N}_0$, distributed according to $\mathbb{P}[n_I \geq n \mid \lambda, \sigma] = \mathbb{P}[n_A \geq n \mid \lambda] \sigma^{n-1}$. An interview reveals a high-type worker with probability μ/λ, independently across applicants. The firm therefore interviews at least one high-type worker with probability

$$\phi(\mu, \lambda) = 1 - \sum_{n=0}^{\infty} \mathbb{P}[n_I = n \mid \lambda, \sigma] \left(1 - \frac{\mu}{\lambda}\right)^n = \sum_{n=1}^{\infty} \mathbb{P}[n_I \geq n \mid \lambda, \sigma] \frac{\mu}{\lambda} \left(1 - \frac{\mu}{\lambda}\right)^{n-1},$$
where the second equality follows from summation by parts, analogous to (49). Substituting \(P[n_I \geq n | \lambda, \sigma] = P[n_A \geq n | \lambda] \sigma^{n-1} \) yields

\[
\phi(\mu, \lambda) = \frac{\mu}{\sigma \mu + (1-\sigma)\lambda} \sum_{n=1}^{\infty} P[n_A \geq n | \lambda] \frac{\sigma \mu + (1-\sigma)\lambda}{\lambda} \left(1 - \frac{\sigma \mu + (1-\sigma)\lambda}{\lambda} \right)^{n-1}
\]

\[
= \frac{\mu}{\sigma \mu + (1-\sigma)\lambda} P[n_A \geq 1 | \sigma \mu + (1-\sigma)\lambda].
\]

(50)

Since \(P[n_A \geq 1 | \sigma \mu + (1-\sigma)\lambda] = \frac{\sigma \mu + (1-\sigma)\lambda}{1+\sigma \mu + (1-\sigma)\lambda} \) in our baseline model, equation (6) then follows from (50). \(\square \)

B.2 Proof of Lemma 2

Given \(U_1/w_1 \) and \(U_2/w_2 \), consider then the level curves \(\psi_2(\lambda \zeta, \lambda) = U_2/w_2 \) and \(\psi_1(\lambda \zeta, \lambda) = U_1/w_1 \) in the \(\lambda \)-\(\zeta \) space. Note that

\[
\psi_1(\lambda \zeta, \lambda) = \frac{1 + (1-\sigma)\lambda}{(1+\lambda)(1+(1-\sigma+\sigma \zeta)\lambda)} \text{ and } \psi_2(\lambda \zeta, \lambda) = \frac{1}{1+(1-\sigma+\sigma \zeta)\lambda},
\]

both of which are strictly decreasing in \(\zeta \). We now show that the two curves intersect at most once so that there exists exactly one solution \((\mu, \lambda) \). At any intersection point, the difference between the slopes of the two level curves is

\[
\frac{\partial \psi_1(\lambda \zeta, \lambda)/\partial \lambda}{\partial \psi_1(\lambda \zeta, \lambda)/\partial \zeta} + \frac{\partial \psi_2(\lambda \zeta, \lambda)/\partial \lambda}{\partial \psi_2(\lambda \zeta, \lambda)/\partial \zeta} = \frac{1 + (1-\sigma+\sigma \zeta)\lambda}{\lambda(\lambda+1)(1+(1-\sigma)\lambda)} > 0.
\]

Hence, by a standard single-crossing argument, the two level curves cross each other at most once. Note that we can also derive the solution \((\mu, \lambda) \) explicitly. However, with this approach we need to discuss the conditions under which we have a corner solution \((\mu = 0 \text{ or } \mu = \lambda) \) or an interior solution \((0 < \mu < \lambda) \). \(\square \)

B.3 General Analysis with Multiplicity Points

Assuming that firms have solved for the optimal queue length \(\lambda^o(\zeta, y) \) from (11), we next consider their choice of \(\zeta \). That is, firms now solve the maximization problem \(\max_{\zeta \in [0,1]} \Pi^*(\zeta, y) \), where \(\Pi^*(\zeta, y) = \Pi(\zeta, \lambda^o(\zeta, y), y) \). In general, \(\Pi^*(\zeta, y) \) is not necessarily quasi-concave in \(\zeta \), so the problem may admit multiple solutions. Denote by \(Z(y) \) the set of all optimal \(\zeta \) for firms of type \(y \) and let \(\zeta(y) \) be an arbitrary element from \(Z(y) \). Below, we first show that \(Z(y) \) contains at most two elements, and when
it contains exactly two elements, one of them must be zero.

Marginal Contributions. Since the equilibrium is constrained efficient, the expected payoffs of firms and workers equal their marginal contribution to surplus. Adding more low-type workers to a submarket only increases λ, while adding more high-type workers increases both μ and λ. Thus, the marginal contribution of low-type and high-type workers at a firm of type y with queues (μ, λ) are $S_{\lambda}(\mu, \lambda, y)$ and $S_{\mu}(\mu, \lambda, y) + S_{\lambda}(\mu, \lambda, y)$, respectively. Because of constant returns to scale, the firm’s marginal contribution is the difference between total surplus and the sum of the marginal contributions of its applicants, i.e. $S(\mu, \lambda, y) - \mu S_{\mu}(\mu, \lambda, y) - \lambda S_{\lambda}(\mu, \lambda, y)$.\(^{39}\)

Using $S(\mu, \lambda, y)$ from (7), $f^1 \equiv f(x_1, y)$ and $\Delta f = f(x_2, y) - f(x_1, y)$, we get

\[
T_1(\mu, \lambda, y) = m'(\lambda)f^1 + \phi_{\lambda}(\mu, \lambda)\Delta f, \\
T_2(\mu, \lambda, y) = m'(\lambda)f^1 + (\phi_{\mu}(\mu, \lambda) + \phi_{\lambda}(\mu, \lambda))\Delta f, \\
R(\mu, \lambda, y) = (m(\lambda) - \lambda m'(\lambda))f^1 + (\phi(\mu, \lambda) - \mu \phi_{\mu}(\mu, \lambda) - \lambda \phi_{\lambda}(\mu, \lambda))\Delta f,
\]

where T_1, T_2 and R are the marginal contribution to surplus of low-type workers, high-type workers, and firms, respectively.

Multiplicity. The fact that a firm’s optimal choice of the fraction of high-type workers ζ may not be unique generally renders the analysis intractable. However, Cai et al. (2022) show that under a single-crossing condition, which we present in the proof of the following lemma and which is satisfied by our benchmark meeting technology, the optimal queue composition takes a simple form.

Lemma 14 (Cai et al., 2022). If ϕ is given by (6), then for any given firm type y, $Z(y)$ contains at most two elements, and when it contains two elements, one of the two must be zero.

Proof. We prove this result and discuss it extensively in Cai et al. (2022). Here, we state the single-crossing condition and briefly argue why it leads to Lemma 14. To do so, we define $H(\mu, \lambda)$ as the right-hand side of (14), i.e.

\[
H(\mu, \lambda) \equiv \frac{\phi_{\lambda\lambda} - \phi_{\mu\lambda}^2 / \phi_{\mu\mu}}{-m''}.
\]

\(^{39}\)Alternatively, increase the number of firms by a factor $1 + \Delta s$. The additional surplus is then $(1 + \Delta s)S(\mu/(1 + \Delta s), \lambda/(1 + \Delta s), y) - S(\mu, \lambda, y)$, which yields the same result when $\Delta s \to 0$.

51
Cai et al. (2022) then show that Lemma 14 holds whenever a meeting technology satisfies Property A0, A1, A2 and the following A3.

A3. (single-crossing condition) At any point \((\zeta, \lambda)\) where \(H(\lambda \zeta, \lambda) > 0\), we have
\[\partial H(\lambda \zeta, \lambda) / \partial \lambda > 0 \]
and
\[-\partial \phi \mu(\lambda \zeta, \lambda) / \partial \zeta < -\partial H(\lambda \zeta, \lambda) / \partial \lambda. \]
(55)

Note that Property A0 states that \(\partial \phi \mu(\lambda \zeta, \lambda) / \partial \zeta < 0\), while Property A2 states that \(\partial \phi \mu(\lambda \zeta, \lambda) / \partial \lambda < 0\), making the left-hand side of (55) strictly negative. When \(\phi(\mu, \lambda)\) is given by (6), direct computation reveals that both \(H(\lambda \zeta, \lambda)\) and the right-hand side of (55) are strictly positive. Thus, Property A3 is trivially satisfied in this case.

