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Abstract. 

The increasing use of multivariate ordered categorical data in the social sciences presents a challenge 

for those concerned with measuring inequality. The absence of cardinal measure and the ambiguities 

inherently associated with artificial attribution of scale to ordinal categories, precludes the use of 

standard distance-based inequality measures. However, these issues have been surmounted in the 

univariate world by employing notions of probabilistic distance (the increasing likelihood that some 

outcome between two categories will occur the bigger is the categorical gap between them) and 

measuring aggregate probabilistic distance from a Median category focus point. Unfortunately, in 

multivariate environments the median outcome is not uniquely defined, however the modal category is, 

thus providing a readymade reference point from which to measure probabilistic distance. In addition, 

as the most frequently observed outcome, its density value provides a natural measure of the extent of 

commonality or equality in the population, further rationalizing its use as a point of reference for 

inequality measurement. This note develops modally focused inequality measures for multivariate 

ordered categorical environments together with their asymptotic distributions for inference purposes 

and discusses their axiomatic foundations.    

  



Introduction. 

Following the foundational work of Mendelson (1987), as a means of ordering outcome inequalities in 

ordinal variable environments, the Median Preserving Spread (MPS) has become a popular workhorse in 

inequality and polarization measurement of ordered categorical outcomes (Allison and Foster 2004, 

Kobus 2015). It overcomes the scaling problems associated with measuring distance from a focus point 

in ordered categorical environments when categories have been artificially attributed cardinal value 

(Bond and Lang 2019) by quantifying distance in cumulated probabilistic terms. Furthermore, it obviates 

the need for dimension weighting in cardinally measured multidimensional frameworks. Unfortunately, 

applications are typically confined to the univariate paradigms since, in multivariate contexts, a unique 

median or quantile category from which to measure cumulated probabilistic distance is hard to 

conceptualize1. A straightforward alternative is to use the modal category as a focus which can, under 

appropriate circumstances, be readily conceptualized as a unique category or point in any multivariate 

measurement paradigm, with ordered categorical variates being a particular case of interest. 

Furthermore, since it is the most common outcome, the density value at the mode provides a very 

natural likelihood-oriented measure of the extent of commonality or equality of outcome inherent in a 

distribution and its complement readily seen as an elementary measure of the extent of inequality or 

lack of commonality of outcome. 

Characterization of Modally Focused increased spread 

The univariate paradigm.  

Following Mendelson (1987), consider probability density functions 𝑓 and 𝑔 defined over 𝐾 ordered 

categorical outcomes indexed accordingly as 𝑘 = 1, . . , 𝐾 where 𝑘 = 1 corresponds to the lowest 

category and 𝑘 = 𝐾 the highest and where 𝑓  (𝑔) is represented by a 𝐾 dimensioned vector 𝑝𝑓   (𝑝𝑔) 

with typical element  𝑝𝑓𝑘   (𝑝𝑔𝑘 ) where: 

 𝑝𝑓𝑘   (𝑝𝑔𝑘 ) = 𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑘|𝑓)  (𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝑘|𝑔)) with ∑ 𝑝𝑓𝑘 = 1𝐾
𝑘=1  and ∑ 𝑝𝑔𝑘 = 1𝐾

𝑘=1 .  

For a given outcome 𝑘∗ ∈ 1, 𝐾 and outcomes 𝑘 = 𝑘∗ + 1, . . , 𝐾, define the Upper Cumulants of 𝑓 as 

𝐹𝑘
𝑈,𝑘∗

= ∑ 𝑝𝑓𝑖 
𝑘
𝑖=𝑘∗+1  (note for 𝑘 ≤ 𝑘∗ , 𝐹𝑘

𝑈,𝑘∗

= 0) and for outcomes 𝑘 = 1, . . , 𝑘∗ − 1, define its Lower 

Cumulants as  𝐹𝑘
𝐿,𝑘∗

= ∑ 𝑝𝑓𝑖 
𝑘∗−1
𝑖=𝑘  (note for 𝑘 ≥ 𝑘∗ , 𝐹𝑘

𝐿,𝑘∗

= 0).  When 𝑘 > 𝑘∗, 𝐹𝑘
𝑈,𝑘∗

 is the probability of 

an outcome between 𝑘∗ and 𝑘 + 1 occurring which is monotonically non decreasing in 𝑘, when  𝑘 < 𝑘∗, 

