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Abstract

We identify a misallocation inefficiency in search models, which is distinct from the ag-

gregate entry distortion emphasized in the previous literature, and arises instead from

partially directed search. We consider a framework in which workers differ in whether

they can direct their search, and firms are heterogeneous in productivity. The main

result is that too many workers apply to high-productivity firms, relative to the social

optimum. This occurs because too many firms attract only random searchers, in order

to extract more surplus from them. Because it is the low-productivity firms that do

so, this induces all the directed searchers to concentrate at the high-productivity firms.

A minimum wage can increase employment and welfare by reallocating workers across

firms. With endogenous entry by either workers or firms, the misallocation inefficiency

coexists with a standard entry externality; in this case, a proper combination of a tax

or subsidy and a minimum wage can restore the efficient allocation.
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1 Introduction

Do markets with search frictions achieve efficient outcomes? This question is of obvious

substantive importance, e.g. for policy interventions such as the minimum wage in the context

of the labor market, which has been the canonical application. The theoretical literature

on this question has focused overwhelmingly on a specific margin, namely the aggregate

market tightness, which is in turn determined by agents’ entry choices. In this paper, we

depart from the focus on the aggregate entry efficiency by analyzing instead whether workers

are allocated in a constrained-efficient manner across jobs. We identify a novel inefficiency,

which arises from the combination of random and directed search and operates along the

allocation margin.

We analyze the allocation of workers to firms in a specific model of the labor market

that features partially directed search. The labor market is frictional: firms post wages,

understanding that higher-wage job openings will be filled more quickly. The key features

of the model are partially directed search and firm heterogeneity. The modeling of partially

directed search follows Lester (2011): a fraction of the workers are directed searchers, who

choose which job openings to apply for, understanding that higher posted wages attract more

competing applicants. The remaining fraction are random searchers, who cannot control

which firms they target and are assigned to vacancies randomly.1 The environment differs

from Lester (2011) by introducing firm heterogeneity in productivity. Our baseline model

abstracts from entry decisions on either side of the market and thus abstracts from the key

margin that has occupied much of the previous literature. The key question, instead, is the

equilibrium allocation of existing workers across firms of differing productivities, and how it

compares to the allocation chosen by the social planner.

The main result is that, in equilibrium, too many workers are employed at high-productivity

firms, as compared to the social optimum. This contrasts with the intuitive prediction that

frictions, such as mobility costs or lack of information, result in too many workers at low-

productivity firms. Both the constrained-efficient allocation and the decentralized equilib-

rium are characterized by a threshold rule: firms above some productivity threshold attract

both random and directed searchers, whereas firms with productivity below this threshold

attract only random searchers. However, the equilibrium productivity threshold is always

higher than the socially efficient one. The mechanism behind this inefficiency is akin to a

monopsony distortion. In order to attract directed searchers, the firm must raise its wage,

but then it must raise the wage to the random searchers as well. This monopsony distor-

1The framework thus nests the special cases of purely directed search, as surveyed in Wright et al. (2021),
and purely random search.

2



tion makes firms inefficiently reluctant to attract directed searchers in equilibrium. Because

this under-hiring incentive is stronger for low-productivity firms, equilibrium has too few

firms attracting directed searchers; this means that directed searchers are concentrated at a

smaller number of firms. As a result, there is a misallocation of labor toward the top of the

productivity distribution.

The inefficiency we identify is distinct from the aggregate entry distortions emphasized

in the previous literature e.g. (e.g. Hosios, 1990; Pissarides, 2000; Mangin and Julien, 2021):

in our baseline framework, entry is fixed, and the inefficiency instead has to do with how

existing workers are allocated across existing firms. It is also important to note that the

inefficiency arises from the coexistence of random and directed search; indeed, the presence

of random searchers leads to an inefficient allocation of directed searchers. This suggests

more broadly that studying environments with partially directed search generates important

insights that are absent from environments that consider either extreme separately.

We next show that a minimum wage can increase employment and welfare. It does so

by inducing low-productivity firms to pay higher wages, thereby attracting workers away

from the high-productivity firms. This reallocation of workers is efficiency-improving since

it reduces the excess queue of workers at high-productivity firms; in fact, we show that an

appropriately chosen minimum wage restores the constrained-efficient allocation. While the

previous literature has focused overwhelmingly on the aggregate employment effects of the

minimum wage, we emphasize its allocative effects. Notably, the minimum wage does affect

employment in our framework, even in the absence of an extensive entry margin; in fact, the

minimum wage just described raises employment. However, the reasons for this are distinct

from the conventional narrative. According to the latter, mandating higher wages results in

more workers willing to work because of an upward-sloping labor supply curve – an extensive-

margin channel. In our model, mandating higher-wages results in a reallocation of workers

from firms with many applicants to firms with few applicants; this raises employment in

spite of total labor supply remaining constant.

Several extensions of our model both illustrate the robustness of our results and help

relate them to the previous literature. First, we extend our baseline model to incorporate an

extensive margin: either in the form of endogenous participation by workers, or in the form

of endogenous entry by firms. In either case, we show that the misallocation inefficiency

now coexists with a conventional entry inefficiency studied extensively in the literature. The

entry inefficiency stems from the violation of the Hosios condition (Hosios, 1990; Pissarides,

2000; Mangin and Julien, 2021): aggregate entry by workers/firms is inefficient because the

marginal entrant does not internalize the effect of their entry on the matching probability and

average output. The misallocation inefficiency operates in the same form as in our baseline
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model: a social planner who takes the aggregate numbers of workers and firms as given can

still improve welfare by reallocating workers away from the high-productivity firms. Because

such an environment is plagued by two distortions, a single minimum wage no longer suffices

to restore constrained efficiency; instead, we show the constrained-efficient allocation can be

achieved by a suitable combination of a tax/subsidy and a minimum wage.

Finally, we also extend our baseline model to allow for heterogeneous productivity on the

worker side, as well as the firm side. We show that the direction of the misallocation is robust

to this extension. The misallocation is still driven by a monopsony distortion, which causes

too few firms to attract directed searchers. The same monopsony distortion leads to too

few firms attracting high-productivity workers, conditional on attracting directed searchers

at all. Both of these channels lead to too many workers concentrating at high-productivity

firms.

Outline. This paper is organized as follows. In Section 2, we discuss the relationship

between our paper and the existing literature. We describe the environment in Section 3

and characterize the planner’s solution in Section 4. Section 5 presents the main results of the

paper: we characterize the decentralized equilibrium (5.1), show that the equilibrium features

misallocation (5.2), discuss limiting cases (5.3), and demonstrate that a minimum wage

can be welfare-improving (5.4). In Section 6, we extend our baseline model to incorporate

endogenous participation by workers (6.1) and endogenous entry by firms (6.2). We show

that the misallocation inefficiency is robust to these extensions and coexists with a standard

participation/entry distortion. In Section 7, we show that the misallocation inefficiency is

robust to introducing worker heterogeneity. Finally, Section 8 concludes.

2 Relationship to literature

Partially directed search. Our paper builds most directly on the environment of Lester

(2011) and falls more generally within the small but growing literature on partially directed

search, such as Lentz and Moen (2017), Shi (2018), Cheremukhin et al. (2020), or Wu (2021).

While the vast majority of previous work has focused on either purely random or purely

directed search, the results from this recent literature – as well as our own – suggest that

there are new insights to be gained from studying the interaction between the two, which

would be missed when studying either extreme in isolation. The aforementioned papers on

partially directed search differ widely in terms of how exactly they combine random and

directed search and/or endogenize the degree to which search is targeted. Because of the

variety of modeling strategies, the misallocation toward high-productivity firms that arises
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in our environment is absent from others. Below, we briefly elaborate on the feature of our

environment driving this result.

As mentioned, our model environment follows Lester (2011), which we extend to allow

for heterogeneity in firm productivity (as well as heterogeneity in worker productivity in

Section 7).2 The key feature of this environment is the co-existence of two distinct types of

workers: random searchers who do not respond to posted wages and directed searchers who

do. Its consequence is that firms face a labor supply curve that is kinked at the point where

directed searchers are no longer willing to apply. As a result, firms may either attract only

random searchers with a low wage or attract both types of searchers with a discretely higher

wage. As we will demonstrate formally, this feature, akin to a monopsony distortion, makes

firms inefficiently reluctant to attract directed searchers. The key contribution relative to

Lester (2011) is to show that, with heterogeneous firms, firms at the bottom of the pro-

ductivity distribution are the ones with the strongest incentive to attract random searchers

only; that too many firms do so; and that this leads to inefficiently many workers trying to

match at the most productive firms.

Search frictions and misallocation. As mentioned above, the majority of work on ineffi-

ciency driven by search frictions has focused on aggregate entry. Fewer papers have addressed

how frictions can lead to an inefficient composition of jobs or inefficient allocation of workers

among them; the ones that do focus on different mechanisms and typically reach the opposite

result from ours. For example, in Bertola and Caballero (1994), Acemoglu (2001), and Davis

(2001), too many workers are allocated to low-productivity firms: there, search is random,

and the key friction leading to inefficiency is akin to an investment holdup problem in the

labor market. In Acemoglu and Shimer (1999) and Golosov et al. (2013), search is directed,

but workers are risk-averse; these papers show that there will likewise be misallocation to-

wards low-productivity firms if workers cannot insure against the risk of not finding a job.

In Galenianos et al. (2011), market power, driven by a finite number of firms, leads to mis-

allocation of workers, namely too many workers being employed at low-productivity firms.

Instead, in our paper, where market power is instead driven by imperfectly directed search,

we show that there is misallocation toward high-productivity firms, contrary to the previous

literature. This result stems from the co-existence of random and directed searchers: indeed,

the presence of random searchers distorts firms’ incentives to attract directed searchers, and

hence how they are allocated across firms. We also share with Galenianos et al. (2011) the

2In other words, the model in Lester (2011) can be thought of as a special case of ours; we provide a
formal discussion of this in Section 5.3. Note that Lester (2011) is set in the context of a product market
rather than a labor market, and hence agents are buyers and sellers rather than workers and firms, but this
distinction is inconsequential except for the interpretation.
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prediction that a binding minimum wage reallocates workers towards low-productivity firms;

however, in our setting this reallocation can be welfare-improving.

Relationship to the Hosios condition. Our baseline model abstracts from entry, and

our main inefficiency result is distinct from the much-studied entry distortion. However,

extensions of our baseline model in Section 6 introduce an extensive margin; in this case,

we show that the conventional entry inefficiency emerges and coexists alongside the novel

misallocation inefficiency. In these environments we show that, as usual, the entry ineffi-

ciency can be understood in terms of a violation of the Hosios condition (e.g. Hosios, 1990;

Pissarides, 2000; Mangin and Julien, 2021). The combination of partially directed search

and ex ante heterogeneity turns out to be of interest in this context. For example, when

firms are heterogeneous, their entry decisions are endogenous, and search is not perfectly di-

rected, an entering firm creates both a congestion externality (by affecting others’ matching

probability) and an output externality (by affecting the productivity composition of firms).

The relevant optimality condition is therefore the generalized Hosios condition as defined by

Mangin and Julien (2021). Examples of a similar two-fold externality in a random-search

context are shown in previous work, e.g. Albrecht et al. (2010), Masters (2015), Julien and

Mangin (2017), and Mukoyama (2019). We explicitly illustrate that the analogous general-

ized Hosios condition of Mangin and Julien (2021) is also applicable in our partially-directed

search environment. The key innovation is that now the violation of this Hosios condition

is not the only source of inefficiency: it exists alongside a misallocation of workers across

existing jobs.

3 Environment

We consider a static model. There is a measure one of firms, indexed by j ∈ [0, 1], each with

one vacancy. Firms are heterogeneous in the output that they produce when matched with

a worker. We denote the productivity of firm j by y (j), where the function y : [0, 1] → R+

is assumed to be continuous and strictly increasing.3

There is a measure one of workers, all initially unemployed. A fraction ψ ∈ [0, 1] of

workers are random searchers, who will be assigned randomly across all the vacancies. The

remaining fraction 1 − ψ are directed searchers, who can choose which vacancy to target.

Matching works as follows. If the searcher-vacancy ratio (‘queue length’) at a particular

vacancy is λ, the vacancy gets filled with probability m(λ), and each worker applying to

3The homogeneous-productivity economy can be dealt with by considering the limiting case as y (0) →
y (1). We discuss the homogeneous-productivity case formally in Section 5.3.
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that vacancy has a probability m (λ) /λ of being matched. The matching function m :

R+ → [0, 1] satisfies the following standard assumptions (which are satisfied by common

microfoundations of the meeting process, such as an urn-ball or geometric process): i) m is

strictly increasing and concave, i.e. m′ > 0 and m′′ < 0; ii) m (0) = 0 and m (λ) ≤ 1; and iii)

the elasticity ϵm (λ) = λm′ (λ) /m (λ) is strictly positive and strictly decreasing in λ. Workers

and firms who remain unmatched receive a payoff of zero. Note that it is straightforward

to introduce a non-zero value of unemployment for workers, which would not change any of

our results; we refrain from doing so only to simplify model notation.

Note that if ψ = 0, this is a standard competitive search environment. However, with

ψ > 0, there will be random searchers at each vacancy. Hence, the queue length at each

vacancy satisfies λ ≥ ψ. At the other extreme, ψ = 1, we have a standard random search

environment in which λ = 1 always.

There are multiple ways to interpret the partial randomness of search. One is in terms of

differential information: random searchers could be viewed as workers uninformed about the

posted wages of the various job openings. Alternatively, one could interpret some workers as

more mobile across firms than others. The idea that frictions such as imperfect information or

imperfect mobility lead to market power—and impede efficient allocation of labor—has a long

tradition in economics; see e.g. Pigou (1932), Robinson (1933), Manning (2003). Crucially,

information or mobility frictions that constrain individual workers will also constrain the

social planner—an insight that will be important below.

