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1 Introduction

Measuring the impacts of teachers on student achievement has been a longstanding preoccupation

in applied research – naturally so, given the vital role that teachers play in the education pro-

cess. As observable characteristics tend to do a poor job when predicting teacher performance,

researchers have proposed influential fixed effects methods in order to capture a teacher’s underly-

ing quality, taking advantage of large-scale matched student-teacher datasets that are increasingly

accessible – see pioneering studies by Rockoff (2004) and Rivkin, Hanushek, and Kain (2005). In

turn, these methods have prompted the development of value-added estimators for measuring the

causal impacts of teachers – Koedel, Mihaly, and Rockoff (2015) provide a review – with teacher

value-added estimates now featuring widely in the policy sphere, notably in consequential teacher

retention, promotion and pay decisions.1

Motivated by the recent research and associated policy interest, this paper sets out a new

approach for studying teacher impacts. Our approach is built around the distribution of unobserved

teacher effects (or value-added) for a given population. This distribution, labelled F for convenience,

can be thought of in an unrestricted sense as a histogram that places the proportions of teachers

drawn from the population into successive bins defined by underlying value-added (VA). Given the

distribution is unobserved, one way to proceed would be to assume it was normally distributed (as

has been common in prior work). While convenient, the normality assumption is not innocuous:

nor is it needed.

We begin by showing that the distribution F is nonparametrically identified, following a stan-

dard setup in which residualized test scores equal underlying teacher quality (the heterogeneous

teacher VA of interest) plus noise. Here we adapt a well-known result in the statistics literature

to our context (Theorem 1 below);2 in light of the theorem, assuming normality involves an over-

parametrization. Further, the teacher VA distribution F can be feasibly estimated, as we explain,

drawing on recent computational advances described below.

Next, we show how the nonparametric VA distribution can advance the analysis of teacher

impacts, both in terms of estimation and policy. We focus on three related ways in which researchers

and policy makers are able to utilize the underlying VA distribution. On the estimation front, the

VA distribution plays a central role in modern shrinkage methods. These allow researchers to

estimate underlying teacher quality when only modest numbers of teacher-year observations are

available for some teachers – especially useful given that tenure decisions are often made quite

soon after hiring.3 Here we present a new estimator of teacher VA without restricting attention

to linear estimators. This involves the VA distribution F , rather than assuming that the Bayesian

1By the end of 2017, fully thirty nine states required value-added measures to be incorporated into teacher evalu-
ation scores (as one indicator of this phenomenon).

2A general deconvolution proof of nonparametric identification is available in the literature, which we adapt to
the case of teacher VA in Appendix B. In the main analysis, for tractability, we make the assumption that the
noise component in the residualized test score model is independent of underlying teacher quality and has a known
distribution, assumed to be normal with a common variance.

3Among the US’s five most populous states, for instance, Texas, Pennsylvania and Florida award teacher tenure
after three years, while California and New York award tenure after two and four years, respectively.
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prior follows a normal distribution, as in the widely-used parametric Bayes estimator. Drawing on

a path-breaking 1956 paper by Herbert Robbins,4 our nonparametric Bayes estimator is optimal in

the sense of minimizing the mean squared error of individual teacher VA estimates regardless of the

true underlying VA distribution (see Theorem 2 below). In contrast, the parametric empirical Bayes

estimator is optimal only when underlying quality is normally distributed. Both the nonparametric

Bayes estimator and its parametric counterpart can be written as functions of teacher fixed effects;

but whereas the standard parametric Bayes estimator shrinks each teacher fixed effect linearly, the

nonparametric Bayes estimator is more flexible, featuring a non-linear shrinkage rule that allows

the amount of shrinkage applied to each fixed effect to be non-monotonic. This can be relevant for

some underlying VA distributions, as we illustrate (see Section 5).

On the policy front, the nonparametric distribution F serves as the basis for two metrics we

develop that can inform the design of teacher policies – notably, widely-discussed policies using

teacher value-added estimates to release or retain teachers. First, the VA distribution allows us

to compare the policy gains of releasing different proportions of teachers in both the short and

longer terms.5 Here our approach offers the potential to improve predictions of the policy gains

(relative to the parametric approach) when departures from normality arise, gains which can be

weighed by decision-makers against costs when formulating higher net-benefit policies. Second,

the VA distribution enables us to compute the fraction of wrongly-released teachers under teacher

release policies – the so-called ‘false discovery rate.’ Because true teacher VA is unobserved, this

is a valuable quantity from a policy perspective, informative of the risk associated with releasing a

given percentage of teachers.

While the three proposed usages we have described involve functionals of the unknown VA

distribution, F , feasible versions of each can be obtained by estimating the distribution, applying

a two-step approach. In essence, we estimate the teacher VA distribution using nonparametric

maximum likelihood (see Section 3), giving the estimated distribution F̂ – the Bayesian prior

estimated from the data.6 Then we plug this estimated distribution into the equations defining our

three quantities of interest: (i) individual teacher VA estimates, (ii) policy gains, and (iii) the false

discovery rate.

Implementing our nonparametric approach in large-scale empirical applications has only re-

cently become viable, following important computational advances by Koenker and Mizera (2014).

We leverage those advances in the current study, showing that our nonparametric approach per-

4In the words of Efron (2003), “There seems to be a good chance that Robbins was 50 years ahead of his time and
that a statistical theory of the 1950s will shine in the 21st century.” (See page 377.)

5Our focus is on policies to release teachers (that is, what fraction to release) and not the task of ranking teachers
(i.e., whom to release). The loss function used to derive the VA shrinkage estimator seeks to minimize VA estimation
errors and not teacher ranking errors. In our context, if each teacher taught the same number of students, then teacher
rankings under both empirical Bayes methodologies would be identical to those using simpler fixed effect methods
(and each other). We will see below that the choice of estimator – whether fixed effect, parametric, or nonparametric
empirical Bayes – has little appreciable impact on teacher rankings in either our simulations or empirical analyses.
Gu and Koenker (2020) address the ranking issue in the context of nonparametric empirical Bayes explicitly.

6The consistency of the nonparametric maximum likelihood estimator (or ‘NPMLE’) was established by Kiefer
and Wolfowitz (1956); Lindsay (1995) provides an extensive treatment. We discuss the attractive properties of the
NPMLE in Section 3 in the context of estimating teacher VA nonparametrically.
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forms very well in Monte Carlo simulations in an environment that mimics typical administrative

datasets in education. When the underlying distribution is normal, the performance of our non-

parametric estimators is almost indistinguishable from that of their parametric counterparts (which

impose normality in each of the three usages). Once we consider departures from normality, our

nonparametric approach is highly responsive to the true VA distribution in a way that the para-

metric approach is not: our nonparametric estimators for all three uses track the truth (given by

an infeasible ‘oracle’ benchmark) in the simulations very closely while the standard parametric ap-

proach becomes less reliable. The simulations also shed light on the minimum sample sizes needed

for the advantages of our nonparametric approach to become apparent. We find that with samples

of around one thousand teachers – far smaller than in many current education datasets – our non-

parametric estimators already get very close to their infeasible ‘oracle’ counterparts (see Section

6), noteworthy given we make no parametric assumptions about the underlying VA distribution.

We apply our nonparametric methodology using observational data from two separate large-

scale administrative datasets. One covers the entire state of North Carolina and the other, the Los

Angeles Unified School District (LAUSD), the second largest school district in the United States.

We find the estimated teacher VA distributions differ both from the normal distribution assumed in

the bulk of the prior literature and from each other. In North Carolina, the estimated distribution

has a relatively similar shape to the normal, although with more mass around zero and elongated

tails,7 while in the LAUSD, our estimated teacher distribution is skewed, with a much thinner left

than right tail. In each instance, the deviations from normality are statistically significant.8

Considering the three proposed usages of our nonparametric distributional estimator in practice,

we first compare VA estimates for individual teachers. In both datasets, the deviations from

normality give rise to distinct shrinkage rules under our nonparametric methodology. The thin left

tail of the VA distribution in the LAUSD indicates that there are fewer low-quality teachers in

the data (compared to normality), and so our nonparametric VA estimator shrinks low-performing

teachers more aggressively toward the mean. We evaluate the performance gains from using our

nonparametric VA estimator in terms of out-of-sample predictive power. In both datasets, we find

the nonparametric VA estimator outperforms its parametric counterpart, particularly when using

2-5 years of data per teacher to inform the predictions.9 Of note, our nonparametric methodology

is most effective during the policy-relevent time window when teacher tenure decisions are often

made in practice.

Second, we consider the short-term gains of a proposal to release teachers in the bottom five

percent of the estimated teacher value-added distribution, as outlined by Hanushek (2009, 2011)

7This aligns with Goldhaber and Startz (2017), who find that the teacher distribution in North Carolina is not
Gaussian, but the differences from the normal distribution tend to be small.

8We test the statistical significance of the deviations from normality using a new diagnostic test we develop (see
Appendix G).

9Intuitively, our nonparametric approach needs more data for its superiority to manifest itself, and so its perfor-
mance is similar to its parametric counterpart with only one year of data. After many years of data become available,
data begin to dominate so that VA estimators apply minimal shrinkage and teachers’ VA estimates approach their
fixed effect counterparts.
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and evaluated in Chetty et al. (2014b). Specifically, we compare the predicted test score gains of

students using our method with an approach that imposes normality on the underlying teacher

quality distribution, supposing the bottom five percent of teachers (based on estimated VA after

three years of observation) are released and replaced by teachers of average quality. In North

Carolina, we find only minor differences between the two approaches: the parametric method

overstates test score gains of the policy by around five percent relative to our methodology. In

contrast, the skewness of the distribution of teacher value-added in the LAUSD leads to significant

differences in the estimated policy benefit, with the normality assumption causing test score gains

of the policy to be overstated by over 25 percent. To provide a fuller picture, we also simulate the

short-run test score gains of policies that release any given percentage of teachers from the bottom

of the VA distributions under the two approaches. The overestimation of short-term policy gains

under the normality assumption gives rise to a similar miscalculation when considering the impact

of the policy in terms of long-run outcomes, including exit exam scores, drop-out rates, suspensions,

and SAT scores. We find that when releasing the bottom five percent of teachers according to VA,

imposing normality leads the long-run policy gains to be overestimated by around five percent in

North Carolina; in the LAUSD, the overstatement of the long-run policy gains under normality is

far larger, in the range 24-26 percent.

Third, in terms of the false discovery rate, 21.4 percent of teachers who are released in the

LAUSD under the benchmark policy have a true quality above the bottom 5 percent cutoff. Had

the policymaker imposed normality, however, they would instead expect that 17 percent of teachers

were incorrectly released. Thus, assuming normality leads the proportion of incorrectly released

teachers to be understated by a full twenty percent. The discrepancy arises because the thin left tail

in the LAUSD (relative to the normal distribution) makes it difficult to differentiate these left-tail

teachers, increasing the false discovery rate. Once again, the relatively normal left tail in North

Carolina means that the normality assumption is less consequential there, generating a six percent

underestimation of the false discovery rate.

Our methodology can be readily extended. Researchers may wish, for example, to incorporate

classroom fixed effects or drift into the model. We show how to include classroom fixed effects, as

they are quantitatively more important in our data.10 Their inclusion is likely to reduce dispersion

in teacher VA estimates, as class-level shocks are no longer attributed to the teacher. When we

repeat the estimation and the policy analyses using the model with classroom fixed effects, doing so

does reduce the variance in the VA estimates, as expected. Still, using LAUSD data, the normality

assumption leads the test score gains of teacher release policies to be overstated by 16 percent

under the benchmark five-percent policy. Also, imposing normality leads the false discovery rate

to be understated by 15 percent using the LAUSD data.

At a general level, our empirical analyses underscore the plausible notion that the true un-

observed distribution of teacher quality is likely to be context-specific. As a consequence, when

10Given our data structure, it is not possible to include both classroom fixed effects and drift, as the teachers teach
one class per year. To do that, one would need data in which teachers taught multiple classrooms per year.
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the normality assumption is misplaced, we show how the performance of the shrinkage estimator

can be improved by considering feasible non-linear estimators, namely the nonparametric empirical

Bayes estimator. On the policy front, reforms whose implementation depends on teacher VA are

influenced directly by the shape of the VA distribution, and hence the estimated policy gains or

false discovery rates when invoking normality may well be significantly misstated in some cases.

Here, our data-driven methodology offers policymakers a flexible means to understand the benefits

and costs of implementing the same reform in different environments.

Our findings indicate that the differences for policy in some settings when applying our nonpara-

metric approach can be significant, compared with the parametric method. Further, as we make

clear, the gains from the nonparametric approach become apparent even in quite moderate sample

sizes. Thus, given the computational feasibility of our approach, analytical convenience need no

longer weigh on the side of assuming normality. As reflected in other recent papers,11 the non-

parametric empirical Bayes methodology opens up new possibilities for empirical research; among

these, it is applicable in a variety of other contexts where parametric empirical Bayes methods have

already been used.

The rest of the paper is organized as follows: The next section sets out the model and relevant

background to our approach. Section 3 presents the key identification result and the computation-

ally feasible estimator for the VA distribution we propose. Section 4 describes how the estimated

distribution plays a central role in the analysis of teacher impacts, with Section 5 providing an

illustrative example, drawing attention to discrepancies that can arise when assuming normality.

Section 6 conducts simulations comparing our methodology with the standard parametric approach

in the literature. We then apply our method in practice: Section 7 introduces the two administra-

tive datasets and describes the estimated VA distributions, and Section 8 shows how the estimated

VA distributions affect teacher policy analyses. Section 9 extends our method, and Section 10

concludes.

2 Model and Estimation Background

Our starting point is a standard model of student achievement in which education inputs (in-

cluding the contributions of teachers) are additive in their effects. Accordingly, the achievement of

a student i taught by teacher j in year t is written:

ỹijt = X ′
ijtβ + αj + ϵijt, i = 1, 2, . . . , njt. (2.1)

In this equation, ỹijt is the student’s observed test score (to be contrasted with yijt below, purged

of covariates); Xijt captures observed characteristics of the student (demographics, past academic

performance, and family background) and the teacher (including her experience); and αj is the

time-invariant teacher’s contribution, or simply VA. We assume that teachers are each assigned

11See, for example, Efron (2010), Dicker and Zhao (2016), Gu and Koenker (2017a), Gu and Koenker (2017b), Gu
and Shen (2017), and Abadie and Kasy (2019), among others.
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to one class per year (with j’s class size in year t being njt) and that conditional on Xijt, the

assignment is as good as random.12 The error term ϵijt is assumed to be independently and

identically distributed normal with variance σ2ϵ .
13

As is typical in the VA literature, we purge the effects of observed covariates from ỹijt. This

leaves a noisy measure of the teacher’s contribution, denoted

yijt = αj + ϵijt . (2.2)

The primary focus in the recent literature has been on recovering individual teacher effects in the

relevant population of teachers: the appropriate parameter for that exercise using our notation is

teacher j’s VA, αj . As a reference point, we can construct the maximum likelihood estimator –

often referred to as the fixed effect estimator – for the unobserved αj , using the model in (2.2). We

will write this:

yj =
∑
t

hjtyjt/
∑
t

hjt =
∑
t

njtyjt/nj , (2.3)

where yjt =
1
njt

∑njt

i=1 yijt is the teacher-year specific sample average for teacher j in year t, and

nj ≡
∑

t njt. Taking a weighted average of these sample averages {yjt} across all the classes taught

by teacher j over time, with weights hjt ≡ njt/σ
2
ϵ , gives the fixed effect (‘FE’) for that teacher in

(2.3).

Under the assumption that ϵijt follows a normal distribution, model (2.2) implies that the

teacher FE has the following distribution:

yj ∼ N
(
αj , σ

2
ϵ /nj

)
. (2.4)

If the total sample nj → ∞ in the denominator of the expression for the variance, then fixed effect

yj converges to the true teacher VA, αj , in probability, and so is a consistent estimator for the

desired object.

With this benchmark estimator in place, we wish to motivate the central role that the distri-

bution of teacher VA plays in our approach – that is, the distribution of the {αj}’s. A convenient

way of doing so will be to rehearse the logic behind the parametric empirical Bayes shrinkage esti-

mator that has become so prominent in the recent literature, given its reliance on a distributional

assumption about unobserved teacher VA.

12Rothstein (2017) and Chetty et al. (2017) discuss the validity of this assumption in the context of teacher value-
added models. Our contributions to the value-added literature focus on the empirical Bayes procedure, rather than
gauging bias in value-added measures due to potential non-random assignment.

13This normality assumption is made to simplify the following discussion. It is not necessary – see Appendix B.
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2.1 Shrinkage Estimators: a Primer

The VA literature does not use the fixed effect estimator in practice, primarily because of finite

sample considerations. These imply that the fixed effect estimator is a noisy estimator, especially

for teachers beginning their careers. In general, shrinkage estimators account for this practical issue

by leveraging additional information about the distribution of teacher VA to modify poor-quality

estimates for some teachers based on observations for other teachers.

The current state-of-art estimator for teacher VA – the parametric empirical Bayes (‘PEB’)

estimator, introduced first by Kane and Staiger (2008) and further developed by Chetty et al.

(2014a) – assumes that the teacher effect follows a normal distribution. It is the feasible version

of the parametric Bayes (‘PB’) estimator, the latter being the minimizer of the Bayes risk,14 given

(2.4) as well as the parametric assumption that the VA for all teachers is an independent and

identically distributed draw from a normal distribution with mean zero and variance σ2α. The PB

estimator takes the following form:

δPBj = yj
σ2α

σ2α + σ2ϵ /nj
. (2.5)

The estimator δPBj is infeasible since it involves the unknown parameters (σ2α, σ
2
ϵ ). The empirical

counterpart to δPBj , the PEB estimator (denoted δPEBj ) replaces these unknown parameters with

their consistent estimates, obtained either through maximum likelihood or method of moments

(Appendix F provides details); thus, δPEBj = yj
σ̂2
α

σ̂2
α+σ̂

2
ϵ /nj

.

While the PEB estimator has a convenient form and is easy to compute, crucially it relies on

the parametric assumption that true teacher VA, αj , follows a normal distribution.15 In a given

application, this assumption may be wide of the mark, and it is not innocuous, as we will show. The

analysis below will emphasize that the VA distribution is a key component, not only in shrinkage

estimation but also in quantitative analyses of the impacts of alternative teacher policies. Further,

we argue in the next section that there is no need to impose a distributional assumption, given

that a viable nonparametric distributional estimator exists.

3 The VA Distribution

Motivated by the preceding, our focus is on the distribution of VA, α, given by F (α).

3.1 Identification of the VA Distribution F

We start by presenting the following theorem, drawing on a key result in the statistics literature.

This shows that the distribution of teacher VA is nonparametrically identified in our setting.

14This is defined as E[
∑

j(α̂j−αj)
2], where j indexes teachers, αj is the true VA of teacher j, and α̂j is an estimator

for that.
15See Bonhomme and Weidner (2019) for a discussion of the robustness properties of the empirical Bayes estimator

when normality is locally misspecified.

7



Theorem 1 Consider the model yijt = αj + ϵijt, with ϵijt ∼iid N (0, σ2ϵ ). If αj is independent of

ϵijt for all i and t, and αj follows some probability distribution F , then F is nonparametrically

identified.

(See Appendix A for proof.)

This result implies that the data contain enough information about the distribution of true

VA, and the normality assumption applied to unobserved teacher quality involves an over-

parameterization. Further, because of this over-parameterization, we are able to test whether

normality holds in the data (see Appendix G). In the theorem, we assume a normally distributed

error. Doing so is not necessary (as we show in Appendix B, using a result from a seminal paper by

Kotlarski (1967)), although imposing normality on the noise term will be convenient for estimation

purposes.

3.2 A Feasible Nonparametric Estimator of the Distribution F

The identification result in the theorem references two unknown distributional quantities –

specifically, σ2ϵ and F . We develop feasible versions of these quantities in the same spirit as the

parametric empirical Bayes method (summarized in the previous section), which imposes normality

by estimating the unknown parameters from the data directly. Specifically, we recover the unknown

parameter σ2ϵ using its maximum likelihood estimator (set out in Appendix F), and estimate the

distribution F using nonparametric maximum likelihood.