𝐹𝑘
𝐿,𝑘∗

 is the probability of an outcome between 𝑘∗ and 𝑘 − 1 occurring which is monotonically non-

decreasing in 𝑘∗ − 𝑘. Each record a sense of probabilistic distance of 𝑘 from 𝑘∗ in terms of the chance 

that an outcome will emerge between 𝑘 and 𝑘∗ which increases with |𝑘∗ − 𝑘|. Similarly defining 𝐺𝑘
𝑈,𝑘∗

, 

 
1 For example, consider a discrete uniform ordered categorical bivariate distribution 𝑓(𝑥𝑖 , 𝑦𝑗) with 𝐾 categories in 

each dimension, each ordered by their respective subscripts so that 𝑖’ < 𝑖’’ ↔  𝑥𝑖’ <𝑃 𝑥𝑖’’ and similarly, 𝑗’ < 𝑗’’ ↔

 𝑦𝑗’ <𝑃 𝑦𝑗’’ and 𝑓(𝑥𝑖 , 𝑦𝑗) = 1 𝐾2⁄  ∀ 𝑖, 𝑗 = 1, . . , 𝐾 so that 𝐹(𝑥𝑖 , 𝑦𝑗) = (𝑖 ∗ 𝑗) 𝐾2⁄ . There is an array of pairs (𝑥𝑖
∗, 𝑦𝑗

∗) 

for which 𝐹(𝑥𝑖−1
∗ , 𝑦𝑗

∗) < 0.5 &  0.5 <  𝐹(𝑥𝑖
∗, 𝑦𝑗

∗) or 𝐹(𝑥𝑖
∗, 𝑦𝑗−1

∗ ) < 0.5 &  0.5 <  𝐹(𝑥𝑖
∗, 𝑦𝑗

∗) 

 



𝐺𝑘
𝐿,𝑘∗

, the Upper and Lower Cumulants of 𝑔, then 𝑔 constitutes an increasing spread of 𝑓 with respect to 

outcome 𝑘∗ when: 

 𝐺𝑘
𝐿,𝑘∗

≥ 𝐹𝑘
𝐿,𝑘∗

∀ 𝑘 = 1, . . , 𝑘∗ − 1 𝑎𝑛𝑑 𝐺𝑘
𝑈,𝑘∗

≥ 𝐹𝑘
𝑈,𝑘∗

∀ 𝑘 = 𝑘∗ + 1, . . , 𝐾 𝑤𝑖𝑡ℎ > 𝑠𝑜𝑚𝑒𝑤ℎ𝑒𝑟𝑒.          [1] 

The Mendelson (1987) condition [1] amounts to a first order stochastic dominance condition on the 

“downward looking” below 𝑘∗ conditional distributions (i.e. imagine the category orderings below 𝑘∗ 

were reversed) and the “upward looking” above 𝑘∗ conditional distributions where 𝑓 dominates 𝑔 in 

each context. Intuitively, with respect to 𝑘∗ inequality in 𝑔 distribution is greater than inequality in 𝑓 

distribution with respect to 𝑘∗ when the chance of a below 𝑘∗ outcome and the chance of an above 𝑘∗ 

outcome are both at least as great in g as they are in f with strictly greater than in at least one case2.  

Given the absence of cardinal measure, setting 𝑘∗ as the “median” category and using these notions has 

been the basis of inequality and polarization measurement in univariate ordered categorical paradigms 

(Allison and Foster 2004, Kobus 2015). However, the median outcome could well be an unlikely 

event and, if inequality is construed as the antithesis of complete commonality in the 

population, it would not serve as a good focus point for an inequality measure.   

The Modal Preserving Spread.  

