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Abstract

Procurement projects often involve substantial uncertainty in inputs at the time of con-

tracting. Whether the procurer or contractor assumes such risk depends on the specific

contractual agreement. We develop a model of auction contracts where bidders have

multidimensional private information. Bidders balance skewed bidding and risk expo-

sure; both efficient and inefficient bidders submit a low bid via skewed bidding. We

document evidence of i) risk-balancing behavior through bid portfolio formation and ii)

opportunistic behavior via skewed bidding using auction data. Counterfactual experi-

ments suggest the onus of bearing project risk should fall on the procurer (contractor)

when project risk is large (small).
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1 Introduction

An infrastructure project is a collection of work items – the quantities of which may not

be accurately predicted at the time of contracting. Which contracting party should assume

such risk is a topic of heated debate. On the one hand, the experimental and empirical

literature suggests that risk aversion plays a significant role in bidder behavior in auctions.1

A contractor who undertakes the entirety of the project risk may demand a sizable risk pre-

mium, and thus sharing the project risk may reduce procurement costs. On the other hand,

a procurer who undertakes a substantial portion of the project risk may suffer from excessive

cost overruns triggered by opportunistic contractors. Despite the empirical relevance of risk

allocation in contracts with uncertain demand, the empirical literature on this issue has been

scarce.2

We compare fixed-price (FP) contracts with unit-price (UP) contracts, collected by the

Florida Department of Transportation (FDOT), to investigate the role of risk allocation

via contractual arrangements on firm behavior and contracting outcomes.3 First, FDOT

engineers estimate the quantity of each item required to complete the project. Second,

prospective contractors bid using total price for FP contracts or using a list of itemized

unit prices for UP contracts, where the lowest total price wins the contract. Third, upon

completing the project, the winner receives the original total price in an FP contract and

quantity-adjusted total price based on itemized unit prices for a UP contract.4

We provide a novel empirical framework that nests the two contract types and allows for

a variety of counterfactual experiments. To the best of our knowledge, our article is among

the first to identify and estimate a structural model of UP contracts in the presence of

1See, e.g., Cox, Smith, and Walker (1988), Athey and Levin (2001), Goeree, Holt, and Palfrey (2002),
and Bajari and Hortacsu (2005).

2We use “project risk” and “uncertain demand” interchangeably in this article.
3FP contracts are widely used in public procurements, including procurement of public transport, op-

eration of water facilities, and electricity. UP contracts are more prevalent for construction procurements,
including highway contracting, pipeline construction, defense procurement, and procurement projects sup-
ported by the World Bank. UP contracts are also used in timber auctions.

4FDOT procures small infrastructure projects through either UP or FP contracts. Large projects are
procured via so-called Design-Build (DB) auctions.
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bid-skewing incentives. Our model incorporates multidimensional bidder heterogeneity, risk

aversion, and endogenous entry. From an empirical standpoint, multidimensional bidder

heterogeneity helps to rationalize the observed distribution of multidimensional itemized

bids.5 Risk aversion explains the empirical fact that bidders do not completely skew their bids

and rationalizes FDOT’s beliefs.6 Endogenizing the entry decision of bidders is important, as

altering contractual arrangements affects not only bidding behavior but also entry behavior.

We solve this model explicitly by casting the bidder’s itemized bidding problem as a portfolio

choice problem. This enables a tractable equilibrium characterization, clear identification,

and a simple multi-step estimation procedure.

Guided by our model, we document evidence of opportunistic behavior in contractors

through skewed bidding. Skewed bidding is a strategy in which a bidder places a large

(small) unit-price bid on the item he expects to overrun (underrun) in order to exploit cost

overruns while remaining competitive in terms of winning a contract. This incentive to

bid high on underestimated items and bid low on overestimated items leads to competitive

bidding and lucrative ex-post payment. Because bidders differ from each other in terms

of their input estimates, they also differ in their incentives to skew the bid and to win

the contract. In the unique setting of UP contracts, bidders behave strategically at the

time of bidding rather than ex post, during which the econometrician cannot observe how

non-winning bidders would have behaved. This allows us to directly control for unobserved

project heterogeneity in showing evidence of skewed bidding. We find that bidders who skew

their unit-price bids are much more likely to win the contract than those who do not, even

after controlling for unobserved auction and bidder heterogeneity.

We further document evidence of risk-balancing bidder behavior. Conversations with

industry experts suggest that a project manager is more likely to employ UP contracts for

5The literature on multidimensional auctions is abundant. See, e.g., Che (1993), Asker and Cantillon
(2008), and Lewis and Bajari (2014).

6On theoretical grounds, bidder risk aversion is explained by imperfect capital markets so that
procurement-specific risks matter to bidders (Samuelson, 1987).
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riskier projects.7 Project risk, which likely increases contractor costs, may not be fully

captured by the observables in the data. Endogenous contract choice may obscure the

differences between UP and FP contracts; i.e., simple OLS may not indicate significant

differences. Therefore, we estimate the Heckman (1976) selection model using FDOT district

office caseload as an instrument. Our results suggest that although the adoption of FP

contracts is negatively correlated with total price bids, i.e., bidder scores, the adoption of

UP contracts is not. This finding is consistent with the hypothesis that, although unobserved

contractor costs increase with project risk under FP contracts, these costs do not increase

with project risk under UP contracts.

We show that the model for the subsample of UP contracts is semiparametrically iden-

tified from UP contracts, accounting for unobserved heterogeneity in project risk. The

estimated model is consistent with empirical findings in that i) UP contracts reduce bidders’

cost of project risk , ii) bidder scores are much more dispersed with FP versus UP contracts,

iii) the composition of unit-price bids exhibits a substantial amount of within-auction het-

erogeneity, iv) bidders who skew their bids are more likely to win the contract. We find

that the cost of project risk is more than three percent of the average construction cost, and

structural estimates show a large amount of unobserved heterogeneity in project risk.

Based on the estimated model, we demonstrate numerically that FP (UP) contracts

perform well for projects with low (high) project risk and show that our model is consistent

with empirical findings i)-iv) listed above. Counterfactual experiments suggest that UP

contracts perform well, at least for those projects in the data that were procured through

UP contracts. Switching from UP to FP contracting would increase procurement costs by

1.39 (resp. 2.48) percent when project risk is small (resp. large). A simple adjustment to

UP contracts placing a cap on non-lumpsum bids prevents inefficient bidders from skewing

bids while still allowing efficient bidders to do so, and thus is expected to improve contract

outcomes. However, this adjustment to UP contracts is shown to have a negligible impact

7The FDOT project guidelines lists tasks suited for FP and UP contracts. See Online Appendix Figure
A.1.
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on procurement costs.

Our framework serves several purposes. First, it makes explicit the tradeoff between the

two contract formats and offers an economic interpretation of our reduced-form comparison.

On the one hand, UP contracts allow bidders to hedge against uncertain demand by forming

a portfolio of unit-price bids whereas FP contracts do not. On the other hand, UP contracts

induce skewed bidding which may result in higher procurement costs through the selection

of inefficient contractors. Second, it makes explicit the data and assumptions needed to

recover the parameters governing bidder behavior. In particular, we show semiparametric

identification relying solely on UP contracts data when we have information on both ex-

ante and ex-post auction outcomes. Lastly, nesting both auction formats, the model allows

for counterfactuals to explore how contract format affects bidder behavior and government

expenditure.

Bolotnyy and Vasserman (2021) studies unit-price contracts of the Massachusetts DOT.

Like us, they adopt CARA utility, normally distributed shocks, and a two-step equilibrium

bidding characterization: an inner loop with a portfolio problem and an outer loop with a

score bidding problem. Our frameworks differ, however, in several important ways. First,

whereas Bolotnyy and Vasserman (2021) focuses on non-lumpsum items, we incorporate

both lumpsum and non-lumpsum items. The lumpsum items account for 20 percent of the

engineer estimate in our data. Second, our model allows multidimensional bidder hetero-

geneity, whereas Bolotnyy and Vasserman (2021) assumes scalar bidder heterogeneity and

explains the remaining variation in itemized bids with i.i.d. measurement errors. Lastly,

we take different approaches for identification and estimation. Bolotnyy and Vasserman

(2021) projects bidder types onto bidder fixed effects and bidder-auction characteristics and

conducts GMM estimation with instruments using itemized bids from the same bidder from

multiple auctions. In contrast, we provide a constructive identification argument that adapts

the standard FOC inversion of Guerre, Perrigne, and Vuong (2000) to our setting with two
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loops.8

The remainder of the article is organized as follows. Section 2 presents the related liter-

ature. Section 3 describes the data and the procurement procedures under both FP and UP

contracts. Section 4 presents the model of contract bidding. Section 5 provides evidence that

the procurer’s choice of contract depends on unobserved project risk, together with evidence

of skewed bidding. Section 6 shows semiparametric identification of the model. Section

7 provides estimation steps together with the results. Section 8 provides counterfactual

experiments. Section 9 concludes.

2 Related Literature

We employ an equilibrium model of auction contracts with bid-skewing incentives in a private

value framework, as in Ewerhart and Fieseler (2003). Athey and Levin (2001), on the other

hand, considers a common value framework for timber auctions. When bidders are uncertain

about the true value in procurement auctions, more optimistic bidders bid more aggressively,

leading to the winner’s curse (Somaini, 2020). Although we abstract away from common

value for tractability, we allow for correlated or even identical ex-post adjustments that

constitute the “common” part in actual quantities. 9

On the empirical side, Bajari, Houghton, and Tadelis (2014) estimates a structural model

in an incomplete contract setting using a sample of UP contracts from the California DOT,

because the majority of ex-post adjustments originate from uncontracted items in their en-

vironment. In contrast, we consider a complete contract setting, given that the majority of

ex-post adjustments in Florida originate from adjustments on contracted items. The con-

tracting price can be renegotiated in Florida if quantity adjustments exceed 125% of original

quantity estimates, whereas renegotiation in California only requires quantity adjustments

8We could use Vuong (1989)’s test to distinguish the two non-nested models. However, we are unaware
of an existing method for comparing models estimated via their GMM estimator and our GPV estimator.
Footnote 27 further explains how richer data would allow estimating a general model that nests both models.

9The number of bidders is strongly negatively correlated with bids, which also supports the idea that
bidders compete in a private value paradigm rather than a common value paradigm.
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in excess of 25%. This disparity accounts for the fact that Bajari et al. (2014) does not

find evidence of skewed bidding. Bolotnyy and Vasserman (2021), studying UP contracts in

Massachusetts, adopts a framework similar to Bajari, Houghton, and Tadelis (2014): bidders

observe a common signal about (ex-ante unknown) actual item quantities and scalar private

information on costs. In contrast, bidders in our model have multidimensional private infor-

mation on actual item quantities, which accounts for differences in the extent of bid skewness

among bidders in any given auction.

Uncertainty in auctions has received considerable attention in recent years. A few ar-

ticles consider uncertainty in how bids are evaluated in multidimensional scoring auctions.

In Takahashi (2018), bidders compete on price and quality in the face of uncertainty in re-

viewer quality evaluations. Some articles consider uncertainty in the scoring rule (see, e.g.,

Krasnokutskaya et al. (2018), Allen et al. (2019), and Kong et al. (2019)). The most closely

related article to our study is Luo et al. (2018), which develops a structural model with risk-

averse bidders in procurement auctions with ex-post uncertainty in inputs, and derives the

model restrictions for identification. We contribute to this literature by providing a unified

empirical framework for studying both UP and FP contracts under uncertainty.