4 Planner’s problem

The planner chooses the distribution of workers across posted vacancies to maximize ag-

gregate match output, net of the value of unemployment to workers. Thus, the planner’s

problem can be written as choosing λ (j) for every j ∈ [0, 1] so as to maximize∫ 1

0

m (λ (j)) y (j) dj. (1)

The planner maximizes (1) subject to two constraints. First, there is a resource constraint,

which says that the total measure of workers at all the vacancies must add up to one:∫ 1

0

λ (j) dj = 1. (2)

Second, and crucially, the planner must respect the randomness of search for some workers.

This means that the planner must assign the ψ random searchers randomly across all the
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posted vacancies, thereby assigning a queue length of at least ψ to each vacancy. Hence, the

random search constraint states

λ (j) ≥ ψ ∀j ∈ [0, 1] . (3)

Let η be the Lagrange multiplier on (2), and let µ (j) dj be the Lagrange multiplier on (3)

for each j. The first-order condition for λ (j) can be written as

µ (j) = η −m′ (λ (j)) y (j) . (4)

When constraint (3) does not bind, we have µ (j) = 0 and thus λ (j) solves m′ (λ (j)) y (j) =

η. Whenever constraint (3) binds, we have λ (j) = ψ and µ (j) = η − m′ (ψ) y (j) > 0.

Moreover, η−m′ (ψ) y (j) is clearly decreasing in j. Therefore, the constraint binds for all j

below some threshold jp and does not bind for j above it. This threshold is given by

jp = inf {j : m′ (ψ) y (j) ≥ η} . (5)

Given η, (5) uniquely determines jp, which, together with η, determines the constrained-

efficient queue length, denoted by λp (j), for every j. The multiplier η is pinned down as the

unique value for which the resource constraint holds with equality, i.e.∫ 1

0

λp (j) dj = 1. (6)

This can be summarized as

Lemma 1. The constrained-efficient allocation is characterized by a number η, a threshold

jp ∈ [0, 1] and a function λp : [0, 1] → R+ satisfyingλp (j) = ψ, if j < jp

m′ (λp (j)) y (j) = η, if j ≥ jp
(7)

as well as (5) and (6). There exists a solution to this system, and it is unique. In particular,

λp (j) is strictly increasing in j for j ≥ jp.

Proof. See Appendix A.1.

Note that the continuity of y (j) implies the continuity of λp (j), which will be important

below in the comparison to the market equilibrium.
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For our purposes, the interesting case is one where jp > 0, i.e., the partial randomness of

search is consequential. If this is the case, this interior jp solves m
′ (ψ) y (jp) = η. Next, we

consider the conditions under which this is the case, i.e., the constraint (3) in fact binds for

some j. The following result shows that this occurs when productivity dispersion and the

fraction of random searchers are sufficiently large.

Lemma 2. A necessary and sufficient condition for jp > 0 is∫ 1

0

λ (j) dj > 1, (8)

where λ : [0, 1] → R+ solves m′ (λ (j)) y (j) = m′ (ψ) y (0) for each j.

Proof. See Appendix A.2.

Intuitively, the partial randomness of search captured by (3) is more likely to severely

constrain the social planner when productivity is very dispersed. In fact, consider the limiting

case with homogeneous productivity. The social planner would never want to assign different

queue lengths to firms with the same productivity, due to the concavity of the matching

function; with constant productivity, the social planner would therefore assign the same

λ = 1 to all firms, and (3) clearly would not bind. Further, even when productivity is

dispersed, the random search constraint (3) would not bind for a low enough ψ.

5 Equilibrium

We now analyze the decentralized equilibrium and show how and in what respects it differs

from the planner’s allocation. Each firm decides what wage to post. The 1 − ψ directed

searchers observe all the posted wages and decide to which firm to apply. As is standard in

competitive search theory, we restrict attention to symmetric applications strategies. The

ψ random searchers are assigned to vacancies randomly. The combination of these choices

determines the queue length at each firm, and hence its profits, as a function of the wage it

posted.

The definition of equilibrium requires us to specify the queue length λ∗ (w) attracted by

a firm as a function of the wage w it posts, even for wages that are not posted in equilibrium.

This is specified as follows. If a firm posts a wage w and attracts a queue length λ, the utility

of a directed searcher applying to that firm is m(λ)
λ
w. Define the market utility U to be the

maximum utility across all submarkets that a directed searcher can obtain:

U ≡ max
w,λ

m (λ)

λ
w, (9)
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where the maximization is performed over all the submarkets w, λ active in equilibrium.

While U is an equilibrium object, each firm takes it as given when deciding what wage to

post. In particular, each firm understands that, if the wage-queue combination it offers

provides utility of less than U , then it will not attract any directed searchers, and its queue

length must therefore equal ψ. As for random searchers, their only decision is whether to

accept or reject the posted wage of the firm they meet; this decision simply constrains wages

to be non-negative due to individual rationality. Each firm j maximizes its profits taking

this worker behavior into account.

Definition 1. An equilibrium consists of a market utility U , a function λ∗ : R+ → [ψ,∞)

and a function w : [0, 1] → R+ that satisfy:

1. Worker optimization:
m (λ∗ (w))

λ∗ (w)
w ≤ U ∀w (10)

and
m (λ∗ (w))

λ∗ (w)
w < U =⇒ λ∗ (w) = ψ. (11)

2. Firm optimization: for each j ∈ [0, 1],

w (j) ∈ argmax
w′≥0

m (λ∗ (w′)) (y (j)− w′) . (12)

3. Market clearing: ∫ 1

0

λ∗ (w (j)) dj = 1. (13)

The first two items formalize the optimizing behavior of workers and firms described

above, together with the restriction on the environment that ψ of the workers apply randomly.

The market-clearing condition (13) is the analogue of (2), stating that the total measure of

workers adds up to one. The resulting equilibrium allocation consists of an assignment of

queue length to each firm, λe (j), satisfying λe (j) = λ∗ (w (j)).

5.1 Characterization, existence and uniqueness

We now characterize the equilibrium allocation λe (j). Consider a firm’s choice of what wage

to post. If firm j offers less than the market utility U , it will attract random searchers only,

therefore receiving profits m (ψ) (y (j)− w). From this it is easy to conclude that a firm that

chooses not to attract directed searchers will offer a wage of zero, and its profits are therefore

πR (j) = m (ψ) y (j) . (14)
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On the other hand, if firm j would like to attract some directed searchers, it solves the

problem

πD (j) = max
w,λ

m (λ) (y (j)− w) (15)

subject to
m (λ)

λ
w ≥ U . (16)

It is easy to see that (16) will bind. Solving for w using the binding constraint (16) and

substituting into (15), we get the maximization problem

πD (j) = max
λ

m (λ) y (j)− λU . (17)

The solution, denoted λDe (j), satisfies the first-order condition

m′ (λDe (j)
)
y (j) = U , (18)

and is therefore continuous and strictly increasing in j. In other words, λDe (j) denotes

the queue length that a type-j firm would optimally attract if it were to attract directed

searchers, taking as given market utility U . From substituting (18) into (17), we see that

maximized profit equals

πD (j) =
(
1− ϵm

(
λDe (j)

))
m
(
λDe (j)

)
y (j) . (19)

Comparing (19) to (14), we conclude that firm j weakly prefers to attract directed searchers

if and only if (
1− ϵm

(
λDe (j)

))
m
(
λDe (j)

)
≥ m (ψ) . (20)

By the concavity of m, the left-hand side of (20) is strictly increasing in λDe (j) and thus in

j. This means that there is a unique threshold

je = inf
{
j :
(
1− ϵm

(
λDe (j)

))
m
(
λDe (j)

)
≥ m (ψ)

}
, (21)

which, at an interior (je > 0) equilibrium, solves (20) with equality. The equilibrium queue

length of firm j, denoted by λe (j), then satisfies λe (j) = ψ for j < je and λe (j) = λDe (j)

for j ≥ je. Finally, the market utility U of directed searchers is pinned down by the market

clearing condition ∫ 1

0

λe (j) dj = 1. (22)

To summarize, we have
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Lemma 3. The decentralized equilibrium allocation is characterized by a market utility U ,
a threshold je, and a function λe : [0, 1] → R+ satisfyingλe (j) = ψ, if j < je,

m′ (λe (j)) y (j) = U , if j ≥ je,
(23)

as well as (21) and (22). There exists a decentralized equilibrium, and it is unique. In

particular, λe (j) is strictly increasing in j for j ≥ je.

Proof. See Appendix A.3.

An immediate corollary, which will be important below, is that the equilibrium queue

length λe (j) is necessarily discontinuous at je, as long as je > 0. This follows since the

queue length at the threshold, Λe ≡ λe (je), is the solution to the indifference condition

(1− ϵm(Λe))m(Λe) = m (ψ). Since ϵm (λ) > 0 for any λ, this indifference condition requires

Λe > ψ.

Corollary 1. If 0 < je < 1, the equilibrium queue length λe (j) is discontinuous at j = je.

This result has a very clear and interesting economic interpretation. Intuitively, suppose

that firm je is indifferent between posting a wage of zero (hence attracting a queue length

of ψ) and posting a strictly positive wage high enough to attract directed searchers. Since

the latter entails a discrete increase in the wage, indifference requires a discrete increase in

the queue length. We come back to this point below in the discussion of inefficiency.

5.2 Constrained inefficiency

We can now state and prove our main result, namely that the equilibrium allocation is not

constrained efficient in general. Moreover, the inefficiency involves a misallocation toward

high-productivity firms.

Proposition 1. Assume ψ ∈ (0, 1). Let η, λp (·) be the constrained-efficient allocation, with

the corresponding threshold jp. Let U , λe (·) be the decentralized equilibrium allocation, with

the corresponding threshold je. Then the following hold: (i) U ≤ η, (ii) je ≥ jp, and (iii)

λe (j) ≥ λp (j) for all j ≥ je. Moreover, if either (8) holds or (1− ϵm(1))m (1) < m (ψ),

then the allocation is constrained inefficient and (i)–(iii) hold strictly.

Proof. See Appendix A.4.
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The result states that, relative to the social optimum, too many firms choose to attract

random searchers only. This result is best interpreted as an example of a monopsony distor-

tion. To build some intuition, consider the tradeoff faced by a social planner. Specifically,

suppose that a firm of type j switches from attracting only random searchers to attract-

ing a small measure, ∆, of directed searchers as well. The social marginal benefit of this

perturbation, net of the shadow value of the workers, is

m (ψ +∆) y (j)−∆η −m (ψ) y (j) ≈ ∆m′ (ψ) y (j)−∆η (24)

Now, consider the same tradeoff for a firm in the decentralized equilibrium. As pointed out

in Corollary 1, in order to raise its queue length from ψ to ψ+∆, the firm needs to raise its

wage from zero to w, where w satisfies m(ψ+∆)
ψ+∆

w = U . The private marginal benefit of doing

so is then

m (ψ +∆) y (j)− (ψ +∆)U −m (ψ) y (j) ≈ ∆m′ (ψ) y (j)− (ψ +∆)U . (25)

The firm treats the marginal cost of attracting ∆ more workers to be (ψ +∆)U rather than

∆U , because it must raise the wage to the random searchers as well in order to attract the

additional directed searchers. The social planner, on the other hand, treats the random

searchers as “free” to attract. This mechanism, clearly similar to a monopsony distortion

when firms cannot wage-discriminate, means that firms have an incentive to under-hire. It

also explains the discontinuity alluded to earlier in Corollary 1. Equation (25) shows that

the firm’s profits are discontinuous in ∆ at ∆ = 0, because the wage bill to random searchers

jumps up discretely the moment the firm attracts any directed searchers; this means that

a firm cannot be indifferent between attracting a queue of exactly ψ and a queue of ψ +∆

unlesss ∆ is discretely larger than zero. In other words, the firm effectively behaves like a

monopsonist facing a kinked labor supply curve.

This monopsony distortion, combined with market clearing, implies that firms who do

attract directed searchers attract too many of them relative to the social optimum, and that

there are too few such firms relative to the social optimum. Firms’ reluctance to attract

directed searchers drives down the shadow value of a directed searcher: firms who do attract

directed searchers are willing to do so because these workers are “too cheap” (U < η) in

equilibrium.

These results are illustrated in Figure 1, which plots the queue length as a function of

j both in equilibrium and in the constrained-efficient allocation. The queue length solving

the planner’s problem, λp (j), equals ψ for j < jp and is strictly increasing thereafter. The

equilibrium queue length, λe (j), equals ψ for j < je, where the threshold je is strictly higher
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than jp: relative to the social optimum, too many firms attract random searchers only. At

je, the queue jumps to Λe > ψ, and is strictly increasing thereafter, with λe (j) > λp (j).

j

λ

ψ

jp

λp (j)

je

Λe

λe (j)

1

Figure 1: Equilibrium (λe (j)) vs. efficient allocation (λp (j)).

5.3 Special cases

The framework considered here has two key features: partially directed search and hetero-

geneous firms. It is instructive to show that the inefficiency emphasized here falls away in

the extreme cases when either of these two features are absent.

Purely directed or purely random search. It is easy to see that partially directed

search is essential for the misallocation inefficiency to occur: it disappears when search is

either fully directed or fully random.

Corollary 2. If either ψ = 0 or ψ = 1, the equilibrium allocation is constrained efficient.
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First, consider the special case when ψ = 0, i.e. search is purely directed. In this case,

the equilibrium allocation is clearly constrained-efficient: we have je = 0, and U and λe (j)

are characterized by m′ (λe (j)) y (j) = U for each j, and
∫ 1

0
λe (j) dj = 1, which is exactly

the solution to the social planner’s problem.

More interestingly, the misallocation inefficiency also falls away when ψ = 1, i.e. search

is purely random. In this case, we simply have λe (j) = 1 for all j. Workers are allocated

randomly across firms of different productivities, but there is no inefficiency relative to the

social planner’s problem, because the inability to direct search also constrains the social plan-

ner. Partially directed search generates the misallocation inefficiency, because the presence

of random searchers distorts the allocation of directed searchers relative to how the social

planner would allocate them.