The idea of the proof of Cai et al. (2022) is then as follows. Suppose that the equilibrium payoff—or equivalently the marginal contribution to surplus—of a given firm \(y\) is \(R^*(y)\). Property A3 then implies that level curve \(R(\lambda \zeta, \lambda, y) = R^*(y)\) crosses the level curve \(H(\lambda \zeta, \lambda) = 1/\kappa(y)\) at most once and from the left, as illustrated in Figure 1 of Cai et al. (2022). If the intersection exists, denote it by \((\lambda^*, \zeta^*)\). Along the level curve \(R(\lambda \zeta, \lambda, y) = R^*(y)\), the second-order condition (14) is then satisfied for \(\zeta > \zeta^*\) and violated for \(\zeta < \zeta^*\). The only feasible submarket when \(\zeta < \zeta^*\) is therefore the corner solution \(\zeta = 0\). Furthermore, along the level curve \(R(\lambda \zeta, \lambda, y) = R^*(y), T_2(\lambda \zeta, \lambda, y)\) is monotonically decreasing in \(\zeta\) for \(\zeta \geq \zeta^*\). Since the marginal contribution of high-type workers must be the same among all submarkets containing such workers, there can exist only one submarket with \(\zeta \geq \zeta^*\). Hence, there exist at most two submarkets: one with \(\zeta = 0\) and the other with \(\zeta \geq \zeta^*\).

That is, firms of a particular type \(y\) may have two optimal strategies. Some firms may go for quality by encouraging high-type workers to apply and limiting the number of low-type applicants in order to reduce congestion. Other firms of the same type may go for quantity and aim for a large hiring probability by attracting many low-type workers; however, this stops high-skilled workers from applying there altogether. The above lemma shows that these two scenarios can be optimal simultaneously, but there are no other possibilities. As we will see later, when assortative matching holds in equilibrium, there exists at most one firm type which has two optimal strategies; for all other firm types, the optimal \(\zeta(y)\) must be unique.
Local PAC/PAM. Consider a point y_m where $Z(y_m)$ is not a singleton. By Lemma 14, it then has two elements, with one of them equal to zero. Denote these elements by ζ_0 and ζ_1, satisfying $0 = \zeta_0 < \zeta_1$, and their corresponding queue lengths by λ_0 and λ_1, respectively. By the Theorem of the Maximum, $Z(y)$ is an upper hemi-continuous correspondence. Therefore, for firm types y close to y_m, $Z(y)$ is either the corner solution 0, or some ζ close to ζ_1, or both. We now define when PAC/PAM holds locally at a multiplicity point y_m. Note that the definition is the same for PAC and PAM.

Definition 5. Consider a point y_m for which $Z(y_m)$ is not unique. PAC/PAM then holds locally at y_m if, for y sufficiently close to y_m, the corner solution 0 is the only solution for $y < y_m$, but does not belong to $Z(y)$ for $y > y_m$.

In other words, local PAC/PAM for a multiplicity point means that firms with y slightly below y_m have a unique optimal ζ equal to zero and firms with y slightly above y_m have a unique optimal ζ close to ζ_1. This definition is local in the sense that we only require that the previous statement holds for y sufficiently close to y_m. Note that the definition does not require that, for y slightly above y_m, we have $\zeta(y) \geq \zeta_1$ (PAC) or $h(\zeta(y), \lambda(y)) \geq h(\zeta_1, \lambda_1)$ (PAM); these inequalities are implied the fact that we also require PAC/PAM to hold locally for $y > y_m$ (see Lemma 15 below for the detailed proof).

Alternatively, if the optimal queue composition $\zeta(y)$ is unique and interior, then, as before, we define that PAC (resp. PAM) holds locally at point y if $\zeta'(y) \geq 0$ (resp. $\frac{d}{dy} h(\zeta(y), \lambda(y)) \geq 0$). We do not discuss the case in which $\zeta(y)$ is unique but a corner solution, i.e. $Z(y) = \{0\}$ or $Z(y) = \{1\}$, because $\zeta(\cdot)$ is not necessarily differentiable at such points. However, as Lemma 15 below shows, we do not need to consider such points for our global sorting analysis because of continuity. We focus on the conditions for PAC/PAM; the analysis for NAC/NAM is similar with reversal of the relevant inequalities and is spelled out only when necessary.

From Local to Global. Our next result then shows that if PAC/PAM holds locally, then the equilibrium exhibits PAC/PAM; alternatively, we say that PAC/PAM holds globally in that case.

Lemma 15. If PAC/PAM (resp. NAC/NAM) holds locally at all points where $Z(y)$ is either unique and interior or contains multiple points, then PAC/PAM (resp. NAC/NAM) holds globally.
Proof. By the Theorem of Maximum, $Z(y)$ is an upper hemi-continuous correspondence: if $y_k \to y^*$ and $\zeta_k \to \zeta^*$ with $\zeta_k \in Z(y_k)$, then $\zeta^* \in Z(y^*)$. As we discussed after Definition 5, when PAC/PAM holds locally at some multiplicity point y_m, then all points sufficiently close to y_m, but not equal to y_m, have a unique optimal ζ. Thus, if PAC/PAM holds locally at all multiplicity points, then multiplicity points are isolated from each other.

Next, we prove that there exists at most one multiplicity point. Suppose otherwise. Because multiplicity points are isolated, consider two consecutive multiplicity points y_m' and y_m'' with $Z(y_m') = \{0, \zeta_1'\}$ and $Z(y_m'') = \{0, \zeta_1''\}$. Since PAC/PAM holds locally at y_m' and y_m'', we have $\lim_{y \to y_m'} \zeta(y) = \zeta_1' > 0$ (left limit) and $\lim_{y \to y_m''} \zeta(y) = 0$ (right limit). By construction, $\zeta(y)$ is then unique for all y between y_m' and y_m'' and hence continuous. Since we require that PAC (resp. PAM) holds locally at points where $\zeta(y)$ is unique and interior, $\zeta(y)$ (resp. $h(\zeta(y), \lambda(y))$) is then increasing between y_m' and y_m'', which then contradicts with $\lim_{y \to y_m'} \zeta(y) = \zeta_1' > 0$ and $\lim_{y \to y_m''} \zeta(y) = 0$. □

Proof of Proposition 3 with Multiplicity Points. We now extend the proof of Proposition 3 to allow for multiplicity points. As we showed in the main text, $\rho \geq (1 + \sigma)/2$ and $\bar{\rho} \leq (1 - \sigma)/2$ are sufficient for PAC/PAM and NAC/NAM to hold locally at points where $\zeta(y)$ is unique and interior, respectively. By Lemma 15, we only need to show that they are also sufficient for sorting to hold locally at multiplicity points. For the former, below we show that ($\rho > 1/2$) is already sufficient.

Suppose that $Z(y_m)$ is not a singleton and denote the two optimal queues again by (ζ_0, λ_0) and (ζ_1, λ_1), where $0 = \zeta_0 < \zeta_1$. Since firm y_m must be indifferent, the expected payoff—or, equivalently, the marginal contribution to surplus—must be the same for the two queues. By (53), we have

$$m(\lambda_0) - \lambda_0 m'(\lambda_0) = m(\lambda_1) - \lambda_1 m'(\lambda_1) + \phi(\zeta_1 \lambda_1, \lambda_1) - \lambda_1 \frac{d\phi(\zeta_1 \lambda_1, \lambda_1)}{d\lambda} \frac{\Delta f}{f^1}, \quad (56)$$

where $\Delta f = f(x_2, y_m) - f(x_1, y_m)$ and $f^1 = f(x_1, y_m)$. The left-hand side is the firm’s marginal contribution to surplus with a queue $(0, \lambda_0)$, divided by $f(x_1, y_m)$, and the right-hand side is the corresponding value with a queue (ζ_1, λ_1).

If $\zeta_1 \in (0, 1)$, then low-type workers are present in both queues and their marginal
contribution to surplus must be the same. Equation (51) then yields
\[m'(\lambda_0) = m'(\lambda_1) + \phi(\zeta_1 \lambda_1, \lambda_1) \frac{\Delta f}{f_1} \quad \text{if} \quad \zeta_1 \in (0, 1). \]

Low-type workers are not present in the shorter queue if \(\zeta_1 = 1 \). In this special case, optimality requires that the left-hand side of (57) is larger than the right-hand side.