Our article is more broadly related to the literature on contracting via auctions. The

seminal article in the literature on procurement contracts through auction is McAfee and

McMillan (1986), which compares the performance of fixed-price contracts and cost-plus

contracts in an incomplete contract setting. Decarolis (2014) finds a perverse effect of first-

price auctions on infrastructure procurement projects in Italy. Lewis and Bajari (2014) looks

empirically at the tradeoff between effort and risk in the procurement setting. An and Tang

(2017) considers the incomplete contracting setting, in which buyers endogenously specify

the initial contract.

Our article is also related to the vast literature on the identification and estimation of

auction models. Guerre et al. (2009) shows that risk-averse bidder utility functions and

private value distributions can be nonparametrically identified via an exclusion restriction
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and observed bids from first-price auctions. Campo et al. (2011) shows that risk-averse

bidder utility functions and private value distributions are semiparametrically identified un-

der a conditional quantile restriction on the distribution of private bidder valuation and a

parametrization of the bidder utility function. Li and Zheng (2009) estimates three compet-

ing endogenous entry models in procurement auctions and finds that the model that best

fits the data is one with a common entry cost, where bidders draw their private costs upon

entry. Marmer, Shneyerov, and Xu (2013) proposes a general entry model and a flexible

nonparametric framework for testing different entry models.

3 Institutional Details

This section describes the procurement procedure, overviews the FDOT project guidelines,

and provides descriptive statistics of the data. The description of the auction procedure

specifies who makes what decisions at what point in time. The FDOT project guidelines

shed light on why we should be concerned about the endogeneity of contract type. Lastly,

we provide an OLS comparison of bidding behavior and project outcomes across the two

types of contractual arrangements.

Procurement Procedure

FDOT has seven districts that procure infrastructure projects independently. Each district

office announces a list of projects every month. The set of procured projects in any month is

determined by FDOT’s project managers and various department personnel. The procure-

ment procedure can be decomposed into the design stage, followed by the auction stage, and

finally, the construction stage. Online Appendix Figure A.2 shows the timeline.

In the design stage, FDOT’s in-house engineers specify the plan of a project – namely,

estimates of the quantity needed for each construction item and project cost. The project

manager then decides whether to procure the project by FP or UP contract. The FDOT
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project guidelines explicitly state that FP contracts should be employed for “projects with

low risk of unforeseen conditions.”10 Online Appendix Figure A.1, extracted from the guide-

line, lists the project types for which FP contracts are and are not suitable. Essentially, the

guideline states that FP contracts should be used for simple projects, and UP contracts,

otherwise. One to two months prior to project letting, FDOT posts an advertisement on-

line, which lists information about project location, description of work, expected contract

duration, and an engineer estimate of the project cost.

Next, the project enters the auction stage. If a project is procured through UP contract,

every prospective contractor submits a list of unit prices on their bid form for each item given

the quantity estimates from the FDOT project plan. For example, if the FDOT project plan

indicates that 10 units of electronic message signs need to be implemented, each bidder

must submit a dollar value for how much the contracting firm intends to charge for each

unit of 10 message signs. FDOT then determines a score for each bidder by multiplying its

planned quantities with the bidder’s unit prices and summing across all construction items.

Participating bidders are then ranked by their score, and the bidder with the lowest score

wins the UP contract. The contracting firm is then obligated to provide the contracted items

at the unit prices stated in their bid form. Alternatively, if the project were to be procured

through FP contract, prospective contractors would instead submit a single-price bid, which

is also their bidder score in this case, and the bidder with the lowest bid price would win the

contract. The contracting firm would be obligated to implement the project at its bid price

amount, unless significant changes are made to the contract during the construction stage.11

The auction stage is followed by the construction stage. Project implementation is closely

monitored by an FDOT construction engineering inspector. If no changes are made to the

construction plan, the contracting firm receives its own bid price upon delivery of the project

under both UP and FP contracts. If the FDOT project manager finds a need to adjust the

construction plan under a UP contract, contractor payment is adjusted based on FDOT

10Details can be found at Lumpsum Project Guideline.
11FDOT quantity estimates are also provided for FP contracts.
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quantity adjustment(s) and the contractor bid form list of unit-prices. For example, if

FDOT requires any additional days of construction work, and labour is contracted based

on the number of workdays, then FDOT compensates the contractor by the number of

additional days multiplied by the contractor’s daily labour rate. Under an FP contract, no

adjustments in payment would be made for changes to contracted items. FDOT, rather than

the contractors, initiates more than 95% of these adjustments.

The share of contracted item adjustments out of all ex-post adjustments has a mean of

80 percent and a median of 100 percent. Occasionally, adjustments to uncontracted items

may also occur. For example, storms during construction may damage construction machin-

ery, and repairs may be needed. In contrast to the California DOT, where most ex-post

adjustments originate from uncontracted items (Bajari, Houghton, and Tadelis, 2014), the

majority of ex-post adjustments in our FDOT data originate from contracted items. In this

case, the FDOT project manager files a claim, describing the extra work needed, the rea-

son for the change, the associated cost, and the time extension required to implement the

change. These additional uncontracted tasks could involve negotiation, and the compensa-

tion for these uncontracted tasks is determined the same way for FP and UP contracts.

We also conduct a simple accounting exercise to demonstrate the significance of ex-post

adjustments. In this exercise, we assume that (i) bidder behavior is fixed, i.e., unit-price bids

are given by the data, (ii) the same ex-post quantity adjustments are imposed on the project,

regardless of which bidder wins the contract, and (iii) the auctioneer selects the winner based

on the final payment rather than bidder score – that is, the auctioneer is assumed to foresee

the ultimate quantities required for project completion at the time of the auction. We find

that 10.3% of UP contracts in the data would have had a different winner if the auctioneer

had been able to select the winner based on the final payment to the contractor.12 We

relax assumptions (i)-(iii) later in the structural modeling section, but this simple exercise

demonstrates the extent of ex-post adjustments to contracted items.

12By construction, the probability of switching winners under FP contracts is not affected by this exper-
iment.
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A typical concern raised in the analysis of cost overrun is the possibility of default.

Contractor default is particularly relevant in this context, because FP contracts may involve

more frequent default than UP contracts if contractors are unable to supply extra work or

items required to complete the project. During our sample period spanning 2004-2014, 25

projects (1.3% of the sample size) that were procured through either FP or UP contracts

were terminated prematurely due to default.13 The majority of these defaults were not due to

adjustments in the project plan but due to contractors failing to perform work in accordance

with the terms of the contract. Another possibility for default is binding project budget

constraints from the FDOT district office. If a district office is unable to make additional

payments for extra work or items under UP contracts, then project managers may decide not

to complete the project due to insufficient funds. It turns out that FDOT district offices pool

their annual budget across projects to ensure that all procured projects are completed.14

Data and Descriptive Analyses

We investigate a sample of infrastructure projects procured by FDOT under FP or UP

contracts over the period 2004-2014.15 The data contain detailed information on projects,

including all participating bidders’ bid prices (every unit-price bid for UP contracts), FDOT

engineers’ cost estimates, quantity estimates for UP contracts, final payment to contrac-

tors, project location, description of work, and the identities of all participating and non-

participating bidders. There is no difference in the way the estimates are determined between

FP and UP contracts. The FDOT procurement office determines cost estimates based on

historical unit-price bids.16 We define participating bidders as plan holders that submitted

13Our sample contains 22 of the 25 defaulted projects, of which 13 projects (9 projects) were procured
through UP (FP) contract.

14FDOT requires every bidder to submit a surety bond, specifying a firm that would take over an incom-
plete project in case of contractor default. FDOT project managers state that every project is completed
without exception. We also control for annual district budget amounts in the following regression analyses.

15The sample consists of relatively small projects, as FDOT uses another mechanism, the so-called Design-
Build auction, for large projects. The average contracting price for Design-Build auctions during the sample
period is about $14 million.

16The engineer cost estimate and expected contract duration are explicitly stated in the FDOT project
advertisement, and thus these project characteristics are known to bidders at the time of bidding.
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a bid and potential bidders as those who withheld their bid.17

Table 1 contains summary statistics for key variables. It shows, on average, that fewer

bidders participate in FP versus UP auctions. UP contracts are used for relatively larger

projects than those using FP contracts. We also see that FP projects are less susceptible

to cost overruns, and the average cost overrun of UP projects is 3.5 times greater than that

of FP projects. There is a sizable difference in Money on the Table across the two contract

formats: the lowest score is 10.2% (resp. 7.20%) lower than the second lowest score under FP

(resp. UP) contracts on average. Note that cost overruns under FP contracts originate from

adjustments on uncontracted items. The number of participating bidders is fairly similar

across the two contract formats. Indeed, the set of participating bidders shows considerable

overlap, with 75.9% of bidders participating in both FP and UP contracts.18

Table 2 presents an OLS comparison of auction formats. We consider four dependent

variables: entry, log(score), winner’s log(score), and log(final payment). A potential bidder

is considered to enter an auction if a plan holder submits a bid. For FP contracts, bidder

score is equivalent to bid price for FP contracts; conversely, for UP contracts, the score

is determined by bidder unit prices multiplied by FDOT quantity estimates and summed

across all items. We find that bidders score 2.9% lower under FP versus UP contracting,

despite no statistically significant differences in entry, winning score, and final payment to

contractors across the two contract types.

Consistent with the procurement auction literature, we find that the variation in bidder

scores and final payments are largely explained by variation in FDOT engineer cost estimates.

The entry of an additional participating rival bidder is associated with a 2.2% reduction in

bidder score on average, suggesting that competition drives down price.19

17A firm needs to request a project plan to participate in any given auction. The set of plan holders turns
out to include many firms that never bid over the sample period, and we thus exclude plan holders that
never bid in a given year and district.

18We also split the sample of auctions into four quartile groups based on FDOT engineers’ cost estimates.
We find that 55.8% (resp. 55.0%) of bidders participate in both FP and UP auctions for very small (resp.
small) projects. Similarly, 36.4% (resp. 51.6%) of bidders participate in both for very large (resp. large)
projects.

19The strong negative correlation between the score and the number of participating bidders suggests
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4 Structural Model

To guide our empirical analysis, we construct a model that nests both UP and FP con-

tracts. Our model extends Ewerhart and Fieseler (2003) on various dimensions to capture

empirically relevant features of the environment. First, we introduce multidimensional bid-

der heterogeneities to add flexibility to multidimensional bidding strategies, i.e., itemized

bids. For example, some bidders may have more labor endowment, while others have more

heavy construction equipment. Such heterogeneity leads to different comparative advantages

depending on the contracting items involved in a given project. Second, we introduce risk

aversion to account for the fact that complete skewing is not observed in the data. Lastly,

we endogenize the entry decision of bidders, because changes in contract format affect bid-

ders’ incentive to participate in a given auction. In particular, we will see that UP contracts

induce more competition than FP contracts because, all else equal, skewed bidding and risk

hedging raise the expected return from entering an auction.

UP contracts differ from FP contracts in that contractors are compensated through cost

overruns on contracted items, and bidders can hedge against project risk by forming a port-

folio of unit-price bids. As bidders may also differ in their quantity estimates, the portfolio

of unit-price bids also differs: bidders may submit high unit prices for underestimated items

and low unit prices for overestimated items. The bidder with the largest estimate has the

greatest incentive to win the contract and would therefore want to bid competitively to get

compensated through cost overruns. This incentive to skew unit-price bids dissipates with

increasing project risk, as skewed bidding comes with an increase in payoff uncertainty.20

Contract: A contract/project involves J + 1 items: one lumpsum item and J non-

lumpsum items. Let qj be the FDOT quantity estimate for item j ∈ {0, 1, 2, ...., J}. Here-

after, we use subscript 0 to denote the lumpsum item and subscript 1 to denote the vector

that bidders are competing in a private value paradigm rather than in a common value paradigm.
20We abstract from the moral hazard problem as i) the construction process is closely monitored by

FDOT employees, and ii) most ex-post adjustments in the construction plan are initiated by FDOT project
managers rather than contractors.
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of non-lumpsum items; when there is potential for confusion, we expand the whole vector.

