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1 Introduction

One of the most important tasks for any firm is to hire the right workers. A crucial

part of this process consists of screening applicants through job interviews.1 In this

paper, we are interested in the question how this screening process affects sorting

patterns in the labor market. That is, does the extent to which firms can inter-

view workers affect whether the labor market exhibits positive (PAM) or negative

assortative matching (NAM)? If technological innovations allow firms to screen more

applicants with higher precision, does that make sorting more or less likely?2

Unfortunately, the economic literature is silent on these questions. The earliest

work on assignment problems (Tinbergen, 1956; Shapley and Shubik, 1971; Becker,

1973; Rosen, 1974) considers frictionless environments with no role for screening be-

cause there is full information about types. More recent work by Shimer and Smith

(2000), Shi (2001, 2002), Shimer (2005) and Eeckhout and Kircher (2010a) allows for

search frictions but makes particular assumptions about the available information in

the matching process and does not explore how outcomes depend on them.

To answer our question, we therefore present a new search model of the labor

market. In line with recent evidence by Davis and Samaniego de la Parra (2017), we

allow firms to interview multiple (but not necessarily all) applicants before making a

job offer to the most profitable candidate. We show how the equilibrium allocation

of workers to firms in this environment depends on the degree of production comple-

mentarities on the one hand and the extent to which firms can interview applicants

on the other hand. Perhaps surprisingly, we find that reducing frictions by allowing

firms to interview more workers can be a force against sorting.

To explain this result, we must first describe our setup in more detail. We consider

a static environment in which heterogeneous firms compete for heterogeneous workers

by posting menus of type-contingent wages. Workers direct their search to the menu

that maximizes their expected payoff. This choice determines the expected number of

applicants (the ‘queue length’) at each firm, although the actual number is stochastic

1See below for some empirical evidence regarding the recruiting process. Note that ‘screening’ in
this context has a different meaning than the homonymous game-theoretic concept. In addition to
job interviews, screening workers may involve other instruments like checking references, assessments,
and job tests. We use ‘interview’ as shorthand for the entire collection of instruments.

2As an example of such a technological innovation, Hoffman et al. (2018) describe how some firms
subject all applicants to an online job test. Based on their answers, every applicant is assigned a
score, calculated from correlations between answers and job performance among existing employees.
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due to coordination frictions. As mentioned, the key novelty in our setup is that we

allow firms to interview a subset of applicants, which reveals their types. Firms hire

the most profitable candidate among their interviewees and subsequently produce

output according to a general production function.

Firms in this environment face a trade-off. Attracting low-type applicants can be

beneficial because the search frictions imply that it is always possible that no high

type applies, in which case hiring a low type is better than remaining unmatched.

However, this kind of insurance comes at a cost, because the presence of low types

makes it harder for the firm to identify the high types in the applicant pool. Clearly,

the magnitude of the cost is smaller if firms can screen more, so firms’ decision what

applicant pool to attract ex ante depends on the extent to which they can screen

workers ex post.

We start our analysis by establishing that a firm’s problem can be rewritten as

one in which it purchases queues of applicants at prices equal to workers’ expected

payoffs. This reformulation implies that the market equilibrium is constrained efficient

and simplifies exposition. Firms will purchase queues of applicants such that each

worker’s marginal contribution to surplus equals his marginal cost. An applicant

directly contributes to surplus if no other applicant with the same or better type is

being interviewed. However, when firms cannot screen everyone, an applicant also

affects surplus by making it harder for other (potentially more-productive) applicants

to be interviewed.

We then turn to sorting. Given the meaningful distinction between applicants and

hires in our environment, we analyze sorting along both dimensions. We define PAM

as first-order stochastic dominance in the distribution of hires, and introduce positive

assortative contacting (PAC) as the corresponding concept for the distribution of

applicants.3

To analyze when the equilibrium exhibits positive or negative sorting, it is helpful

to focus on the boundary between both cases where the equilibrium exhibits no sort-

ing. At this boundary, complementarities in production imply that more-productive

firms have longer queue lengths. This longer queue length reduces the probability

that a high-type applicant creates surplus, which discourages more-productive firms

from attracting such applicants and therefore forms a force against positive sorting.

3We also provide results for negative assortative contacting (NAC) and NAM. We omit intuition
for those results here as it mirrors the intuition for PAC and PAM.
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Whether positive sorting prevails in equilibrium then depends on whether the com-

plementarities in production are large enough to offset this force.

We show that the force against positive sorting is strongest when worker types are

arbitrarily close. Moreover, the conditions for PAC and PAM are particularly simple

in this case. They boil down to a comparison between two elasticities: along the

equilibrium path, the elasticity of complementarity of the production function must

exceed a novel elasticity which we label the quality-quantity elasticity (and which

differs between PAC and PAM).

The elasticity of complementarity describes the degree of supermodularity of the

production function. The relevance of production complementarities for sorting has

been known since Becker (1973). The quality-quantity elasticity, however, is novel

and we view its characterization as one of our main contributions. It is economically

intuitive as it measures the speed at which the probability that a high-type applicant

increases surplus decreases across firm types relative to the decrease in the probability

that a low-type applicant increases surplus: the larger it is, the stronger the force

against sorting and the larger production complementarities therefore need to be to

offset this force and induce positive sorting. It is also simple in the sense that it only

depends on the meeting technology (queue length, queue composition, and the degree

of screening).

To understand the dependence of the quality-quantity elasticity on the queue

length and queue composition, consider the case where high-type workers are abun-

dant in the economy. The probability that a high-type worker creates surplus de-

creases then more quickly along the equilibrium path, as productive firms with long

queue lengths are increasingly likely to interview multiple high-type applicants (in

which case the marginal contribution to surplus of each of these high-type applicants

is zero). Hence, the force against positive sorting, as measured by the quality-quantity

elasticity, is highest in this case. It therefore follows that we need to consider the

bounds on the two elasticities if we wish to ensure sorting for any distribution of

agents’ types. In particular, the supremum of the quality-quantity elasticity should

not exceed the infimum of the elasticity of complementarity in that case. Since the

force against positive sorting is largest when worker heterogeneity is small, this con-

dition is not only necessary but also sufficient.

Finally, we then analyze how the quality-quantity elasticity varies with the de-

gree of screening. Viewing increased screening as a relaxation of the frictions in the
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environment, one may expect that it must facilitate sorting. We show that while

this intuition is correct when high-type workers are scarce, it is wrong when they

are abundant. To understand this result, note that there are two ways in which a

high-type applicant can fail to create surplus: 1) he is not interviewed, or 2) he is

interviewed, but at least one other high-type applicant is interviewed as well.

The first scenario is the relevant one when the applicant pool mainly consists of

low-type workers: multiple interviews with high types are unlikely and the effect of a

longer queue predominantly operates by making it less likely for a high-type applicant

to be interviewed. This force is mitigated by an increase in firms’ screening ability.

The second scenario is the relevant one when the applicant pool mainly consists of

high types: multiple interviews with high-type applicants are a key concern and a

longer queue makes this outcome more likely. This force is amplified by an increase

in firms’ screening ability.

When deriving a sorting condition for any distribution of agents’ types, the tighest

condition matters, which is the second. The elasticity of complementarity that is nec-

essary and sufficient for sorting in this case is thus increasing in the expected number

of interviews that firms can conduct, ranging from 1
2

(square-root-supermodularity)

with a single interview to 1 (log-supermodularity) when firms can interview all their

applicants.

The paper is organized as follows. The remainder of this section discusses related

literature. Section 2 introduces the model. Section 3 considers the market equilibrium

and establishes that it is constrained efficient. Section 4 derives our main sorting

results. In Section 5, we consider various extensions, including noisy signals for every

applicant and endogenous choice of screening capacity. For the latter extension, we

show that firms in the middle of the productivity distribution (rather than the most

productive ones) have the strongest incentives to invest in screening. Finally, Section 6

concludes, while proofs and additional results can be found in the (online) appendix.

Related Literature. We primarily contribute to the theoretical literature on sort-

ing in markets with search frictions. This literature builds on Becker (1973) who

showed that supermodularity of the production function (i.e. the elasticity of comple-

mentarity being positive) is necessary and sufficient for PAM in a frictionless economy.

A key insight is that this condition is no longer sufficient in the presence of search

frictions. The reason is that the opportunity cost of remaining unmatched is larger

for high types, which makes them more eager to match with a low type rather than
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run the risk to not match at all. To undo this effect, the production function must

exhibit stronger complementarities. For example, Shimer and Smith (2000) derive

a set of conditions for PAM under random search that are even stronger than log-

supermodularity (i.e. the elasticity of complementarity being larger than 1).

Most related to our work, Eeckhout and Kircher (2010a) show that under directed

search (but with a single interview per firm) PAM requires that the elasticity of com-

plementarity exceeds the elasticity of substitution of the aggregate meeting function.

This latter elasticity is positive but bounded above by 1
2

for common meeting technolo-

gies, making square-root-supermodularity of the production function (i.e. an elasticity

of complementarity equal to 1
2
) sufficient for PAM.4 Intuitively, while frictions still

exist under directed search, they are weaker than under random search, because high

types can avoid meeting low types.

As mentioned, the relevant threshold for sorting In our environment with simul-

taneous interviews is the quality-quantity elasticity. Like the threshold in Eeckhout

and Kircher (2010a), this elasticity depends on the properties of the meeting technol-

ogy only. However, a crucial difference is that the quality-quantity elasticity depends

not only on the queue length but also on the queue composition and the degree of

screening. We show that it reduces to the threshold in Eeckhout and Kircher (2010a)

when firms can only screen a single worker, but may increase as screening becomes

easier.

Our results also have important implications for the empirical literature that deals

with both the sign and the strength of sorting (Gautier and Teulings, 2006; Eeckhout

and Kircher, 2011; Gautier and Teulings, 2015; Lise et al., 2016; Hagedorn et al., 2017;

Lopes de Melo, 2018; Bartolucci et al., 2018; Bagger and Lentz, 2018; Borovičková

and Shimer, 2020). An important aim of this literature is to identify the shape of

the production function from observed matching patterns. In general, a particular

meeting technology is assumed and then the strength and sign of sorting are used

to identify key parameters of the production function.5 Our findings imply however

that such assumptions are not innocuous and that the meeting technology needs to

be identified alongside the production function. Progress along this dimension is

4Shi (2001) was the first to show that supermodularity is not enough for PAM under directed
search.

5Since wages for a given worker type are typically non-monotonic in firm types, the methodology
by Abowd et al. (1999) of detecting sorting patterns from simply correlating worker and firm fixed
effects fails; the cited papers propose various ways to deal with this.
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facilitated by our theoretical results on PAC/PAM combined with recent empirical

work by Banfi et al. (2020) who document evidence for PAC as well as PAM using

data from a Chilean online job board. In a similar vein, the strength of sorting is

often used to estimate how far an economy is from the frontier. Our results show

that stronger sorting patterns do not necessary imply lower frictions.

Some papers have argued that increased sorting of high-type workers at high-

wage firms has contributed to the observed increased inequality from the mid-nineties

onwards (see e.g. Card et al., 2013; Song et al., 2019).6 H̊akanson et al. (2018) argue

that the increased sorting patterns are mainly due to increasing complementarities in

production. Our results suggest that if during the same period, new technologies like

automated resume screening made it easier to screen workers, then this would require

even stronger complementarities in the production technology.

Our paper also adds to a recent macro literature that focuses on information

frictions. Both Kurlat (2016) and Board et al. (2019) consider a competitive model

with heterogeneity in productivity on the worker side and heterogeneity in screening

ability on the firm side; workers essentially apply to every firm, so screening only

takes place ex post.7 Unlike their work, we consider firms that are heterogeneous

in productivity, making it possible to analyze varying degrees of complementarity

in production and a more conventional notion of sorting. We further emphasize

the frictional nature of most labor markets and allow for ex-ante screening through

workers’ applications decisions in addition to ex-post screening, showing that firms

typically use a combination.

Finally, although our focus is on the labor market, our results are also impor-

tant for other markets with matching between heterogeneous agents and a role for

screening, such as the housing market or the marriage market. Also in trade, there

is a growing interest in deriving patterns of international specialization (i.e. under

which conditions do exporters hire the most productive workers) from fundamental

properties of the production technology, see Costinot (2009). More generally, the

interaction between quality (attracting high-type workers) and quantity (attracting

low types as well) has been little studied in economics and we expect our analysis to

6Card et al. (2013) use education and occupational sorting.
7The main difference between the two papers is that the screening outcomes of a worker at

different firms are independent in Board et al. (2019), whereas in Kurlat (2016) they are conditionally
perfectly correlated across firms (if an applicant passes one firm’s test, this candidate will pass the
test of all firms with worse screening skills).
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be useful beyond the questions we address here.

2 Model

Agents. A static economy is populated by a continuum of risk-neutral firms and

workers. Each firm demands and each worker supplies a single unit of indivisible labor.

Both types of agents are heterogeneous. In particular, each firm is characterized by

a type y ∈ Y = [y, y] ⊆ R+. The measure of firms with types less or equal to y

is denoted by J(y), where the total measure J(y) is normalized to one. Similarly,

each worker is characterized by a type x ∈ X = [x, x] ⊆ R+. There are two types

of workers: a low type x1 and a high type x2, with 0 < x1 < x2.8 The measure

of workers with type xi is denoted by `i > 0. The distribution of agents’ types in

the economy is thus given by (x1, x2, `1, `2, J(y)). Our main objective is to find a

condition such that assortative matching holds for any distribution of agents’ types—

i.e. for any `1, `2 > 0, x1, x2 ∈ X , and J(y) with support belonging to Y—while fixing

the production function and the search frictions (specified below).

Wage Menus and Search. Each firm commits to a wage menu w = (w1, w2),

where wi is the wage for a hire of type xi. Workers observe all wage menus and

apply to one, taking into account that there will be more competition at high wages.9

We initially assume that workers also observe firm types, but then show that this

assumption is redundant because workers only care about their expected payoff, which

they can infer from the wage alone. We capture the anonymity of the large market

with the standard assumption that identical workers must use symmetric strategies

(see e.g. Shimer, 2005).

A submarket (w, y) consists of the firms of type y that post a wage menu w and

all workers who apply to such a menu. For each submarket, we denote the ratio of the

number of high-type applicants to the number of firms by µ(w, y), and the ratio of the

total number of applicants (regardless of their type) to the number of firms by λ(w, y).

Naturally, these ratios—or queue lengths—are endogenous and satisfy 0 ≤ µ(w, y) ≤
λ(w, y) for all (w, y). For future reference, define ζ(w, y) = µ(w, y)/λ(w, y) as the

8In Appendix B.8 we show how our results can be generalized to N worker types for a widely
used class of meeting technologies, that includes the urn-ball and geometric.

9A single chance to match (per period) is standard and captures the idea that (opportunity) costs
are associated with applying. Work relaxing this assumption has focused on models with (ex ante)
homogeneous agents (Albrecht et al., 2006; Galenianos and Kircher, 2009; Kircher, 2009; Wolthoff,
2018; Albrecht et al., 2019), except Auster et al. (2021) which considers one-sided heterogeneity.
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fraction of high-type applicants in submarket (w, y).

Benchmark Frictions. The matching process within a submarket is frictional and

exhibits constant returns to scale, in the sense that outcomes only depend on queue

lengths rather the absolute measures of workers and firms. Within those boundaries,

we can allow for a fairly wide class of matching processes, but we initially focus on a

specific benchmark to simplify exposition.10

This benchmark features two stages (applying and screening) and was introduced

by Cai et al. (2022). To understand it, consider a particular submarket with queues

(µ, λ). Workers and firms in the submarket are randomly located on the circumference

of a circle according to a uniform distribution. Workers apply clockwise to the nearest

firm.11 A firm therefore receives n applications with probability 1
1+λ

( λ
1+λ

)n for n =

0, 1, 2, . . . , which is a geometric distribution with mean λ.12 In the screening stage,

each firm interviews its applicants in a random order. An interview allows the firm

to learn the type of the applicant, which is x2 with probability µ/λ. After every

interview, and conditional on applicants remaining, there is an exogenous probability

σ ∈ [0, 1] that the firm can conduct another interview, while interviewing stops with

complementary probability.

Our setup nests two common but extreme specifications of the meeting technology

as special cases. If σ = 0, each firm can interview only a single applicant, as in the

bilateral model of Eeckhout and Kircher (2010a). In this case, the presence of low-

type applicants makes it harder for firms to identify a high type in their applicant

pool. Increasing σ reduces this meeting externality. It disappears entirely when σ

reaches 1 and firms can interview all their applicants. As in the urn-ball setup of

Shimer (2005), firms’ chances of finding a high type in their applicant pool then

become independent of the number of low-type applicants—a property known in the

literature as invariance (see Lester et al., 2015; Cai et al., 2017).

Matching and Production. After the interviews have been conducted, matches

are formed. Firms can only hire a worker which they have interviewed.13 If a firm has

interviewed multiple applicants, it hires the most profitable one. A match between

10In section 5, we consider various generalizations.
11When workers cannot keep track of the distance they travel, this is merely a tie-breaking rule.
12Note the subtle difference compared to an equidistant positioning of firms, which yields a Poisson

number of applicants with mean λ, as in an urn-ball technology. We discuss this case in Section 5.1.
13This assumption can easily be rationalized by introducing a small chance that any given worker

provides the firm with a sufficiently negative payoff when hired.
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a worker of type x and a firm type of y produces output f(x, y) > 0, which is twice

continuously differentiable. The partial derivatives fx(x, y) and fy(x, y) are strictly

positive for all (x, y) ∈ X × Y , and the cross-partial is denoted by fxy(x, y).14 From

the produced output, the firm pays the worker the promised wage wi and keeps the

rest. Firms and workers which fail to match obtain a zero payoff.

Elasticity of Complementarity. For our analysis, a key characteristic of the pro-

duction function is its elasticity of complementarity (Hicks, 1932, 1970), which is

usually defined for constant-returns-to-scale production functions, and is the inverse

of the elasticity of substitution. For general production functions, it is defined as

ρ(x, y) ≡ fxy(x, y)f(x, y)

fx(x, y)fy(x, y)
∈ R, (1)

with extrema ρ ≡ sup(x,y)∈X×Y ρ(x, y) and ρ ≡ inf(x,y)∈X×Y ρ(x, y).

Supermodularity. The elasticity of complementarity ρ(x, y) is closely related to

the notion of n-root-supermodularity, as defined in Eeckhout and Kircher (2010a).15

Definition 1. The function f(x, y) is n-root-supermodular if and only if ρ(x, y) ≥
1 − 1/n for all (x, y) ∈ X × Y; special cases include supermodularity (n = 1) and

log-supermodularity (n→∞). When ρ(x, y) ≤ 1− 1/n for all (x, y) ∈ X ×Y, f(x, y)

is said to be n-root-submodular.

In other words, n-root-supermodularity is equivalent to ρ ≥ 1 − 1/n and n-root-

submodularity is equivalent to ρ ≤ 1− 1/n.