Homogeneous productivity. Next, we compare our results to an environment with ho-

mogeneous productivity, which is the special case handled in the previous literature, such as

Lester (2011) and Bethune et al. (2020). Suppose that y (j) = y for all j. This is equivalent

to a productivity distribution putting a probability of one on y, and can be thought of as the

limiting case of our model as y (0) → y (1).4 In this case, the constrained-efficient allocation

has jp = 0 and λp (j) = 1 for all j (in particular, (8) trivially does not hold). This is because,

by the concavity of the matching technology, the social planner would have all the workers

searching in one submarket, and that submarket has queue length strictly larger than ψ. In

other words, if all the firms are identical, the partial randomness of search is immaterial for

the social planner.

To characterize equilibrium behavior, suppose first that the equilibrium has all the firms

efficiently choosing identical queue lengths, λe (j) = 1. Each firm then attracts directed

searchers, getting profits of (1− ϵm (1))m (1) y. In order for this to be optimal, we must

have (1− ϵm (1))m (1) ≥ m (ψ). If (1− ϵm (1))m (1) < m (ψ), however, this cannot be an

equilibrium, and the unique equilibrium must have firms randomizing between attracting

directed searchers and not doing so. Because of homogeneous productivity, all the firms

attracting directed searchers will have the same queue length, denoted Λe. Since the equilib-

rium has identical-productivity firms randomizing, we must have the indifference condition

(1− ϵm (Λe))m (Λe) = m (ψ). Without loss of generality, assume that firms with j < je have

λe (j) = ψ, and firms with j ≥ je have λe (j) = Λe; the threshold je must then satisfy the

market-clearing condition jeψ + (1− je) Λe = 1. This yields

Corollary 3. In the homogeneous-productivity case, the equilibrium takes one of two forms:

4The analysis below closely follows Lester (2011); we include it for completeness and make no claims of
originality here.
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1. If m (ψ) ≤ (1− ϵm (1))m (1), the equilibrium allocation is constrained efficient: je = 0

and λe (j) = 1 for all j.

2. Ifm (ψ) > (1− ϵm (1))m (1), the equilibrium allocation is constrained-inefficient; λe (j) =

ψ for j < je and λe (j) = Λe for j ≥ je, where

je =
Λe − ψ

Λe − 1
(26)

and (1− ϵm (Λe))m (Λe) = m (ψ).

With homogeneous firms, (1− ϵm (1))m (1) ≥ m (ψ) is both necessary and sufficient for

constrained efficiency. Intuitively, when ψ is high, firms are indifferent between attracting

directed searchers and exploiting random searchers; this leads to identical firms choosing

different queue lengths, which is socially suboptimal. This can be thought of as a limiting

case of our misallocation result.

5.4 Policy interventions: the minimum wage

The inefficiency identified in our analysis naturally raises the question of whether simple

policy interventions can improve worker allocation and welfare. Our focus on the minimum

wage is motivated by its prominence in policy debates surrounding growing employer mar-

ket power. In particular, it is well known that employer market power can easily reverse

theoretical predictions regarding the effects of the minimum wage on total employment (see

e.g. Stigler, 1946; Bhaskar et al., 2002; Manning, 2011). Here, we identify a complementary

mechanism through which the minimum wage may mitigate the misallocation of workers

across firms.

Consider the effect of introducing a minimum wage wmin. We will focus on parameters

such that (8) holds. The definition of equilibrium is largely unchanged from Definition 1,

except that firms’ profit maximization in equation (12) is now performed subject to the

constraint w′ ≥ wmin. There are two cases to consider. A minimum wage below a threshold

will bind for firms attracting only random searchers (who would otherwise pay a wage of zero),

but will not bind for firms attracting directed searchers. In this case, the equilibrium queue

length λ∗ (w) and market utility U are such that λ∗ (wmin) = ψ and m(λ∗(wmin))
λ∗(wmin)

wmin < U . On

the other hand, if the minimum wage is above the threshold, it will also bind for at least

some firms attracting directed searchers. In this case, we have λ∗ (wmin) ≥ ψ (strict if the

minimum wage is strictly above the threshold) and m(λ∗(wmin))
λ∗(wmin)

wmin = U . This is formalized

in the following intuitive result:
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Lemma 4. A minimum wage wmin is binding for some firms attracting directed searchers if

and only if wmin ≥ ϵm (ψ) y (jp).

Proof. See Appendix A.5.

The threshold ϵm (ψ) y (jp) is the “shadow” wage for the marginal firm attracting directed

searchers in the constrained-efficient allocation. Intuitively, suppose that some of the firms

attracting directed searchers pay the minimum wage; such firms would have a queue length

strictly higher than ψ. Since a firm attracting only random searchers would still have to pay

the minimum wage, there are no firms that attract only random searchers. In other words,

the minimum wage is so high that the presence of ψ random searchers is immaterial for the

equilibrium allocation.5 In particular, this means that the minimum wage “overshoots” the

planner’s shadow wage.

For this reason, we focus on the case when wmin < ϵm (ψ) y (jp) and characterize the

effects of a raise in the minimum wage in this range. We first observe that the equilibrium

still has the cutoff property, whereby firms below some je attract random searchers only,

obtaining a profit

πR (j) = m (ψ) (y (j)− wmin) . (27)

Since the minimum wage does not bind for any firm attracting directed searchers, the profit

of such a firm continues to be πD (j) as specified in (19), where λDe (j) is determined by (18).

The only difference compared to before is that the market utility U will have a different

value.

Applying the envelope theorem to πD (j), we obtain

d

dj

[
πD (j)− πR (j)

]
= [m (λe (j))−m (ψ)] y′ (j) > 0. (28)

This implies that πD (j) ≥ πR (j) if and only if j ≥ je, where the unique cutoff je satisfies

m
(
λDe (je)

) (
1− ϵm

(
λDe (je)

))
y (je) = m (ψ) (y (je)− wmin) . (29)

The equilibrium is therefore pinned down by (18), (29), and the market-clearing condition.

We now consider the effect of raising the minimum wage. Taking as given the market

utility, this has no effect on the expression for πD (j) in (19), but lowers the profits of a firm

attracting only random searchers, given by (27). In equilibrium, this will induce more firms

to attract directed searchers, lowering jd and raising U . This gives the following result:

5In fact, the equilibrium allocation under such a minimum wage coincides with the equilibrium allocation
of an economy with ψ = 0.
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Proposition 2. Suppose there is a minimum wage wmin < ϵm (ψ) y (jp). The unique equi-

librium is characterized by (18), (29), and the market-clearing condition (22). As long as

it does not surpass ϵm (ψ) y (jp), an increase in wmin (i) lowers jd, (ii) raises U , (iii) raises

employment, and (iv) raises total welfare.

Proof. See Appendix A.6.

Intuitively, a small enough minimum wage is non-binding for firms already attracting

directed searchers; however, it forces firms attracting solely random searchers to pay a higher

wage. This lowers the opportunity cost of attracting directed searchers, inducing more firms

to do so. The minimum wage thus reallocates some workers from firms with very high

productivity to firms with medium productivity. Because there was too much congestion

at high-productivity firms, this reallocation increases employment and welfare. It is worth

noting that a minimum wage that is set too high will be efficiency-reducing. In particular, a

minimum wage above ϵm (ψ) y (jp) will bind for directed searchers, and therefore will result

in inefficiently high queue lengths for low-productivity firms. In fact, the above analysis

directly implies that the optimal minimum wage is precisely ϵm (ψ) y (jp), which achieves the

constrained-efficient outcome:

Corollary 4. The constrained-efficient outcome is achieved by setting wmin = ϵm (ψ) y (jp).

This minimum wage is increasing in ψ.

Proof. See Appendix A.7.

The last part of the claim, that the efficiency-restoring minimum wage is increasing in ψ,

follows directly from the fact (shown in Appendix A.7) that ϵm (ψ) y (jp) is increasing in ψ.

Intuitively, a higher ψ raises the “shadow price” of an additional directed searcher, implying

that the equilibrium wage paid to the marginal directed searcher needs to rise as well.

6 Extensive margin behavior

In this section, we extend our baseline environment by incorporating extensive-margin deci-

sions: either through a participation decision by workers (Section 6.1) or an entry decision by

firms (Section 6.2).6 In doing so, we seek to connect our paper to the existing literature on

Hosios-type distortions, where entry and/or participation is the key margin (Hosios, 1990;

6The key difference between the two is that, in the first case, the extensive-margin decision is made
by the side of the market that is homogeneous, whereas in the second case it is made by the side that is
heterogeneous. As we hope to show, the main message of both extensions is quite similar, and we include
both for completeness.
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Mangin and Julien, 2021). More specifically, we have a two-fold purpose in examining these

extensions. First, we seek to show that the misallocation inefficiency we identify coexists

alongside, and is distinct from, the conventional Hosios entry distortion. Second, we seek

to understand how the Hosios entry distortion itself is manifested when search is partially

directed.

6.1 Worker participation

We consider an environment in which worker participation in the market is endogenous.

Suppose that workers have a cost of participating, z. We assume that each individual

worker learns his/her status as random or directed searcher after making the participation

decision.7 Throughout, we assume that parameters are such that the solution is interior, i.e.

there is a positive measure of workers participating, and a positive measure of firms attract

only random searchers.8

Planner’s problem. Letting u be the measure of participating workers, the planner’s

problem for this economy is now to choose both u and a function λ : [0, 1] → R+ to maximize

− zu+

∫ 1

0

m (λ (j)) y (j) dj, (30)

subject to the resource constraint ∫ 1

0

λ (j) dj ≤ u (31)

and

λ (j) ≥ ψu ∀j ∈ [0, 1]. (32)

The first constraint, (31), states that the measures of workers in all the submarkets cannot

exceed the total measure of workers, u. The second constraint states that a fraction ψ of all

the workers must be assigned to submarkets randomly, implying that the expected number

of workers at each vacancy is at least ψu. The following lemma characterizes the solution to

the planner’s problem.

Lemma 5. The constrained-efficient allocation is characterized by numbers up, η, and jp

7The opposite assumption would make the problem uninteresting, since random searchers would not
participate, as they have zero bargaining power. At any rate, the assumption made presently is appropriate
for illustrating the role of endogenous participation.

8This amounts to an assumption similar to condition (8) that we assumed in the baseline model.
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and a function λp : [0, 1] → R+ satisfying

z = (1− ψjp) η + ψjpm
′ (ψup)E [y (j) |j ≤ jp] , (33)∫ 1

0

λp (j) dj = up, (34)

m′ (ψup) y (jp) = η, (35)

and λp (j) = ψup, if j < jp,

m′ (λp (j)) y (j) = η, if j ≥ jp.
(36)

Proof. See Appendix B.1.

The social planner optimally chooses the measure of participating workers, up, and the

threshold above which firms attract directed searchers, jp. Note that conditions (34)–(36)

are similar to our baseline model, as they characterize the constrained-efficient allocation of

workers conditional on participating. Firms with j < jp attract random searchers only, and

hence attract a queue of ψup. Firms with j ≥ jp attract directed searchers in such a way

that the marginal value of an extra worker, η, is equalized across j ≥ jp submarkets.

The novel condition is (33), which determines the optimal level of participation. It

equates the cost of participation, z, to the marginal benefit. With probability ψjp, the new

entrant is a random searcher and is allocated to a submarket in which firms attract random

searchers only. In this case, the expected output per matched worker in such a submarket

is E [y (j) |j ≤ jp], and the entrant causes a congestion effect on the matching probability

captured by m′ (ψup). On the other hand, with probability 1 − ψjp, the new entrant is

allocated to a submarket with j ≥ jp, in which directed searchers are present. The marginal

social value of adding such an entrant is η, which, as pointed out above, is endogenously

equalized across directed-search submarkets.

Additional intuition, and connection to the Hosios condition. To better understand

the conditions for constrained efficiency, and connect them to existing results in the literature,

it is helpful to consider the two extreme cases. First, consider the case when search is purely

random. In this case, ψ = 1 and therefore jp = 1. All firms then attract the same queue

length, λp (j) = ψup, and the condition (33) pinning down up becomes z = m′ (up)E [y (j)].

The cost of participation equals the expected output per matched worker, multiplied by the

effect of entry on the matching probability. As in Mangin and Julien (2021), it is instructive
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to rewrite this optimality condition in terms of the elasticity of the matching function:

zup
m (up)E [y (j)]

= ϵm (up) . (37)

As expected, we obtain the standard Hosios condition. At the optimum, the cost of en-

try normalized by the worker’s expected output m(up)

up
E [y (j)] must equal the elasticity of

expected match output with respect to the number of entrants.

Now, consider the opposite extreme, in which search is purely directed. In this case,

ψ = 0 and therefore jp = 0. The shadow value of a worker must then equal the entry cost:

η = z; for each j, the optimal queue is then given by m′ (λ (j)) y (j) = z. We can again

rewrite this in elasticity form as

zλp (j)

m (λp (j)) y (j)
= ϵm (λp (j)) . (38)

Thus, as emphasized by Mangin and Julien (2021), the constrained-efficient participation

decision again satisfies the Hosios rule, which equates the elasticity of the matching tech-

nology to the cost of entry adjusted by expected output. The difference between (37) and

(38) is, of course, that in the random search case this optimality condition holds in expec-

tation, whereas in the directed search case it holds separately for every j. In other words,

under directed search with ex ante heterogeneity, the economy is endogenously divided into

submarkets, with the appropriate optimal participation condition holding for each submar-

ket. This result is well known from the directed search literature, such as Moen (1997);

Shi (2009); Menzio and Shi (2010a,b, 2011). It is instructive to note here an obvious but

important implication: the difference between (37) and (38) indicates that the inability to

direct search constrains the social planner. The same intuition applies to the general for-

mula in (33), which nests both (37) and (38) as special cases. Indeed, using the fact that

η = m′ (ψup) y (jp), we can rewrite (33) in a similar form as

zψup
m (ψup) ((1− ψjp) y (jp) + ψjpE [y (j) |j ≤ jp])

= ϵm (ψup) . (39)

The social planner perceives the marginal benefit of an additional entrant to be expected

output for submarkets below jp, but understands that it can allocate workers optimally,

hence equalizing their marginal value, above jp. Hence, it is still the case that the optimal

participation decision satisfies the Hosios condition, whereby the expected surplus share of

the marginal entrant equals the elasticity of the matching technology. What changes is the

expected surplus itself, which depends on whether search is random, directed, or partially
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directed.