For the lumpsum item, the actual (ex-post) quantity equals the estimated quantity.21 For a

non-lumpsum item, the ex-post actual quantity is affected by bidder heterogeneity and ex-

post uncertainty. In particular, the actual quantity of item j needed for bidder i to complete

the project is

qj × (ej,i + ϵj,i), (1)

where ej,i is the quantity estimate of bidder i on item j at the time of bidding, and ϵj,i

represents the ex-post demand shock to item j during the construction stage. We normalize

the quantity of the lumpsum item q0 = 1 and let ϵ0,i = 0 as there is no uncertainty in the

lumpsum item.

Information Structure: We consider the private value paradigm where bidder i’s

estimates are assumed to be private information ei = [e0,i, e1,i, ..., eJ,i], and are drawn inde-

pendently across bidders from a common joint distribution H. Distribution H has a smooth

density over a finite positive support.22 Assume that E [ej,i] = 1, and ej,i can be interpreted

as the bidder’s own estimate normalized against the FDOT quantity estimate.

Ex-post shock ϵj,i may vary across items and bidders. Although we later impose para-

metric assumptions, the distribution of the random matrix [ϵj,i]
i=1,...,n
j=1,...,J can be flexible. We

allow for ex-post changes to be arbitrarily correlated among items, and for some items to be

more susceptible to quantity changes than others. Further, we allow bidders’ ex-post shocks

to have negative, zero, or positive correlation. In the extreme case of perfect correlation, bid-

ders receive the same ex-post shocks. The bidder value in the setting here therefore contains

a private component ei as well as a common component ϵi.

Timing: At the beginning of a given auction, each of N potential risk-averse bidders

21There is no payment adjustment for ex-post adjustments on lumpsum items. As a result, the bid-
der’s problem regarding lumpsum items remains the same regardless of whether lumpsum items involve
uncertainty.

22Our model differs from Bajari, Houghton, and Tadelis (2014) in that we allow for the expected quantity
of work items to differ across bidders and for bidders to face uncertainty in actual item quantity. Relaxing
these assumptions explains the considerable variation in composition of unit-price bids in any given auction
and also explains why bidders do not completely skew their bids.
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independently draw entry cost ki from a common distribution Fec(.). Bidders are privately

informed about their own entry cost and simultaneously make their entry decision. All

participating bidders learn the number of actual bidders n upon entry. We assume that all

the primitives that are common to all potential bidders are common knowledge at the time

of entry.23

Upon entry, bidder i learns his own private information ei ∈ RJ+1, drawn independently

across bidders from H. Given the quantity estimates and private information, all partic-

ipating bidders simultaneously submit itemized bids bi ∈ RJ+1 under UP contracts. Let

ι := [1, 1, ..., 1] be a 1×J vector of ones. The bidder with the lowest score si := b0,i+ b1,iι
T ,

where b1,i := [b1,i, b2,i, ..., bJ,i], wins the contract. Under FP contracts, bidders each submit

a score and the lowest score wins.

The FDOT project manager may make adjustments to non-lumpsum items ϵi := [ϵ0,i, ϵ1,i, ϵ2,i, ..., ϵJ,i],

drawn from a multivariate normal distribution (i.e., ϵi ∼ N(0,Σ)).24 The demand shock

affects the quantity of each non-lumpsum item required to complete the project.25 The

contractor receives payment based on the contract format.

Expected Payoff: Each bidder is characterized by constant absolute risk-aversion

(CARA) utility u(.), parametrized by α ≥ 0.26 At the time of bidding, bidder i observes

his/her private information ei. Under UP contracts, the bidder submits itemized bids and

obtains the following expected payoff,

23We assume that any given auction always has more than one participating bidder, preventing the
unintuitive bidding strategy in which a bidder submits an infinitely high score when the bidder is the sole
participant. Our data contain only a few auctions with only one participating bidder. See also Li and Zheng
(2009).

24It is possible to allow for correlation between bidders’ private information e2,i and ex-post shock ϵ, but
this makes the model significantly more notationally involved and turns out to be not empirically relevant.
Therefore, we present the model where ex-post shock is independently distributed from private estimate e2,i.

25Because the demand shock on lumpsum items does not affect the characterization of the equilibrium
bidding strategy, and its dispersion is not identifiable, we set ϵ0 = 0. This abstraction is justified under the
CARA assumption because bidders would adjust their bids by exactly the risk premium. See Eso and White
(2004).

26The assumption of CARAmay seem restrictive, as projects are heterogeneous in project size, and bidders
may be more risk averse for larger projects. To allow for heterogeneity in the level of risk aversion, we allow
risk aversion to depend on project size (and project characteristics in general) later in the identification
section.
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E

[
u

(
J∑

j=0

(b̃j,i − c̃j)× qj × (ej,i + ϵj,i)

)]
× Pr

(
i wins|

J∑
j=0

b̃j,iqj

)
,

where u(·) is the bidder’s utility function, b̃j,i =
bj,i
qj

represents the per unit itemized bid, and

c̃j represents the per unit cost of item j.27 Under FP contracts, the bidder submits a score

si and obtains the following expected payoff,

E

[
u

(
si −

J∑
j=0

c̃j × qj × (ej,i + ϵj,i)

)]
× Pr (i wins|si) .

These costs are common to all participating bidders. Let θj := c̃jqj denote the FDOT

engineer’s cost estimate for item j at FDOT quantity estimates. The expectation is taken

over the joint distribution of ex-post changes.

Unit Price Contracts

First, consider UP contracts. The final payment to the winning bidder, denoted by pu,i, is

given by:

pu,i = b0,i + b1,i(e1,i + ϵi)
T , (2)

where there is no uncertainty in payment for the lumpsum item.

Note that the final payment to a contractor could differ from its score si for two reasons.

First, the final payment may differ from bidder score si due to e1,i. To demonstrate this point,

suppose for simplicity that there is only one non-lumpsum item involved in an auction, and

the non-lumpsum item is contracted based on the number of workdays. That is, b1,i specifies

how much contracting firm i receives if it completes the project on the auctioneer’s expected

27We could allow bidder-specific itemized costs. Then, with some functional form changes, such as additive
separability in the actual quantity (1), we obtain a general model that nests our model and Bolotnyy and
Vasserman (2021)’s. However, identifying this model requires richer data, such as cost variables in Kroft et
al. (2022).
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completion date. In practice, contractors differ in terms of speed in delivering the project.

Some contractors are fast (e1,i < 1) while others are slow (e1,i > 1). Therefore, the payment

scheme implies that, all else equal, fast contractors receive a smaller payment than slow

contractors. Second, the final payment may differ from score si due to demand shock ϵ.

Bidder estimates are also imperfect and affected by unexpected changes in the project plan.

Demand shock ϵi ∼ N(0,Σ) captures unexpected delays in project implementation, where

Σ captures project risk.28

The total cost of project implementation, tcu,i, is defined as:

tcu,i = θ0e0,i+θ1(e1,i + ϵi)
T , (3)

which also depends on bidder heterogeneity and demand shock. Using the final payment

and the total cost, we can calculate the expected payoff at the time of bidding for a bidder

who observes private information ei and submits itemized bids bi:

E [u (pu,i − tcu,i) |Ii, si < sj ∀j ̸= i] = u(b0,i+b1,ie
T
1,i−(θ0e0,i+θ1e

T
1,i)−

α

2
(b1,i − θ1)Σ(b1,i − θ1)

T︸ ︷︷ ︸
risk premium

),

where α ≥ 0 represents the CARA risk-aversion coefficient. We remark that the argument

in the utility function on the right-hand side is known as the certainty equivalent under the

normal distribution assumption on risk and CARA utility. The quadratic term represents

the risk premium.

As noted in Asker and Cantillon (2008), it is convenient to solve this problem in two

steps: In the inner loop, find the optimal itemized bid {b0,i, b1,i} given score si =
∑J

j=0 bj,i;

in the outer loop, find the optimal score si. Specifically, for any score si that the bidder

considers, the optimal itemized bid is determined by an optimal portfolio choice problem

with one risk-free asset, i.e., the lumpsum item, and multiple risky ones, i.e., non-lumpsum

28The model could also allow for possible correlation between e1,i and ϵi, but we abstract from this
possibility for the sake of simplicity and exposition.

16



items. Specifically, the bidder solves a linearly constrained quadratic optimization problem:

max
bi

u
(
b0,i + b1,ie

T
1,i − (θ0e0,i + θ1e

T
1,i)−

α

2
(b1,i − θ1)Σ(b1,i − θ1)

T
)

s.t. si = b0,i + b1,iι
T , b0,i ≥ 0, b1,i ≥ 0.

Solving this simple constrained optimization problem gives:

b∗1,i = θ1 +
e1,i − ι

α
Σ−1 (4)

as the interior solution for all non-lumpsum bids. A corner solution arises when the non-

negativity constraint on either lumpsum or non-lumpsum bids binds. Focusing on interior

solutions has potential implications for model solving, identification, estimation, and coun-

terfactuals. Allowing for corner solutions, we can still solve our model.29 We abstract from

them, because we do not observe any completely skewed bids in the data, and hence the best-

fitting parameters exclude corner solutions. Moreover, the assumption of interior solutions

renders the identification argument more transparent. Specifically, we lose the one-to-one

mapping between the bidder type and itemized bids and hence the ability to invert the first-

order condition at a corner solution. Nevertheless, the absence of corner solutions in the

data does not imply their absence in counterfactuals.30

Condition (4) shows an interesting relationship between project risk Σ and bid skewness.

Bidder i bids high on non-lumpsum items with a large estimate whereas placing a low bid on

items with a small estimate. For example, a slow inefficient bidder with large e1,i would bid

high on those non-lumpsum items in expectation to get paid for delays in project delivery.

The extent of the skewing, however, dissipates with the degree of project risk Σ. Given b∗1,i,

we have b∗0,i = si −
(
θ1 +

e1,i−ι

α
Σ−1

)
ιT .

Plugging the optimal itemized bid (b∗0,i, b
∗
1,i) into the certainty equivalent payoff of bidder

29See Bolotnyy and Vasserman (2021) for a formal treatment of corner solutions.
30We find this abstraction rarely binding in our counterfactuals.
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i gives:

E [u (pu,i − tcu,i) |Ii, si < sj ∀j ̸= i] = u (si − cu,i) ,

where cu,i is the pseudo-cost of bidder i defined as:

cu,i := θ0e0,i + θ1ι
T − 1

2α
(e1,i − ι)Σ−1(e1,i − ι)T . (5)

Therefore, bidder i’s outer loop problem reduces to a one-dimensional choice problem, such

that:

πu,i = max
si

∫
1{si < sj}u (si − cu,i)dFu,−i, (6)

and dFu,−i is the distribution of rival bidders’ pseudo-costs.

Note that cu,i is hump-shaped in e1,i and centered at e1,i = ι, which implies that bidder

score si is non-monotone in e1,i in a monotone equilibrium where si is non-decreasing in cu,i.

This means that the bidders whose estimates on non-lumpsum items differ substantially

from FDOT engineer estimates bid more competitively than the bidders whose estimates are

closer to the FDOT’s. Using workdays as an example, the model captures that both efficient

and inefficient bidders bid more competitively than bidders who can deliver the project on

time as expected by the FDOT district office. While it is standard for efficient bidders

to submit lower bids in procurement auctions, UP contracts provide a unique incentive for

inefficient bidders to do the same, as inefficient bidders know that they would receive more

payment if they win the contract. Therefore, less efficient contractors lower their bidder score

by skewing their bids towards non-lumpsum items to obtain compensation in expectation

through ex-post adjustments on non-lumpsum items.