Special Case. We will sometimes illustrate our results with a CES production

function, because it has a constant elasticity of complementarity, ρ(x, y) = ρ. That

is, f(x, y) = (x1−ρ + y1−ρ)
1

1−ρ . This production function is submodular when ρ ≤ 0,
1

1−ρ -root-supermodular when 0 < ρ < 1, and log-supermodular when ρ ≥ 1.

Beliefs. A firm of type y posting a wage menu w has to form beliefs about its queues

(µ(w, y), λ(w, y)). Following the standard approach in the literature, we restrict these

14Although worker types are binary, we assume that fx(x, y) > 0 for all (x, y) ∈ X × Y instead
of f(x2, y) > f(x1, y) for given x1 and x2, because our objective is to find a condition such that
assortative matching holds for any distribution of agents’ types, which requires that f(x, y) is defined
on the full domain X × Y.

15Eeckhout and Kircher (2010a) define f(x, y) to be n-root-supermodular if n
√
f(x, y) is super-

modular. Since 1
∂x∂y

n
√
f = n−2f1/n−2

(
ffxy − (1− 1

n )fxfy
)
, our definition is equivalent.
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beliefs in the spirit of subgame perfection through what is known as the market utility

condition (see e.g. Eeckhout and Kircher, 2010b). To state this condition, consider a

worker of type xi. Define Vi(w, µ, λ, y) as his expected payoff in a submarket (w, y)

with queues (µ, λ), and his market utility Ui as the maximum expected payoff that he

can obtain in equilibrium, either by visiting one of the submarkets or by remaining

inactive. Firms’ beliefs (µ(w, y), λ(w, y)) must then satisfyV1(w, µ, λ, y) ≤ U1, with equality if λ− µ > 0,

V2(w, µ, λ, y) ≤ U2, with equality if µ > 0.
(2)

For common meeting technologies, including our benchmark as we will show in

Lemma 2 below, (2) admits a unique solution (µ, λ), which is then the firm’s be-

lief. For other technologies, there can be multiple solutions to (2). The standard

assumption is then that firms are optimistic and expect the solution that maximizes

their expected payoff π (w, µ, λ, y). Explicit expressions for π and Vi will be provided

in Section 3.1.

Strategies. Let G(w | y) denote the (conditional) probability that a firm of type y

offers a wage menu w̃ ≤ w, where w̃ = (w̃1, w̃2), w = (w1, w2), w̃1 ≤ w1 and w̃2 ≤ w2.

Given market utilities (U1, U2), firm optimality means that every wage menu w in

the support of G(w | y) must maximize π (w, µ, λ, y) subject to the constraint (2).

Similarly, let Hi(w, y) denote the probability that workers of type xi apply to a

firm with w̃ ≤ w and ỹ ≤ y. The following accounting identities then link workers’

strategies H1(w, y) and H2(w, y) to the queues in different submarkets.

H2(w, y) =
1

`2

∫
ỹ≤y

∫
w̃≤w

µ(w̃, ỹ) dG(w̃ | ỹ) dJ(ỹ), (3)

H1(w, y) =
1

`1

∫
ỹ≤y

∫
w̃≤w

[λ(w̃, ỹ)− µ(w̃, ỹ)] dG(w̃ | ỹ) dJ(ỹ). (4)

Worker optimality requires that workers must obtain exactly Ui at any firm to which

they apply with positive probability, and weakly less at other firms i.e. (2) must

hold. Further, note that no firm will post a wage menu w ≥ w ≡ (f(x1, y), f(x2, y)).

Thus, Hi(w, y) is the probability that workers of type xi apply, which must equal 1 if

Ui > 0, as the payoff from not sending an application is zero. This condition can be

interpreted as “market clearing”: in equilibrium, demand for each type of applicant
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must equal supply, which determines the “market prices” U1 and U2.

Equilibrium Definition. We can now define an equilibrium as follows.

Definition 2. A (directed search) equilibrium is a triple (G, {H1, H2} , {U1, U2}) sat-

isfying ...

(i) Firm Optimality. Given (U1, U2), every wage menu w in the support of G (· | y)

maximizes π (w, µ(w, y), λ(w, y), y) for each firm type y, where the queue lengths

(µ(w, y), λ(w, y)) are determined by (2).

(ii) Worker Optimality. Given (U1, U2), the application strategy of high-type and

low-type workers satisfies (3) and (4), respectively, where the queue lengths

(µ(w, y), λ(w, y)) are determined by (2). Further, Hi(w, y) = 1 if Ui > 0.

3 Equilibrium

We start our equilibrium analysis by establishing an equivalence: the problem of a

firm in our environment is equivalent to the problem of a firm that can buy queues of

applicants directly in a competitive market.16 The consequence of this result is that

the equilibrium in our environment is constrained efficient.

3.1 Surplus, Payoffs, and Efficiency

Ranking. In our model, how firms rank workers depends on which worker types

are most profitable, which in turn depends on the wage contracts that firms post. To

simplify exposition, assume for now that firms post wage menus (w1, w2) satisfying

f(x2, y)− w2 > f(x1, y)− w1, (5)

i.e. more productive workers are more profitable and are therefore preferred by firms.

Later, in Lemma 3, we will show that (5) must indeed hold when firms act optimally,

making our assumption without loss of generality.

16Hence, the difference with a “conventional” competitive market is that the firm buys a distri-
bution of applicants rather than directly hiring a particular type of worker.
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Interviewing Probability. Given (5), a firm will hire a high-type worker if and

only if it interviews at least one such worker. The following lemma, which we borrow

from Cai et al. (2022), derives the probability of this event.17

Lemma 1 (Cai et al., 2022). In a submarket with queues (µ, λ), the probability that

a firm interviews at least one high-type worker equals

φ (µ, λ) =
µ

1 + σµ+ (1− σ)λ
. (6)

Proof. See Appendix B.1.

The key insight of Cai et al. (2022) is that φ (µ, λ) is useful for multiple reasons.

First, φ (µ, λ) is sufficient to summarize the meeting process within a submarket. It

not only describes the probability that the firm will hire a high-type worker, but—

upon evaluation in µ = λ—also the firm’s overall matching probability (regardless of

the hire’s type), which we denote by m (λ) ≡ φ (λ, λ). Hence, the probability that

the firm hires a low-type worker is given by m(λ)− φ(µ, λ).

Second, the partial derivatives of φ (µ, λ) have economically meaningful interpre-

tations. The partial derivative φλ (µ, λ) ≤ 0 captures externalities in the recruiting

process as it describes how a firm’s chances to hire a high-type worker change if the

queue of low-type workers gets longer. As discussed before, these externalities are

absent, i.e. φλ(µ, λ) = 0, if and only if all applicants are interviewed (i.e. σ = 1).

In contrast, φµ (µ, λ) describes how a firm’s probability of hiring a high-type worker

changes if the queue of such workers increases, while the total queue remains constant

(i.e. changing the composition of the applicant pool). From the perspective of a high-

type applicant, this partial derivative represents the probability that he or she is hired

and increases surplus because no other high-type worker was interviewed.18

Properties. The expression in equation (6) has the following intuitive properties:

A0. φ(µ, λ) is strictly increasing and concave in µ, i.e. replacing low-type workers

with high-type workers in a submarket increases a firm’s probability of inter-

viewing at least one high-type worker, but at a decreasing rate;

17Cai et al. (2022) study market segmentation in a world with homogeneous firms. Our focus is
quite different, so we provide a derivation of φ(µ, λ) for completeness.

18To see this, note that φµ (µ, λ) ∆µ = φ(µ + ∆µ, λ) − φ(µ, λ) represents the probability that
replacing ∆µ low-type workers with high types generates additional surplus. Naturally, this is the
case if and only if these ∆µ workers are the only high types that are interviewed.
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A1. for any given ζ ∈ (0, 1], φ(λζ, λ) is strictly increasing and strictly concave in λ,

i.e. holding the fraction of high-type workers constant, adding more workers to

the submarket increases a firm’s probability of interviewing at least one high

type, but at a decreasing rate;

A2. for any given ζ ∈ (0, 1], φµ(λζ, λ) is strictly decreasing in λ, i.e. holding the

fraction of high-type workers constant, adding more workers to the submarket

reduces the probability that a high-type worker creates surplus.

Surplus and Payoffs. To derive expected surplus, consider a firm of type y facing

a queue (µ, λ). With probability m(λ) = φ(λ, λ), the firm receives at least one

application, hence generating at least a surplus f(x1, y); with probability φ(µ, λ), the

firm interviews at least one high-type worker, hence generating an additional surplus

f(x2, y)− f(x1, y). The expected surplus is therefore

S (µ, λ, y) = m (λ) f (x1, y) + φ (µ, λ) [f (x2, y)− f (x1, y)] . (7)

By the same logic, the expected payoff of the firm equals

π (w, µ, λ, y) = φ (µ, λ) [f(x2, y)− w2] + [m(λ)− φ(µ, λ)] [f(x1, y)− w1] . (8)

Finally, the expected payoff of applicants of type xi is Vi(w, µ, λ, y) = ψi (µ, λ)wi,

where, by a simple accounting identity, their matching probability ψi (µ, λ) equals

ψ1 (µ, λ) =
m(λ)− φ(µ, λ)

λ− µ
or ψ2 (µ, λ) =

φ(µ, λ)

µ
. (9)

The special cases µ = 0 and µ = λ are obtained by taking the corresponding limits,

which yields ψ1(λ, λ) = φµ(λ, λ) and ψ2(0, λ) = φµ(0, λ).

Uniqueness of Queues. In a submarket (w, y), the queues (µ, λ) are determined

by the market utility condition (2). Since this is a system of non-linear equations, it

is not immediate that there is a unique solution. Lemma 2 establishes this result.

Lemma 2. If φ is given by (6), there exists exactly one solution (µ, λ) to the market

utility condition for any wage menu w.

Proof. See Appendix B.2.
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Competitive Market for Queues. As is standard in the literature, we can use

the market utility condition (2) to substitute the wages w1 and w2 out of (8) and

rewrite the firm’s problem with queue lengths as choice variables. This yields

max
0≤µ≤λ

Π
(µ
λ
, λ, y

)
≡ S(µ, λ, y)− λU1 − µ (U2 − U1) , (10)

where, for use in Section 3.2, the arguments of the firm profit function Π are the

fraction of high-type applicants µ/λ and the queue length λ.19 Equation (10) has a

straightforward interpretation: it is the payoff of a firm buying queues of low-type and

high-type workers in a competitive market at prices equal to their respective market

utilities. This formulation will be the starting point for our sorting analysis below.

Productivity versus Profitability. In the firm’s problem (10), we assume that

firms can select a queue (µ, λ) directly while ignoring the constraint (5). The following

lemma shows that this constraint is redundant: a solution to (10) can always be

obtained with a wage menu (w∗1, w
∗
2) that satisfies (5).

Lemma 3. Given a solution (µ∗, λ∗) (interior or corner) to the firm’s problem (10),

the corresponding wage menu (w∗1, w
∗
2) = (U1/ψ1(µ∗, λ∗), U2/ψ2(µ∗, λ∗)) satisfies (5).

Proof. See Appendix A.1.

If the solution is interior (0 < µ∗ < λ∗), then the wage menu that firms need to

post to attract the optimal queue is unique. In a corner solution (µ∗ = 0 or µ∗ = λ∗),

the wage menu is not unique, but Lemma 3 describes the maximum corresponding

values satisfying (5).20

Lemma 3 implies that it is without loss of generality to only consider wage menus

satisfying (5). To see this, suppose that a firm posts a wage menu where low-type

workers yield a higher profit ex post, i.e. f(x2, y)− w2 < f(x1, y)− w1, and attracts

a queue (µ, λ) with 0 < µ < λ. Workers must obtain their market utility, so the

expected transfer from the firm to the workers equals µU2 + (λ − µ)U1. However,

giving priority to low- rather than high-type workers reduces the expected surplus

19We have implicitly assumed that 0 < µ < λ such that both market utility conditions hold with
equality. However, it is easy to see that (10) also holds if µ = 0 or µ = λ.

20For example, if µ∗ = λ∗, then the optimal w2 is uniquely given by U2/ψ2(λ∗, λ∗), but the optimal
w1 can take any value between zero and w∗1 = U1/ψ1(λ∗, λ∗).
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relative to S(µ, λ, y) in (7). Accordingly, the firm’s expected profit is strictly smaller

than the maximum profit in (10); hence, those wage menus are strictly suboptimal.21

Observability of Firm Productivity. By Lemma 3, all firms will post wage

contracts such that high-type workers are more profitable. Given the wage contract,

the market utility condition then determines the queue length and composition. Since

workers only care about their hiring probability and the wage, this then means that

all our results carry through if they do not observe firm types.

Efficiency. In sum, we have demonstrated that the market equilibrium with wage

menus coincides with the equilibrium in a competitive market where firms can buy

queues directly at prices equal to workers’ market utility. Hence, by the first welfare

theorem, we obtain the following efficiency result.

Proposition 1. The market equilibrium is constrained efficient.

3.2 Optimal Queue Length and Composition

In our sorting analysis, the fraction of high-type applicants across firms will play an

important role. It is thus convenient to formulate the firm’s problem as in (10): firms

choose the queue length λ and ζ = µ/λ ∈ [0, 1], the fraction of high-type workers in the

queue, to maximize their expected profit Π(ζ, λ, y) = S(ζλ, λ, y)−λU1−ζλ (U2 − U1).

Optimal Queue Length. We first consider the choice of the queue length λ for a

given ζ ∈ [0, 1]. Since φ(ζλ, λ) is strictly concave in λ for all ζ > 0 and m(λ) = φ(λ, λ),

the payoff Π(ζ, λ, y) is strictly concave in λ for a given ζ ∈ [0, 1]. Thus, assuming that

firms of type y are active in hiring, their optimal queue is unique and determined by

the first-order condition (FOC)

U1 + ζ(U2 − U1) = m′ (λ) f 1 +
∂φ (ζλ, λ)

∂λ
∆f, (11)

where ∂φ (ζλ, λ) /∂λ = ζφµ (ζλ, λ) + φλ (ζλ, λ) and we set f 1 ≡ f(x1, y) and ∆f ≡
f(x2, y)− f(x1, y) to simplify notation. To understand (11), note that the first term

on the right-hand side denotes the marginal contribution to surplus of a low-type

applicant when all applicants are of a low type. The second term corrects for the fact

that a fraction ζ of applicants has high productivity.

21A similar result appears in Shimer (2005) for the case of urn-ball meetings. Our proof of Lemma 3
generalizes his result to arbitrary meeting technologies.
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Optimal Queue Composition. When the optimal ζ for firm y is interior (0 <

ζ < 1), it must satisfy the FOC

φµ(ζλ, λ)∆f = U2 − U1. (12)

The left-hand side of the above equation is exactly the difference between the marginal

contribution to surplus of high-type and low-type workers, while the right-hand side

is the difference in their cost. Intuitively, a larger ζ increases the firm’s probability

of matching with a high-type worker, but comes at a cost as these workers are more

expensive.22 Of course, the firm’s optimal ζ might be at a corner, i.e. ζ = 0 or 1, in

which case the appropriate complementary slackness condition must hold.

Concavity of Surplus. When a firm’s choice of queue composition is at a corner

(ζ = 0 or 1), then the second-order condition is always satisfied because the expected

profit is m(λ)f(xi, y)− λUi for i = 1, 2 and m(λ) is strictly concave. However, when

ζ is interior, the surplus function S(µ, λ, y) is not necessarily strictly concave at a

point (µ, λ). To see this, consider its Hessian H(µ, λ, y), which equals

H(µ, λ, y) =

(
φµµ∆f φµλ∆f

φµλ∆f m′′f 1 + φλλ∆f

)
,

where we omit the arguments of the derivatives of φ(µ, λ) and m(λ) for simplicity.

In the bilateral case σ = 0, we have φ(µ, λ) = m(λ)µ/λ such that φµµ = 0, which

means that the Hessian is never negative definite and surplus is never concave at

points (µ, λ) with 0 < µ < λ. Hence, firms find it optimal to attract only one type of

workers. Below, we will therefore focus on the case φµµ < 0, i.e. σ > 0; the results will

extend to the bilateral case by continuity.23 Given φµµ < 0, the Hessian is negative

definite if and only if its determinant is positive. Let κ(y) be a measure of output

dispersion, defined as the relative gain in output for a firm of type y from hiring a

high- rather than a low-type worker, i.e.

κ(y) ≡ f(x2, y)− f(x1, y)

f(x1, y)
> 0. (13)

22The firm can increase ζ by ∆ζ while keeping λ the same by increasing the queue length of
high-type workers by λ∆ζ and decreasing the queue length of low-type workers by λ∆ζ.

23We will revisit the bilateral case in Section 5.1.
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Then, we have the following result.

Lemma 4. Surplus S(µ, λ, y) is strictly concave at a point (µ, λ) with 0 < µ < λ if

1

κ(y)
>
φλλ − φ2

µλ/φµµ

−m′′
, (14)

Proof. See Appendix A.2.

Thus, if a firm of type y attracts a queue (µ, λ) in equilibrium with 0 < µ < λ,

then a necessary (but not sufficient condition) for firm optimality is that (14) holds.

Note that φµµφλλ − φ2
µλ is the determinant of the Hessian matrix of φ(µ, λ). For our

benchmark meeting process, it is zero if σ = 1 and strictly negative otherwise, making

the right-hand side of (14) (weakly) positive.24

Limit Case. The FOCs are necessary but not sufficient for the optimum because the

firms’ problem is not concave, which implies that a firm may have multiple optimal

queues. However, when worker heterogeneity is small, firms care primarily about

matching probability, which implies a unique optimal queue length. Given this queue

length, the firms’ problem is strictly concave in ζ. Hence, the optimal solution is

unique. In this case, the first order conditions are sufficient and the solution is both

unique and continuous. The following lemma formalizes this.

Lemma 5. Assume that φ is given by (6) with σ > 0. Fix a distribution of agents’

types and then let x2 → x1. For sufficiently small x2−x1, each firm has a unique op-

timal queue (µ(y), λ(y)). Both µ(y) and λ(y) are continuous in y, and if 0 < µ(y0) <

λ(y0) for some y0, then both µ(y) and λ(y)—and therefore ζ(y) ≡ µ(y)/λ(y)—are

continuously differentiable around point y0.

Proof. See Appendix A.3.

As we will demonstrate in the following section, this limit case is useful for deriving

a necessary condition for sorting, which turns out to be also sufficient for any given

x1 and x2. Note that Lemma 5 does not rely on the particular functional form of

φ(µ, λ); it only requires that: (i) φ(µ, λ) is strictly concave in µ and (ii) m(λ) is

strictly concave.

24Cai et al. (2017) describe meeting technologies for which φ(µ, λ) is jointly concave in (µ, λ) such
that firms’ second-order condition is always satisfied. However, as they show, such technologies
feature weakly positive meeting externalities, making them unsuitable for the purpose of our paper.
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4 Sorting

In this section, we analyze under what conditions the equilibrium exhibits sorting.

