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Abstract

This paper examines the effects of decentralizing decision-making in multi-establishment
firms. Using a unique dataset from the Liquor Control Board of Ontario (LCBO), we assess
the impact of allowing store managers to control the inventory replenishment decisions of
their stores. We first present evidence of strong heterogeneity across the inventory decisions
of the 634 store managers in the retail chain. We then study the sources of this heterogeneity
by focusing on differences across stores in the structure of the profit function. We estimate
a separate dynamic structural model of inventory management for each store manager in
the retail chain using two years of daily data. We find very substantial heterogeneity
across stores in unit costs of holding inventory, placing orders, and stockouts, and in fixed
ordering costs. Using counterfactual experiments based on the estimated model, we find
that a centralized inventory management system would yield a 0.4% increase in annual
profit for LCBO, equivalent to $6.8 million. This modest effect is the result of combining
two substantial effects with opposite signs: the negative effect of delaying the processing of
information is more than compensated by the large reduction in ordering and storage costs
from eliminating store managers’ behavioral biases and heterogeneous skills (i.e., 25.5%
on average, 6.3% for the median store). Furthermore, the gains from centralization are
very heterogeneous across stores in the retail chain, with both very substantial losses and
gains. These distributional effects within multi-divisional companies can be relevant when
deciding whether to adopt an organizational change.
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1 Introduction

Multi-establishment firms can adopt various decision-making structures within their organiza-
tion. Decisions can be centralized at the headquarter level or delegated to individual estab-
lishments in a more decentralized structure. Finding a decision-making process that is optimal
for a firm requires the evaluation of different trade-offs. A more decentralized decision-making
structure allows local managers to make use of valuable information at the store level that can
be inaccessible or difficult to communicate just-in-time to headquarters. However, decentralized
decision-making gives autonomy to local managers who are heterogeneous in their skills to ac-
quire and process information, which can translate into sub-optimal outcomes for the firm. A
multi-establishment firm must assess this trade-off when choosing the degree of decentralization
in its decision-making structure.

In this paper, we study inventory management decisions of store managers at the Liquor
Control Board of Ontario (LCBO), and the impact on the firm’s performance of allowing these
decisions to be autonomous at the store manager level. The LCBO is a provincial government
enterprise that sells alcohol across the province of Ontario. As a decentralized retail chain,
each store has some autonomy in its decision-making process. More specifically, managers have
discretion regarding two aspects of their store’s inventory: which products to offer (assortment
decisions); and when and how much to order of each product (replenishment decisions). The
latter involves forming expectations about future demand in order to determine both the optimal
order quantity and when to place the order. We use a very unique dataset from LCBO with
daily information on inventories, orders, sales, stockouts, and prices at every store and for every
product (SKU) from October 2011 to October 2013 (677 days).

First, we find strong evidence in support of store managers following (S, s) rules in their
replenishment decisions.1 Most importantly, after controlling for the different demand level at
each store, we find evidence of substantial heterogeneity across stores in their (S, s) thresholds.
Observable store characteristics – such as size and geographic location – explain only part of the
differences across store managers in their inventory decision rules.

Second, we propose and estimate a dynamic structural model of inventory management to
study the determinants of the heterogeneity in store managers’ (S, s) rules. In this model, we
focus on the differences across stores in the structure of the profit function, and more specifically,
in the costs of holding inventory, stockouts, and ordering. Given the daily frequency of the data,
we obtain precise estimates of holding cost, stockout cost, and ordering costs at the level of
individual product (SKU) and store. We find substantial heterogeneity across stores in all the

1The lower threshold s defines the safety stock level, and the upper threshold S is the order-up-to stock level.
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(revealed-preference) cost parameters. Similarly as for the (S, s) thresholds, observable store
characteristics explain less than 50% of this heterogeneity. The remaining heterogeneity can be
attributed to local managers’ idiosyncratic perceptions about store-level costs, because of either
superior private information or misconceptions about the actual costs.

Third, we use the estimated store-product-specific structural models to measure the con-
tribution of store manager heterogeneity to different inventory outcomes. Overall, removing
store managers’ idiosyncratic heterogeneity in the four cost parameters generates, on average, a
substantial effect on inventory management, with a 6-day increase in waiting time between two
orders, a decrease in the average order amount equivalent to 1.6 days of average sales, a 22%

decrease in the inventory to sales ratio, but a negligible effect on the frequency of stockouts.
Accordingly, if the idiosyncratic component of costs is a biased perception by store managers,
then it has a substantial negative effect on the firm’s profit as it increases storage and ordering
costs with almost no effect on stockouts and revenue.

Finally, we evaluate the effects of centralizing the decision-making of inventory management
at the LCBO headquarters. This counterfactual experiment takes into account that, according
to company reports, store-level information regarding sales is processed by headquarters with a
weekly delay (see Section 2.1). Accordingly, the main trade-off that this experiment measures
is that a centralized inventory management system eliminates (or reduces) store managers’ het-
erogeneous skills and behavioral biases, but it cannot benefit from store managers’ just-in-time
information about demand, sales, and inventories. We find that a centralized inventory man-
agement system would yield a 0.4% increase in annual profit for LCBO, which corresponds to
approximately $6.8 million. This modest effect is the result of combining two large effects with
opposite signs. The one-week delay in the processing of information in the centralized system
has a negative impact on profits. However, this negative effect is more than compensated by the
large increase in profits due to reducing ordering and storage costs when removing store man-
agers’ behavioral biases and heterogeneous skills (i.e., 25.5% on average, 6.3% for the median
store). Furthermore, the gains from centralization are very heterogeneous across stores, with
both very substantial losses and gains: percentiles 10 and 90 are −3.5% and 3.3%, respectively.
Distributional effects within multi-divisional companies can be relevant when deciding whether
to adopt an organizational change (see Inderst, Müller, and Wärneryd (2007)).

This paper contributes to several literatures. First, we contribute to a growing empiri-
cal literature on centralization vs. decentralization of decision making in multi-division firms.
DellaVigna and Gentzkow (2019) show that most retail chains in the US charge uniform prices
across stores, despite there being large differences in demand elasticities and gains from third-
degree price discrimination. The authors discuss possible explanations for this finding. Hortaçsu,
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Natan, Parsley, Schwieg, and Williams (2021) study the pricing system of a large international
airline company that combines different decision rights across multiple organizational teams.
The authors find that this pricing system — despite using advanced optimization techniques
and automation — does not internalize consumer substitution to other products, uses persis-
tently biased demand forecasts, and does not respond to changes in opportunity costs. These
inefficiencies are mostly related to the limited coordination between teams.2

Second, our paper relates to a large literature on Team Theory, pioneered by Marschak and
Radner (1972). Team theory studies information processing and decision making in firms charac-
terized by dispersed information and by physical constraints that make it costly to communicate
and process information. In our model, store managers have their own perception of the firm’s
profit, which can be the result of private incentives, different skills, or behavioral biases. In this
aspect, our framework relates to the literature on coordination in organizations and the trade-off
between coordination and acting independently.3

Third, the paper is related to the empirical literature of (S, s) decision rules, with contribu-
tions by Blinder (1981), Mosser (1991), Aguirregabiria (1999), Hall and Rust (2000), Kryvtsov
and Midrigan (2013), Bray, Yao, Duan, and Huo (2019), and Bray and Stamatopoulos (2021) for
firm inventories, and by Eberly (1994), Attanasio (2000), Adda and Cooper (2000), and Foote,
Hurst, and Leahy (2000) for household purchases of durable products. We contribute to this
literature by using high-frequency (daily) data at the store and product level to estimate cost
parameters using a dynamic structural model for each store and product.

Finally, our paper contributes to the literature in empirical industrial organization on struc-
tural models with boundedly rational firms. Most of this literature studies firms’ entry/exit
decisions (Goldfarb and Xiao, 2011, 2019; and Aguirregabiria and Magesan, 2020), pricing de-
cisions (Huang, Ellickson, and Lovett, 2020; Ellison, Snyder, and Zhang, 2018), and bidding
behavior in auctions (Hortaçsu and Puller, 2008; Doraszelski, Lewis, and Pakes, 2018; Hortaçsu,
Luco, Puller, and Zhu, 2019). As far as we know, our paper is the first one to investigate bounded
rationality in firms’ inventory decisions.

The rest of the paper is organized as follows. Section 2 describes the institutional background
of the LCBO and presents the dataset and descriptive evidence. Section 3 presents evidence of
managers following (S, s) decision rules and illustrates the heterogeneity in these (S, s) thresh-
olds across store managers. Section 4 presents the structural model and its estimation. The
counterfactual experiments to evaluate the effects of decentralization are described in section 5.
We summarize and conclude in Section 6.

2In our application, LCBO combines centralized uniform pricing with decentralized inventory management.
3See Alonso, Dessein, and Matouschek (2008), Hart and Holmstrom (2010), and Dessein, Garicano, and

Gertner (2010).
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2 Firm and data

2.1 LCBO retail chain

LCBO was founded in 1927 as part of the passage of the Ontario Liquor Licence Act.4 This
act established that LCBO was a crown corporation of the provincial government of Ontario.
Today, the wine retail industry in Ontario is a triopoly - consisting of 634 LCBO stores, 164 Wine
Rack stores, and 100 Wine Shop stores. Despite its government ownership, LCBO is a profit
maximizing company. As described in its governing act, part of its mandate is to "[generate]
maximum profits to fund government programs and priorities".

LCBO and its competitors are subject to substantial pricing restrictions. Prices must be
the same across all stores in all markets for a given store-keeping-unit (SKU). There is no price
variation across the LCBO and its competitors. Retail prices are determined on a fixed markup
over the wholesale price set by wine distributors. Furthermore, the percentage markup applies
to all the SKUs within broadly defined categories.5

As a retail chain, LCBO operates stores across the province of Ontario. Stores report to
headquarters, who oversee the overall chain operations. In terms of inventories, stores order
product from the closest distribution centre. The order is then periodically delivered by trucks,
according to a pre-determined route and schedule.