Because the remaining equilibrium characterization relates to the auction literature, we
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summarize it in the following proposition.31

Proposition 1. The unique symmetric, monotone, and differentiable equilibrium bidding

strategy is characterized by the following differential equation and the initial condition:

∂s(cu;n)

∂cu
= 1 +

(n− 1)fu(cu)

α(1− Fu(cu))
(exp {α(s(cu;n)− cu)} − 1) , (7)

s(c̄u;n) = c̄u,

where Fu and fu are, respectively, the CDF and PDF of cu, which is continuous and bounded

over [cu, c̄u].

Given the bidding strategy above, a potential bidder enters an auction if the expected

profit from entering outweighs the cost of entry. As shown in Krasnokutskaya and Seim

(2011), the unique symmetric equilibrium entry strategy is given by the entry threshold

utility ū, which is determined by:

N∑
n

(
N − 1

n− 1

)
δ(ū(N))n−1(1− δ(ū(N)))N−n

∫
u (s(cu;n)− cu) dFu,n = ū(N), (8)

where the left-hand side of equation (8) is the equilibrium expected profit from entering an

auction, and Fu,n is the joint distributions of cu over all n entering bidders. The equilibrium

entry probability is determined by δ(ū(N)) := Pr(u(−k) < ū(N)). That is, a bidder partic-

ipates in an auction if his entry cost k is below some threshold level which corresponds to

the level of utility ū(N).

31We characterize the equilibrium of the game among bidders given the procurement mechanism. Under
symmetric strategies and interior solutions to the portfolio problem, the pseudo-cost is a sufficient statistic
for a unique equilibrium characterization. Characterizing the DOT’s optimal procurement mechanism is
beyond the scope of this article.
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Fixed Price Contracts

Now, let us consider the case of FP contracts. FP payment pf,i is given by:

pf,i = si, (9)

where si is bidder i’s score in an FP auction. That is, bidder i’s FP payment is the same

as his score, which is equal to his submitted bid. Therefore, the interim expected payoff of

bidder i under FP with CARA utility is given by:

πf,i := max
si

∫
1{si < sj}u (si − cf,i)dFf,−i, (10)

where the pseudo-cost of bidder i, cf,i ∈ [cf , c̄f ], is defined as:

cf,i := θ0e0,i + θ1e
T
1,i +

α

2
θ1ΣθT

1 . (11)

The first two terms in this aggregation represent the bidder’s ex-ante item-specific estimated

costs, and the third term represents his risk premium due to cost uncertainty arising from

uncertain quantities of non-lumpsum items. Naturally, the risk premium is increasing in

both risk aversion and risk. Moreover, this term is common across bidders, leading to an

unambiguous increase in bidder scores. This prediction is consistent with our reduced-form

evidence that bidders are more competitive under more risky FP contracts. The distributions

of rival bidder pseudo-costs is denoted by Ff,−i. The remainder of the FP equilibrium

characterization is similar to that of UP contracts.

Comparative Statics

Equation (5) shows that bidders’ pseudo-costs in UP contracts are lowered and homoge-

nized across bidders of different types as project risk becomes larger, whereas equation (11)

shows that pseudo-costs in FP contracts are increasing in project risk. Further, equation
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(5) together with (4) shows that a bidder with large estimates of non-lumpsum items in UP

contracts submits a portfolio of unit-price bids skewed toward non-lumpsum items while sub-

mitting a competitive score. Equation (8) shows that, as project risk increases, the incentive

to bid for a UP contract increases while that for an FP contract decreases. Therefore, the

overall effects of project risk and contract format on the winning score and the final pay-

ment is not clear. We explain the channels and demonstrate the effects of contract format

on equilibrium outcomes under varying project risks via a numerical exercise.

Figure 1 shows the distribution of simulated pseudo-costs under varying project risks and

contract formats.32 On average, pseudo-cost is high under UP rather than FP contracts when

project risk is low while the relation is reversed when project risk is high. This relationship

between pseudo-cost and project risk under UP contracts reflects a mean-variance tradeoff

in the optimal portfolio formation of unit-price bids. In the absence of project risk, bidders

would completely skew their unit-price bids and place the entire weight on the item that will

get overrun, as bidders focus on extracting rent through cost overruns. Increasing project

risk makes bidders more homogeneous in terms of their pseudo-cost. This is because bidders

hedge against risk more competitively, and non-lumpsum bids approach the risk-free price

regardless of heterogeneity in bidder quantity estimates.

To visualize the above effects of project risk, we simulate the optimal bids and the

expected final payment by FDOT. Figure 2 plots expected final payment against project

risk.33 As discussed above, bidders facing FP contracts simply pass the additional risk

premium onto their pseudo-costs, and thereby their optimal bids. Therefore, the expected

payment is strictly increasing in project risk under FP contracts. On the other hand, an

increase in project risk under UP contracts lowers bid-skewing incentives, pseudo-costs, and

also cost overruns. Bidder attention shifts to hedging against project risk as project risk

32The simulation is conducted using the estimates obtained in Section 7. The degree of project risk,
σ := Var (ϵ), is varied for given estimates of the model primitives. Changing parameter values would not
alter the pattern observed here. Ex-ante bidder types are assumed to be jointly normally distributed.

33The expected final payment is calculated based on the estimates obtained in Section 7. The number of
potential bidders is 13, which is the median number of potential bidders in the sample.
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increases. This in turn reduces bid-skewing incentives and resulting cost overruns from

skewed bidding. Therefore, UP contracts generate a lower final payment when project risk

is large while FP contracts perform better when project risk is small.

5 Testing for Selection on Unobservables and Skewed

Bidding

The model predicts that i) UP contracts are robust to project risk, ii) bidder scores are

much more dispersed in FP versus UP auctions, iii) bidders are substantially heterogeneous

with regards to a portfolio of unit-price bids, and iv) bidders who skew their unit-price bids

towards non-lumpsum items are much more likely to win a project. Motivated by these

predictions, we conduct several empirical tests.

Selection on Unobservables

Institutional facts indicate that contract choice could confound the effects of contractual

arrangements on project outcomes. That is, if FDOT project managers follow the project

guidelines, then bids could be low in FP versus UP contracts, because simple projects are

procured via FP contracting and more complex projects via UP contracting. In this subsec-

tion, we test whether the FDOT project manager’s contract choice depends on unobserved

project heterogeneity in a way that is consistent with FDOT’s belief that UP contracts are

well suited for projects involving considerable uncertainty.

Specifically, we conduct the test via the correlation between procurers’ contract choices

and bidding strategies. To this end, let X be a vector of project and bidder characteristics,

and let Z ⊃ X be a vector of exogenous observables relevant to the FDOT project manager’s

contract choice, denoted by V . Let scoref and scoreu denote bidder score under FP and UP
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contracts, respectively. Then, we consider:

V = Zγ + εp,

ln(scoref ) = Xβf + εf,

ln(scoreu) = Xβu + εu,

and the FDOT project manager’s choice between FP and UP is governed by:

FP =


1 if V ≥ 0

0 if V < 0

,

where γ, βf , and βu are vectors of parameters. We assume εp, εf , and εu are randomly

distributed trivariate normal unobservables with Var(εf ) := σ2
f , Var(εu) := σ2

u, corr(εp, εf ) :=

ρf , and corr(εp, εu) := ρu. We normalize Var(εp) to 1. Unobservables are assumed to be

independent of at least one element in Z.

The intuition behind the test is as follows. Project managers are less likely to employ

FP contracts when project risk is high. Additionally, if project risk is not fully captured

by the observables, then unobservable εp captures unobserved project risk. We also expect

unobserved project risk to be captured by εf as bidders’ unobserved costs are likely increasing

in unobserved project risk. Therefore, adoption of FP contracts and bidding strategy on FP

projects are negatively correlated via project risk (i.e., ρf < 0). Similarly, we would expect

a weak correlation between the adoption of UP contracts and the bidding strategy on UP

projects if UP contracts are robust to project risk: bidders’ unobserved costs are weakly

related to project risk. In short, we test H0 : ρj = 0 against HA : ρj ̸= 0 for j ∈ {f, u}.

To identify ρj without purely relying on functional form assumptions, we now introduce

excluded variables in Z that affect FP/UP contract choice but do not affect the bidding strat-

egy, i.e., do not enter X. Our excluded variables capture the extent of backlog experienced

by the relevant parties of the auction process. First, for each FDOT district office, backlog
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is measured by the total dollar value of unfinished projects that the district office has at the

time of procurement. It turns out, based on private discussion with FDOT project man-

agers, FDOT needs considerably more personnel to keep track of the number of units used

for all materials during the construction stage of a UP project. This large administrative

cost associated with UP contracts renders FDOT project managers more likely to employ

FP contracts when the office is heavily backlogged. Second, because prospective contractors

are also likely backlogged when district offices are backlogged, we construct bidder backlog

in the same manner and control for it directly. That is, we argue that the level of backlog

at an FDOT district office has nothing to do with prospective contractor bidding strategies

(e.g., bidders’ unobserved costs), conditional on bidders’ backlogs.34

Table 3 indicates a strong negative correlation between εp and εf , consistent with anec-

dotal evidence.35 When project risk is large, project managers are less likely to adopt the

FP contract and prospective contractors’ costs tend to be high, which is passed onto their

scores, i.e., ρf < 0.36 The weak insignificant correlation between εp and εu is also consis-

tent with anecdotal evidence that FDOT believes UP contracts are good for projects with

large project risk. If UP contracts are robust to project risk, then bidder costs εu would

be uncorrelated with project risk, because project risk does not translate into bidder costs.

Therefore, our estimation results are in line with FDOT’s belief that UP contracts should

be used for projects with greater project risk.37

One concern with the approach here is that the excluded variable may be correlated

with unobserved project heterogeneity. That is, FDOT project managers may anticipate

the complexity of projects well before project letting, and accordingly, try to coordinate and

34We cluster standard errors at the district-year level, taking into account that scores are likely correlated
within an auction, and that the excluded variables are correlated across time.

35The relevance of the excluded variables is tested in Online Appendix Table A.1. We find that a one
standard deviation increase in district office backlog increases the probability of using FP contacts by 8.2
percentage points.

36Our results are robust to excluding the period of the financial crisis and stimulus spending that may
have drawn in some construction firms that typically do not participate in public procurement auctions. See
Online Appendix Table A.2.

37The estimation results also suggest that σf > σu: scores are more dispersed under FP than UP contracts.
Our model is also consistent with this observation.
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decide when to procure which project based on project complexity. A statistically significant

correlation between our excluded variables and ex-post auction outcomes would cast doubt

on the validity of our excluded variables.

Ideally, we would like to check if cost overruns are correlated with our excluded variables.

However, we do not observe the actual cost overrun under FP contracts, by construction.

Therefore, we instead test if time overruns are correlated with our excluded variables.38 Table

A.3 shows that FDOT district office backlogs and time overruns are not strongly correlated,

and thus, we conclude that there is no evidence that our excluded variables are correlated

with project risk.

Skewed Bidding

UP contracts may induce bidders to behave opportunistically by altering the composition

of unit-price bids. As UP contracts compensate for cost overruns, bidders are incentivized

to skew the distribution of unit-price bids towards the items for which they expect cost

overruns. This induces bidders that expect large cost overruns to bid aggressively to win

a contract as predicted by the model. Here, we show that the unit-price composition is

indeed strongly related to the bidder’s likelihood of winning. That is, bidders who skew the

distribution of unit-price bids are more likely to win a contract.39

Table 4 presents estimation results from a regression of bidder score and winning status

on the non-lumpsum item bids as a share of bidder score. The estimation results indicate that

bidders who place a large share of bids on non-lumpsum items bid much more competitively

than those with a small non-lumpsum item bid share. Note here that we control for auction

fixed effects in all specifications, and therefore the obtained results reflect the fact that there

is large variation in the share of non-lumpsum bids within an auction. This fact is also

38Time overrun is defined as the log-difference between actual construction days and expected contract
days.