The requirement in Definition 5 can be characterized by the envelope theorem: a sufficient condition is \(\Pi_y(0, \lambda_0, y_m) < \Pi_y(\zeta_1, \lambda_1, y_m) \), where \(\Pi(\zeta, \lambda, y) \) is the expected profit of a firm \(y \) with queue \((\zeta, \lambda)\) as defined in equation (10).\(^{40}\) The condition \(\Pi_y(0, \lambda_0, y_m) < \Pi_y(\zeta_1, \lambda_1, y_m) \) can be written as
\[m(\lambda_0) < m(\lambda_1) + \phi(\zeta_1 \lambda_1, \lambda_1) \frac{\Delta f_y}{f_1}, \]
where \(\Delta f_y = f(x_2, y_m) - f(x_1, y_m) \) and \(f_1 = f_y(x_1, y_m) \). If the reverse inequality \(\Pi_y(0, \lambda_0, y_m) > \Pi_y(\zeta_1, \lambda_1, y_m) \) holds, then the opposite is true (NAC/NAM holds locally at point \(y_m \)), i.e. for \(y \) slightly above \(y_m \), \(Z(y) \) is unique and equals zero, and for \(y \) slightly below \(y_m \), \(Z(y) \) is unique and equals some \(\zeta \) around \(\zeta_1 \).

Consider first the case in which \(\zeta_1 = 1 \). The sorting conditions for this case are equivalent to the ones in Eeckhout and Kircher (2010a), even though the meeting technology is not bilateral. The proof of Proposition 7 in Appendix B.5 shows that equation (56) implies (58) when \(\rho > 1/2 \), while equation (56) implies (58) with reverse inequality when \(\rho < 1/2 \). Hence, assortative sorting holds locally at \(y_m \) under the sufficient conditions in Proposition 3.

Next, consider the case in which \(\zeta_1 < 1 \), such that (57) holds with equality.

\(^{40}\)The envelope theorem states that if a firm with type \(y \) close to \(y_m \) is constrained to choose only \(\zeta \) close to \(\zeta_1 \), then its maximum expected profit is approximately (first-order) \(\Pi(\zeta_1, \lambda_1, y_m) + \Pi_y(\zeta_1, \lambda_1, y_m) \Delta y \) where \(\Delta y = y - y_m \). Similarly, if the firm is constrained to choose \(\zeta = 0 \), then its maximum expected profit is approximately \(\Pi(0, \lambda_0, y_m) + \Pi_y(0, \lambda_0, y_m) \Delta y \). Recall that \(\Pi(\zeta_1, \lambda_1, y_m) = \Pi(0, \lambda_0, y_m) \). When \(\Pi_y(\zeta_1, \lambda_1, y_m) > \Pi_y(0, \lambda_0, y_m) \), then a firm type \(y > y_m \) strictly prefers to choose \(\zeta \) around \(\zeta_1 \) instead of zero, and a firm type \(y < y_m \) strictly prefers zero. As mentioned before, by continuity, it is without loss of generality to constrain the firm to choose between zero and all \(\zeta \) close to \(\zeta_1 \). See Milgrom and Segal (2002) for a discussion of envelope theorems.
From (56) and (57), we can solve for $\kappa(y_m)$ and λ_0 in terms of ζ_1 and λ_1. This yields

$$
\kappa(y_m) = \frac{4\sigma(1 + \lambda_1 - \lambda_1\sigma(1 - \zeta_1))^2}{(1 + \lambda_1)(1 - \sigma - \lambda_1\sigma(1 - \zeta_1) + 1)^2},
$$

(59)

$$
\lambda_0 = \frac{\lambda_1(\lambda_1 + \sigma(-\lambda_1 + (\lambda_1 + 2)\zeta_1 - 1) + 1)}{1 - \sigma - \lambda_1(1 - \sigma - \sigma\zeta_1)}.
$$

(60)

Rewrite (58) as

$$
1 + \frac{m(\lambda_0) - m(\lambda_1)}{\phi(\zeta_1\lambda_1, \lambda_1)} < \frac{f_y(x_2, y_m)}{f_y(x_1, y_m)},
$$

(61)

Consider PAC/PAM first. If $\rho > 1/2$, then $f_y(x_2, y_m)/f_y(x_1, y_m) > (1 + \kappa(y_m))^{1/2}$ by (42). Note that

$$(1 + \kappa(y_m)) - \left(1 + \frac{m(\lambda_0) - m(\lambda_1)}{\phi(\zeta_1\lambda_1, \lambda_1)}\right)^2 = \frac{4\lambda_1\sigma^2(1 - \zeta_1)(1 + \lambda_1(1 - \sigma(1 - \zeta_1))))}{(1 + \lambda_1)^2(1 - \sigma + \lambda_1(1 - \sigma(1 - \zeta_1)))^2} > 0,$$

hence (61) holds.

For NAC/NAM, note that $f_y(x_2, y_m)/f_y(x_1, y_m) < (1 + \kappa(y_m))^{\rho}$ by (42). We have

$$(1 + \kappa(y_m))^{\rho} - 1 - \frac{m(\lambda_0) - m(\lambda_1)}{\phi(\zeta_1\lambda_1, \lambda_1)} < \frac{1 - \sigma}{2}\kappa(y_m) - \frac{m(\lambda_0) - m(\lambda_1)}{\phi(\zeta_1\lambda_1, \lambda_1)}$$

$$= -\frac{2\sigma^2\lambda_1(1 - \sigma(1 - \zeta_1))(1 + \lambda_1(1 - \sigma(1 - \zeta_1)))}{(1 + \lambda_1)^2(1 - \sigma + \lambda_1(1 - \sigma(1 - \zeta_1)))^2} \leq 0,$$

where the first inequality follows from $(1 + \kappa)^\rho < 1 + \rho\kappa \leq 1 + \frac{1 - \sigma}{2}\kappa$, and the equality follows from equations (59) and (60). Hence, (58) holds with $>$. We thus have proved that assortative sorting holds locally at all multiplicity points under the sufficient condition in Proposition 3. \hfill \Box

B.4 Proof of Lemma 8

Since $\phi(\mu, \lambda) = \mu m(\lambda)/\lambda$, we have $\phi(\mu, \lambda) = m(\lambda)/\lambda$, which in turn implies that $\partial\phi(\mu, \zeta, \lambda)/\partial \zeta = 0$. Therefore, by equation (20), $a^n(\zeta, \lambda) = a^c(\zeta, \lambda)$ for any ζ and λ.

Next, consider $a^c(\zeta, \lambda)$ as given by equation (19). Since $\phi(\mu, \lambda) = 0$ and $\phi(\mu, \lambda) = (m(\lambda)/\lambda)' = (\lambda m'(\lambda) - m(\lambda))/\lambda^2$, we obtain equation (28) for $a^c(\zeta, \lambda)$ and $a^m(\zeta, \lambda)$.

A discussion of why the right-hand side in equation (28) equals the elasticity of substitution of the total number of matches in a submarket can be found in Eeckhout
and Kircher (2010a).

B.5 General Bilateral Technologies

Under bilateral technologies, the firm’s problem is solved by attracting either low- or high-type workers, but not both.\footnote{This result follows from firms’ SOC: with bilateral meetings, $\phi_{\mu\mu} = 0$; the right-hand side of (14) is therefore zero and never satisfied for an interior ζ.} Therefore, we do not need to consider the scenario where $Z(y)$ is unique and interior; we only need to consider multiplicity points, where the optimal ζ is 0 or 1, but not any number in between. Denote such a multiplicity point by y^{EK}.\footnote{The superscript refers to Eeckhout and Kircher (2010a), who first analyzed the bilateral case.} Using $\zeta_1 = 1$, the indifference condition (56) of a firm with type y^{EK} then becomes

\[(m(\lambda_0) - \lambda_0 m'(\lambda_0)) f(x_1, y^{EK}) = (m(\lambda_1) - \lambda_1 m'(\lambda_1)) f(x_2, y^{EK}).\] (62)

Further, the local condition for PAC/PAM (58) reduces to

\[m(\lambda_1) \frac{f_y(x_2, y^{EK})}{f_y(x_1, y^{EK})} > m(\lambda_0),\] (63)

i.e. firms with types slightly above y^{EK} strictly prefer high-type workers, while firms with types slightly below y^{EK} strictly prefer low-type workers. If this holds for all multiplicity points, then by continuity there exists at most one such point and PAC/PAM holds globally (see also Lemma 15). The following proposition establishes the necessary and sufficient conditions for sorting for any distribution of agents’ types. These conditions were first derived by Eeckhout and Kircher (2010a) in a framework with a continuum of worker types; we establish that the same conditions arise with two types.