Define the Modal outcome of distribution 𝑓 as outcome 𝑘∗ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝𝑓𝑘∗ = max
𝑘

𝑝𝑓𝑘 . Determining 𝑘∗ 

by seeking that category for which 𝑝̂𝑓𝑘∗ = max
𝑘

𝑝̂𝑓𝑘  where 𝑝̂𝑓𝑘 , 𝑘 = 1, . . , 𝐾 are the maximum likelihood 

estimates of category densities, renders 𝑘∗ as the maximum likelihood estimate of the category most 

likely to command unanimity of membership. Since the smallest possible value of 𝑝𝑓𝑘∗  is  
1

𝐾
+ 𝜀 where 𝜀 

is an arbitrarily small positive value,   
1

𝐾
< 𝑝𝑓𝑘∗ ≤ 1, and when 𝑝𝑓𝑘∗ is viewed as the chance that the 

whole population resides in outcome 𝑘∗ , 𝐿𝐶(𝑓) = (𝐾𝑝𝑓𝑘∗ − 1)/(𝐾 − 1) is a very natural likelihood 

based measure or index on the unit interval of the extent of commonality or equality of outcome in the 

distribution, so that its complement, 𝐼𝐼(𝑓) = 1 − 𝐿𝐶(𝑓) = 𝐾(1 − 𝑝𝑓𝑘∗)/(𝐾 − 1) provides an intuitive 

likelihood based measure of inequality of outcome3. Unfortunately, it is not responsive to variation in 

spread in the rest of the distribution in the sense that a marginal shift in mass from 𝑘′ to 𝑘′′ where 𝑘′ , 

𝑘′′ ≠ 𝑘∗ would leave it unaltered unless the shift rendered 𝑘′′ the new modal outcome. To capture this, 

the concept of a modal preserving spread needs to be considered. Basically 𝑔 constitutes a Modal 

Preserving Spread of 𝑓 if [1] holds and 𝑘∗remains the modal outcome of 𝑔 i.e. 𝑝𝑔𝑘∗ = max
𝑘

𝑝𝑔𝑘. 

This can be readily checked by considering 𝑈𝐴𝑀𝐵𝐼(𝑓, 𝑔)  =
∑ ((𝐺𝑘

𝑈,𝑘∗
−𝐹𝑘

𝑈,𝑘∗
)+(𝐺𝑘

𝐿,𝑘∗
−𝐹𝑘

𝐿,𝑘∗
))𝐾

𝑘=1

∑ (|(𝐺𝑘
𝑈,𝑘∗

−𝐹𝑘
𝑈,𝑘∗

)|+|(𝐺𝑘
𝐿,𝑘∗

−𝐹𝑘
𝐿,𝑘∗

)|)𝐾
𝑘=1

 , when 

𝑈𝐴𝑀𝐵𝐼(𝑓, 𝑔) = 1, distribution 𝑔 constitutes an unambiguous Modal Preserving Spread of distribution 𝑓. 

Furthermore, given dispersion from the focus point 𝑘∗ is maximized when 𝑘∗/𝐾 mass is allocated to the 

lowest outcome and 
(𝐾−𝑘∗)

𝐾
 is allocated to the highest outcome: 

 
2 This construct is similar to notions of left and right distributional separation developed in Anderson (2004). 
3 Indeed, in the unordered categorical world 𝐼𝐶 and 𝐼𝐼 provide equally useful indices of commonality and 
inequality.  



                          0 ≤ 𝐼𝑀𝑃𝑆(𝑔, 𝑓) =
∑ ((𝐺𝑘

𝑈,𝑘∗
−𝐹𝑘

𝑈,𝑘∗
)+(𝐺𝑘

𝐿,𝑘∗
−𝐹𝑘

𝐿,𝑘∗
))𝐾

𝑘=1

(
𝑘∗ ∑ 𝑖𝑘∗−1

𝑖=1
𝐾

+ 
(𝐾−𝑘∗)∑ (𝑖−𝑘∗)𝐾

𝑖=𝑘∗+1
𝐾

−∑ (𝐹𝑘
𝑈,𝑘∗

+𝐹𝑘
𝐿,𝑘∗

)𝐾
𝑘=1 )

≤ 1              [2] 

provides an index measure on the unit interval of the extent of increased Modally Focused relative 

spread or inequality associated with a move from 𝑓 to 𝑔. Suppose 𝑓𝑒 was the distribution of a 

completely equal society with all agents enjoying outcome 𝑘∗, then 𝑝𝑓𝑘∗ = 1 and 𝑝𝑓𝑘 = 0 ∀ 𝑘 ≠ 𝑘∗ so 

that  𝐹𝑘
𝑈,𝑘∗

= 0 and 𝐹𝑘
𝐿,𝑘∗

= 0 ∀ 𝑘, then [2] becomes:  