Nonparametric Maximum Likelihood Estimation of the Distribution F

In order to find our empirical quantities of interest in practice, we must somehow learn the

‘prior’ distribution F . A fundamental insight due to Herbert Robbins (1950) is that it is both

desirable and feasible to estimate F nonparametrically.16

On the desirability front, Kiefer and Wolfowitz (1956) established the consistency of the non-

parametric maximum likelihood estimator (‘NPMLE’) for the mixing distribution F . The NPMLE

in mixture models has been found to have attractive properties, despite optimizing over an infinite-

dimensional parameter space, as results in the recent statistics literature indicate, notably by Zhang

(2009), Saha and Guntuboyina (2020), and Polyanskiy and Wu (2020).17

On the feasibility front, applications of the nonparametric method have been facilitated by

recent computational advances. Here, we use methods proposed in Koenker and Mizera (2014)

16See the abstract of Robbins (1950).
17The statistics literature has also established the consistency of the marginal density g in the Tweedie formula

in terms of Hellinger distance (see van de Geer (1993) for the homogeneous variances case and Jiang (2020) for the
heterogeneous variances case). Saha and Guntuboyina (2020) have shown the near-parametric risk of this marginal
density when the distribution is F with a finite number of support points, implying the noteworthy adaptive property
of the NPMLE. Recent work by Polyanskiy and Wu (2020) discusses the self-regularization property of NPMLE
when F has sub-Gaussian tails, suggesting that the NPMLE of F in a mixture model already automatically selects
a parsimonious estimator without penalization, a property not expected for the usual nonparametric maximum
likelihood estimator; the mixture model structure acts as a shape restriction in this context.
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and Koenker and Gu (2017) in order to recover the teacher VA distribution. Those papers, build-

ing on Robbins (1956), set out a general framework for estimating unobserved heterogeneity in

cross-sectional and longitudinal data settings without imposing any parametric assumptions on the

unobserved heterogeneity. The methodology turns out to be suited to many contemporary ‘Big

Data’ applications,18 with the teacher VA application fitting naturally within this general frame-

work. Here, teacher quality can be thought of as unobserved heterogeneity in a model of test scores

that accounts for variation unexplained after controlling for all observed heterogeneity captured by

Xijt.

To apply the framework, we denote the distribution of αj as F , rather than assuming

αj ∼ N (0, σ2α). The distribution F is not observed by the researcher, but can be estimated non-

parametrically via the following optimization:

F̂ ≡ argmax
F∈F


J∑
j=1

log

∫
φj(yj − α)dF (α)

 , (3.1)

where φj is a normal density with mean zero and variance σ2ϵ /nj , as in (2.4), and the space F is

the set of all probability distributions on R. The resulting F̂ is the NPMLE for F .

Until recently, the standard approach to computing the NPMLE used the EM algorithm due

to Laird (1978),19 although the algorithm’s slow convergence in nonparametric empirical Bayes

applications has curtailed the NPMLE’s widespread implementation. Against that backdrop,

Koenker and Mizera (2014) proposed an alternative, and much faster, computational method for the

NPMLE. They showed that for a broad class of mixture problems, the Kiefer-Wolfowitz estimator

can be formulated as a convex optimization problem and solved efficiently by modern interior point

methods. Quicker, more accurate computation of the NPMLE in turn opens up a much wider range

of applications of the nonparametric method for models with heterogeneity.20 Here, the large-scale

data involved in the analyses of teacher effects make them likely to benefit from the scalability of

the new computational method. (Appendix H discusses computational issues further.)

4 Using the Distribution

We now show how nonparametric estimates of the underlying VA distribution F can be used

to advance the study of teacher impacts. We focus on three related tasks of interest to researchers

and policy makers: (i) estimating teacher VA, (ii) estimating the benefits of teacher-release policies,

and (iii) computing the risk of releasing low-VA teachers. Here we provide a conceptual discussion

of each, then explain their feasible implementations based on F̂ ; the following section provides a

18See Efron (2010) for a survey. Intuitively, a compound decision framework arises naturally in an environment
where many related decision problems that involve learning individual αj ’s are considered simultaneously. Under the
modelling assumption that the latent effects are drawn from a common distribution, using everyone’s data to uncover
the common distribution F can be shown to improve collective performance.

19See Heckman and Singer (1984) for an early econometric application.
20Models with unobserved heterogeneity beyond the normal mixture are discussed in Koenker and Gu (2017).
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computational example, illustrating the potential gains arising from the proposed implementations.

4.1 The Nonparametric Empirical Bayes Estimator

We first present the nonparametric empirical Bayes estimator. We have already noted, by way

of background, how the popular parametric empirical Bayes estimator accounts for possible noise

in the fixed effect estimator by imposing normality on the distribution of teacher VA, and using

that to modify poor-quality estimates for some teachers based on observations for other teachers.

The discussion in the previous section makes very clear that there is no need to impose normality

on the VA distribution, given that the distribution is identified and can be feasibly estimated. We

now explain how this distribution can be used to construct a nonparametric estimator for teacher

VA.

The optimal shrinkage estimator that minimizes Bayes risk is the nonparametric Bayes (‘NPB’)

estimator. This estimator uses the teacher fixed effects {yj} and the model (2.4) as inputs. The

following theorem presenting the estimator features the loss measure, L2 loss, defined as L(δ̂,α) ≡∑J
j=1(δ̂j − αj)

2, where δ̂j is some estimator of true VA, αj .

Theorem 2 (Robbins, 1956) Given the model yj = αj+νj, with αj independent of νj, and αj ∼ F

and νj ∼ N (0, σ2ϵ /nj), then the estimator of αj that minimizes Bayes risk under L2 loss takes the

form

δNPBj =

∫
αφj(yj − α)dF (α)∫
φj(yj − α)dF (α)

, (4.1)

with φj(·) being the density function of the normal distribution with mean zero and variance σ2ϵ /nj.

The estimator can be further simplified to the expression

δNPBj = yj +
σ2ϵ
nj

∂

∂y
log gj(y)|y=yj , (4.2)

with gj(·) being the marginal density of yj.

(See Appendix A for proof.)

Theorem 2 presents two expressions for the nonparametric Bayes estimator. The expression in

(4.1) is simply Bayes rule, which takes the form of the posterior mean of αj , with the distribution F

playing the role of the prior distribution of αj in the Bayesian framework. The second expression,

in (4.2), is known as “Tweedie’s formula” in the literature (see Robbins (1956) and Efron (2011)).

It makes the estimator’s nonlinear shrinkage explicit, the value-added for teacher j being equal to

that teacher’s fixed effect plus a nonlinear term involving the variance of the fixed effect and the

fixed effect’s marginal density.

Several remarks about the nonparametric Bayes estimator are due, comparing it with the para-

metric Bayes estimator from above:

10



1. The parametric Bayes estimator is a special case of the nonparametric Bayes estimator when

F (α) is normally distributed.21

2. While the parametric Bayes estimator always ‘shrinks’ the teacher fixed effect estimator yj

toward zero (since the ‘shrinkage’ factor, σ2
α

σ2
α+σ

2
ϵ /nj

, is always smaller than 1), shrinkage under

the nonparametric Bayes estimator can be non-monotonic. Both the direction and magnitude

of the shrinkage depend on F (α) and are likely to be context-specific.

3. As a teacher’s total sample size nj (summing across all classrooms in all relevant time periods)

increases, the shrinkage applied to the fixed effect estimator decreases. Thus the parametric

and nonparametric estimators will not deviate much from the fixed effect estimator when the

total sample size is very large. This property confirms the intuition that if nj is large, the

fixed effect will be an accurate estimator for the true value-added.

4. Similarly, as the variance of the fixed effect gets smaller, both the parametric and nonpara-

metric estimators will not deviate much from the fixed effect estimator.

5. Both estimators are infeasible as they involved unknown parameters. For the parametric

estimator, its empirical counterpart (as noted) replaces the unknown parameters (σ2α, σ
2
ϵ ) with

their consistent estimates, obtained either through maximum likelihood or method of moments

(Appendix F provides details). Analogously, the empirical counterpart of the nonparametric

estimator replaces the unknown distribution F (α) with a consistent estimate (see Section

3.2).

We already noted that, while the PEB estimator has a simple linear form and is easy to compute,

it relies on the parametric assumption that true teacher VA, αj , follows a normal distribution. If

this assumption is misplaced, the quality of the shrinkage estimator may deteriorate, perhaps

significantly. This highlights the possibility that applying the nonparametric Bayes estimator,

which requires knowledge of the teacher VA distribution, can substantially improve the quality of

teacher VA estimates in terms of Bayes risk – a theme we explore below.

4.2 Finding Policy Gains

At a general level, education policy makers have a keen interest in evaluating a given policy by

quantifying its gains in terms of educational outcomes (e.g., test scores). Take, for example, a policy

that releases teachers at the bottom of the VA distribution. The average test score gain achieved

by laying off the bottom q percent of teachers and replacing them with mean-quality teachers is:

G(q)NP = −EF [α|α ≤ F−1(q)] , (4.3)

21Specifically, when F = N (0, σ2
α) and gj(·) is the density function of a normal distribution with mean zero and

variance σ2
α + σ2

ϵ/nj , then
∂
∂y

log gj(y)|y=yj = − yj
σ2
α+σ2

ϵ/nj
and δNPB

j = δPB
j = yj

σ2
α

σ2
α+σ2

ϵ/nj
.
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where the superscript ‘NP’ represents the nonparametric estimator (as above, but removing the ‘B’

(for ‘Bayes’) for economy).22 Clearly, the average test score gain depends on the VA distribution F .

Having a consistent nonparametric estimator, F̂ , would allow us obtain a consistent estimator for

this gain. The quantity G(q)NP is unlikely to be of direct interest, however, since we never observe

the true α for individual teachers; as such, the decision rule determining which teachers to release

cannot be perfectly implemented.

More relevant, on practical grounds, is the policy gain obtainable given that each teacher’s true

α is unobserved, written:

G̃(q)NP = −E[α|D = 1] , (4.4)

where D is a random variable that determines whether a teacher is released or not. For D to be

an implementable rule, we consider Dj = 1{v(yj , nj) ≤ λ}, where the function v(·, ·) depends on

the observed teacher fixed effect estimates, yj , and the effective sample size, nj , that governs the

variance of the fixed effect estimates (recalling the model (2.4)). A common version of this type

of rule is Dj = 1{yj ≤ λ(q)}, where the cut-off value λ(q) is the qth percentile of the empirical

distribution of the fixed estimates. This decision rule ranks teachers based on their fixed effect

estimates and then releases the bottom q percent. The corresponding policy gain is:

G̃(q)NP = −EF [α|yj ≤ λ(q)] , (4.5)

which clearly depends on the VA distribution F . In contrast, researchers assuming that the VA

distribution is normally distributed would calculate the policy gain under this decision rule to be

G̃(q)P = −EΦ[α|yj ≤ λ(q)] , (4.6)

where the superscript ‘P’ denotes the gain using parametric Bayes. The quantity G(q)P may depart

substantially from the true policy gain G(q)NP if the normality assumption is misspecified (as we

will find in practice in one of our datasets, below).

While we have specified one decision rule here, it is worth emphasizing that the obtainable

policy gains under alternative decision rules still depend on the distribution F (α). For instance,

the decision rule in Chetty et al. (2014b) is given by Dj = 1{yj σ2
α

σ2
α+σ

2
ϵ /nj

≤ λ(q)}, where σ2α and

σ2ϵ are the variance of the teacher VA and error distribution, respectively. This decision rule first

ranks teachers based on the parametric Bayes estimator, then releases the proportion given by the

bottom q quantile. Regardless, the true policy gain depends on the VA distribution F (α), which

may depart from normality, perhaps substantially.

To rank teachers when applying a teacher release policy, fixed effects or a Bayes estimator can

be used: there is no theoretical justification for preferring one over the others. Indeed, if teachers

have taught the same number of students, then rankings based on fixed effects or parametric or

22Henceforth, in this same spirit, our notation follows the convention from the prior section but removes the ‘B’
from the superscripts; we will still include an ‘E’ in the superscripts to denote their empirical counterparts.
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nonparametric Bayes estimators will be identical and so all decision rules would be equivalent.

Given practical transparency and gaming considerations, decision rules based on fixed effects are

likely to be preferable from a policy perspective.23

4.3 Calculating Proportion of Wrongly Released Teachers

Concerns about inadvertently releasing teachers whose true VA does not fall below the proposed

quality threshold serve as a major impediment to policymakers implementing VA policies. It turns

out that the distribution F allows the proportion of teachers wrongly released under a given policy

to be computed. This quantity, known as the false discovery rate, is a vital ingredient in assessing

the costs of the policy.

To explain why this is a natural measure, note that the amount of error we are making under

a decision rule can be conceptualized as a multiple testing problem – as if we are conducting a

hypothesis test using the rejection rule Dj with the null hypothesis H0 : αj ≥ F−1(q) (i.e., teacher

j’s VA is not in the bottom q-percentile) versus the alternative H1 : αj < F−1(q). When the null

hypothesis is true while Dj = 1, we have committed a type I error (in other words, we released the

wrong teacher). It is clear that such an object depends on the distribution of teacher VA, F (α).

As we need to evaluate the quality of the decision rule collectively for all teachers, we are

interested in the proportion of type I errors among all teachers who are released: this is the false

discovery rate. Under the decision rule used in the prior subsection (namely, Dj = 1{yj ≤ λ(q)}),
the false discovery rate is given by24

κNP =
P(αj ≥ F−1(q), Dj = 1)

P(Dj = 1)
=

∫ +∞
F−1(q)Φ(

λ(q)−α
σϵ/

√
nj
)dF (α)

q
. (4.7)

In contrast, imposing the normality assumption would replace the general distribution F with the

normal distribtion Φ in equation (4.7).25 Once again, a significant deviation of the VA distribution

from normality would lead the policymaker to view a false discovery rate that is potentially wide

of the mark, misrepresenting the likely risks of the teacher release policy.

4.4 Plug-in Nonparametric Empirical Estimators

With the NPMLE F̂ in hand, we are in a position to construct versions of the each of the

estimators introduced above that can be used in practice. To do so, we replace the infeasible

23Decision rules based on fixed effects only depend on the average test score among all students teacher j has taught
and so are easy to communicate. In terms of gaming, decision rules based on parametric Bayes estimators create an
incentive for poor teachers to teach smaller (or fewer) classes so that they will be ‘shrunk’ toward the mean and no
longer be ranked in the bottom q percent of teachers (Mehta, 2019).

24The below formula assumes that nj = n for all j for simplicity. If nj differs across teachers, then we need to
aggregate over the distribution of n1, . . . , nJ .

25Under normality, the false discovery rate would be κP = 1−q
q

∫ λ(q)

−∞ f0(y, σα, σϵ)dy where f0(y, σα, σϵ) can be

explicitly derived as f0(y, σασϵ) =
1√

2π(σ2
α+σ2

ϵ/nj)
e
− y2

2(σ2
α+σ2

ϵ /nj)

[
1

1−q
Φ
(
y σα

σϵ

√
σ2
α+σ2

ϵ/nj/
√
nj

−σαΦ
−1(q)

√
σ2
α+σ2

ϵ/nj

σ2
ασ2

ϵ/nj

)]
.
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estimators that rely on F (α) with their empirical counterparts, which use our estimate, F̂ (α).

Nonparametric Empirical Bayes VA Estimator: We construct the NPEB VA shrinkage

estimator as:

δNPEB
j =

∫
αφj(yj − α)dF̂ (α)∫
φj(yj − α)dF̂ (α)

. (4.8)

The estimator in equation (4.8) is the feasible version of the posterior mean defined in equation

(4.1) in Theorem 2.26 Having obtained the NPMLE for F based on (3.1), evaluating (4.8) only

involves matrix operations, as F̂ takes a discrete form – see Appendix H.

The NPEB estimator has been shown to have desirable statistical properties, despite the

NPMLE of F having a slow convergence rate (Fan, 1991). In particular, comparing the risk of

the NPEB estimator with the infeasible NPB estimator, the difference tends to zero asymptotically

when F has compact support, thus justifying the asymptotic risk optimality of the NPEB – see

Jiang and Zhang (2009) and Saha and Guntuboyina (2020) for the homogeneous variance case

(e.g., all teachers have the same class size) and Jiang (2020) for the heterogeneous variance case.

Given these theoretical results, our proposed estimator δNPEB
j has the potential to improve on the

linear PEB estimator in the sense of having a smaller risk, and perhaps significantly so, when the

underlying distribution F cannot be approximated well by the normal distribution.

Nonparametric Policy Gain Estimator: Section 5.2 introduced the gain G̃(q)NP, which calcu-

lated the gain of a policy that releases the bottom q proportion of teachers according to the decision

rule Dj = 1{yj ≤ λ(q)}. Its empirical counterpart simply replaces F with its empirical estimate F̂ .

The resulting nonparametric empirical policy gain estimator is:

G̃(q)NPE = −EF̂ [α|yj ≤ λ(q)] . (4.9)

It can be shown that G̃(q)NPE is an unbiased estimator for G̃(q)NP.

Nonparametric False Discovery Rate Estimator: Similarly, we can replace the false discovery

estimator with its empirical counterpart, which uses our estimates of F̂ and σ̂ϵ. The empirical false

discovery estimator is thus given by

κNPE =

∫ +∞
F̂−1(q)

Φ̂(λ(q)−α
σ̂ϵ/

√
n
)dF̂ (α)

q
. (4.10)

In what follows, we illustrate the advantages of using empirical estimates of the VA distribution

F over those that assume normality in a stylized setting in the next section, before evaluating the

magnitude of the improvements achievable based on realistic simulations in the section after.

26We discuss the construction of the estimator in more detail in Appendix H. There, we also explain why the feasible
version of the NPB estimator uses (4.1) directly, rather than the equivalent expression given in Tweedie’s formula.
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5 Illustration

In this section, we illustrate our nonparametric approach, contrasting the quantities calculated

using the VA distribution F (α) with those found if one imposes normality on the distribution, as

is common in the literature.

As a running example, we assume that the policymaker expects VA to be distributed αj ∼
N (0, 0.08), which approximates the variance of the VA distribution when we impose normality

using the North Carolina data below. At the same time, we assume true teacher VA has the

distribution F , which takes the specific form

F = 0.95N (0, θ1) + 0.025N (−1, θ2) + 0.025N (1, θ3) . (5.1)

This mixed normal distribution has the built-in feature that the tails have small probability masses

concentrated around the values −1 and 1 respectively, while the majority of the mass follows

a normal distribution centered at zero. We calibrate the parameters (θ1, θ2, θ3) such that the

mixed normal distribution F has the same mean and variance as the normal distribution.27 This

comparison provides insight into how deviations from normality in the tails can lead to very different

empirical quantities of interest, artificiality to one side.

In this example, the underlying distribution F (α) is assumed to be known and so our nonpara-

metric estimators represent the optimal estimators for estimating teacher VA, the policy gains,

and the false discovery rate. In contrast, the section that follows will present results from realistic

simulations in which F (α) must be estimated and so finite sample considerations need to be taken

into account.

5.1 Shrinkage Estimators

Figure 1(a) compares the amount of shrinkage for the parametric and nonparametric Bayes

estimators, respectively. As the figure illustrates, the parametric Bayes estimator (shown by the

diagonal straight line) shrinks the fixed effect estimates linearly and symmetrically toward the mean

of zero, with the direction of the shrinkage depending only on the sign of y and not its magnitude.

In contrast, the NPB estimator (in equation (4.2)) is in general a nonlinear function of y and the

direction of shrinkage depends not only on the sign of y but also its magnitude.

Differences in the amount of shrinkage between the two estimators are especially pronounced at

the mass points of −1 and 1. The parametric Bayes estimator does not account for the presence of

these mass points – they are assumed away by normality – and so shrinks them toward zero. The

NPB estimator, in contrast, adapts to the underlying distribution and pulls fixed effects nearby

(below and above) to the two mass points in the tails. In doing so, it accounts for the non-negligible

probability that the true quality of some teachers may take values in the vicinity of these mass

points.

27To do so, we set θ1 = θ2 = θ3 = 0.03. For both distributions, σ2
ϵ = 0.25, which is roughly the same as in the

North Carolina mathematics score data. The total sample size for each teacher, nj , is set to sixteen.
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5.2 Finding Policy Gains

Figure 1(b) compares the policy gains from releasing a given proportion of teachers under the

nonparametric estimator with the expected gains when imposing normality. The x-axis denotes

the proportion of teachers released, and the y-axis represents the policy gains in terms of increased

test scores in the affected classrooms. As we implement policies that release more teachers, the

marginal teacher released is of higher quality, leading to a reduction in the average policy gain in

the affected classrooms.

The parametric estimator underestimates the extent of the resulting policy gains when relatively

few teachers are released, as it misses the fact that there is a mass of left-tail teachers coming

from the 0.025N (−1, θ2) portion of the distribution. The degree of underestimation is maximized

when 2.5% of teachers are released, as that is where the 0.025N (−1, θ2) term features the greatest

mass. As more teachers are released, the expected policy gains under the parametric estimator

approach those under the nonparametric estimator. This is because the fat tails of the mixed

normal distribution imply that there are fewer teachers in the middle of the distribution, relative

to the normal; therefore, as more teachers are released, the quality of the marginally released

teacher improves under the mixed normal distribution compared with normality. Once we start

releasing more than 10 percent of teachers, the parametric estimator overstates the policy gains.

To give a sense of the magnitudes, a policy that releases the bottom 5% of teachers generates a

test score improvement in terms of standardized test scores of 0.662 in affected classrooms, while

imposing normality would have led the policymaker to expect test scores to increase by only 0.625.