Equilibrium. We now turn to characterizing the decentralized equilibrium. For any given

measure ue of participating workers, the characterization of equilibrium is the same as in

the baseline. Specifically, firms above some productivity cutoff je choose to attract directed

searchers, whereas firms below this cutoff attract random searchers only. In such an equi-

librium, a worker gets an endogenously determined level of market utility U if assigned to a

submarket with j ≥ je and zero otherwise. Therefore, the ex-ante payoff of a participating

worker (before their status as a random or directed searcher is revealed) is (1− ψje)U . In

equilibrium, the measure of participating workers ue is then such that this payoff equals

the participation cost z, making the marginal worker indifferent between participating and

staying out of the market. We therefore obtain the following result.

Lemma 6. The decentralized equilibrium allocation is characterized by numbers ue, U , and
je and a function λe : [0, 1] → R+ satisfying

z = (1− ψje)U ; (40)∫ 1

0

λe (j) dj = ue; (41)

m
(
λDe (je)

) (
1− ϵm

(
λDe (je)

))
= m (ψue) , (42)

where λDe (j) is the solution to m′ (λDe (j)
)
y (j) = U ; andλe (j) = ψue, if j < je,

m′ (λe (j)) y (j) = U , if j ≥ je.
(43)

Proof. See Appendix B.2.

Conditions (41)–(43), which characterize the allocation of workers conditional on partic-

ipating, are similar to the baseline model. The novel condition is (40), which characterizes

the optimal participation decision.

Constrained inefficiency. Comparison of (40)–(43) to (33)–(36) shows that the equilib-

rium allocation now differs from the constrained-efficient one in two respects. First, com-

parison of (40) to (33) reveals that the equilibrium participation does not coincide with

the social planner’s optimal participation condition. Second, conditional on the number

of participating workers, comparison of the remaining conditions demonstrates exactly the
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same misallocation inefficiency as uncovered in our baseline model. This is formalized in the

following result.

Proposition 3. Assume ψ > 0. Then equilibrium participation is too low: ue < up. Fur-

thermore, define {λo (j)} as the solution to

max
{λ(j)}

∫ 1

0

m (λ (j)) y (j) dj s.t.

∫ 1

0

λ (j) dj = ue and λ (j) ≥ ψue. (44)

There exists a threshold jo such thatλo (j) = ψue, if j < jo,

m′ (λo (j)) y (j) = m′ (ψue) y (jo) , if j ≥ jo.
(45)

If ψ ∈ (0, 1), we have je ≥ jo and λe (j) ≥ λo (j) for j > je, with both inequalities strict if

jo > 0.

Proof. See Appendix B.3.

The first part of Proposition 3 establishes that worker participation is too low relative

to the constrained-efficient level, as long as search is not purely directed. The second part

states that, for a given level of worker participation, it is possible to reallocate directed

searchers across submarkets so as to increase total output. The first inefficiency corresponds

to the standard Hosios inefficiency considered in the previous literature. When making

the participation decision, a worker does not internalize its effects on a firm’s matching

probability. The second inefficiency is the misallocation inefficiency identical to the baseline

model. Given the number of participating workers, too many firms choose to attract only

random searchers, as they exercise their monopsony power by doing so.

Policy interventions. The presence of a two-fold inefficiency in the endogenous partic-

ipation case implies that a single policy instrument, such as a minimum wage, no longer

suffices to restore efficiency. We confirm this in the result below, which shows that efficiency

can instead be achieved through an appropriate combination of a minimum wage and a

participation tax.

Corollary 5. The constrained-efficient outcome is achieved by setting a minimum wage

wmin = ϵm (ψup) y (jp) and a tax on participation equal to

τ = ψjpm
′ (ψup) (y (jp)− E [y (j) |j ≤ jp]) . (46)
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Proof. We will show that, under the proposed minimum wage and tax, ue = up and je = jp

indeed satisfy the equilibrium conditions. First, assuming that ue = up, the minimum wage

results in the constrained-efficient allocation of workers, by the same logic as in Corollary 4.

A firm of type jp is now indifferent between attracting random searchers only and attracting

directed searchers, since m (ψup) (y (jp)− wmin) = m (ψup) (1− ϵm (ψup)) y (jp). Second,

this means that the expected utility of both a directed searchers and a random searcher is

m′(ψup)y (jp), and so the optimal participation condition is now

z = m′ (ψup) y (jp)− τ. (47)

Substituting in for τ from (46) gives us (33).

The above also makes clear why simply setting a minimum wage would not suffice. Setting

the minumum wage to eliminate misallocation of workers, taking as given the efficient partic-

ipation level, requires wmin = ϵm (ψup) y (jp). In contrast, by (39), achieving efficient partici-

pation for given jp would require a minimum wage of ϵm(ψup) [(1− ψjp) y (jp) + ψjpE [y (j) |j ≤ jp]].

Clearly, the same minimum wage cannot satisfy both conditions at the same time; introduc-

ing a second policy instrument, such as a tax on participation, fixes this discrepancy.9

6.2 Firm entry

Next, we extend our baseline environment with endogenous entry by firms, showing that

analogous results apply. To do so, we continue to assume that there is a measure one of firms

indexed by j ∈ [0, 1], with productivity y (j), which is continuous and strictly increasing in

j. After learning its productivity, each firm decides whether or not to operate, at cost κ > 0.

This endogenously determines the measure of vacancies, v. The rest of the environment is

unchanged relative to the baseline model. In particular, since a fraction ψ of the workers are

random searchers, the queue length at any firm cannot be less than ψ/v. Throughout, we

again focus on parameters such that the solution is interior; i.e., a positive measure of firms

enter, and a positive measure of the entrants attract only random searchers.

Planner’s problem. The planner chooses the set of firms that operate and the allocation

of workers among those firms. It is simple to show that, with regard to entry, the planner

will follow a threshold rule, where firm j enters if and only if j ≥ j∗p ; the total measure of

vacancies is therefore v = 1 − j∗p and the queue of random searchers is ψ/
(
1− j∗p

)
. Thus,

9The constrained-efficient allocation can also be implemented in other ways, e.g. using an ex-post tax on
hiring rather than an ex-ante tax on participation; the proof is straightforward and is available on request.
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the planner’s problem is to choose j∗p and λ (j) for each j ∈
[
j∗p , 1

]
to maximize

∫ 1

j∗p

[m (λ (j)) y (j)− κ] dj (48)

subject to the constraints ∫ 1

j∗p

λ (j) dj = 1 (49)

and

λ (j)
(
1− j∗p

)
≥ ψ ∀j ≥ j∗p . (50)

As before, the constraint (50) will bind for j below some threshold jp and will not bind

for j above it. We then obtain the following characterization of the constrained-efficient

allocation:

Lemma 7. The constrained-efficient allocation is characterized by numbers η, j∗p , jp > j∗p ,

and a function λp :
[
j∗p , 1

]
→ R+ satisfying:

m′ (ψ/ (1− j∗p
))
y (jp) = η, (51)λp (j) = ψ/

(
1− j∗p

)
, if j ∈

[
j∗p , jp

)
,

m′ (λp (j)) y (j) = η, if j ∈ [jp, 1] ,
(52)

∫ 1

j∗p

λp (j) dj = 1, (53)

and
κ = m

(
λp
(
j∗p
)) (

1− ϵm
(
λp
(
j∗p
)))

y
(
j∗p
)

− λp
(
j∗p
)
m′ (λp (j∗p)) (E [min {y (j) , y (jp)} |j ≥ j∗p

]
− y

(
j∗p
))
.

(54)

Proof. See Appendix B.4.

Given j∗p , conditions (51)–(53) characterize the socially optimal λp (j), jp, and η, similarly

to the exogenous entry case described in Lemma 1. Condition (51) pins down the threshold

jp for attracting directed searchers. Condition (52) characterizes the queue length for every

firm that operates, and Condition (53) is the resource constraint.

The new equation is Condition (54), which states that the marginal benefit of adding an

additional firm equals the marginal cost. The marginal cost of an additional entrant is κ. The

marginal benefit is the expected output of that extra firm, adjusted for the crowding-out of

hiring by other firms due to congestion in the matching function. Notably, this marginal ben-

efit consists of two terms. The first term, m
(
λp
(
j∗p
)) (

1− ϵm
(
λp
(
j∗p
)))

y
(
j∗p
)
, captures the
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fact that the marginal entrant mechanically adds to total output, but also crowds out hiring

for other firms. The second term, −λp
(
j∗p
)
m′ (λp (j∗p)) (E [min {y (j) , y (jp)} |j ≥ j∗p

]
− y

(
j∗p
))
,

captures the fact that – as long as search is not perfectly directed – the marginal entrant

crowds out firms that are more productive. This second term falls away if all the firms are

homogeneous; in this case, only the standard congestion effect remains. This second term

also falls away if search is purely directed, because then each productivity level is searching

in a separate submarket, and hence only crowds out firms of the same productivity.

Additional intuition, and connection to the Hosios condition. As before, it is

instructive to consider the two extreme cases of purely random and purely directed search,

and to compare our results to what is known in the literature on the Hosios condition, e.g.

Mangin and Julien (2021). First, consider the case when ψ = 1, so that search is purely

random. In this case, the constrained-efficient allocation has jp = 1, λp(j) = 1/
(
1− j∗p

)
≡ λp

for every j ≥ j∗p , and the socially optimal entry condition characterizing j∗p becomes

κ = m (λp) (1− ϵm (λp)) y
(
j∗p
)
− λpm

′ (λp)
(
E
[
y (j) |j ≥ j∗p

]
− y

(
j∗p
))
. (55)

Rearranging, we can rewrite this expression as

κ

m(λp)E
[
y (j) |j ≥ j∗p

] = (1− ϵm (λp))−

(
1−

y
(
j∗p
)

E
[
y (j) |j ≥ j∗p

]) . (56)

This expression is an example of the generalized Hosios condition of Mangin and Julien

(2021). The left-hand side is the entry cost adjusted by the expected output. The right-hand

side is the sum two elasticities. The first term is the elasticity of the matching probability

with respect to the number of entering firms. The second term is the elasticity of expected

match output with respect to the number of entering firms. The latter elasticity is nonzero

because increasing the number of entrants amounts to lowering j∗p , which lowers the average

productivity in the market; i.e., by entering, a firm generates an output externality.10

On the other extreme, consider the case of purely directed search, i.e. ψ = 0. In this case,

the constrained-efficient allocation has jp = j∗p , the queue length solves m′ (λp (j)) y (j) = η

for every j ≥ j∗p , and the entry threshold solves

κ = m
(
λp
(
j∗p
)) (

1− ϵm
(
λp
(
j∗p
)))

y
(
j∗p
)
. (57)

10An output externality is present in the model with firm entry (i.e. (56)) but not with worker participation
(i.e., (37)) because in the former, there is heterogeneity on the side of the market making the entry decision;
i.e., when a firm decides to enter, it changes the productivity composition of firms in the market.
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Each productivity level is now assigned a distinct submarket, and workers are allocated

optimally among these submarkets, as is standard in the directed search literature (Moen,

1997; Shi, 2009; Menzio and Shi, 2010a,b, 2011). As a result, the social planner only needs

to take into account that the marginal entrant crowds out peers of its own productivity.

Rearranging equation (57), we can rewrite it in elasticity form as

κ

m
(
λp
(
j∗p
))
y
(
j∗p
) = 1− ϵm

(
λp
(
j∗p
))
. (58)

The cost of entry, adjusted by expected output, equals the elasticity of the matching proba-

bility with respect to the number of entrants. Because search is directed, there is no output

externality in this case, hence no second term to correct for it.

The same reasoning applies to the general case where search is partially directed. Con-

dition (54) can be rewritten in the form of a generalized Hosios condition as

κ

m
(
λp
(
j∗p
))

E
[
min {y (j) , y (jp)} |j ≥ j∗p

] = 1−ϵm
(
λp
(
j∗p
))

−

[
1−

y
(
j∗p
)

E
[
min {y (j) , y (jp)} |j ≥ j∗p

]] .
(59)

There is an output externality, but only in the productivity range where no directed searchers

are attracted, as captured by the term in brackets.

Equilibrium. We now consider the decentralized equilibrium. Each firm j decides whether

or not to enter and, conditional on entering, whether to attract directed searchers or not.

Since the profits of a firm are strictly increasing in j, firms will follow a threshold rule for

entering: firms will enter if and only if j ≥ j∗e . Conditional on entering, the problem of a

firm is the same as in the exogenous-entry case, except that the queue of random searchers

is ≡ ψ/ (1− j∗e ) instead of ψ. We can establish the following equilibrium characterization:

Lemma 8. The equilibrium allocation is characterized by numbers U , j∗e , je > j∗e , and a

function λe : [j
∗
e , 1] → R+ satisfying:

m (λe (je)) (1− ϵm (λe (je))) = m (ψ/ (1− j∗e )) , (60)λe (j) = ψ/ (1− j∗e ) , if j ∈ [j∗e , je) ,

m′ (λe (j)) y (j) = U , if j ∈ [je, 1] ,
(61)

∫ 1

j∗e

λe (j) dj = 1, (62)

and

κ = m (λe (j
∗
e )) y (j

∗
e ) . (63)
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Proof. See Appendix B.5.

Conditions (60)–(62) are analogous to the equilibrium characterization for the exogenous-

entry case. Condition (63) is a free-entry condition, which says that the profit of the marginal

firm equals the entry cost. One can solve these conditions in two steps. First, the free-entry

condition determines the equilibrium threshold for entry j∗e , and therefore ψ/ (1− j∗e ), in

isolation from other equilibrium outcomes. Second, given this level of entry, the solution for

U , je and λe (j) can be obtained in the same way as in Lemma 3.