Throughout, we simplify exposition by focusing on the case in which the optimal

queue composition ζ(y) is unique for all y, but we show in Appendix B.3 that our

results extend to the general case in which ζ(y) may not be unique for some firm

types.

Below, we first provide our definitions of positive and negative sorting. Subse-

quently, we derive conditions for positive sorting; the analysis for negative sorting is

similar with reversal of the relevant inequalities and therefore omitted. We show that

in the limit case where x2 → x1, the necessary and sufficient condition for sorting

relates the elasticity of complementarity of the production function to a new quality-

quantity elasticity. Although it may appear counterintuitive to think about screening

and sorting when x2 → x1, we subsequently show that the force against positive

sorting is largest in this case, making our condition sufficient for any given x1 and x2.

4.1 Definition of Sorting

Much of the literature (see e.g. Becker, 1973; Shi, 2001; Eeckhout and Kircher, 2010a)

defines sorting in terms of a monotonic matching function which maps each worker

type x to their employer type y.25 This definition is not suitable in our environment,

because firms do not necessarily hire a unique worker type. Instead, we require a

set-based notion of sorting. Following Shimer and Smith (2000) and Shimer (2005),

we therefore define sorting as first-order stochastic dominance (FOSD) in firms’ dis-

tributions of hires.26 In our environment, this definition can be expressed in terms of

the probability that a firm hires a high-type worker, conditional on hiring someone,

h(ζ(y), λ(y)) ≡ φ(ζ(y)λ(y), λ(y))

m(λ(y))
, (15)

25See Lindenlaub (2017) for a generalization to multidimensional types.
26Strictly speaking, Shimer and Smith (2000) use a weaker notion of sorting which is based on the

bounds of the support of the distribution of hires; however, their definition is equivalent to FOSD of
this distribution in the random-search environment that they consider. In contrast, Shimer (2005)
proves a stronger sorting result (high-type workers are more likely to be employed in high-type jobs
than in low-type jobs) for a special case (multiplicatively separable production function and urn-ball
meetings); however, he acknowledges that the data demands to test this result “may be unrealistic”
and suggests FOSD of the distribution of hires as a “more easily testable” alternative.
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where (ζ(y), λ(y)) is the equilibrium choice of firms with type y.

Definition 3. An equilibrium exhibits positive (resp. negative) assortative matching

(PAM/NAM) if and only if h(ζ(y), λ(y)) is weakly increasing (resp. decreasing) in y.

While the literature has traditionally restricted attention to sorting patterns in

matches, our environment yields additional predictions. After all, given that firms

may interview multiple applicants and subsequently select the most desirable one,

there is a meaningful distinction between an application on the one hand and a

match on the other hand. Hence, in addition to assortativeness of matches, we can

also analyze the assortativeness of applications (or ‘contacts’), i.e. whether the fraction

of high-type applicants ζ(y) increases or decreases in y.

Definition 4. An equilibrium exhibits positive (resp. negative) assortative contacting

(PAC/NAC) if and only if ζ(y) is weakly increasing (resp. decreasing) in y.

4.2 Quality vs Quantity

We first present an intuitive derivation of our sorting conditions. To simplify exposi-

tion, we will focus on a CES production function with complementarities (ρ > 0).

Understanding Sorting. To understand sorting patterns, it is helpful to first con-

sider when the equilibrium displays no sorting in applications. That is, all firms

choose the same queue composition ζ, in addition to a potentially type-dependent

queue length λ (y).

For this allocation to be optimal, two conditions need to be satisfied. The first

condition concerns quantity : firms’ choice of queue length λ(y) must be optimal, which

means that the marginal contribution to surplus of an extra worker in the queue must

be equalized across firms. Since φ(λz, λ) and hence m(λ) are strictly concave in λ, it

follows from equation (11) that this is the case when firms with higher productivity

have longer queue lengths.

The second condition concerns quality : firms’ choice of the queue composition

ζ must be optimal, which requires that the marginal contribution to surplus from

replacing a low-type worker in the queue by a high-type worker is equalized across

firms. As shown in equation (12), this marginal contribution equals φµ(ζλ, λ)∆f , i.e.

the probability that the replaced worker is the only high-type interviewee multiplied

by the increase in output this worker creates. The probability φµ(ζλ, λ) is decreasing
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in λ (and also in ζ). Hence, φµ is lower at firms with higher productivity because of

their longer queue lengths.

The left panel of Figure 1 illustrates this idea for two firm types, a low type y1

and a high type y2. Both types of firms have the same queue composition ζ (vertical

axis), but the quantity condition implies that the high-type firms have longer queue

lengths, i.e. λ (y2) > λ (y1) (horizontal axis). The quality condition is represented

by the level curves of φµ(ζλ, λ), which are downward sloping and decreasing in value

from the bottom-left to the top-right.

The fact that φµ is lower at firms with higher productivity is a force against

positive sorting which—everything else equal—causes high-type workers to be less

valuable to such firms. So, for constant ζ to be optimal, the increase in ∆f across

firm types must offset this effect. That is, the complementarities in production must

be sufficiently large.

λ(y1 ) λ(y2 )
λ

ζ=ζ

1

ζ

(a) PAC/NAC: constant ζ

h(ζ,λ)=h

λ(y1 ) λ(y2 )
λ

ζ(y2 )

ζ(y1 )

1

ζ

(b) PAM/NAM: constant h (ζ, λ)

Figure 1: Level Curves of φµ

The gray curves represent level curves of φµ, decreasing from bottom-left to top-
right. The percentage decrease is the same between all adjacent level curves. To
ease comparison, λ(y1) and λ(y2) are the same in both panels and ζ(y1) = ζ.

How large the complementarities must be depends on two factors: 1) how quickly

the queue length increases across firm types (i.e. the horizontal distance between λ (y1)

and λ (y2) in the figure), and 2) how quickly this increase in queue length reduces φµ
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(i.e. the distance between the level curves in the figure). To be precise, for φµ∆f to

be constant along the equilibrium path, the elasticity of ∆f with respect to y must

be equal to
d log ∆f

d log y
= −d log φµ

d log y
= −d log φµ

d log λ

d log λ

d log y
, (16)

where the elasticity of λ with respect to y follows from (11).

Worker Heterogeneity. Condition (16) depends on the distribution of agents in

multiple ways. For example, as can be seen from (11), the elasticity of λ with respect

to y depends on the degree of worker heterogeneity through ∆f . In particular, this

elasticity, and thus the force against sorting, is largest when x1 → x2. Intuitively,

when x1 and x2 are close, firms do not care much about which type they hire, so match

probability is much more important than match quality. In this case, the marginal

benefit of an extra worker in the queue, as given in (11), decreases less quickly with

the queue length, making the elasticity of λ with respect to y larger.

The case in which x1 → x2, and thus f 1, f 2 → f , does not only provide the

strongest force against sorting but also a particularly clean sorting condition. To see

this, note that the marginal contribution of an extra worker in the queue converges

to m′(λ)f in this case, which must be constant across firm types. This implies

d logm′

d log λ

d log λ

d log y
= −d log f

d log y
. (17)

When combined with (16), we obtain

d log ∆f

d log f
=
d log φµ
d logm′

. (18)

Hence, if—relative to low-type firms—high-type firms produce 2% more output

f , then by (17) they must have a longer queue length which makes m′(λ) exactly

2% smaller. This longer queue length reduces φµ by, say, 1%, which then must be

offset by a 1% increase in ∆f , as described in (16).27 In other words, as summarized

in (18), the relative percentage changes in ∆f and f must be equal to the relative

percentage changes in φµ and m′(λ), which are 1/2 in this case.

27As we will show later, φµ is less elastic with respect to λ than m′ (λ).
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Contact Quality-Quantity Elasticity. Note that when x2 → x1 = x, the left-

hand side of (18) converges to ρ, the elasticity of complementarity of the production

function. We denote the elasticity on the right hand-side of (18) by ac(ζ, λ) and refer

to it as the contact quality-quantity elasticity, because it holds constant the fraction

of high type workers contacting (applying to) the firm. That is,

ac(ζ, λ) ≡ ∂ log φµ(ζλ, λ)

∂ logm′(λ)
=

(ζφµµ + φµλ) /φµ
m′′/m′

> 0. (19)

Note that φµ(ζλ, λ) represents the probability that a high-type applicant turns out

to be the only high-type worker that the firm interviews and m′(λ) describes the

change in firms’ matching probability. Thus the above elasticity measures the tradeoff

between match quality and match likelihood when firms adjust the queue length

λ but keep the queue composition ζ fixed. It is strictly positive because m(λ) is

strictly concave and φµ(ζλ, λ) is strictly decreasing in λ. A large value means that

the longer queue at firms with higher productivity results in a relatively large drop in

the probability φµ that an extra high-type worker creates surplus, which constitutes a

force for negative sorting. To nevertheless obtain constant ζ, this force must therefore

be offest by the complementarities in production, i.e. ρ = ac(ζ, λ(y)). Naturally,

when the complementarities in production are larger than the contact quality-quantity

elasticity, PAC prevails.

Below, we show that ac(ζ, λ) is not constant. For example, as Figure 1 suggests

and we will prove in Lemma 7, ac(ζ, λ) is strictly increasing in ζ. Intuitively, when

a larger fraction of the applicants is of high type, an increase in the queue leads to

a more rapid decline in the probability that a high-type applicant creates surplus,

creating a stronger force against positive sorting. Hence, for PAC to hold for any

distribution of agents’ types, ρ ≥ ac ≡ supζ,λ a
c(ζ, λ) is necessary. The reverse, i.e.

ρ ≤ ac ≡ infζ,λ a
c(ζ, λ), is necessary for NAC to hold for any distribution of agents.

Sufficient Condition. As mentioned, when x1 and x2 are close, firms do not care

much which type they hire and match likelihood is much more important than match

quality. When x1 and x2 are far apart and hence match quality is important, high-

productivity firms are willing to substitute match likelihood for match quality because

of complementarity in production and negative externalities in the meeting process.

That is, high-y firms would reduce their queue length (by offering low-type workers
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a worse deal) relative to the case where x1 and x2 are close to each other.28 This is

a force towards positive sorting. Hence it is not surprising that the condition derived

for the limit case where x2 → x1 is sufficient for sorting for any x1 and x2.

Match Quality-Quantity Elasticity. To analyze PAM/NAM, one can follow a

similar argument as above, but now starting from an equilibrium where firms have

the same conditional probability h (ζ(y), λ(y)) = h of hiring a high-type worker. In

this case, both the queue length λ and the queue composition ζ will vary across firms

of different types, as illustrated in the right panel of Figure 1. In particular, as the

queue length λ increases, the planner must reduce the fraction of high types ζ to keep

h (ζ(y), λ(y)) constant.

The key question for sorting is then how the probability φµ varies along the curve

h (ζ, λ) = h. That is, the relevant elasticity is the following match quality-quantity

elasticity, which holds constant the conditional probability that the firm matches with

a high-type worker:

am(ζ, λ) ≡ d log φµ(ζλ, λ)

d logm′(λ)

∣∣∣∣
h(ζ,λ)=h

= ac(ζ, λ)

(
1− ∂φµ/∂ζ

∂φµ/∂λ

∂h/∂λ

∂h/∂ζ

)
> 0, (20)

with extrema am ≡ supζ,λ a
m(ζ, λ) and am ≡ infζ,λ a

m(ζ, λ). The factor in the paren-

thesis in (20) represents the relative effect of adjusting ζ so that h(ζ, λ) stays constant;

as the right panel of Figure 1 suggests and we will prove in Lemma 7, it is always

between 0 and 1. Intuitively, as the queue length increases, the associated decrease

in the fraction of high-type workers ζ mitigates the drop in φµ.

4.3 Conditions for Sorting

After developing the intuition above, we now give a formal analysis. Consider a firm

type y with an interior ζ(y); the FOCs (11) and (12) jointly determine λ(y) and ζ(y).

Differentiating (12) with respect to y along the equilibrium path yields

− 1

φµ

(
∂φµ
∂ζ

ζ ′(y) +
∂φµ
∂λ

λ′(y)

)
=

∆fy
∆f

, (21)

28More precisely, m′(λ(y))f(x1, y) is constant along the equilibrium path in the limit case x2 →
x1. When x1 and x2 are apart and σ < 1 (or equivalently φλ(µ, λ) < 0, i.e. negative meeting
externalities), it is increasing in y.
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which states that the percentage decrease in φµ must equal the percentage increase

in ∆f. Similarly, differentiating (11) with respect to y along the equilibrium path

and combining the result with (21) yields the percentage change of m′(λ) across firm

types, i.e.

−m
′′(λ(y))

m′(λ(y))
λ′(y) =

f 1
y

f 1

1− 1
m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

. (22)

See the proof of Lemma 6 for a detailed derivation of the above equation. When

the meeting technology exhibits no congestion externalities (i.e. σ = 1), the second

factor on the right-hand side reduces to 1. That is, when we move towards more

productive jobs, the percentage decrease in m′(λ) (as a result of a longer queue) is

independent of ζ and simply equals the percentage increase in f(x1, y). When there

are congestion externalities between heterogeneous workers, however, the optimal

queue involves a trade-off between quantity and quality, and more of one affects the

marginal contribution of the other. The second factor on the right-hand side of (22)

represents this complex interplay between quality and quantity.

Dividing both sides of (21) by the corresponding side of (22) then gives the relative

change in φµ and m′(λ) across firm types along the equilibrium path,

1
φµ

(
∂φµ
∂ζ
ζ ′(y) + ∂φµ

∂λ
λ′(y)

)
m′′

m′
λ′(y)

=
f 1∆fy
f 1
y∆f

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

1− 1
m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

. (23)

The left-hand side reflects the relative change in φµ and m′(λ) across firm types.

Recall that ac(ζ, λ), as defined by equation (19), measures the relative change in

φµ and m′(λ), while fixing ζ. Thus if the right-hand side of (23) is larger than

ac(ζ(y), λ(y)), then it must be the case that ζ ′(y) ≥ 0. Similarly, if the right-hand

side of (23) is larger than am(ζ(y), λ(y)), as defined by equation (20), then it must be

the case that d
dy
h(ζ(y), λ(y)) ≥ 0. We can summarize this in the following Lemma.

Lemma 6. Assume that in equilibrium 0 < ζ(y) < 1 for some firm type y. Then
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ζ ′(y) ≥ 0 (resp. d
dy
h(ζ(y), λ(y)) ≥ 0) if and only if

f 1∆fy
f 1
y∆f

≥ ai
1− 1

m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

, (24)

where i = c (resp. i = m), and we suppress the arguments of φ(ζ(y)λ(y), λ(y)),

m(λ(y)) and ai(ζ(y), λ(y)).

Proof. See Appendix A.4.

As mentioned above, condition (24) becomes particularly simple when x2 → x1.

In that case, the second term on the right-hand side of reduces to 1 and the condition

reduces to ρ(x, y) ≥ ai(ζ(y), λ(y)). Hence, we obtain a simple necessary condition for

PAC and PAM to hold for any distribution of agents’ types. The following proposition

formalizes this idea; it relies on the exact same mild assumptions on the meeting

technology as Lemma 5, i.e. i) φ(µ, λ) is strictly concave in µ, and ii) m(λ) is strictly

concave.

Proposition 2. A necessary condition for PAC (resp. PAM) to hold for any distri-

bution of agents’ types is that for i = c (resp. i = m), we have

ρ ≡ inf
x,y

ρ(x, y) ≥ sup
ζ,λ

ai(ζ, λ) ≡ ai. (25)

Similarly, a necessary condition for NAC (resp. NAM) to hold for any distribution of

agents’ types is that for i = c (resp. i = m), we have

ρ ≡ sup
x,y

ρ(x, y) ≤ inf
ζ,λ
ai(ζ, λ) ≡ ai. (26)

Proof. See Appendix A.5.

As we argued informally above, the degree of complementarity required for positive

sorting is larger when worker heterogeneity is smaller. Thus the above necessary

condition for sorting is also sufficient for any distribution of agents’ types, including

the case where x1 and x2 are far apart. In the following section, we formally establish

this result in Proposition 3 for our benchmark meeting technology. In Section 5, we

show that this conclusion extends to other examples of meeting technologies.
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4.4 How Screening Affects Sorting

Our sorting analysis so far has been quite general and has not made use of the specific

functional form of φ(µ, λ) given by (6), except that it needs to satisfy regularity

conditions A0 and A1. The following lemma establishes that this functional form

yields very simple expressions for the right-hand side of equations (25) and (26).

Lemma 7. If φ is given by (6), then i) ac(ζ, λ) and am(ζ, λ) are strictly increasing

in ζ; ii) am(ζ, λ) < ac(ζ, λ) when ζ ∈ (0, 1) and σ > 0; and iii)

ac = am =
1 + σ

2
and ac = am =

1− σ
2

. (27)

Proof. See Appendix A.6.

As argued above and established in this Lemma, the infimum (resp. supremum) of

ac and am can be reached or approached with ζ = 0 (resp. ζ = 1) for our benchmark

meeting technology (and various others). It is worth highlighting that am(ζ, λ) reduces

to ac(ζ, λ) in those cases, i.e. am(ζ, λ) = ac(ζ, λ) when ζ = 0 or ζ = 1.29 Hence,

ac = am and ac = am, which means that the conditions for PAC/NAC will coincide

with those for PAM/NAM.

Together with Proposition 2, this lemma implies that ρ ≥ (1 + σ)/2 is necessary

for PAC/PAM to hold for any distribution of agents’ types. Similarly, ρ ≤ (1− σ)/2

is necessary for NAC/NAM. The following proposition establishes that these two con-

ditions are also sufficient. For ease of exposition, the proof in Appendix A.7 assumes

that the equilibrium choice of queues for each firm type is unique. In Appendix B.3,

we extend the proof to the case where in equilibrium ζ(y) is not unique for some firm

types and show that the result continues to hold.

Proposition 3. Assume that φ is given by (6) with σ > 0. The equilibrium then

exhibits PAC/PAM (resp. NAC/NAM) for any distribution of agents’ types if and

only if ρ ≥ (1 + σ)/2 (resp. ρ ≤ (1− σ)/2).

Proof. See Appendix A.7.

Given Definition 1, we can alternatively state Proposition 3 as follows.

29To see this, note that φ(0, λ) = 0 and φ(λ, λ) = m(λ) for any λ. Both imply ∂h/∂λ = 0.
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Figure 2: Combinations of ρ and σ that give rise to PAC/PAM (blue) or NAC/NAM
(red) for any distribution of agents’ types, assuming a CES production function.

Corollary 1. Assume that φ is given by (6) with σ > 0. The equilibrium then

exhibits PAC/PAM (resp. NAC/NAM) for any distribution of agents’ types if and

only if f(x, y) is 2/ (1− σ)-root-supermodular (resp. 2/ (1 + σ)-root-submodular).