39Contractual arrangements differ across items. Indeed, some items are procured in a lumpsum manner,
while other items are not. The top 10 most frequently used items in UP contracts are presented in Online
Appendix Table A.4. Moreover, Figure A.3 shows the variation in non-lumpsum item values.
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demonstrated in Online Appendix Table A.5 through variance decomposition. We find that

a bidder with a one standard deviation larger share of non-lumpsum bids attains a 3.4% lower

bidder score, and is 7.3% more likely to win a UP project based on the specification with

only auction fixed effects. The correlation is even stronger after controlling for bidder fixed

effects. One may suspect that more risk-averse bidders would want to place a larger share

of bids on non-lumpsum items and bid more competitively than less risk-averse bidders if

bidders are characterized by decreasing absolute risk aversion. If this were the case, however,

the inclusion of bidder fixed effects should remove some of the confounding effects, and yet

it does not strengthen the result.

The empirical pattern found here is consistent with the model in that a bidder who

anticipates a large cost overrun on a non-lumpsum item places a high unit-price bid on the

non-lumpsum item to obtain compensation through cost overruns. Because the bidder with

a large estimate for the non-lumpsum item still needs to compete against other bidders to

win the contract, he/she places a low unit-price bid on lumpsum items, which will neither

overrun nor underrun on cost. Therefore, those bidders that place more weight on non-

lumpsum items than on lumpsum items bid more competitively to win a contract, as they

expect to receive additional payment from cost overruns.40

6 Identification

This section specifies the information structure of bidders, the set of model primitives to

be identified, and the set of observables used to identify the model primitives. We show

that the model for the subsample of UP contracts is semiparametrically identified from a

set of observables in UP contracts when the sample size is infinite. We first abstract from

40Online Appendix Figure A.4 further supports this hypothesis, showing a clearly positive relationship
between cost overrun under UP contracts and winners’ bids on non-lumpsum items in dollars. We find
that cost overrun is increasing in bids on non-lumpsum items on average, suggesting that skewed bidding is
associated with larger cost overruns.
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unobserved heterogeneity and discuss how it can be accounted for at the end of this section.41

Observables, Primitives, and Information Structure

Let X denote a vector of exogenous project characteristics, and let W ⊂ X denote exogenous

variables that affect bidding strategy but not entry decision. The econometrician observes

the number of potential bidders N , the number of actual participating bidders n, bids on

lumpsum and non-lumpsum items for all participating bidders, {b0,i, b1,i}ni=1, and cost over-

runs from J non-lumpsum items ∆ := [∆1,∆2, ...,∆J ] under UP contracts. Without loss of

generality, we rank bidders based on their score su,i = b0,i + b1,iι
T , and the winner of an

auction is assigned i = 1.

The primitives to be identified are the joint distribution of bidder types H, common

lumpsum cost component θ0(X), common non-lumpsum components θ1(X), risk-aversion

parameter α(X), project risk Σ(X), and distribution of entry cost Fec. Let Ii denote bidder

i’s state at the time of bidding. Identifying Assumption 1 summarizes what bidders know

at the time of bidding.

Identifying Assumption 1. At the time of bidding, state Ii of bidder i consists of auc-

tion heterogeneities, bidder i’s private information, the joint distribution of rival bidders’

private information, the number of participating bidders, estimated costs, project risk, and

the number of actual bidders: Ii := {θ0(X),θ1(X), α(X),Σ(X), e0,i, e1,i, H, n}.

Identifying Assumption 1 is standard in the empirical auction literature. The assumption

that the number of actual bidders is common knowledge can be tested. We find that bidder

scores, and thereby bidding strategy, are strongly negatively correlated with the number of

actual bidders, suggesting that auction entrants know how many rivals they face at the time

of bidding and bid more competitively as the number of participating bidders increases.

41The model is not identified from a set of observables under FP contracts, the reason here being that
unit prices do not convey any information about the extent of project risk, even when the researcher observes
them.
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Identifying Assumption 2. Bidders’ private information is i.i.d. across bidders and also

independently distributed from entry cost, conditional on project characteristics. That is, the

bid preparation cost is orthogonal to its productivity, conditional on project characteristics.

Identifying Assumption 2 is required for identifying the distribution of bidders’ private types

H. Intuitively, the econometrician has no way of detecting which of bidders’ private informa-

tion, e0,i or e1,i, is correlated with their entry cost from the data, precluding the possibility

of allowing for selective entry.

Identifying Assumption 3. Ex-post shocks on non-lumpsum items ϵ are independently

distributed from non-lumpsum bids.

Identifying Assumption 3 abstracts from the possibility that FDOT project manager demand

for ex-post adjustments is endogenous – i.e., FDOT project managers reduce (increase)

demand for ex-post adjustments when the contractor’s non-lumpsum bid is high (low).42 We

argue that ex-post adjustments are exogenous in this context based on two grounds. First,

if FDOT does not commit, the point of using UP contracts is jeopardized and bidders would

adjust their beliefs about the distribution of ex-post adjustments accordingly.43 Second,

construction items and tasks are typically non-storable, so FDOT has little incentive to

purchase non-lumpsum items to store for later use, even if they are priced low.

Identifying Assumption 4. There is at least one variable W ⊂ X that affects entry

decision without affecting project implementation cost.

Identifying Assumption 4 is required for identifying the entry cost distribution. Without

variable W , all we can identify is the probability of entry, and any distribution of entry cost

can be rationalized by the data.44 To this end, we assume that the number of potential

42Identifying Assumption 3 does not imply mechanical correlation between ϵ and non-lumpsum bids
because ϵ is independent of the signal e1,i.

43Based on private conversations with FDOT project managers, we confirm that this is indeed a concern
of FDOT.

44See the Online Appendix of Krasnokutskaya and Seim (2011) for details.
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bidders is relevant for the entry decision but has nothing to do with bidding strategy once

entered.

Semiparametric Identification

We show that the model primitives are identified from the data on UP contracts and do not

rely on variation in the use of contract formats.45

Proposition 2. Under Identifying Assumptions 1-4, all the model primitives are identified.

First, average itemized bids on non-lumpsum items identify market prices. Consider the

non-lumpsum bidding strategy given in (4). It is straightforward to see that θj(X) is directly

identified from equation (4), such that:

E [b1,i|X] = θ1(X), (12)

given E[ej,i] = 1.

Second, ex-post actual quantities identify risk and risk aversion. Given knowledge about

θj(X), we identify α(X) and Σ(X) from the mean and covariance matrix of cost overruns.

Note here that cost overrun is defined as ∆ := [∆1,∆2, ...,∆J ] and ∆j := bj,1(ej,1 − 1j + ϵj),

where bj,1 and ej,1 denote the winning bidder’s non-lumpsum bid and estimate for item j,

respectively. Substituting the non-lumpsum bidding strategy from (4) into cost overrun

gives:

∆j = bj,1(ej,1 − 1 + ϵj,1), (13)

∆ = b,1(α(X)(b,1 − θ1(X))Σ(X)+ ϵ), (14)

where the second equality follows from the inversion of the system of first-order conditions

with respect to b,1. As a result, the vector of cost overruns (normalized by b,1) has a mul-

45Identification fails if one only has information about FP contracts, as there are no payment adjustments
associated with changes in non-lumpsum items, which is key in identifying the extent of project risk.
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tivariate normal distribution with mean α(X)(b,1 − θ1(X))Σ(X) and variance-covariance

Σ(X). Note that b,1 is observed and θ1(X) is identified from the first step. Therefore, the

extent of bidder risk aversion α(X) and project risk Σ(X) are identified from the mean and

variance of cost overruns, conditional on b,1 and X.

Third, the inner loop first-order condition, determining the optimal itemized bids, iden-

tifies the private information on non-lumpsum items. Given knowledge about α(X), Σ(X),

and θ1(X), the distribution of e1 can now be nonparametrically identified from the solution

to the bidders’ inner problem,

α(X)(b1 − θ1(X))Σ(X)+ ι = e1. (15)

Fourth, the outer loop first-order condition, determining the optimal score, identifies the

private information on the lumpsum item. Let Gn(.|X) and gn(.|X) denote, respectively, the

CDF and PDF of score distributions with n participating bidders conditional on observables

X. Expressing the first-order optimality condition (7) in terms of bid distributions gives:

E

[
su,i−θ1(X)ιT − 1

α(X)
ln

(
1 + α(X)

1−Gn(su,i|X)

(n−1)gn(su,i|X)

)
+

α(X)

2
(b1−θ1(X))Σ(X)(b1−θ1(X))T |b1, X

]
= θ0(X). (16)

See Online Appendix C for the derivation. Therefore, we identify θ0(X). Given θ0(X), we

can now identify the distribution of e0,i nonparametrically:

(
su,i−θ1(X)ιT − 1

α(X)
ln

(
1 + α(X)

(1−Gn(su,i|X))

(n−1)gn(su,i|X)

)
+

α(X)

2
(b1−θ1(X))Σ(X)(b1−θ1(X))T

)
/θ0(X) = e0, (17)

which corresponds to the inversion of the system of first-order conditions of Guerre, Perrigne,

and Vuong (2000). Equation (17), together with (15), identifies the joint distribution of

bidder private information H.

Fifth, the entry cost k is identified from the equilibrium entry condition, given by equation

(8). Knowing θ0(X), θ1(X), and H gives us the pseudo-cost distribution Fu, as well as

interim expected payoff
∫
u (su − cu) dFu,n for each number of participating bidders n. In

order to identify the distribution of entry costs, we need an additional identifying assumption.
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Specifically, we need a variable that affects bidders’ expected payoff but not their entry cost.46

Lastly, our previous analysis suggests that projects procured via FP contract differ sys-

tematically from projects procured via UP contract in unobserved ways. To deal with un-

observed heterogeneity, which is non-separable in a bidder’s payoff function, we could first

apply Hu, McAdams, and Shum (2013) to identify the fraction of auctions in the observed

sample that occurred with a higher risk and the conditional distribution of bids for a given

risk level. Next, we can also show that the first-order conditions identify the bidder type

distribution conditional on observable auction-specific characteristics and unobserved risk

level. The key idea is to view bids as measurements of the unobserved state. Given the

observables, when unobserved heterogeneity is absent, bids across bidders are independent

because bidder types are. In other words, within-auction correlation of bids indicates the

presence of unobserved heterogeneity.

Although we can allow the unobserved heterogeneity to flexibly impact the bid distribu-

tion, we consider project risk as the main source in our empirical analysis. This is because

our reduced-form evidence suggests that bid data contain substantial unobserved hetero-

geneity in project risk. In addition, the identification argument of Hu, McAdams, and Shum

(2013) requires that the maximum of bidders’ values is monotone in the state, and introduc-

ing multiple unobserved heterogeneities (e.g., unobserved heterogeneity in both mean cost

and project risk) violates the condition.

7 Structural Estimation

Following the identification section, we estimate the model for the subsample of UP contracts.

The econometrician needs to deal with some practical challenges in estimating the model.

Nonparametric estimation of the model would overfit and induce large standard errors. As

we do not observe all construction items repeatedly across projects, and often a large number

46Without this exclusion restriction, we can only identify entry probabilities. See the Online Appendix
of Krasnokutskaya and Seim (2011) for details.
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of items is involved in a construction project, estimation of project risk for each construction

item is not feasible. We address this issue by aggregating non-lumpsum items and estimate

a scalar project risk parameter, defined as σ (i.e., Σ(X) := σ(X)). That is, we i) multiply

FDOT’s quantity estimates with unit-price bids and sum across all non-lumpsum items in a

given contract to generate a single non-lumpsum bid (i.e., b1,iι
T = b1,i), and ii) sum across

all the adjustments on all the items in a given auction to construct a total adjustment. For

clarity, we hereafter introduce auction index a.