Store managers at the LCBO are responsible for the overall operation of their store. As
an incentive, a fixed percentage of the managers’ salaries is based on the performance of their
store. In terms of their role, the main responsibility of store managers is to oversee their store’s
inventory level for each product they offer, and to ensure that daily demand is met. In order to
do so, managers have autonomy to decide product assortment and replenishment of inventory
in their store, and how much to restock those products. Managers therefore have a dual respon-
sibility when it comes to the inventory management of their store: providing products that are
in high demand, and keeping these products stocked. In this paper, we focus on the inventory
replenishment decisions.

In order to assist store managers in their inventory decisions, headquarters provide daily
recommendations to managers regarding how much to order of each product at their store. In the
company’s internal jargon, these recommendations are referred to as Suggested Order Quantities

4The information in this section originates from various archived documents from the LCBO. General infor-
mation about the company and its organization is based on the company’s annual reports Liquor Control Board
of Ontario (2012) and Liquor Control Board of Ontario (2013). Information regarding headquarters’ order rec-
ommendations (Suggested Order Quantities, SOQs) originates from the report Liquor Control Board of Ontario
(2016). Additional information regarding the role of store managers originates from an interview we conducted
with an LCBO store manager from a downtown Toronto store.

5See Aguirregabiria, Ershov, and Suzuki (2016) for further details about markups at LCBO.
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(SOQs). For each store in the retail chain, headquarters generate daily order recommendations
based on the previous week’s sales and inventory information, and therefore provide a schedule for
the retail chain’s overall inventory replenishment. The store-level information used to generate
the order recommendations include the Average Rate of Sale (ARS) of the product from the
previous week, as well as seasonal brand factors.

Note that the headquarters’s recommendation is based on sales information with a one week
lag. This informational friction plays an important role in the decentralization decision. Store
managers have more updated sales information than the headquarters. However, despite having
lagged information, headquarters may use more sophisticated statistical models than some store
managers to predict future demand. We take into account this trade-off in our evaluation of the
benefits/costs of decentralizing inventory decision-making.

2.2 Data

We use a unique dataset from the LCBO with daily information on inventories, sales, deliveries,
and prices of every product sold at each LCBO store between October 2011 and October 2013
(677 days). With 634 stores across Ontario and more than 20,000 different products sold, the
dataset includes approximately 700 million observations in total. The dataset also includes
information about product characteristics, store characteristics such as location, size, and store
type, and about the managers themselves.6

Table 1 presents basic summary statistics of the dataset. The average store has an assortment
of 2, 029 items (SKUs); sells 12, 909 units per week (6.36 units per SKU); generates a weekly
revenue of $162, 250 ($80 per SKU and week, and $12.6 per unit sold); receives deliveries 5.37

days per week, with these deliveries containing 12, 258 units; and has 415 stockout events per
week. According to the table, these numbers vary significantly across the different types of stores.
As expected, larger stores generate higher weekly revenues than smaller ones: the average AAA
and AA stores generate weekly revenues of $874, 367 and $518, 067 respectively, while the average
C and D stores generate weekly revenues of $59, 328 and $23, 913, respectively. Stockout events
seem to occur more frequently at larger stores than smaller ones on average, with 1,203 stockout
events occurring at the average AAA store per week against 204 stockout events per week at
the average D store. Finally, larger stores seem to place orders more frequently and in greater
quantity. The average AAA and AA stores receive orders 6.30 and 6.27 days per week for a total
of 51,340 and 35,711 units respectively, while the average C and D stores only receive orders
5.09 and 3.83 days per week for a total of 4,395 and 1,660 units, respectively.

6LCBO classifies their stores into six categories, from largest (i.e. highest-selling) to smallest (i.e. lowest-
selling): AAA, AA, A, B, C, and D.
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Table 1: Summary Statistics

Type of store
All AAA AA A B C D

Mean Mean Mean Mean Mean Mean Mean
(st.dev) (st.dev) (st.dev) (st.dev) (st.dev) (st.dev) (st.dev)

Number of Observations
Number of Stores 634 5 25 148 157 164 135

Number of Unique Products 22,327 18,200 18,879 20,860 17,769 13,527 9,198
Number of Days 677 676 676 676 677 676 675

Sales & Stockouts Per Store
Revenue per week ($) 162,249 874,367 518,067 320,263 162,588 59,327 23,912

(158,268) (255,172) (111,241) (75,387) (47,385) (21,159) (10,503)
Units sold per week 12,908 57,160 38,369 25,665 14,068 4,522 1,730

(11,885) (8,992) (5,399) (5,405) (4,554) (1,820) (819)
Stockout events per week 414 1,202 912 699 371 273 204

(326) (429) (279) (306) (152) (252) (200)
Inventories Per Store

Number of products 2,028 6,477 4,852 3,555 2,102 1,098 742
(1,416) (1,018) (745) (937) (706) (291) (190)

Delivery days per week 5.37 6.30 6.27 6.23 6.06 5.09 3.83
(1.08) (0.01) (0.05) (0.11) (0.31) (0.66) (0.88)

Delivery units per week 12,257 51,339 35,710 24,350 13,476 4,395 1,660
(11,108) (6,872) (4,848) (5,063) (4,478) (1,792) (814)

Inventory Ratios Per Store
Inventory to (daily) sales ratio 23.31 15.67 15.74 16.89 18.97 25.21 34.23

(9.86) (2.16) (2.74) (3.32) (5.24) (7.20) (11.85)
Inventory to sales ratio after order 18.48 8.78 10.34 12.18 15.13 21.65 26.87

(9.16) (0.62) (1.55) (2.76) (4.40) (7.38) (11.72)
Inventory to sales ratio before order 8.62 5.31 6.83 7.82 8.88 9.23 8.92

(3.59) (0.60) (1.40) (2.39) (2.97) (3.66) (4.99)
Ordering frequency 0.07 0.10 0.10 0.09 0.08 0.06 0.04

(0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.02)

The bottom panel in Table 1 presents inventory-to-(daily)sales ratios and ordering frequen-
cies. These statistics are related to the (S, s) decision rules that we analyze in section 3. At
the store-product level, the inventory-to-sales ratio before and after an order correspond to
thresholds s and S, respectively. On average, a store keeps enough inventory to cover demand
of a product for 23 days, places an order when there is inventory for 9 days, and the ordered
amount covers sales for 18 days. For the average store and product, orders are placed once every
two weeks (i.e., 0.07 ' 1/14). Average inventory-to-sales ratios decrease with store size/type,
though this difference captures also a composition effect due to different product assortments
across store types. In sections 3 to 5, we control for these composition effects by focusing on a
set of products carried by all the stores.

Figure 1 shows strong heterogeneity across stores in several measures related to inventory
management. The figures in panels (a) to (f) are inverse cumulative distributions over stores,
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together with their 95% confidence bands.7

Panel (a) presents the distribution of the stockout rate. For store i, we have:

Stockout ratei =
# product− day observations with stockouti

# total product− day observationsi
(1)

The figure shows a significant spread of stockout rates: the 10th percentile is 2% and the 90th

percentile is 10%.
Panel (b) shows substantial heterogeneity across stores in the revenue-loss per-product-day

generated by stockouts. Indexing products by j, and using Ji and Ji to represent the set and
the number of products in store i, respectively, the revenue-loss for store i is:

Revenue lossi =
1

Ji

∑
j∈Ji

Stockout ratei,j × Average daily revenue without stockoutsi,j (2)

The 10th and 90th percentiles are $0.20 and $1.00 per product-day, respectively. Aggregated at
the annual level and over all products offered in a store, they imply an average annual revenue-
loss of approximately $150, 000 at the 10th percentile and $750, 000 at the 90th percentile.

Panel (c) presents the ordering frequency of stores in our sample calculated as:

Ordering frequencyi =
# product− day observations with orderi

# total product− day observationsi
(3)

This ordering rate varies significantly across stores, with the 10th percentile being 0.05 and the
90th being 0.13.

Panels (d) to (f) present the empirical distributions for the inventory-to-sales ratio, for this
ratio just before an order (a measure of the lower threshold s), and for this ratio just after an
order (a measure of the upper threshold S ). Indexing days by t:

Inventory − to− (daily)sales− ratioi =

∑
j∈Ji

∑T
t=1 Inventoryi,j,t∑

j∈Ji

∑T
t=1 Units soldi,j,t

(4)

The distribution of the inventory-to-sales ratio shows that stores at the 10th and 90th percentiles
hold inventory for 14 days and 35 days of average sales, respectively. For the upper threshold S
(in Panel (e)), the values of these percentiles are 10 and 30 days, and for the lower threshold s
(in Panel (f)) they are 5 and 13 days.

7For every store, the 95% confidence interval is based on the construction of store-product specific stockout
rates. For a given store, we have thousands of these product specific rates. The 95% confidence interval is
determined by percentiles 2.5% and 97.5% in this distribution.
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Figure 1: Inventory Outcomes
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Given these substantial differences across stores inventory outcomes, it is interesting to ex-
plore how they vary together. In Figure 2 below, we present five scatter plots at the store level:
(a) stockout frequency against ordering frequency; (b) stockout frequency against inventory-to-
sales ratio; (c) stockout frequency against inventory-to-sales ratio after an order is received; (d)
stockout frequency against inventory-to- sales ratio before an order is placed; and (e) inventory-
to-sales ratio after an order is received against inventory-to-sales ratio before an order is placed.
The simple correlations in these figures provide preliminary descriptive evidence on the possible
sources of structural heterogeneity, such as heterogeneity across stores in storage cost, stockout
cost, ordering cost, or demand uncertainty, which are structural parameters in our model in
Section 4.

The strongest correlation appears in Panel (e), for the relationship between our measures of
the thresholds S and s.8 This positive correlation can be explained by store heterogeneity in
stockout costs and/or storage costs: a higher stockout cost (storage cost) implies higher (lower)
values of both s and S. In contrast, a higher lump-sum ordering cost implies a lower s but a
negligible effect on S. Therefore, the positive correlation between the lower and upper thresholds
we observe seems more compatible with store heterogeneity in stockout and/or storage costs
rather than with heterogeneity in ordering costs. We confirm this conjecture in the estimation
of the structural model in Section 4.