Proposition 7 (Eeckhout and Kircher, 2010a). Suppose meetings are bilateral, i.e. $\phi(\mu, \lambda) = m(\lambda) \mu/\lambda$. The equilibrium then exhibits PAC/PAM for any distribution of agents’ types if (resp. only if) $\bar{\rho}$ is strictly (resp. weakly) larger than $\bar{\sigma} = \bar{\sigma}_m = \bar{\sigma}^{EK}$. In contrast, the equilibrium exhibits NAC/NAM for any distribution of agents’ types if (resp. only if) $\bar{\rho}$ is strictly (resp. weakly) smaller than $\bar{a}^c = \bar{a}_m = \bar{a}^{EK}$.

For our benchmark technology with $\sigma = 0$, we have $a^{EK}(\lambda) = 1/2$ for any λ. Proposition 7 therefore reveals that Proposition 2 gives the right sorting conditions.
for this special case (by continuity), even though Proposition 2 was derived under the assumption that the meeting technology is not bilateral ($\sigma > 0$) to avoid the technical issue of division by $\phi_{\mu\mu}(\mu, \lambda) = 0$.\(^{43}\)

Proof. We focus on PAC/PAM; the logic for NAC/NAM is similar. Consider first the sufficient condition. We need to show that equation (62) implies (63) when $\rho > \overline{\alpha}^{EK}$. To see this, take logs to rewrite equation (62) as

$$\log f(x_2, y^{EK}) - \log f(x_1, y^{EK}) = \log (m(\lambda_0) - \lambda_0 m'(\lambda_0)) - \log (m(\lambda_1) - \lambda_1 m'(\lambda_1)),$$

which, by the fundamental theorem of calculus, can be rewritten as

$$\int_{x_1}^{x_2} \frac{f_x(x, y^{EK})}{f(x, y^{EK})} dx = \int_{\lambda_0}^{\lambda_1} \frac{-\lambda m''(\lambda)}{m(\lambda) - \lambda m'(\lambda)} d\lambda. \quad (64)$$

By the definition of ρ, we have $f_{xy}(x, y^{EK}) - \rho f_x(x, y^{EK}) \geq 0$. Similarly, by the definition of $\overline{\alpha}^{EK}$, we have $0 \geq m'(\lambda) - \overline{\alpha}^{EK} - \lambda m''(\lambda)$, where the right-hand side is strictly greater than $m'(\lambda) - \rho - \lambda m''(\lambda)$, because we assume $\rho > \overline{\alpha}^{EK}$. We thus have

$$\int_{x_1}^{x_2} \frac{f_{xy}(x, y^{EK})}{f_y(x, y^{EK})} dx > \int_{\lambda_0}^{\lambda_1} \frac{m'(\lambda)}{m(\lambda)} - \rho \frac{-\lambda m''(\lambda)}{m(\lambda) - \lambda m'(\lambda)} d\lambda,$$

because the integrand on the left-hand side is weakly positive, and integrand on the right-hand side is strictly negative. Combing the above inequality with (64) yields

$$\int_{x_1}^{x_2} \frac{f_{xy}(x, y)}{f_y(x, y)} dx > \int_{\lambda_0}^{\lambda_1} \frac{m'(\lambda)}{m(\lambda)} d\lambda, \quad (65)$$

which is the same as (63), by the same logic as what gave us (64) from (62).

Next, consider the necessary condition.\(^{44}\) The following construction is similar to that in the proof of Proposition 2. Towards a contradiction, suppose that $\rho < \overline{\alpha}^{EK}$.

\(^{43}\)There is a subtlety: in Proposition 2, when $\sigma > 0$, the necessary and sufficient conditions exactly coincide, because the supremum and the infimum are never attained as maximum and minimum, respectively. However, when $\sigma = 0$, we have $a^c(\zeta, \lambda) = a^c(\zeta, \lambda) = a^{EK}(\lambda) = 1/2$ for any ζ, λ, making firms indifferent between low- and high-type workers when f is CES with $\rho = 1/2$, as can been seen from (32). This indifference makes it necessary to distinguish between necessary and sufficient conditions for bilateral technologies.

\(^{44}\)A proof of necessity is required because Proposition 2 restricts attention to the case in which $\phi(\mu, \lambda)$ is strictly concave in μ, implying that the meeting technology is not bilateral.

58
Then there exist an x^*, y^* and λ^* such that $\rho(x^*, y^*) < a^{E_K}(\lambda^*)$, and by continuity there exists some $\epsilon > 0$ such that $\rho(x, y^*) < a^{E_K}(\lambda)$ holds for all x and λ with $|x - x^*|, |\lambda - \lambda^*| < \epsilon$. To derive the contradiction, we then construct a distribution of agents’ types such that NAC/NAM holds globally (i.e. PAC/PAM fails).

Step 1: Set $y^{E_K} = y^*$; by continuity, we can find some $\Delta x, \Delta \lambda < \epsilon$ such that $x_1 = x^* - \Delta x$, $x_2 = x^* + \Delta x$, $\lambda_0 = \lambda^* + \Delta \lambda$, $\lambda_1 = \lambda^* - \Delta \lambda$ and equation (62) holds.

Step 2: Set the market utilities $U_1 = m'(\lambda_0)f(x_1, y^{E_K})$ and $U_2 = m'(\lambda_1)f(x_2, y^{E_K})$.

Step 3: Define $\pi_i(y)$, $i = 1, 2$, as the maximum expected profit by attracting workers of type x_i only. That is, $\pi_i(y) = \max_{\lambda \geq 0} m(\lambda)f(x_i, y) - \lambda U_i$, where U_i is given by Step 2. By construction, we have then $\pi_1(y^{E_K}) = \pi_2(y^{E_K})$, which then implies that $\pi_1'(y^{E_K}) = m(\lambda_0)f(x_1, y^{E_K}) > m(\lambda_1)f(x_2, y^{E_K}) = \pi_2'(y^{E_K})$ by the same logic that equation (62) implies (63), except that now we reverse all the inequalities and only require that $\rho(x, y^{E_K}) < a^{E_K}(\lambda)$ for $x_1 \leq x \leq x_2$ and $\lambda_1 \leq \lambda \leq \lambda_0$. Hence, by continuity, we can find a Δy small enough such that $\pi_1(y) < \pi_2(y)$ for $y \in [y^{E_K} - \Delta y, y^{E_K})$ and $\pi_1(y) > \pi_2(y)$ for $y \in (y^{E_K}, y^{E_K} + \Delta y]$.

Step 4: Choose any firm type distribution $J(y)$ on $[y^{E_K} - \Delta y, y^{E_K} + \Delta y]$. When $y > y^{E_K}$, the demand of labor is given by the FOC $m'(\lambda)f(x_2, y) = U_2$, and when $y < y^{E_K}$, the demand of labor is given by the FOC $m'(\lambda)f(x_1, y) = U_1$.

Step 5: Set the measure of workers (ℓ_1, ℓ_2) equal to firms’ demand of labor, which then ensures that U_1 and U_2 are indeed the equilibrium market utilities of workers. □

B.6 Proof of Lemma 9

The desired expression for a^c follows readily from equations (19) and (29). To derive the expression for a^m, note that $\phi(\mu, \lambda) = m(\mu)$ implies that $\phi_{\mu}(\mu, \lambda) = m'(\mu)$ and $h(\zeta, \lambda) = m(\zeta\lambda)/m(\lambda)$. Therefore, the last factor in (20) can be rewritten as

$$1 - \frac{\partial \phi_{\mu}/\partial \zeta \partial h/\partial \lambda}{\partial \phi_{\mu}/\partial \lambda \partial h/\partial \zeta} = 1 - \frac{\lambda m''(\zeta \lambda) \frac{\zeta m'(\zeta \lambda) m(\lambda) - m(\zeta \lambda) m'(\lambda)}{m(\lambda)^2}}{\zeta m''(\zeta \lambda) \frac{\lambda m'(\zeta \lambda) m(\lambda)}{m(\lambda)^2}} = \frac{m(\zeta \lambda) m'(\lambda)}{m(\lambda) \zeta m'(\zeta \lambda) m(\lambda)} = \frac{\varepsilon_0(\lambda)}{\zeta \varepsilon_0(\lambda)}.$$

Note that $a^c(1, \lambda) = a^m(1, \lambda) = 1$ which implies that $\underline{\pi}^c, \overline{\pi}^m \geq 1$.