Our dimension reduction is restrictive, but it is only required for estimation because

our identification procedure assumes that the sample size is infinite. However, the two-

dimensional problem still captures the mean-variance trade-off in choosing itemized bids.

Moreover, it preserves the normal distribution of ex-post shock, as the sum of normally

distributed shocks is also normally distributed. 47

We incorporate observable covariates using a single-index structure. More specifically,

we rescale all the model primitives by observables Xa for a given auction a. Define:

θj(Xa) = θj exp{Xaβ} for j ∈ {0, 1},

σt(Xa) = σt, (18)

α(Xa) = α/ exp{Xaβ},

where θ0 and θ1 are the mean lumpsum and mean non-lumpsum costs, respectively. The

multiplicatively separable cost specification is commonly employed in the auction literature

to account for project heterogeneity. See Haile, Hong, and Shum (2003). Rescaling wealth

in CARA utility requires normalization of the CARA coefficient by observed project char-

acteristics. See Theorem 1 in Raskin and Cochran (1986).

One implication of the above econometric specification on the equilibrium bidding strat-

47Still, it may suffer from misspecification biases unless all non-lumpsum items are subject to the same
risk given auction-specific covariates. Therefore, we introduce unobserved heterogeneity to help alleviate
this concern.
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egy is that the scoring strategy, non-lumpsum bidding strategy, and cost overrun are all

multiplicatively separable in observables. Let b1,ia := b1 (θ1(Xa), σ(Xa), α(Xa), e1,ia),

su,ia := su (θ0(Xa), θ1(Xa), σ(Xa), α(Xa), e0,ia, e1,ia, n), and ∆a := ∆ (θ1(Xa), σ(Xa), α(Xa), e1,1a, ϵa).

Define b01,ia := b1 (θ1(0), σ(0), α(0), e1,ia), s
0
u,ia := su (θ0(0), θ1(0), σ(0), α(0), e0,ia, e1,ia, n),

and ∆0
a := ∆ (θ1(0), σ(0), α(0), e1,1a, ϵa) as “normalized” non-lumpsum score, normalized

score, and normalized cost overrun, respectively. This multiplicative separability of project

characteristics allows for a bid homogenization approach in a setting with CARA bidders

and reduces computational burden by reducing the number of auctions the econometrician

has to solve. See Online Appendix D for details.

Another practical challenge here is that our reduced-form evidence suggests that the bid

data contain a substantial degree of unobserved heterogeneity in project risk. Therefore,

the econometrician needs to address the possibility that the extent of project risk may

differ across projects in a way that is unobserved to the econometrician. Let t denote the

unobserved state (unobserved to the econometrician), and let σt(X) denote the level of

project risk in state t. That is, the project risk is allowed to differ across projects in a way

that is unobserved to the econometrician. However, the model is highly nonlinear due to the

CARA assumption, which precludes the deconvolution approach in dealing with unobserved

project heterogeneity.

Applied works in the procurement auction literature often assume constant relative risk

aversion (CRRA), rather than CARA, due to its simplicity and goodness of fit. However, we

assume CARA, because using CRRA would require the approximation of certainty equivalent

payoffs via Taylor expansion, which is valid only for small ex-post adjustments. Because the

data contain a large degree of ex-post uncertainty, we assume CARA together with normally

distributed ex-post adjustments. This means that the common deconvolution approach to

deal with unobserved project heterogeneity is not feasible here, as additive separability or

multiplicative separability of project risk does not translate into additive separability or

multiplicative separability of scoring strategy.
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Specifically, we estimate a finite mixture model that allows for a finite number of discrete

unobserved states in project risk σt(X). A finite mixture model requires a priori knowledge

about the number of unobserved states. To this end, we conduct an elbow test based on the

variance of (normalized) non-lumpsum bids, b01,ia, following Lin and Ng (2012), Landau et

al. (2011), Syakur et al. (2018), and Tibshirani et al. (2001). More specifically, we apply k-

means clustering on the variance of b01,ia for each number of potential clusters, and determine

the number of clusters where the sum of squared errors stops dropping radically. The result

of the elbow test is presented in Online Appendix Figure A.5. K-means clustering suggests

two unobserved states in variance of b01,ia. We interpret this as suggestive evidence that the

data contain two unobserved states, high and low, in project risk σt where t ∈ {L,H}.48

Estimation Procedure

Our econometric specification suggests an easy-to-estimate multi-step estimation procedure,

which allows for the estimation of model primitives, together with the distribution of unob-

served project heterogeneity. We parameterize the distribution of bidder types by bivariate

normal with standard deviations {σe0, σe1} and correlation ρ := corr(e0,i, e1,i) to allow for

within-bidder correlation in types, which captures correlation in a given bidder’s productiv-

ity across items. The probability that the state is H is denoted by P and the state is L by

1− P.

Step 1: Estimate θ1 and β by non-linear least squares using the aggregated non-lumpsum

bid b1,ia:

b1,ia = b01,ia exp {Xaβ} = θ1 exp {Xaβ}+
e1,ia − 1

ασt
exp {Xaβ} .

Step 2: Using the predicted classification of unobserved state t ∈ {L,H} via K-means

clustering, estimate CARA parameter α, the marginal distribution of e1,ia, the unobserved

48We exclude unobserved heterogeneity in mean costs θ0 and θ1, because multi-dimensional unobserved
heterogeneity violates the first-order stochastic dominance condition of Hu, McAdams, and Shum (2013).
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project risk σt, and its probability distribution P using the cost overrun equation:

∆a

b1,1a
= ασt(̂b01,1a − θ̂1) + ϵa,

where b̂01,1a− θ̂1 is the estimate of b01,1a−θ1 obtained from Step 1.49 Note here that V ar (ϵa) =

σt helps estimation of α and σt.

Step 3: Given the obtained estimates θ̂1,α̂,σ̂
t, predicted type ê1,ia, and predicted unob-

served state, we estimate θ0, ρ, and σe0 by inverting the first order condition for the scoring

strategy:50

θ0e0,i = s0u,ia − θ̂1 −
1

α̂
ln

(
1 + α̂

(1−Gn(s
0
u,ia))

(n− 1)gn(s0u,ia)

)
+

α̂σ̂t

2
(̂b01,ia − θ̂1)

2. (19)

Step 4: Estimate reduced-form entry probability, denoted by δ̂(Na), by probit of bidding

status on the number of potential bidders Na.

Step 5: Given the parameter estimates obtained from Steps 1-4, compute the expected

payoff using δ̂(Na). This pins down the threshold entry cost k̄N for each N . Estimate the

mean entry cost µec and the standard deviation of entry cost σec via non-linear least squares

where Pr
(
kia < k̄N

)
:= Φ

(
k̄N−µec

σec

)
and Φ (.) is a standard normal CDF.

Estimation Results

Table 5 shows the structural estimation results. There is a considerable amount of project

risk even in the low state. The cost of project risk in the low state is 0.032, which is 3.24%

of the mean cost.51 Also, the standard deviation of pseudo-costs among bidders under UP

49The classification based on K-means clustering is, for example, adopted in Lin and Ng (2012), and Lu
and Su (2017).

50An alternative way to estimate the model without taking the classification as given is to apply indirect
inference by matching the moments of the bidder score distribution in the data with the moments of the
scores generated via simulation. We obtain quantitatively similar estimation results either way,

51The cost of project risk is estimated as 1
2 α̂
(
σ̂Lθ̂1

)2
= 0.032. The mean cost estimate is θ̂0+ θ̂1 = 0.986.

Note that the cost of project risk is invariant with respect to project size or project characteristics in general
given the econometric specification here.
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contract is 38.9% of the mean total cost θ0 + θ1, indicating a significant amount of bidder

heterogeneity within an auction. The estimated distribution of bidder types (e0,i and e1,i)

in Figure 3 shows that bidder types are fairly normally distributed. Moreover, Table 6

shows that the actual homogenized bids computed directly from the data closely resemble

the distribution of simulated bids. For brevity, we tabulate by the number of bidders when

it is odd; the patterns are similar for even numbers.

An important observation here is that bidder types are highly positively correlated (i.e.,

ρ ≈ 0.75). Highly correlated types have an important implication for the effect of employing

UP over FP contracts When bidder types are positively correlated, winning bidders tend to

be bidders with low e1,i, because efficient bidders (i.e., those with estimate e1,i lower than

1) also bid competitively.52 Therefore, we expect an increase in ρ to be associated with

an increase in allocative efficiency. That is, the adverse effect of skewed bidding for UP

versus FP contracts diminishes as ρ increases, and therefore, the use of UP contracts can be

justified, even when project risk is small.

8 Do UP contracts do well?

A natural question here is whether the UP contract is a mechanism that minimizes procure-

ment costs. In this section, we consider two hypothetical scenarios: i) switching from UP

to FP contract, and ii) imposing a cap on non-lumpsum bids. FP contracts are an obvious

alternative to UP contracts, especially when project risk is relatively small.

We consider imposing a cap r on non-lumpsum bids (or, equivalently, reserve price) at the

estimated mean cost of non-lumpsum item θ1. We maintain the interior solution assumption

for both lumpsum and non-lumpsum bids in the counterfactual equilibrium. This experiment

allows us to see how the performance of UP contracts can be improved in a simple and costless

manner.53 The intuition is simple but differs from that of reserve price in a typical first-price

52An OLS regression of estimated types e1 and e0 on an auction winner indicator shows a strong negative
association (see Online Appendix Table A.6.) This suggests that auction winners are efficient on average.

53Item-wise reserve price is a very common practice in timber auctions, which generally employs UP
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auction. A cap on the non-lumpsum bid at θ1 would preclude only inefficient types (e1,i ≥ 1)

from skewing their bids and continue to allow efficient types (e1,i < 1) to skew their bids.

Given that cost overruns occur due to the skewing of inefficient bidders, setting a cap r = θ1

reduces the extent of cost overruns for inefficient types, which in turn limits their incentive

to bid competitively, and results in efficient selection of contractors via UP contract. More

specifically, a bidders’ non-lumpsum bidding strategy under reserve price r is given by:

b1,i =


θ1 +

e1,i−1

ασ
if e1,i < 1,

θ1 if e1,i ≥ 1,

pseudo-cost of a bidder, cr, is given by:

cr,i =


θ0e0,i + θ1 − (e1,i−1)2

2ασ
if e1,i < 1,

θ0e0,i + θ1 if e1,i ≥ 1,

and the scoring strategy is a function of cr,i where cu,i in equation (7) is replaced by cr.
54

Table 7 presents the percentage change in the expected final payment due to switching

from the UP to FP contract format. We find that switching from a UP to FP contract would

increase the expected procurement cost in all cases, rationalizing the use of UP contracts by

FDOT. We also find that the cost savings effect of UP contracts is larger when project risk is

large, and that the cost of project risk is large. The change in the expected final payment is

calculated in two steps: one with fixed entry behavior and one with endogenously adjusted

entry behavior. We find that the equilibrium entry effect moderates the effect of switching

contract format.

Table 8 shows the effect of the non-lumpsum reserve price on the expected final payment.

contracts to select a contractor. See Athey and Levin (2001), for example.
54One thing to note here is that the non-lumpsum bidding strategy and the pseudo-cost under the cap on

non-lumpsum bids is valid as long as the bidding strategy is given by the interior solution before imposing a
cap. This is because the non-lumpsum bid is always equal to or smaller with a cap than the non-lumpsum
bid without a cap.
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We find that the effect of the reserve price is surprisingly small. There are two explanations

for this phenomenon. First, because within-bidder types are highly positively correlated,

winning contractors tend to be efficient (i.e., low e0,i and low e1,i) and therefore, placing a

cap on non-lumpsum bids does not do much in affecting the final payment. Second, the scope

of skewing is limited by large project risk. Risky projects shift the attention of bidders from

skewing to risk hedging, and therefore, leave little disparity between efficient and inefficient

bidders in terms of non-lumpsum bids.