Panel (a) shows a small positive relationship between the stockout frequency and the ordering
frequency. That is, stores placing orders more frequently tend to have higher stockout rates.
This correlation could be explained by heterogeneity in inventory holding costs, as a higher
storage cost implies both a larger ordering frequency (with a smaller amount per order) and a
larger stockout rate due to a lower safety s threshold.

Panels (b) and (c) show a small negative relationship between stockout rates and the inven-
tory to sales ratio overall and after an order is received, respectively. These findings are what we
would expect: stores that have lower inventory-on-hand on average experience higher stockout
rates, and stores that order up to a smaller threshold S also experience higher stockout rates.
Relatedly, panel (d) shows a small negative relationship between stockout rates and our measure
of the threshold s. Again, this is what we would expect, as stores with a lower safety stock level
are more likely to experience higher stockout rates.

8For the interpretation of this empirical evidence, it is useful to take into the comparative statics of the (S, s)
thresholds as functions of the structural parameters in the profit function. We present these comparative statics
in equation (6) in Section 3.1, based on results in Hadley and Whitin (1963) and Blinder (1981).

9



Figure 2: Inventory Scatter Plots
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2.3 Working sample

In the econometric models that we estimate in Sections 3 and 4, the parameters are unrestricted
at the store-product level. There are almost 2 million store-product pairs in our data. For the
sake of time saving, we have not estimated these models for every store-product in the data.
This would have been especially time-consuming for the dynamic structural model in Section 4.
Instead, we have estimated these models for every store, but only for a selection of 5 products.
In this section, we explain our criteria in the selection of these products and present summary
statistics for this working sample.

The product basket we select for estimation in Sections 3 and 4 relies on two criteria. First,
we choose products that are high-selling across all LCBO stores. That is, we include products
that are in high demand across the province, which entails that inventory decisions for these
products have a substantial contribution to the firm’s profit. Second, since our parameters are
unrestricted at the store-product level, we include products from each broad category in order to
account for product-level heterogeneity. These product categories include white wine, red wine,
vodka, whisky, and rum. Based on these criteria, Table 2 presents the selected 5 products.

Table 2: SKUs - Working Sample

SKU SKU SKU SKU SKU
#67 #117 #340380 #550715 #624544

Product Information
Name Smirnoff Bacardi Superior Two Oceans Forty Creek Yellow Tail

Vodka White Rum Sauvignon Blanc Barrel Select Whisky Shiraz

Category Vodka Rum White Whine Whisky Red Wine

Average Retail Price ($) 25.28 24.93 9.98 25.86 11.83

Table 3 below presents summary statistics for our working sample. The average store in our
working sample sells 91 units per week (18 units per SKU); generates a weekly revenue of $1, 687

($347 per SKU and week, and $18 per unit sold); receives deliveries 2 days per week, with these
deliveries containing 88 units; and has 0.37 stockout events per week. Similarly to Table 1, these
numbers vary significantly across the different types of stores. While the average AAA and AA
store generates weekly revenues of $5, 198 and $4, 512 respectively in our working sample, the
smaller C and D stores generate only $821 and $302 on average, respectively. Contrary to our
full sample, stockout events seem to occur more frequently in smaller stores than larger ones in
our working sample (0.56 stockouts per week for the average D store, and 0.14 stockouts per
week for the average AAA store). Finally, deliveries seem to follow the same trend as in Table
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1, with bigger stores placing larger and more frequent orders. The average AAA store receives
deliveries 4 days per week for a total of 272 units per week, while the average D store only
receives deliveries 0.6 days per week for a total of 15 units per week.

Given our selection criteria of high-selling products for our working sample, the mean values
for the inventory-to-sales ratios – overall, after an order is received, and before an order is placed
– are all above the mean values for full sample: 20.40, 19.30, and 13.38 in the working sample
versus 14.35, 17.63, and 10.29 in the full sample. That is, our working sample presents higher
inventory on hand across stores, and higher values of S and s on average.

Table 3: Summary Statistics - Working Sample

Type of store
All AAA AA A B C D

Mean Mean Mean Mean Mean Mean Mean
(st.dev) (st.dev) (st.dev) (st.dev) (st.dev) (st.dev) (st.dev)

Number of Observations
Number of Stores 634 5 25 148 157 164 135

Number of Unique Products 5 5 5 5 5 5 5
Number of Days 677 676 676 676 677 676 675

Sales & Stockouts Per Store
Revenue per week ($) 1,687 5,197 4,511 3,192 1,801 821 302

(1,402) (1,487) (1,415) (835) (660) (443) (200)
Units sold per week 91 274 252 173 98 43 15

(75) (51) (65) (39) (33) (22) (10)
Stockouts events per week 0.37 0.14 0.13 0.21 0.28 0.49 0.56

(0.39) (0.07) (0.11) (0.15) (0.23) (0.35) (0.60)
Inventories Per Store

Number of products Offered 4.85 5 5 5 5 4.90 4.42
(0.51) (0) (0) (0) (0) (0.34) (0.92)

Delivery days per week 1.94 4.04 3.79 3.20 2.28 1.20 0.62
(1.15) (0.29) (0.24) (0.49) (0.56) (0.51) (0.35)

Delivery units per week 88 272 243 167 95 42 15
(73) (55) (68) (38) (33) (21) (9)

Inventory Ratios Per Store
Inventory to sales ratio 20.97 28.27 25.18 24.93 24.07 18.80 14.59

(7.03) (8.06) (7.18) (6.44) (6.91) (4.84) (3.46)
Inventory to sales ratio after order 20.80 21.02 18.85 20.09 22.48 21.46 19.17

(4.94) (10.69) (4.11) (4.46) (6.18) (4.07) (3.81)
Inventory to sales ratio before order 13.06 17.48 15.77 16.61 16.25 10.90 7.43

(5.33) (7.10) (3.42) (3.83) (4.72) (3.44) (2.95)
Ordering frequency 0.15 0.31 0.30 0.25 0.17 0.09 0.05

(0.09) (0.06) (0.06) (0.06) (0.05) (0.04) (0.03)
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3 (S,s) decision rules

3.1 Model

In this section, we study store managers’ inventory behaviour through the eyes of (S, s) decision
rules. In its simpler version, the threshold values that define this decision rule are time-invariant.
Under lump-sum (fixed) ordering costs, time-invariant expected demand and ordering costs, and
general conditions on the profit function, the optimal (profit-maximizing) inventory decision rule
has a (S, s) structure (Arrow, Harris, and Marschak, 1951; Scarf, 1959; Denardo, 1981). This
rule is described by a lower threshold s that determines the stock level that triggers a new order
(the so called safety stock level), and an upper threshold S that represents the stock level to
reach when an order is placed. That is, if kt represents the stock level at the beginning of day
t, and yt is orders at day t, then a (S, s) rule implies:

yt =

 S − kt if kt ≤ s

0 otherwise
(5)

Hadley and Whitin (1963) and Blinder (1981) provide comparative statics for the thresholds
(S, s) as functions of the structural parameters in the firm’s profit function. They provide the
following results: 

S = fS

(
de, γh,

γf

γc
,
γz

γc

)
+ − ? +

s = fs

(
de, γh,

γf

γc
,
γz

γc

)
+ − − +

S − s = fS−s

(
de, γh,

γf

γc
,
γz

γc

)
+ − + ?

(6)

where de represents expected demand, γh is the inventory holding cost per period and per unit,
γf is the fixed (lump-sum) ordering cost, γc is the unit ordering cost, and γz is the stockout cost
per period and per unit. In fact, these γ’s are the parameters in the structural model that we
estimate in Section 4.

The optimality of the (S, s) decision rule extends to models with state variables – other than
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inventory – that evolve over time according to an exogenous Markov process.9 Let zt be the
vector of these exogenous state variables. For instance, zt may include variables affecting the
state of demand, unit ordering costs, wholesale prices, and the product’s retail price, when this
price is taken as given by the store manager, as it is in our problem. The optimal decision rule
has a (St, st) structure, where the thresholds St and st are time-invariant functions of these state
variables: S(zt) and s(zt).

Our empirical approach in this section is in the same spirit as Eberly (1994), Attanasio (2000),
and Adda and Cooper (2000). These papers use household-level data on purchases of a durable
product (automobiles) to estimate (St, st) decision rules where the thresholds are functions of
household characteristics, prices, and aggregate economic conditions. This can be interpreted
as a semi-structural approach in the sense that using (St, st) rules is motivated by a dynamic
programming model of optimal behavior, but the specification of the thresholds as functions of
state variables does not incorporate explicitly the structural parameters of the model. Section 4
presents a full structural approach, and in Section 5, we use the estimated structural model to
make counterfactual policy experiments that provide answers to the questions motivating this
paper. Here, we find useful to explore the data using a less restrictive empirical framework that
is still consistent with the structural model.

Given that our dataset contains 677 daily observations for every store and product, and that
the ordering frequency in the data is high enough to include many orders per store-product,
we can estimate the parameters in the (St, st) decision rules at the store-product level. This is
important in order to distinguish product and store differences in these parameters, such that we
do not spuriously interpret as store heterogeneity what is actually the result of different product
assortments across stores. In this section, we omit store and product sub-indexes in variables
and parameters, but it should be understood that these sub-indexes are implicitly present.

We consider the following specification for the (St, st) thresholds:
St = exp{βS0 + βSd ln det + βSp ln pt + uSt }

st = exp{βs0 + βsd ln det + βsp ln pt + ust}

(7)

where pt is the product’s retail price, det is the expected demand, and ust and uSt represent state
variables which are known to the store manager but are unobservable to us as researchers.10

9By exogenous process, here we mean that the transition probability function of these state variables does
not depend on the firm’s orders or inventories.

10For instance, ust and uSt may include shocks in fixed and variable ordering costs, or measurement error in our
estimate of expected demand.
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That is, the vector of exogenous state variables is zt = (det , pt, u
s
t , u

S
t ). The β’s are reduced form

parameters which are constant over time but vary freely across stores and products, and are
functions of the structural parameters that we present in our structural model in Section 4.