5.3 Calculating the Proportion of Wrongly-Released Teachers

Figure 1(c) mimics Figure 1(b), but replaces policy gains on the y-axis with the false discovery

rate, which is the proportion of teachers who are released but whose true VA lies above the relevant

cutoff percentile. When few teachers are released, the parametric estimator overstates the false

discovery rate. This arises because the parametric estimator assumes all teachers are being drawn

from the normal distribution, according to which teachers in the left tail are hard to differentiate.

In contrast, the nonparametric estimator ‘understands’ that these low-quality teachers are likely

drawn from the 0.025N (−1, θ2) portion of the distribution, making it easier to differentiate them.

Indeed, the false discovery rate drops dramatically until we release 2.5 percent of teachers, where

the 0.025N (−1, θ2) term has the greatest mass. As we release more teachers, it becomes harder to

determine whether teachers are being drawn from the 0.025N (−1, θ2) or 0.95N (0, θ1) terms in the

mixed normal distribution, making the false discovery rate rise. Indeed, this confusion about which

mass point the teachers are being drawn from leads the parametric estimator to start understating

the false discovery rate once more than 7 percent of teachers are released. When the percentage

of teachers released starts to exceed ten percent, such confusion dissipates, and the two estimators

behave similarly from this point onward, although the parametric estimator continues to understate

the false discovery rate. As a gauge of magnitudes, at the five-percent cutoff a policymaker assuming

normality would expect 35% of the released teachers to be wrongly released, whereas only 27% of
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released teachers under the mixed normal have a true VA above the fifth percentile and so would

be incorrectly released.

6 Simulations

In this section, we investigate the performance of the empirical counterparts of the nonparametric

and parametric estimators for the three tasks that are our focus using simulations. In these simula-

tions, the distribution F used to generate the data is known, allowing us to compare our candidate

estimators relative to a benchmark, infeasible in practice, in which the researcher knows the true

underlying teacher quality distribution and is therefore able to construct oracle estimators (as in

the prior section).

We generate the data based on the model yj = αj+ ϵj specified in (2.4). Our main interest is in

the distribution of αj , discussed below. We assume ϵj follows a normal distribution with mean zero

and variance σ2ϵ /nj , and nj is the class size of individual teacher j.28 In the simulations, we start

by fixing the total number of teachers (J) to be 10,000 – we will vary J below when examining

finite sample properties – and we set σ2ϵ = 0.25 to mimic the actual estimates we will obtain using

the LA and North Carolina data. Two alternatives are considered: a homogeneous class size case

where every teacher has a class size of 16, and a heterogeneous class size case where class size is

drawn randomly from the set {8, 16} with equal probability.29

The simulation sample in hand, we implement the parametric and nonparametric approaches

alongside the fixed effect approach introduced in Section 2. In particular, we estimate the variance

of α under the parametric approach by maximum likelihood under the assumption that F follows a

normal distribution. In our nonparametric approach, we estimate the VA distribution F using the

nonparametric maximum likelihood method. The fixed effect estimates are the {yj} themselves.

We assess the performance of these estimators under four different known distributions. The

first two are the normal and mixed normal, both symmetric around zero. We also consider two

asymmetric VA distributions: the skewed normal and the skewed logistic, which has a thinner tail

than the normal, both distributions being calibrated to have means of zero.

We compare the estimators in terms of their ability to mimic the oracle estimator, based on

performance measures relevant to each of the three different tasks. For the first task, the perfor-

mance measure we consider is the sum of squared errors (‘SSE’), the empirical counterpart of risk,

28We will think of the teacher as having just one year of experience (having taught only one class), in which case
her VA estimate can differ markedly from her fixed effect estimate.

29We consider both homogeneous and heterogeneous class sizes as they have implications for how teachers are
ranked according to their empirical Bayes estimate of αj . Under homogeneous class sizes, the choice of estimator has
no effect on teacher rankings since both PEB and NPEB are monotone transformations of yj . With heterogeneous
class sizes, we no longer have monotonicity, although ranking teachers according to fixed effects or parametric or
nonparametric empirical Bayes estimators lead to very similar misclassification rates for the four VA distributions
we have considered – see Appendix Tables I.1(a)-I.1(d). This supports our contention that decision rules that release
teachers based on fixed effects or empirical Bayes estimates will be almost indistinguishable. Indeed, in both of our
data sets the group of teachers released are nearly identical if they are ranked according to fixed effects or empirical
Bayes VA estimates (see Section 8.1).
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measuring how well the estimator captures a teacher’s VA. The SSE takes the form
∑J

j=1(δj−αj)2,
where αj is the true VA for teacher j, δj is a VA estimator for teacher j, and J is the sample size

(total number of teachers) in the simulations.

Second, we assess the performance of the estimators in terms of finding the obtainable policy

gain when releasing the bottom 5% of teachers according to their FEs.30 Here, the fixed effect

estimator suffers from selection bias in the sense that teachers with more extreme (smaller) fixed

effect estimates tend to have less extreme true VA (see Efron (2011)). We will show that the

parametric approach does not fully correct for this bias, while our nonparametric approach provides

an unbiased estimate of the policy gain.

Third, we consider how well the different estimators uncover the false discovery rate when

releasing teachers whose FEs are in the bottom 5%. The false discovery rate is defined as E[V/0.05×
J ], where V is the total number of teachers falsely selected (i.e., whose VA is not in the bottom 5%)

and J is the total number of teachers under consideration. Note that the false discovery rate cannot

be calculated for the fixed effect estimator, as the FE estimator is agnostic as to the distribution of

teacher quality, which is needed to compute the false discovery rate. We will show that imposing

normality can lead policymakers to under- or over-estimate the false discovery rate by a significant

margin.

Normal Teacher Quality Distribution: Table 1(a) displays the simulation results when teacher

quality is normally distributed according to F ∼ N (0, 0.08). Here, the normality assumption built

into the parametric estimators is correct, so they perform almost identically (noting the variance

of the normal distribution is still estimated) to the infeasible oracle estimator, which uses the true

distribution. We see that the parametric estimator improves substantially on the sum of squared

errors and estimated policy gain compared to the fixed effect estimator. At the same time, it

only outperforms our nonparametric estimator by a very small margin: whether considering the

homogenenous or heterogeneous class size cases, the risk ratios are very close to 1 (131.1/130.5, and

187.0/186.3), the estimated policy gains are near-identical,31 and the false discovery rate estimates

are close to each other. These are striking results given our nonparametric method does not make

any parametric assumption about the distribution F .

Non-Normal Teacher Quality Distribution: Tables 1(b), 1(c), and 1(d) show simulation re-

sults when teacher quality is not normally distributed. Specifically, in Table 1(b), true teacher qual-

ity follows the mixed normal distribution F ∼ 0.95N (0, 0.03)+0.025N (−1, 0.03)+0.025N (1, 0.03)

as in equation (5.1),32 while asymmetric non-normal distributions are shown in Tables 1(c) and

1(d): in Table 1(c), true teacher quality follows the skewed normal, and in 1(d), a skewed logistic

30For the given feasible policy implementation rule, γi = 1{yi < t}, with t being the 5% quantile of y, we are
interested in estimating E[α(1− γ)] = −E[αγ], since the mean of α is zero. As we do not observe αj in practice, we
replace it with an estimate, δj ; we are then interested in evaluating the bias that arises when using an estimate of α,
given by 1

J

∑
j(δj − αj)1{yj < t}.

31While the policy gains appear the same in Table 1(a), their fourth decimal points do differ.
32For comparability, the mixed normal distribution has the same first three moments (mean, variance, and skewness)

as the normal distribution in Table 1(a).
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distribution.33

It is noteworthy that our nonparametric estimator achieves a sum of squared errors very close

to that of the infeasible estimator (which assumes the true distribution is known) for all four VA

distributions, whether considering homogenenous or heterogeneous class size cases. For all three

non-normal distributions, the starkest contrast between the performance of the parametric and

nonparametric esimtators in terms of overall risk (under squared error loss) occurs when true VA

follows a mixed normal distribution: the SSE under the nonparametric estimator is far smaller

than under its parametric counterpart, the performance advantage still apparent for the other two

distributions.

The table also shows that the nonparametric estimator features no detectable bias when estimat-

ing the obtainable policy gain for all three non-normal distributions. In contrast, the policy gains

calculated using the parametric estimator are off by 5-20 percent. In terms of the false discovery

rate, the nonparametric estimator mirrors the results from the infeasible estimator. In contrast, the

parametric estimator overstates the false discovery rate under the mixed normal distribution and

underestimates the false discovery rate under the skewed normal and skewed logistic distributions

by a substantial margin.

Finite Sample Properties: Since the nonparametric estimator relies on the nonparametric maxi-

mum likelihood estimator of the VA distribution while the fixed effect and PEB estimators are both

parametric, it is important to investigate its finite sample performance. To that end, we repeat the

previous simulations, considering successively larger samples of teachers, drawn in turn from the

set {100, 500, 1000, 2000, 4000, 10000, 12000}; many administrative datasets are in the ballpark of

the largest value in the set.

First, we consider the finite sample properties of the VA estimators, namely our NPEB estimator

and the PEB estimator used previously in the literature. Figure 2 plots the SSE for the PEB and

NPEB estimators for all four VA distributions used in the simulations relative to the infeasible

Bayes estimator.34 The y-axis in the figure is therefore a risk ratio where a value of one implies the

estimator has the same mean squared error as the infeasible estimator. As sample size increases,

the risk of our NPEB estimator converges to the infeasible benchmark quickly, approaching a risk

ratio of 1 when the number of teachers equals a thousand; when the number of teachers exceeds

four thousand, our nonparametric estimator is near-identical to the infeasible estimator in terms

of SSE. In stark contrast, the PEB estimator does not improve as sample size increases, since the

estimated VA distribution is not adaptive.

33The skewed normal still has a normal tail while the distribution is skewed to the right with location parameter
-0.4 and shape parameter 5; the scale parameter is calibrated so that the mean of F equals zero. The skewed logistic
has a thinner tail than the normal and is also skewed to the right. The location and shape parameters are set to be
-0.5 and 5 respectively, and the scale parameter is also calibrated so that the mean of the distribution is zero. The
variance of the resulting true VA is roughly 0.1 in both cases.

34We only plot the results for heterogeneous class sizes (to conserve space), although results with homogeneous class
sizes look very similar. The fixed effect estimator is omitted in these figures since it performs so much worse than
the parametric or nonparametric empirical Bayes estimators in terms of mean squared error and tail bias (as shown
in Tables 1(a) - 1(d)).
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Figure I.1 then reports the performance of the nonparametric and parametric estimators in

terms of the policy gain. The y-axis in the figure represent the bias in the policy gain relative to

the infeasible benchmark. Figure I.2 does so for the false discovery rate. The results are similar

to those for SSE: the nonparametric estimator tracks the infeasible estimator, curing bias when

calculating the policy gain and the false discovery rate, even with small samples. In contrast, when

the distribution departs from normality, the parametric estimator exhibits substantial bias when

estimating the policy gain or the false discovery rate. These results reflect the fact that all the

nonparametric estimators are functionals of F . Therefore, once there is a sufficient sample size

(in excess of a thousand teachers) to identify F , our nonparametric estimator outperforms the

parametric estimator for the three tasks we consider.

In sum, the simulations indicate that the nonparametric estimators have appealing versatility.

For the typical sample size used in VA applications, the proposed nonparametric estimators perform

similarly to their parametric counterparts when the true distribution is normal, despite being a

nonparametric method. When the true distribution is not normal, the nonparametric estimators

outperform the parametric estimators by a substantial margin, performing almost as if the true

distribution were known for moderate sample sizes of 1,000 or more. Given there is no a priori

reason to believe that teacher quality follows some specific distribution, the simulation evidence we

have presented buttresses the view that our method can adapt to, and help recover, any underlying

distribution of teacher quality – a powerful attribute when taken to observational data, which is

our focus in the following sections.

7 Data and Estimated VA Distributions

This section introduces the two administrative datasets that serve as the basis for our empirical

analyses. For each dataset, we report the estimated distribution of teacher VA using our proposed

nonparametric methodology, alongside the estimated distribution using the parametric approach.

7.1 Data

The two administrative datasets we use each provide detailed information about students and

teachers. While covering similar time periods, grades, and demographic information, we discuss

each data source separately given there are important differences between them; a more detailed

description is provided in Appendix C.

North Carolina: Our first administrative dataset (the relevant data citation is: North Carolina

Education Research Data Center (1996-2017)) covers all public school students in North Carolina

for third through fifth grade – third grade from 1996-97 to 2008-09 and fourth and fifth grades from

1996-97 to 2010-11.35 In total, the dataset consists of around 1.85 million students with 4.5 million

35Our analysis is restricted to students in grades three to five since our dataset records the test proctor rather than
the class teacher explicitly, and the test proctor is typically the teacher who taught the students throughout the year
in these grades. Data for third grade ceases following 2008-09 because the third grade pretest was discontinued after
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student-year observations. It also provides detailed demographic information, including parental

education (1996-97 through 2005-06), economically disadvantaged status (1998-99 through 2010-

11), ethnicity, gender, limited English status, disability status, academically gifted status, and an

indicator for grade repetition.

We make several restrictions in constructing the sample used to estimate teacher VA, following

Clotfelter et al. (2006) and subsequent research using North Carolina data. Specifically, we require

that all students are matched to a teacher, and that students have a valid lagged test score in the

relevant subject. After making sample restrictions (described in Appendix C), our final sample

consists of approximately 2.7 million student-year observations, covering 1.4 million students and

35,000 teachers.

Table 2 provides summary statistics for the main variables used in calculating VA. Column (1)

reports these for the entire North Carolina sample, and column (2) for the VA analysis dataset.

While the sample restrictions eliminate approximately forty percent of the observations, we see only

minor differences between the two samples, with the VA sample showing slightly higher performance

levels and being drawn from moderately higher socioeconomic backgrounds, on average.

Los Angeles Unified School District: Our second data source comes from the Los Angeles

Unified School District (LAUSD).36 The dataset spans third grade from 2003-04 to 2012-13 and

fourth and fifth grade from 2003-04 to 2012-13 and 2015-16 to 2016-17,37 and covers roughly

800,000 students with 1.7 million student-year observations. Detailed demographic data include

economically disadvantaged status, ethnicity, gender, age, limited English status, a grade repetition

indicator, and parental education (missing for thirty percent of sample). Similar to the North

Carolina dataset, we make several sample restrictions, dropping students who cannot be matched

to a classroom teacher, and students who do not have a valid lagged test score in the relevant

subject. Our VA sample for LA consists of 1.3 million student-year observations, covering roughly

660,000 students and 11,000 teachers.

Columns (3) and (4) of Table 2 provide summary statistics for the LAUSD data, column (3) for

the entire sample, and column (4) for the VA analysis dataset. Similar to North Carolina, we find

that our VA sample is moderately positively selected, with student test scores being about 0.06

standard deviations higher than the full sample.

Comparing the two datasets, clear differences in samples are apparent. North Carolina has a

majority-white student body with a large black minority, whereas the LAUSD is majority-Hispanic.

The LAUSD sample is also drawn from students with significantly more disadvantaged backgrounds,

students being almost twice as likely to be free or reduced price lunch-eligible and nearly three times

as likely to come from a household where parents are high school dropouts. These differences may

that year.
36Data citation: Los Angeles Unified School District (2003-2017).
37Data are missing for 2013-14 and 2014-15 due to a change in the statewide testing regime that occurred in 2013-14,

which resulted in no test score data that year and also eliminated the second grade test thereafter. As lagged test
scores are required when computing value-added, we drop academic years 2013-14 and 2014-15 from the dataset, as
well as third grade after 2012-13.
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affect the underlying distributions of teachers found in these two settings.

7.2 Estimated VA Distributions

The VA distributions that we estimate in both datasets deviate from normality in a statistically

significant way. (Appendix G develops a test for statistical deviations from normality.) We now

discuss these deviations from normality, paying particular attention to the policy-relevant tails of

the distributions.

North Carolina: Figure 3(a) shows our nonparametric estimate of the teacher VA distribution

with the solid line, estimated using equation (3.1) – we plot the relevant quantiles for visual ease.

We also estimate the distribution of teacher VA in North Carolina under the normality assumption

using maximum likelihood,38 finding that teacher VA is distributed N (0, 0.047), which implies a

standard deviation of 0.217.39 We superimpose the (assumed) normal quantiles with the dashed

line in Figure 3(a) so that deviations from normality can be visualized.

The figure makes clear that NPMLE yields a VA distribution that has more mass around zero

and less mass for intermediate VA values compared to the Gaussian distribution. In terms of

the tails, differences between the NPMLE and Gaussian density estimates are almost negligible in

North Carolina, aside from rather subtle differences.40

LAUSD: Our estimated teacher VA distribution using NPMLE is shown in Figure 3(b), using

the solid line. Under the normality assumption, we find teacher VA is distributed as N (0, 0.0977),

implying a standard deviation of 0.3126, which is considerably higher than the estimated variance

in North Carolina.41 This normal distribution is superimposed using the dotted line in Figure

3(b). What stands out visually is the distinct lack of symmetry: the solid line representing the

NPMLE quantile lies above the dotted line indicating the Gaussian quantile in the left third of the

distribution but not on the right. Clearly, the nonparametric VA distribution is skewed, with a

much thinner left than right tail.

Deviations between the true VA distribution and a distribution that imposes normality will

in turn alter the policy calculus. For example, a distribution with a thin left tail relative to the

Gaussian (as found in the LAUSD) affects the relevant calculations of policymakers in terms of

shrinkage, policy gains, and the false discovery rate. First, a distribution with a thin left tail leads

low-quality teachers to be shrunk more aggressively toward zero as the NPEB estimator adapts to

the lack of teachers in the left tail (relative to the Gaussian). Second, a thin left tail implies that

actual policy gains will be smaller than under the assumed Gaussian distribution since the thin left

tail means that fewer low-quality teachers exist. Third, the false discovery rate under a distribution

38This is the Chetty et al. (2014a) no-drift estimator. Maximum likelihood is used as it is the most efficient
estimator: results are similar if we use method of moments instead.

39The other input to the PEB shrinkage estimator is estimated to be σ̂2
ϵ = 0.248.

40NPMLE finds slightly more mass in the extreme left tail (VA<-0.6, which corresponds to the bottom 0.3% of
teachers) compared with the Gaussian, but slightly less mass in the rest of the left tail above -0.5 (which demarks
the bottom 1% of teachers). In the very right tail, NPMLE detects slightly more mass in the top 1% of teachers.

41The other parameter is estimated as σ̂2
ϵ = 0.2596.
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with a thin left tail will be larger than that under the Gaussian distribution since the thin left tail

implies that low-quality teachers are of similar quality and so they are more difficult to tell apart.

8 Results

Given the central role the VA distribution plays in the analysis of teacher impacts and the

significant deviations from normality we have found in the North Carolina and LAUSD VA distri-

butions, we now assess the impacts of these VA distributional estimates. We do so by highlighting

the consequences of assuming normality for policymakers and researchers in practice when: (i) esti-

mating VA, (ii) estimating the policy gains of popular teacher release policies, and (iii) computing

the risks of firing low-VA teachers associated with such teacher release policies.

8.1 Implications for Shrinkage

The NPMLE and Gaussian estimates of the VA distribution give rise to distinct shrinkage rules,

leading to different NPEB and PEB estimates of a given teacher’s quality. We start by highlighting

the differences in the shrinkage rules in each dataset, then discuss how using NPEB or PEB affects

teacher rankings. We then evaluate the performance of the NPEB and PEB estimates in terms of

out-of-sample predictive power.

North Carolina: Panels (a) and (b) of Figure 4 plot estimated teacher VA in North Carolina

using our NPEB estimator against the PEB estimator in the policy-relevant bottom and top tails

of the distribution, respectively. Specifically, we plot those teachers whose fixed effect estimates

are below the 5th (on the left) or above the 95th percentile of the distribution (on the right), with

the vertical dashed lines demarking the bottom and top one percent of observations (on the left

and right, respectively). In panel (a), focusing on the far left tail, we see that teachers in the

very bottom 0.5% in terms of their FE, with PEB estimates below -0.5, are situated beneath the

45-degree line, indicating that the NPEB estimator shrinks these teachers less toward the mean

of zero than PEB does. This is due to the fact that the NPMLE finds slightly more mass in the

extreme left tail, and so shrinks these teachers less as it expects more teachers to have true VA in

this region compare to the Gaussian. For the right tail, the estimates only disagree in the far right

above 0.6 (accounting for the very top 0.1% of teachers), with the NPEB shrinking these teachers

less toward the mean, given that NPMLE found more teachers in the extreme right tail than the

Gaussian.

LAUSD: The thinner left tail of the VA distribution in the LAUSD gives rise to much larger

differences between NPEB and PEB estimates, as shown in the bottom two panels of Figure 4.

These plot estimated teacher VA from our NPEB against the PEB estimator for teachers whose

fixed effect estimates are below the 5th (on the left) and above the 95th percentile of the distribution

(on the right). For teachers in the left tail, their NPEB estimates are larger than their PEB

estimates, being located above the 45-degree line, indicating that the NPEB shrinks these teachers
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further toward the mean.