Two special cases are worth highlighting. When σ → 0 and meetings are bi-

lateral, PAC/PAM requires square-root supermodularity, in line with the results in

Eeckhout and Kircher (2010a). At the other extreme, log-supermodularity is required

for PAC/PAM when σ = 1 and firms can interview all their applicants. In contrast, a

stronger degree of substitutability is required for NAC/NAM as the expected number

of interviews goes up: the production function should be square-root-submodular if

σ = 0 and submodular when σ = 1. Figure 2 illustrates these results.

Intuition. To understand how screening affects sorting, consider again the contri-

bution to surplus by a high-type applicant. There are two distinct cases in which

a high-type applicant fails to create surplus: 1) he is not interviewed, or 2) he is

interviewed, but at least one other high-type applicant is interviewed as well. Each of

these two cases becomes more likely as the queue length increases, i.e. φµ is decreasing

in λ, which is a force against sorting.

However, the exact impact of an increase in the queue length depends on whether

primarily low types or high types are being added (as measured by ζ) as well as

whether types can easily be distinguished (as measured by σ). After all, when the
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queue mainly consists of low types (ζ is low), multiple interviews with high types are

unlikely and the effect of a longer queue predominantly operates by making it less

likely for a high-type applicant to be interviewed. Clearly, this force is mitigated by

an increase in firms’ screening ability σ: When σ is high, a high-type applicant is

likely to be interviewed regardless of whether there are many or few other applicants.

In contrast, when the queue mainly consists of high types (ζ is high), multiple

interviews with high-type applicants are a key concern. A longer queue makes this

outcome more likely and this force is amplified by an increase in firms’ screening

ability σ, since it increases every applicant’s interviewing probability.

Figure 3 illustrates this idea by presenting the level curves of φµ for a larger value

of σ than Figure 1. A comparison of the two figures reveals that σ increases the

curvature of the level curves. As a result, the level curves become closer together for

large ζ but further apart for small ζ. So, for a given increase in the queue length, φµ

now decreases more rapidly when ζ is high but more slowly when ζ is low. In other

words, increasing firms’ ability to screen makes sorting easier when there are few high-

type workers, but harder when there are many of such workers. Since Proposition 3

derives a sorting condition for any distribution of agents’ types, the latter case is the

relevant one.30

5 Extensions

In this section, we explore various extensions of our environment.

5.1 Alternative Meeting Technologies

We have derived our main result, Proposition 3, for a specific micro-foundation of

the meeting technology, such that φ(µ, λ) was given by (6). The search literature

offers various alternatives.31 Since most of our analysis is presented in a general way,

such alternatives can be analyzed by updating φ (µ, λ). In particular, the necessary

conditions in Proposition 2 continue to apply under very mild restrictions on φ(µ, λ),

as discussed there. Proving that these conditions are also sufficient is more involved

because one needs to verify that φ (µ, λ) satisfies the regularity conditions specified

30This intuition suggests that the necessary condition ρ ≥ ac continues to hold with an arbitrary
number of worker types. The difficulty in analyzing this case rather lies in proving sufficiency, as
dealing with the multiplicity points where the optimal ζ is not unique is manageable with two types
but quickly becomes intractable when the number of types increases.

31See Lester et al. (2015) and Cai et al. (2017) for examples.
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Figure 3: Level Curves of φµ for Higher σ

The gray curves represent level curves of φµ, decreasing from bottom-left to top-
right. The corresponding levels of φµ as well as λ(y1), λ(y2), ζ(y1) = ζ and ζ(y2)
are the same as in Figure 1.

in the proofs of Proposition 3. We briefly discuss the two most common classes

of meeting technologies in the literature, bilateral and invariant technologies, for

which establishing sufficiency is straightforward due to the simple functional form of

φ(µ, λ).32

Bilateral Technologies. Bilateral technologies can be interpreted as firms being

able to interview only a single applicant (σ = 0 in our benchmark technology).33

In that case, φ(µ, λ) = m(λ)µ/λ, where, as before, m(λ) is the probability that a

firm receives at least one applicant. The following lemma establishes that ac(ζ, λ)

and am(ζ, λ) then become independent of ζ and both reduce to the elasticity of

substitution of the total number of matches in a submarket, which is precisely the

object that Eeckhout and Kircher (2010a) show to be important in their study of

sorting patterns for bilateral technologies.

32For the meeting technology of Wolthoff (2018), in which workers send their applications accord-
ing to an urn-ball process while screening remains geometric, we can show sufficieny numerically.

33Examples include Moen (1997) and Acemoglu and Shimer (1999).
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Lemma 8. When the meeting technology is bilateral, we have

ac(ζ, λ) = am(ζ, λ) =
m′(λ)(λm′(λ)−m(λ))

λm(λ)m′′(λ)
. (28)

Proof. See Appendix B.4.

With bilateral technologies, firms always find it optimal to attract either only

low-type or only high-type workers. In this case, PAC/PAM simply requires that

for some yEK , we have ζ(y) = 0 for all y < yEK , ζ(y) = 1 for all y > yEK , and

ζ(yEK) is not unique and can be either 0 or 1. For NAC/NAM the reverse must hold.

Appendix B.5 demonstrates for our case with two worker types that we recover the

sorting results of Eeckhout and Kircher (2010a), who assume a continuum of worker

types.

Invariant Technologies. Invariant technologies, such as urn-ball or geometric,

exhibit perfect screening in the sense that the presence of low types does not make it

harder (or easier) for a firm to identify a high-type applicant. That is, φλ (µ, λ) = 0

for all µ and λ, or equivalently, φ(µ, λ) = φ(µ, µ) ≡ m(µ), where m(µ) is always

assumed to be strictly concave (see Cai et al., 2017). Furthermore, one can show

that limµ→0 µm
′′(µ) = 0.34 The surplus function S(µ, λ, y) defined in (7) simplifies

to m(λ)f (x1, y) + m(µ) [f (x2, y)− f (x1, y)]. The firms’ problem becomes strictly

concave in (µ, λ), which implies that for each y, there exists exactly one optimal

queue (µ(y), λ(y)).

To analyze this case, we first introduce two elasticities:

ε0(µ) =
µm′(µ)

m(µ)
and ε1(µ) =

µm′′(µ)

m′(µ)
. (29)

The following lemma then presents ac(ζ, λ) and am(ζ, λ) for invariant technologies in

terms of ε0(·) and ε1(·).

34For common invariant technologies such as urn-ball and geometric, this is trivially satisfied
because m′′(0) is finite. A general proof—based on the observation that m(µ) is a Bernstein function
for invariant technologies, so it admits the Lévy–Khintchine representation (see Theorem 3.2 in
Schilling et al., 2012)—is available upon request.
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Lemma 9. When the meeting technology is invariant, we have

ac(ζ, λ) =
ε1(λζ)

ε1(λ)
and am(ζ, λ) =

ε1(λζ)

ε1(λ)

ε0(λ)

ε0(λζ)
, (30)

with extrema ac = am = 0 and ac, am ≥ 1.

Proof. See Appendix B.6.

Recall that the contact quality-quantity elasticity ac(ζ, λ) measures the relative

percentage changes of φµ(λζ, λ) and m′(λ) while holding ζ constant. For invari-

ant technologies, φµ(λζ, λ) = m′(λζ); thus, ac(ζ, λ) is simply ε1(λζ)/ε1(λ). Next,

note that am(ζ, λ) measures the same relative percentage changes while holding

m(λζ)/m(λ) constant. The latter requires the percentage changes of m(λζ) and

m(λ) to be equal, that is, the percentage change of λζ equals ε0(λ)/ε0(λζ) times the

percentage change of λ; thus, am(ζ, λ) = am(ζ, λ)ε0(λ)/ε0(λζ).

Proposition 4. Suppose the meeting technology is invariant. The equilibrium then

exhibits PAC (resp. PAM) for any distribution of agents’ types if and only if ρ ≥ ac

(resp. ρ ≥ am). In contrast, the equilibrium exhibits NAC/NAM for any distribution

of agents’ types if and only if f (x, y) is submodular.

Proof. See Appendix B.7.

With two mild assumptions, which are satisfied by both the urn-ball and the

geometric technology, the sorting results become particularly simple.35

Assumption INV-1. ε1(µ) is decreasing in µ.

Assumption INV-2. ε1(µ)/ε0(µ) is decreasing in µ.

Assumption INV-1 (resp. INV-2) implies that ac(ζ, λ) (resp. am(ζ, λ)) is increasing

in ζ so that ac = 1 (resp. am = 1). This yields the following result.

Corollary 2. When the meeting technology is invariant and satisfies Assumption INV-

1 (resp. INV-2), the equilibrium exhibits PAC (resp. PAM) for any distribution of

agents’ types if and only if f (x, y) is log-supermodular.

35However, one can construct invariant technologies that do not satisfy these assumptions, e.g.
a mixture between urn-ball and geometric: m(µ) = t(1 − e−µ) + (1 − t)µ/(1 + µ) with t ∈ [0, 1].
Numerically, one can see that ac > 1 and am = 1 when t = 0.2, while ac, am > 1 when t = 0.98.
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Because invariance implies that the optimal queue composition is always unique,

these sorting results can be generalized to an arbitrary number of worker types in a

straightforward manner. We demonstrate this in Appendix B.8.

5.2 Signals

In our benchmark model, firms have no information about applicants’ types when

selecting interviewees. In practice, there often exist relatively easy ways to obtain a

signal, e.g. from a quick look at applicants’ resumes. As we show in this section, our

baseline environment can be extended quite easily to capture this idea.

Environment with Signals. Consider an environment like our benchmark model,

except that firms can costlessly observe a signal for every applicant. For high-type

applicants, the signal is positive with certainty. In contrast, a low-type applicant

generates a negative signal with probability τ ∈ [0, 1] and a positive signal with

complementary probability. Hence, the signal is perfect if τ = 1, but pure noise if

τ = 0. Using this information, firms will first interview applicants with positive signals

and only interview applicants with negative signals if interview capacity remains. As

before, an interview reveals the applicant’s true type.

Isomorphism. The following proposition establishes that this modified environ-

ment is isomorphic to our baseline model, as long as we transform the parameter σ

to account for the fact that firms also obtain information from signals.

Proposition 5. In our environment with signals, consider a firm with queues (µ, λ).

Let σ̂ = 1 − (1− τ) (1− σ) ∈ [0, 1], then the probability that the firm interviews at

least one high-type worker equals

φ (µ, λ) =
µ

1 + σ̂µ+ (1− σ̂)λ
.

Proof. See Appendix B.9.

As a direct consequence of this proposition, all our earlier results carry over to

the environment with signals, except that they apply to σ̂ instead of σ to account for

the fact that the signal precision τ is a substitute for the screening intensity σ.
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5.3 Endogenous Screening

The screening intensity σ was exogenous in our baseline model. However, firms can

generally influence the number of applicants that they interview. In this section, we

therefore endogenize σ and discuss how it affects our results. We keep the discussion

concise and refer to the proof of Proposition 6 for details.

Environment with Endogenous Screening. Consider an environment which is

like our benchmark model, except that firms additionally choose (and post) their

recruiting intensity σ ∈ [0, 1] at a linear cost cσ, where c ≥ 0.36 That is, they solve

max
σ, µ, λ

λ

1 + λ
f 1 +

µ

1 + σµ+ (1− σ)λ
∆f − λU1 − µ∆U − cσ. (31)

Since the second term above is convex in σ and cσ is linear, the above profit function

is convex in σ. The maximum is therefore reached at a corner, i.e. when σ = 0 or 1.

To determine firms’ choice, we compare the profits from the two options.

Profits with No Screening. Consider a firm of type y choosing σ = 0. This

firm’s optimal queue then consists of either low-type workers or high-type workers,

but not both. Suppose the firm attracts workers of type xi. Equation (31) then

reduces to maxλi m(λi)f(xi, y) − λiUi. Because m(λ) is strictly concave, the FOC

of this problem is both necessary and sufficient. Assuming that f(xi, y) > Ui, the

optimal queue length is λi =
√
f(xi, y)/Ui − 1, which yields an expected payoff of

πi(y) =
(√

f(xi, y)−
√
Ui

)2

. (32)

Naturally, the firm chooses the type of workers it wishes to attract based on whether

π1(y) or π2(y) is higher, which requires comparing
√
f(x2, y)−

√
f(x1, y) with

√
U2−√

U1. If the former is strictly increasing in y, i.e. f is strictly square-root supermod-

ular, then there exists a unique yEK such that π2(y) > π1(y) if y > yEK and vice

versa. This result is a special case of Section 5.1 or Eeckhout and Kircher (2010a).

36Posting contracts that include σ in addition to wages is necessary for constrained efficiency
in this environment. More restrictive contract spaces and more general cost functions are left for
future research. Wolthoff (2018) endogenizes σ in a similar way as us, but with a cost function that
is sufficiently convex (in an otherwise quite different model). In the random search model of Birinci
et al. (2020), firms have the option to learn all their applicants’ types after paying a fixed cost.
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Profits with Perfect Screening. When the firm chooses σ = 1, (31) reduces to

π(y) ≡ max
0≤µ≤λ

λ

1 + λ
f 1 +

µ

1 + µ
∆f − λU1 − µ∆U. (33)

This problem is strictly concave in (µ, λ), so that the FOCs are both necessary and

sufficient. The only complexity lies in the constraint 0 ≤ µ ≤ λ, which implies that

there are four possibilities with respect to the optimal applicant pool: a firm choosing

σ = 1 may attract (i) no applicants, such that π(y) = 0; (ii) only low-type applicants,

such that π(y) = π1(y); (iii) only high-type applicants, such that π(y) = π2(y); or

(iv) both types of applicants, in which case the FOCs imply µ =
√

∆f/∆U − 1 and

λ =
√
f 1/U1 − 1, such that

π(y) =
(√

f 1 −
√
U1

)2

+
(√

∆f −
√

∆U
)2

. (34)

Choice of Screening Intensity. The characterization of π1(y), π2(y), and π(y)

completes the analysis of the firm’s problem (31): the firm chooses σ = 1 if π(y)−c ≥
max{π1(y), π2(y)} and σ = 0 otherwise.

An Auxiliary Function. To simplify exposition, we introduce a transformation

Ω(·) of κ (y), the output dispersion parameter defined by equation (13), and establish

that this transformation is strictly decreasing:

Ω(κ) ≡ 1

2
+

ln(
√
κ+
√

1 + κ)

ln(1 + κ)
. (35)

Lemma 10. Ω(κ) is strictly decreasing with limκ→0 Ω(κ) =∞ and limκ→∞Ω(κ) = 1.

Proof. See Appendix B.10.

Sorting. In our main analysis, we showed that—relative to a bilateral world—

allowing firms to interview multiple applicants makes it harder to obtain sorting for

any distribution of agents’ types; in particular, we found that log-supermodularity

is necessary and sufficient to obtain PAC/PAM for any distribution of agents’ types

and any screening intensity σ, while submodularity is the corresponding condition for

NAC/NAM.

We now analyze whether these conditions carry over to an environment with

endogenous screening in the sense that they are also necessary and sufficient to obtain
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sorting for any distribution of agents’ types and any screening cost c. Necessity is

immediate: when c = 0, all firms choose σ = 1 and the results of Proposition 4

and Corollary 2 apply. For NAC/NAM, sufficiency is also relatively straightforward:

we find that strict submodularity is sufficient for NAC/NAM for any distribution

of agents’ types and any screening cost c. PAC/PAM is more complicated. The

following proposition summarizes the results.

Proposition 6. In our environment with endogenous screening, the following holds:

(i) The equilibrium exhibits NAC/NAM for any distribution of agents’ types and

any cost c if (resp. only if) f(x, y) is strictly (resp. weakly) submodular.

(ii) Given any log-supermodular function f , we can find a distribution of agents’

types and a screening cost c such that PAC/PAM fails in equilibrium. However,

given a distribution of agents’ types and c, PAC/PAM holds in equilibrium as

long as

ρ ≥ Ω(κ(y)). (36)

Proof. See Appendix B.11.

The sufficient condition (36) depends only on ρ, the lower bound of the produc-

tion complementarities, and κ(y), the lower bound of the output dispersion.37 Hence,

PAC/PAM requires that either production complementarity or output dispersion is

sufficiently large. Note that condition (36) is quite sharp: in the proof of Proposi-

tion 6, we show that with CES production we can construct counterexamples where

PAC/PAM fails in equilibrium whenever ρ < Ω(κ(y)).

At first, our result regarding PAC/PAM may seem puzzling. One may have ex-

pected that, with strong complementarities, firms’ incentives to invest in (ex post)

screening are increasing in their productivity and that since the least-productive firms

can only afford to attract low-type workers, PAC/PAM arises. This intuition turns

out to be wrong. When x1 and x2 are sufficiently close, the most-productive firms

find it optimal to attract high-type applicants only. They are not willing to pro-

vide low-type workers with their market utility, because compensating them for the

low matching probability that results from the presence of many high-type workers

requires a very high wage. Therefore, firms in the middle of the productivity dis-

tribution have the strongest incentives to screen ex post. Although those firms also

37Since f is log-supermodular, κ(y) is smallest at y = y. Also, by Lemma 10, (36) requires ρ > 1.
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prefer to hire high-type workers, they can only afford to offer modest wages to them

and therefore they attract relatively few of them. As a consequence, they can at-

tract low-type workers for a relatively low wage (since they offer them a high hiring

probability). However, some firm types below those screening firms are not produc-

tive enough to be willing to pay the screening cost as an insurance device (since the

opportunity costs of remaining unmatched is lower for those firms), but conditional

on not screening ex-post, they are productive enough to target high-type applicants.

When this happens, PAC/PAM fails in the middle. In the limit where x1 → x2,

we can always find a distribution of agents’ types and a screening cost c such that

PAC/PAM fails in equilibrium, even for log-supermodular production functions.

This scenario does not arise when either the degree of complementarity ρ or output

dispersion κ(y) is large, i.e. (36) holds. In that case, the incentive to attract low-type

workers as insurance against failing to hire is decreasing in firms’ type. Then, the

most-productive firms attract only high-type workers, firms in the middle attract

both types and screen ex post, and the least-productive firms attract only low-type

workers. More precisely, the gains from ex-post screening are first increasing in y,

reach their maximum at yEK (defined by π1(yEK) = π2(yEK)) and from then onwards

are decreasing in y.

6 Conclusion

A firm with a vacancy typically has multiple instruments to screen applicants. By

announcing the terms of trade ex ante, it can discourage certain types of workers

from applying, while ex post—after receiving applications—it can interview applicants

in an attempt to identify the most profitable hire. In this paper, we show how

these instruments jointly determine equilibrium outcomes, including sorting patterns.

Perhaps surprisingly, we find that if ex post screening is easier (firms can screen more

applicants), this makes sorting harder. That is, stronger complementarities in the

production technology are necessary to get positive assortative matching. The more

workers a firm can screen, the stronger the incentives for high-type workers are to

avoid ending up in the same pool of applicants and this is a force against sorting

which is by itself efficient (a social planner also wants to reduce the probability that

valuable resources are wasted because they end up in the same pool).