                                       𝐼𝑀𝑃𝑆(𝑔, 𝑓𝑒) =
∑ (𝐺𝑘

𝑈,𝑘∗
+𝐺𝑘

𝐿,𝑘∗
)𝐾

𝑘=1

(
𝑘∗ ∑ 𝑖𝑘∗−1

𝑖=1
𝐾

+ 
(𝐾−𝑘∗) ∑ (𝑖−𝑘∗)𝐾

𝑖=𝑘∗+1
𝐾

)

= 𝑀𝐹𝐼(𝑔)                                     [3] 

[3] corresponds to a measure of the extent of inequality inherent in the ordered categorical 
distribution 𝑔 relative to a state of complete equality at the category most likely to command 
unanimous membership and provides a measure, 𝑀𝐹𝐼(𝑔), of the Modally Focused Inequality 

inherent in distribution 𝑔. Let the 𝑘∗ Focussed Probabilistic Distance vector 𝐺𝑃𝐷,𝑘∗ 
 , recording the 

chance of being in the collection of categories successively further distanced from 𝑘∗ , be given by: 
 

𝐺𝑃𝐷,𝑘∗ 
=

[
 
 
 
 
 
 

𝐺1
𝐿

.
𝐺𝑘∗ −1

𝐿

0
𝐺𝑘∗ +1

𝑈

.
𝐺𝐾−𝑘∗ 

𝑈 ]
 
 
 
 
 
 

 

Note that the Probabilistic Distance function is an increasing function of the categorical distance from 
the 𝑖∗ category which does not depend upon arbitrary attribution of value to a category in the form of a 

scale. Letting 𝜑(𝐾, 𝑘∗ ) = (
𝑘∗ ∑ 𝑖𝑘∗−1

𝑖=1

𝐾
+ 

(𝐾−𝑘∗)∑ (𝑖−𝑘∗)𝐾
𝑖=,𝑘∗+1

𝐾
) and given a K dimensioned unit vector 𝑑, 

𝑀𝐹𝐼(𝑔) may be written as: 

                                                          𝑀𝐹𝐼(𝑔) =
1

𝜑(𝐾,𝑘∗ )
𝑑′𝐺𝑃𝐷,𝑘∗ 

                                                [4] 

Higher Order Considerations. 

It is possible to construct an inequality index which weighs more heavily mass at the extremes 
of the distribution. This higher order analysis reflects greater concern for distance from the modal 
point of commonality. Following the Gravel, Magdalou and Moyes (2021) exploitation of 

Hammond (1976) transfers, define 𝐺𝑘
𝐻𝑈,𝑘∗

, the Upper Cumulated Cumulants of 𝑔 as 𝐺𝑘
𝐻𝑈,𝑘∗

=

∑ 𝐺𝑖
𝑈,𝑘∗𝑘

𝑖=𝑘∗+1  (note for 𝑘 ≤ 𝑘∗ , 𝐺𝑘
𝐻𝑈,𝑘∗

= 0) and, for outcomes 𝑘 = 1, . . , 𝑘∗ − 1, define 𝐺𝑘
𝐻𝐿,𝑘∗

its Lower 

Cumulated Cumulants as  𝐺𝑘
𝐻𝐿,𝑘∗

= ∑ 𝐺𝑖
𝐿,𝑘∗𝑘∗−1

𝑖=𝑘  (note for 𝑘 ≥ 𝑘∗ , 𝐺𝑘
𝐻𝐿,𝑘∗

= 0). Let the 𝑘∗ Focused 

Higher Order Probabilistic Distance vector 𝐺𝐻𝑃𝐷,𝑘∗ 
 , recording the chance of being in the collection of 

categories successively further distanced from 𝑘∗ , be given by: 
 



𝐺𝐻𝑃𝐷,𝑘∗ 
=

[
 
 
 
 
 
 

𝐺1
𝐻𝐿

.
𝐺𝑘∗ −1

𝐻𝐿

0
𝐺𝑘∗ +1

𝐻𝑈

.
𝐺𝐾−𝑘∗ 

𝐻𝑈
]
 
 
 
 
 
 

 

Then for a suitably redefined scaling function 𝜑𝐻(𝐾, 𝑘∗ ), a higher order modally focused inequality 
measure 𝑀𝐹𝐼𝐻(𝑔), may be written as: 

                                                𝑀𝐹𝐼𝐻(𝑔) =
1

𝜑𝐻(𝐾,𝑘∗ )
𝑑′𝐺𝐻𝑃𝐷,𝑘∗ 

            [5] 

Axiomatic Issues. 