Our measure of expected demand is based on an LCBO report regarding the information that
headquarters use to construct order recommendations to each store (Liquor Control Board of
Ontario, 2016). According to this report, LCBO central managers obtain predictions of demand
for each store-product using information on the product’s retail price (pt), the average daily sales
of the store-product at the previous week (that we represent as Qt−1), and seasonal dummies.
We consider that demand has a Negative Binomial distribution where the logarithm of expected
demand at period t has the following form:

ln det = lnE (qt|pt, Qt−1) = α′ h (ln pt, lnQt−1) (8)

where qt is the quantity sold of the store-product at day t, α is a vector of parameters which
are constant over time but vary freely across store-products, and h (ln pt, lnQt−1) is a vector of
monomial basis in variables ln pt and lnQt−1.

We denote equation (8) as the sales forecasting function. It deserves some explanation. First,
it is important to note that this is not a demand function and its parameters are not causal
parameters. For this inventory decision problem, managers do not need to know the demand
function and in particular the causal effect of price on sales. They only need to obtain the best
possible predictor of future sales given the information they have. Obtaining this predictor does
not require estimating the causal effect of price on demand. Second, this specification ignores
substitution effects between products within the same category or across categories. Ignoring
substitution effects in demand is fully consistent with LCBO’s report and with the firm’s price
setting, which completely ignores these substitution effects (see Aguirregabiria, Ershov, and
Suzuki, 2016). There is substantial and growing empirical evidence showing that the pricing
decisions of important multi-product firms do not internalize substitution or cannibalization
effects between the firm’s own products. See, for instance, Hortaçsu, Natan, Parsley, Schwieg,
and Williams (2021)’s study of the pricing system of a large international airline company,
DellaVigna and Gentzkow (2019) and Hitsch, Hortaçsu, and Lin (2021) on uniform pricing at
US retail chains, Cho and Rust (2010) on pricing of car rentals, or Miravete, Seim, and Thurk
(2020) for liquor stores in Pennsylvania.

In the Appendix (Section 7.1), we present a summary of the estimation results of the sales
forecasting function for every store and every product in our working sample.

The (St, st) model in equations (5) and (7) implies that the decision of placing an order
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(yt > 0) or not (yt = 0) has the structure of a linear-in-parameters binary choice model.

1{yt > 0} = 1{bs0 + bsk ln kt + bsd ln det + bsp ln pt + ũst ≥ 0}, (9)

where 1{.} is the indicator function; ũst ≡ ust/σus is the standardized version of ust , as σus is the
standard deviation of ust ; and there is the following relationship between βs and bs parameters:

bsk =
−1

σus
; bs0 =

βs0
σus

; bsd =
βsd
σus

; bsp =
βsp
σus

(10)

These equations imply that, given the parameters bs, we can identify the parameters βs and σus .
We assume that ũst has a Logistic distribution, such that equation (9) is a Logit model, and we
estimate the parameters bs by maximum likelihood.

Our (St, st) model also implies that in days with positive orders (yt > 0) the logarithm of
the total quantity offered, ln(kt + yt), is equal to the logarithm of the upper-threshold, ln(St),
and this implies the following linear-in-parameters regression model:

ln(kt + yt) = βS0 + βSd ln det + βSp ln pt + uSt if yt > 0. (11)

Equation (11) includes the selection condition yt > 0. That is, the upper-threshold St is observed
only when an order is placed. This selection issue implies that OLS estimation of equation (11)
yields inconsistent estimates of the parameters and the threshold itself. However, the (St, st)

model implies an exclusion restriction that provides identification of the parameters in equation
(11). The inventory level kt affects the binary decision of placing an order or not (as shown in
equation (9)), but conditional on placing an order, it does not affect the value of the upper-
threshold in the right-hand-side of regression equation (11). This exclusion restriction in (S, s)

models have been pointed out before by Bertola, Guiso, and Pistaferri (2005). Therefore, using
(9) as the selection equation, we can identify the parameters βS in (11) using a Heckman two-step
approach.

3.2 Estimation of (S, s) thresholds

Figure 3 presents the cloud of point estimates of parameters bs0, bsk, bsd, and bsp in the lower
threshold for every store and product. For each parameter, the figure presents also a curve with
the average estimate for each store, where the average is obtained over the five products. We
sort stores from the lowest to the largest average estimate such that this curve is the inverse
CDF of the average estimate. The red-dashed band around the median of this distribution is the
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95% confidence band under the null hypothesis of homogeneity across stores.11 The signs of the
parameter estimates are for the most part consistent with the predictions of the model. These
distributions show that the parameter estimates vary significantly across stores. For bs0, bsk,, bsd,
and bsp, we have that 90%, 95%, 97%, and 90% of stores lie outside of Bonferroni confidence
interval, respectively.

Figure 3: bs Estimates
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11This 95% confidence interval applies Bonferroni correction for multiple testing.
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Figure 4 presents the cloud of point estimates of the parameters βS in the upper threshold,
as well as the inverse CDF of the store specific average, and Bonferroni 95% confidence interval
under the null hypothesis of homogeneity. As expected, we have strong evidence of heterogeneity
in our estimates. For βS0 , βSd , and βSp , approximately 96%, 97%, and 96% of stores lie outside of
the confidence bands, respectively.

Figure 4: βS Estimates
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Table 4 presents a decomposition of the variance of parameter estimates into within-store
(between products) and between-stores variance. The parameters associated to expected demand
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and the lower threshold inventory parameter show a between-store variance that is at least as
large as the within-store variance. For the constant parameters and the price parameters, the
variance is larger across products.

Table 4: Variance Decomposition of Parameter Estimates

Variance bs0 bsk bsd bsp βS
0 βS

d βS
p

Between-store Variance 42.36 0.03 0.61 8.01 47.14 0.31 9.31

Within-store Variance 80.56 0.03 0.05 15.12 91.99 0.08 17.86

The estimated parameters imply estimates for the (St, st) thresholds. We now investigate het-
erogeneity across stores in these thresholds. For each store-product pair, we begin by obtaining
the log-lower-threshold and the log-upper-threshold evaluated at the mean value of log-price and
retail-specific mean value of log-expected-demand. We denote these log-thresholds as log-s0 and
log-S0, respectively. Figure 5 presents the cloud of point estimates of log-s0 and log-S0 for every
store-product, the inverse CDF of the store-specific average, and the Bonferroni 95% confidence
band under the null hypothesis of store homogeneity. These distributions show very significant
differences in both store-product level estimates and store level estimates. For the log-lower-
threshold, 96% of stores lie outside the confidence bands and therefore have different values of
store level log-thresholds. For the upper-log-threshold, only 1% of stores lie within the confidence
bands, which entails that 99% of stores have different values of store level log-thresholds.

In addition to this between-store heterogeneity, we also observe significant positive correlation
between the two log-thresholds. This confirms our previous conjecture from Figure 2, in which
we observed a positive correlation between the inventory to sales ratio before and after an order
is placed. Again, this correlation can be explained by differences across stores in stockout costs
or/and inventory holding costs.

In order to explore the sources of this heterogeneity, Table 5 below presents a variance de-
composition of the log-thresholds s0 and S0. More specifically, we are interested in disentangling
how much of the differences we observe in Figure 5 is attributable to variation across stores,
and how much is because of differences across products. Table 5 presents an interesting finding:
for the lower threshold, between-store variance is significantly larger than within-store variance,
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Figure 5: Optimal Thresholds
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while the opposite is true for the upper threshold. That is, the order-up-to quantity seems to
be relatively homogeneous across stores, while the safety stock level seems to vary significantly.

Table 5: Variance Decomposition of Log-thresholds

Variance Log-s0 Log-S0

Between-store Variance 1.54 0.39

Within-store Variance 0.99 0.68
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4 Structural model

We propose and estimate a dynamic structural model of inventory management. A price-taking
store sells a product and faces uncertain demand. The store manager orders the product from the
retail chain’s warehouse, and any unsold product rolls over to next period’s inventory. The store-
level profit function incorporates four store-specific costs associated with inventory management:
a per-unit inventory holding cost, a stockout cost, a fixed ordering cost, and a per-unit ordering
cost. For notational simplicity, we omit store and product indexes.

4.1 Sequence of events and profit

Time is indexed by t and one period is one day. Every day, the sequence of events is the following.

Step (i). The day begins with the store manager observing current stock (kt), the retail price
set by headquarters (pt), and her expectation about the mean and variance of the distribution
of log-demand: ln det and σ2

t , respectively.

Step (ii). The store manager orders yt units of inventory from the distribution centre. There
is time-to-build in this ordering decision. More specifically, it takes one day for an order to be
delivered to the store and become available to consumers. The ordered amount yt is a discrete
variable with support set Y ≡ {0, 1, ..., J}.

Step (iii). Demand dt is realized. Demand has a Negative Binomial distribution with log-
expected demand and variance: ln det = η0,t + ηp ln pt + ηQ lnQt−1

σ2
t = det (1 + detα)

(12)

where ηp, and ηQ are parameters; η0,t represents seasonal effects (i.e., weekend dummy and main
holidays dummy, denoted as seas); α denotes the overdispersion parameter; and Qt−1 is the
average daily sales of the product in the store during the previous week. We use Fdt to represent
the distribution of dt at day t, i.e., conditional on pt, Qt−1, and seasonal effects. Importantly,
the stochastic demand shock udt ≡ ln dt− ln det is unknown to the store manager at the beginning
of the day, when she makes her ordering decision.

Step (iv). The store sells qt units of inventory, which is the minimum of supply and demand:

qt = min{ dt , kt } (13)
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The store generates flow profits Πt. The profit function has the following form:

Πt = (pt − ct) min{dt, kt} − γz1{dt > kt} − γh kt − γc yt − γf 1{yt > 0}+ σε εt(yt) (14)

where ct is the wholesale price, γz, γh, γc, γf , and σε are store-product-specific structural
parameters: γz 1{dt > kt} is the cost of a stockout in addition to the lost revenue; γh kt is
the storage cost associated with holding kt units of inventory at the store; γc is a per-unit cost
incurred by the store manager when placing an order; γf is a fixed ordering cost, and εt(yt) is
a stochastic and mean zero shock in ordering costs. More specifically, variables εt(0), εt(1), ...,
εt(J) are i.i.d. with a Extreme Value type 1 distribution. Parameter σε represents the standard
deviation of the shocks in ordering costs.