Constrained inefficiency. Analogous to Section 6.1, comparison of the equilibrium con-

ditions (60)–(63) to the efficiency conditions (51)–(54) reveals that the decentralized equi-

librium is inefficient on two margins. First, there is a Hosios-like entry inefficiency: as long

as search is note purely directed, entry is excessive relative to the social optimum, because

an individual firm does not internalize either the crowding-out effect on other firms or the

fact that those firms are more productive. Second, conditional on a level of entry, there is

misallocation of labor in the same way as in our baseline model: because of the monopsony

distortion, too few firms target random searchers, resulting in too many applicants at the

higher-productivity firms. These results are formalized in the following proposition:

Proposition 4. Assume ψ > 0. Then equilibrium entry is too high: j∗e < j∗p . Furthermore,

define {λo (j)} as the solution to

max
λ(j)

∫ 1

j∗e

m (λ (j)) y (j) dj s.t.

∫ 1

j∗e

λ (j) dj = 1 and λ (j) ≥ ψ/ (1− j∗e ) . (64)

There exists a threshold jo such thatλo (j) = ψ/ (1− j∗e ) , if j < jo,

m′ (λo (j)) y (j) = m′ (ψ/ (1− j∗e )) y (jo) , if j ≥ jo.
(65)

If ψ ∈ (0, 1), we have je ≥ jo and λe (j) ≥ λo (j) for j > je, with both inequalities strict if

jo > 0.

Proof. See Appendix B.6.

Policy interventions. As in Section 6.1, the presence of a two-fold inefficiency in the

environment with endogenous entry implies that a minimum wage alone is not sufficient

to restore efficiency. Instead, the constrained-efficient allocation is implemented through a
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minimum wage combined with an appropriate entry subsidy. We formalize this in the result

below.

Corollary 6. The constrained-efficient outcome is achieved by setting wmin = ϵm
(
λp
(
j∗p
))
y (jp)

and an entry subsidy

X = λp
(
j∗p
)
m′ (λp (j∗p)) (y (jp)− E

[
min {y (j) , y (jp)} |j ≥ j∗p

])
. (66)

Proof. We will show that, under the proposed minimum wage and tax, j∗e = j∗p and je = jp

indeed satisfy the equilibrium conditions. First, assuming that j∗e = j∗p , the minimum wage

results in the constrained-efficient allocation of workers, by the same logic as in Corollary 4.

A firm of type jp is now indifferent between attracting random searchers only and attracting

directed searchers, since m
(
λp
(
j∗p
))

(y (jp)− wmin) = m
(
λp
(
j∗p
)) (

1− ϵm
(
λp
(
j∗p
)))

y (jp).

Second, the optimal entry condition is now

κ = m
(
λp
(
j∗p
))
y
(
j∗p
)
− λp

(
j∗p
)
m′ (λp (j∗p)) y (jp) + χ

= m
(
λp
(
j∗p
))
y
(
j∗p
)
− λp

(
j∗p
)
m′ (λp (j∗p)) y (j∗p)

+ λp
(
j∗p
)
m′ (λp (j∗p)) (y (j∗p)− E

[
min {y (j) , y (jp)} |j ≥ j∗p

])
,

(67)

which is equivalent to (54).

The minimum wage aligns private and social incentives for a firm of type jp, undoing

the misallocation distortion. The entry subsidy undoes the Hosios inefficiency by aligning

private and social incentives for a firm of type j∗p . Setting only the former would have led to

insufficient entry (intuitively, this would be forcing the marginal entrant, whose productivity

is j∗p , to pay the wage appropriate for a firm of productivity jp). This illustrates once again

that there are two distinct distortions, which require two policy instruments to correct for

them.

7 Worker heterogeneity

The preceding analysis has assumed heterogeneous productivity on only one side of the

market. In this section, we argue that our misallocation result carries over to an environment

in which both firms and workers are heterogeneous in productivity. Analysis of such an

environment is complicated, because it needs to address the question of sorting, i.e., which

worker type matches with each firm type. As the literature has already shown in the context

of purely directed search, the answer to this question generally depends on the details of the
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environment, including the specification of the matching function and the complementarities

in production between workers and firms (see e.g. Eeckhout and Kircher, 2010).

The contribution of this section is to introduce partially directed search into the envi-

ronment of Eeckhout and Kircher (2010) and examine its implications for the misallocation

inefficiency, which is new to this literature. In other words, the question of primary sub-

stantive interest to us continues to be which firms choose to attract directed searchers, not

the pattern of sorting among the firms who do (even though the latter is also potentially

distorted by partially directed search). To focus on this question, we make a set of assump-

tions to guarantee that higher-productivity workers match with higher-productivity firms in

equilibrium. Within this context, we establish the robustness of the two main inefficiencies of

the baseline model: (1) too many firms target random searchers, and (2) too many workers

apply to the firms at the top of the productivity distribution. Moreover, we argue that the

intuition for these results, based on the monopsony distortion, carries over naturally to the

model with two-sided heterogeneity.

7.1 Environment

The environment is identical to the baseline model except for worker heterogeneity. There

is a unit measure of firms and a unit measure of workers.11 We assume that a fraction ϕi

of directed searchers has productivity xi, where i ∈ {1, 2} and 0 < x1 < x2.
12 For random

searchers, we simply specify their expected productivity, which we denote by x; the exact

distribution of their productivity is irrelevant.

Worker and firm productivity jointly determine the surplus from a match, which we

assume to be equal to xy. We want to emphasize that this assumption serves to ensure a

particular pattern of sorting (namely that higher-x workers match to higher-y firms) among

directed searchers. While providing analytical convenience, it is not crucial for the actual

inefficiency result.

We make no assumptions on the correlation between workers’ productivity and their

status as a directed or random searcher (in particular, we do not impose that x = ϕ1x1 +

ϕ2x2). We only bound the expected productivity of random searchers by assuming that i)

x < x2 and ii) x1 > m (ψ)x. The first assumption states that a random searcher is less

productive in expectation than the high-productivity directed searcher. The second states

that the expected output from hiring random searchers only is less than the output from

hiring a low-productivity directed searcher with certainty. The latter assumption is largely

11In particular, we abstract from the entry margins considered in Section 6.
12Thus, we assume that there are only two productivity types. This is done for simplicity of exposition;

all the results here carry over to the case with an arbitrary number of worker types.
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without loss of generality: if it is violated, low-type directed searchers will never be hired, so

that the equilibrium is the same as in a world in which all directed searchers have productivity

x2.

The presence of random searchers implies that firms cannot perfectly control the produc-

tivity of the worker that they meet. Consider a firm of type y attracting a total queue length

λ ≥ ψ and attracting directed searchers of type i. The expected output of such a firm is

N (xi, λ) y ≡ m (λ)

(
λ− ψ

λ
xi +

ψ

λ
x

)
y. (68)

To understand (68), note that a fraction ψ/λ of workers in the firm’s queue are random

searchers, whose expected productivity is x. The remaining fraction (λ− ψ) /λ are directed

searchers, whose productivity is xi.

In case of either purely random or purely directed search, (68) assumes the familiar

form of either m (λ)xiy (for purely directed search) or m (λ)xy (for purely random search).

For the intermediate case, (68) illustrates the key technical complication that arises in this

environment: expected output is non-separable in queue length and worker productivity, or,

to put it differently, the expected output conditional on hiring now depends on the queue

length. This complicates the subsequent analysis of sorting relative to e.g. Eeckhout and

Kircher (2010). To make progress, we make the following additional assumption on the

function N defined by (68):

Assumption 1. The function N(x, λ) defined by (68) is strictly increasing and concave in

λ and satisfies

Nx −
Nλ

Nλλ

(
Nxλ −

Nx

λ− ψ

)
> 0 (69)

for λ > ψ and x ∈ [x1, x2].

The first part of Assumption 1 states that N inherits the monotonicity and concavity

properties of m; the last part, (69), is the equivalent of the assumption that the matching

function has a decreasing elasticity. It can be shown that, given the assumptions already

made on m, Assumption 1 amounts to assuming that x is not too large.13 Again, we want to

emphasize that this technical assumption gets used mainly in the proof of positive assortative

matching (which generalizes the technique of Eeckhout and Kircher (2010) to the partially

directed search environment), but not in the proof of the actual inefficiency result. In

addition, we again focus on parameters such that the solution is interior; i.e., a positive

measure of firms attract only random searchers.

13In fact, for a specific functional form of m, e.g. the commonly used matching function m(λ) = λ/(1+λ),
Assumption 1 is implied by the earlier assumptions that x < x2 and x1 > m (ψ)x.
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7.2 Planner’s problem

The social planner chooses how to allocate directed-searcher workers of each productivity

across firms. The social planner is constrained by the total measure of workers of each type,

as well as the constraint that the random searchers must be allocated randomly, so that

the expected number of workers at each firm is at least ψ. The same constraint, due to

heterogeneous productivity, will also imply that the expected output at a firm is affected by

the allocation of workers as well, via (68). The detailed statement of the social planner’s

problem is in Appendix C.1. In the following lemma, we characterize its solution.

Lemma 9. The constrained-efficient allocation is characterized by numbers jp,1, jp,2, η1, η2,

and a function λp : [0, 1] → R+, such that

1. Firms with j < jp,1 attract random searchers only. Firms with j ∈ [jp,1, jp,2) attract

directed searchers of type 1 but not of type 2. Firms with j ∈ [jp,2, 1] attract directed

searchers of type 2 but not of type 1.

2. The queue length λp (j) satisfies

λp (j) =


ψ, if j < jp,1

λDp,1 (j) , if j ∈ [jp,1, jp,2)

λDp,2 (j) , if j ∈ [jp,2, 1]

(70)

where, for i = 1, 2, λDp,i (j) is defined by

Nλ

(
xi, λ

D
p,i (j)

)
y (j) = ηi. (71)

3. The thresholds jp,1 and jp,2 satisfy

Nλ (x1, ψ) y (jp,1) = η1. (72)

and

N
(
x1, λ

D
p,1 (jp,2)

)
−
(
λDp,1 (jp,2)− ψ

)
η1 = N

(
x2, λ

D
p,2 (jp,2)

)
−
(
λDp,2 (jp,2)− ψ

)
η2. (73)
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4. Resource constraints on each type of worker are satisfied:∫ jp,2

jp,1

(λp (j)− ψ) dj = (1− ψ)ϕ1,∫ 1

jp,2

(λp (j)− ψ) dj = (1− ψ)ϕ2.

(74)

Proof. See Appendix C.1.

Lemma 9 makes two key statements, both captured in part 1. First, as in the homogeneous-

worker case, the decision to attract directed searchers follows a threshold rule. Firms with

j below the cutoff jp,1 attract random searchers only, whereas firms with j above the cutoff

attract directed searchers. Second, there is positive assortative matching among the firms

who do attract directed searchers, as evidenced by the second cutoff, jp,2. Next, in part 2,

we proceed to characterize the optimal queue in each region. The numbers η1 and η2 are the

shadow values of directed searchers of type 1 and type 2, respectively. It is useful to define

the function λDp,i (j), which, by (71), denotes the optimal queue length for firm j conditional

on attracting directed searchers of type i. Part 3 characterizes the optimal cutoffs. Equa-

tion (72) is an indifference condition between attracting random searchers and attracting

directed searchers of type 1, while (73) is an indifference condition between attracting di-

rected searchers of type 1 and attracting directed searchers of type 2. Finally, part 4 states

that the resource constraint for each type of worker holds.

7.3 Equilibrium

In a decentralized equilibrium, each firm j chooses, in addition to a wage, whether to attract

directed searchers and, if so, which type of directed searcher to attract. In doing so, it takes

as given the market utilities U1 and U2 of each type of directed searcher. The following

lemma characterizes the equilibrium, relegating a more detailed description of the analysis

to Appendix C.2.

Lemma 10. The equilibrium allocation is characterized by numbers je,1, je,2, U1, U2, and a

function λe : [0, 1] → R+, such that

1. Firms with j < je,1 attract random searchers only. Firms with j ∈ [je,1, je,2) attract

directed searchers of type 1 but not of type 2. Firms with j ∈ [je,2, 1] attract directed

searchers of type 2 but not of type 1.
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2. The queue length λe (j) satisfies

λe (j) =


ψ, j < je,1

λDe,1 (j) , j ∈ [je,1, je,2)

λDe,2 (j) , j ∈ [je,2, 1]

(75)

where, for i = 1, 2, λDe,i (j) is defined by

Nλ

(
xi, λ

D
e,i (j)

)
y (j) = Ui. (76)

3. The thresholds je,1 and je,2 satisfy

m (ψ)x = N
(
x1, λ

D
e,1 (je,1)

)
− λDe,1 (je,1)U1 (77)

and

N
(
x1, λ

D
e,1 (je,2)

)
− λDe,1 (je,2)U1 = N

(
x2, λ

D
e,2 (je,2)

)
− λDe,2 (je,2)U2. (78)

4. Resource constraints on each type of worker are satisfied:∫ je,2

je,1

(λe (j)− ψ) dj = (1− ψ)ϕ1,∫ 1

je,2

(λe (j)− ψ) dj = (1− ψ)ϕ2.

(79)

Proof. See Appendix C.2.

The decentralized equilibrium allocation thus takes the same form as the constrained-

efficient allocation: the choice to attract directed searchers follows a cutoff rule, and there

is positive assortative matching above the cutoff. Of particular interest are conditions (77)

and (78). Condition (77) states that the firm of type je,1 is indifferent between attracting

random searchers only and attracting directed searchers of type 1. Condition (78) states

that the firm of type je,2 is indifferent between attracting directed searchers of type 1 and

attracting directed searchers of type 2.

7.4 Constrained inefficiency

We can now compare the equilibrium allocation to the planner’s solution. In the next

proposition, we establish that the equilibrium is inefficient and that the key inefficiencies
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are the same as in the baseline model: at the bottom of the productivity distribution, too

many firms target random searchers, and too many workers apply to firms at the top of the

productivity distribution.