This shrinkage behavior is driven by the thin left tail estimated using NPMLE; the NPEB

shrinks left-tail teachers more toward the mean since the NPMLE finds a smaller mass of teachers

here compared to the Gaussian. In contrast, the PEB and NPEB estimates largely agree for

teachers in the right tail since the NPMLE and Gaussian estimates of the right tail of the VA

distribution are relatively similar. Our nonparametric method therefore adapts to the skewness

of the distribution by shrinking teachers below the 5th percentile far more strongly back toward

the mean, while applying similar shrinkage to the PEB when the fixed effect estimates take values

above the 95th percentile.

Teacher Rankings: It is natural to ask whether the choice of estimator influences the ranking of

teachers. Consider misclassification rates of teachers in the bottom five percent in terms of both

Type I and Type II errors. (In this context, a Type I error occurs when a teacher is ranked below

5% while her true quality ranking is above 5% – conversely, for a Type II error.) With homogeneous

class sizes, the PEB and NPEB estimators and the fixed effect estimators will all produce the same

teacher rankings and thus misclassification rates (Guarino et al., 2015; Bitler et al., 2019). Once

we allow class size to be different, however, the PEB and NPEB estimators are no longer order-

preserving with respect to teacher fixed effects, raising the possibility that misclassification rates

may differ depending on the estimator chosen, in turn making it unclear which estimator should

(in principle) be used to determine whom to replace.42

In practice, we find that the choice of empirical Bayes method has little appreciable impact

on teacher rankings. In both datasets, a very small fraction of teachers ranked in the bottom five

percent of the teacher quality distribution under PEB are not ranked in the bottom five percent

according to NPEB. (The exact numbers are: 34 out of 1753 for North Carolina and 33 out of

554 for the LAUSD, respectively.) This is in line with our simulation results, which reveal nearly

identical misclassification rates across the three estimators (see Tables I.1(a)-I.1(d)).

Out-of-Sample Predictions: Given our NPEB estimates of VA, we now evaluate the performance

of our NPEB estimator relative to the fixed effect and PEB estimators on the basis of their ability

to predict future outcomes. Suppose, for instance, that school boards or policymakers observe a

teacher’s past performance and wish to predict future outcomes for that teacher. We can measure

predictive performance via the squared error distance, (yj,t+1 − ŷj,t+1)
2, where yj,t+1 is the true

outcome of teacher j in period t+1 and ŷj,t+1 is its predictor, utilizing all past information relating

to her teaching performance, starting when the teacher first appeared in the sample up until the

tth period.

This prediction exercise faces a difficulty in that the class sizes of teachers in period t + 1

likely differ. Thus, even if we had a perfect estimator for a teacher’s quality αj , since yi,t+1 ∼
N (αj , σ

2
ϵ /nj,t+1), the larger the class size is, the less variability there would be in outcomes the

42The appropriate loss function when determining whom to replace should quantify misclassification as the criterion
for the optimal estimator, instead of using the sum of squared errors of the true and estimated VA. Gu and Koenker
(2020) discuss suitable alternative loss functions for the purposes of ranking and selection.
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following year, given by yj,t+1, making teacher quality easier to predict for the corresponding ‘large

class size’ teacher. To account for this, we use the following two measures of prediction accuracy

proposed by Brown (2008): normalized mean squared error (NMSE) and total mean squared error

(TMSE). NMSE is given by:

NMSE =
1

K

∑
j∈I

(
nj,t+1(yj,t+1 − ŷj,t+1)

2
)
, (8.1)

where I is the set of teachers whose performance is being predicted and K is the size of that set.43

In turn, TMSE is given by:

TMSE =
1

K

∑
j∈I

(
(yj,t+1 − ŷj,t+1)

2 − σ2ϵ
nj,t+1

)
. (8.2)

Without the adjustment term σ2
ϵ

nj,t+1
, the quantity is just the usual sum of squared errors, the

adjustment being introduced to account for the effect of different class sizes on the variance.

Tables 3(a) and 3(b) report NMSE and TMSE using the North Carolina and LAUSD data,

respectively, for the NPEB, PEB, and fixed effect estimators. Each row in the table represents the

number of prior years of teacher j’s performance used to make the prediction.44 The two empirical

Bayes methods (reported in the first two columns) substantially outperform the fixed effect method

when only a few years of prior data are used, the extra gain being substantial when information

about a teacher is scarce. As more and more years of data become available, the gain from using

empirical Bayes diminishes in comparison with the fixed effect estimator.

Now focusing on the two empirical Bayes estimators, the NPEB outperforms the PEB estimator

under both prediction accuracy measures, except when only using one prior year of information

with the LAUSD dataset. When 2-5 years of data are used, the predictive performance of the NPEB

estimator surpasses that of the PEB by the greatest margin. (With many years of data, the NPEB

continues to outperform the PEB, although both methods begin approaching the performance of

the fixed effect estimator, given teacher-specific sample sizes have become large enough such that

estimates are no longer shrunk materially.) Of note, teacher tenure decisions are often made in

practice during the time window when our nonparametric methodology outperforms that of the

PEB by the greatest margin (as stated in the Introduction), namely using 2-5 years of data per

teacher.

43The NMSE is the usual sum of squared errors with an adjustment term nj,t+1 (which serves to scale back the
contribution of teachers with large classes sizes, who have higher precision by construction, by the size of their class,
nj,t+1).

44To predict the performance of teacher j using t years of data, we restrict the sample to include teachers who
appear t+1 times.
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8.2 Policy Gains

This subsection examines how nonparametric and Gaussian estimates of the VA distribution

can lead to differences in benefits associated with education policy calculations. We focus on widely

discussed policies that target the bottom of the teacher quality distribution (noting one could also

consider the top of the distribution). When evaluating such policies, the measures we consider

involve average gains from replacing teachers at the bottom of the VA distribution by average-

quality teachers – policy gains that depend on the VA distribution obtained under the parametric

and nonparametric approaches. Our interest is in gauging the extent to which average policy gains

are over- or under-stated, comparing the two methods.

Evidence using large-scale administrative datasets in the previous section shows that disagree-

ment between the VA distribution (relative to the normal) in both tails of the North Carolina

distribution and in the right tail of the LAUSD distribution are relatively minor. Thus, policies

targeting the tails of the NC distribution or the right tail of the LAUSD distribution would be

expected to be relatively invariant to the choice of nonparametric versus parametric estimator. At

the same time, the normality assumption is particularly misspecified in the left tail for the LAUSD,

which is important for policies targeting low-VA teachers – teacher release policies, for example.

Here, the parametric methodology (taking the VA distribution to be normal) is likely to overstate

the benefits of such policies since the nonparametric estimator finds less relevant mass in the left

tail.

We examine a policy that has gained considerable traction, seeking to replace poor-quality

teachers. The specific proposal made by Hanushek (2009, 2011) and further explored by Chetty

et al. (2014b) involves releasing teachers in the bottom 5% of the estimated VA distribution and

replacing them with average-quality teachers. We consider a more general policy that replaces

the bottom q% of teachers, while paying particular attention to the ‘bottom 5%’ cutoff, given its

prominence in both the prior literature and the policy debate.45

Short-run Effects: We assess the short-run effects of teacher-release policies in terms of the

average test score gains among students whose teachers were replaced, which depend on the ‘input’

VA distribution under nonparametric and parametric approaches. These test score gains are a

function of the cutoff percentile q, noting that the VA distribution is centered to have mean zero,

and a one-unit increase in VA (or α) leads to a one-SD test score gain.46

As discussed in Section 5.2 the average test score gain in the context of teacher-release policies

can be estimated by equation (4.9), rewritten here for convenience:

G̃(q)NPE = −EF̂ [α|yj ≤ λ(q)] . (8.3)

Under the Gaussian assumption, the policy gain is simply given by the above equation when F̂ is

replaced by the estimated normal distribution Φ̂. As in Section 5.2, we rank teachers according

45Results from a corresponding analysis of teacher-retention policies are available on request.
46The gains can be transformed into the average test score gain among all students, multiplying the average by the

cutoff percentile q.
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their fixed effect and release the bottom q proportion. (Given that the choice of estimator does

not materially affect rankings in our data, however, we get similar results if we release teachers by

ranking them according to their empirical Bayes estimate).

A practical difficulty when implementing the policy relates to the number of years of data

gathered before implementing the decision rule. This involves a trade-off: waiting longer provides

more data allowing for a given teacher’s quality to be better estimated, whereas every year of

delay allows low-quality teachers to remain in the classroom yet another year. We suppose the

policymaker waits three years, given that this is often the number of years policymakers use to

make tenure decisions in practice. Accordingly, we obtain the fixed effects estimates ŷj using

three years of simulated data for each teacher and also assuming that teachers all have class sizes

of twenty. Then we calculate the sample analogs of both test score gain measures for the two

distributions via Monte Carlo simulation.47

The results based on these simulations are plotted in Figure 5. We do so separately for North

Carolina and the LAUSD, for different percentages of teachers being released (given on the x-axis

in each panel). Several features are apparent: First, the gains decline steeply using either method

in both datasets when the lowest-VA teachers are replaced, with the profiles flattening out as the

replacement cutoff rises up the VA distribution (as expected). Second, while using the parametric

method gives rise to a slight overstating of the gains in North Carolina relative to the nonparametric

estimator (see panel (a), comparing the two dashed lines), the overstating of gains in the LAUSD

dataset is far more pronounced, as shown in panel (b).

Table 4 reports the policy gains from the teacher-release policy: these are the numbers under-

lying the dashed lines in Figure 5. Taking the bolded row corresponding to releasing the bottom

5 percent of teachers and replacing them with those of average quality, the parametric method

overstates the policy gains by seven percent in North Carolina and by fully twenty-six percent in

the LAUSD data. Thus, our findings indicate that the estimated short-run policy gains for teacher-

release policies are somewhat overstated in North Carolina and significantly overstated in LAUSD

under the parametric method. Our nonparametric methodology allows possible discrepancies to be

assessed on a context-by-context basis in these settings and elsewhere.

Implications for Long-Run Outcomes: Alongside the effects of teacher VA on short-run test

scores, we now consider long-run outcomes. Our data allow us to examine several important

measures, including: drop-out rates, suspensions, SAT scores, and exit exam scores (see Appendix

C.3 for a detailed data description). Using those, we focus on quantifying the benefits under the

benchmark policy that replaces the bottom five percent of teachers according to VA.

The analysis requires that we link the long-run outcomes at our disposal with teacher VA. Here

47The relevant steps are as follows: Under our nonparametric methodology, we first sample 40,000 observations
from F̂ . Second, for each sample observation, we generate the noisy data yj = αj + ϵj assuming ϵj ∼ N (0, σ2

ϵ/(k ·n)),
where n represents yearly class sizes (set at 20) and k the number of years of data for each teacher (set at 3). Third,
we rank teachers based on their mean test scores (i.e., their fixed effect), ŷj , and calculate 1

40000q

∑
j αj1{ŷj ≤ λ(q)}

as an estimator for G̃NPE(q), the sample analog of equation (8.3). By the law of large numbers, this produces a
consistent estimator for G̃NPE(q). Analogously, for the parametric method we sample from the distribution N (0, σ̂2

α)
and calculate G̃PE(q) under normality in a similar fashion.
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we follow the method proposed by Chetty et al. (2014b), calculating the long-run benefits of being

assigned to a higher-VA teacher for one grade.48 These take the form of slope coefficients associated

with our VA estimates, which feed into the calculations.

Tables 5(a) and 5(b) report the policy gains in terms of long-run outcomes from releasing the

bottom five percent of teachers based on VA, for North Carolina and for LAUSD. These long-run

gains mimic the gains in the test score results above, representing gains among students whose

teachers are replaced. Calculations using the parametric and nonparametric method are given in

Panels A and B of each table. The policy gains in the third row of each of the four panels are

determined by multiplying the increase in the long-run outcome resulting from having a teacher

one standard deviation higher in the distribution, κ̂, in the first row by the average change in VA

as a consequence of releasing bottom 5 percent teachers, ∆̂mσ, in the second row.49 The last row

of each table then indicates the degree of overestimation when imposing normality.

Comparing the first rows of Panels A and B in Table 5(a) makes clear the slope coefficients

when applying the two approaches are similar in the North Carolina data. In contrast, Table 5(b)

shows that a one-SD increase in VA yields greater long-run effects under the parametric compared

to the nonparmetric method in the LAUSD data.50

In terms of the overall long-run gains using the two methods, we find that the parametric

method overestimates policy gains in terms of long-run outcomes in a tight band, between four and

five percent depending on the outcome, in North Carolina. In contrast, the parametric method

overstates the policy gains in the various long-run outcomes by a much larger margin in the LAUSD,

in the range 24-26 percent. The overestimation in both datasets is very similar to our short-run

findings above that used mathematics test scores.

8.3 False Discovery Rate

We assess the policy risk of teacher-release policies in terms of the false discovery rate, which

is the proportion of teachers released under a given policy who are wrongly-released as their true

VA is above the cutoff threshold λ(q). This rate pertains to an important potential cost of teacher

release policies.

Table 6 reports the relevant false discovery rates from the teacher-release policy calculated in

each dataset. Taking the bolded row corresponding to releasing the bottom 5 percent of teachers,

the parametric method slightly overstates the false discovery rate by six percent in North Carolina,

48This method is familiar: for completeness, we offer a brief description in Appendix D.
49The specific formula for the long-run outcome gains under the parametric (‘PE’) and nonparametric (‘NPE’)

estimators is given by:

Gd = ∆̂md
σ × κd , d ∈ {PE,NPE}, (8.4)

where ∆̂md
σ represents the estimated average improvement in VA (measured in terms of test scores) of the policy

assuming that true VA is unobserved by the policymaker.
50The explanation is as follows: given the truncation in the left tail, our nonparametric method uncovers a less

dispersed distribution and so finds a weaker relationship between a one standard deviation increase in VA and long-run
outcomes.
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which is unsurprising given that there are only minor departures from normality in the left tail.

In contrast, in the LAUSD data, a policymaker who assumes normality would only expect a false

discovery rate of 17 percent, when the true false discovery rate would be 21.4 percent. The normality

assumption gives rise to an underestimation of the false discovery rate here as the thin left tail in

the LAUSD makes it more difficult to tell low-quality teachers apart. The normality assumption

could therefore cause severe problems for policymakers in the LAUSD as they would misjudge the

risk of the teacher-release policy by over a fifth.

9 Extensions

Given the structure of our data, in which each teacher teaches one class of students each

year – a feature common to many education datasets – our methodology can be extended to

allow for either class-level shocks or drift in teacher quality: it does not allow us to account for

both simultaneously.51 The amount of drift in both North Carolina and LAUSD appears limited,

consistent with prior research.52 Accordingly, we focus on extending our model to allow for class-

level shocks rather than drift, as these are quantitatively more important in our data.53

Class-level Shocks: These are shocks affecting everyone in a given classroom. The proverbial

example involves a dog barking outside a given classroom window on test day, lowering the test

scores of all students in that class; because teachers are unable to control the dog barking, the

class-level shocks should not be attributed to the teacher. Accounting for such shocks reduces

dispersion in teacher VA distribution, as they subsume some of the class-year variation that was

previously attributed to teachers. Since the variance of the VA distribution falls once these shocks

are incorporated, the policy gains from targeting the tails of the teacher VA distribution are likely

to decrease as teachers in the tails are pulled closer to the mean. Similarly, the decline in variance

makes it more difficult to differentiate low-quality teachers and so the false discovery rate will rise.

Our results below are consistent with such a pattern.

Given that classrooms in our data are identified by unique teacher-year pairs, we rewrite our

model given by equation (2.2) as:

yijt = αj + θjt + ϵijt, i = 1, 2, . . . , njt, (9.1)

where yijt is student i’s residual test score, αj is teacher j’s VA, and θjt represent the class-level

shocks, which are independent of the student-level shocks, ϵijt.

Assuming classroom shocks are distributed normally with variance σ2θ , it follows that the

51To include both class-level shocks and drift, one would need data in which teachers taught multiple classrooms
in each year, as in Chetty et al. (2014a). Those authors are able to allow for class-level shocks and drift for middle
school teachers, observed to teach multiple classes each year.

52The small amount of drift (relative to Chetty et al. (2014a)) has been noted by Bacher-Hicks et al. (2014) for the
LAUSD data and by Rothstein (2017) for the North Carolina data.

53While accounting for drift is beyond the scope of this paper, we note that is it likely feasible to do so with some
recent notable advances being made in this direction – see Gourieroux and Jasiak (2020) for instance.
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teacher-year specific sample mean can be modeled as yjt = αj + νjt where νjt ∼ N(0, σ2θ +
σ2
ϵ

njt
).

Once again, the assumption that classroom and student-level shocks are normally distributed is

not necessary (see Appendix B.2 for proof), although it is imposed for estimation purposes. The

teacher-specific fixed effect estimator yj is then constructed as before (see equation (2.3)), except

the weights now become
(
σ2θ +

σ2
ϵ

njt

)−1
. The NPB estimator, parallel to the result in Theorem 2,

can be expressed as follows:

δNPBj = yj +
(∑

t

(
σ2θ +

σ2ϵ
njt

)−1)−1 ∂

∂y
log gj(y)|y=yj , (9.2)

where gj(·) is the marginal density of yj . (See Appendix B.3 for formal derivation.) As in the case

without classroom shocks, the feasible version of this estimator (i.e., the NPEB estimator) can be

constructed by estimating F using NPMLE and the parameters σ2θ and σ
2
ϵ , via maximum likelihood

(as described in Appendix F.2). Our estimators for policy gains and the false discovery rate do not

change in this model, although their estimates will change since we will have a new estimate of the

distribution F (α).

Results: Having incorporated classroom shocks in our estimation of the teacher quality distri-

bution, adding them reduces the variance of our estimated distribution, as expected, with this

reduction being more pronounced in the LAUSD data relative to the North Carolina data.

Revisiting the policy evaluation, Figure I.3 displays the policy gains from releasing the bottom

q percent of teachers according to VA under both the nonparametric and parametric methods.

Relative to the model without classroom shocks, the overestimation of the parametric estimator

in both datasets is reduced since the addition of classroom shocks reduces the variance in the

parametric methodology by more than in the nonparametric methodology; further, the q percent of

teachers being released under a low-variance distribution will tend to be of higher quality relative

to a high-variance distribution.

Under the benchmark policy that releases the bottom 5% of teachers, we find that the test

score gains among affected students in North Carolina are 0.31 under both estimators (in compar-

ison, the parametric estimator overestimated gains by five percent in the model without class-level

shocks). In contrast, test score gains in the LAUSD are 0.40 and 0.46 under the nonparametric

and parametric estimators, respectively, both precisely estimated. The parametric estimator thus

significantly overestimates policy gains in the LAUSD, by sixteen percent, relative to the twenty-

six percent overestimation of the parametric estimator in the model without class-level shocks.

The inclusion of class-level shocks therefore has little impact on the policy differences between the

parametric and nonparametric methodologies: under our benchmark policy that releases bottom-5

percent teachers, the parametric and nonparametric methods estimate similar policy gains in North

Carolina, while the parametric estimator continues to overestimate policy gains in the LAUSD, by

a significant amount.

Revisiting the false discovery rate yields a similar pattern, with Table I.3 reporting the false
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discovery rates in the model with classroom shocks. Under the benchmark policy that releases

the bottom 5% of teachers, we find that the parametric estimator continues to overstate the false

discovery rate in North Carolina by six percent (identical to the overstatinbg in the model without

classroom shocks). In contrast, the degree to which the parametric estimator underestimates the

false discovery rate in the LAUSD data falls somewhat to 15 percent (from 21 percent in the model

without classroom shocks). The reduction occurs as the addition of classroom shocks reduces the

variance in the parametric methodology by more than in the nonparametric methodology. Since a

lower variance increases the false discovery rate (as it makes it tougher to differentiate teachers),

the bigger decline in variance gives rise to a relative increase in the false discovery rate of the

parametric estimator, decreasing its underestimation. Regardless, the parametric estimator in the

LAUSD data continues to miss the mark widely in terms of the false discovery rate.

10 Conclusion

In this paper, we have proposed a new approach for studying teacher impacts. The nonpara-

metric distributional estimator at the heart of the approach allows the underlying teacher VA

distribution to be estimated directly, rather than imposing normality on it as is standard. The

estimated distribution in hand, we then presented three usages in which the distribution plays a

key role, each serving to advance the analysis of teacher impacts. These involved the nonparamet-

ric estimation of teacher value-added and policy-relevant metrics of the gains from teacher release

policies as well as associated false discovery rates. We documented that our estimators in each of

these proposed usages perform very well in simulations, being responsive to the underlying value-

added distribution in ways the parametric method is not. They also have appealing finite sample

properties.