Price-cost margins. LCBO’s retail prices are a constant markup over their respective wholesale
prices. There are different markups for Ontario products (65.5% markup) and non-Ontario
products (71.5% markup) (see Aguirregabiria, Ershov, and Suzuki, 2016). A constant markup
implies that the price-cost margin is proportional to the retail price: pt − ct = L pt, where
L = τ

1+τ
, τ is the markup, and L stands for Lerner index. This index is equal to L = 0.40 for

Ontario products and L = 0.42 for non-Ontario products.

Step (v). Orders yt placed at the beginning of day t arrive to the store at the end of the same
day or at the beginning of t+ 1. Inventory is updated according to the following transition rule:

kt+1 = kt + yt − qt (15)

Finally, next period price pt+1 is realized according to a first order Markov process with transition
distribution function Fp(pt+1|pt).

4.2 Dynamic decision problem

A store manager chooses the order quantity yt to maximize her store’s expected and discounted
stream of current and future profits. This is a dynamic programming problem with state variables
xt ≡ (kt, pt, lnQt−1, seast) and εt ≡ (εt(0), εt(1), ..., εt(J)) and value function V (xt, εt). This
value function is the unique solution of the following Bellman equation:

V (xt, εt) = max
yt∈Y

{ π(yt,xt) + σε ε(yt) + β E [V (xt+1, εt+1) | yt,xt] }, (16)

where β ∈ (0, 1) is the store’s one-day discount factor; π(yt,xt) is the expected profit function
up to the εt shock; and E[.|yt,xt] is the expectation over the i.i.d. distribution of εt+1, and
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over the distribution of xt+1 conditional on xt. The latter distribution consists of the transition
probability Fp(pt+1|pt) and the distribution of demand dt conditional on xt which together with
equations (13) and (15) determines the distribution of (kt+1, pt+1, lnQt, seast+1). The solution
of this dynamic programming problem implies a time-invariant optimal decision rule: yt =

y∗(xt, εt). This optimal decision rule is defined as the arg max of the expression within brackets
{} in the right-hand-side of equation (16).

For the solution and estimation of this model, we follow Rust (1987, 1994) and use the
integrated value function Vσ(xt) ≡ 1

σε

∫
V (xt, εt)dεt and the corresponding integrated Bellman

equation. Given the Extreme Value distribution of the εt variables, the integrated Bellman
equation has the following form:

Vσ(xt) = ln

[∑
y∈Y

exp

(
π(y,xt)

σε
+ β E [Vσ(xt+1) | y,xt]

)]
. (17)

The expected profit function π(yt,xt) is linear in the parameters. That is,

π(yt,xt)

σε
= h(yt,xt)

′ γ, (18)

where γ is the vector of structural parameters γ ≡ (1/σε, γh/σε, γz/σε, γf/σε, γc/σε)′, and
h(yt,xt) is the following vector of functions of the state variables:

h(yt,xt)
′ = (pt E[min{dt, kt}|xt],−kt,−E[1{dt > kt}|xt],−1{yt > 0},−yt) , (19)

where the expectation is taken over the distribution of demand conditional on xt.
We consider a discrete space for the state variables xt.12 Let X ≡ {x1,x2, ...,xL} be the

support set of xt. We can represent the value function Vσ(.) as a vector Vσ in the Euclidean
space RL, and the transition probability functions of xt for a given value of y as an L×L matrix
Fx(y). Taking this into account, as well the linear-in-parameters structure of the expected profit
π(yt,xt), we can represent the integrated Bellman equation in vector form as follows:

Vσ = ln

[∑
y∈Y

exp (H(y) γ + β Fx(y) Vσ)

]
. (20)

where H(y) is a L × 5 matrix that in row r contains vector h(y,xr)′ that corresponds to value
xr in set X .

12In the estimation, we discretize the state space using a k-means algorithm.
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The Conditional Choice Probability (CCP) function, P (y|xt), is an integrated version of the
decision rule y∗(xt, εt). For any y ∈ Y and xt ∈ X , the CCP P (y|xt) is defined as

∫
1{y∗(xt, εt) =

y}dG(εt), whereG is the CDF of εt. For the Extreme Value type 1 distribution, the CCP function
has the Logit form:

P (y|xt) =
exp{h(y,xt)

′ γ + β E [Vσ(xt+1) | y,xt]}∑J
j=0 exp{h(j,xt)′ γ + β E [Vσ(xt+1) | j,xt]}

, (21)

Following Aguirregabiria and Mira (2002), we can represent the vector of CCPs, P ≡
{P (y|x) : (y,x) ∈ Y × X}, as the solution of a fixed-point mapping in the probability space:
P = ψ(P). Mapping ψ is denoted the policy iteration mapping, and it is the composition of two
mappings: ψ(P) ≡ λ(υ(P)). Mapping λ(V) is the policy improvement. It takes as given a vector
of values V and obtains the optimal CCPs as "best responses" to these values. Mapping υ(P)

is the valuation mapping. It takes as given as vector of CCPs P and obtains the corresponding
vector of values in the agent behaves according to these CCPs.13 In our Logit model, the policy
improvement mapping has the following vector form, for any y ∈ Y :

P(y) = λ(y,V) =
exp{H(y) γ + β Fx(y) V}∑J
j=0 exp{H(j) γ + β Fx(j) V}

. (22)

The valuation mapping has the following form:

V = υ(P) =

[
I− β

J∑
y=0

P(y) ∗ Fx(y)

]−1 [ J∑
y=0

P(y) ∗ (H(y) γ + euler − lnP(y))

]
, (23)

where euler is Euler’s constant, and ∗ is the Hadamard (or element-by-element) vector product.

4.3 Estimation method

For every LCBO store and product in our working sample, we estimate the store-product specific
parameters in vector γ using a Two-Step Pseudo Likelihood (2PML) estimator (Aguirregabiria
and Mira (2002)). Given a dataset {yt,xt : t = 1, 2, ..., T} and arbitrary vectors of CCPs and
structural parameters (P, γ), define the pseudo (log) likelihood function:

Q(P, γ) =
T∑
t=1

lnψ (yt, xt ; P, γ) , (24)

13See Puterman (2014) for a description of these three mappings in the context of a general dynamic program-
ming problem.
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where ψ(.) is the policy iteration mapping defined by the composition of equations (22) and
(23). In the first step of the 2PML method, we obtain a reduced form estimation of the vector
of CCPs P using the following Kernel method: for every (y,x) ∈ Y × X :

P̂ (y|x) =

∑T
t=1 1{yt = y}KT (xt − x)∑T

t=1KT (xt − x)
(25)

where KT (u) is the Kernel function 1/(1 +
√
T ||u||) with ||.|| being the Euclidean distance. The

2PML estimator is the vector γ̂ that maximizes the pseudo likelihood function when P = P̂.
That is:

γ̂ = arg maxγ Q(P̂, γ) (26)

Aguirregabiria and Mira (2002) show that this estimator is consistent and asymptotically normal
with the same asymptotic variance as the full maximum likelihood estimator.

This estimation method applies to models where the vector of state variables x has discrete
support. In principle, our state variables have continuous support. We have applied a K-means
clustering method for the discretization of the exogenous state variables. We apply this method
separately for each store-product. More specifically, we apply K-means to discretize variables
ln pt and lnQt−1.14 For the endogenous state variable kt, along with the choice variable yt, we
choose a set of fixed grid points. Specifically, we allow kt to take values between 0 and 100
with an interval of 2, and yt to take values between 0 and 48 with an interval of 6. The latter
preserves an important aspect of the nature of orders being placed by store managers at LCBO:
most orders are placed in multiples of 6, and most order sizes are smaller or equal to 48.15

Most of the computing time in the implementation of this two-step estimator comes from the
calculation of present values, and more specifically from the inversion of matrix I−β

∑J
y=0P(y)∗

Fx(y) that has dimension |X | × |X |. Nevertheless, the computing time to obtain the 2PML for
one store-product – using standard computer equipment – was around 20 seconds, and the total
computing time for the approximately 634 × 5 = 3, 160 store-products in our working sample
was less than 18 hours.

14For every store and product pair, we cluster the state variables lnQ and ln p using a k-means algorithm with a
squared Euclidean distance metric, and using Arthur and Vassilvitskii (2007)’s k-means++ cluster initialization.
For both variables, we impose the number of clusters to be 2.

15Note that variables ln de and σ2 are indirectly clustered through lnQ and ln p, as the sales forecasting equation
determines the space of the state variables ln de and σ2. The discretized spaces of the state variables ln de and
σ2 contain around four hundred values each.
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4.4 Parameter estimates

Figure 6 plots the empirical density across stores and products of our estimates of the four
structural parameters, measured in dollar amounts.16 Table 6 presents the median from each
of these distributions, as well as the median standard errors and t-statistics of the estimates.
The median values of the estimates are $0.0041 for the per-unit inventory holding cost, $0.0171

for the stockout cost, $2.9794 for the fixed ordering cost, and $0.0338 for the per-unit ordering
cost. In section 4.5 below, we provide measures of the implied magnitude of each cost relative to
revenue. These magnitudes are consistent with other cost estimates in the inventory management
literature (see Aguirregabiria (1999), Bray, Yao, Duan, and Huo (2017), Bray, Yao, Duan, and
Huo (2019)). Median standard errors and t-statistics in table 6 show that the inventory holding
cost and the fixed ordering cost are very precisely estimated (median t-ratios of 5, 21 and 12.32,
respectively), while a substantial fraction of the estimates of the stockout cost are quite imprecise
(median t-ratio of 0.25).

Table 6: Structural Estimates of Cost Parameters (in Canadian Dollars)

Median Std. Dev. Median Median
Estimate Estimate S.e. t-stat.