There are several promising avenues for future research. On the theoretical side,

in markets with a long hiring cycle, like the academic job market, workers may have
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relatively strong incentives to send multiple applications simultaneously. This would

reduce the cost for high-type workers to end up in the same queue as other high-

type workers. However, even in those markets, high-type workers have incentives to

diversify and not only apply to the top places.

On the empirical side, an important implication of our model is that sorting

patterns are driven both by the production function and the meeting process. In

order to identify complementarities in production, we may need—besides data on

matches—additional information on the entire pool of applicants. This way, we can

first identify the parameters of the meeting technology (i.e. how many workers apply,

which workers apply and how many are screened) and then, conditional on the meeting

technology, matching patterns are informative on production complementarities.
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Appendix A Proofs

A.1 Proof of Lemma 3

This proof is based on Shimer (2005), but extends his result to arbitrary φ(µ, λ).

Because φ(µ, λ) is concave in µ, we have

ψ1 (µ∗, λ∗) ≤ φµ(µ∗, λ∗) ≤ ψ2 (µ∗, λ∗) , (37)

where ψ1 and ψ2 are defined by equation (9). Consequently, the wages must satisfy

w∗1 =
U1

ψ1 (µ∗, λ∗)
≥ U1

φµ(µ∗, λ∗)
and w∗2 =

U2

ψ2 (µ∗, λ∗)
≤ U2

φµ(µ∗, λ∗)
. (38)

Moreover, the FOC of (10) with respect to µ implies φµ(µ∗, λ∗)(f(x2, y)−f(x1, y)) =

U2 − U1. Combining this FOC with (38) implies

w∗2 − w∗1 ≤
U2 − U1

φµ(µ∗, λ∗)
= f(x2, y)− f(x1, y)

The strict inequality in f(x2, y) − w∗2 > f(x1, y) − w∗1 then follows because the two

inequalities in (37) cannot hold simultaneously; that would imply that φ(µ, λ∗) is

linear for µ ∈ [0, λ∗], in which case the firm’s problem never has an interior solution

(see Section 5.1 for an extensive discussion of this case).

A.2 Proof of Lemma 4

Given φµµ < 0, the Hessian is negative definite if and only if its determinant is positive,

i.e. ∆f
[
m′′φµµf

1 +
(
φµµφλλ − φ2

µλ

)
∆f
]
> 0. Using ∆f > 0 and the definition of κ(y),

this gives condition (14).
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A.3 Proof of Lemma 5

As x2 → x1, U2 and U1 approach a common value U and total surplus (7) converges

to m(λ)f(x1, y), which implies that firms’ expected profit tends to m(λ)f(x1, y)−λU .

Since 0 ≤ m(λ)f(x1, y)−λU < f(x1, y)−λU , this means that—when x2 is sufficiently

close to x1—firms’ choice of queue length λ is bounded from above; in particular

λ < λ(y) ≡ U/f(x1, y), such that we can restrict each firm’s choice of queues to be

in the convex set ∆(y) ≡ {(µ, λ) | 0 ≤ µ ≤ λ ≤ λ(y)}.
On this set, the right-hand side of the firm’s SOC (14) is bounded due to continuity.

Hence, (14) will hold for all (µ, λ) in ∆(y) when κ(y), or equivalently x2 − x1, is

sufficiently small. That is, for each firm type y, the surplus function is concave on the

set ∆(y). Therefore, each firm’s solution (µ(y), λ(y)) is unique, and by the Theorem

of the Maximum, it is also continuous. Furthermore, when µ(y) and λ(y) satisfy

0 < µ(y) < λ(y), they are jointly determined by the FOCs (11) and (12). Hence, by

the implicit function theorem, they are both continuously differentiable around that

point. The same then applies to ζ(y) = µ(y)/λ(y).

A.4 Proof of Lemma 6

Differentiating (11) along the equilibrium path yields

ζ ′(y)(U2 − U1) = m′f 1
y +m′′λ′(y)f 1 + (ζ(y)φµ + φλ)∆fy

+

[
ζ ′(y)φµ + ζ

∂φµ
∂ζ

ζ ′(y) + ζ
∂φµ
∂λ

λ′(y) +
∂φλ
∂ζ

ζ ′(y) +
∂φλ
∂λ

λ′(y)

]
∆f,

where we have suppressed the arguments µ(y) and λ(y) from the functions m and φ.

By (12), we can substitute φµ∆f for U2 − U1 on the left-hand side. The resulting

equation and equation (21) are two linear equations in ζ ′(y) and λ′(y). A simple but

tedious calculation then yields (22).

Rearranging equation (23) gives

− 1

φµ

∂φµ
∂ζ

ζ ′(y) =
f 1
y

f 1

f 1∆fy
f 1
y∆f

−
1
φµ

∂φµ
∂λ

m′′

m′

1− 1
m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

 (39)

where we used equation (22) to substitute out λ′(y). Since φ(µ, λ) is strictly concave,
∂φµ
∂ζ

= λφµµ < 0, which implies that ζ ′(y) ≥ 0 if and only if the term in the parenthesis
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on the right-hand side is positive, i.e. (24) holds with i = c.

By definition, PAM is equivalent to ∂h
∂ζ
ζ ′(y) + ∂h

∂λ
λ′(y) ≥ 0. Combining (22)

and (39) then shows that PAM is obtained if and only if (24) holds with i = m.

A.5 Proof of Proposition 2

First consider PAC. We show that if the necessary condition fails, we can construct

a counterexample in which worker heterogeneity is small and PAC fails. The other

cases (PAM, NAC and NAM) follow the same logic.

Suppose that (25) does not hold for i = c, so that there exist x′, y′, µ′, and λ′

such that ρ(x′, y′) < ac(µ′, λ′). By continuity, we can then assume that 0 < µ′ < λ′

(note the strict inequality), and that there exists a small ε0 ∈ (0, (λ′ − µ′)/2) such

that the above inequality holds for all x ∈ [x′ − ε0, x
′ + ε0], y ∈ [y′ − ε0, y

′ + ε0],

µ ∈ [µ′ − ε0, µ′ + ε0], and λ ∈ [λ′ − ε0, λ′ + ε0]. Fix ε0 from now on.

Set x1 = x′, and `2 = µ′ and `1 = λ′ − µ′, where `i is the total measure of xi

workers, i = 1, 2. Next, pick x2, y, and y such that x2− x′ = y′− y = y− y′ (i.e. y′ is

the midpoint of y and y). We denote this difference by ε1 and let ε1 → 0. Note that

when ε1 = 0, both firm and worker heterogeneity disappear. For sufficiently small ε1,

the equilibrium λ(y) is unique and continuous by Lemma 5. Since the aggregate ratio

of workers and firms is λ′, for sufficiently small ε1, we have λ(y) ∈ [λ′−ε0, λ′+ε0] for all

y. Furthermore, µ(y) is continuous and the average µ(y) is µ′, i.e.
∫ y
y
µ(y)dJ(y) = µ′.

Therefore, by continuity there exists some y0 such that µ(y0) = µ′. To sum up, at

point y0 we have µ′ = µ(y0) < λ(y0) ∈ (λ′ − ε0, λ′ + ε0). Since ζ(y0) is both unique

and interior, ζ(y) is differentiable at point y0 (see Lemma 5). Hence, the assumptions

of Lemma 6 are satisfied at point y0.

When ε1 → 0, the left-hand side of (24) approaches ρ(x′, y′). On the right-hand

side, ac(µ(y0), λ(y0))→ ac(µ′, λ′) (note that the choice of y0 depends on the value of

ε1). Furthermore, at point y0, we have

1− 1

m′

(
φµ
φµλ
φµµ
− φλ

)
∆fy
f 1
y

≈ 1− 1

m′

(
φµ
φµλ
φµµ
− φλ

)
fxy(x

′, y′)

fy(x′, y′)
ε1 → 1,

where we suppress the arguments of m(λ′) and φ(µ′, λ′). Similarly, the denominator

on the right-hand side of (24) also goes to 1. Therefore, for (24) to hold at point y0,

we need ρ(x′, y′) ≥ ac(µ′, λ′), which yields a contradiction.
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A.6 Proof of Lemma 7

We first consider ac(ζ, λ). Since φ(µ, λ) is given by equation (6) and ac(ζ, λ) is defined

by equation (19), direct calculation yields

ac(ζ, λ) =
1 + λ

2λ

(
1 +

1

1 + (1− σ)λ
− 2

1 + σζλ+ (1− σ)λ

)
. (40)

Note that ac(ζ, λ) is strictly increasing in ζ. Thus, we have maxζ a
c(ζ, λ) = ac(1, λ)

and minζ a
c(ζ, λ) = ac(0, λ). Moreover, (40) reveals that ac(0, λ) + ac(1, λ) = 1 and

dac(1,λ)
λ

= − σ(1−σ)
2(1+(1−σ)λ)2

< 0. Therefore, ac(1, λ) approaches its supremum when λ→ 0

and ac(0, λ) approaches its infimum when λ → 0. Hence, we have supζ,λ a
c(ζ, λ) =

limλ→0 a
c(1, λ) = (1 + σ)/2 and infζ,λ a

c(ζ, λ) = 1− supζ,λ a
c(ζ, λ) = (1− σ)/2, where

neither the infimum nor the supremum can be reached because we require λ > 0.

Next, we consider am(µ, λ). Analogous to above, direct computation yields

am(ζ, λ) =
λ(1 + λ)(1− σ) + 2σζλ

2λ (1 + (1− σ)λ)
. (41)

Note that am(ζ, λ) is strictly increasing in ζ. For a given λ, am(ζ, λ) therefore reaches

its minimum at ζ = 0 and its maximum at ζ = 1. Because am(0, λ) = ac(0, λ) and

am(1, λ) = am(1, λ), the rest of the proof is the same as for ac(ζ, λ).

Finally, note that

ac(ζ, λ)− am(ζ, λ) =
ζ(1− ζ)σ2λ

(1 + (1− σ)λ)(1 + σζλ+ (1− σ)λ)
≥ 0.

Thus, when σ > 0, ac(ζ, λ) = am(ζ, λ) if and only if ζ = 0 or ζ = 1.

A.7 Proof of Proposition 3

We focus here on the case where ζ(y) is unique for all y; the more complicated case

where ζ(y) is not unique for some firm types is analyzed in Appendix B.3.

First, we present two helpful results; then, we show that the necessary conditions

derived from the limit case x2 → x1 in Proposition 2 are also sufficient for any

distribution of agents’ types, under some regularity conditions; finally, we show that

our benchmark technology satisfies these regularity conditions.
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A.7.1 The Elasticity of Complementarity Revisited.

Note that ρ(x, y) is the ratio of the percentage change in fy(x, y) (the marginal output

by firms) and the percentage change in f(x, y) caused by increasing the worker type

to x+ ∆x. That is, for sufficiently small ∆x > 0, we have

fy(x+ ∆x, y)

fy(x, y)
≈ 1 + ρ(x, y)

fx(x, y)

f(x, y)
∆x ≈

(
f(x+ ∆x, y)

f(x, y)

)ρ(x,y)

.

In general, when x is discrete and ρ(x, y) is not necessarily constant, the elasticity of

fy with respect to f is bounded by ρ and ρ, as summarized by the following lemma.

Lemma 11. For given y, fy(x, y)/f(x, y)ρ is increasing in x, and fy(x, y)/f(x, y)ρ

is decreasing in x. That is,(
f(x2, y)

f(x1, y)

)ρ
≤ fy(x2, y)

fy(x1, y)
≤
(
f(x2, y)

f(x1, y)

)ρ
, (42)

where the first (resp. second) inequality holds as equality if and only if ρ (resp. ρ) is

equal to ρ(x, y) for all x ∈ [x1, x2].

Proof. Given ρ0, the derivative of log fy(x, y)− ρ0 log f(x, y) with respect to x equals

∂

∂x
(log fy − ρ0 log f) =

fxy
fy
− ρ0

fx
f

=
fxyf − ρ0fxfy

ffy
,

where we suppress the arguments of f(x, y) and its partial derivatives for simplicity.

The right-hand side is weakly positive (resp. negative) if ρ0 = ρ (resp. ρ0 = ρ),

which means that log fy(x2, y) − ρ log f(x2, y) ≥ log fy(x1, y) − ρ log f(x1, y), and

log fy(x2, y) − ρ log f(x2, y) ≥ log fy(x1, y) − ρ log f(x1, y), which jointly imply (42).

A.7.2 A Technical Lemma

The first two parts of the following lemma are trivial, whereas the third part is non-

trivial and critical for our results.

Lemma 12. (i) If ρ > 1, then 1
κ
((1 + κ)ρ − 1) is strictly increasing for κ > 0; (ii) if

ρ ∈ (0, 1), then 1
κ
((1 + κ)ρ − 1) is strictly decreasing for κ > 0; and (iii) if ρ ∈ (0, 1),

then
(

1
κ

+ 1−ρ
2

)
((1 + κ)ρ − 1) is strictly increasing for κ > 0.
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Proof. For (i) and (ii), define g(κ) = (1 + κ)ρ, which is strictly concave if ρ ∈ (0, 1)

and strictly convex if ρ > 1. Observe that ((1 + κ)ρ − 1)/κ = (g(κ)− g(0))/(κ− 0),

which is strictly increasing in κ if g(κ) is strictly convex, and strictly decreasing in κ

if g(κ) is strictly concave.

For (iii), direct computation gives

d

dκ

[(
1

κ
+

1− ρ
2

)
((1 + κ)ρ − 1)

]
=

2(1 + κ)1−ρ − 2− κ(1− ρ)(2− κρ)

2κ2(1 + κ)1−ρ .

The numerator on the right-hand side equals zero for κ = 0. Moreover, its derivative

is d
dκ

[2(1 + κ)1−ρ− 2− κ(1− ρ)(2− κρ)] = 2(1− ρ)[(1 + κ)−ρ− (1− κρ)] > 0, because

convexity of (1 + κ)−ρ implies (1 + κ)−ρ− (1− κρ) > 0. Hence, the numerator on the

right-hand side is strictly positive for κ > 0, which proves (iii).

A.7.3 Sufficiency of the Necessary Conditions

Since we have assumed that ζ(y) is unique for all y, it is continuous in y by the

Theorem of the Maximum. Next, consider the differentiability of ζ(y). When ζ(y)

is interior, it is determined by the corresponding FOCs (11) and (12) (jointly with

λ(y)); hence by the implicit function theorem, ζ(y) is differentiable. However, when

ζ(y) = 0 or 1, ζ(y) is not necessarily differentible.38 In that case, as long as ζ ′(y) ≥ 0

(resp. d
dy
h(ζ(y), λ(y)) ≥ 0) when ζ(y) is interior, ζ(y) (resp. h(ζ(y), λ(y))) is weakly

increasing, which is the definition of PAC (resp. PAM). Because of this observation

and our focus on sorting, we only consider firms with an interior ζ(y) in what follows.

The following lemma establishes that—subject to regularity conditions—the neces-

sary condition (25) implies that PAC/PAM holds locally at all interior points, so it

is also sufficient. The same conclusion also applies to the case of NAC/NAM.

Lemma 13. Let i = c or i = m. If, for any µ and λ, we have

ai
1

m′

(
φµ
φµλ
φµµ
− φλ

)
− 1

m′′

(
φ2
µλ

φµµ
− φλλ

)
≥ max(1− ai, 0), (43)

then (25) implies that (24) always holds in equilibrium (i.e. PAC/PAM).

38For example, let y = 1 and y = 4. We can construct examples where in equilibrium, ζ(y) = 0
for y ≤ 2, ζ(y) = y − 2 for y ∈ [2, 3], and ζ(y) = 1 for y ≥ 3. In this case, ζ(y) is not differentiable
at y = 2 and 3.
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If (i) φλ/φµ is weakly decreasing in µ, (ii) 0 ≤ ai < 1, and (iii) for any µ and λ,

ai
1

m′

(
φµ
φµλ
φµµ
− φλ

)
− 1

m′′

(
φ2
µλ

φµµ
− φλλ

)
≤ 0, (44)

then (26) implies that (24) holds in equilibrium with ≤ instead of ≥ (i.e. NAC/NAM).

Proof. Recall κ(y) ≡ ∆f/f 1. Throughout this proof, we will then use the following

inequalities which result from rewriting (42):

(1 + κ(y))ρ − 1

κ(y)
≤ f 1∆fy

f 1
y∆f

≤ (1 + κ(y))ρ − 1

κ(y)
. (45)

First, consider PAC/PAM. Assume the necessary condition (25) holds, i.e. ρ ≥ ai.

Since ai ≥ 0, this implies that ∆fy ≥ 0 (i.e. f is supermodular) such that the left-hand

side of (24) is positive. We now prove a stronger version of (24), i.e.

f 1∆fy
f 1
y∆f

≥ ai
1− 1

m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

,

where ai(ζ, λ) is replaced by its supremum ai. This is justified because if the second

factor on the right-hand side is negative then we have nothing to prove; if it is positive,

then we have a stronger version of the original inequality. Firms’ SOC implies that

the denominator of this factor is positive. Rearranging terms therefore gives

f 1∆fy
f 1
y∆f

+
∆fy
f 1
y

[
ai

1

m′

(
φµ
φµλ
φµµ
− φλ

)
− 1

m′′

(
φ2
µλ

φµµ
− φλλ

)]
≥ ai. (46)

Consider now two subcases, determined by the value of ρ. If ρ ≥ 1, then

f 1∆fy
f 1
y∆f

≥ (1 + κ(y))ρ − 1

κ(y)
≥ ρ ≥ ai,

where inequalities follow from of Lemma 11, ρ ≥ 1 (see part (i) of Lemma 12), and

the necessary condition (25), respectively. Since (43) implies that the term in square

brackets in (46) is positive, (46) holds, which then implies (24).

In contrast, if ρ ∈ (0, 1), then (43) implies that the term in the square brackets

in (46) is greater than 1−ai, which is greater than 1−ρ ≥ 0, because of the necessary
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condition (25). Hence, the left-hand side of (46) is greater than

(1 + κ(y))ρ − 1

κ(y)
+ ((1 + κ(y))ρ − 1) (1− ρ),

which reaches its minimum value ρ at κ(y) = 0, by part (iii) of Lemma 12. Hence, (46)

holds (recall we assume ρ ≥ ai), which subsequently implies (24).

Next, consider NAC/NAM. Note that condition (i), i.e. φλ/φµ being weakly de-

creasing in µ, is equivalent to φµ
φµλ
φµµ
−φλ ≥ 0, as can be seen by taking the derivative

with respect to µ. We now distinguish two subcases based on the sign of ∆fy.

If ∆fy ≤ 0, then the left-hand side of (24) is negative. The numerator on the

right-hand side is positive because φµ
φµλ
φµµ
− φλ ≥ 0, while the denominator is positive

because of the firm’s SOC. Thus, it follows immediately that (24) holds with ≤ .