We applied our nonparametric methodology in practice using two separate administrative

datasets in education, finding that the estimated teacher VA distributions differed from each other

and departed from normality. We then explored the consequences of these departures in each of

the three usages, showing that parametric empirical Bayes estimates and policy effects assuming

normality can be wide of the mark in a way that is heavily dependent on the context. Together,

the evidence from the two applications underlines the practical value of the data-driven approach

we presented.

Our nonparametric approach has broader applicability in other areas of education research,

where the underlying heterogeneity of students, teachers and schools is intrinsic. For example,

looking beyond the current usages, our methodology is well-suited to capturing dynamic policy-

driven changes in underlying teacher quality distributions. Suppose that policymakers implemented

a policy releasing teachers at the bottom of the teacher VA distribution every year. Under such a

policy, the left tail of the teacher quality distribution would necessarily become truncated. When

imposing a normality assumption in this case, ‘fitting the data’ would then require lowering the

VA of teachers near the truncation point to ‘create’ a left tail, thereby underestimating the VA
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of teachers at the bottom of the distribution, in turn likely overestimating the gains of repeated

applications of the policy. Given that our method estimates changes like these in the underlying

teacher quality distributions flexibly, it should provide more accurate predictions of the policy gains

associated with such dynamic reforms.

Our analysis has served to underline the notion that analytical convenience need no longer weigh

on the side of assuming normality when studying teacher impacts. The nonparametric approach

is also relevant in a variety of other settings where parametric empirical Bayes methods have been

used. These include, to date, the estimation of non-cognitive teacher effects (Jackson, 2018; Petek

and Pope, 2018), school quality (Angrist et al., 2017; Bruhn, 2020), neighborhood effects (Chetty

and Hendren, 2018), discrimination (Goncalves and Mello, 2018), physician effects (Fletcher et al.,

2014), and hospital effects (Chandra et al., 2016; Hull, 2020). As large-scale panel datasets become

more widely available in various fields, so the range of feasible applications using the nonparametric

approach is also likely to increase. To that end, we have written, and are making available, code

that will allow researchers to implement our approach in applications such as these.
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Figure 1: Comparing Nonparametric to Parametric Estimators for a Mixed-Normal Distribution

(a) Shrinkage under Parametric and Nonparametric Bayes Estimators
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(b) Policy Gains under Parametric and Nonparametric
Estimators
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(c) False Discovery Rate under Parametric and
Nonparametric Estimators
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Notes: These figures contrast the quantities calculated using the VA distribution F (α) with those found if one imposes normality
on the VA distribution for the three tasks we consider. Figure 1(a) plots the amount of Bayesian ‘shrinkage’ as a function of the
fixed effect estimates (on the x-axis) for the parametric Bayes and nonparametric Bayes estimators, respectively. The shrinkage
rule for the parametric estimator is given by σ2

α/(σ
2
α + σ2

ϵ /
∑

t njt) from equation (2.5), and for the nonparametric estimator,
the shrinkage rule is given by the second term in equation (4.2). The horizontal dashed line represents no shrinkage being
applied, while the vertical dashed lines represent the mass points in the F (α) distribution at −1 and +1. Figure 1(b) compares
the policy gains achieved by releasing a given proportion of teachers when one uses the known distribution F (α) compared
to assuming normality (shown by the ‘Nonparametric’ and ‘Parametric’ lines respectively). The y-axis captures the increased
test scores in affected classrooms while the x-axis denotes the proportion of teachers released. Figure 1(c) similarly compares
the false discovery rate when one uses the known distribution F (α) compared to assuming normality (again shown by the
‘Nonparametric’ and ‘Parametric’ lines respectively). The y-axis represents the false discovery rate (i.e., proportion of teachers
incorrectly released) while the x-axis denotes the proportion of teachers released. These figures use an underlying distribution
for the teacher fixed effects αj given by the mixed normal distribution αj ∼ 0.95N (0, 0.03)+0.025N (−1, 0.03)+0.025N (1, 0.03).
Under normality, the policymaker expects the VA to be distributed αj ∼ N (0, 0.08), which imposes the same mean and variance
as the mixed normal distribution. The total class size for each teacher is set at sixteen, and σ2

ϵ is set at 0.25. Both teacher
release policies use the decision rule Dj = 1{yj ≤ λ(q)} to release teachers (i.e., rank teachers according to fixed effects, and
release the bottom q percent). Note that since the underlying distribution F (α) is known in this simulation, the nonparametric
estimator here is the same as the ‘infeasible’ estimator in Table 1(b).
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Figure 2: Simulation Performance in Finite Samples (using SSE) for PEB and NPEB Estimators
Relative to the Infeasible Benchmark when Teacher Quality Follows:

(a) Normal Distribution
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(b) Mixed Normal Distribution
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(c) Skewed Normal Distribution
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(d) Skewed Logistic Distribution
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Notes: These figures assess the performance of the parametric (PEB) and nonparametric (NPEB) VA estimator in finite samples
relative to the infeasible benchmark for the four data generating processes considered in our simulations. Each figure gives the
mean squared error of the PEB and NPEB estimators reported as a risk ratio, which benchmarks their mean squared error
relative to the infeasible estimator: a value of one implies the estimator has the same mean squared error as the infeasible
estimator. Figure 2(a) simulates the risk ratio when the underlying distribution is normally distributed F ∼ N (0, 0.08), and
Figure 2(b) does so when the underlying distribution is mixed normal F ∼ 0.95N (0, 0.03)+0.025N (−1, 0.03)+0.025N (1, 0.03).
Figure 2(c) then skews the normal distribution to the right with location parameter -0.4 and shape parameter 5, while Figure
2(d) uses a skewed logistic with location parameter -0.5 and shape parameter 5. The parameters are chosen such that all four
distributions are mean zero and have roughly the same variance. The x-axis reports number of teachers, each with a class size
drawn from the set {8,16}. The simulations average results from 500 repetitions, setting σ2

ϵ =0.25.
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Figure 3: Estimated Teacher VA Quantile Functions using NPMLE Compared with Estimated
Normal

(a) North Carolina
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Notes: The panels in this figure show estimated quantile functions of teacher quality (VA) using the North Carolina and LAUSD
datasets, respectively. Underlying values are provided in Table I.2. The solid line in each panel connects the estimated quantile
values of the teacher quality distribution estimated via nonparametric maximum likelihood (see equation (3.1)) at different
points in the distribution. The dashed line connects the estimated quantile values when normality is imposed (as in parametric
empirical Bayes) estimated via maximum likelihood. (See Appendix F for more details.) The vertical dashed lines in each figure
indicate the bottom and top 5 percentiles of the teacher quality distribution.
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Figure 4: Parametric and Nonparametric Empirical Bayes ‘Shrinkage’
at the Bottom and Top Five Percent of the Fixed Effect Distribution

North Carolina

(a) Bottom 5 Percent
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LAUSD

(c) Bottom 5 Percent
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(d) Top 5 Percent
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Notes: The panels in this figure show VA estimates calculated using the parametric and nonparametric empirical Bayes method-
ologies (the former on the x-axis, the latter on the y-axis) using our two datasets. Each dot represents a teacher. The diagonal
line, the 45-degree line, indicates points where the two empirical Bayes estimates agree. The two panels to the left contrast
the VA estimates among teachers whose estimated fixed effects are in the bottom five percent, while those on the right side do
so for teachers in the top five percent. The vertical dashed lines in the two panels to the left mark the boundary showing the
bottom one percent of the observations (based on their fixed effects); the vertical dashed lines in the two panels to the right
mark the boundary showing the top one percent (on the same basis).
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Figure 5: Test Score Gains from Replacing the Bottom q Percent of Teachers

(a) North Carolina
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(b) LAUSD
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Notes: Figures 5(a) and 5(b) show the average test score gains among affected students of a policy that releases the bottom q%
of teachers (replacing with mean-quality teachers) in North Carolina and the LAUSD, respectively. Estimates are shown using
both the nonparametric estimator that estimates the distribution F (α) and the parametric estimator that assumes normality.

Policy gains are calculated via Monte Carlo simulation with 40,000 observations under the assumption that we estimate Φ̂α̂ and
F̂α̂ using three years of data for each teacher and assuming teachers all have class sizes of twenty. (Details of the simulation
are provided in Section 8.2.) The numbers underlying the figures are the same as those reported in Table 4. (This figure is
comparable to Figure I.3 which reports the policy gains under a policy that releases the bottom q% of teachers with classroom
shocks added to the teacher VA model.) 41



Table 1(a): Simulation – True Distribution is Normal

Homogeneous Class Size Heterogeneous Class Sizes
(Class Size of 16) (Class Size 8-16)

Infeasible NP P FE Infeasible NP P FE

Sum of Squared Errors 130.50 131.07 130.51 156.06 186.30 186.96 186.31 233.99
Policy Gain 0.534 0.534 0.534 0.638 0.586 0.586 0.586 0.725

False Discovery Rate 0.33 0.36 0.33 - 0.35 0.36 0.35 -

Table 1(b): Simulation – True Distribution is Mixed Normal

Homogeneous Class Size Heterogeneous Class Sizes
(Class Size of 16) (Class Size 8-16)

Infeasible NP P FE Infeasible NP P FE

Sum of Squared Errors 106.8 107.5 130.5 156.1 140.0 140.6 177.5 234.0
Policy Gain 0.662 0.662 0.625 0.747 0.644 0.644 0.593 0.769

False Discovery Rate 0.27 0.28 0.35 - 0.31 0.32 0.37 -

Table 1(c): Simulation – True Distribution is Skewed Normal

Homogeneous Class Size Heterogeneous Class Sizes
(Class Size of 16) (Class Size 8-16)

Infeasible NP P FE Infeasible NP P FE

Sum of Squared Errors 128.5 129.1 135.2 156.0 176.7 177.3 187.0 234.0
Policy Gain 0.414 0.414 0.488 0.564 0.394 0.394 0.483 0.601

False Discovery Rate 0.50 0.49 0.34 - 0.56 0.56 0.38 -

Table 1(d): Simulation – True Distribution is Skewed Logistic

Homogeneous Class Size Heterogeneous Class Sizes
(Class Size of 16) (Class Size 8-16)

Infeasible NP P FE Infeasible NP P FE

Sum of Squared Errors 132.2 132.9 136.4 156.3 181.8 182.5 189.2 234.3
Policy Gain 0.485 0.485 0.532 0.610 0.463 0.463 0.522 0.641

False Discovery Rate 0.40 0.41 0.34 - 0.46 0.47 0.39 -

Notes: The panels in this table report simulation results comparing the performance of the three candidate estimators (across the
columns) against an infeasible benchmark, based on the sum of squared errors (‘SSE’), the policy gain, and the false discovery rate.
The policy gain and false discovery rate are calculated for a benchmark policy that ranks teachers according to fixed effects, releases
the bottom 5%, and replaces them with mean-quality teachers. The infeasible benchmark is the optimal estimator when the true
distribution is known to the econometrician (although unknown in practice). The three candidate estimators are: the nonparametric
(NP) estimator, which estimates the underlying distribution nonparametrically; the parametric (P) estimator, which assumes that
the underlying distribution is normal; and the fixed effect (FE) estimator, which applies no empirical Bayes shrinkage. The precise
specifications of the normal distribution in Table 1(a), the mixed normal in Table 1(b), the skewed normal in Table 1(c), and the
skewed logistic in Table 1(d) are described in Section 6. The simulations average results from 500 repetitions with 10,000 individual
teachers, setting σ2

ϵ = 0.25. Results are reported on the left side of each panel for homogeneous class sizes (where every teacher
has a class size of sixteen) and on the right side, for heterogeneous class sizes (where class sizes are drawn randomly from the set
{8, 16} with equal probability). The formulae for SSE, the policy gain, and the false discovery rate are given in Section 4. (Tables
I.1(a)-I.1(d) expand on the tables here by also providing ranking errors for these simulation. Specifically, those tables find the type
I and II error rates for these simulations if teacher release decisions were made using teacher rankings based on a teacher’s quality,
αj , based on that estimator.)
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Table 2: Summary Statistics

North Carolina LAUSD

Full Value-Added Full Value-Added
Sample1 Sample Sample2 Sample

(1) (2) (3) (4)

Mean of Student Characteristics

Mathematics Score (σ) 0.00 0.05 0.00 0.07

Reading Score (σ) 0.00 0.03 0.00 0.06

Lagged Mathematics Score (σ) 0.01 0.03 0.03 0.08

Lagged Reading Score (σ) 0.01 0.03 0.03 0.07

% White 57.8 60.1 9.3 9.1

% Black 28.8 27.9 9.9 8.6

% Hispanic 7.4 6.5 74.0 75.5

% Asian 2.0 1.9 4.3 4.4

% Free or Reduced Price Lunch3 46.3 44.6 77.9 78.2

% English Learners 4.3 3.5 28.0 28.9

% Repeating Grade 1.5 1.5 1.5 0.4

Parental Education:4

% High School Dropout 11.5 10.6 34.5 34.4

% High School Graduate 47.31 47.0 27.6 27.8

% College Graduate 25.4 25.9 20.1 20.0

Teacher Experience:5

0-2 Years of Experience 18.6 18.8 4.9 4.8

3-5 Years of Experience 15.3 15.6 10.5 10.3

# of Students 1,847,615 1,386,555 810,753 664,044

# of Teachers 76,503 35,053 15,267 11,078

Observations (student-year)6 4,457,812 2,680,027 1,707,459 1,280,569

Notes: this table presents summary statistics for the variables in our North Carolina and Los
Angeles Unified School District (LAUSD) datasets, respectively, comparing the full and value-
added samples.

1 North Carolina data coverage: grades 4-5 from 1996-97 through 2010-11 and grade 3 from
1996-97 through 2009-10. The difference in sample sizes comparing columns (1) and (2) arises
because we drop 1.37 million student-year observations that cannot be matched to their class-
room teacher (see Appendix C for more detail).

2 LAUSD data coverage: grades 4-5 from 2003-04 through 2012-13 and 2015-16 through 2016-17
school years and third grade from 2003-04 through 2012-13.

3 This variable is missing for school years 1996-97 through 1997-98 in North Carolina.
4 The omitted category is ‘Some College,’ and ‘College Graduate’ also incorporates those with
graduate school degrees. For North Carolina, parental education data are missing after the
2005-06 school year, while thirty percent of observations in the LAUSD are missing parental
education data or have parental education recorded as “Decline to Answer.”

5 The omitted category is ‘Greater than 5 Years of Experience.’ (For the full sample, teacher
experience data are missing for about twenty and fifteen percent of observations for North
Carolina and LAUSD, respectively.)

6 Data are missing for some observations. For North Carolina (full sample), test scores are
missing for three percent of observations, lagged test scores for twelve percent, with most
other other demographic variables missing for around one percent of observations. For the
LAUSD (full sample), lagged test scores are missing for about six percent of observations with
data coverage for all other variables near one hundred percent.
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Table 3(a): Predicted Performance of Nonparametric Empirical Bayes (NPEB), Parametric
Empirical Bayes (PEB) and Fixed Effects – North Carolina Data

NMSE TMSE

# of Prior NPEB PEB FE NPEB PEB FE

Years Used

t = 1 1.0096 1.0098 1.2236 0.0378 0.0378 0.0486

t = 2 0.8613 0.8715 0.9397 0.0304 0.0309 0.0343

t = 3 0.7784 0.7872 0.8229 0.0261 0.0265 0.0283

t = 4 0.7704 0.7767 0.7998 0.0259 0.0262 0.0273

t = 5 0.7651 0.7708 0.7857 0.0257 0.0260 0.0267

t = 6 0.7532 0.7573 0.7687 0.0250 0.0252 0.0258

t = 7 0.7255 0.7294 0.7372 0.0240 0.0242 0.0245

t = 8 0.7123 0.7161 0.7240 0.0236 0.0238 0.0242

Table 3(b): Predicted Performance of Nonparametric Empirical Bayes (NPEB), Parametric
Empirical Bayes (PEB) and Fixed Effects – LAUSD Data

NMSE TMSE

# of Prior NPEB PEB FE NPEB PEB FE

Years Used

t = 1 1.6205 1.6180 1.7975 0.0631 0.0630 0.0714

t = 2 1.4030 1.4084 1.4634 0.0526 0.0529 0.0554

t = 3 1.3865 1.3902 1.4138 0.0510 0.0512 0.0523

t = 4 1.3929 1.3970 1.4138 0.0513 0.0514 0.0522

t = 5 1.3852 1.3869 1.3978 0.0505 0.0506 0.0511

t = 6 1.4984 1.4999 1.5066 0.0538 0.0538 0.0541

t = 7 1.5209 1.5221 1.5306 0.0539 0.0539 0.0543

t = 8 1.4249 1.4254 1.4331 0.0496 0.0496 0.0499

Notes: Tables 3(a) and 3(b) report out-of-sample prediction errors in the North Carolina and LAUSD datasets for three
different estimators: nonparametric empirical Bayes (NPEB), parametric empirical Bayes (PEB) and fixed effects. To
deal with the variation in class sizes that teachers face across years, we use normalized mean squared error (NMSE) and
total mean squared error (TMSE), as proposed by Brown (2008): see equation (8.1) and equation (8.2), respectively. The
prediction performance is calculated by computing the squared error distance (plus an adjustment term for class size)
between the true outcome of teacher j in period t+1 and the outcome predicted for teacher j, utilizing all past information
relating to her teaching performance from period t minus the number of prior years used up until the t-th period. For each
row, we subset the data so that each teacher is observed for at least t+1 periods. Smaller values indicate better prediction
performance.
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Table 4: Test Scores Gains from Releasing Bottom q Percentile Teachers

North Carolina Data LAUSD Data

% Teachers Score Gain Score Gain Score Gain Score Gain

Released under F under Normal under F under Normal

(q) (NPEB) (PEB) (NPEB) (PEB)

(1) (2) (3) (4)

1 0.559 0.558 0.643 0.814

(0.012) (0.006) (0.014) (0.010)

3 0.456 0.478 0.555 0.698

(0.006) (0.004) (0.008) (0.007)

5 0.407 0.437 0.507 0.638

(0.005) (0.003) (0.007) (0.006)

7 0.373 0.407 0.475 0.595

(0.004) (0.003) (0.006) (0.005)

9 0.347 0.382 0.450 0.559

(0.004) (0.003) (0.005) (0.005)

Notes: Table 4 displays the mathematics score gains of a policy that releases the bottom q% of teachers and replaces
them with average-quality teachers. The gains are among affected students in terms of student-level standard deviations.
True teacher quality is taken to be unobserved by the policymaker, the gains being the same as those in panels (a) and
(b) of Figure 5 for ‘Quality Unobserved.’ ‘Score Gain under F ’ reports the test score gain of the policy when teacher
quality is distributed according the distribution F , estimated nonparametrically using equation (3.1), and applying the
NPEB estimator to calculate VA. ‘Score Gain under Normal’ reports the test score gain when teacher quality is normally
distributed and the PEB estimator is used to calculate teacher VA. The bolded line indicates the widely-analyzed ‘release
the bottom five percent of teachers’ policy. Gains are calculated via Monte Carlo simulation with 40,000 observations
under the assumption that we estimate Φ̂α̂ and F̂α̂ using three years of data for each teacher and assuming teachers all
have class sizes of twenty. Standard errors are calculated using the bootstrap as described in Appendix E. The estimates
in this table are identical to those in Figure 5. (This table is comparable to Figure I.3 which reports the policy gains under
a policy that releases the bottom q% of teachers with classroom shocks added to the teacher VA model.)
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Table 5(a): Long-Run Gains from Releasing Bottom 5% of Teachers (North Carolina)

Long-Run Outcome: Percent Days PSAT Percent SAT Exit Exam
Drop Out Suspended Score Took SAT Score Score

(1) (2) (3) (4) (5) (6)

Panel A. Parametric Estimates

Benefit (κ̂PE) -0.36 -0.065 6.63 1.01 6.33 -

Average Change in VA
1.98 1.98 1.98 1.98 1.98 -of Released Teachers (∆̂mPE

σ )

Gain of Releasing Bottom 5% (GPE) -0.71 -0.130 13.13 1.99 12.53 -

Panel B. Nonparametric Estimates

Benefit (κ̂NPE) -0.33 -0.061 6.18 0.94 5.84 -

Average Change in VA
2.03 2.03 2.03 2.03 2.03 -of Released Teachers (∆̂mNPE

σ )

Gain of Releasing Bottom 5% (GNPE) -0.67 -0.124 12.54 1.90 11.86 -

Overestimation of PE (%) 4.9 4.6 4.7 4.7 5.7 -

Table 5(b): Long-Run Gains from Releasing Bottom 5% of Teachers (LAUSD)

Long-Run Outcome: Percent Days PSAT Percent SAT Exit Exam
Drop Out Suspended Score Took SAT Score Score

(1) (2) (3) (4) (5) (6)

Panel A. Parametric Estimates

Benefit (κ̂PE) -0.28 -0.012 8.74 0.27 6.65 2.74

Average Change in VA
2.02 2.02 2.02 2.02 2.02 2.02of Released Teachers (∆̂mPE

σ )