γh : Per unit Inventory Holding Cost 0.0040 0.0031 0.0008 5.2331

γz: Stockout Cost 0.0179 0.3433 0.1477 0.2545

γf : Fixed Ordering Cost 2.9626 1.1403 0.2403 12.3417

γc: Per-Unit Ordering Cost 0.0336 0.0697 0.0285 1.4282

# of observed store-product pairs 3,076
# of store-product pairs with structural estimates 2,840

The empirical densities in Figure 6 show substantial heterogeneity across stores and prod-
ucts in the four parameter estimates. This is consistent with our descriptive evidence on the
heterogeneity across stores in (S, s) thresholds and with the positive correlation between the two
thresholds. However, part of the dispersion in parameter estimates comes from estimation error
and not from true heterogeneity. For any parameter γi,j, let γ̂i,j be its estimate, which comes

16More specifically, we first obtain the two-step PML esitmate of the vector γ ≡ (1/σε, γh/σε, γz/σε, γf/σε,
γc/σε)

′, and then we divide elements 2 to 5 of this vector by the first element to obtain estimates of costs in
dollar amount. We use the delta method to obtain standard errors.
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from an estimator that is consistent and asymptotically normal with asymptotic variance σ2
i,j.

Using this asymptotic distribution, it is straightforward to establish the following relationship
between the variances of γ̂i,j and γi,j across stores-products: V ar(γ̂i,j) = V ar(γi,j) + E(σ2

i,j),
where E(σ2

i,j) is the mean across stores and products of the asymptotic variances σ2
i,j. This

formula shows that the ratio r ≡ E(σ2
i,j)/V ar(γ̂i,j) captures the excess dispersion – or spurious

heterogeneity – due to the estimation error, such that V ar(γi,j) = (1− r) V ar(γ̂i,j).
Based on the statistics in Table 6, the ratio between the median standard error and the

standard deviation of the estimates is, in percentages: 25.8% for γh; 43.0% for γz; 21.1% for γf ;
and 48.2% for γc. This implies a substantial over-estimation of the actual heterogeneity of cost
parameters across stores and products, especially for the stockout and unit ordering costs.

Figure 6: γ Estimates
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To correct for excess dispersion, we consider the following shrinkage estimator (see Gu and
Koenker (2017)):

γ̂∗i,j = ¯̂γ +

(
1−min

{
1− κ ,

σ̂2
i,j

V ar(γ̂)

})1/2 (
γ̂i,j − ¯̂γ

)
(27)
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where γ̂i,j is the original parameter estimate; σ̂i,j is its standard error, ¯̂γ and V ar(γ̂) represent the
mean and variance, respectively, in the empirical distribution of γ̂i,j across stores and products;
and κ ∈ (0, 1) is a pre-specified constant that is arbitrarily close to zero. This estimator generates
a distribution of estimates across stores-products that corrects for the spurious heterogeneity due
to estimation error (i.e., for V ar(γ̂i,j) > V ar(γi,j)).

Figure 7 presents the empirical distribution of parameter estimates across stores using the
shrinkage estimator with κ = 0.001. The comparison of the distributions in figures 6 and 7 shows
that estimation error implied very substantial excess of heterogeneity in the original estimates.
This is reflected both in a larger variance and in thicker right tail. Nevertheless, after controlling
for this excess dispersion issue, we find very substantial heterogeneity across store managers in
their perceptions of cost parameters. For the rest of our empirical analysis, we use these shrinkage
estimates.

Figure 7: γ Estimates: Shrinkage Estimator
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4.5 Relative contribution of the different costs

In this section we assess the magnitude of the different inventory management costs relative to
store revenues. The purpose of this exercise is twofold. First, we want to evaluate whether our
parameter estimates imply realistic magnitudes for the realization of these costs. And second,
it is relevant to measure to what extent the heterogeneity in cost parameters that we have
presented above generates heterogeneity in profits across stores. Conditional on their perception
of cost parameters, store managers’ optimal behavior should compensate – at least partly – for
the differences in cost parameters such that heterogeneity in realized costs should be smaller.
We want to measure the extent of this compensating effect.

Table 7: Realized Inventory Management Costs to Revenue Ratios

Median St. Dev.

Inventory Holding Cost to Revenue Ratio (%) 0.3219 0.2139
Stockout Cost to Revenue Ratio (%) 0 0.0079

Fixed Ordering Cost to Revenue Ratio (%) 0.8677 0.7203
Variable Ordering Cost to Revenue Ratio (%) 0.2034 0.1951

Total Inventory Cost to Revenue Ratio (%) 1.4903 0.8451

For each component of the inventory management cost, and for every store-product, we
calculate the ratio between the realized value of the cost during our sample period and the
realized value of revenue during the same period. More specifically, we calculate the following
ratios for every store-product: inventory holding cost to revenue; stockout cost to revenue; fixed
ordering cost to revenue; variable ordering cost to revenue; and total inventory management cost
to revenue. We have an empirical distribution over store-products for each of these ratios.

Table 7 presents the median and the standard deviation in these distributions. To evaluate
the magnitude of these ratios, it is useful taking into account that – according to the LCBO’s
annual reports – the total expenses to sales ratio of the retail chain is consistently around
16% each year.17 According to our estimate, the total inventory cost to revenue ratio for the
median store is approximately 1.5%. This would imply that the retail chain’s cost of managing
the inventories of their stores would represent approximately 10% of total costs, which entails
that non-inventory related costs would account for approximately 90% of total costs (e.g. labour

17Of course, these expenses do not include the cost of merchandise.
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costs, fixed capital costs, delivery costs). This seems to be of the right order of magnitude. Table
7 shows that the fixed ordering cost is the largest realized cost for store managers at LCBO,
followed by storage costs. Realized stockout costs are negligible. This is due to a combination
of a small parameter that captures the stockout cost, and infrequent stockouts in our working
sample.

Figure 8: Empirical CDFs of Realized Inventory Management Costs to Revenue Ratios
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(b) Stockout Cost to Revenue
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(c) Fixed Ordering Cost to Revenue
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(d) Variable Ordering Cost to Revenue
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In Figure 8, the blue curves represent the CDFs across stores and products of each of the
four cost-to-revenue ratios. These distributions show the following ranges between percentiles
5% and 95%: [0.1%, 0.8%] for the inventory holding cost; [0.0%, 0.02%] for the stockout cost;
[0.4%, 2.75%] for the fixed ordering cost; and [0.05%, 1.0%] for the variable ordering cost. We
can see that the realized fixed ordering costs are not only the costs with larger contribution to
the firms’ profit, but also with larger heterogeneity across stores.

The dispersion across stores in these cost-to-revenue ratios is the combination of dispersion
in structural parameters and dispersion in decision and state variables affecting these costs. In
particular, managers’ optimal inventory decisions can partly compensate for the heterogeneity
in the structural parameters. For instance, the inventory holding cost to revenue ratio for store
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i and product j is γhi,j k̄i,j/r̄i,j. A store-product with large per-unit inventory holding cost, γhi,j,
will tend to keep smaller levels of inventory than a store-product with a small value of this
parameter such that the difference between these stores in the ratio γhi,j k̄i,j/r̄i,j will be smaller
than the difference between their per unit inventory holding cost. To measure the magnitude
of this behavioural response by store managers, the red curves in Figure 8 present the CDFs
of the cost ratios when we replace the store-product specific structural parameters by their
means across products, but we keep the values of decisions and state variables. That is, for the
inventory holding cost ratio, the red curve is the CDF of variable γ̄hi k̄i,j/r̄i,j. For each of the
four inventory ratios, the counterfactual CDFs in the red curves are substantially steeper than
the factual CDFs in the blue curves. Store managers with a perception of higher inventory costs
make decisions that entail lower costs of managing their inventories relative to revenue.

4.6 Store characteristics and heterogeneity in cost parameters

It is reasonable to believe that a substantial part of the heterogeneity across stores in cost
parameters is associated to the store itself and not to the local manager. Store characteristics
such as its type according to LCBO classification of stores, its physical area, total product
assortment, consumer traffic, or distance to the nearest distribution center can have an impact
on store’s unit costs. Furthermore, some parameters such as the stockout cost may depend
on the socioeconomic characteristics of consumers living in the store’s neighborhood. In this
section, we investigate to what extent store characteristics and location characteristics explain
heterogeneity in cost parameters.

Table 8 presents estimations results from regressions of each estimated cost parameter against
the following store and location characteristics: LCBO’s store type dummies (6 types); LCBO’s
regional market dummiest (25 regions); logarithm of the number of unique products offered by
the store; logarithm of population in the store’s city; and logarithm of median income level in
the store’s city. As we have cost estimates at the store-product level, we also include product
fixed effects.

These store and location characteristics can explain an important part of the variation across
stores in inventory holding costs and fixed ordering costs: the R-squared coefficients for these
regressions are 0.40, and 0.50, respectively. Fixed ordering costs decline significantly with the
number of products in the store, which is consistent with economies of scope in ordering mul-
tiple products. Inventory holding costs increase significantly with assortment size, and are
significantly higher for AAA stores relative to B, C, and D stores. In contrast, only 4.2% of the
variation in unit ordering costs and 7.6% of the variation in stockout costs can be explained by
these store and location characteristics. These results are robust to other specifications of the
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regression equation based on transformations of explanatory or/and dependent variables.

Table 8: Regression of Cost Parameters on Store and Location Characteristics

γh γz γf γc

Store Class
AA -0.000397 -0.0189 -0.143 0.00817

(0.000976) (0.0737) (0.153) (0.00767)

A -0.000606 -0.0150 -0.150 0.0145∗∗
(0.000926) (0.0697) (0.148) (0.00700)

B -0.00187∗∗ -0.0113 0.126 0.0243∗∗∗
(0.000940) (0.0735) (0.157) (0.00765)

C -0.00376∗∗∗ -0.0543 0.833∗∗∗ 0.0208∗∗
(0.000977) (0.0811) (0.183) (0.00948)

D -0.00519∗∗∗ -0.0430 1.503∗∗∗ 0.0221∗∗
(0.00100) (0.0860) (0.199) (0.0109)

ln(Product Assortment Size) 0.000521∗∗∗ -0.00193 -0.498∗∗∗ 0.00739∗∗
(0.000190) (0.0239) (0.0612) (0.00358)

ln(Population in City) -0.0000369 0.00578 0.0287∗∗ -0.000706
(0.0000385) (0.00482) (0.0144) (0.000965)

ln(Median Income in City) -0.000570 0.00828 0.0648 0.0182∗∗
(0.000561) (0.0666) (0.153) (0.00919)

Location dummies (25 regions, 4 districts) YES YES YES YES
Product dummies (5 products) YES YES YES YES

R-squared 0.3971 0.0764 0.4982 0.0416
Observations 2840 2840 2840 2840
(1) Location dummies based on LCBO’s own division of Ontario into 25 regional markets and 4 districts.
(2) Robust standard errors in parentheses
(3) ∗ p− value < 0.10, ∗∗ p− value < 0.05, ∗∗∗ p− value < 0.01

Several factors may contribute to the residual term in the regressions in Table 8, including:
sampling error in the estimates of structural parameters γ, and in the own regression in Table 8;
store and location heterogeneity that is unobservable to us as researchers; and store managers’
idiosyncratic perception of the cost. We interpret the substantial unexplained variation in these
regressions as indicative that part of the heterogeneity comes from store managers’ idiosyncrasy.
For the counterfactual experiments that we present in Section 5, we interpret these residuals as
coming from store managers’ idiosyncratic perception of costs.
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5 Counterfactual experiments

This section presents two sets of counterfactual experiments based on the model that we have
estimated in the previous section. First, we study the contribution to inventory management
outcomes of heterogeneity in store managers’ perceptions of costs. Second, we evaluate the effects
of a counterfactual centralization of inventory management decisions at LCBO headquarters.
We present this counterfactual experiment under different scenarios on the information that
headquarters have about demand and costs at the store level.