Next, consider a^c and a^m. Since $m(\mu)$ is strictly concave and strictly increasing, $\varepsilon_0(\mu)$ is strictly positive, and $\varepsilon_1(\mu)$ is strictly negative when $\mu > 0$. Hence, $a^c(\zeta, \lambda)$ and $a^m(\zeta, \lambda)$ are always nonnegative. By L’Hopital’s rule and $m'(0) > 0$, we have $\lim_{\mu \to 0} \varepsilon_1(\mu) = \lim_{\mu \to 0} \mu m''(\mu)/m'(\mu) = 0$, where, as we argued in footnote 34, $\lim_{\mu \to 0} \mu m''(\mu) = 0$ for invariant technologies. Similarly, $\lim_{\mu \to 0} \varepsilon_0(\mu) =$
\(\lim_{\mu \to 0} \mu m'(\mu)/m(\mu) = \lim_{\mu \to 0} 1 + \mu m''(\mu)/m'(\mu) = 1. \) Thus, \(\lim_{\zeta \to 0} a^c(\zeta, \lambda) = \lim_{\zeta \to 0} \varepsilon_1(\lambda \zeta) / \varepsilon_1(\lambda) = 0, \) and \(\lim_{\zeta \to 0} a^m(\zeta, \lambda) = \lim_{\zeta \to 0} \varepsilon_1(\lambda \zeta) / \varepsilon_1(\lambda) \cdot \varepsilon_0(\lambda) / \varepsilon_0(\lambda \zeta) = 0. \) Hence, \(a^c = a^m = 0. \)

B.7 Proof of Proposition 4

The necessary conditions directly follow from Proposition 2, as its proof is valid for any non-bilateral technology (i.e. \(\phi \) is strictly concave in \(\mu \)). Hence, we only need to prove sufficiency. As mentioned in the main text, when the technology is invariant, the firms’ problem is strictly concave so that the solution is always unique. For PAC/PAM, we therefore only need to verify (24), which now reduces to

\[
\frac{f^1 \Delta f_y}{f^1 \Delta f_y^*} \geq a^i. \tag{66}
\]

where we have used the fact that \(\phi_{\lambda}(\mu, \lambda) = 0 \) and hence \(\phi_{\mu \lambda} = \phi_{\lambda \lambda} = 0. \)

Note that \(\rho \geq \bar{a}^i \) by assumption. Further, \(\bar{a}^i \geq 1, \) by Lemma 9. Therefore,

\[
\frac{f^1 \Delta f_y}{f^1 \Delta f_y^*} \geq \frac{(1 + \kappa(y)) \rho - 1}{\kappa(y)} \geq \rho \geq \bar{a}^i \geq a^i,
\]

where the first inequality is because of (42), and the second inequality follows from part i) of Lemma 12.

Next, consider NAC/NAM, where we have assumed that \(\bar{\rho} \leq 0 = a^c = a^m \) (see Lemma 9). Again by (42), we have

\[
\frac{f^1 \Delta f_y}{f^1 \Delta f_y^*} \leq \frac{(1 + \kappa(y)) \bar{\rho} - 1}{\kappa(y)} \leq 0 = a^i \leq a^i.
\]

B.8 Invariant Technologies with \(N \) Worker Types

Our analysis of invariant technologies can easily be extended to the case in which there are \(N > 2 \) worker types, i.e. \(x_1 < x_2 < \cdots < x_N. \) To do so, define \(\mu_i \) as the queue length of workers with type \(x_i \) or higher, for \(i = 1, 2, \ldots, N. \) That is, the queue length of workers of type \(x_i \) is \(\mu_i - \mu_{i+1}, \) with the convention that \(\mu_{N+1} = 0, \) and the total queue length is \(\mu_1. \)
Consider then a firm of type \(y \) that faces a queue \((\mu_1, \mu_2, \ldots, \mu_N)\). With probability \(m(\mu_1) \), the firm meets at least one worker, which generates a surplus of at least \(f(x_1, y) \); with probability \(m(\mu_2) \) the firm meets at least one worker with a type higher than or equal to \(x_2 \), which generates an additional surplus of at least \(f(x_2, y) - f(x_1, y) \), and so on. Using the convention \(f(x_0, y) = 0 \), expected surplus therefore equals

\[
S(\mu_1, \ldots, \mu_N, y) = \sum_{i=1}^{N} m(\mu_i)[f(x_i, y) - f(x_{i-1}, y)],
\]

which generalizes equation (7) and is strictly concave in \((\mu_1, \ldots, \mu_N)\).

From equation (67), we can proceed as before. Adding more workers of type \(x_i \) increases \(\mu_1, \ldots, \mu_i \) simultaneously, which implies that the marginal contribution to surplus of such workers is \(\sum_{k=1}^{i} m'(\mu_k)[f(x_k, y) - f(x_{k-1}, y)] \). Since the firm’s problem is strictly concave in \((\mu_1, \ldots, \mu_N)\), the optimal queue is unique and is denoted by \((\mu_1(y), \ldots, \mu_N(y))\). Assuming an interior solution to simplify exposition, \(\mu_i(y) \) is determined by the FOC \(m'(\mu_i(y))[f(x_i, y) - f(x_{i-1}, y)] = U_i - U_{i-1} \), where \(U_i \) is the market utility of workers of type \(x_i \), with the convention \(U_0 = 0 \).

Defining \(\zeta_i(y) = \mu_i(y)/\mu_1(y) \) and \(\lambda(y) = \mu_1(y) \), differentiation of this FOC along the equilibrium path yields

\[
-f_y(x_i, y) - f_y(x_{i-1}, y) \]

which replicates (21) for the case of invariant technologies. Setting \(i = 1 \) and using the fact that \(\zeta_1(y) = 1 \), the above equation implies

\[
-m''(\lambda(y)) \lambda'(y) = \frac{f_y(x_1, y)}{f(x_1, y)},
\]

which replicates (22). Combing the above two equations yields

\[
\frac{m''(\zeta(y)\lambda(y))}{m'(\zeta(y)\lambda(y))} \left(\zeta'_i(y)\lambda(y) + \zeta_i(y)\lambda'(y) \right) = \frac{f_y(x_i, y) - f_y(x_{i-1}, y)}{f(x_i, y) - f(x_{i-1}, y)} \frac{f(x_1, y)}{f(x_1, y)}.
\]
which replicates (23). Then, by Lemma 6, the condition for PAC/PAM is

\[
\frac{f^1 f_y(x_i, y) - f_y(x_{i-1}, y)}{f^1_y f(x_i, y) - f(x_{i-1}, y)} \geq a^i (\zeta_i(y), \lambda(y)).
\]

(68)

where \(i = c\) for PAC and \(i = m\) for PAM. From Proposition 4 (the case of \(N = 2\)), we have that \(\rho \geq a^i\) is necessary, now we show that this is also sufficient for any \(N\).

Since \(f(x, y)\) is log-supermodular, we have

\[
\frac{f(x_{i-1}, y)}{f_y(x_{i-1}, y)} \geq \frac{f(x_i, y)}{f_y(x_i, y)}.
\]

Therefore, we only need to show that

\[
\frac{f(x_{i-1}, y)}{f_y(x_{i-1}, y)} f_y(x_i, y) - f(x_i, y) - f(x_{i-1}, y) \geq a^i (\zeta_i(y), \lambda(y)),
\]

which is a replication of equation (66). Hence, by the same argument as in the proof of Proposition 4, Proposition 4 and Corollary 2 continue to hold for general \(N\).

B.9 Proof of Proposition 5

First, we consider the unconditional probability that an applicant generates a positive signal \(\tilde{x}_2\). The probability of this event equals \(P(\tilde{x}_2) = \frac{\mu}{\lambda} + \frac{\lambda - \mu}{\lambda}(1 - \tau)\), and the queue length of such applicants is \(\tilde{\lambda} = \lambda P(\tilde{x}_2) = \mu + (\lambda - \mu)(1 - \tau)\). Given a positive signal \((\tilde{x}_2)\), the probability that an applicant is of high type \((x_2)\) is \(P(x_2 | \tilde{x}_2) = P(x_2 | x_2) / P(\tilde{x}_2) = \mu / \tilde{\lambda}\), where the first equality is simply Bayes’ rule.

Next, we consider the probability that the firm interviews at least one high-type worker, \(\phi(\mu, \lambda)\). For this, we can ignore the existence of applicants with negative signals; they are low-type workers for sure and do not affect the meeting process between firms and workers with positive signals. By equation (6), the probability that a firm interviews someone from the queue \(\mu\) of high-type applicants, given a queue \(\tilde{\lambda}\) of applicants with positive signals, is \(\phi(\mu, \lambda) = \mu / (1 + \sigma \mu + (1 - \sigma)\tilde{\lambda})\), which yields the desired result after substitution of \(\tilde{\lambda}\).