The axiomatic development of indices has been popular in inequality measurement (Sen 1997) and in 

that regard, 𝐼𝐼, 𝑀𝐹𝐼 and 𝑀𝐹𝐼𝐻 indices can each be shown to satisfy axioms of continuity, scale 

independence, normalization and coherence. All the indices are continuous in the probability measure 

𝑝𝑘, are scale independent by definition (any scale attributed to the categories does not appear in the 

formulae) and normalized, i.e. confined to the unit interval. In the case of coherence, the inequality 

measure should diminish when 𝐿𝐶, the likelihood of complete commonality or equality (recall 

𝐿𝐶 = (𝐾𝑝𝑘∗ − 1)/(𝐾 − 1)), increases. As 𝐼𝐼 is the complement of 𝐿𝐶, it automatically diminishes as 𝐿𝐶 

increases. With regard to 𝑀𝐹𝐼 and 𝑀𝐹𝐼𝐻, both are monotonic increasing functions of 𝑝𝑘, 𝑘 ≠ 𝑘∗ and, 

since 𝑝𝑘∗ = (𝐿𝐶(𝐾 − 1) + 1) 𝐾⁄ , for any 𝑘 ≠ 𝑘∗,and  𝑝𝑘 = 1 − 𝑝𝑘∗ − ∑ 𝑝𝑖
𝐼

𝑖=1
𝑖≠𝑘∗,𝑖≠𝑘

, it will be the case 

that: 𝑝𝑘 = 1 − (𝐿𝐶(𝐾 − 1) + 1) 𝐾⁄ − ∑ 𝑝𝑖
𝐼

𝑖=1
𝑖≠𝑘∗,𝑖≠𝑘

 so that both 𝑀𝐹𝐼 and 𝑀𝐹𝐼𝐻 will be diminishing 

functions of the likelihood of complete commonality or equality. Yalonetzky (2021) recently proposed a 

consistency property whereby, in the case of an inequality index, its value should be unaffected when 

the categorical ordering is reversed. Since reversing the ordering of 𝑔 doesn’t change its modal category 

and the upper cumulants become the lower cumulants and the lower cumulants become the upper 

cumulants, this simply causes 𝐺𝑖
𝐿 (𝐺𝑖

𝐻𝐿) for 𝑖 = 1, . ., 𝑘∗ − 1 to be renamed  𝐺𝑖
𝑈 (𝐺𝑖

𝐻𝑈) 𝑖 = 1, . ., 𝑘∗ − 1 

and 𝐺𝑖
𝑈 (𝐺𝑖

𝐻𝑈) for 𝑖 = 𝑘∗ + 1. . 𝐾 to be renamed  𝐺𝑖
𝐿 (𝐺𝑖

𝐻𝐿) 𝑖 = 𝑘∗ + 1… ,𝐾 . With all computed values 

unaltered, 𝐼𝐼(𝑔), [4] and [5] would be unaffected by the reversal and the consistency property satisfied. 

Inference. 

To facilitate inference, note that  𝐺𝑃𝐷,𝑖∗  can be obtained from the probability density vector by pre-

multiplying 𝑝𝑔 by the 𝐾 dimensioned square cumulation matrix 𝐶𝑘∗  with typical element 𝑐𝑖,𝑗 𝑖, 𝑗 = 1, . . , 𝐼 

where for 𝑖, 𝑗 <  𝑘∗, 𝑐𝑖,𝑗 = 1 𝑤ℎ𝑒𝑛 𝑗 ≥ 𝑖 𝑎𝑛𝑑 0  otherwise, and for 𝑖, 𝑗 >  𝑘∗, 𝑐𝑖,𝑗 = 1 𝑤ℎ𝑒𝑛 𝑗 ≤ 𝑖 𝑎𝑛𝑑 0  

otherwise, all other elements of the matrix are 0. Thus:  𝐺𝑃𝐷,𝑘∗ 
= 𝐶𝑘∗𝑝𝑔 Where, as an example, for 𝐼 = 6 

and 𝑘∗ = 3,  𝐶𝑘∗ is of the form: 