Gain of Releasing Bottom 5% (GPE) -0.57 -0.024 17.65 0.55 13.44 5.53

Panel B. Nonparametric Estimates

Benefit (κ̂NPE) -0.24 -0.010 7.63 0.24 5.78 2.39

Average Change in VA
1.87 1.87 1.87 1.87 1.87 1.87of Released Teachers (∆̂mNPE

σ )

Gain of Releasing Bottom 5% (GNPE) -0.45 -0.019 14.26 0.45 10.81 4.47

Overestimation of PE (%) 26.3 24.8 23.8 24.2 24.3 23.9

Notes: Tables 5(a) and 5(b) show – using the North Carolina and LAUSD data, respectively – the estimated gains in terms
of various long-run outcomes of a policy that releases the bottom 5% of teachers and replaces them with mean-quality
teachers. The ‘Benefit’ row in each panel represents the increase in the long-run outcome associated with having a teacher
whose VA is one standard deviation higher. For the nonparametric case, these rows are identical to the corresponding
estimates in Figures I.4 and I.5. The second row in each panel then calculates the average change in VA caused by releasing
bottom 5% teachers. Here, we calculate the average VA of the bottom 5% teachers via Monte Carlo simulation with 40,000
observations under the assumption that we estimate Φ̂α̂ and F̂α̂ using three years of data for each teacher and assuming
teachers all have class sizes of twenty in each year. This average VA of the bottom 5% teachers is then multiplied by the
benefit to give the policy effect of releasing bottom 5% teachers according to estimated VA (given by the third row of each
panel). The final row of each table, ‘Overestimation of PE,’ gives the overestimation of policy gains in terms of the long-run
outcome from utilizing the parametric rather than nonparametric method. Long-run outcomes are: high school drop out,
total days suspended in middle and high school, PSAT scores, whether student takes the SAT, and SAT scores, and exit
exam scores (only available for LAUSD). For PSAT and SAT scores, we combine the mathematics and English components
and take the values from the student’s first attempt. (See Appendix C.3 for more details about data construction.)
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Table 6: False Discovery Rates when Releasing Bottom q Percentile Teachers
(i.e., Percent of Teachers Wrongly Released)

North Carolina Data LAUSD Data

% Teachers % Wrongly Released % Wrongly Released % Wrongly Released % Wrongly Released

Released under F under Normal under F under Normal

(q) (NPE) (PE) (NPE) (PE)

(1) (2) (3) (4)

1 25.9 30.1 28.6 21.9

(2.5) (2.3) (2.8) (1.9)

3 23.4 25.7 23.4 18.6

(1.4) (1.1) (1.6) (1.0)

5 22.2 23.5 21.4 17.0

(1.0) (0.8) (1.1) (0.7)

7 21.5 21.9 19.7 15.8

(0.9) (0.7) (0.9) (0.6)

9 20.8 20.6 18.3 14.9

(0.8) (0.6) (0.7) (0.5)

Notes: Table 6 displays the percentage of teachers who are wrongly released under a policy that releases the bottom q% of teachers
(in other words, the false discovery rate). Teachers are considered to be wrongly released when they are released but their true VA is
above the cutoff λ(q). ‘% Wrongly Released under F ’ reports the percentage of teachers who are wrongly released under the policy
when teacher quality is distributed according the distribution F , estimated nonparametrically using equation (3.1). ‘% Wrongly
Released under Normal’ reports the percentage of teachers who would be expected to be wrongly released when teacher quality
is assumed to be normally distributed instead. The bolded line indicates the widely-analyzed ‘release the bottom five percent of
teachers’ policy. Gains are calculated via Monte Carlo simulation with 40,000 observations under the assumption that we estimate
Φ̂α̂ and F̂α̂ using three years of data for each teacher and assuming teachers all have class sizes of twenty. Standard errors are
calculated using the bootstrap as described in Appendix E. (This table is comparable to Table I.3, which reports the percent of
teachers who are wrongly released under a policy that releases the bottom q% of teachers with classroom shocks added to the teacher
VA model.)
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For Online Publication

A Proof of Theorems

Proof. [Theorem 1] Under the assumption that αj and ϵijt are independent random variables for

all i and t, we have for any s ∈ R,

ϕyijt(s) =

∫
eisy

∫
1√
2πσ2ϵ

e
− (y−α)2

2σ2
ϵ dF (α)dy

=

∫
eisz

1√
2πσ2ϵ

e
− z2

2σ2
ϵ dz

∫
eisαdF (α)

= e−σ
2
ϵ s

2/2ϕα(s) ,

where ϕX(·) is the characteristic function of random variable X and i denotes the imaginary unit

(as distinct from the student index i). Since we observe yijt, the characteristic function ϕα(t)

is identified from the data for all s ∈ R. Given the one-to-one mapping from the characteristic

function to the distribution function of a random variable, the distribution F is nonparametrically

identified.

Proof. [Theorem 2] The first part of proof follows from the fact that the minimizer of the Bayes

risk under L2 loss is the posterior mean of αj conditional on yj . For the second part, since

gj(y) =

∫
φj(y − α)dF (α),

then straightforward calculations show that

σ2ϵ
nj

∂

∂y
log gj(y)|y=yj =

∫
(α− yj)φj(yj − α)dF (α)∫

φj(yj − α)dF (α)
= E[α|yj ]− yj .

Therefore, the nonparametric Bayes estimator is given by

δNPBj = E[α|yj ] = yj +
σ2ϵ
nj

∂

∂y
log gj(y)|y=yj .
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B General Deconvolution Proof with Panel Data

This appendix sets out the general deconvolution proof for the teacher VA model, first without,

then with, classroom shocks.

B.1 Teacher VA model without classroom shocks

Assumption 1 Y1 = α+ ϵ1 and Y2 = α+ ϵ2 where Y1 and Y2 are random variables with joint pdf

f(·, ·), α is a random variable with pdf g(·), and ϵ1 and ϵ2 are random variables from the same pdf

h(·) with mean zero.

Assumption 2 α, ϵ1, and ϵ2 are mutually independent.

Assumption 3 The characteristic function ϕα(·) of α and the characteristic function ϕϵ(·) for ϵ1
and ϵ2 are nonvanishing everywhere.

Lemma 1 (Kotlarski (1967)) Under Assumptions 1-3, the pdf’s of α and ϵ are uniquely deter-

mined by the joint distribution of (Y1, Y2). In particular, let ψ(u, v) be the characteristic function

of the random vector (Y1, Y2), ϕα(t) the characteristic function of α, and ϕϵ(t) be the characteristic

function of ϵ, then

ϕα(t) = exp

∫ t

0

∂ψ(0, v)/∂u

ψ(0, v)
dv

ϕϵ(t) =
ψ(t, 0)

ϕα(t)
=
ψ(0, t)

ϕα(t)
.

Proof. Using equation (2.64) in Rao (1992), we have

log ϕα(t) = iE[α]t+
∫ t

0

∂

∂u

(
log

ψ(u, v)

ψ(u, 0)ψ(0, v)

)
u=0

dv.

where i is the imaginary root. Using the fact that

∂

∂u

(
log

ψ(u, v)

ψ(u, 0)ψ(0, v)

)
u=0

=
∂ψ(0, v)/∂u

ψ(0, v)
− ∂ψ(0, 0)/∂u

ψ(0, 0)

and that ∂ψ(0,0)/∂u
ψ(0,0) = iE(Y1), we have

log ϕα(t) = iE[α]t+
∫ t

0

∂ψ(0, v)/∂u

ψ(0, v)
dv − iE(Y1)t =

∫ t

0

∂ψ(0, v)/∂u

ψ(0, v)
dv,

where the second equality holds because ϵ1 has mean zero under Assumption 1.
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Additionally, under Assumptions 1- 3, we have

ψ(u, v) = ϕα(u+ v)ϕϵ(u)ϕϵ(v).

Let u = 0, then ϕϵ(v) = ψ(0, v)/ϕα(v); and letting v = 0, then ϕϵ(v) = ψ(u, 0)/ϕα(u).

We note that Assumption 1 can be relaxed further to allow ϵ1 and ϵ2 to have different pdf’s;

recently, a relaxation of Assumption 3 is discussed in Evdokimov and White (2012). Li and Vuong

(1998) proposed a nonparametric plug-in estimator for ϕα(t) and ϕϵ(t) through the nonparametric

estimator for ψ(·, ·), based on J independent observations {(y1j , y2j)}j=1,...,J of (Y1, Y2), defined as

ψ̂(u, v) =
1

J

J∑
j=1

exp(iuy1j + ivy2j) .

We then apply the inverse Fourier transform to ϕα(t) and ϕϵ(t), yielding the density functions of

α and ϵ.

Corollary 3 Consider the general repeated measurement model,

Yjs = αj + ϵjs, j = 1, 2, . . . , J and s = 1, 2, . . . , nj ,

where α is a random variable with pdf g(·) and the ϵjs (with j = 1, 2, . . . , J , s = 1, 2, . . . , nj) are

random variables from the same pdf h(·) with mean zero. If nj ≥ 2, α and ϵjs are mutually inde-

pendent, and the characteristic functions ϕα(·) for α and ϕϵ(·) for ϵjs are nonvanishing everywhere,

then the pdf’s of α and ϵ are nonparametrically identified.

The above corollary applies to the teacher value-added model without classroom shocks, with

j indexing teachers and nj being the total number of students taught by teacher j. We can then

construct the nonparametric estimator for ψ(·, ·) as

ψ̂(u, v) =
1

J

J∑
j=1

1

nj(nj − 1)

∑
1≤s1 ̸=s2≤nj

exp(iuyjs1 + ivyjs2).

B.2 Teacher VA model with classroom shocks

The above reasoning can be extended to the case where we allow for classroom shocks. To that

end, we make three further assumptions:

Assumption 4 Y11 = α+ θ1 + ϵ11, Y21 = α+ θ1 + ϵ21, Y12 = α+ θ2 + ϵ12, and Y22 = α+ θ2 + ϵ22

where Y11, Y21, Y12, and Y22 are random variables with joint pdf f(·, ·, ·, ·), α is a random variable

with pdf g(·), θ1 and θ2 are random variables from the same pdf q(·) with mean zero and ϵ11, ϵ12,

ϵ21, and ϵ22 are random variables from the same pdf h(·) with mean zero.

Assumption 5 α, θ1, θ2, ϵ11, ϵ12, ϵ21, and ϵ22 are mutually independent.
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Assumption 6 The characteristic functions ϕα(·), ϕθ(·) and ϕϵ(·) of α, θ1, θ2 and ϵij for {i, j} ∈
{1, 2} are nonvanishing everywhere.

Lemma 2 Under Assumptions 4-6, the pdf’s of α, θ1, θ2 and ϵij for {i, j} ∈ {1, 2} are uniquely

determined by the joint distribution (Y11, Y12, Y21, Y22).

Proof. We use Lemma 1 three times. First, denote Z1 = α + θ1 and Z2 = α + θ2. Lemma

1 implies that the joint distribution (Y11, Y21) uniquely determines the pdf of Z1 and ϵ and the

joint distribution (Y12, Y22) uniquely determines the pdf of Z2 and ϵ. Now letting the characteristic

function of (Y11, Y12) be denoted as ψY11Y12(t1, t2), we have

ψY11Y12(t1, t2) = E[exp[i(t1(Z1 + ϵ11) + t2(Z2 + ϵ12))]]

= ϕZ1Z2(t1, t2)ϕϵ(t1)ϕϵ(t2),

where ϕZ1Z2(·, ·) is the characteristic function of the random vector (Z1, Z2). The second equality

holds under Assumption 4.

Since we have already identified the characteristic function ϕϵ, the characteristic function of

(Z1, Z2) is therefore identified. Now apply Lemma 1 again to

Z1 = α+ θ1

Z2 = α+ θ2

to identify the densities of α and θ.

Lemma 2 applies to the more general teacher value-added model with classroom shocks:

yijt = αj + θjt + ϵijt,

where i now indexes students, j indexes teachers and t indexes the academic year. With E[θjt] = 0

and E[ϵijt] = 0 and assuming that α, θjt, and ϵijt are mutually independent of each other, the pdf’s

of α, θ, and ϵ are nonparametrically identified.

B.3 Deriving NPEB with Classroom Shocks

Assuming classroom shocks are distributed normally with variance σ2θ , it follows that the

teacher-year specific sample mean can be modeled as yjt = αj+νjt where νjt ∼ N(0, σ2θ+
σ2
ϵ

njt
). The

teacher-specific fixed effect estimator yj is then constructed as before (see equation (2.3)), except

the weights hjt now become
(
σ2θ +

σ2
ϵ

njt

)−1
. The NPEB estimator, parallel to the result in Theorem

2, can be expressed as follows:

Theorem 4 Given the model yjt = αj + νjt, with αj ∼ F , and νjt ∼ N (0, σ2θ + σ2ϵ /njt), the fixed
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effect estimator for αj takes the form

yj =
∑
t

hjtyjt/
∑
t

hjt ,

with hjt =
(
σ2θ +

σ2
ϵ

njt

)−1
, and the estimator of αj that minimizes the Bayes risk under L2 loss takes

the form

δNPBj = yj +
(∑

t

(
σ2θ +

σ2ϵ
njt

)−1)−1 ∂

∂y
log gj(y)|y=yj ,

where gj(·) is the marginal density of yj.

Proof. The proof is very similar to that for Theorem 2 and follows from the fact that the fixed

effects {yj} take the form yj = αj + νj , and νj ∼ N (0, (
∑

t hjt)
−1).

The above theorem assumes a normal distribution for both the classroom and student-level

shocks (i.e, θjt ∼ N (0, σ2θ) and ϵijt ∼ N (0, σ2ϵ )). Once again, this is not necessary in Appendix B.2,

although it is imposed for estimation purposes, with the parameters σ2θ and σ2ϵ being estimated

using maximum likelihood (as described in Appendix F.2).
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C Construction of the Teacher Value-Added Sample

This appendix describes the construction of the final sample of students and teachers used for

teacher VA estimation in both of our administrative datasets. Sample selection follows prior work

(for instance, Chetty et al. (2014a,b)), the main requirements for inclusion in the sample being that

the student has a valid score in a given subject both in the current and prior period, and can be

matched to a teacher in that subject.

C.1 North Carolina

For North Carolina, we follow Clotfelter et al. (2006) and subsequent research using North

Carolina data to construct our sample. We start with the entire enrollment history of students in

the state in grades 4-5 for the 1996-97 through 2010-11 school years and grade 3 for the 1996-97

through 2009-10 school years.54 These data cover roughly 1.85 million students with 4.5 million

student-year observations.

In terms of demographics, we have information about parental education (six education groups,

1996-97 through 2005-06 only), economically disadvantaged status (1998-99 through 2010-11 only),

ethnicity (six ethnic groups), gender, limited English status, disability status, academically gifted

status and grade repetition. Besides missing data in some years for parental education and eco-

nomically disadvantaged status, our demographic data cover over 99 percent of all student-year

observations. When demographic information is missing, we create a missing indicator for that

variable.

We then make several sample restrictions. First, we drop the 1.37 million student-year ob-

servations we suspect as having an invalid teacher; this is by far our biggest sample restriction.55

Second, charter school classrooms and special education classrooms are dropped, leading to a loss of

an additional 70,000 student-year observations. Third, we drop 16,000 observations where teacher

experience data are missing. Fourth, 380,000 observations lacking a valid current or lagged test

score in that subject are excluded, with half of this loss coming from a lack of third grade mathemat-

ics pretest data in 2005-06 and third grade English pretest data in 2007-08 due to a statewide test

update.56 Fifth, we only include classes with more than seven but fewer than forty students with

valid current and lagged test scores in that subject, resulting in a loss of 10,000 observations.57 Our

final sample consists of roughly 2.7 million student-year observations, covering 1.4 million students

and 35,000 teachers.

54Our analysis is restricted to students in third through fifth grade since our data records the test proctor and the
teacher recorded as the test proctor is typically the teacher who taught the students throughout the year in these
grades. Data for grade 3 stops after 2008-09 because the grade 3 pretest was discontinued after that year. Grade 3
students in 2005-06 are also omitted due to a lack of the pre-test in the administrative data for that year.

55We assign teachers to students based on the person recorded as proctoring the student’s exam, further confirming
that the proctor is teaching a primary grade mathematics and English class. If the teacher is not, we drop the
observations.

56The third grade pretest is a test given to students at the start of third grade.
57As the last two restrictions are subject-specific, our sample for English value-added has 50,000 fewer student-year

observations.
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C.2 Los Angeles Unified School District (LAUSD)

For the LAUSD dataset, we start with the entire enrollment history of students in the district

in grades 4-5 for the 2003-04 through 2012-13 and 2015-16 through 2016-17 school years and third

grade from 2003-04 through 2012-13. These data cover roughly 800,000 students with 1.7 million

student-year observations.

For demographics, we have information about parental education (five education groups), eco-

nomically disadvantaged status, ethnicity (seven ethnic groups), gender, limited English status,

age, and an indicator for skipping or repeating a grade. Demographic coverage is approximately

one hundred percent for all demographic variables with the exception of parental education, which

is missing for twenty-nine percent of the sample. Whenever parental education is missing, we create

a missing indicator for that variable.

We then make several sample restrictions. First, we drop 100,000 student-year observations

that cannot be matched to a teacher. Second, we drop 180,000 observations where we lack data on

teacher experience; the data we drop here are over-represented in early years since we only have

teacher experience data from 2007-08 onwards.58 Third, we only include classes with more than

seven but fewer than forty students with valid current and lagged test scores in that subject, losing

11,000 observations. Fourth, we exclude 70,000 observations that lack a valid current or lagged test

score in that subject.59 Our final sample is roughly 1.3 million student-year observations, covering

roughly 660,000 million students and 11,000 teachers.

Constructing Value-Added: With both samples in hand, we construct VA estimates for each

teacher by running the following regression:

yigt = f1g(yi,t−1) + f2(ej(i,g,t)) + ϕ1Xigt + ϕ2X̄c(i,g,t) + vj + ϵigt .

We follow Chetty et al. (2014a,b) and parametrize the control function for lagged test scores

f1g(yi,t−1) with a cubic polynomial in prior-year scores in mathematics and English and inter-

act these cubics with the student’s grade level. When prior test scores in the other subject are

missing, we set the other subject prior score to zero and include an indicator for missing data in

the other subject interacted with the controls for prior own-subject test scores.

We parametrize the control function for teacher experience f2(ej(i,g,t)) using dummies for years

of experience from 0 to 5, the omitted group being teachers with 6 or more years of experience. The

student-level control vector Xigt consists of the respective demographic variables in each dataset.

The class-level control vector X̄c(i,g,t) includes (i) class size, (ii) cubics in class and school-grade

means of prior-year test scores in mathematics and English each interacted with grade, (iii) class

58We assume teacher experience for teachers before 2007-08 is given by their experience in 2007-08 minus the number
of years until 2007-08, but we cannot get teacher experience data for any teacher who left before 2007-08. We lose
approximately 30% of observations in 2003-04, 25% in 2004-05, 17% in 2005-06, 10% in 2006-07. Every year thereafter
we continue to lose about 3-5% of observations due missing values for teacher experience.

59As the last two restrictions are subject-specific, our sample for English VA has 4,000 fewer student-year observa-
tions.
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and school-year means of all the individual covariates, Xigt, and (iv) grade and year dummies.

C.3 Long-Run Outcome Data

We describe the long-run outcome data we merge onto our main analysis dataset briefly. For

both the LAUSD and North Carolina data, we focus on five outcomes: high school dropout status,

days suspended, PSAT scores, SAT taking, and SAT scores. In addition, we use scores on the state

standardized exit exam (CAHSEE) as an additional outcome in the LAUSD data. We explain how

we merge these long-run outcomes into each dataset below.

LAUSD: California High School Exit Examination (CAHSEE) data cover 2003-04 through 2014-

15. As the CAHSEE is normally first taken in tenth grade, we keep cohorts who were in tenth grade

during this time period.60 If a student took the CAHSEE multiple times, we take the score from the

student’s first sitting of the CAHSEE. We report the sum of CAHSEE scores from the mathematics

and English sections and so CAHSEE scores range from 550 to 900. We have CAHSEE records for

184,128 students, covering sixty-seven percent of students from eligible cohorts.

Data on dropouts and graduations are available for school years 2011-12 through 2016-17. These

data indicate whether students in the twelfth grade cohort of that year graduated or dropped out

and so we restrict our data to cohorts in twelfth grade during this time period.61 We have a dropout

or graduation record for 129,456 students – fifty percent of students from eligible cohorts.

Suspension data are available from 2003-04 through 2016-17. We restrict data to 2003-04

through 2009-10 to allow for sufficient time to elapse for students to receive suspensions after

a student is taught by a given teacher. We calculate the total number of days of out-of-school

suspensions for each student occurring in middle or high school (grades 6-12). If we do not find

the student in the suspension files, we assume the student has never been suspended. Of note,

the LAUSD embarked on an ambitious policy to eliminate “wilful defiance” suspensions, causing

a large drop (almost seventy-five percent) in suspension rates in the 2010s, creating a low rate of

suspension in the LAUSD data. We have suspension outcomes for our full value-added sample of

426,074 students from 2003-04 through 2009-10.