In contrast, if ∆fy ≥ 0, we prove the inequality

1 ≤
1− 1

m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

, (47)

which is equivalent to

f 1∆fy
f 1
y∆f

1

m′

(
φµ
φµλ
φµµ
− φλ

)
− 1

m′′

(
φ2
µλ

φµµ
− φλλ

)
≤ 0. (48)

To do so, note that f1∆fy
f1y∆f

≤ (1+κ(y))ρ−1
κ(y)

≤ ρ ≤ ai, where the three inequalities follow

from (45), part ii) of Lemma 12, and our assumption ρ ≤ ai, respectively. Hence, (48)

and (47) follow from (44). Therefore,

f 1∆fy
f 1
y∆f

≤ ρ ≤ ai ≤ ai ≤ ai
1− 1

m′

(
φµ

φµλ
φµµ
− φλ

)
∆fy
f1y

1− 1
m′′

(
φ2µλ
φµµ
− φλλ

)
∆f
f1

.

Hence, we have proved the case of NAC/NAM.
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A.7.4 Verification of the Regularity Conditions in Lemma 13

If φ(µ, λ) satisfies (6), ac = am = (1 + σ)/2 and ac = am = (1 − σ)/2, by Lemma 7.

Plugging (6) into the left-hand side of (43) yields

(1− σ)(1 + λ)2(2 + (1− σ)λ)

4(1 + (1− σ)λ)(1 + σµ+ (1− σ)λ)
≥ (1− σ)(1 + λ)(2 + (1− σ)λ)

4(1 + (1− σ)λ)
≥ (1− σ)

2
,

where the first inequality is because the denominator reaches its maximum at µ = λ,

and the second one is because 1 + λ ≥ 1 + (1− σ)λ. This proves (43).

The regularity conditions for NAC/NAM in Lemma 13 are satisfied because (i)

φλ/φµ = −(1−σ)µ/(1+(1−σ)λ) which is decreasing in µ, (ii) ai = (1−σ)/2 ∈ [0, 1),

and (iii) plugging (6) into the left-hand side of (44) yields

− λ(1 + λ)2(1− σ)2

4(1 + (1− σ)λ)(1 + σµ+ (1− σ)λ)
≤ 0.

Hence the necessary conditions in Proposition 2 are also sufficient.
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Appendix B Online Appendix

B.1 Proof of Lemma 1

Given queue length λ, a firm’s number of applicants nA in our benchmark model

follows a geometric distribution with support N0 and mean λ, i.e. P [nA ≥ n |λ] =(
λ

1+λ

)n
for n = 0, 1, 2, . . . . We will make this proof more general by assuming that

the application process is governed by a general invariant technology, which Lester

et al. (2015) and Cai et al. (2017) define as follows: applications are invariant if

and only if the probability that a firm with queues (µ, λ) receives at least one high-

type applicant depends only on µ (and not on λ). Hence, it equals the probability

P [nA ≥ 1 |µ] that a firm receives at least one applicant when the queue has length µ

and consists only of high-type workers. That is,

P [nA ≥ 1 |µ] = 1−
∞∑
n=0

P [nA = n |λ]
(

1− µ

λ

)n
= 1−

∞∑
n=0

P [nA ≥ n |λ]
(

1− µ

λ

)n
+
∞∑
n=0

P [nA ≥ n+ 1 |λ]
(

1− µ

λ

)n
=
∞∑
n=1

P [nA ≥ n |λ]
µ

λ

(
1− µ

λ

)n−1

. (49)

where the first equality uses the definition of invariance and the fact that the prob-

ability that an applicant is high-type is µ/λ and is independent across applicants,

while the second and the third equality follow from summation by parts.

A firm’s potential number of interviews, nC , follows a geometric distribution with

support N1 and mean (1− σ)−1. That is, P[nC ≥ n |σ] = σn−1 for n = 1, 2, . . . .

Since interviewing might be constrained by the number of applications, the firm’s

actual number of interviews is nI = min{nA, nC} ∈ N0, distributed according to

P [nI ≥ n |λ, σ] = P [nA ≥ n |λ]σn−1. An interview reveals a high-type worker with

probability µ/λ, independently across applicants. The firm therefore interviews at

least one high-type worker with probability

φ(µ, λ) = 1−
∞∑
n=0

P [nI = n|λ, σ]
(

1− µ

λ

)n
=
∞∑
n=1

P [nI ≥ n|λ, σ]
µ

λ

(
1− µ

λ

)n−1

,
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where the second equality follows from summation by parts, analogous to (49).

Substituting P [nI ≥ n |λ, σ] = P [nA ≥ n |λ]σn−1 yields

φ(µ, λ) =
µ

σµ+ (1− σ)λ

∞∑
n=1

P [nA ≥ n |λ]
σµ+ (1− σ)λ

λ

(
1− σµ+ (1− σ)λ

λ

)n−1

=
µ

σµ+ (1− σ)λ
P [nA ≥ 1 |σµ+ (1− σ)λ] . (50)

Since P [nA ≥ 1 |σµ+ (1− σ)λ] = σµ+(1−σ)λ
1+σµ+(1−σ)λ

in our baseline model, equation (6)

then follows from (50).

B.2 Proof of Lemma 2

Given U1/w1 and U2/w2, consider then the level curves ψ2(λζ, λ) = U2/w2 and

ψ1(λζ, λ) = U1/w1 in the λ-ζ space. Note that

ψ1(λζ, λ) =
1 + (1− σ)λ

(1 + λ)(1 + (1− σ + σζ)λ)
and ψ2(λζ, λ) =

1

1 + (1− σ + σζ)λ
,

both of which are strictly decreasing in ζ. We now show that the two curves intersect

at most once so that there exists exactly one solution (µ, λ). At any intersection

point, the difference between the slopes of the two level curves is

−∂ψ1(λζ, λ)/∂λ

∂ψ1(λζ, λ)/∂ζ
+
∂ψ2(λζ, λ)/∂λ

∂ψ2(λζ, λ)/∂ζ
=

1 + (1− σ + σζ)λ

λ(λ+ 1)(1 + (1− σ)λ)
> 0.

Hence, by a standard single-crossing argument, the two level curves cross each other

at most once. Note that we can also derive the solution (µ, λ) explicitly. However,

with this approach we need to discuss the conditions under which we have a corner

solution (µ = 0 or µ = λ) or an interior solution (0 < µ < λ).

B.3 General Analysis with Multiplicity Points

Assuming that firms have solved for the optimal queue length λo(ζ, y) from (11), we

next consider their choice of ζ. That is, firms now solve the maximization problem

maxζ∈[0,1] Π∗(ζ, y), where Π∗(ζ, y) = Π(ζ, λo(ζ, y), y). In general, Π∗(ζ, y) is not nec-

essarily quasi-concave in ζ, so the problem may admit multiple solutions. Denote by

Z(y) the set of all optimal ζ for firms of type y and let ζ(y) be an arbitrary element

from Z(y). Below, we first show that Z(y) contains at most two elements, and when
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it contains exactly two elements, one of them must be zero.

Marginal Contributions. Since the equilibrium is constrained efficient, the ex-

pected payoffs of firms and workers equal their marginal contribution to surplus.

Adding more low-type workers to a submarket only increases λ, while adding more

high-type workers increases both µ and λ. Thus, the marginal contribution of low-

type and high-type workers at a firm of type y with queues (µ, λ) are Sλ(µ, λ, y)

and Sµ(µ, λ, y) + Sλ(µ, λ, y), respectively. Because of constant returns to scale, the

firm’s marginal contribution is the difference between total surplus and the sum of the

marginal contributions of its applicants, i.e. S(µ, λ, y)− µSµ(µ, λ, y)− λSλ(µ, λ, y).39

Using S(µ, λ, y) from (7), f 1 ≡ f(x1, y) and ∆f = f(x2, y)− f(x1, y), we get

T1(µ, λ, y) = m′(λ)f 1 + φλ(µ, λ)∆f, (51)

T2(µ, λ, y) = m′(λ)f 1 + (φµ(µ, λ) + φλ(µ, λ)) ∆f, (52)

R(µ, λ, y) = (m(λ)− λm′(λ)) f 1 + (φ(µ, λ)− µφµ(µ, λ)− λφλ(µ, λ)) ∆f, (53)

where T1, T2 and R are the marginal contribution to surplus of low-type workers,

high-type workers, and firms, respectively.

Multiplicity. The fact that a firm’s optimal choice of the fraction of high-type

workers ζ may not be unique generally renders the analysis intractable. However,

Cai et al. (2022) show that under a single-crossing condition, which we present in

the proof of the following lemma and which is satisfied by our benchmark meeting

technology, the optimal queue composition takes a simple form.

Lemma 14 (Cai et al., 2022). If φ is given by (6), then for any given firm type y,

Z(y) contains at most two elements, and when it contains two elements, one of the

two must be zero.

Proof. We prove this result and discuss it extensively in Cai et al. (2022). Here, we

state the single-crossing condition and briefly argue why it leads to Lemma 14. To

do so, we define H(µ, λ) as the right-hand side of (14), i.e.

H(µ, λ) ≡
φλλ − φ2

µλ/φµµ

−m′′
. (54)

39Alternatively, increase the number of firms by a factor 1 + ∆s. The additional surplus is then
(1 + ∆s)S(µ/(1 + ∆s), λ/(1 + ∆s), y)− S(µ, λ, y), which yields the same result when ∆s→ 0.
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Cai et al. (2022) then show that Lemma 14 holds whenever a meeting technology

satisfies Property A0, A1, A2 and the following A3.

A3. (single-crossing condition) At any point (ζ, λ) where H(λζ, λ) > 0, we have

∂H(λζ, λ)/∂λ > 0 and

−∂φµ(λζ, λ)/∂ζ

∂φµ(λζ, λ)/∂λ
< −∂H(λζ, λ)/∂ζ

∂H(λζ, λ)/∂λ
. (55)

Note that Property A0 states that ∂φµ(λζ, λ)/∂ζ < 0, while Property A2 states that

∂φµ(λζ, λ)/∂λ < 0, making the left-hand side of (55) strictly negative. When φ(µ, λ)

is given by (6), direct computation reveals that both H(λζ, λ) and the right-hand

side of (55) are strictly positive. Thus, Property A3 is trivially satisfied in this case.

The idea of the proof of Cai et al. (2022) is then as follows. Suppose that the

equilibrium payoff—or equivalently the marginal contribution to surplus—of a given

firm y is R∗(y). Property A3 then implies that level curve R(λζ, λ, y) = R∗(y) crosses

the level curve H(λζ, λ) = 1/κ(y) at most once and from the left, as illustrated

in Figure 1 of Cai et al. (2022). If the intersection exists, denote it by (λ∗, ζ∗).

Along the level curve R(λζ, λ, y) = R∗(y), the second-order condition (14) is then

satisfied for ζ > ζ∗ and violated for ζ < ζ∗. The only feasible submarket when

ζ < ζ∗ is therefore the corner solution ζ = 0. Furthermore, along the level curve

R(λζ, λ, y) = R∗(y), T2(λζ, λ, y) is monotonically decreasing in ζ for ζ ≥ ζ∗. Since the

marginal contribution of high-type workers must be the same among all submarkets

containing such workers, there can exist only one submarket with ζ ≥ ζ∗. Hence,

there exist at most two submarkets: one with ζ = 0 and the other with ζ ≥ ζ∗.

That is, firms of a particular type y may have two optimal strategies. Some firms

may go for quality by encouraging high-type workers to apply and limiting the number

of low-type applicants in order to reduce congestion. Other firms of the same type

may go for quantity and aim for a large hiring probability by attracting many low-

type workers; however, this stops high-skilled workers from applying there altogether.

The above lemma shows that these two scenarios can be optimal simultaneously, but

there are no other possibilities. As we will see later, when assortative matching holds

in equilibrium, there exists at most one firm type which has two optimal strategies;

for all other firm types, the optimal ζ(y) must be unique.
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Local PAC/PAM. Consider a point ym where Z(ym) is not a singleton. By

Lemma 14, it then has two elements, with one of them equal to zero. Denote these

elements by ζ0 and ζ1, satisfying 0 = ζ0 < ζ1, and their corresponding queue lengths

by λ0 and λ1, respectively. By the Theorem of the Maximum, Z(y) is an upper hemi-

continuous correspondence. Therefore, for firm types y close to ym, Z(y) is either the

corner solution 0, or some ζ close to ζ1, or both. We now define when PAC/PAM

holds locally at a multiplicity point ym. Note that the definition is the same for PAC

and PAM.

Definition 5. Consider a point ym for which Z(ym) is not unique. PAC/PAM then

holds locally at ym if, for y sufficiently close to ym, the corner solution 0 is the only

solution for y < ym, but does not belong to Z(y) for y > ym.

In other words, local PAC/PAM for a multiplicity point means that firms with

y slightly below ym have a unique optimal ζ equal to zero and firms with y slightly

above ym have a unique optimal ζ close to ζ1. This definition is local in the sense that

we only require that the previous statement holds for y sufficiently close to ym. Note

that the definition does not require that, for y slightly above ym, we have ζ(y) ≥ ζ1

(PAC) or h(ζ(y), λ(y)) ≥ h(ζ1, λ1) (PAM); these inequalities are implied the fact that

we also require PAC/PAM to hold locally for y > ym (see Lemma 15 below for the

detailed proof).

Alternatively, if the optimal queue composition ζ(y) is unique and interior, then,

as before, we define that PAC (resp. PAM) holds locally at point y if ζ ′(y) ≥ 0 (resp.
d
dy
h(ζ(y), λ(y)) ≥ 0). We do not discuss the case in which ζ(y) is unique but a corner

solution, i.e. Z(y) = {0} or Z(y) = {1}, because ζ(·) is not necessarily differentiable

at such points. However, as Lemma 15 below shows, we do not need to consider

such points for our global sorting analysis because of continuity. We focus on the

conditions for PAC/PAM; the analysis for NAC/NAM is similar with reversal of the

relevant inequalities and is spelled out only when necessary.

From Local to Global. Our next result then shows that if PAC/PAM holds locally,

then the equilibrium exhibits PAC/PAM; alternatively, we say that PAC/PAM holds

globally in that case.

Lemma 15. If PAC/PAM (resp. NAC/NAM) holds locally at all points where Z(y)

is either unique and interior or contains multiple points, then PAC/PAM (resp.

NAC/NAM) holds globally.

53



Proof. By the Theorem of Maximum, Z(y) is an upper hemi-continuous correspon-

dence: if yk → y∗ and ζk → ζ∗ with ζk ∈ Z(yk), then ζ∗ ∈ Z(y∗). As we discussed

after Definition 5, when PAC/PAM holds locally at some multiplicity point ym, then

all points sufficiently close to ym, but not equal to ym, have a unique optimal ζ.

Thus, if PAC/PAM holds locally at all multiplicity points, then multiplicity points

are isolated from each other.

Next, we prove that there exists at most one multiplicity point. Suppose otherwise.

Because multiplicity points are isolated, consider two consecutive multiplicity points

y′m and y′′m with Z(y′m) = {0, ζ ′1} and Z(y′′m) = {0, ζ ′′1}. Since PAC/PAM holds locally

at y′m and y′′m, we have limy↓y′m ζ(y) = ζ ′1 > 0 (left limit) and limy↑y′′m ζ(y) = 0 (right

limit). By construction, ζ(y) is then unique for all y between y′m and y′′m and hence

continuous. Since we require that PAC (resp. PAM) holds locally at points where

ζ(y) is unique and interior, ζ(y) (resp. h(ζ(y), λ(y))) is then increasing between y′m

and y′′m, which then contradicts with limy↓y′m ζ(y) = ζ ′1 > 0 and limy↑y′′m ζ(y) = 0.

Proof of Proposition 3 with Multiplicity Points. We now extend the proof

of Proposition 3 to allow for multiplicity points. As we showed in the main text,

ρ ≥ (1 +σ)/2 and ρ ≤ (1−σ)/2 are sufficient for PAC/PAM and NAC/NAM to hold

locally at points where ζ(y) is unique and interior, respectively. By Lemma 15, we

only need to show that they are also sufficient for sorting to hold locally at multiplicity

points. For the former, below we show that (ρ > 1/2) is already sufficient.

Suppose that Z(ym) is not a singleton and denote the two optimal queues again

by (ζ0, λ0) and (ζ1, λ1), where 0 = ζ0 < ζ1. Since firm ym must be indifferent, the

expected payoff—or, equivalently, the marginal contribution to surplus—must be the

same for the two queues. By (53), we have

m(λ0)− λ0m
′(λ0) = m(λ1)− λ1m

′(λ1) +

(
φ(ζ1λ1, λ1)− λ1

dφ(ζ1λ1, λ1)

dλ

)
∆f

f 1
, (56)

where ∆f = f(x2, ym)−f(x1, ym) and f 1 = f(x1, ym). The left-hand side is the firm’s

marginal contribution to surplus with a queue (0, λ0), divided by f(x1, ym), and the

right-hand side is the corresponding value with a queue (ζ1, λ1).

If ζ1 ∈ (0, 1), then low-type workers are present in both queues and their marginal
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contribution to surplus must be the same. Equation (51) then yields

m′(λ0) = m′(λ1) + φλ(ζ1λ1, λ1)
∆f

f 1
if ζ1 ∈ (0, 1). (57)

Low-type workers are not present in the shorter queue if ζ1 = 1. In this special case,

optimality requires that the left-hand side of (57) is larger than the right-hand side.

The requirement in Definition 5 can be characterized by the envelope theorem: a

sufficient condition is Πy(0, λ0, ym) < Πy(ζ1, λ1, ym), where Π(ζ, λ, y) is the expected

profit of a firm y with queue (ζ, λ) as defined in equation (10).40 The condition

Πy(0, λ0, ym) < Πy(ζ1, λ1, ym) can be written as

m(λ0) < m(λ1) + φ(ζ1λ1, λ1)
∆fy
f 1
y

, (58)

where ∆fy = f(x2, ym) − f(x1, ym) and f 1
y = fy(x1, ym). If the reverse inequality

Πy(0, λ0, ym) > Πy(ζ1, λ1, ym) holds, then the opposite is true (NAC/NAM holds

locally at point ym), i.e. for y slightly above ym, Z(y) is unique and equals zero, and

for y slightly below ym, Z(y) is unique and equals some ζ around ζ1.

Consider first the case in which ζ1 = 1. The sorting conditions for this case are

equivalent to the ones in Eeckhout and Kircher (2010a), even though the meeting

technology is not bilateral. The proof of Proposition 7 in Appendix B.5 shows that

equation (56) implies (58) when ρ > 1/2, while equation (56) implies (58) with reverse

inequality when ρ < 1/2. Hence, assortative sorting holds locally at ym under the

sufficient conditions in Proposition 3.

Next, consider the case in which ζ1 < 1, such that (57) holds with equality.