5.1 Removing store managers’ idiosyncratic effects

Let γ̂i,j be the vector of estimates of cost parameters for product j and store i. Based on the
regressions in Table 8, we decompose this vector into two additive and orthogonal components:
the part explained by the regressors, that we represent as γ̂expi,j ; and the residual part, γ̂resi,j .
We interpret this residual component as idyosyncratic from the store manager, and construct a
counterfactual scenario that removes this component γ̂resi,j from the inventory decision problem
for store i and product j. For every store-product (i, j) in our working sample, we implement
a separate counterfactual experiment for each of the four cost parameters, and one experiment
that shuts down together the residuals component of the four cost parameters. This implies a
total of 15, 850 experiments.

We implement each of these experiments solving the dynamic programming problem and
obtaining the corresponding CCPs under the counterfactual values of the structural parameters.
We use this vector of CCPs to calculate the corresponding ergodic distribution of the state
variables for the store-product.18 Finally, we use the vector of CCPs and the ergodic distribu-
tion to calculate mean values of relevant outcome variables related to inventory management.
We compare these average outcomes with the corresponding values under the factual values of
structural parameters. In terms of outcome variables, we look at the same descriptive statistics
as those reported in Table 1 and Figure 1: stockout frequency, ordering frequency, inventory to
sales ratio, inventory to sales ratio after an order (i.e. S threshold), and inventory to sales ratio
before an order (i.e. s threshold).

Figures 9 (for stockout frequency), 10 (for ordering frequency), and 11 (for inventory-to-sales
ratio) summarize the results from these experiments. In each figure, the horizontal axis measures
the value of the corresponding parameter γresi,j , and the vertical axis measures the difference in
the mean value of the outcome variable between the factual and the counterfactual scenario.

18Note that this ergodic distribution incorporates the seasonal effects in the demand part of the model, as
seasonal dummies are a component of the vector of state variables of the model.
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For instance, in Figure 9(a), the horizontal axis represents γh,resi,j , and the vertical axis measures
∆SOFi,j = SOF factual

i,j − SOF counter
i,j , where SOF denotes the stockout frequency.

Figure 9: Counterfactual Outcome: Stockout Frequency
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Figure 10: Counterfactual Outcome: Ordering Frequency
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Figure 11: Counterfactual Outcome: Inventory-to-sales Ratio
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Note that the counterfactual experiment of shutting down γh,resi,j to zero is equivalent to a
change in parameter γhi,j from the counterfactual value γh,expi,j to the factual value γh,expi,j + γh,resi,j .
Therefore, we can see the cloud of points in, say, Figure 9(a) as the results of many compara-
tive statics exercises, all of them consisting in changes in the value of parameter γh. In these
figures, there are multiple curves relating a change in γh with a change in the outcome variable
because store-products have different values of the other structural parameters. However, each
of these figures shows a monotonic relationship between a change in a cost parameter and the
corresponding change in an outcome variable.

We compare the relationship between parameters and outcomes implied by these figures with
the theoretical predictions from the model as depicted in equation (6). More specifically, note
that S − s is negatively related to the ordering frequency (the larger the S − s, the smaller the
ordering frequency); s is negatively related to the stockout rate (the larger the s, the smaller
the stockout rate); and the levels of both S and s are positively related to the inventory to sales
ratio (the larger the S and s, the larger the ratio). The pattern in our figures is fully consistent
with Blinder’s theoretical predictions for this class of models.

Figure 9 depicts the relationship between cost parameters and the stockout frequency. Ac-
cording to Blinder’s formula, the lower threshold s depends negatively on γh and γf , and posi-
tively on γz, while the effect of γc is ambiguous. The sign of the effects of these parameters on
the stockout frequency is exactly the opposite. Panels (a) to (d) in Figure 9 confirm the signs
of these effects.

In Figure 10, we present the relationship between cost parameters and the ordering frequency.
Blinder’s formula says that S − s depends negatively on γh and positively on γf , and therefore
the sign of the effects of this parameters on ordering frequency is exactly the opposite. Panels
(a) and (c) confirm the sign of these effects. According to Blinder formula, the sign of effect of
γz and γc on ordering frequency is ambiguous because they affect the two thresholds S and s in
the same direction. In Panel (b), we find a positive relationship between the stockout cost γz

and ordering frequency. Panel (d) shows that the frequency of placing an order falls when the
unit ordering cost increases.

Figure 11 illustrates the relationship between cost parameters and the inventory to sales
ratio. Blinder’s formula establishes that the two threshold S and s depend negatively on γh

and positively γz. The sign of the effects of these parameters on the inventory sales ratio is the
same as for the two thresholds. Panels (a) and (b) confirm these signs. According to Blinder’s
formula, the sign of the effects of γf and γc on the inventory sales ratio is ambiguous. Panels
(c) and (d) show negative effects of γf and γc on the inventory to sales ratio.
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Table 9: Counterfactual Experiments Removing Residual Component of Cost Parameters

Parameters Shut Down
None γh γz γf γc All

Store-product level inventory outcomes Mean Mean Mean Mean Mean Mean
(st.dev) (st.dev) (st.dev) (st.dev) (st.dev) (st.dev)

Stockout Frequency 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004
(0.0005) (0.0004) (0.0005) (0.0005) (0.0005) (0.0004)

Ordering Frequency 0.1836 0.1832 0.1836 0.1745 0.1751 0.1636
(0.1444) (0.1464) (0.1444) (0.1372) (0.1424) (0.1336)

Inventory to Sales Ratio 26.6300 23.2824 26.6309 28.0190 25.0897 21.7941
(21.8715) (14.8756) (21.8722) (28.3123) (19.0763) (12.7583)

Inventory to Sales Ratio After Order 31.4581 26.7637 31.4593 34.1110 28.1400 23.7675
(30.2815) (19.5448) (30.2824) (41.1025) (23.5807) (14.9385)

Inventory to Sales Ratio Before Order 21.6489 17.7833 21.6499 24.2655 19.0300 15.6574
(21.2277) (12.8067) (21.2288) (31.1512) (15.6194) (8.6556)

Change in Total Inventory Cost (%) – -3.6285 0.0013 1.2608 -6.9611 -12.5173
(12.0103) (0.0119) (30.6882) (13.0466) (18.6898)

It is of interest to consider what is the average effect across stores and products of shutting
down the store manager specific component in costs. Table 9 presents these average effects for
each of the four cost parameters and for the combination of the four.19 Removing the manager
component in all four inventory costs generates: a decrease in the mean ordering frequency of
2 percentage points, from 18.4% to 16.4%; a decrease in inventory to sales ratio of 4.8 days of
average sales, from 26.6 to 21.8 days; a decrease in the lower s threshold of 6 days, from 21.6 to
15.6 days; and a decrease in the S − s gap of 1.6 days, from 9.8 to 8.2 days.

Store managers’ idiosyncratic perception of costs has a very substantial effect on inventory
management at the aggregate level of the firm, with a 6-day increase in waiting time between
two orders, a decrease in the average order amount equivalent to 1.6 days of average sales, a
22% decrease in the inventory to sales ratio, but a negligible effect on the frequency of stockouts.
Accordingly, if the idiosyncratic component of costs is a biased perception by store managers,

19Note that, by construction, the residual component γres
i,j has mean zero and is orthogonal to the explained

component γexp
i,j . Therefore, if the model implied a linear relationship between outcome variables and structural

parameters, then the average effect of shutting down the residual component would be zero. For the same
reason, a first order linear approximation to this average effect is zero. However, the model implies a nonlinear
relationship between outcomes and structural parameters such that it is a relevant empirical question to look at
these average effects. In fact, we find that the effect is not negligible at all.
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then it has a substantial negative impact on the firm’s profit as it increases storage and ordering
costs with almost no effect on stockouts and revenue. The bottom row in Table 9 presents the
effect of removing γresi,j on total inventory management cost calculated using γexpi,j but not γresi,j .
We find that, on average, this cost declines by 12.5%. This substantial effect plays an important
role in the counterfactual experiment on centralization that we present in the next section.

5.2 Centralizing inventory decision-making

We now address the main question that motivates this paper: would the LCBO retail chain
benefit from managing the stores’ inventories at the headquarter level, as opposed to allowing
heterogeneous store managers to have autonomy in their inventory decisions? To answer this
question, we need to establish some conditions on the headquarters’s information about store-
level demand, inventories, and cost parameters. The experiments that we present below are
based on the following assumptions.

• First, we assume that there is an information delay from stores to headquarters. Store-
product level information regarding sales is processed by headquarters with a weekly delay.
This assumption relies on the institutional details we describe in Section 2.1.