PSAT data cover school years 2008-09 through 2016-17. As the PSAT is normally taken in

tenth grade, we keep cohorts who were in tenth grade during this time period.62 We convert PSAT

scores from the 2015-16 and 2016-17 administrations using the concordance tables provided by the

College Board so that all PSAT scores are reported on a 600-2400 scale.63 If a student is recorded

as receiving multiple administrations of the PSAT, we take the score from the first PSAT test taken

by the student. We have PSAT records for 209,675 students, covering fifty-one percent of students

from eligible cohorts.

SAT data cover school years 2006-07 through 2016-17. As the SAT is usually taken in the

eleventh or twelfth grade, we keep cohorts who attended both grades during the time period covered

60We therefore drop fifth grade after 2009-10, fourth grade after 2008-09, and third grade after 2007-08.
61We therefore drop fifth grade after 2008-09, fourth grade after 2007-08, and third grade after 2006-07.
62We therefore drop fifth grade after 2011-12, fourth grade after 2010-11, and third grade after 2009-10.
63Available at https://collegereadiness.collegeboard.org/pdf/2015-psat-nmsqt-concordance-tables.pdf.
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by our SAT data.64 SAT scores are recorded on a 400-1600 scale. As with the PSAT, we only keep

the student’s first score if they have taken the test multiple times. We have SAT records for 92,309

students – thirty percent of students from eligible cohorts.

North Carolina: Dropout data are available for school years 2003-04 through 2016-17. Given

the majority of students drop out in tenth through twelfth grade, we ensure that our dropout data

coverage starts in at least tenth grade for a given cohort65 and covers up to twelfth grade.66 Any

student that has either not dropped out or moved out-of-state is coded as not being a high school

dropout. We have dropout outcomes for 1,097,381 students.

Suspension data are available from 2000-01 through 2016-17, although data from 2004-05 are

missing. Here, we keep all data, since the suspension data cover a majority of high school years

for all cohorts. We find the total number of days of out-of-school suspensions for each student

occurring in middle or high school (grades 6-12). We top-code the number of days suspended in

a school year at ten days. If we do not find the student in the suspension files, we assume that

the student has never been suspended. Thus we have suspension outcomes for our full value-added

sample of 1,386,555 students.

PSAT data cover school years 2012-13 through 2016-17. As the PSAT is normally taken in

tenth grade, we keep cohorts in tenth grade from 2012-13 through 2016-17.67 We convert PSAT

scores from the 2015-16 and 2016-17 administrations using the concordance tables provided by the

College Board, so that all PSAT scores are reported on a 600-2400 scale. If a student is recorded as

receiving multiple administrations of the PSAT, we take the score from the first time the student

took the PSAT test. We have PSAT records for 159,028 students, covering forty-four percent of

students from eligible cohorts.

SAT data cover school years 2008-09 through 2016-17. As the SAT is usually taken in the

eleventh or twelfth grade, we keep cohorts who attended both grades during the time period covered

by our SAT data.68 SAT scores are recorded on a 400-1600 scale. As with the PSAT, we only keep

the student’s first score if they have taken the SAT multiple times. We have SAT records for

275,3810 students – thirty-five percent of students from eligible cohorts.

64We therefore drop fifth grade after 2009-10, fourth grade after 2008-09, and third grade after 2007-08.
65This means we drop fifth grade students in 1996-97 and 1997-98 and fourth grade students in 1996-97.
66This necessitates that we drop 2010-11, fourth grade students in 2009-10, and third grade students in 2008-09.
67We thus keep fifth grade from 2007-08, fourth grade from 2006-07, and third grade from 2005-06. Fourth grade

in 2010-11 is also dropped (recall third grade coverage ends in 2008-09 in the VA sample).
68The data are therefore restricted to third grade in 1999-00 through 2007-08, fourth grade in 2000-01 through

2008-09, and fifth grade from 2001-02 through 2009-10.
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D Linking Long-run Outcomes to Teacher VA

In Section 8.2, we referenced a method to link long-run outcomes with teacher VA proposed by

Chetty et al. (2014b). In this appendix, for completeness, we describe the steps involved.

The first step involves constructing long-run outcome residuals using variation across students

taught by the same teacher j, based on the regression equation

Y ∗
ij = αj + βYXijt + uijt , (D.1)

where Y ∗
ij is the long-run outcome of interest, αj is a teacher fixed effect , and Xijt are observed

characteristics of the student and the teacher. Using the estimates from equation (D.1), the long-run

residuals, Yijt, are defined as:

Yijt = Y ∗
ij − β̂YXijt . (D.2)

We then regress these long-run residuals on each teacher’s (normalized) VA, pooling across all

grades, using VA estimates based on both the parametric and our nonparametric approaches:

Yijt = δ + κdm̂d
jt + ηijt , d ∈ {PEB,NPEB}, (D.3)

where m̂d
jt ≡ α̂dj/σ̂

d
α denotes ‘normalized’ teacher VA, which is our estimate of a teacher’s VA (with

the superscript denoting whether it is calculated using PEB or NPEB), scaled by the estimated

standard deviation (σ̂dα) of the teacher VA distribution. (As in Chetty et al. (2014b), the standard

deviation of the normalized VA measure is less than one since Bayes shrinkage is applied to the VA

estimates.)

The impact of being assigned a teacher with higher VA for one year on long-run outcomes in

North Carolina and the LAUSD are shown in appendix Figures I.4 and I.5, respectively. The panels

plot residual long-run outcomes for students in school year t versus the estimated (normalized) VA

using NPEB of the teacher j who taught them in that year, given by m̂NPEB
jt .69 In terms of the

slope coefficients underlying each panel, we find that being assigned to a teacher whose test score

VA based on NPEB is one SD higher in a single grade in the LAUSD decreases the drop-out rate

by 0.24 percentage points, lowers suspensions by 0.01 days, increases PSAT scores by 7.6 (on the

2400 scale), boosts SAT taking by 0.24 percentage points, increases SAT scores by 5.8 (on the

1600 scale), and raises high school exit exam scores by 3.6% relative to the mean. We find similar

relationships in the North Carolina data. All of these increases are statistically significant at the

one percent level.

69To construct the binned scatter plot, we take three steps: (i) residualize the long-run outcome as described in
equation (D.1), (ii) divide our VA estimates, m̂jt, into twenty equal-sized bins and plot the mean of the long-run
outcome residuals in each bin against the corresponding bin mean of m̂jt, and (iii) add back in the mean long-run
outcome in the estimation sample to facilitate the interpretation of the scale.
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E Bootstrapping the Standard Errors

This appendix describes how we generate the bootstrapped standard errors for the policy eval-

uations. Uncertainty in the policy analysis regarding test score gains under teacher release or

retention policies stems from the fact that the distribution of the teacher quality – either nonpara-

metrically identified from the data or under the parametric assumption of Gaussian – has to be

estimated from the data. We apply the bootstrap method in Laird and Louis (1987) to construct

standard errors for these policy evaluation estimates.

For policy estimates under general distribution F , the following steps describe the bootstrap

procedure: (i) Draw a new independent sample of teacher quality of the same size as the original

sample from distribution F̂ , and generate a bootstrap sample of the fixed effect estimates y
(b)
j for

j = 1, 2, . . . , n based on model (2.4). (ii) Estimate the nonparametric MLE of F̂ (b) based on the

bootstrap sample y(b) and calculate the marginal and total test score gains based on F̂ (b). Repeat

these steps B = 800 times, and calculate the standard errors based on these bootstrap estimates

of policy outcomes.

If the teacher quality is assumed to be unobserved and thus the cutoff for the bottom or top

q percentile of quality needs to be constructed from the empirical quantiles of the estimates of

teacher VA, for each bootstrap distribution F̂ (b) conduct step (iii): take an independent sample of

teacher quality of size 40000 from distribution F̂ (b) and generate data based on model (2.4) with

total class size equal to sixty. Construct the NPEB estimator of the value-added and apply the

policy of releasing or retaining teachers based on empirical quantiles of the NPEB estimates of the

teacher VA.

If we assume the quality distribution is normal, the following steps are taken to construct the

bootstrap standard errors: (i) Draw a new independent sample of teacher quality of the same size

as the original sample from N (0, σ̂2α) where σ̂
2
α is the maximum likelihood estimator of variance of

the normal distribution based on the respective dataset from North Carolina and the LAUSD. Then

generate a bootstrap sample of the fixed effect estimates y
(b)
j based on model (2.4). (ii) Estimate

σ̂
2(b)
α using the maximum likelihood estimator applied to the bootstrapped sample y

(b)
j and calculate

the marginal and total test score gains based on N (0, σ̂
2(b)
α ). If teacher quality is assumed to be

unobserved, conduct step (iii): take an independent sample of teacher quality of size 40000 from

N (0, σ̂
2(b)
α ) and generate data based on model (2.4) with total class size equals to sixty. Construct

the EB estimator of the value-added and apply the policy of releasing or retaining teachers based

on empirical quantiles of the EB estimates of teacher VA.
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F Maximum Likelihood Estimation of Variance Parameters

F.1 Without Classroom Shocks

Our model without classroom shocks is specified as:

yijt = αj + ϵijt ,

with i indexing students, j indexing teachers and t indexing the years when teachers appear in the

sample. We assume that ϵijt ∼iid N (0, σ2ϵ ) and ϵijt is independent of αj . We have i = 1, 2, . . . , njt,

j = 1, . . . , J and t = 1, . . . , Tj (i.e., an unbalanced panel of teachers). Denote the teacher-year

fixed effect yjt = 1
njt

∑
i yijt. The estimator commonly used in the literature is a method-of-

moments estimator proposed by Kane and Staiger (2008) under the additional assumption that

αj ∼ N(0, σ2α). Specifically, they propose the following estimators for the variance parameters:

σ̂2α = ĉov(yjt, yjt−1)

σ̂2ϵ = V̂ (yijt)− σ̂2α.

This is also the estimator used by Chetty et al. (2014a) for teacher VA without drift. The main

shortcoming of the method-of-moments estimator for the variance parameters is that it requires

all individual teachers to have shown up in the sample for at least 2 years; otherwise, they will

be dropped from the covariance calculation. For North Carolina data, teachers who only appear

for one year consist of around 30% of the whole sample. This induces a sample selection issue for

the estimation of σ2α. We therefore propose the following maximum likelihood estimators for the

variance parameters.
Maintaining a general distribution F for α, and denoting the vector y⃗jt = (y1jt, y2jt, . . . , ynjtjt)

′,
the likelihood of observing residual test outcome y⃗jt for teacher j in period t can be written as

L(y⃗jt) =

∫ ( 1√
2πσ2

ϵ

)njt

exp
(
−

∑
i

(yijt − yjt + yjt − αj)
2/2σ2

ϵ

)
dF (αj)

=
( 1√

2πσ2
ϵ

)njt
∫

exp
(
−

∑
i

(yijt − yjt)
2/2σ2

ϵ

)
exp

(
− (yjt − αj)

2

2σ2
ϵ/njt

)
dF (αj)

=
1

√
njt

( 1√
2πσ2

ϵ

)njt−1

exp(−
∑
i

(yijt − yjt)
2/2σ2

ϵ

)∫
1√

2πσ2
ϵ/njt

exp
(
− (yjt − αj)

2

2σ2
ϵ/njt

)
dF (αj)

≡ L1(y⃗jt|yjt, σ2
ϵ )

∫
L2(yjt|σ2

ϵ , αj)dF (αj) .

When F is assumed to be the normal distribution with variance σ2α, then the second component

involving the integral becomes∫
L2(yjt|σ2ϵ , αj)dF (αj) =

1√
2π(σ2α + σ2ϵ /njt)

exp
(
−

y2jt
2(σ2α + σ2ϵ /njt)

)
:= L̃2(yjt|σ2ϵ , σ2α) .

Therefore, under the normality assumption, the maximum likelihood estimator for (σ2ϵ , σ
2
α) can
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be obtained by maximizing
∏
j

∏
t L1(y⃗jt|yjt, σ2ϵ )L̃2(yjt|σ2ϵ , σ2α) numerically. Unlike the method-of-

moments estimator, all individuals, including those with only one period of data, are accounted for

here.

When F is a general distribution not indexed by any parameters, we can obtain an estimator

for σ2ϵ using

σ̂2ϵ =

∑
j

∑
t

∑
i(yijt − yjt)

2∑
j

∑
t(njt − 1)

.

F.2 With Classroom Shocks

Our model with classroom shocks is specified as:

yijt = αj + θjt + ϵijt ,

with i indexing students, j indexing teachers and t indexing years for which teachers appear in

the sample. We assume that θjt ∼ N (0, σ2θ) and ϵijt ∼ N (0, σ2ϵ ), and also mutual independence

between αj , θjt and ϵijt. We again have i = 1, 2, . . . , njt, j = 1, . . . , J and t = 1, . . . , Tj (i.e., an

unbalanced panel of teachers).

The corresponding method-of-moments estimator proposed by Kane and Staiger (2008) is

σ̂2ϵ = V̂ (yijt − yjt)

σ̂2α = ĉov(yjt, yjt−1)

σ̂2θ = V̂ (yijt)− σ̂2ϵ − σ̂2α.

Again, the method-of-moments estimator excludes individual teachers who appear for only one

period in the sample. As an alternative, we propose the following maximum likelihood estimator

for the variance parameters.

Parametric EB: Under PEB, the VA of teacher j is assumed to be distributed according to

αj ∼ N (0, σ2α). Denoting the vector y⃗jt = (y1jt, . . . , ynjtjt)
′, the likelihood of y⃗jt can be written as

L(y⃗jt) =

∫
(2π)−njt/2|detΣ|−1/2exp(−1

2
(y⃗jt − αj)

⊤Σ−1(y⃗jt − αj))dF (αj) ,

where Σ = σ2ϵ I + σ2θ1njt1
′
njt

with I being an identity matrix of dimension njt × njt and 1n is a

vector of 1’s with length n. It can be shown that

detΣ =
[
njtσ

2
θ + σ2ϵ

]
(σ2ϵ )

njt−1 ,

and

Σ−1 =
1

σ2ϵ
I −

σ2θ
(σ2ϵ + njtσ2θ)σ

2
ϵ

1njt1
′
njt

.
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Now, defining yjt :=
1
njt

∑
i yijt gives us

(y⃗jt − αj)
′Σ−1(y⃗jt − αj)

=
1

σ2ϵ

∑
i

(yijt − αj)
2 −

σ2θ
(σ2ϵ + σ2θnjt)σ

2
ϵ

(∑
i

(yijt − αj)
)2

=
1

σ2ϵ

∑
i

(yijt − yjt + yjt − αj)
2 −

σ2θ

( σ
2
ϵ

njt
+ σ2θ)

σ2
ϵ

njt

(
yjt − αj

)2

=
1

σ2ϵ

∑
i

(yijt − yjt)
2 +

1
σ2
ϵ

njt
+ σ2θ

(yjt − αj)
2 ,

and then the likelihood of observing the vector y⃗jt for teacher j at period t (conditional on αj)
becomes

L(y⃗jt|αj) = (2π)−njt/2|detΣ|−1/2 exp
(
−

∑
i(yijt − yjt)

2

2σ2
ϵ

)
exp

(
− (yjt − αj)

2

2(
σ2
ϵ

njt
+ σ2

θ)

)

= (2π)−
njt−1

2 |detΣ|−1/2 exp
(
−

∑
i(yijt − yjt)

2

2σ2
ϵ

)( σ2
ϵ

njt
+ σ2

θ

)1/2 1√
2π(

σ2
ϵ

njt
+ σ2

θ)
exp

(
− (yjt − αj)

2

2(
σ2
ϵ

njt
+ σ2

θ)

)

= (2π)−
njt−1

2 n
− 1

2
jt (σ2

ϵ )
−

njt−1

2 exp
(
−

∑
i(yijt − yjt)

2

2σ2
ϵ

) 1√
2π(

σ2
ϵ

njt
+ σ2

θ)
exp

(
− (yjt − αj)

2

2(
σ2
ϵ

njt
+ σ2

θ)

)
.

Note that yjt|αj ∼ N(αj , σ
2
θ +

σ2
ϵ

njt
) and so the second piece of the likelihood is itself a proper

likelihood for yjt conditional on αj and the first piece of the likelihood does not depend on αj or

σ2θ . If αj ∼ N(0, σ2α), then yjt ∼ N(0, σ2α + σ2θ +
σ2
ϵ

njt
), and the marginal likelihood of all the data

(unconditional on αj) becomes

L =
∏
j

∏
t

{
(2π)−

njt−1

2 n
− 1

2
jt (σ2

ϵ )
−

njt−1

2 exp
(
−

∑
i(yijt − yjt)

2

2σ2
ϵ

) 1√
2π(σ2

θ + σ2
α +

σ2
ϵ

njt
)
exp

(
−

y2
jt

2(σ2
θ + σ2

α +
σ2
ϵ

njt
)

)}
.

The maximum likelihood estimator for (σ2α, σ
2
θ , σ

2
ϵ ) can be solved by maximizing L numerically.

NPEB: Under NPEB, we have that αj ∼ F . We start by estimating σ2ϵ from the first piece of the

likelihood over (j, t) – that is

σ̂2ϵ = argmax
σ2
ϵ

∑
j

∑
t

−njt − 1

2
log σ2ϵ −

∑
i(yijt − yjt)

2

2σ2ϵ
,

which leads to

σ̂2ϵ =

∑
j

∑
t

∑
i(yijt − yjt)

2∑
j

∑
t(njt − 1)

.

Now to estimate σ2θ , consider the model yjt|αj ∼ N(αj , σ
2
θ +

σ2
ϵ

njt
). The likelihood for the vector
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(yj1, . . . , yjTj ) can be written as

L(yj1, . . . , yjTj |αj) =
[ Tj∏
t=1

1√
2π(σ2θ +

σ2
ϵ

njt
)

]
exp

(
− 1

2

∑
t

(yjt − αj)
2

σ2θ +
σ2
ϵ

njt

)
.

Letting νjt = σ2θ +
σ2
ϵ

njt
, define

yj =

∑
t
yjt
νjt∑

t
1
νjt

.

We then have yj |αj ∼ N(αj ,
1∑
t

1
νjt

), and the likelihood of L(yj1, . . . , yjTj |αj) factorizes into

[ Tj∏
t=1

1√
2π(σ2

θ +
σ2
ϵ

njt
)

]
exp

(
− 1

2

∑
t

(yjt − yj)
2

νjt

)√
2π

1∑
t

1
νjt

1√
2π 1∑

t
1

νjt

exp
(
− 1

2
(yj − αj)

2
∑
t

1

νjt

)
,

where the second piece forms the density of yj conditional on αj . We estimate σ2θ by maximizing

the following likelihood:

∏
j

{[ Tj∏
t=1

1√
2π(σ2θ +

σ̂2
ϵ

njt
)

]
exp

(
− 1

2

∑
t

(yjt − yj)
2

σ2θ +
σ̂2
ϵ

njt

)√√√√2π
1∑

t
1

σ2
θ+

σ̂2
ϵ

njt

}
.

There is no closed-form solution for σ̂2θ , but numerical estimates can be easily obtained.
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G Specification Test for Normality

We propose the following specification test for normality. Suppose the data are generated from

the model

yj = αj + ϵj , j = 1, 2, . . . , n ,

with ϵj ∼ N (0, σ2j ) and where σ2j is known. We are interested in testing the hypothesis that

αj ∼ N (0, σ2α). One natural diagnostic test is the likelihood ratio test, with the test statistic given

by

Ln = 2
(
sup
F∈F

ℓn(F )− sup
σ2
α

ℓn(σ
2
α)
)
,

where F is the set of probability measures on the domain of α, ℓn(F ) is the likelihood of the sample

{v̄1, . . . , v̄n} with α ∼ F , and ℓn(σ
2
α) is the likelihood of the sample with α ∼ N (0, σ2α). To obtain

a critical value for the test based on Ln, we use the parametric bootstrap, drawing on McLachlan

(1987) and Gu et al. (2018). This involves the following steps:

1. Compute σ̂2α as the maximizer of ℓn(σ
2
α).

2. For b = 1, . . . , B, generate data α
(b)
1 , . . . , α

(b)
n from N (0, σ̂2α).

3. For b = 1, . . . , B, generate data y
(b)
j from N (α

(b)
j , σ2j ) for j = 1, 2, . . . , n.

4. For b = 1, . . . , B, denote by Ln,b the test statistic Ln computed from the sample y
(b)
1 , . . . , y

(b)
n .

Compute the τ -quantile qn,τ of Ln,1, . . . , Ln,B.