40The envelope theorem states that if a firm with type y close to ym is constrained to choose
only ζ close to ζ1, then its maximum expected profit is approximately (first-order) Π(ζ1, λ1, ym) +
Πy(ζ1, λ1, ym)∆y where ∆y = y − ym. Similarly, if the firm is constrained to choose ζ = 0,
then its maximum expected profit is approximately Π(0, λ0, ym) + Πy(0, λ0, ym)∆y. Recall that
Π(ζ1, λ1, ym) = Π(0, λ0, ym). When Πy(ζ1, λ1, ym) > Πy(0, λ0, ym), then a firm type y > ym strictly
prefers to choose ζ around ζ1 instead of zero, and a firm type y < ym strictly prefers zero. As men-
tioned before, by continuity, it is without loss of generality to constrain the firm to choose between
zero and all ζ close to ζ1. See Milgrom and Segal (2002) for a discussion of envelope theorems.
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From (56) and (57), we can solve for κ(ym) and λ0 in terms of ζ1 and λ1. This yields

κ(ym) =
4σ(1 + λ1 − λ1σ(1− ζ1))2

(1 + λ1)(λ1 − σ − λ1σ(1− ζ1) + 1)2
, (59)

λ0 =
λ1(λ1 + σ(−λ1 + (λ1 + 2)ζ1 − 1) + 1)

1− σ − λ1(1− σ − σζ1)
. (60)

Rewrite (58) as

1 +
m(λ0)−m(λ1)

φ(ζ1λ1, λ1)
<
fy(x2, ym)

fy(x1, ym)
. (61)

Consider PAC/PAM first. If ρ > 1/2, then fy(x2, ym)/fy(x1, ym) > (1 + κ(ym))1/2

by (42). Note that

(1 + κ(ym))−
(

1 +
m(λ0)−m(λ1)

φ(ζ1λ1, λ1)

)2

=
4λ1σ

3(1− ζ1)(1 + λ1(1− σ(1− ζ1)))

(1 + λ1)2(1− σ + λ1(1− σ(1− ζ1)))2
> 0,

hence (61) holds.

For NAC/NAM, note that fy(x2, ym)/fy(x1, ym) < (1 + κ(ym))ρ by (42). We have

(1 + κ(ym))ρ − 1− m(λ0)−m(λ1)

φ(ζ1λ1, λ1)
<

1− σ
2

κ(ym)− m(λ0)−m(λ1)

φ(ζ1λ1, λ1)

= −2σ2λ1(1− σ(1− ζ1))(1 + λ1(1− σ(1− ζ1)))

(1 + λ1) (1− σ + λ1(1− σ(1− ζ1)))2 ≤ 0,

where the first inequality follows from (1 +κ)ρ < 1 + ρκ ≤ 1 + 1−σ
2
κ, and the equality

follows from equations (59) and (60). Hence, (58) holds with >. We thus have proved

that assortative sorting holds locally at all multiplicity points under the sufficient

condition in Proposition 3.

B.4 Proof of Lemma 8

Since φ(µ, λ) = µm(λ)/λ, we have φµ(µ, λ) = m(λ)/λ, which in turn implies that

∂φµ(ζλ, λ)/∂ζ = 0. Therefore, by equation (20), am(ζ, λ) = ac(ζ, λ) for any ζ and λ.

Next, consider ac(ζ, λ) as given by equation (19). Since φµµ(µ, λ) = 0 and φµλ(µ, λ) =

(m(λ)/λ)′ = (λm′(λ)−m(λ))/λ2, we obtain equation (28) for ac(ζ, λ) and am(ζ, λ).

A discussion of why the right-hand side in equation (28) equals the elasticity of

substitution of the total number of matches in a submarket can be found in Eeckhout
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and Kircher (2010a).

B.5 General Bilateral Technologies

Under bilateral technologies, the firm’s problem is solved by attracting either low-

or high-type workers, but not both.41 Therefore, we do not need need to consider

the scenario where Z(y) is unique and interior; we only need to consider multiplicity

points, where the optimal ζ is 0 or 1, but not any number in between. Denote such

a multiplicity point by yEK .42 Using ζ1 = 1, the indifference condition (56) of a firm

with type yEK then becomes

(m(λ0)− λ0m
′(λ0)) f(x1, y

EK) = (m(λ1)− λ1m
′(λ1)) f(x2, y

EK). (62)

Further, the local condition for PAC/PAM (58) reduces to

m(λ1)
fy(x2, y

EK)

fy(x1, yEK)
> m(λ0), (63)

i.e. firms with types slightly above yEK strictly prefer high-type workers, while firms

with types slightly below yEK strictly prefer low-type workers. If this holds for all mul-

tiplicity points, then by continuity there exists at most one such point and PAC/PAM

holds globally (see also Lemma 15). The following proposition establishes the neces-

sary and sufficient conditions for sorting for any distribution of agents’ types. These

conditions were first derived by Eeckhout and Kircher (2010a) in a framework with

a continuum of worker types; we establish that the same conditions arise with two

types.

Proposition 7 (Eeckhout and Kircher, 2010a). Suppose meetings are bilateral, i.e.

φ(µ, λ) = m(λ)µ/λ. The equilibrium then exhibits PAC/PAM for any distribution of

agents’ types if (resp. only if) ρ is strictly (resp. weakly) larger than ac = am = aEK.

In contrast, the equilibrium exhibits NAC/NAM for any distribution of agents’ types

if (resp. only if) ρ is strictly (resp. weakly) smaller than ac = am = aEK.

For our benchmark technology with σ = 0, we have aEK(λ) = 1/2 for any λ.

Proposition 7 therefore reveals that Proposition 2 gives the right sorting conditions

41This result follows from firms’ SOC: with bilateral meetings, φµµ = 0; the right-hand side of (14)
is therefore zero and never satisfied for an interior ζ.

42The superscript refers to Eeckhout and Kircher (2010a), who first analyzed the bilateral case.
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for this special case (by continuity), even though Proposition 2 was derived under the

assumption that the meeting technology is not bilateral (σ > 0) to avoid the technical

issue of division by φµµ(µ, λ) = 0.43

Proof. We focus on PAC/PAM; the logic for NAC/NAM is similar. Consider first the

sufficient condition. We need to show that equation (62) implies (63) when ρ > aEK .

To see this, take logs to rewrite equation (62) as

log f
(
x2, y

EK
)
− log f

(
x1, y

EK
)

= log (m(λ0)− λ0m
′(λ0))− log (m(λ1)− λ1m

′(λ1)) ,

which, by the fundamental theorem of calculus, can be rewritten as∫ x2

x1

fx(x, y
EK)

f(x, yEK)
dx =

∫ λ0

λ1

−λm′′(λ)

m(λ)− λm′(λ)
dλ. (64)

By the definition of ρ, we have fxy(x,yEK)

fy(x,yEK)
− ρfx(x,yEK)

f(x,yEK)
≥ 0. Similarly, by the definition

of aEK , we have 0 ≥ m′(λ)
m(λ)

− aEK −λm′′(λ)
m(λ)−λm′(λ)

, where the right-hand side is strictly

greater than m′(λ)
m(λ)

− ρ −λm′′(λ)
m(λ)−λm′(λ)

, because we assume ρ > aEK . We thus have

∫ x2

x1

fxy(x, y
EK)

fy(x, yEK)
− ρfx(x, y

EK)

f(x, yEK)
dx >

∫ λ0

λ1

m′(λ)

m(λ)
− ρ −λm′′(λ)

m(λ)− λm′(λ)
dλ,

because the integrand on the left-hand side is weakly positive, and integrand on the

right-hand side is strictly negative. Combing the above inequality with (64) yields∫ x2

x1

fxy(x, y)

fy(x, y)
dx >

∫ λ0

λ1

m′(λ)

m(λ)
dλ, (65)

which is the same as (63), by the same logic as what gave us (64) from (62).

Next, consider the necessary condition.44 The following construction is similar to

that in the proof of Proposition 2. Towards a contradiction, suppose that ρ < aEK .

43There is a subtlety: in Proposition 2, when σ > 0, the necessary and sufficient conditions exactly
coincide, because the supremum and the infimum are never attained as maximum and minimum,
respectively. However, when σ = 0, we have ac(ζ, λ) = ac(ζ, λ) = aEK(λ) = 1/2 for any ζ, λ,
making firms indifferent between low- and high-type workers when f is CES with ρ = 1/2, as can
been seen from (32). This indifference makes it necessary to distinguish between necessary and
sufficient conditions for bilateral technologies.

44A proof of necessity is required because Proposition 2 restricts attention to the case in which
φ(µ, λ) is strictly concave in µ, implying that the meeting technology is not bilateral.

58



Then there exist an x∗, y∗ and λ∗ such that ρ(x∗, y∗) < aEK(λ∗), and by continuity

there exists some ε > 0 such that ρ(x, y∗) < aEK(λ) holds for all x and λ with

|x − x∗|, |λ − λ∗| < ε. To derive the contradiction, we then construct a distribution

of agents’ types such that NAC/NAM holds globally (i.e. PAC/PAM fails).

Step 1: Set yEK = y∗; by continuity, we can find some ∆x,∆λ < ε such that

x1 = x∗ −∆x, x2 = x∗ + ∆x, λ0 = λ∗ + ∆λ, λ1 = λ∗ −∆λ and equation (62) holds.

Step 2: Set the market utilities U1 = m′(λ0)f(x1, y
EK) and U2 = m′(λ1)f(x2, y

EK).

Step 3: Define πi(y), i = 1, 2, as the maximum expected profit by attracting

workers of type xi only. That is, πi(y) = maxλ≥0m(λ)f(xi, y) − λUi, where Ui is

given by Step 2. By construction, we have then π1(yEK) = π2(yEK), which then

implies that π′1(yEK) = m(λ0)f(x1, y
EK) > m(λ1)f(x2, y

EK) = π′2(yEK) by the same

logic that equation (62) implies (63), except that now we reverse all the inequalities

and only require that ρ(x, yEk) < aEK(λ) for x1 ≤ x ≤ x2 and λ1 ≤ λ ≤ λ0.

Hence, by continuity, we can find a ∆y small enough such that π1(y) < π2(y) for

y ∈
[
yEK −∆y, yEK

)
and π1(y) > π2(y) for y ∈

(
yEK , yEK + ∆y

]
.

Step 4: Choose any firm type distribution J(y) on [yEK −∆y, yEK + ∆y]. When

y > yEK , the demand of labor is given by the FOC m′(λ)f(x2, y) = U2, and when

y < yEK , the demand of labor is given by the FOC m′(λ)f(x1, y) = U1.

Step 5: Set the measure of workers (`1, `2) equal to firms’ demand of labor, which

then ensures that U1 and U2 are indeed the equilibrium market utilities of workers.

B.6 Proof of Lemma 9

The desired expression for ac follows readily from equations (19) and (29). To derive

the expression for am, note that φ(µ, λ) = m(µ) implies that φµ(µ, λ) = m′(µ) and

h(ζ, λ) = m(ζλ)/m(λ). Therefore, the last factor in (20) can be rewritten as

1− ∂φµ/∂ζ

∂φµ/∂λ

∂h/∂λ

∂h/∂ζ
= 1− λm′′(ζλ)

ζm′′(ζλ)

ζm′(ζλ)m(λ)−m(ζλ)m′(λ)
m(λ)2

λm′(ζλ)/m(λ)
=

m(ζλ)m′(λ)

ζm′(ζλ)m(λ)
=

ε0(λ)

ε0(ζλ)
.

Note that ac(1, λ) = am(1, λ) = 1 which implies that ac, am ≥ 1.

Next, consider ac and am. Since m(µ) is strictly concave and strictly increas-

ing, ε0(µ) is strictly positive, and ε1(µ) is strictly negative when µ > 0. Hence,

ac(ζ, λ) and am(ζ, λ) are always nonnegative. By L’Hopital’s rule and m′(0) > 0,

we have limµ→0 ε1(µ) = limµ→0 µm
′′(µ)/m′(µ) = 0, where, as we argued in foot-

note 34, limµ→0 µm
′′(µ) = 0 for invariant technologies. Similarly, limµ→0 ε0(µ) =
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limµ→0 µm
′(µ)/m(µ) = limµ→0 1 + µm′′(µ)/m′(µ) = 1. Thus, limζ→0 a

c(ζ, λ) =

limζ→0 ε1(λζ)/ε1(λ) = 0, and limζ→0 a
m(ζ, λ) = limζ→0 ε1(λζ)/ε1(λ) · ε0(λ)/ε0(λζ) =

0. Hence, ac = am = 0.

B.7 Proof of Proposition 4

The necessary conditions directly follows from Proposition 2, as its proof is valid for

any non-bilateral technology (i.e. φ is strictly concave in µ). Hence, we only need to

prove sufficiency. As mentioned in the main text, when the technology is invariant,

the firms’ problem is strictly concave so that the solution is always unique. For

PAC/PAM, we therefore only need to verify (24), which now reduces to

f 1∆fy
f 1
y∆f

≥ ai. (66)

where we have used the fact that φλ(µ, λ) = 0 and hence φµλ = φλλ = 0.

Note that ρ ≥ ai by assumption. Further, ai ≥ 1, by Lemma 9. Therefore,

f 1∆fy
f 1
y∆f

≥ (1 + κ(y))ρ − 1

κ(y)
≥ ρ ≥ ai ≥ ai,

where the first inequality is because of (42), and the second inequality follows from

part i) of Lemma 12.

Next, consider NAC/NAM, where we have assumed that ρ ≤ 0 = ac = am (see

Lemma 9). Again by (42), we have

f 1∆fy
f 1
y∆f

≤ (1 + κ(y))ρ − 1

κ(y)
≤ 0 = ai ≤ ai.

B.8 Invariant Technologies with N Worker Types

Our analysis of invariant technologies can easily be extended to the case in which

there are N > 2 worker types, i.e. x1 < x2 < · · · < xN . To do so, define µi as the

queue length of workers with type xi or higher, for i = 1, 2, . . . , N . That is, the queue

length of workers of type xi is µi − µi+1, with the convention that µN+1 = 0, and the

total queue length is µ1.
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Consider then a firm of type y that faces a queue (µ1, µ2, . . . , µN). With proba-

bility m(µ1), the firm meets at least one worker, which generates a surplus of at least

f(x1, y); with probability m(µ2) the firm meets at least one worker with a type higher

than or equal to x2, which generates an additional surplus of at least f(x2, y)−f(x1, y),

and so on. Using the convention f(x0, y) = 0, expected surplus therefore equals

S(µ1, . . . , µN , y) =
N∑
i=1

m(µi)[f(xi, y)− f(xi−1, y)], (67)

which generalizes equation (7) and is strictly concave in (µ1, . . . , µN).

From equation (67), we can proceed as before. Adding more workers of type xi

increases µ1, . . . , µi simultaneously, which implies that the marginal contribution to

surplus of such workers is
∑i

k=1m
′(µk)[f(xk, y)−f(xk−1, y)]. Since the firm’s problem

is strictly concave in (µ1, . . . , µN), the optimal queue is unique and is denoted by

(µ1(y), . . . , µN(y)). Assuming an interior solution to simplify exposition, µi(y) is

determined by the FOC m′(µi(y))[f(xi, y)− f(xi−1, y)] = Ui − Ui−1, where Ui is the

market utility of workers of type xi, with the convention U0 = 0.

Defining ζi(y) = µi(y)/µ1(y) and λ(y) = µ1(y), differentiation of this FOC along

the equilibrium path yields

−m
′′(ζi(y)λ(y))

m′(ζi(y)λ(y))
(ζ ′i(y)λ(y) + ζi(y)λ′(y)) =

fy(xi, y)− fy(xi−1, y)

f(xi, y)− f(xi−1, y)
,

which replicates (21) for the case of invariant technologies. Setting i = 1 and using

the fact that ζ1(y) = 1, the above equation implies

−m
′′(λ(y))

m′(λ(y))
λ′(y) =

fy(x1, y)

f(x1, y)
,

which replicates (22). Combing the above two equations yields

m′′(ζi(y)λ(y))
m′(ζi(y)λ(y))

(ζ ′i(y)λ(y) + ζi(y)λ′(y))

m′′(λ(y))
m′(λ(y))

λ′(y)
=
fy(xi, y)− fy(xi−1, y)

f(xi, y)− f(xi−1, y)

f(x1, y)

fy(x1, y)
,
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which replicates (23). Then, by Lemma 6, the condition for PAC/PAM is

f 1

f 1
y

fy(xi, y)− fy(xi−1, y)

f(xi, y)− f(xi−1, y)
≥ ai (ζi(y), λ(y)) . (68)

where i = c for PAC and i = m for PAM. From Proposition 4 (the case of N = 2),

we have that ρ ≥ ai is necessary, now we show that this is also sufficient for any N .

Since f(x, y) is log-supermodular, we have f(x1, y)/fy(x1, y) ≥ f(xi−1, y)/fy(xi−1, y).

Therefore, we only need to show that

f(xi−1, y)

fy(xi−1, y)

fy(xi, y)− fy(xi−1, y)

f(xi, y)− f(xi−1, y)
≥ ai (ζi(y), λ(y)) ,

which is a replication of equation (66). Hence, by the same argument as in the proof

of Proposition 4, Proposition 4 and Corollary 2 continue to hold for general N .

B.9 Proof of Proposition 5

First, we consider the unconditional probability that an applicant generates a positive

signal x̃2. The probability of this event equals P(x̃2) = µ
λ

+ λ−µ
λ

(1− τ), and the queue

length of such applicants is λ̃ = λP(x̃2) = µ + (λ − µ)(1 − τ). Given a positive

signal (x̃2), the probability that an applicant is of high type (x2) is P(x2 | x̃2) =

P(x2)P(x̃2 |x2)/P(x̃2) = µ/λ̃, where the first equality is simply Bayes’ rule.

Next, we consider the probability that the firm interviews at least one high-type

worker, φ(µ, λ). For this, we can ignore the existence of applicants with negative

signals; they are low-type workers for sure and do not affect the meeting process

between firms and workers with positive signals. By equation (6), the probability

that a firm interviews someone from the queue µ of high-type applicants, given a

queue λ̃ of applicants with positive signals, is φ(µ, λ) = µ/(1 + σµ+ (1− σ)λ̃), which

yields the desired result after substitution of λ̃.

B.10 Proof of Lemma 10

By L’Hospital’s Rule, limκ→0 Ω(κ) = limκ→0
1
2

+ 1√
κ+
√

1+κ

(
1

2
√
κ

+ 1
2
√

1+κ

)
(1+κ) =∞.

In contrast, when κ → ∞, we have κ ≈ 1 + κ and limκ→∞Ω(κ) = limκ→∞
1
2

+
ln(
√
κ+
√
κ)

ln(κ)
= 1.
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Next, we prove that Ω(κ) is strictly decreasing. By direct computation,

Ω′(κ) =
ln(1 + κ)− 2

√
κ

1+κ
ln(
√
κ+
√

1 + κ)

4
√
κ(1 + κ) ln(1 + κ)

.

The derivative of the numerator above is − ln(
√
κ+
√

1 + κ)
√

1+κ
κ

(1 + κ)−2 < 0. At

κ = 0, the numerator is zero, which implies that it is strictly negative and hence

Ω′(κ) < 0 when κ > 0.