• Second, to compare profits between the centralized and decentralized structures, we must
take a stance on what are the "true" cost parameters. We assume that the true cost
parameters are γexpi,j which are determined by store and location characteristics. Under
the centralized system, the headquarters know these costs and take inventory decisions
for every store based on these costs. In contrast, we interpret γresi,j as store managers’
behavioral biases and not as "true" costs. Under the decentralized system, store managers
make decisions as if the cost parameters were γexpi,j + γresi,j , but our measure of their profits
is based only on γexpi,j . The evaluation of profits under this assumption provides an upper
bound for the (profit) gains from centralization. Alternatively, we could assume that γresi,j
is a true component of profit that is known to the store manager but unknown to the
headquarters. This alternative assumption would provide a lower bound for the gains
from centralization.

Based on these assumptions, this counterfactual experiment measures the following trade-off
in the choice between centralized and decentralized inventory management. A negative aspect of
decentralization is that store managers have different skills and behavioral biases as captured by
the idiosyncratic components γresi,j . These biases should have a negative effect on LCBO profits.
The positive aspect of decentralization is that store managers have just-in-time information
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about demand, sales, and inventories, while the firm’s headquarters process this information
with one week delay.

Table 10: Decentralized vs. Centralized Profits: Average Daily Profit Per-Store Per-Product (in
CAD)

Mean Pct. 10% Pct. 25% Median Pct. 75% Pct. 90%

Centralized Solution ($) 54.93 9.75 18.28 43.91 82.21 116.13

Decentralized Solution ($) 54.64 9.75 18.15 44.01 81.92 116.35

Gains in Profit from Decentralization ($) -0.29 -2.29 -1.01 -0.20 0.26 1.45

Gains in Profit from Decentralization (%) -0.41 -3.52 -2.26 -0.73 1.02 3.27

Change in Inventory Cost from Decentralization (%) 25.45 -5.52 0.10 6.30 23.01 56.97

1% change in profit per store-product is approximately $17 million in total annual profit for LCBO.

Figure 12: Change in Daily Profit From Decentralization ($)
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We depict the results of this experiment in Table 10, and Figures 12 and 13. Similarly as for
the counterfactuals in section 5.1, we evaluate the effects using the ergodic distributions of the
state variables under the factual and counterfactual scenarios. Table 10 presents means, medians,
and several percentiles for the profit per store-product under the centralized and decentralized
systems and for the gains from decentralization. To have a better perspective of the implications
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Figure 13: Change in Daily Inventory Cost From Decentralization (%)
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of these effects, it is useful to take into account that a 1% change in profit per store-product
represents approximately $17 million in total annual profit for LCBO in year 2012.20 At the
aggregate level, decentralization has a negative impact on LCBO profits. It implies a 0.4%

decline in profits, which represents $6.8 million in annual profits for the retail chain. The effect
on the median store is also negative: −0.7%. This modest effect is the result of combining two
large effects with opposite signs. The one-week delay in the processing of information in the
centralized system has a non-negligible negative impact on profits at every store. However, this
negative effect of the centralized system is more than compensated by the large increase in profits
due to reducing ordering and storage costs when removing store managers’ biased perceptions of
costs. This is illustrated in the bottom row of Table 10: on average, decentralization increases
total inventory costs by 25.5%.

The evidence on the mean and median effects in Table 10 is not necessarily sufficient for a
retail chain to adopt a centralized inventory management system. A retail chain may need to
assess the distributional effects of the gains/losses across its stores before adopting a substantial
organizational change, and not simply rely on the average effect. Table 10 and Figure 12 show
large heterogeneity in the impact of decentralization, with both very substantial losses and gains:
percentiles 10 and 90 are−3.5% and 3.3%, respectively. Therefore, although centralization would
generate positive gains in total profits for the retail chain relative to the existing decentralized
structure, the distributional effects of these gains are very substantial.

20According to the 2012-2013 LCBO annual report, the annual profit (net income) of the company was $1.7
billion. Therefore, 1% of this profit is $17 million.
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Figure 13 provides a closer look at the heterogeneous effect from (de)centralization. It
presents the empirical distribution of the percentage change in average daily inventory costs.
The median of this distribution presents a positive increase in costs (i.e., 6.3%), but most strik-
ing is the long right tail of this distribution, that implies a 25.5% increase in average inventory
costs.

6 Conclusion

Retail chains are complex organizations with multiple divisions and teams, each with its own
decision rights. Store managers play an important role in some retail chains. A store manager can
collect and process information just-in-time about her own store. This information at the store
level is more homogeneous and manageable than at the level of the whole chain. The transfer
of this information from stores to headquarters, and especially the processing of information
at the headquarters, can generate delays of days or even weeks, which can have an important
negative impact on decision making and profits. On the other hand, store managers can have
heterogeneous skills, motivations, and can put different levels of effort. A centralized decision
system that uses only the best managers in the firm can minimize the negative effects of store
managers’ heterogeneous skills.

In this paper, we investigate this trade-off between centralized and decentralized decision
making in the context of inventory management in a large retail chain. Using a unique dataset
with daily information on inventories, sales, prices, and stockouts at the level of individual stores
and products, we estimate a dynamic structural model of store managers’ inventory decisions.
Based on the principle of revealed preference, we obtain separate estimates for every store and
product of four cost parameters: per unit inventory holding cost, stockout cost, fixed ordering
costs, and per unit ordering costs. We find very substantial heterogeneity across stores in these
cost parameters. Part of this heterogeneity is explained by observable store and location char-
acteristics, but the residual heterogeneity is substantial and we attribute it to store managers’
idiosyncratic information/perceptions.

We use the estimated model to implement a counterfactual experiment that evaluates the
effect of centralizing inventory management at LCBO. For this counterfactual experiment, we
assume that the store managers’ idiosyncratic component of the costs is a behavioral bias and
does not represent true cost. This working assumption provides an upper bound to the gains
from centralization. We find that a centralized inventory management system would yield a 0.4%

increase in annual profit for LCBO. This modest effect is the result of combining two substantial
effects with opposite signs. The negative impact on profits of losing the just-in-time information
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from store managers is more than compensated by the large reduction in ordering and storage
costs from eliminating store managers’ behavioral biases and heterogeneous skills (i.e., 25.5% on
average, 6.3% for the median store). Furthermore, the gains/losses from centralization are very
heterogeneous across stores in the retail chain, including an important fraction of stores with
substantial losses from adopting centralization. This distributional effect may have implications
in the decision of adopting an organizational structure that – all other things being equal – would
increase the company’s overall profit. Distributional conflict within multi-divisional companies
and its relation to organizational structure has been studied in theoretical models by Inderst,
Müller, and Wärneryd (2007), and it is an interesting topic for further empirical research.
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7 Appendix

7.1 Estimates of Sales Forecasting Equation

Table 11 summarizes our estimation results of the sales forecasting function. For each store
and product, we estimate a Negative Binomial regression function using Maximum Likelihood.
The set of explanatory variables includes the logarithm of retail price, the logarithm of the
store-product sales in the last week, and two seasonal dummies: a weekend dummy, and a
holiday dummy for a major holiday. For each product, table 11 reports the three quartiles in the
distribution across stores of parameter estimates and standard errors for the coefficient of log-
price, the coefficient of log-lagged-weekly-sales, and the over-dispersion parameter in Negative
Binomial model. Given our interest in the forecasting power of this equation, we also report the
three quartiles of McFadden’s Pseudo R-squared coefficient (i.e., one minus the ratio between
the log-likelihoods of the estimated model and a model only with a constant term).

The estimates of for the lagged-sales coefficient show very substantial time persistence for all
products and most stores. Standard errors show that this parameter is estimated with enough
precision. The estimates for the log-price coefficient are mostly negative and large in absolute
value, though they are not precisely estimated as LCBO changes prices quite infrequently. The
estimate of the over-dispersion parameter is substantially smaller than one for almost all the
stores and products, which implies evidence of over-dispersion and the rejection of the Poisson
regression model. The magnitude of the Pseudo R-squared coefficient is around 5% which seems
small. However, it is important to note that the uncertainty about daily sales of a single product
and store can be substantially larger than the uncertainty about aggregate sales at monthly level
or over products or/and stores.
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Table 11: Sales Forecasting Equation – Negative Binomial Model

Distribution of Estimates
1st Quartile 2nd Quartile 3rd Quartile

Est. Est. Est.
(st.err.) (st.err.) (st.err.)

SKU #67 – Smirnoff Vodka
ln(p) -2.9544 -1.5502 0.0481

(1.3823) (1.7332) (2.3553)
ln(Q) 0.3725 0.5275 0.6934

(0.0687) (0.0949) (0.1610)
α 0.3302 0.4241 0.6199

(0.0363) (0.0559) (0.1026)
Pseudo-R2 0.0575 0.0744 0.0874

SKU #117 – Bacardi Superior White Rum
ln(p) -6.8605 -4.2215 -2.0114

(2.0144) (2.5312) (3.5763)
ln(Q) 0.3416 0.4848 0.6317

(0.0785) (0.1133) (0.1987)
α 0.2859 0.3571 0.5341

(0.0364) (0.0578) (0.1187)
Pseudo-R2 0.0562 0.0725 0.0850

SKU #340380 – Two Oceans Sauvignon Blanc
ln(p) -6.4681 -5.2248 -3.7396

(0.8554) (1.0824) (1.4750)
ln(Q) 0.1614 0.3231 0.5272

(0.0846) (0.1227) (0.2185)
α 0.4444 0.7146 1.3043

(0.0465) (0.0824) (0.1840)
Pseudo-R2 0.0387 0.0522 0.0677

SKU #550715 – Forty Creek Select Whisky
ln(p) -5.5620 -3.2317 -0.7215

(1.9387) (2.4236) (3.2657)
ln(Q) 0.0942 0.2564 0.3991

(0.0898) (0.1298) (0.2040)
α 0.1888 0.2546 0.3866

(0.0338) (0.0533) (0.0977)
Pseudo-R2 0.0450 0.0653 0.0794

SKU #624544 – Yellow Tail Shiraz Red
ln(p) -5.0973 -3.7449 -2.7154

(1.0607) (1.3563) (1.9912)
ln(Q) 0.2343 0.4017 0.5563

(0.0672) (0.0929) (0.1803)
α 0.4130 0.6133 1.0493

(0.0335) (0.0588) (0.1405)
Pseudo-R2 0.0325 0.0464 0.057749
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