B.10 Proof of Lemma 10

By L’Hospital’s Rule, \(\lim_{\kappa \to 0} \Omega(\kappa) = \lim_{\kappa \to 0} \frac{1}{2} + \frac{1}{\sqrt{\kappa} + \sqrt{1 + \kappa}} \left(\frac{1}{2\sqrt{\kappa}} + \frac{1}{2\sqrt{1 + \kappa}} \right) (1 + \kappa) = \infty\).

In contrast, when \(\kappa \to \infty\), we have \(\kappa \approx 1 + \kappa\) and \(\lim_{\kappa \to \infty} \Omega(\kappa) = \lim_{\kappa \to \infty} \frac{1}{2} + \frac{\ln(\sqrt{\pi} + \sqrt{\kappa})}{\ln(\kappa)} = 1\).
Next, we prove that $\Omega(\kappa)$ is strictly decreasing. By direct computation,

$$
\Omega'(\kappa) = \frac{\ln(1 + \kappa) - 2\sqrt{\frac{\kappa}{1+\kappa}} \ln(\sqrt{\kappa + \sqrt{1+\kappa}})}{4\sqrt{\kappa}(1 + \kappa)\ln(1 + \kappa)}.
$$

The derivative of the numerator above is $-\ln(\sqrt{\kappa + \sqrt{1+\kappa}})\frac{1+\kappa}{\kappa}(1 + \kappa)^{-2} < 0$. At $\kappa = 0$, the numerator is zero, which implies that it is strictly negative and hence $\Omega'(\kappa) < 0$ when $\kappa > 0$. \qed

\subsection*{B.11 Proof of Proposition 6}

Our proof consists of three parts. First, we provide the details regarding a firm’s optimal choice of σ that we omitted from the main text. Subsequently, we move to the analysis of NAC/NAM. The final part concerns PAC/PAM.

\subsubsection*{B.11.1 Individual Firm’s Problem}

Consider a firm of type y which thinks about choosing $\sigma = 1$. As we illustrate in Figure 5, there are four possibilities regarding the firm’s optimal applicant pool:

(i) \textit{No applicants.} If $f(x_1, y) \leq U_1$ and $f(x_2, y) \leq U_2$, then the firm will not attract any applicants, such that $\pi(y) = 0$.

(ii) \textit{Only low-type applicants.} If $f(x_1, y) > U_1$ and $f(x_2, y) - f(x_1, y) \leq U_2 - U_1$, the firm will attract low-type workers, but not high-type workers as their marginal product is less than their marginal cost; in this case, $\pi(y) = \pi_1(y)$.

(iii) \textit{Only high-type applicants.} If $f(x_2, y) > U_2$ and $f(x_2, y)/f(x_1, y) \geq U_2/U_1$, the firm will attract only high-type workers since their relative productivity is higher than their relative cost; in this case, $\pi(y) = \pi_2(y)$.

(iv) \textit{Both types of applicants.} If $f(x_2, y) - f(x_1, y) > U_2 - U_1$ and $f(x_2, y)/f(x_1, y) < U_2/U_1$, then the firm strictly prefers a mix of both types of workers in their application pool. By the FOCs, the optimal queue is given by $\mu = \sqrt{\Delta f/\Delta U} - 1$ and $\lambda = \sqrt{f_2/U_1} - 1$. In this case, $\pi(y)$ is given by (34).

Clearly, a necessary condition for $\sigma = 1$ to yield higher profits than $\sigma = 0$ is that the firm attracts both types of applicants. In what follows, we will therefore focus on this case, which occurs when

$$
\Delta f > \Delta U \quad \text{and} \quad \frac{f(x_2, y)}{f(x_1, y)} < \frac{U_2}{U_1}.
$$

(69)
As the red dashed line in Figure 5 shows, the region described by (69) is divided into two parts by the curve $\pi_1(y) = \pi_2(y)$, or equivalently

$$\sqrt{f^2} - \sqrt{f^1} = \sqrt{U_2} - \sqrt{U_1}. \tag{70}$$

We therefore have to distinguish between two cases when calculating the difference in profits between $\sigma = 0$ and $\sigma = 1$ in this region, i.e. $\Delta \pi(y) \equiv \overline{\pi}(y) - \max\{\pi_1(y), \pi_2(y)\}$.

The following lemma formalizes this.

Lemma 16. If a firm is indifferent between attracting low- and high-type workers conditional on $\sigma = 0$, i.e. $\pi_1(y) = \pi_2(y)$ or equivalently (70) holds, then this firm attracts both types of workers conditional on $\sigma = 1$, i.e. (69) also holds. In the region characterized by (69), the difference in profits between $\sigma = 1$ and $\sigma = 0$ equals

$$\Delta \pi(y) = \begin{cases}
(\sqrt{\Delta f} - \sqrt{\Delta U})^2 & \text{if } \pi_1(y) \geq \pi_2(y), \quad (71a) \\
2 \left(\sqrt{f^2 U_2} - \sqrt{f^1 U_1} - \sqrt{\Delta f \Delta U} \right) & \text{if } \pi_1(y) \leq \pi_2(y). \quad (71b)
\end{cases}$$

Proof. Equation (70) can be rewritten as $\sqrt{f^2/f^1} - 1 = \sqrt{U_2/U_1} - \sqrt{U_1/U_2}$. Since $U_1/f^1 < 1$, it follows that $\sqrt{U_2/U_1} - 1 > \sqrt{f^2/f^1} - 1$, and thus $U_2/U_1 > f^2/f^1$. Similarly, (70) can also be rewritten as $(f^2 - f^1)/(\sqrt{f^2} + \sqrt{f^1}) = (U_2 - U_1)/(\sqrt{U_2} + \sqrt{U_1})$. Because $f^1 > U_1$ and $f^2 > U_2$, we have $\Delta f > \Delta U$. Hence, (69)
holds. Equation (71) then follows from substituting the relevant version of (32) into
\[\Delta \pi(y) = \pi(y) - \max \{ \pi_1(y), \pi_2(y) \}. \]

The characterization of \(\Delta \pi(y) \) completes the analysis of the firm’s choice problem
given by (31): the firm’s optimal \(\sigma \) is 1 if \(\Delta \pi(y) > c \), 0 if \(\Delta \pi(y) < c \), and indeterminate
in the knife-edge case \(\Delta \pi(y) = c \). If the optimal \(\sigma \) is 1, then the optimal \((\mu, \lambda) \) must
be interior, and given by \(\mu = \sqrt{\Delta f / \Delta U - 1} \) and \(\lambda = \sqrt{f_1/U_1 - 1} \). When the optimal
\(\sigma \) is 0, then the firm will attract either only low-type or only high-type workers,
depending on whether \(\sqrt{f_2} - \sqrt{f_1} \) is larger than \(\sqrt{U_2} - \sqrt{U_1} \), as discussed after (32).

B.11.2 The Analysis of NAC/NAM

As mentioned in the main text, necessity of submodularity of \(f(x, y) \) for NAC/NAM
follows from the special case \(c = 0 \) (see Proposition 3). Next, we show that strict
submodularity of \(f(x, y) \) is sufficient for NAC/NAM. From the discussion after equation (32), it follows that when \(f(x, y) \) is strictly submodular, and thus strictly square-root submodular, there exists a unique \(y^{EK} \) which solves (70). Furthermore, \(\pi_2(y) > \pi_1(y) \) for firms with \(y < y^{EK} \), and vice versa.

Since \(f \) is strictly submodular, both \(f^2 - f^1 \) and \(f^2/f^1 \) are strictly decreasing in \(y \).
The first part of Lemma 16 states that \(y^{EK} \) must belong to the region characterized
by (69). There exists at most one \(y' < y^{EK} \) such that \(f(x_2, y')/f(x_1, y') = U_2/U_1 \)
(otherwise set \(y' = y \)), and at most one \(y'' > y^{EK} \) such that \(f(x_2, y'') - f(x_1, y'') = U_2 - U_1 \)
(otherwise set \(y'' = y \)). The region characterized by (69) is thus \(y \in (y', y'') \). The following Lemma establishes that \(\Delta \pi(y) \) is single-peaked at \(y = y^{EK} \).

Lemma 17. Suppose that \(f(x, y) \) is strictly submodular. In the region characterized
by (69), \(\Delta \pi(y) \) is strictly increasing in \(y \) for \(y \leq y^{EK} \) and strictly decreasing in \(y \) for \(y \geq y^{EK} \).