𝐶𝑘∗ =

[
 
 
 
 
 
1 1 0
0 1 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
1 1 0
1 1 1]

 
 
 
 
 

 



Inference in this context is straightforward. Following Rao (2009) under independent random sampling, 

𝑝𝑔̂, the estimator of the vector of outcome probabilities 𝑝𝑔 is multivariate normal:  

                                                         √𝑛 (𝑝𝑔̂ − 𝑝𝑔)~𝑁(0, 𝑉𝑔)                                                      

where: 

                                𝑉𝑔 =

[
 
 
 
 
𝑝1,𝑔 0 0 . 0

0 𝑝2,𝑔 0 . 0

0
.
0

0
.
0

𝑝3,𝑔 . 0

. . 0
0 . 𝑝K,𝑔]

 
 
 
 

−

[
 
 
 
 
𝑝1,𝑔

𝑝2,𝑔
.
.

𝑝K,𝑔]
 
 
 
 

[𝑝1,𝑔 𝑝2,𝑔
. . 𝑝𝐾,𝑔]                  

And 𝐺𝑔
𝑃𝐷,𝑘∗

= 𝐶𝑘∗𝑝𝑔̂ will be such that: 

√𝑛(𝐺̂𝑔
𝑃𝐷,𝑘∗

− 𝐺𝑔
𝑃𝐷,𝑘∗

)~𝑁(0, 𝐶𝑘∗𝑉𝑔𝐶𝑘∗′) 

So that 𝑀𝐹𝐼̂(𝑔), estimates of 𝑀𝐹𝐼(𝑔) will be such that: 

√𝑛 (𝑀𝐹𝐼̂(𝑔) − 𝑀𝐹𝐼(𝑔))~√𝑛
1

𝜑(𝐾, 𝑘∗ )
𝑑′(𝐺𝑔

𝑃𝐷,𝑘∗

− 𝐺𝑔
𝑃𝐷,𝑘∗

)~𝑁 (0,
1

𝜑(𝐾, 𝑘∗ )2
𝑑′𝐶𝑘∗𝑉𝑔𝐶𝑘∗′𝑑) 

Similarly: 

√𝑛 (𝑀𝐹𝐼𝐻̂(𝑔) − 𝑀𝐹𝐼𝐻(𝑔))~√𝑛
1

𝜑𝐻(𝐾, 𝑘∗ )
𝑑′(𝐺𝑔

𝐻𝑃𝐷,𝑘∗

− 𝐺𝑔
𝐻𝑃𝐷,𝑘∗

)~𝑁 (0,
1

𝜑𝐻(𝐾, 𝑘∗ )2
𝑑′𝐶𝑘∗

2𝑉𝑔(𝐶𝑘∗
2)′𝑑) 

The Multivariate Paradigm. 

Consider the bivariate categorical case where both dimensions are ordered with 𝑝𝑓,𝑖,𝑗 ≥ 0: 𝑖 =

1, . . , 𝐼, 𝑗 = 1, . . , 𝐽 ∑ ∑ 𝑝𝑓,𝑖,𝑗
𝐽
𝑗=1 = 1𝐼

𝑖=1  with the ordering again following the dimension indexing, 

cumulative and counter cumulative density functions are well defined with  𝐹𝑖,𝑗 =

∑ ∑ 𝑝𝑓,𝑘,𝑙
𝑗
𝑙=1

𝑖
𝑘=1  𝑓𝑜𝑟 𝑖 = 1, . . , 𝐼, 𝑗 = 1, . . , 𝐽. 

In the modal case where 𝑘∗ coordinates are {𝑖∗, 𝑗∗} so that max
𝑖,𝑗

𝑝𝑓,𝑖,𝑗 = 𝑝𝑓,𝑖∗,𝑗∗:  