Proposition 5. Assume ψ ∈ (0, 1). Let jp,1, jp,2, η1, η2 and λp (·) be the constrained-efficient

allocation, and let je,1, je,2, U1, U2 and λe (·) be the decentralized equilibrium allocation. Then

the following hold: (i) je,1 > jp,1, (ii) je,2 > jp,2, and (iii) λe (j) > λp (j) for all j ≥ je,2.

Proof. See Appendix C.3.

As before, too few firms attract directed searchers. This, in turn, implies that the di-

rected searchers are concentrated among a smaller subset of firm types. Moreover, within

these firms, part (ii) of Proposition 5 states that too few firms attract the type-2 workers,

and, as a consequence, (iii) there are too many workers at the top of the firm productivity

distribution. The economic mechanism for both results is the same and is driven by the

monopsony distortion discussed earlier. Consider the choice of whether or not to attract

directed searchers. In order to attract any directed searchers as opposed to none, a firm

must raise its wage. However, because of the inability to wage-discriminate, it must also

raise the wage for the random searchers. As a result, the firm perceives the cost of attracting

directed searchers as larger than that for the social planner. This component is the same

as for the homogeneous-worker case. However, and crucially, the same mechanism also dis-

torts the firm’s choice between type-1 and type-2 workers conditional on attracting directed

searchers. In order to attract directed searchers of type 2 rather than type 1, the firm must

raise the wage sufficiently. But, because a fraction of the workers are random searchers of

lower productivity, the cost of doing so perceived by the firm is larger than that for the social

planner. In other words, conditional on attracting directed searchers, firms are inefficiently

reluctant to attract type 2.

8 Conclusion

This paper identifies a novel inefficiency in search models, which is distinct from from the

much-studied entry distortion and operates instead on the allocation margin. This novel

inefficiency arises when random and directed search coexist, and goes in an arguably unex-

pected direction: relative to the constrained-efficient allocation, too many workers apply to

high-productivity firms. This result serves as a cautionary note against treating misalloca-

tion of resources as synonymous with low productivity. The misallocation highlighted here

manifests itself instead as suboptimally low employment. A minimum wage can increase
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employment and welfare, but in our framework it does so by reallocating workers across

firms rather than by drawing more workers into the labor market.

There are a number of directions for future research. First, we have assumed that the

fraction of directed searchers is exogenously given. If workers can decide, at a cost, whether

or not to direct their search, potential strategic complementarities can arise between workers’

investments in information and firms’ wage posting decisions, possibly leading to multiple

equilibria. Moreover labor market policies can now affect employment, output and welfare

not only directly, but also by changing the incentives to acquire information. Second, our

analysis has been theoretical: to this end, the model is deliberately parsimonious and stylized.

Quantifying the model’s implications for employment, welfare, measured matching efficiency,

and the effects of policies is a promising but challenging research agenda, which would surely

require a dynamic model, most likely extended to allow on-the-job search. A key challenge is

identifying the degree to which search is directed; Lentz and Moen (2017) represent progress

in this dimension.
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A Proofs

A.1 Proof of Lemma 1

Proof. The fact that the solution satisfies (5), (6), and (7) is proved in the text. It remains

to prove existence and uniqueness. Because (5) and (7) define jp and λp (j) as functions of

η, the left-hand side of (6) is a function of a single variable, η. Existence follows because the

left-hand side of (6) is continuous in η, approaches ψ as η → ∞, and approaches infinity as

η → 0. To prove uniqueness, we will show that the left-hand side of (6) is strictly decreasing

in η. Suppose η̂ > η; the corresponding ĵp and jp then satisfy ĵp ≥ jp, while the corresponding

λ̂p (j) and λp (j) satisfy λ̂p (j) ≤ λp (j), with stricty inequality when j > jp. Hence,

ĵpψ +

∫ 1

ĵp

λ̂p (j) dj < ĵpψ +

∫ 1

ĵp

λp (j) dj

= jpψ +

∫ 1

jp

λp (j) dj +

∫ ĵp

jp

(ψ − λp (j)) dj

≤ jpψ +

∫ 1

jp

λp (j) dj,

(80)

where the last inequality used the fact that ψ < λp (j) for j > jp.

A.2 Proof of Lemma 2

Proof. Recall that λ (j) solves m′ (λ (j)) y (j) = m′ (ψ) y (0) for each j while λp (j) satisfies

(7). Since m is strictly concave, λ (j) is strictly increasing. Therefore, λ (j) ≥ ψ for any j.

Further, as discussed in Appendix A.1, the left-hand side of the resource constraint (6) is

strictly decreasing in η. Together, this implies that

1 =

∫ 1

0

max {ψ, λp (j)} dj

<

∫ 1

0

max {ψ, λ (j)} dj

=

∫ 1

0

λ (j) dj,

(81)

if and only if η > m′ (ψ) y (0), which in turn is equivalent to jp > 0.
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A.3 Proof of Lemma 3

Proof. The proof is similar to the proof of Lemma 1. Because λe (j) satisfies (23) and je

satisfies (21), the left-hand side of the market-clearing condition (22) is a function of a single

variable, U . Existence follows because the left-hand side is continuous in U , approaches ψ
as U → ∞, and approaches infinity as U → 0. To prove uniqueness, we will show that the

left-hand side of (22) is strictly decreasing in U . Note that, from (23), we can write (22) as

jeψ +

∫ 1

je

λe (j) dj = 1 (82)

For j ≥ je, λe (j) is a decreasing function of U by (18), while je is increasing in U by (21).

Suppose Û > U ; the corresponding ĵe and je satisfy ĵe ≥ je, while the corresponding λ̂e (j)

and λe (j) satisfy λ̂e (j) ≤ λe (j), with strict inequality when j > je. Hence,

ĵeψ +

∫ 1

ĵe

λ̂e (j) dj < ĵeψ +

∫ 1

j′e

λe (j) dj

= jeψ +

∫ 1

je

λe (j) dj +

∫ ĵe

je

(ψ − λe (j)) dj

≤ jeψ +

∫ 1

je

λe (j) dj.

(83)

The last inequality has used the fact that, for j ≥ je, we have (1− ϵm (λe (j)))m (λe (j)) >

m (ψ); since ϵm (λ) > 0 ∀λ, this implies m (λe (j)) > m (ψ) and therefore λe (j) > ψ.

A.4 Proof of Proposition 1

Proof. We first consider the case of an interior solution. Suppose that (8) holds, so that

jp > 0. We will show that je > jp. The proof is by contradiction, in three steps. First, we

show that je ≤ jp implies U < η. Suppose that je ≤ jp. Defining Λe = λe (je) as in the

text, it follows that (1− ϵm(Λe))m(Λe) ≥ m (ψ) and therefore Λe > ψ strictly (this is just a

re-statement of Corollary 1). But then, we have

U = m′ (Λe) y (je)

< m′ (ψ) y (je)

≤ m′ (ψ) y (jp)

= η.

(84)

The first line follows from the optimality condition for Λe; the second from the fact that
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Λe > ψ combined with the concavity of m; the third from the assumption that je ≤ jp; and

the fourth from the expression for jp.

Second, we show that U < η implies λe (j) > λp (j) for all j ≥ je. For j ∈ [je, jp], λe (j) >

ψ = λp (j). Furthermore, for all j ≥ jp, λe (j) is given by the solution to m′(λe (j))y (j) = U ,
and λp (j) is given by the solution tom′(λe (j))y (j) = η, so that U < η implies λe (j) > λp (j)

by the concavity of m.

Third, we show that λe (j) > λp (j) for j ≥ je together with je ≤ jp implies a violation

of the resource constraint. We have

1 = jpψ +

∫ 1

jp

λp (j) dj

= jeψ + (jp − je)ψ +

∫ 1

jp

λp (j) dj

< jeψ +

∫ 1

je

λe (j) dj.

(85)

This is a contradiction, so we must have je > jp. Next, we show that U < η. If U ≥ η,

we have λe (j) ≤ λp (j) for all j ≥ je, and so

1 = jpψ +

∫ 1

jp

λp (j) dj

= jpψ +

∫ je

jp

λp (j) dj +

∫ 1

je

λp (j) dj

> jpψ +

∫ 1

je

λe (j) dj,

(86)

contradicting market clearing once again. This implies that U < η and therefore λe (j) >

λp (j) for j ≥ je, as had to be shown.

Finally, consider the case when (8) does not hold, and so the constrained-efficient allo-

cation has jp = 0. In this case, a necessary and sufficient condition for the equilibrium to

be constrained efficient is (1− ϵm (λp (0)))m (λp (0)) ≥ m (ψ). If this is violated, then in

equilibrium we must have λe (0) = ψ and therefore je > 0. This implies U < η, since, as

already argued above, U ≥ η together with je > jp would violate the resource constraint.

Since U < η, the definitions of λp (j) and λe (j) imply λe (j) > λp (j) for all j ≥ je. Finally,

note that the resource constraint (6) requires λp (0) < 1. Since (1− ϵm (λ))m (λ) is increas-

ing in λ, (1− ϵm (1))m (1) < m (ψ) implies (1− ϵm (λp (0)))m (λp (0)) < m (ψ) and hence

constrained inefficiency.
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A.5 Proof of Lemma 4

Step 1: If wmin does not bind for firms attracting directed searchers, then wmin < ϵm (ψ) y (jp).

Proof. Suppose that wmin does not bind for firms attracting directed searchers. This implies

that the inefficiency result of Proposition 1 carries over, so je > jp and U < η. This means

that firm jp strictly prefers not to attract directed searchers in equilibrium. Denoting again

by λDe (j) the solution to the first-order condition (18), we then have

m (ψ) (y (jp)− wmin) > m
(
λDe (jp)

) (
1− ϵm

(
λDe (jp)

))
y (jp)

> m (ψ) (1− ϵm (ψ)) y (jp) ,
(87)

where the second line follows becausem (λ) (1− ϵm (λ)) is increasing in λ. The above implies

wmin < ϵm (ψ) y (jp).

Step 2: If wmin < ϵm (ψ) y (jp), it does not bind for firms attracting directed searchers.

Proof. Suppose that the minimum wage binds for at least some firms who attract directed

searchers. This means that the smallest queue length obtained in equilibrium, which we

denote by λ0, must satisfy
m (λ0)

λ0
wmin = U (88)

and λ0 ≥ ψ. It then follows that λe (j) = max
{
λ0, λ

D
e (j)

}
must satisfy

λe (j) =

λ0, j ≤ j0

λDe (j) , j > j0
(89)

where the threshold j0 satisfies m′ (λ0) y (j0) = U . Finally, U must satisfy the modified

market-clearing condition ∫ 1

0

max
{
λ0, λ

D
e (j)

}
dj = 1. (90)

Note that (88) defines U as a decreasing function of λ0, and (90) defines U as an increasing

function of λ0, so that the equilibrium U and λ0, and hence j0, are uniquely determined for

any wmin. Furthermore, since λ0 ≥ ψ, comparing (90) to (6) and (7) implies that U ≥ η; but

then the corresponding minimum wage must satisfy

λ0
m (λ0)

U ≥ ψ

m (ψ)
η = ϵm (ψ) y (jp) (91)

where the inequality transpires because λ/m (λ) is increasing in λ. This proves that a
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minimum wage strictly less than ϵm (ψ) y (jp) cannot be binding for firms attracting directed

searchers.

A.6 Proof of Proposition 2

Proof. Consider a minimum wage wmin < ϵm (ψ) y (jp), which binds for firms attracting ran-

dom searchers only, and does not bind for firms attracting any directed searchers. The

equilibrium is fully characterized by a market utility U for directed searchers, and a thresh-

old je above which firms attract directed searchers, satisfying the indifference condition (29)

and the market clearing condition (22).

Proof of (i) and (ii). We first analyze the effect of wmin on je and U . Totally differentiating

(29) with respect to wmin, we obtain

−m (ψ) = (m (Λe)−m (ψ)) y′ (je)
dje
dwmin

− Λe
dU
dwmin

, (92)

where Λe ≡ λe (je) is the solution to (29). Totally differentiating the market clearing condi-

tion (22) with respect to wmin, we obtain

dje
dwmin

=
dU
dwmin

× 1

Λe − ψ

∫ 1

je

1

y (j)m′′ (y (j))
dj. (93)

Combining (92) with (93) gives

dU
dwmin

= m (ψ)

[
Λe −

(
m (Λe)−m (ψ)

Λe − ψ

)
y′ (je)

∫ 1

je

1

y (j)m′′ (y (j))
dj

]−1

> 0, (94)

from which (93) immediately implies dje
dwmin

< 0.

Proof of (iii). We now turn to characterizing the effect of the minimum wage on aggregate

employment, which is given by

E =

∫ 1

0

m (λe (j)) dj = jem (ψ) +

∫ 1

je

m (λe (j)) dj. (95)
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Differentiating (95) with respect to wmin and using (93), we get

dE
dwmin

=
dje
dwmin

× (m (ψ)−m (Λe)) +
dU
dwmin

×
∫ 1

je

m′ (λe (j))

y (j)m′′ (λe (j))
dj

=
dU
dwmin

×
∫ 1

je

1

y (j)m′′ (λe (j))

[
m′ (λe (j))−

m (Λe)−m (ψ)

Λe − ψ

]
dj

> 0.

(96)

The last line follows from the concavity of m, since m′′ < 0 and, for all j ≥ je,

m′ (λe (j)) ≤ m′ (Λe) <
m (Λe)−m (ψ)

Λe − ψ
. (97)

Proof of (iv). A similar argument applies to welfare, which is given by

W =

∫ 1

0

m (λe (j)) y (j) dj = m (ψ)

∫ jd

0

y (j) dj +

∫ 1

je

m (λe (j)) y (j) dj. (98)

Differentiating (98) with respect to wmin, we get

dW
dwmin

=
dje
dwmin

× (m (ψ)−m (Λe)) y (je) +
dU
dwmin

×
∫ 1

je

m′ (λe (j))

m′′ (λe (j))
dj

=
dU
dwmin

×
∫ 1

je

1

y (j)m′′ (λe (j))

[
m′ (λe (j)) y (j)−

m (Λe)−m (ψ)

Λe − ψ
y (je)

]
dj

> 0.