Proof. For submodular \(f \), \(\pi_2(y) > \pi_1(y) \) if \(y < y^{EK} \), and vice versa. As we remarked
before, the region characterized by (69) is \((y', y'') \), which contains \(y^{EK} \). Hence,

\[
\Delta \pi'(y) = \begin{cases}
\left(1 - \frac{\sqrt{\Delta U}}{\sqrt{\Delta f}} \right) \Delta f_y & \text{if } y > y^{EK}, \\
- \left(\frac{\sqrt{U_2}}{\sqrt{f_2}} \right) f_y^2 + \left(\frac{\sqrt{U_1}}{\sqrt{f_1}} \right) f_y^1 & \text{if } y < y^{EK}.
\end{cases}
\]
To establish the sign of (72a), note that \(\Delta f_y = f^2_y - f^1_y < 0 \) when \(f \) is strictly submodular; hence, \(\Delta \pi'(y) < 0 \) for \(y > y^{EK} \). To establish the sign of (72b), note that \(f^2/f^1 < U_2/U_1 \) is equivalent to \(\Delta U/\Delta f > U_1/f^1 \) or \(\Delta U/\Delta f > U_2/f^2 \). The coefficient of \(f^2_y \) in (72b) is therefore negative. Since \(f \) is submodular, \(f^2_y \leq f^1_y \), and we have

\[
\Delta \pi'(y) \geq -f^1_y \left(\sqrt{\frac{\Delta U}{\Delta f}} - \sqrt{\frac{U_2}{f^2}} \right) + f^1_y \left(\sqrt{\frac{\Delta U}{\Delta f}} - \sqrt{\frac{U_1}{f^1}} \right) = f^1_y \left(\sqrt{\frac{U_2}{f^2}} - \sqrt{\frac{U_1}{f^1}} \right),
\]

where the right-hand side is strictly positive because \(U_2/U_1 > f^2/f^1 \). Hence, \(\Delta \pi'(y) > 0 \) for \(y < y^{EK} \), i.e. \(\Delta \pi(y) \) is strictly increasing in \(y \) for \(y \leq y^{EK} \).

This result implies that firms with type \(y^{EK} \) have the strongest incentive to screen. If all firms choose \(\sigma = 1 \) in equilibrium, then sufficiency follows from Proposition 3; if all firms choose \(\sigma = 0 \) in equilibrium, then sufficiency follows from Proposition 7 or Eeckhout and Kircher (2010a). In the remaining case, where the equilibrium features both firms choosing \(\sigma = 1 \) and firms choosing \(\sigma = 0 \), we must have \(\Delta \pi(y^{EK}) > c \) (otherwise all firms will choose \(\sigma = 0 \)). There exist then two firm types \(y^* \) and \(\overline{y}^* \) with \(y' \leq y^* < y^{EK} < \overline{y}^* \leq y'' \), where firms of type \(y^* \) and \(\overline{y}^* \) are indifferent between choosing \(\sigma = 0 \) and 1, i.e. \(\Delta \pi(y^*) = \Delta \pi(\overline{y}^*) = c \). Firms with \(y < y^* \) will choose \(\sigma = 0 \) and attract only high-type workers; firms with \(y \in (y^*, \overline{y}^*) \) will choose \(\sigma = 1 \) and attract both types of workers; finally, firms with \(y > \overline{y}^* \) will choose \(\sigma = 0 \) and attract only low-type workers. Since all firm types \(y \) between \(y^* \) and \(\overline{y}^* \) choose \(\sigma = 1 \), submodularity implies that NAC/NAM holds within this interval. Combining the above results implies that NAC/NAM holds globally.

Note that we can not weaken the requirement of strict submodularity to mere submodularity for the sufficient condition. To see this, set \(f(x, y) = x + y \) and initially set \(c \) large enough so that all firms choose \(\sigma = 0 \). Then for \(y \geq y^{EK} \), \(\Delta \pi(y) \) is a constant by equation (71a). If we set \(c = \Delta \pi(y^{EK}) \), all firms with \(y \geq y^{EK} \) are indifferent between choosing \(\sigma = 0 \) with low-type applicants and \(\sigma = 1 \) with both types of applicants. This indeterminacy violates NAC/NAM.
B.11.3 The Analysis of PAC/PAM

First, with a slight abuse of notation, given \(x_1\) and \(x_2\), we define \(\rho(x_1,x_2,y)\) as the solution to
\[
\frac{f_y(x_2,y)}{f_y(x_1,y)} = \left(\frac{f(x_2,y)}{f(x_1,y)} \right)^{\rho(x_1,x_2,y)}.
\] (73)

By Lemma 11, \(\rho(x_1,x_2,y) \in [\underline{\rho}, \overline{\rho}]\). Note that \(\rho(x_1,x_2,y)\) is the discrete version of \(\rho(x,y)\) defined in (1). We have \(\rho(x_1,x_2,y) \to \rho(x,y)\) when \(x_1,x_2 \to x\).

We now provide a claim which is stronger than the statements in Proposition 6.

Claim. Consider a log-supermodular function \(f\). Given a distribution of agents’ types and a screening cost \(c\), PAC/PAM holds in equilibrium as long as, for each \(y\),
\[
\rho(x_1,x_2,y) \geq \Omega(\kappa(y)).
\] (74)

In contrast, given \(x_1,x_2\) and \(J(y)\), if for some \(y^* \in (\underline{y}, \overline{y})\), we have
\[
\rho(x_1,x_2,y^*) < \Omega(\kappa(y^*)),
\] (75)
then we can find \((\ell_1, \ell_2)\) and \(c\) such that PAC/PAM fails in equilibrium.

Since \(\Omega(\cdot)\) is strictly decreasing and with log-supermodular \(f\), \(\kappa(y)\) is increasing in \(y\), the right-hand side of (74) reaches its maximum at \(y = \underline{y}\). Also since \(\rho(x_1,x_2,y) \geq \underline{\rho}\), the sufficient condition (36) in Proposition 6 then implies (74). On the other hand, given any log-supermodular function, whenever \(x_1,x_2 \to x\), then \(\kappa(y) \to 0\) and \(\Omega(\kappa(y)) \to \infty\), and (75) holds for all \(y^* \in [\underline{y}, \overline{y}]\), which, by the above claim, implies that we can find \((\ell_1, \ell_2)\) and \(c\) such that PAC/PAM fails in equilibrium.

Note that for a CES production function, (74) reduces to \(\rho \geq \Omega(\kappa(y))\) and and (75) reduces to \(\rho < \Omega(\kappa(y))\). Thus, although the sufficient condition (36) is slightly weaker than (74), it is still sharp in the special case of CES production functions.

Similar to the analysis of NAC/NAM, since \(f(x,y)\) is log-supermodular, and therefore strictly square-root supermodular, there exists a unique \(y^{EK}\) which solves (70). The first part of Lemma 16 states that \(y^{EK}\) must belong to the region characterized by (69). Furthermore, \(f^2 - f^1\) is strictly increasing so that there exists at most one \(y' < y^{EK}\) such that \(f^2 - f^1 = U_2 - U_1\) (otherwise set \(y' = \underline{y}\)).
Since we only assume weak log-supermodularity, f^2/f^1 is weakly increasing. Set $y'' = \min\{y \mid f^2/f^1 \geq U_2/U_1\}$ (if this set is empty, then set $y'' = \overline{y}$). The region characterized by (69) is then $y \in (y', y'')$. The following Lemma establishes that under the sufficient condition (74), $\Delta \pi(y)$ is single-peaked at $y = y^{EK}$, so PAC/PAM follows from the same logic that was used for the case of NAC/NAM.

Lemma 18. Suppose that $f(x, y)$ is log-supermodular. In the region characterized by (69), $\Delta \pi(y)$ is strictly increasing in y for $y \leq y^{EK}$, and if condition (74) holds for each $y \in (\underline{y}, \overline{y})$, then it is strictly decreasing in y for $y \geq y^{EK}$.

Proof. If $y \in (y', y^{EK}]$, then $\Delta \pi(y)$ is given by (71a) and its derivative is given by (72a), so it is strictly increasing in y since $\Delta f_y > 0$. If $y \in [y^{EK}, y')$, then $\Delta \pi(y)$ is given by (71b) and its derivative is now given by (72b) and can be rewritten as

$$\Delta \pi'(y) = f_y^1 \frac{\Delta U}{\kappa(y) f^1} \left[(1 + \kappa(y))^\rho(y) \left(1 - \sqrt{\frac{\kappa(y) + \delta(y)^2}{1 + \kappa(y)}} - 1 \right) \right] + 1 - \sqrt{\frac{\kappa(y)}{\Delta U/U_1}},$$

where, to simplify notation, we shorten $\rho(x_1, x_2, y)$ as $\rho(y)$, and we used the identities $f^2/f^1 = 1 + \kappa(y)$ and $f_y^2/f_y^1 = (1 + \kappa(y))^{\rho(y)}$.