B.11 Proof of Proposition 6

Our proof consists of three parts. First, we provide the details regarding a firm’s

optimal choice of σ that we omitted from the main text. Subsequently, we move to

the analysis of NAC/NAM. The final part concerns PAC/PAM.

B.11.1 Individual Firm’s Problem

Consider a firm of type y which thinks about choosing σ = 1. As we illustrate in

Figure 5, there are four possibilities regarding the firm’s optimal applicant pool:

(i) No applicants. If f(x1, y) ≤ U1 and f(x2, y) ≤ U2, then the firm will not attract

any applicants, such that π(y) = 0.

(ii) Only low-type applicants. If f(x1, y) > U1 and f(x2, y)−f(x1, y) ≤ U2−U1, the

firm will attract low-type workers, but not high-type workers as their marginal

product is less than their marginal cost; in this case, π(y) = π1(y).

(iii) Only high-type applicants. If f(x2, y) > U2 and f(x2, y)/f(x1, y) ≥ U2/U1, the

firm will attract only high-type workers since their relative productivity is higher

than their relative cost; in this case, π(y) = π2(y).

(iv) Both types of applicants. If f(x2, y)−f(x1, y) > U2−U1 and f(x2, y)/f(x1, y) <

U2/U1, then the firm strictly prefers a mix of both types of workers in their

application pool. By the FOCs, the optimal queue is given by µ =
√

∆f/∆U−1

and λ =
√
f 1/U1 − 1. In this case, π(y) is given by (34).

Clearly, a necessary condition for σ = 1 to yield higher profits than σ = 0 is that

the firm attracts both types of applicants. In what follows, we will therefore focus on

this case, which occurs when

∆f > ∆U and
f(x2, y)

f(x1, y)
<
U2

U1

. (69)
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Figure 5: Optimal applicant pool for a firm, conditional on σ = 1.

As the red dashed line in Figure 5 shows, the region described by (69) is divided into

two parts by the curve π1(y) = π2(y), or equivalently√
f 2 −

√
f 1 =

√
U2 −

√
U1. (70)

We therefore have to distinguish between two cases when calculating the difference in

profits between σ = 0 and σ = 1 in this region, i.e. ∆π(y) ≡ π(y)−max{π1(y), π2(y)}.
The following lemma formalizes this.

Lemma 16. If a firm is indifferent between attracting low- and high-type workers

conditional on σ = 0, i.e. π1(y) = π2(y) or equivalently (70) holds, then this firm

attracts both types of workers conditional on σ = 1, i.e. (69) also holds. In the region

characterized by (69), the difference in profits between σ = 1 and σ = 0 equals

∆π(y) =


(√

∆f −
√

∆U
)2

if π1(y) ≥ π2(y),

2
(√

f 2U2 −
√
f 1U1 −

√
∆f∆U

)
if π1(y) ≤ π2(y).

(71a)

(71b)

Proof. Equation (70) can be rewritten as
√
f 2/f 1 − 1 =

√
U1/f 1(

√
U2/U1 − 1).

Since U1/f
1 < 1, it follows that

√
U2/U1 − 1 >

√
f 2/f 1 − 1, and thus U2/U1 >

f 2/f 1. Similarly, (70) can also be rewritten as (f 2 − f 1)/(
√
f 2 +

√
f 1) = (U2 −

U1)/(
√
U2 +

√
U1). Because f 1 > U1 and f 2 > U2, we have ∆f > ∆U. Hence, (69)
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holds. Equation (71) then follows from substituting the relevant version of (32) into

∆π(y) = π(y)−max{π1(y), π2(y)}.

The characterization of ∆π(y) completes the analysis of the firm’s choice problem

given by (31): the firm’s optimal σ is 1 if ∆π(y) > c, 0 if ∆π(y) < c, and indeterminate

in the knife-edge case ∆π(y) = c. If the optimal σ is 1, then the optimal (µ, λ) must

be interior, and given by µ =
√

∆f/∆U −1 and λ =
√
f 1/U1−1. When the optimal

σ is 0, then the firm will attract either only low-type or only high-type workers,

depending on whether
√
f 2−

√
f 1 is larger than

√
U2−

√
U1, as discussed after (32).

B.11.2 The Analysis of NAC/NAM

As mentioned in the main text, necessity of submodularity of f(x, y) for NAC/NAM

follows from the special case c = 0 (see Proposition 3). Next, we show that strict

submodularity of f(x, y) is sufficient for NAC/NAM. From the discussion after equa-

tion (32), it follows that when f(x, y) is strictly submodular, and thus strictly square-

root submodular, there exists a unique yEK which solves (70). Furthermore, π2(y) >

π1(y) for firms with y < yEK , and vice versa.

Since f is strictly submodular, both f 2−f 1 and f 2/f 1 are strictly decreasing in y.

The first part of Lemma 16 states that yEK must belong to the region characterized

by (69). There exists at most one y′ < yEK such that f(x2, y
′)/f(x1, y

′) = U2/U1

(otherwise set y′ = y), and at most one y′′ > yEK such that f(x2, y
′′) − f(x1, y

′′) =

U2 − U1 (otherwise set y′′ = y). The region characterized by (69) is thus y ∈ (y′, y′′).

The following Lemma establishes that ∆π(y) is single-peaked at y = yEK .

Lemma 17. Suppose that f(x, y) is strictly submodular. In the region characterized

by (69), ∆π(y) is strictly increasing in y for y ≤ yEK and strictly decreasing in y for

y ≥ yEK.

Proof. For submodular f , π2(y) > π1(y) if y < yEK , and vice versa. As we remarked

before, the region characterized by (69) is (y′, y′′), which contains yEK . Hence,

∆π′(y) =



(
1−
√

∆U√
∆f

)
∆fy if y > yEK ,

−

(√
∆U

∆f
−

√
U2

f 2

)
f 2
y +

(√
∆U

∆f
−

√
U1

f 1

)
f 1
y if y < yEK .

(72a)

(72b)
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To establish the sign of (72a), note that ∆fy = f 2
y − f 1

y < 0 when f is strictly

submodular; hence, ∆π′(y) < 0 for y > yEK . To establish the sign of (72b), note that

f 2/f 1 < U2/U1 is equivalent to ∆U/∆f > U1/f
1 or ∆U/∆f > U2/f

2. The coefficient

of f 2
y in (72b) is therefore negative. Since f is submodular, f 2

y ≤ f 1
y , and we have

∆π′(y) ≥ −f 1
y

(√
∆U

∆f
−

√
U2

f 2

)
+ f 1

y

(√
∆U

∆f
−

√
U1

f 1

)
= f 1

y (
√
U2/f 2 −

√
U1/f 1),

where the right-hand side is strictly positive because U2/U1 > f 2/f 1. Hence, ∆π′(y) >

0 for y < yEK , i.e. ∆π(y) is strictly increasing in y for y ≤ yEK .

This result implies that firms with type yEK have the strongest incentive to screen.

If all firms choose σ = 1 in equilibrium, then sufficiency follows from Proposition 3;

if all firms choose σ = 0 in equilibrium, then sufficiency follows from Proposition 7 or

Eeckhout and Kircher (2010a). In the remaining case, where the equilibrium features

both firms choosing σ = 1 and firms choosing σ = 0, we must have ∆π(yEK) > c

(otherwise all firms will choose σ = 0). There exist then two firm types ys and ys

with y′ ≤ ys < yEK < ys ≤ y′′, where firms of type ys and ys are indifferent between

choosing σ = 0 and 1, i.e. ∆π(ys) = ∆π(ys) = c. Firms with y < ys will choose

σ = 0 and attract only high-type workers; firms with y ∈ (ys, ys) will choose σ = 1

and attract both types of workers; finally, firms with y > ys will choose σ = 0 and

attract only low-type workers. Since all firm types y between ys and ys choose σ = 1,

submodularity implies that NAC/NAM holds within this interval. Combining the

above results implies that NAC/NAM holds globally.

Note that we can not weaken the requirement of strict submodularity to mere

submodularity for the sufficient condition. To see this, set f(x, y) = x + y and

initially set c large enough so that all firms choose σ = 0. Then for y ≥ yEK , ∆π(y)

is a constant by equation (71a). If we set c = ∆π(yEK), all firms with y ≥ yEK are

indifferent between choosing σ = 0 with low-type applicants and σ = 1 with both

types of applicants. This indeterminacy violates NAC/NAM.
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B.11.3 The Analysis of PAC/PAM

First, with a slight abuse of notation, given x1 and x2, we define ρ(x1, x2, y) as the

solution to

fy(x2, y)

fy(x1, y)
=

(
f(x2, y)

f(x1, y)

)ρ(x1,x2,y)

. (73)

By Lemma 11, ρ(x1, x2, y) ∈ [ρ, ρ]. Note that ρ(x1, x2, y) is the discrete version of

ρ(x, y) defined in (1). We have ρ(x1, x2, y)→ ρ(x, y) when x1, x2 → x.

We now provide a claim which is stronger than the statements in Proposition 6.

Claim. Consider a log-supermodular function f . Given a distribution of agents’ types

and a screening cost c, PAC/PAM holds in equilibrium as long as, for each y,

ρ(x1, x2, y) ≥ Ω(κ(y)). (74)

In contrast, given x1, x2 and J(y), if for some y∗ ∈ (y, y), we have

ρ(x1, x2, y
∗) < Ω(κ(y∗)), (75)

then we can find (`1, `2) and c such that PAC/PAM fails in equilibrium.

Since Ω(·) is strictly decreasing and with log-supermodular f , κ(y) is increasing in

y), the right-hand side of (74) reaches its maximum at y = y. Also since ρ(x1, x2, y) ≥
ρ, the sufficient condition (36) in Proposition 6 then implies (74). On the other hand,

given any log-supermodular function, whenever x1, x2 → x, then κ(y) → 0 and

Ω(κ(y)) → ∞, and (75) holds for all y∗ ∈ [y, y], which, by the above claim, implies

that we can find (`1, `2) and c such that PAC/PAM fails in equilibrium.

Note that for a CES production function, (74) reduces to ρ ≥ Ω(κ(y)) and and

(75) reduces to ρ < Ω(κ(y)). Thus, although the sufficient condition (36) is slightly

weaker than (74), it is still sharp in the special case of CES production functions.

Similar to the analysis of NAC/NAM, since f(x, y) is log-supermodular, and

therefore strictly square-root supermodular, there exists a unique yEK which solves

(70). The first part of Lemma 16 states that yEK must belong to the region char-

acterized by (69). Furthermore, f 2 − f 1 is strictly increasing so that there ex-

ists at most one y′ < yEK such that f 2 − f 1 = U2 − U1 (otherwise set y′ = y).
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Since we only assume weak log-supermodularity, f 2/f 1 is weakly increasing. Set

y′′ = min{y |f 2/f 1 ≥ U2/U1} (if this set is empty, then set y′′ = y). The region char-

acterized by (69) is then y ∈ (y′, y′′). The following Lemma establishes that under the

sufficient condition (74), ∆π(y) is single-peaked at y = yEK , so PAC/PAM follows

from the same logic that was used for the case of NAC/NAM.

Lemma 18. Suppose that f(x, y) is log-supermodular. In the region characterized by

(69), ∆π(y) is strictly increasing in y for y ≤ yEK, and if condition (74) holds for

each y ∈ (y, y), then it is strictly decreasing in y for y ≥ yEK.

Proof. If y ∈ (y′, yEK ], then ∆π(y) is given by (71a) and its derivative is given

by (72a), so it is strictly increasing in y since ∆fy > 0. If y ∈ [yEK , y′′), then ∆π(y)

is given by (71b) and its derivative is now given by (72b) and can be rewritten as

∆π′(y) = f 1
y

√
∆U

κ(y)f 1

[
−(1 + κ(y))ρ(y)

(
1−

√
κ(y)

1 + κ(y)

√
U2

∆U

)
+ 1−

√
κ(y)

∆U/U1

]
,

where, to simplify notation, we shorten ρ(x1, x2, y) as ρ(y), and we used the identities

f 2/f 1 = 1 + κ(y) and f 2
y /f

1
y = (1 + κ(y))ρ(y).

Furthermore, define

δ(y) ≡

√
κ(y)

∆U/U1

, (76)

which implies
√
U2/∆U =

√
(κ(y) + δ(y)2)/κ(y), and ∆π′(y) can be rewritten as

∆π′(y) = f 1
y

√
∆U

κ(y)f 1

[
(1 + κ(y))ρ(y)

(√
κ(y) + δ(y)2

1 + κ(y)
− 1

)
+ 1− δ(y)

]

= f 1
y

√
∆U

κ(y)f 1

[
(1 + κ(y))ρ(y)− 1

2

√
κ(y) + δ(y)2 −

(
(1 + κ(y))ρ(y) − 1 + δ(y)

)]
= f 1

y

√
∆U

κ(y)f 1

(1 + κ(y))2ρ(y)−1 (κ(y) + δ(y)2)−
(
(1 + κ(y))ρ(y) − 1 + δ(y)

)2

(1 + κ(y))ρ(y)− 1
2

√
κ(y) + δ(y)2 + ((1 + κ(y))ρ(y) − 1 + δ(y))

.

Thus, ∆π′(y) has the same sign as the numerator of the last factor in the last line.
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Single out the numerator and define

S(δ, κ, ρ) = (1 + κ)2ρ−1
(
κ+ δ2

)
− ((1 + κ)ρ − 1 + δ)2 , (77)

which is a quadratic function of δ with a strictly positive second-order coefficient since

we assume ρ ≥ 1 (log-supermodularity). Note that S(1, κ, ρ) = 0 and ∂S(δ,κ,ρ)
∂δ

∣∣
δ=1

=

2(1 + κ)ρ((1 + κ)ρ−1 − 1) ≥ 0. Therefore, if S(0, κ, ρ) ≤ 0, then S(δ, κ, ρ) < 0 for all

δ ∈ (0, 1). Note that S(0, κ, ρ) = κ (1 + κ)2ρ−1 − ((1 + κ)ρ − 1)2 , Thus S(0, κ, ρ) ≤ 0

if and only if
√

κ
1+κ

(1 + κ)ρ ≤ (1 + κ)ρ − 1, or equivalently ρ ≥ Ω(κ).

If for each y ∈ (y, y), we have ρ(y) ≥ Ω(κ(y)), then by the above argument,

S(δ(y), κ(y), ρ(y)) < 0 and hence ∆π′(y) < 0 for y ∈ [yEK , y′′).

Similar to the case of NAC/NAM, we only need to consider the case where the

equilibrium features both firms choosing σ = 1 and firms choosing σ = 0. Then there

exist two firm types ys and ys that are indifferent between choosing σ = 0 and 1,

where y′ ≤ ys < yEK < ys ≤ y′′. Firms with y < ys will choose σ = 0 and attract only

low-type workers; firms with y ∈ (ys, ys) will choose σ = 1 and attract both types

of workers; finally, firms with y > ys will choose σ = 0 and attract only high-type

workers. Since all firms of y between ys and ys choose σ = 1, log-supermodularity

implies that PAC/PAM holds within this interval. Combining the above results then

implies that PAC/PAM holds globally.

Now consider the second part of the claim. Before we move to the detailed proof,

we first give a brief sketch. If (75) holds, then we can find (`1, `2) and a large c such

that all firms choose σ = 0 in equilibrium, and ∆π(y) reaches its maximum at some

point ỹ > yEK (note that the maximum is between 0 and c here). Now decrease c

gradually till firms near ỹ find it optimal to choose σ = 1 and screen ex-post while

firms with types slightly above yEK will continue choosing σ = 0 and accordingly

attract high-type applicants only. PAC/PAM then fails in this case. Below, we prove

this claim formally.

We first prove the following. Given a log-supermodular function f(x, y) and a

distribution of agents’ types, a necessary condition for PAC/PAM to hold for all c is

that ∆π′+(yEK) ≤ 0 when c is sufficiently large (for example, c ≥ f(x2, y)) so that all

firms choose σ = 0, where ∆π′+(yEK) is the right derivative of ∆π(y) at point yEK .

Suppose otherwise that ∆π′+(yEK) is strictly positive; the maximum value of

∆π(y) must then be reached at some point ỹ > yEK , since ∆π(y) is always strictly
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increasing when y ∈ (y′, yEK) (see Lemma 18 ). Now define c̃ = ∆π(ỹ) and gradually

decrease it from f(x2, y) to values around c̃. What is the impact of this change on

the sorting pattern? As long as c ≥ c̃, no firm is willing to invest in screening, so the

equilibrium allocation remains the same. When c is slightly below c̃, then firms with

types sufficiently close to ỹ will choose σ = 1. Note that the equilibrium market util-

ities U1 and U2 will change slightly, so that yEK also changes only slightly. As before,

firms with types slightly above yEK will therefore choose σ = 0 and hire high-type

workers only, while firms with types sufficiently close to ỹ will attract both types of

workers. Hence, PAC/PAM fails to hold when c is slightly below c̃.

Below, we complete the proof by showing that for any log-supermodular function

f(x, y) and (x1, x2, J(y)), if (75) holds for some y∗ ∈ (y, y), then we can choose

(`1, `2) such that ∆π′+(yEK) > 0 when c is sufficiently large that all firms choose

σ = 0. The idea of construction is similar to the counterexample for the necessity

part of Proposition 7 (the bilateral case).

Step 1: Since ρ(y∗) < Ω(κ(y∗)), we have S (0, κ(y∗), ρ(y∗)) > 0, where S is defined

in equation (77). Thus, by continuity, we can find a δ∗ small enough such that

S(δ∗, κ(y∗), ρ(y∗)) > 0. Next, we construct (U∗1 , U
∗
2 ) from the following two equations,√

f(x2, y∗)−
√
f(x1, y∗) =

√
U∗2 −

√
U∗1

δ∗ =

√
(f(x2, y∗)− f(x1, y∗))/f(x1, y∗)

(U∗2 − U∗1 )/U∗1
.

These equations are reminiscent of (70) and (76), respectively. The main difference is

that there we considered the market utilities as known and solved for yEK and δ(y);

here we treat y∗ and δ∗ as known and solve for market utilities instead.

Step 2: Given (U∗1 , U
∗
2 ), y∗ is then the firm type that corresponds to yEK de-

fined before. Since f is log-supermodular and hence strictly square-root supermod-

ular, firms with types y > y∗ will attract only high-type applicants, and firms

with types y < y∗ will attract only low-type applicants. The firms’ problem is

maxλ m(λ)f(x1, y) − λU∗1 for y ≤ y∗, and maxλ m(λ)f(x2, y) − λU∗2 for y ≥ y∗.

Denote the solution by λ(y) for all y.

Step 3: Set `1 =
∫ y∗
y
λ(y)dJ(y) and `2 =

∫ y
y∗
λ(y)dJ(y). Then, by construction,

(U∗1 , U
∗
2 ) are indeed the market utilities, y∗ = yEK for the equilibrium where all firms

choose σ = 0, and ∆π′+(yEK) > 0 because S(δ∗, κ(y∗), ρ(y∗)) > 0 and y∗ = yEK .
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