(99)

The last inequality follows since m′′ < 0 and

m′ (λe (j)) y (j) = U = m′ (Λe) y (je) <
m (Λe)−m (ψ)

Λe − ψ
y (je) (100)

by the concavity of m and the definition of λe (j).

A.7 Proof of Corollary 4

Proof. The result that the minimum wage wmin = ϵm (ψ) y (jp) implements the constrained-

efficient allocation follows directly from the proof of Lemma 4. In particular, from equation

(90), it is immediate that constrained efficiency requires λ0 = ψ, which, by (91), transpires

when wmin = ϵm (ψ) y (jp). It remains to show that ϵm (ψ) y (jp) is increasing in ψ. Note that

ϵm (ψ) y (jp) =
ψ

m(ψ)
η, where η is the solution to the resource constraint It then follows that η

44



is increasing in ψ by the resource constraint, and ψ
m(ψ)

is increasing in ψ by the assumptions

on m. This completes the proof.
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B Proofs for Section 6: Extensive margin behavior

B.1 Proof of Lemma 5

The derivation of (34)–(36) is identical to the baseline model. Let η be the Lagrange multi-

plier on (31), and let µ (j) dj be the Lagrange multiplier on (32) for each j. The first-order

conditions for λ (j) and u, respectively, are

µ (j) = η −m′ (λ (j)) y (j) (101)

and

z = η − ψ

∫ 1

0

µ (j) dj. (102)

From (32) and (101), we obtain the characterization of the optimal λ (j). If (32) does not

bind, we have µ (j) = 0 and λ (j) is then given by m′ (λ (j)) y (j) = η. If the constraint (32)

binds, then we have λ (j) = ψup, and µ (j) = η −m′ (ψup) y (j). As before, this implies a

threshold rule where the constraint binds for j < jp and does not bind for j ≥ jp for some

jp. Assuming an interior jp, it must satisfy (35). Next, we can write

µ (j) = max{0, η −m′ (ψup) y (j)}. (103)

Substituting this into (102) and rearranging gives (33).

B.2 Proof of Lemma 6

The derivation of (41)–(43) is identical to the baseline model. Condition (40) follows directly

from optimal participation and the fact that the utility of a random searcher is zero.
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B.3 Proof of Proposition 3

The second part is identical to the baseline model. We show here that ue < up. Suppose,

for a contradiction, that ue ≥ up. Letting Λe be the solution to m′ (Λe) y (je) = U , we have

m′ (ψup)

[
(1− ψjp) y (jp) + ψ

∫ jp

0

y (j) dj

]
= z

= (1− ψje)U

= (1− ψje)m
′ (Λe) y (je)

< (1− ψje)m
′ (ψue) y (je)

≤ (1− ψje)m
′ (ψup) y (je)

< m′ (ψup)

[
(1− ψje) y (je) + ψ

∫ je

0

y (j) dj

]
.

(104)

The expression in brackets is easily verified to be increasing in je; therefore, we must have

jp < je. This implies that

(1− ψje)U = z

= (1− ψjp) η + ψm′(ψup)

∫ jp

0

y (j) dj

> (1− ψjp) η

> (1− ψje) η,

(105)

so that U > η. In turn, this means that λe (j) < λp (j) for all j > je.

Finally, we argue that je > jp and λe (j) < λp (j) together imply that up > ue. We have

up = jpψup +

∫ 1

jp

λp (j) dj

= jpψup +

∫ je

jp

λp (j) dj +

∫ 1

je

λp (j) dj

> jpψup + (je − jp)ψup +

∫ 1

je

λe (j) dj

= jeψup +

∫ 1

je

λe (j) dj.

(106)
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By rearranging, we obtain

(1− ψje)up >

∫ 1

je

λe (j) dj. (107)

We must also have

(1− ψje)ue =

∫ 1

je

λe (j) dj. (108)

Together, these imply up > ue, which is the desired contradiction.

B.4 Proof of Lemma 7

Proof. The social planner is maximizing (48) subject to the constraints (49) and (50). Let

η be the Lagrange multiplier on (49), and let µ (j) dj be the Lagrange multiplier on (50) for

each j. The first-order condition for λ (j) is then

µ (j) (1− j∗p) = η −m′ (λ (j)) y (j) , (109)

which leads, as in the exogenous entry case, to the optimal queue length, as character-

ized in equation (52). Define jp = inf
{
j : m′ (ψ/ (1− j∗p

))
y (j) ≥ η

}
. Since jp > j∗p ,

we immediately obtain (51)–(53); in particular, we must have λp
(
j∗p
)
= ψ/

(
1− j∗p

)
and

η = m′ (λp (j∗p)) y (jp). Moreover, this gives

µ (j) =
1

1− j∗p
m′ (λp (j∗p))max {0, y (jp)− y (j)} . (110)

Next, the first-order condition for j∗p reads

κ = m
(
λp
(
j∗p
))
y
(
j∗p
)
− λp

(
j∗p
)
η +

∫ 1

j∗p

λp (j)µ (j) dj. (111)
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Substituting (51) and (110) into (111), we get

κ = m
(
λp
(
j∗p
))
y
(
j∗p
)
− λp

(
j∗p
)
m′ (λp (j∗p)) y (jp)

+
1

1− j∗p

∫ jp

j∗p

λp (j)m
′ (λp (j∗p)) (y (jp)− y (j)) dj

= (m
(
λp
(
j∗p
))

− λp
(
j∗p
)
m′ (λp (j∗p)))y (j∗p)

+
1

1− j∗p

∫ 1

j∗p

λp
(
j∗p
)
m′ (λp (j∗p)) (y (j∗p)− y(jp)) dj

+
1

1− j∗p

∫ jp

j∗p

λp
(
j∗p
)
m′ (λp (j∗p)) (y (jp)− y (j)) dj

= (m
(
λp
(
j∗p
))

− λp
(
j∗p
)
m′ (λp (j∗p)))y (j∗p)

− 1

1− j∗p
λp
(
j∗p
)
m′ (λp (j∗p)) ∫ 1

j∗p

[min{y (j) , y (jp)} − y
(
j∗p
)
] dj,

(112)

which is equivalent to (54).

B.5 Proof of Lemma 8

Proof. For any given j∗e , previous results imply that the equilibrium must be characterized

by a market utility U , and a threshold rule for the queue length, such that firms with j ≥ je

attract random searchers, and firms with j < je do not. In an interior solution, je > j∗e ,

so that the marginal entrant attracts only random searchers. This immediately gives the

equilibrium conditions (60)–(62), very much the same as in Lemma 3 for the exogenous entry

case. The zero profit condition for the marginal entrant then yields (63).

B.6 Proof of Proposition 4

Proof. First, we show that entry is inefficiently high in equilibrium. From (54) and (63), it

follows that

m
(
λp
(
j∗p
))
y
(
j∗p
)
− κ > m

(
λp
(
j∗p
)) (

1− ϵm
(
λ
(
j∗p
)))

y
(
j∗p
)
− κ

= λp
(
j∗p
)
m′ (λp (j∗p)) (E [min {y (j) , y (jp)} |j ≥ j∗p

]
− y

(
j∗p
))

> 0

= m (λe (j
∗
e )) y (j

∗
e )− κ.

(113)
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Moreover, we have λp
(
j∗p
)
= ψ/(1−j∗p) and λe (j∗e ) = ψ/(1−j∗e ). Since m (ψ/ (1− j)) y (j) is

increasing in j, this immediately establishes that j∗e < j∗p . Next, consider (64). The solution

is analogous to Lemma 1 and give rise to a threshold jo. When ψ ∈ (0, 1), the proof that

je > jo and λe (j) > λo (j) for j > je is then identical to the proof of Proposition 1 in

Appendix A.4.
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C Proofs for Section 7: Worker heterogeneity

C.1 Planner’s problem (Proof of Lemma 9)

We index submarkets by the type j of the firm advertising in that submarket and the type

i of directed searcher (if any) that it attracts. For each submarket (i, j), the social planner

chooses the probability hi (j) that firm j enters that submarket14 and the queue length λi (j)

in that submarket. The planner’s problem can then be written as maximizing∫ 1

0

∑
i

N (xi, λi (j)) y (j)hi (j) dj, (114)

subject to a resource constraint on the measure of firms of each type,∑
i

hi (j) ≤ 1 ∀j ∈ [0, 1]; (115)

a resource constraint on the measure of directed searchers of each type,∫
(λi (j)− ψ)hi (j) dj ≤ (1− ψ)ϕi for i = 1, 2; (116)

a non-negativity constraint on the measure of firms in each submarket,

hi (j) ≥ 0, ∀j ∈ [0, 1]; (117)

and a non-negativity constraint on the measure of directed-searcher workers in each submar-

ket,

λi (j) ≥ ψ. (118)

In words, a firm of type j attracts some directed searchers of type i if both hi (j) > 0 and

λi (j) > ψ are true.

To characterize the solution, let πp (j), ηi, ξi (j) and µi (j) be the Lagrange multipliers on

(115), (116), (117), and (118). Note that the multiplier πp (j) is interpreted as the shadow

value for a type-j firm; similarly, ηi is the shadow value of a type-i worker. The necessary

first-order conditions with respect to hi (j) and λi (j), respectively, can then be written as

N (xi, λi (j)) y (j)− (λi (j)− ψ) ηi − πp (j) + ξi (j) = 0 (119)

14Writing the planner’s problem this way gives an additional degree of freedom, as it allows the firms to
randomize between submarkets. We will see that this option is never used at the optimum.
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and

[Nλ (xi, λi (j)) y (j)− ηi]hi (j) + µi (j) = 0. (120)

Since ξi (j) ≥ 0, equation (119) implies that πp (j) = max {πp,1 (j) , πp,2 (j)}, where

πp,i (j) = max
λ≥ψ

N (xi, λ) y (j)− (λ− ψ) ηi. (121)

Denote by λDp,i (j) the solution to (121) for each i. We first show a preliminary result:

Claim 2. If h1 (j) > 0, h2 (j) > 0 and λDp,2 (j) = ψ, then λDp,1 (j) = ψ.

Proof. To establish this result, notice that h1 (j) > 0 and h2 (j) > 0 imply that πp,1 (j) =

πp,2 (j). Further, λ
D
p,2 (j) = ψ implies that

πp,2 (j) = N (x2, ψ) y (j) = m (ψ)xy (j) . (122)

Now, suppose that λp,1 (j) = λ > ψ. By (120) and (121), this means that

πp,1 (j) = [N (x1, λ)− (λ− ψ)Nλ (x1, λ)] y (j) . (123)

The right-hand side of (123) reduces to m (ψ)xy (j) when λ = ψ. A contradiction then

follows, because the derivative of the right-hand side of (123) with respect to λ equals

− (λ− ψ)Nλλ (xi, λ) y (j) > 0, (124)

which implies that πp,1 (j) > πp,2 (j).

This shows that a firm that attracts any directed searchers does not randomize between

submarkets.

Next, we show that the decision to attract directed searchers follows a threshold rule,

similarly to the homogeneous-worker case.

Claim 3. If πp (j) > m (ψ)xy (j), then πp (j
′) > m (ψ)xy (j′) for all j′ > j.

Proof. To see this, note that πp (j) > m (ψ) x̄y (j) means that πp,i (j) > m (ψ)xy (j) for

either i = 1 or i = 2 or both. By the envelope theorem,

d

dj
πp,i (j) = N

(
xi, λ

D
p,i (j)

)
y′ (j) ≥ N (xi, ψ) =

d

dj
m (ψ)xy (j) . (125)
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This result implies that we can define the cutoff

jp,1 = inf{j : πp (j) ≥ m (ψ)xy}, (126)

such that the planner only instructs firms with j < jp,1 to target random searchers. In an

interior solution (i.e., jp,1 > 0), the first-order conditions (119) and (120) immediately imply

(72), similarly to the homogeneous-worker model.

Finally, we show that there is positive assortative matching above jp,1.

Claim 4. Let jp,2 satisfy πp,2 (jp,2) = πp,1 (jp,2). Then πp,2 (jp,2) > πp,1 (jp,2) for all j > jp,2.

Proof. It is sufficient to prove that that d
dj
πp,2 (jp,2) >

d
dj
πp,1 (jp,2); by the envelope theorem,

this holds if and only if

N
(
x2, λ

D
p,2 (jp,2)

)
> N

(
x1, λ

D
p,1 (jp,2)

)
. (127)

To prove this, note that the indifference condition πp,2 (jp,2) = πp,1 (jp,2) is equivalent to

N
(
x2, λ

D
p,2 (jp,2)

)
− (λDp,2 (jp,2)− ψ)Nλ

(
x2, λ

D
p,2 (jp,2)

)
= N

(
x1, λ

D
p,1 (jp,2)

)
− (λDp,1 (jp,2)− ψ)Nλ

(
x1, λ

D
p,1 (jp,2)

)
.

(128)

We can therefore define a function ℓp (x) : [x1, x2] → R+ such that ℓp (xi) = λDp,i (jp,2) and

N (x, ℓp (x)) − (ℓp (x)− ψ)Nλ (x, ℓp (x)) is constant for x ∈ [x1, x2] . Total differentiation

then implies that

ℓ′p (x) =
Nx (x, ℓp (x))− (ℓp (x)− ψ)Nxλ (x, ℓp (x))

(ℓp (x)− ψ)Nλλ (x, ℓp (x))
(129)

for any x ∈ (x1, x2). Differentiating N (x, ℓp (x)) with respect to x and using (129) then

yields
d

dx
N (x, ℓp (x)) =

(ℓp (x)− ψ)NλλNx +NλNx − (ℓp (x)− ψ)NλNxλ

(ℓp (x)− ψ)Nλλ

. (130)

The right-hand side is positive by condition (69). Hence, N
(
x2, λ

D
p,2 (jp,2)

)
> N

(
x1, λ

D
p,1 (jp,2)

)
,

establishing the desired single-crossing condition.