The likelihood ratio test statistic computed from the data takes the form Ln = 2(ℓn(F̂ ) − ℓn(σ̂
2
α),

where F̂ is the NPMLE defined in the main text and σ2α is the maximum likelihood estimator under

the assumption that αj ∼ N(0, σ2α). Details are given in Appendix D. We reject the null hypothesis

of a normal distribution for the teacher quality α at level τ when Ln exceeds the bootstrap-based

critical value qn,1−τ .

We report the size and power performance of the proposed parametric bootstrap test in Table

E.1 below, based on the following data generating process: Fix the sample size at n = 1000, and for

a grid values of h ∈ {0, 0.4, 0.6, 0.8, 1}, sample individual αj ’s from the following three-component

normal distribution:

0.025N (−h, θh) + 0.95N (0, θh) + 0.025N (h, θh)

with θh = 0.1−0.05h2. The design of θh is such that the variance of α is always 0.1; this is roughly

the variance of the teacher effects in the LAUSD data. When h = 0, the latent effect αj follows

a normal distribution, and the bootstrap test should reject with probability equal to nominal size.

As the magnitude of h increases, we deviate from the normal distribution, and the parametric

bootstrap test should be able to detect this deviation from the null hypothesis of normality and

reject with a higher probability. Conditional on αj , yj is generated from a normal distribution with

mean αj and variance σ2j , where the σj ’s are generated from a random sample of size 1000 from
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the inverse gamma distribution with parameters (6, 0.05), in order to capture teacher heterogeneity.

These parameters are chosen so that the distribution of σ2j mimics those for the individual variances

in the LAUSD data.

Results in Table E.1 are based on bootstrap sample size B = 500 and 500 simulation repetitions.

The table shows that the parametric bootstrap test controls size well for h = 0, and that the power

increases quickly as h increases.

Table E.1: Size and Power Performance of the
Parametric Bootstrap Test for Normality

τ = 10% τ = 5% τ = 1%

h = 0 0.116 0.058 0.01

h = 0.4 0.148 0.082 0.028

h = 0.6 0.57 0.442 0.234

h = 0.8 1 1 0.99

h = 1 1 1 1

Notes: τ measures the nominal sizes fixed at 10, 5, 1% and we
report the proportion of rejection out of 500 simulation repetitions
for different values of h and τ .

We apply the parametric bootstrap likelihood ratio test of normality for both North Carolina

and LAUSD data. For the North Carolina data, the likelihood ratio test statistic Ln is 1326.3

with the corresponding bootstrap critical values at (1 − τ) ∈ {90%, 95%, 99%} being respectively

{58.45, 61.67, 70.4}, which implies that the normality hypothesis is significantly rejected at 1% level.

For LAUSD data, the likelihood ratio test statistics Ln is 667.5 and the corresponding bootstrap

critical values at τ ∈ {90%, 95%, 99%} being respectively {73.8, 78.1, 90.1} and hence we also reject

the null hypothesis of normality at 1% level.

Other tests for normality are also possible. For instance, if α indeed follows a normal distribution

N(0, σ2α), then the logarithm of its characteristic function takes the form

log ϕα(t) = −t2/σ2α ,

which implies that the first-order derivative with respect to t is of the form −t/σ2α, which is a

linear function of t. Since the distribution of α is identified (as established in Theorem 1), we can

construct a consistent estimator for ϕα(t) and inspect linearity of the derivative of its logarithm

transformation. Another specification test has been proposed in Bonhomme and Weidner (2019).

We leave to future research a power comparison involving these and other specification tests.

64



H Computation Appendix

In this brief appendix, we discuss the estimation of F using NPMLE.

H.1 Computing the NPMLE for F

The difficulty in estimating equation (3.1), as pointed out in Koenker and Mizera (2014), is

that F is an infinite-dimensional object, involving an infinite number of constraints. To make

computation feasible and maintain the convexity of the problem, those authors propose a finite-

dimensional convex approximation.

Formally, letM be a positive integer and let FM be the class of probability distribution functions

supported on M grid points given by minj{yj} < α1 < α2 < · · · < αM < maxj{yj}. The NPMLE

is then defined to be the maximizer of equation (3.1), replacing F by FM . The resulting NPMLE

F̂ thus takes the form of a discrete distribution. When M is reasonably large, increasing it further

does not improve the likelihood: Dicker and Zhao (2016) show that taking M to be roughly the

square-root of the sample size renders a good approximation.70

H.2 Constructing the NPEB Estimator

We construct a feasible version of the NPB estimator based on (4.1) directly, rather than

its equivalent reformulation (4.2) in Theorem 2. We do so for two reasons. First, equation (4.2)

suggests that the nonparametric Bayes estimator δNPBj depends on the marginal density of the fixed

effect estimator, rather than the teacher quality distribution F directly. Therefore, in principle,

we could focus on constructing a feasible estimator for the marginal density, yet in practice, this

becomes challenging when individual teachers have heterogeneous variances.71

Second, kernel-based estimators for the marginal density do not incorporate the model infor-

mation that the fixed effect estimator is induced by an underlying normal mixture model; hence,

the resulting shrinkage estimator may lose some important properties of the NPB estimator, such

as monotonicity with respect to yj for fixed variances.72 In contrast, both the construction of the

NPMLE of F and the NPEB in (4.8) make use of the mixture model structure, and so automatically

satisfy the monotonicity property.

The proposed estimator (4.8) can be motivated on the grounds that it makes effective use of

information from the data (to learn about F ) and from the model (using the normal mixture struc-

ture). Saha and Guntuboyina (2020) recently showed that the NPEB estimator δNPEBj constructed

70For the datasets we apply this method to, the sample size is around 35,000 for the North Carolina data and 11,000
for the LAUSD data. In both cases, we take M = 5000. Making M even larger in both examples does not further
improve the precision.

71Brown and Greenshtein (2009) propose a kernel method to estimate the marginal density of yj directly when
variances of yj are all the same – for example, when all teachers have the same associated sample sizes. When
variances are homogeneous, the kernel estimator for the marginal density is easy to construct since we have J
independent and identically distributed observations (y1, . . . , yJ) from this marginal density. Yet when individual
teachers have heterogeneous variances, which is the default in all value-added applications, it is difficult to apply
these methods to construct (4.2), given the observations (y1, . . . , yJ) are no longer identically distributed.

72See Koenker and Mizera (2014) for a monotonized version of the Brown and Greenshtein (2009) estimator.
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via the NPMLE of F performs similarly to the infeasible NPB estimator δNPBj defined in (4.1). It is

surprising that the proposed estimator achieves this close approximation to the infeasible estimator,

given the well-known fact that the NPMLE of F has a slow convergence rate (Fan, 1991). The key

reason is that the nonparametric Bayes rule is a smooth functional of F , which can be estimated

at a much better rate than the distribution F itself.
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I Appendix Figures and Tables

Figure I.1: Simulation Performance of Parametric and Nonparametric Estimators in
Finite Samples for Policy Gain Estimation Relative to the Infeasible Benchmark when

Teacher Quality Follows:
(a) Normal Distribution
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(b) Mixed Normal Distribution
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(c) Skewed Normal Distribution
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(d) Skewed Logistic Distribution
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Notes: These figures assess the performance of the parametric and nonparametric estimators for policy gains in finite
samples relative to the infeasible benchmark for the four data generating processes we consider in our simulations.
Each figure reports the difference between the policy gains found using the parametric or nonparametric estimator
compared to the policy gains found using the infeasible oracle estimator. Figure I.1(a) simulates the selection bias
when the underlying distribution is normally distributed F ∼ N (0, 0.08), while Figure I.1(b) does so when the
underlying distribution is mixed normal F ∼ 0.95N (0, 0.03)+0.025N (−1, 0.03)+0.025N (1, 0.03). Figure I.1(c) then
skews the normal distribution to the right with location parameter -0.4 and shape parameter 5, while Figure I.1(d)
uses a skewed logistic with location parameter -0.5 and shape parameter 5. The parameters are chosen such that all
four distributions are mean zero and have roughly the same variance. The x-axis reports number of teachers, each
with a class size from the set {8, 16}. The simulations average results from 500 repetitions and set σ2

ϵ =0.25.
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Figure I.2: Simulation Performance of Parametric and Nonparametric Estimators in
Finite Samples for the False Discovery Rate Relative to the Infeasible Benchmark when

Teacher Quality Follows:
(a) Normal Distribution
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(b) Mixed Normal Distribution
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(c) Skewed Normal Distribution
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(d) Skewed Logistic Distribution
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Notes: These figures assess the performance of the parametric and nonparametric estimators for finding the false
discovery rate in finite samples relative to the infeasible benchmark for the four data generating processes we consider
in our simulations. Each figure reports the difference between the false discovery rate found using the parametric
or nonparametric estimator compared to the false discovery rate found using the infeasible oracle estimator. Figure
I.2(a) simulates the selection bias when the underlying distribution is normally distributed F ∼ N (0, 0.08), while
Figure I.2(b) does so when the underlying distribution is mixed normal F ∼ 0.95N (0, 0.03) + 0.025N (−1, 0.03) +
0.025N (1, 0.03). Figure I.2(c) then skews the normal distribution to the right with location parameter -0.4 and shape
parameter 5, while Figure I.2(d) uses a skewed logistic with location parameter -0.5 and shape parameter 5. The
parameters are chosen such that all four distributions are mean zero and have roughly the same variance. The x-axis
reports number of teachers, each with a class size from the set {8, 16}. The simulations average results from 500
repetitions and set σ2

ϵ =0.25.
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Figure I.3: Classroom Shocks Model: Test Scores Gains from Replacing
Bottom q Percentile of Teachers

(a) North Carolina
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(b) LAUSD
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Notes: These figures show the average test score gains among affected students of a policy that releases the bottom q% of
teachers (replacing with mean-quality teachers) under the classroom shocks model presented in equation (9.1). Estimates are
shown using both the nonparametric estimator that estimates the distribution F (α) and the parametric estimator that assumes
normality. Policy gains are calculated via Monte Carlo simulation with 40,000 observations under the assumption that we
estimate Φ̂α̂ and F̂α̂ using three years of data for each teacher and assuming teachers all have class sizes of twenty. (Details of
the simulation are provided in Section 8.2.) This figure is comparable to Figure 5 which reports the policy gains under a policy
that releases the bottom q% of teachers in the VA model without classroom shocks.
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Figure I.4: Effects of Teacher Value-Added on Long-Run Outcomes (North Carolina)
(a) High School Drop Out
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Notes: These figures link long-run outcomes to teacher value-added estimated using NPEB in North Carolina by comparing
the long-run outcomes of students who were assigned to teachers with different value-added, controlling for a rich set of student
characteristics. To do so, we follow the steps outlined in Chetty et al. (2014b): (i) residualize the long-run outcome as described
in equation (D.1), (ii) divide our value-added estimates m̂NPEB

jt into twenty equal-sized bins and plot the mean of the long-run

outcome residuals in each bin against the bin mean of m̂NPEB
jt , and (iii) add back in the mean long-run outcome in the estimation

sample to facilitate the interpretation of the scale. Coefficient estimates are reported in the figures with standard errors clustered
at the school by cohort level in parentheses below. Coefficient estimates are the same as those reported for κNPEB in Table
5(a). Long-run outcomes are: high school drop out, total days suspended in middle and high school, PSAT scores, whether
student takes the SAT, and SAT scores. For PSAT and SAT scores, we combine the mathematics and English components and
take the values from the student’s first attempt. (See Appendix C.3 for more details about the data construction.)
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Figure I.5: Effects of Teacher Value-Added on Long-Run Outcomes (LAUSD)
(a) Exit Exam Score (CAHSEE)
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Notes: These figures link long-run outcomes to teacher value-added estimated using NPEB in LAUSD by comparing the
long-run outcomes of students who were assigned to teachers with different value-added, controlling for a rich set of student
characteristics. To do so, we follow the steps outlined in Chetty et al. (2014b): (i) residualize the long-run outcome as described
in equation (D.1), (ii) divide our value-added estimates m̂NPEB

jt into twenty equal-sized bins and plot the mean of the long-

run outcome residuals in each bin against the bin mean of m̂NPEB
jt , and (iii) add back in the mean long-run outcome in the

estimation sample to facilitate interpretation of the scale. Coefficient estimates are reported in the figures with standard errors
clustered at the school by cohort level in parentheses below. Coefficient estimates are the same as those reported for κNPEB in
Table 5(b). Long-run outcomes are: high school exit exam (CAHSEE) scores, high school drop out (vs. graduation), total days
suspended in middle and high school, PSAT scores, whether student takes the SAT, and SAT scores. For CAHSEE, PSAT, and
SAT scores, we combine the mathematics and English components and take the values from the student’s first attempt. (See
Appendix C.3 for more details about the data construction.)
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Table I.1(a): Teacher Ranking Simulation – True Distribution is Normal
Homogeneous Class Sizes Heterogeneous Class Sizes

Infeasible NPEB PEB FE Infeasible NPEB PEB FE

Teacher ranked in bottom (top) 5% when true VA above (below) 5% (Type I error)
(Type I error=Type II error by definition)

Bottom 5% 167.7 167.7 167.7 167.7 177.9 177.9 177.9 180.2

Top 5% 167.9 167.9 167.9 167.9 178.1 178.2 178.1 180.3

Table I.1(b): Teacher Ranking Simulation – True Distribution is Mixed Normal
Homogeneous Class Sizes Heterogeneous Class Sizes

Infeasible NPEB PEB FE Infeasible NPEB PEB FE

Teacher ranked in bottom (top) 5% when true VA above (below) 5% (Type I error)
(Type I error=Type II error by definition)

Bottom 5% 136.6 136.6 136.6 136.6 153.2 153.2 152.5 157.8

Top 5% 136.0 136.0 136.0 136.0 152.4 152.4 152.7 157.0

Table I.1(c): Teacher Ranking Simulation – True Distribution is Skewed Normal
Homogeneous Class Sizes Heterogeneous Class Sizes

Infeasible NPEB PEB FE Infeasible NPEB PEB FE

Teacher ranked in bottom (top) 5% when true VA above (below) 5% (Type I error)
(Type I error=Type II error by definition)

Bottom 5% 254.7 254.7 254.7 254.7 278.9 279.1 278.7 284.1

Top 5% 110.7 110.7 110.7 110.7 131.7 131.7 132.6 132.5

Table I.1(d): Teacher Ranking Simulation – True Distribution is Skewed Logistic
Homogeneous Class Sizes Heterogeneous Class Sizes

Infeasible NPEB PEB FE Infeasible NPEB PEB FE

Teacher ranked in bottom (top) 5% when true VA above (below) 5% (Type I error)
(Type I error=Type II error by definition)

Bottom 5% 203.7 203.7 203.7 203.7 230.8 230.8 230.1 234.6

Top 5% 99.3 99.3 99.3 99.3 118.9 119.0 119.6 119.8
Notes: The panels in this table report simulation results comparing (across the columns) the performance of the three candidate
estimators against an infeasible benchmark on the basis of type I and type II error in ranking bottom and top 5% teachers.
Since type I error is the same as type II error by definition, we only report results for type I error. The infeasible benchmark
is the optimal empirical Bayes estimator when the true distribution is known to the econometrician (although unknown in
practice). The three candidate estimators are: the nonparametric empirical Bayes (NPEB) estimator, which estimates the
underlying distribution nonparametrically; the parametric empirical Bayes (PEB) estimator, which assumes that the underlying
distribution is normal; and the fixed effect (FE) estimator, which applies no empirical Bayes shrinkage. In Table 1(a), teacher
VA is normally distributed F ∼ N (0, 0.08). In Table 1(b), the underlying teacher VA distribution is mixed normal F ∼
0.95N (0, 0.03) + 0.025N (−1, 0.03) + 0.025N (1, 0.03). The normal and mixed normal distributions have the same first three
moments (mean, variance, and skewness) for comparability. Table 1(c) then skews the normal distribution to the right with
location parameter -0.4 and shape parameter 5, while Table 1(d) uses a skewed logistic with location parameter -0.5 and shape
parameter 5. The parameters are chosen such that all four distributions are mean zero and have roughly the same variance.
The simulations average results from 500 repetitions with 10,000 individual teachers setting σ2

ϵ =0.25. Results are reported on
the left side of each panel for homogeneous class sizes (where every teacher has a class size of sixteen) and on the right side, for
heterogeneous class sizes (where class sizes are drawn randomly from the set {8, 16} with equal probability). These tables are an
expansion on Tables 1(a)-1(d) which report the sum squared error, policy gain, and false discovery rate of these simulations.
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Table I.2: Quantiles of the Estimated NPMLE and Normal Distributions

Quantile: 0.003 0.01 0.05 0.1 0.2 0.3 0.5 0.7 0.8 0.9 0.95 0.99 0.997

Panel A. North Carolina

NPMLE -0.682 -0.454 -0.336 -0.230 -0.146 -0.093 0.024 0.091 0.149 0.274 0.338 0.490 0.657
Normal -0.596 -0.505 -0.357 -0.278 -0.183 -0.114 0.000 0.114 0.183 0.278 0.357 0.505 0.596

Panel B. LAUSD

NPMLE -0.669 -0.560 -0.435 -0.344 -0.207 -0.138 -0.020 0.143 0.224 0.379 0.465 0.670 0.847
Normal -0.859 -0.727 -0.514 -0.401 -0.263 -0.164 0.000 0.164 0.263 0.401 0.514 0.727 0.859

Notes: This table shows the teacher VA cutoff values for given quantiles of the estimated NPMLE and normal distribution in
both the North Carolina and LAUSD data. For example, the values in the first two rows of each panel at 0.05 represent the VA
of the bottom 5% teacher according to the VA distribution estimated via NPMLE and when normality is assumed, respectively.
These cutoffs values are the same as the visual representation of the quantiles in Figure 3.
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Table I.3: Classroom Shocks Model: False Discovery Rate when Releasing
Bottom q Percentile Teachers (i.e., Percent of Teachers Wrongly Released)

North Carolina Data LAUSD Data

% Teachers % Wrongly Released % Wrongly Released % Wrongly Released % Wrongly Released

Released under F under Normal under F under Normal

(q) (NPE) (PE) (NPE) (PE)

(1) (2) (3) (4)

1 46.7 53.6 57.3 48.4

(3.7) (3.3) (4.4) (3.1)

3 42.4 46.6 49.2 41.9

(2.0) (1.7) (2.5) (1.6)

5 40.4 42.8 45.0 38.4

(1.5) (1.2) (1.8) (1.2)

7 39.0 40.0 41.1 35.9

(1.2) (1.0) (1.5) (0.9)

9 37.5 37.9 37.8 33.9

(1.1) (0.8) (1.3) (0.8)

Notes: Table 6 displays the percent of teachers who are wrongly released under a policy that releases the bottom q% of teachers.
A teacher is considered to be wrongly released when their true VA is above the cutoff λ(q). ‘% Wrongly Released under F ’ reports
the percent of teachers who are wrongly released under the policy when teacher quality is distributed according the distribution F ,
estimated nonparametrically using equation (3.1). ‘% Wrongly Released under Normal’ reports the percent of teachers who would
be expected to be wrongly released when teacher quality is assumed to be normally distributed instead. The bolded line indicates
the widely-analyzed ‘release the bottom five percent of teachers’ policy. Gains are calculated via Monte Carlo simulation with 40,000
observations under the assumption that we estimate Φ̂α̂ and F̂α̂ using three years of data for each teacher and assuming teachers
all have class sizes of twenty. Standard errors are calculated using the bootstrap as described in Appendix E. (This table is similar
to Table 6 which reports the percent of teachers who are wrongly released under a policy that releases the bottom q% of teachers in
the teacher VA model without classroom shocks.)

74


	Introduction
	Model and Estimation Background
	Shrinkage Estimators: a Primer

	The VA Distribution
	Identification of the VA Distribution F
	A Feasible Nonparametric Estimator of the Distribution F

	Using the Distribution
	The Nonparametric Empirical Bayes Estimator
	Finding Policy Gains
	Calculating Proportion of Wrongly Released Teachers
	Plug-in Nonparametric Empirical Estimators

	Illustration
	Shrinkage Estimators
	Finding Policy Gains
	Calculating the Proportion of Wrongly-Released Teachers

	Simulations
	Data and Estimated VA Distributions
	Data
	Estimated VA Distributions

	Results
	Implications for Shrinkage
	Policy Gains
	False Discovery Rate

	Extensions
	Conclusion
	Proof of Theorems
	General Deconvolution Proof with Panel Data
	Teacher VA model without classroom shocks
	Teacher VA model with classroom shocks
	Deriving NPEB with Classroom Shocks

	Construction of the Teacher Value-Added Sample
	North Carolina
	Los Angeles Unified School District (LAUSD)
	Long-Run Outcome Data

	Linking Long-run Outcomes to Teacher VA
	Bootstrapping the Standard Errors
	Maximum Likelihood Estimation of Variance Parameters
	Without Classroom Shocks
	With Classroom Shocks

	Specification Test for Normality
	Computation Appendix
	Computing the NPMLE for F
	Constructing the NPEB Estimator

	Appendix Figures and Tables