                                            Let 𝑝𝑓,𝑖∗,𝑗
∗∗ = 𝑝𝑓,𝑖∗,𝑗 𝑗 = 1, . . , 𝐽 𝑎𝑛𝑑  𝑝𝑓,𝑖,𝑗∗

∗∗ = 𝑝𝑓,𝑖,𝑗∗  𝑖 = 1, . . , 𝐼 

 𝐹𝑖,𝑗
∗∗ =  𝐹𝑖+1,𝑗

∗∗ + 𝑝𝑓,𝑖,𝑗 ∀ 𝑖 < 𝑖∗ 𝑎𝑛𝑑 𝐹𝑖,𝑗
∗∗ =  𝐹𝑖,𝑗

∗∗ + 𝑝𝑓,𝑖,𝑗 ∀ 𝑖 > 𝑖∗, ∀𝑗 = 1, . . , 𝐽 

 𝐹𝑖,𝑗
L𝑘∗

=  𝐹𝑖,𝑗+1
L𝑘∗

+  𝐹𝑖,𝑗
∗∗ ∀ 𝑗 < 𝑗∗ 𝑎𝑛𝑑 𝐹𝑖,𝑗+1

U𝑘∗
=  𝐹𝑖,𝑗

U𝑘∗
+  𝐹𝑖,𝑗

∗∗ ∀ 𝑗 > 𝑗∗, 𝑖 = 1, . . , 𝐼 

Again, when 𝑝𝑓,𝑖∗,𝑗∗  is viewed as the likelihood that the whole population resides in outcome {𝑖∗, 𝑗∗}, 

𝐼𝐶(𝑓) = (𝐼𝐽𝑝𝑓,𝑖∗,𝑗∗ − 1) (𝐼𝐽 − 1)⁄  is a very natural measure or index on the unit interval of the 

commonality or equality of outcome in the distribution, so that its complement, 𝐼𝐼(𝑓) =

𝐼𝐽(1 − 𝑝𝑓,𝑖∗,𝑗∗)/(𝐼𝐽 − 1) provides an intuitive likelihood based measure of inequality of outcome and it 

is an equally useful index of such in unordered categorical paradigms. 



The corresponding 2-dimensional version of [3] is given by: 

𝑀𝐹𝐼(𝑔) =
∑ ∑ (𝐺𝑖,𝑗

𝑈,𝑘∗

+ 𝐺𝑖,𝑗
𝐿,𝑘∗

)
𝐽
𝑗=1

𝐼
𝑖=1

(
𝑗∗𝑖∗ ∑ ∑ 𝑖𝑗

𝑗∗

𝑗=1
𝑖∗−1
𝑖=1

𝐼𝐽 + 
(𝐼𝐽 − 𝑗∗𝑖∗)∑ ∑ (𝑖𝑗 − 𝑖∗𝑗∗)𝐽

𝑗=𝑗∗+1
𝐼
𝑖=𝑖∗+1

𝐼𝐽 )

 

Appropriately vectorized versions of the 𝐼 x 𝐽 matrices 𝐺.,.
𝑈,𝑘∗

 and 𝐺.,.
𝐿,𝑘∗

 and their corresponding 𝐼𝐽 

square cumulation matrix 𝐶𝑖∗𝑗∗  can be constructed to form the 𝑖∗, 𝑗∗ Focused Probabilistic Distance 

vector 𝐺𝑃𝐷,𝑖∗,𝑗∗
 , recording the chance of being in the collection of categories successively 

further distanced from 𝑖∗, 𝑗∗. Then, given an 𝐼𝐽 dimensioned unit vector 𝑑, 𝑀𝐹𝐼(𝑔) may be written 

as: 

                                                          𝑀𝐹𝐼(𝑔) =
1

𝜑(𝐼𝐽,𝑖∗,𝑗∗)
𝑑′𝐺𝑃𝐷,𝑖∗,𝑗∗

                                                [4] 

Such that: 

√𝑛 (𝑀𝐹𝐼̂(𝑔) − 𝑀𝐹𝐼(𝑔)) ~ √𝑛
1

𝜑(𝐾, 𝑖∗, 𝑗∗)
𝑑

′(𝐺𝑔
𝑃𝐷,𝑖∗,𝑗∗

−𝐺𝑔
𝑃𝐷,𝑖∗,𝑗∗

)
 

 ~ 𝑁 (0,
1

𝜑(𝐾, 𝑖∗, 𝑗∗)2
𝑑′𝐶𝑖∗,𝑗∗𝑉𝑔𝐶𝑖∗,𝑗∗ ′𝑑) 

Extension to higher dimensioned outcomes and their corresponding asymptotic distributions is 

straightforward (though somewhat tedious!). 
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