The above shows that sorting is positive: if, at some jp,2, the social planner is indifferent

between having the firm attract type-1 or type-2 workers, then type-2 workers are strictly

preferred at any higher j. The same result immediately implies that the jp,2 satisfying such

indifference is unique and is given by (73). It also implies that, if jp,1 > 0, then it satisfies

(72); in other words, indifference between random searchers and directed searchers must
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occur for directed searchers of type 1. This completes the construction of the cutoffs jp,1

and jp,2. The characterization of the queue length λp (j) for any j then follows immediately

from the first-order conditions.

C.2 Equilibrium (Proof of Lemma 10)

In equilibrium, firm j can either target random searchers, low-type directed searchers, or

high-type directed searchers. Similar to the baseline model, a firm targeting random searchers

will offer a wage of 0 and therefore receive an expected payoff equal to

πRe (j) = m (ψ)xy (j) . (131)

In contrast, a firm targetting directed searchers with productivity xi must provide them with

their market utility Ui. Such a firm therefore solves

πDe,i (j) = max
λ,w

N (xi, λ) y (j)−m (λ)w, (132)

subject to
m (λ)

λ
w ≥ Ui. (133)

As in the baseline model, the constraint will bind and can be substituted into the objective

to obtain

πDe,i (j) = max
λ

N (xi, λ) y (j)− λUi. (134)

The solution λDe,i (j) solves the first-order condition

Nλ (xi, λ) y (j) = Ui. (135)

The maximized profit from targeting directed searchers of type xi therefore equals

πDe,i (j) =
[
N
(
xi, λ

D
e,i (j)

)
− λDe,i (j)Nλ

(
xi, λ

D
e,i (j)

)]
y (j) . (136)

Clearly, firms will choose who to target by comparing the associated payoffs; their equilibrium

payoff therefore equals πe (j) = max
{
πRe (j) , πDe,1 (j) , π

D
e,2 (j)

}
.

The characterization of the equilibrium allocation is then straightforward and follows

closely the process in the proof of Lemma 9. We first establish the following result.

Claim 5. πe (j) > πRe (j) then πe (j
′) > πRe (j′) for all j′ > j.

Proof. Note that πe (j) > πRe (j) means that πDe,i (j) > πRe (j) for some i ∈ {1, 2}. By the
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envelope theorem,

d

dj
πDe,i (j) = N

(
xi, λ

D
e,i (j)

)
y′ (j) ≥ N (xi, ψ) y

′ (j) =
d

dj
πRe (j) , (137)

where the inequality follows from Nλ (xi, λ) ≥ 0. Hence, πe (j
′) > πRe (j′) for all j′ > j.

We can therefore define the cutoff

je,1 = inf
{
j : πe (j) > πRe (j)

}
, (138)

such that only firms with j ≤ je,1 target random searchers.

Next, we show that there is positive sorting above je,1 by establishing a single-crossing

condition: if a particular firm je,2 ∈ (je,1, 1) is indifferent between targeting low-type directed-

searchers and targeting high-type directed searchers, then firms with higher productivity

strictly prefer targeting high-type directed searchers.

Claim 6. Let je,2 satisfy πDe,2 (je,2) = πDe,1 (je,2). Then π
D
e,2 (je,2) > πDe,1 (je,2) for all j > je,2.

Proof. To prove single crossing, it suffices to show that the indifference condition πDe,2 (je,2) =

πDe,1 (je,2) implies that d
dj
πDe,2 (je,2) >

d
dj
πDe,1 (je,2), which, by the envelope theorem, is equivalent

to

N
(
x2, λ

D
e,2 (je,2)

)
> N

(
x1, λ

D
e,1 (je,2)

)
. (139)

To prove this, note that πDe,2(je,2) = πDe,1 (je,2) is equivalent to

N(x2, λ
D
e,2(je,2))− λDe,2(je,2)Nλ(x2, λ

D
e,2(je,2))

=N(x1, λ
D
e,2(je,1))− λDe,1(je,2)Nλ(x1, λ

D
e,1(je,2))

(140)

We can therefore define a function ℓe (x) : [x1, x2] → R+ such that ℓe (xi) = λDe,i (je,2)

and N (x, ℓe (x))− ℓe (x)Nλ (x, ℓe (x)) is constant for x ∈ [x1, x2] . Total differentiation then

implies that

ℓ′e (x) =
Nx (x, ℓe (x))− ℓe (x)Nxλ (x, ℓe (x))

ℓe (x)Nλλ (x, ℓe (x))
(141)

for any x ∈ (x1, x2). Using this result, we can then consider how N (x, ℓe (x)) varies with x,

which yields
d

dx
N (x, ℓe (x)) =

ℓe (x)NλλNx +NλNx − ℓe (x)NλNxλ

ℓe (x)Nλλ

. (142)

The right-hand side of (142) is positive by condition (69). Hence, N
(
x2, λ

D
e,2 (je,2)

)
>

N
(
x1, λ

D
e,1 (je,2)

)
, which implies d

dj
πDe,2 (je,2) >

d
dj
πDe,1 (je,2) and thus sorting is positive.
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Finally, the fact that je,1 < je,2 implies that je,1 must satisfy the indifference condition

(77). This completes the construction of the thresholds, and the characterization of λe (j)

for every j then follows from the firms’ first-order conditions.

C.3 Inefficiency (Proof of Proposition 5)

We establish that the equilibrium allocation deviates from the planner’s solution. Specifically,

(i) too few firms target directed searchers; (ii) too few firms target directed searchers of

type 2; and, as a consequence (iii) too many workers apply to the firms with the highest

productivity. As a result, the direction of the misallocation is the same as in the baseline

model.

(i) Too few firms target directed searchers. We establish that je,1 > jp,1 by showing

that je,1 ≤ jp,1 leads to a contradiction. We do so in three steps. First, we show that je,1 ≤ jp,1

implies je,2 < jp,2. Second, we show that je,2 < jp,2 implies λDe,2 (j) > λDp,2 (j). Finally, we

show that je,2 < jp,2 together with λDe,2 (j) > λDp,2 (j) violates the resource constraint.

For the first step, note that the indifference condition defining je,1 implies

N (x1, ψ) = m (ψ)x

= N
(
x1, λ

D
e,1 (je,1)

)
− λDe,1 (je,1)Nλ

(
x1, λ

D
e,1 (je,1)

)
< N

(
x1, λ

D
e,1 (je,1)

)
.

(143)

This immediately implies that λDe,1 (je,1) > ψ. We also know that Nλ

(
x1, λ

D
e,1 (je,1)

)
y (je,1) =

U1. Moreover, given the assumption je,1 ≤ jp,1, we have Nλ (x1, ψ) y (je,1) = η1. Together,

these imply that U1 < η1, since Nλλ < 0. For the same reason, it then follows that

λDe,1 (j) > λDp,1 (j) . (144)

The resource constraints then imply∫ jp,2

jp,1

λDp,1 (j) dj = ϕ1 =

∫ je,2

je,1

λDe,1 (j) dj

>

∫ je,2

je,1

λDe,1 (j) dj

≥
∫ je,2

jp,1

λDe,1 (j) dj,

(145)

where the first inequality follows from λDe,1 (j) > λDp,1 (j) and the second from our assumption
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that je,1 ≤ jp,1. This inequality can only hold if je,2 < jp,2.

In the second step, we show that je,2 < jp,2 implies that λDe,2 (j) > λDp,2 (j). Note that

je,2 < jp,2 means that

N
(
x1, λ

D
p,1 (je,2)

)
−
(
λDp,1 (je,2)− ψ

)
Nλ

(
x1, λ

D
p,1 (je,2)

)
> N

(
x2, λ

D
p,2 (je,2)

)
−
(
λDp,2 (je,2)− ψ

)
Nλ

(
x2, λ

D
p,2 (je,2)

)
.

(146)

Subtracting ψNλ

(
x1, λ

D
p,1 (je,2)

)
from both sides then yields

N(x1, λ
D
p,1 (je,2))− λDp,1 (je,2)Nλ

(
x1, λ

D
p,1 (je,2)

)
> N

(
x2, λ

D
p,2 (je,2)

)
− λDp,2 (je,2)Nλ

(
x2, λ

D
p,2 (je,2)

)
+ ψ

(
Nλ

(
x2, λ

D
p,2 (je,2)

)
−Nλ

(
x1, λ

D
p,1 (je,2)

))
= N

(
x2, λ

D
p,2 (je,2)

)
− λDp,2 (je,2)Nλ

(
x2, λ

D
p,2 (je,2)

)
+ ψ

(
η2

y (je,2)
− η1
y (je,2)

)
> N

(
x2, λ

D
p,2 (je,2)

)
− λDp,2 (je,2)Nλ

(
x2, λ

D
p,2 (je,2)

)
.

(147)

We already know from the first step that λDe,1 (j) > λDp,1 (j) for any j. Together with

d

dλ
(N (xi, λ)− λNλ (xi, λ)) = −λNλλ (xi, λ) > 0, (148)

this implies

N
(
x1, λ

D
e,1 (je,2)

)
− λDe,1 (je,2)Nλ

(
xi, λ

D
e,1 (je,2)

)
> N

(
x1, λ

D
p,1 (je,2)

)
− λDe,1 (je,2)Nλ

(
xi, λ

D
p,1 (je,2)

)
> N

(
x2, λ

D
p,2 (je,2)

)
− λDp,2 (je,2)Nλ

(
x2, λ

D
p,2 (je,2)

)
,

(149)

where the second inequality follows from (147). By the indifference condition defining je,2,

we have
N
(
x2, λ

D
e,2 (je,2)

)
− λDe,2 (je,2)Nλ

(
x2, λ

D
e,2 (je,2)

)
= N

(
x1, λ

D
e,1 (je,2)

)
− λDe,1 (je,2)Nλ

(
xi, λ

D
e,1 (je,2)

)
.

(150)

It is then immediate that

N
(
x2, λ

D
e,2 (je,2)

)
− λDe,2 (je,2)Nλ

(
x2, λ

D
e,2 (je,2)

)
> N

(
x2, λ

D
p,2 (je,2)

)
− λDp,2 (je,2)Nλ

(
x2, λ

D
p,2 (je,2)

)
,

(151)

and therefore λDe,2 (je,2) > λDp,2 (je,2) . The latter requires U2 < η2, which in turn implies that

λDe,2 (j) > λDp,2 (j) for all j.

The final step is to show that the combination of je,2 < jp,2 and λ
D
e,2 (j) > λDp,2 (j) violates
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the resource constraint. We have∫ 1

jp,2

λDp,2 (j) dj = ϕ2 =

∫ 1

je,2

λDe,2 (j) dj

>

∫ 1

je,2

λDp,2 (j) dj

>

∫ 1

jp,2

λDp,2 (j) dj,

(152)

which is the desired contradiction. Hence, je,1 > jp,1.

(ii) Too few firms target directed searchers of type 2. Next, we establish that je,2 >

jp,2. Towards a contradiction, suppose that je,2 ≤ jp,2. The combination of je,1 > jp,1 and

je,2 ≤ jp,2 implies that λDe,1 (j) > λDp,1 (j) and λ
D
e,2 (j) ≤ λDp,2 (j) by the resource constraints.

Since N (xi, λ)− λNλ (xi, λ) is increasing in λ, we then have

N
(
x2, λ

D
p,2 (je,2)

)
− λDp,2 (je,2)Nλ

(
x2, λ

D
p,2 (je,2)

)
≥ N

(
x2, λ

D
e,2 (je,2)

)
− λDe,2 (je,2)Nλ

(
x2, λ

D
e,2 (je,2)

)
= N

(
x1, λ

D
e,1 (je,2)

)
− λDe,1 (je,2)Nλ

(
x1, λ

D
e,1 (je,2)

)
> N

(
x1, λ

D
p,1 (je,2)

)
− λDp,1 (je,2)Nλ

(
x1, λ

D
p,1 (je,2)

)
,

(153)

where the second line follows from λDp,2 (j) ≥ λDe,2 (j), the third line follows from the in-

difference condition at je,2, and the fourth line follows from λDe,1 (j) > λDp,1 (j). Adding

ψNλ

(
x1, λ

D
p,1 (je,2)

)
to both sides and using (71), we then obtain

N(x1, λ
D
p,1 (je,2))−

(
λDp,1 (je,2)− ψ

)
Nλ

(
x1, λ

D
p,1 (je,2)

)
< N

(
x2, λ

D
p,2 (je,2)

)
−
(
λDp,2 (je,2)− ψ

)
Nλ

(
x2, λ

D
p,2 (je,2)

)
− ψ

(
Nλ

(
x2, λ

D
p,2 (je,2)

)
−Nλ

(
x1, λ

D
p,1 (je,2)

))
= N

(
x2, λ

D
p,2 (je,2)

)
−
(
λDp,2 (je,2)− ψ

)
Nλ

(
x2, λ

D
p,2 (je,2)

)
− ψ

(
η2

y (je,2)
− η1
y (je,2)

)
< N

(
x2, λ

D
p,2 (je,2)

)
−
(
λDp,2 (je,2)− ψ

)
Nλ

(
x2, λ

D
p,2 (je,2)

)
.

(154)

In other words, the social planner prefers for a firm with j = je,2 to attract type-2 workers

rather than type-1 workers. This implies je,2 > jp,2, which is the desired contradiction.

Hence, je,2 > jp,2.

58



(iii) Too many applicants at high-productivity firms. Since je,2 > jp,2, the resource

constraint for high-type workers,∫ 1

je,2

λDe,2(j) dj = ϕ2 =

∫ 1

jp,2

λDp,2(j) dj, (155)

requires U2 < η2. This in turn implies λDe,2 (j) > λDp,2 (j) for all j > je,2, i.e., the firms at the

top of the productivity distribution attract too many applicants.
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