We compare equilibrium outcomes from the numerical comparative statics of changing

type correlation ρ. Figure 4 shows the expected final payment, the coefficient of variation

of pseudo-cost, the average cost overrun, and the average winner’s non-lumpsum efficiency

type e1. The right subfigure shows that a higher type correlation determines a winner with

higher efficiency in non-lumpsum items, leading to improved allocative efficiency and less

cost overrun. Note that the pseudo-cost becomes more homogeneous when type correlation

increases, leading to more competitive bidding, which in turn reduces the average final

payment. In summary, the average final payment decreases with type correlation through two

distinct channels: i) a more efficient allocation from selecting a winner with lower potential

cost overrun, and ii) a more efficient winner through more competitive bidding.

9 Conclusion

We analyze the performance of unit-price (UP) contracts relative to fixed-price (FP) con-

tracts and find that procurer choice of contract type depends on unobserved project het-

erogeneity, consistent with the Florida Department of Transportation (FDOT)’s belief that

UP contracts should be used for projects with larger project risk. Skewed bidding for UP

contracts is economically and statistically significant, suggesting that UP projects may select

inefficient contractors that expect additional compensation through cost overruns. We build

a simple estimable model of auction contracts, which is consistent with the empirical find-
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ings. Our empirical specification of the model allows for unobserved project heterogeneity in

both expected cost and project risk. We find that UP (FP) contracts are ideal for projects

with large (small) project risk, and the estimated model rationalizes FDOT’s practice.

We abstract from the moral hazard problem in this article, as FDOT closely monitors the

construction process and initiates most ex-post adjustments. Nevertheless, we can adapt the

framework to study this problem in suitable settings, because it nests FP and UP contracts.

FP contracts are free of moral hazard, as the final payment is independent of the actual

quantities. All else equal, comparing outcomes under UP and FP allows for gauging the

significance of moral hazard. Empirically, this requires a valid instrument that exogenously

changes the auction format. For instance, if the DOT adopts FP when the project size is

smaller than a cutoff and UP otherwise, a regression discontinuity design allows for iden-

tifying the effects of the auction format. Unfortunately, we have no such variation in the

Florida data.
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Figure 1: Pseudo-costs and Project risk in FP and UP Contracts

Figure 2: Expected Final Payment and Project Risk in FP and UP Contracts
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Figure 3: Estimated Distribution of Bidders’ Efficiency Types (e0, e1)

Figure 4: Role of Type Correlation ρ in UP Contracts (σ ≈ σ̂H)
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Table 1: Summary Statistics of Fixed-Price and Unit-Price Contracts

FP UP

Variable Mean Std. Min. Max. N Mean Std. Min. Max. N

Winning Score ($1,000s) 1601 2053 14.3 14500 628 3956 7510 7.51 148000 1260

Money on the Table .102 .0945 .000687 .616 628 .0720 .0708 .000165 .532 1260

FDOT Cost Estimates ($1,000s) 1884 2321 23.3 16600 628 4774 9094 12.7 164000 1260

Final Payment to Contractor ($1,000s) 1601 2053 14.3 14400 628 4141 8095 7.50 159000 1260

Ex-Post Pay Adjustment ($1,000s) 50.9 177 -164 1851 628 184 750 -1999 11200 1260

# of Participating Bidders / Auction 4.32 2.39 1 15 628 4.98 2.67 1 19 1260

# of Potential Bidders / Auction 10.2 5.71 1 31 628 10.8 6.52 1 43 1260

Winning score is the winner’s bid price for FP and the sum product of unit price and estimated quantity for UP, in thousands of dollars.

Money on the Table is the percentage difference between the lowest score and the second lowest score in a given auction.

Ex-post pay adjustments for FP contracts are non-zero due to adjustments on uncontracted items.
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Table 2: OLS Comparison of Contract Formats, Bidder Behavior, and Auction Outcomes

Dependent Variable Entry Score (log) Winner’s Score (log) Final Payment (log)

FP (=0 if UP, =1 if FP) -.0159 -.0293 -.00824 .00961

(.0081) (.0080) (.016) (.017)

Engineer’s Cost Estimate (log) -.0480 .976 .996 1.01

(.0027) (.0029) (.00650) (.0068)

# of Participating Bidders -.0217 -.0373 -.0386

(.0013) (.0034) (.0036)

# of Potential Bidders -.00621 -.00392 -.00548 -.00410

(.00053) (.00060) (.0014) (.0015)

R2 .374 .975 .980 .977

N 20131 8984 1890 1890

Bidders who win less than one percent of the total value of projects are grouped together as fringe firms.

All specifications also include district FE, Year Trend, Month FE, and Bidder FE.

Standard errors are clustered at the project/auction level and presented in parentheses.

Table 3: Endogenous Switching Model: Estimation Results

Dependent Variable scorej (log)
Specification (1) (2) (3)
Regime FP UP FP UP FP UP

ρf , ρu -.690 .0872 -.653 .0673 -.649 .0760
(.10) (.070) (.16) (.060) (.15) (.066)

σf , σu .352 .237 .340 .236 .337 .233
(.030) (.0081) (.031) (.010) (.033) (.0072)

Engineer’s Cost Estimate (log) 1.02 .987 1.01 .988 1.01 .990
(.015) (.010) (.016) (.011) (.014) (.0077)

Bidder Backlog 1.28 .796 1.28 .778 1.57 1.96
(.40) (.19) (.55) (.15) (.61) (.28)

# of Participating Bidders -.0199 -.0248 -.0200 -.0242 -.0189 -.0253
(.0082) (.0033) (.0101) (.0030) (.0088) (.0026)

Month FE N N Y Y Y Y
Bidder FE N N N N Y Y

Observations 8,977 8,977 8,977 8,977 8,977 8,977
Standard errors are clustered at the district-year level and given in parantheses.

District office backlog, district fixed effects, and year trends are controlled for in all specifications.

Bidders that have won less than one percent of the total value of projects are grouped together as fringe firms.

District office backlog is calculated as the total dollar value of incomplete projects at the time of project letting.
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Table 4: Share of non-lumpsum bids and bidding strategy

Dependent variable score (log) win

Non-lumpsum bid as a share of score -.636 -.832 1.35 1.58
(.030) (.034) (.10) (.11)

Auction FE Y Y Y Y
Bidder FE N Y N Y
Observations 6,373 6,373 6,373 6,373
Standard errors given in parentheses.

Table 5: Structural Estimation Results

Parameter α σL σH θ0 θ1 σe0 σe1 ρ µec σec P

Estimate 7.98 .0837 .0995 .237 .756 .982 .0140 .758 .0181 .0232 .449
Standard Error (1.7) (.0083) (.010) (.048) (.074) (.29) (.0029) (.038) (.0036) (.0049) (.086)

Block-bootstrapped standard errors are given in parentheses.

Auction level characteristics include engineer estimates of project cost, which accounts for more than 90% of score variation.

The engineer’s cost estimate is an estimate of the winning bid price, as predicted by an FDOT engineer prior to auction.

Table 6: Distribution of Actual Bids vs Simulated Bids(
s0u,ia, b

0
1,ia

)
Actual bids Simulated bids

Number of bidders: n Mean Std. Mean Std.

n = 3 (1.03, .809) (.221, .256) (1.08, .740) (.185, .209)
n = 5 (1.01, .796) (.215, .212) (1.05, .740) (.195, .209)
n = 7 (.973, .774) (.194, .158) (1.04, .740) (.200, .209)
n = 9 (.953, .774) (.241, .209) (1.03, .740) (.203, .209)
Moments of homogenized score and non-lumpsum bids for a given n are presented in parentheses.

Table 7: Effect of switching from UP to FP on final payment

State L (σL) State H (σH)

Change in final payment without change in entry behavior 1.61% 2.82%
Change in final payment due to change in entry behavior -.22% -.34%
Total change in final payment 1.39% 2.48%

Table 8: Effect of reserve price on final payment in UP

State L (σL) State H (σH)
Change in final payment -.20% -.071%

Reserve price on non-lumpsum bids is set at θ̂1.
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Figure A.1: Excerpt from The FDOT Project Guidelines
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Bidder submits bid form of unit-prices

Bidder with the lowest score

(unit-price bids × estimates) wins

Change in project plan

Contractor receives payment 

(score + adjustments)

Time

Bidder E submits a lump-sum bid

Bidder with the lowest 

lump-sum bid wins

Contractor receives its 

lump-sum bid

Time

In case of UP contract

In case of FP contract

Change in project plan

Figure A.2: Timeline of Events

Table A.1: Endogenous Switching Model: Relevance of Excluded Variables

Dependent Variable FP (=1 if FP, =0 if UP)
Specification (1) (2) (3)

District Office Backlog .844 .853 .884
(.13) (.14) (.14)

District FE y y y
Project Characteristics y y y
Year Trend y y y
Month FE n y y
Bidder FE n n y

N 1890 1890 1890

Standard errors are clustered at the district-year-month level. Project characteristics include engineer’s
estimate of project cost and number of plan holders. District office backlog is calculated as the total dol-
lar value of incomplete projects at the time of project letting.
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Table A.2: Endogenous Switching Model: without the Period of Stimulus Spending

Dependent Variable scorej (log)
Specification (1) (2) (3)
Regime FP UP FP UP FP UP

ρf , ρu -.759 .177 -.739 .0183 -.737 .0214

(.11) (.26) (.13) (.19) (.13) (.18)

σf , σu .359 .214 .344 .210 .342 .207

(.029 (.010) (.027) (.0093) (.027) (.0093)

Engineer’s Cost Estimate (log) .991 .991 .996 .996 .997 .997

(.011 (.011) (.0090) (.0090) (.0089) (.0089)

Bidder Backlog .122 .122 .0775 .0775 .843 .843

(.19 (.19) (.20) (.20) (.32) (.32)

# of Participating Bidders -.0142 -.0142 -.0145 -.0145 -.0155 -.0155

(.0036 (.0036) (.0033) (.0033) (.0033) (.0033)

Month FE n n y y y y

Bidder FE n n n n y y

N 3933 3933 3933 3933 3933 3933
Standard errors are clustered at the district-year level.

District office backlog, district fixed effects, and year trends are controlled for in all specifications.

Bidders that have won less than one percent of the total value of projects are grouped together as fringe firms.

District office backlog is calculated as the total dollar value of incomplete projects at the time of project letting.

Table A.3: Test of Endogeneity of Excluded Variable

Dependent Variable Time Overrun

District Office Backlog -.458 -.437 -.266
(.37) (.38) (.38)

Bidder Backlog y y y
Project Characteristics y y y
District FE y y y
Year Trend y y y
Month FE n n y
Bidder FE n n n
N 1890 1890 1890
Standard errors are clustered at the district-year-month level.

Time overrun is defined as the log-difference in actual and expected

contract days.

The test is conducted using the sample of 1,890 winning contractors.
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Table A.4: Contract Type for Top 10 Items in UP contracts

Item Category Contractual Frequency

Arrangement

Mobilization Lumpsum 1241

Maintenance of Traffic Lumpsum 1239

Work Zone Sign Per Day 1217

Temporary Barricade Per Day 1168

Advanced Warning / Arrow Board Per Day 890

High Intensity Flashing Lights Per Day 1200

Temporary Retro-reflective Pavement Marker Each Unit 865

Portable Changeable Message Sign Per Day 1004

Clearing & Grubbing Lumpsum 1067

Painted Pavement Markings Lumpsum 788

The means are calculated using the lowest bidder’s unit-price bid from 1,341 unit-price auctions.