Furthermore, define

$$\delta(y) \equiv \sqrt{\frac{\kappa(y)}{\Delta U/U_1}};$$

which implies $\sqrt{U_2/\Delta U} = (\kappa(y) + \delta(y)^2)/\kappa(y)$, and $\Delta \pi'(y)$ can be rewritten as

$$\Delta \pi'(y) = f_y^1 \frac{\Delta U}{\kappa(y) f^1} \left[(1 + \kappa(y))^\rho(y) \left(\sqrt{\frac{\kappa(y) + \delta(y)^2}{1 + \kappa(y)}} - 1 \right) \right] + 1 - \delta(y)$$

$$= f_y^1 \frac{\Delta U}{\kappa(y) f^1} \left[(1 + \kappa(y))^\rho(y) - \frac{1}{2} \sqrt{\kappa(y) + \delta(y)^2} - (1 + \kappa(y))^{\rho(y)} - 1 + \delta(y) \right]$$

$$= f_y^1 \frac{\Delta U}{\kappa(y) f^1} \left[(1 + \kappa(y))^{2\rho(y)-1} (\kappa(y) + \delta(y)^2) - (1 + \kappa(y))^{\rho(y)} - 1 + \delta(y) \right]$$

Thus, $\Delta \pi'(y)$ has the same sign as the numerator of the last factor in the last line.
Single out the numerator and define

$$S(\delta, \kappa, \rho) = (1 + \kappa)^{2\rho - 1} (\kappa + \delta^2) - ((1 + \kappa)^\rho - 1 + \delta)^2,$$ \hfill (77)

which is a quadratic function of δ with a strictly positive second-order coefficient since we assume $\rho \geq 1$ (log-supermodularity). Note that $S(1, \kappa, \rho) = 0$ and $\frac{\partial S(\delta, \kappa, \rho)}{\partial \delta}\bigg|_{\delta = 1} = 2(1 + \kappa)^\rho((1 + \kappa)^{\rho - 1} - 1) \geq 0$. Therefore, if $S(0, \kappa, \rho) \leq 0$, then $S(\delta, \kappa, \rho) < 0$ for all $\delta \in (0, 1)$. Note that $S(0, \kappa, \rho) = \kappa (1 + \kappa)^{2\rho - 1} - ((1 + \kappa)^\rho - 1)^2$, Thus $S(0, \kappa, \rho) \leq 0$ if and only if $\sqrt{\frac{\kappa}{1 + \kappa}}(1 + \kappa)^\rho \leq (1 + \kappa)^\rho - 1$, or equivalently $\rho \geq \Omega(\kappa)$.

If for each $y \in (\bar{y}, y)$, we have $\rho(y) \geq \Omega(\kappa(y))$, then by the above argument, $S(\delta(y), \kappa(y), \rho(y)) < 0$ and hence $\Delta\pi'(y) < 0$ for $y \in [y^{EK}, y^{''})$.

Similar to the case of NAC/NAM, we only need to consider the case where the equilibrium features both firms choosing $\sigma = 1$ and firms choosing $\sigma = 0$. Then there exist two firm types y^s and \bar{y}^s that are indifferent between choosing $\sigma = 0$ and 1, where $y^s \leq y^s < y^{EK} < \bar{y}^s \leq y^{''}$. Firms with $y < y^s$ will choose $\sigma = 0$ and attract only low-type workers; firms with $y \in (y^s, \bar{y}^s)$ will choose $\sigma = 1$ and attract both types of workers; finally, firms with $y > \bar{y}^s$ will choose $\sigma = 0$ and attract only high-type workers. Since all firms of y between y^s and \bar{y}^s choose $\sigma = 1$, log-supermodularity implies that PAC/PAM holds within this interval. Combining the above results then implies that PAC/PAM holds globally.

Now consider the second part of the claim. Before we move to the detailed proof, we first give a brief sketch. If (75) holds, then we can find (ℓ_1, ℓ_2) and a large c such that all firms choose $\sigma = 0$ in equilibrium, and $\Delta\pi(y)$ reaches its maximum at some point $\tilde{y} > y^{EK}$ (note that the maximum is between 0 and c here). Now decrease c gradually till firms near \tilde{y} find it optimal to choose $\sigma = 1$ and screen ex-post while firms with types slightly above y^{EK} will continue choosing $\sigma = 0$ and accordingly attract high-type applicants only. PAC/PAM then fails in this case. Below, we prove this claim formally.

We first prove the following. Given a log-supermodular function $f(x, y)$ and a distribution of agents’ types, a necessary condition for PAC/PAM to hold for all c is that $\Delta\pi'_+(y^{EK}) \leq 0$ when c is sufficiently large (for example, $c \geq f(x_2, \bar{y})$) so that all firms choose $\sigma = 0$, where $\Delta\pi'_+(y^{EK})$ is the right derivative of $\Delta\pi(y)$ at point y^{EK}.

Suppose otherwise that $\Delta\pi'_+(y^{EK})$ is strictly positive; the maximum value of $\Delta\pi(y)$ must then be reached at some point $\tilde{y} > y^{EK}$, since $\Delta\pi(y)$ is always strictly
increasing when $y \in (y', y^{EK})$ (see Lemma 18). Now define $\tilde{c} = \Delta \pi(\tilde{y})$ and gradually decrease it from $f(x_2, \tilde{y})$ to values around \tilde{c}. What is the impact of this change on the sorting pattern? As long as $c \geq \tilde{c}$, no firm is willing to invest in screening, so the equilibrium allocation remains the same. When c is slightly below \tilde{c}, then firms with types sufficiently close to \tilde{y} will choose $\sigma = 1$. Note that the equilibrium market utilities U_1 and U_2 will change slightly, so that y^{EK} also changes only slightly. As before, firms with types slightly above y^{EK} will therefore choose $\sigma = 0$ and hire high-type workers only, while firms with types sufficiently close to \tilde{y} will attract both types of workers. Hence, PAC/PAM fails to hold when c is slightly below \tilde{c}.

Below, we complete the proof by showing that for any log-supermodular function $f(x, y)$ and $(x_1, x_2, J(y))$, if (75) holds for some $y^* \in (y, \tilde{y})$, then we can choose (ℓ_1, ℓ_2) such that $\Delta \pi^*_+(y^{EK}) > 0$ when c is sufficiently large that all firms choose $\sigma = 0$. The idea of construction is similar to the counterexample for the necessity part of Proposition 7 (the bilateral case).

Step 1: Since $\rho(y^*) = \Omega(\kappa(y^*))$, we have $\mathcal{S}(0, \kappa(y^*), \rho(y^*)) > 0$, where \mathcal{S} is defined in equation (77). Thus, by continuity, we can find a δ^* small enough such that $\mathcal{S}(\delta^*, \kappa(y^*), \rho(y^*)) > 0$. Next, we construct (U_1^*, U_2^*) from the following two equations,

$$
\sqrt{f(x_2, y^*)} - \sqrt{f(x_1, y^*)} = \sqrt{U_2^*} - \sqrt{U_1^*}
$$

$$
\delta^* = \sqrt{\frac{f(x_2, y^*) - f(x_1, y^*)}{f(x_1, y^*)}}.
$$

These equations are reminiscent of (70) and (76), respectively. The main difference is that we considered the market utilities as known and solved for y^{EK} and $\delta(y)$; here we treat y^* and δ^* as known and solve for market utilities instead.

Step 2: Given (U_1^*, U_2^*), y^* is then the firm type that corresponds to y^{EK} defined before. Since f is log-supermodular and hence strictly square-root supermodular, firms with types $y > y^*$ will attract only high-type applicants, and firms with types $y < y^*$ will attract only low-type applicants. The firms’ problem is $\max \lambda m(\lambda) f(x_1, y) - \lambda U_1^*$ for $y \leq y^*$, and $\max \lambda m(\lambda) f(x_2, y) - \lambda U_2^*$ for $y \geq y^*$. Denote the solution by $\lambda(y)$ for all y.

Step 3: Set $\ell_1 = \int_{y^*}^{y} \lambda(y) dJ(y)$ and $\ell_2 = \int_{y^*}^{\tilde{y}} \lambda(y) dJ(y)$. Then, by construction, (U_1^*, U_2^*) are indeed the market utilities, $y^* = y^{EK}$ for the equilibrium where all firms choose $\sigma = 0$, and $\Delta \pi^+_+(y^{EK}) > 0$ because $\mathcal{S}(\delta^*, \kappa(y^*), \rho(y^*)) > 0$ and $y^* = y^{EK}$. \hfill \Box