Quantities are estimated by FDOT prior to auction.
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Table A.5: Variance Decomposition of Share of Non-Lumpsum Bids

Std. Dev. Percentage
Between-Auction .130 70%

(.0027)
Within-Auction Between-Bidder .0560 30%

(.0005)
Standard errors are given in parentheses.
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Figure A.5: Elbow Test on The Variance of Non-lumpsum Bids

Table A.6: OLS Comparison of Efficiency of Winning Bidders relative to Non-Winning
Bidders

Dependent variable e0 e1

Winner -.473 -.00567
(.033) (.00056)

Standard errors are given in parentheses.

Appendix B: More Results on Contract Formats

There is also a large degree of heterogeneity in the use of these two contractual arrangements

across FDOT district offices. Figure A.6 plots the varying levels of intensity in the use of FP

relative to UP contracts for each of FDOT’s seven district offices across time. As a district

office procures multiple projects at a time, the intensity of FP use is measured by the share

of all FP projects over the sum of FP and UP projects procured during a year.
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Figure A.6: Use of FP over UP at each FDOT district office

Two observations can be made from Figure A.6. First, there is state dependency in the

use of FP over UP contracts while exhibiting much variation across time, which could be

a product of turnover in project managers. Second, there is a common sharp increase in

the use of FP over UP for the year following the financial crisis in 2008. In February 2009,

the American Recovery and Reinvestment Act was signed into law. This stimulus package

placed an emphasis on infrastructure investment, which raised the number of procurements

significantly. If FDOT is capacity constrained, then FDOT may choose to procure those

additional projects via FP. UP could involve higher transaction costs in order to estimate

the quantity of each construction item, and to keep track of materials used. Indeed, FDOT

engineers mention that the bulk of the administrative costs associated with UP comes from

keeping track of materials used.
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Table A.7: OLS Comparison of Contract Formats: Entry

Dependent Variable Entry

FP (=0 if UP, =1 if FP) -.00342 -.0038 -.00427 .0151

(.0098) (.0097) (.0098) (.0085)

Engineer’s Cost Estimate (log) -.00481 -.00806 -.0058 -.0289

(.0033) (.0033) (.0034) (.003)

# of Potential Bidders -.0109 -.0102 -.0105 -.00625

(.00057) (.00059) (.00061) (.00054)

District FE y y y y

Year Trend n y y y

Month FE n n y y

Bidder FE n n n y

R2 .0623 .0632 .0654 .393

N 20131 20131 20131 20131

Bidders that win less than one percent of the total value of projects are grouped together as fringe firms.

Standard errors are clustered at the project/auction level and presented in parentheses.

Table A.8: OLS Comparison of Contract Formats: Score

Dependent Variable Score (log)

FP (=0 if UP, =1 if FP) -.0512 -.0502 -.0471 -.027

.0083 .0083 .0083 .0081

Engineer’s Cost Estimate (log) .985 .99 .989 .975

.0026 .0027 .0027 .003

# of Participating Bidders -.0199 -.0196 -.0199 -.0202

.0013 .0013 .0013 .0014

# of Potential Bidders -.00376 -.00502 -.00459 -.00563

.00058 .00059 .00061 .00061

District FE y y y y

Year Trend n y y y

Month FE n n y y

Bidder FE n n n y

R2 .969 .969 .97 .975

N 8984 8984 8984 8984

Bidders that win less than one percent of the total value of projects are grouped together as fringe firms.

Standard errors are clustered at the project/auction level and presented in parentheses.
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Table A.9: OLS Comparison of Contract Formats: Winner’s Score

Dependent Variable Winner’s Score (log)

FP (=0 if UP, =1 if FP) -.0489 -.0475 -.0436 -.00573

.016 .016 .016 .017

Engineer’s Cost Estimate (log) 1 1.01 1.01 .989

.0055 .0057 .0057 .0069

# of Participating Bidders -.0344 -.0343 -.0344 -.0336

.0031 .0031 .0031 .0034

# of Potential Bidders -.00585 -.00708 -.00662 -.00764

.0013 .0013 .0013 .0014

District FE y y y y

Year Trend n y y y

Month FE n n y y

Bidder FE n n n y

R2 .972 .972 .973 .981

N 1890 1890 1890 1890

Bidders that win less than one percent of the total value of projects are grouped together as fringe firms.

Standard errors are clustered at the project/auction level and presented in parentheses.

Table A.10: OLS Comparison of Contract Formats: Final Payment

Dependent Variable Final Payment (log)

FP (=0 if UP, =1 if FP) -.0386 -.0375 -.0343 .012

.016 .016 .017 .017

Engineer’s Cost Estimate (log) 1.02 1.02 1.02 1

.0058 .006 .006 .0071

# of Participating Bidders -.0352 -.0351 -.0351 -.0347

.0033 .0033 .0033 .0036

# of Potential Bidders -.00479 -.0058 -.00525 -.00638

.0013 .0014 .0014 .0015

District FE y y y y

Year Trend n y y y

Month FE n n y y

Bidder FE n n n y

R2 .969 .969 .969 .979

N 1890 1890 1890 1890

Bidders that win less than one percent of the total value of projects are grouped together as fringe firms.

Standard errors are clustered at the project/auction level and presented in parentheses.
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Table A.11: Top 10 Contractors for FP and UP Contracts

Top Contractors for FP # of FP contracts Top Contractors for UP # of UP contracts

APAC-Southeast 73 Anderson Columbia Co. 103
Anderson Columbia Co. 70 Community Asphalt 101
AJAX Paving 47 APAC-Southeast 73
Lane Construction 33 Ranger Construction 72
Better Roads 31 Weekley Asphalt Paving 71
L-J Construction Co. 23 Hubbard Construction 51
C.W. Roberts Contracting 21 C.W. Roberts Contracting 47
Ranger Construction 19 General Asphalt Co. 38
Hubbard Construction 16 AJAX Paving 34
D.A.B. Constructors 14 P&S Paving 32

Appendix C: Derivation of (16)

Under the UP contract, a bidder’s utility maximization problem with a pseudo-cost cu is

given by:

max
su

[1−Gn(su,i|X)]n−1 u (su,i − cu,i|X) ,

where u(.) is CARA utility.

The first-order optimality condition gives:

u(su,i − cu,i|X)

u′(su,i − cu,i|X)
=

1−Gn(su,i|X)

(n− 1)gn(su,i|X)
.

Rewriting the left-hand side of the above equation explicitly, we have:

u(su,i − cu,i|X)

u′(su,i − cu,i|X)
=

1

α(X)
(exp {α(su,i − cu,i)} − 1) .
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Rearranging the above first-order condition, we have:

su,i −
1

α(X)
ln

(
1 + α(X)

1−Gn(su,i|X)

(n− 1)gn(su,i|X)

)
= cu,i.

Given we know that bi = θ(X) + ei−ι
α(X)

Σ−1 and cu,i = θ0(X)e0,i + θ(X)ιT − 1
2α(X)

(ei −

ι)Σ−1(X)(ei − ι)T , we have:

su,i − θ(X)ιT − 1

α(X)
ln

(
1 + α(X)

1−Gn(su,i|X)

(n− 1)gn(su,i|X)

)
+

α(X)

2
(bi − θ(X))Σ(X)(bi − θ(X))T = θ0(X)e0,i.

Therefore, we have:

E

[
su,i−θ(X)ιT− 1

α(X)
ln

(
1 + α(X)

1−Gn(su,i|X)

(n−1)gn(su,i|X)

)
+

α(X)

2
(bi−θ(X))Σ(X)(bi−θ(X))T |bi, X

]
= θ0(X).

Appendix D: Bid Homogenization

We show that the unique equilibrium bidding strategies and cost overruns are multiplica-

tively separable in project characteristics X given the econometric specification in (18). To

see this, let us make explicit the dependency of outcome variables on the primitives.

Let b1,ia := b1 (θ1(Xa), σ(Xa), α(Xa), e1,ia), su,ia := su (θ0(Xa), θ1(Xa), σ(Xa), α(Xa), e0,ia, e1,ia, n),

and ∆a := ∆ (θ1(Xa), σ(Xa), α(Xa), e1,1a, ϵa). Define b
0
1,ia := b1 (θ1(0), σ(0), α(0), e1,ia), s

0
u,ia :=

su (θ0(0), θ1(0), σ(0), α(0), e0,ia, e1,ia, n), and ∆0
a := ∆ (θ1(0), σ(0), α(0), e1,1a, ϵa) as “normal-

ized” non-lumpsum score, normalized score, and normalized cost overrun, respectively. This

multiplicative separability of project characteristics allows for the bid-homogenization ap-

proach in a setting with CARA bidders and reduces computational burden by reducing the

number of auctions the econometrician has to solve.

Proposition. Given the econometric specification above, the unique equilibrium non-lumpsum

bidding strategy, scoring strategy, and cost overrun are all multiplicatively separable in project
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characteristics, such that:

b1,ia = b01,ia exp {Xaβ} ,

su,ia = s0u,ia exp {Xaβ} ,

∆a = ∆0
a exp {Xaβ} .

First, consider non-lumpsum bidding strategy b1,i := b1,i(θ1(X), σ(X), α(X), e1,i). We

know that:

b1,i(θ1(X), σ(X), α(X), e1,i) = θ1(X) +
e1,i − 1

α(X)σ(X)

=

(
θ1 +

e1,i − 1

ασ

)
exp{Xβ}

= b01,i exp{Xβ},

where the second line follows directly from the normalization assumption (18). Therefore,

the non-lumpsum bidding strategy is multiplicatively separable in X.

Second, we show that the scoring strategy is multiplicatively separable in X. To see

this, let us first consider the pseudo-cost cu,i := θ0(X)e0,i + θ1(X)− 1
2α(X)σ(X)

(e1,i − 1)2 and

c0u,i := cu,i(0). We have:

cu,i =

(
θ0e0,i + θ1 −

(e1,i − 1)2

2ασ

)
exp{Xβ}

= c0u,i exp{Xβ},

and thus, pseudo-cost is multiplicatively separable in X. Now, conjecture that

su,i := su,i(θ0(X), θ1(X), σ(X), α(X), e0,i, e1,i) = s0u,i exp{Xβ} constitutes an equilibrium

13



scoring strategy. Consider the first-order condition with respect to score given by:

su,i −
1

α(X)
ln

(
1 + α(X)

1−Gn(su,i|X)

(n− 1)gn(su,i|X)

)
= cu,i,

s0u,i −
1

α
ln

(
1 + α

1−Gn(s
0
u,i|X = 0)

(n− 1)gn(s0u,i|X = 0)

)
exp{Xβ} = c0u,i exp{Xβ},

s0u,i −
1

α
ln

(
1 + α

1−Gn(s
0
u,i|X = 0)

(n− 1)gn(s0u,i|X = 0)

)
= c0u,i,

where the second line follows because Gn is homogeneous of degree 0 while gn is homogeneous

of degree -1. Therefore, su,i = s0u,i exp{Xβ} constitutes an equilibrium scoring strategy if

s0u,i is the equilibrium scoring strategy corresponding to pseudo-cost c0u,i. Because we know

that the equilibrium is unique, su,i = s0u,i exp{Xβ} is the unique equilibrium scoring strategy

with X ̸= 0.

Lastly, it is straightforward to see that ∆ = ∆0 exp{Xβ} from the cost overrun equation.

∆ = b1,1(e1,1 − 1 + ϵ)

= b01,1(e1,1 − 1 + ϵ) exp{Xβ}

= ∆0 exp{Xβ}.

This completes the proof.
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