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Abstract

We study the effect of diminishing search frictions in markets with adverse

selection by presenting a model in which agents with private information can

simultaneously contact multiple trading partners. We highlight a new trade-off:

facilitating contacts reduces coordination frictions but also the ability to screen

agents’ types. We find that, when agents can contact sufficiently many trading

partners, fully separating equilibria obtain only if adverse selection is sufficiently

severe. When this condition fails, equilibria feature partial pooling and multiple

equilibria co-exist. In the limit, as the number of contacts becomes large,

some of the equilibria converge to the competitive outcomes of Akerlof (1970),

including Pareto dominated ones; other pooling equilibria continue to feature

frictional trade in the limit, where entry is inefficiently high. Our findings

provide a basis to assess the effects of recent technological innovations which

have made meetings easier.
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1 Introduction

In this paper, we study an environment with two key ingredients, adverse selection

and search frictions. Real-life markets that feature these ingredients are abundant

and include labor markets, OTC markets, as well as insurance markets. In recent

years, many of these markets have seen technological innovations giving rise to online

platforms which made it easier for market participants to meet, thus lowering search

frictions.1 A natural question is how such innovations affect the strategies of traders

and the resulting prices at which transactions occur and hence the properties of

allocations obtained in those markets. An understanding of the welfare effects of

lowering meeting barriers is important, also to guide possible regulatory interventions

regarding the organization of trades in markets.

Our paper aims to provide a theoretical framework that allows to investigate

the question of how facilitating contacts affects market outcomes in the presence

of adverse selection. The main innovation is to embed a model where agents can

contact multiple potential trading partners simultaneously into an otherwise standard

framework of directed search with adverse selection. We demonstrate that this gives

rise to a new trade-off: facilitating contacts between market participants not only

means lowering search frictions, but also affects the ability to use information about

the liquidity of markets in order to screen traders with private information. We

show that the latter effect has significant implications for the properties of market

outcomes. In contrast to search models that do not combine adverse selection and

simultaneous search, equilibria in our setting may exhibit partial pooling and multiple

equilibria may coexist. A striking result is that some of these equilibria continue to

feature inefficient entry and thus frictional trade in the limit where agents can contact

arbitrarily many other market participants and the exogenous search friction vanishes.

The analysis is cast in an environment as in Akerlof (1970), where sellers own

an indivisible object and are privately informed about its quality. For expositional

1As discussed by Fermanian et al. (2016) and Riggs et al. (2020), recent technological innovations
(as electronification) and regulatory changes (as the Dodd Frank act) had a very significant impact on
the way many securities are traded in financial markets. These innovations, together with measures
aiming to increase transparency in trades, generated a substantial increase in contacts among market
participants in OTC markets, where corporate bonds and derivatives like swaps are mostly traded.
In the new platforms which emerged customers can contact multiple dealers at the same time, both
to have the quotes set by various dealers streamed to them (RFS) and to send a contemporaneous
request for quote (RFQ) to a selected subset of dealers for a specific transaction.
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purposes, we refer to a labor market situation throughout the paper: buyers are firms

and sellers are workers, who have private information about their productivity and

can accept at most one job.2 We assume that productivity can be either low or high

and that high-productivity workers have a higher outside option than those with low

productivity. First, firms choose which wage to post, workers then send applications

to N ≥ 1 firms and, finally, firms make an offer to one of their applicants. A worker’s

strategy thus specifies an application portfolio, trading off higher wages against the

lower associated probabilities of getting a job offer. The matching between firms and

workers is complicated by the fact that workers may receive multiple offers and can

choose which one to accept. Hence, a firm’s offer may be rejected. We assume that,

when this happens, the firm can keep making new offers until an applicant accepts

or the firm exhausts the applicant pool, as in Kircher (2009).

We now describe our results in more detail. When workers can apply to only one

firm—or, equivalently, when meetings are bilateral—there is always a unique search

equilibrium which is separating. That is, different types of workers apply to different

wages (see, e.g., Guerrieri et al., 2010). In contrast, we show that when workers

send multiple applications, the existence of a fully separating search equilibrium is

guaranteed only if adverse selection is severe, in the sense that the high types’ outside

option exceeds the productivity of low types (the so-called lemons condition). In such

an equilibrium, the probability of being hired at a firm to which high types apply must

be sufficiently low in order to ensure incentive compatibility for low types. The more

applications low types have at their disposal, the tighter becomes this constraint. We

then show that as the number of applications N each worker can send becomes large,

the equilibrium probability that a high-type worker is hired by some firm converges

to zero. In the limit, the allocation of the search equilibrium thus converges to the

separating Walrasian equilibrium allocation found by Akerlof (1970). This result is

notable, as it holds despite high types sending an infinite number of applications.

2The labor market is a natural application of our model. While application data is scarce, the
available evidence indicates that the number of applications sent by workers has increased in recent
decades (see e.g. Martinelli and Menzio, 2020), likely facilitated by the increased use of online job
search since the beginning of this century, as documented by e.g. Faberman and Kudlyak (2016).
Further, as discussed by Wolthoff (2018), various pieces of evidence highlight the importance of
simultaneous search. First, data from online job boards shows that workers tend to send multiple
applications within even the shortest time spans (a week or even a day). Second, surveys among
employers indicate that the most common reason for a worker to reject a job offer is the simultaneous
arrival of a more attractive offer.
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If the lemons condition fails, some wages to which low types apply are also accept-

able for high types. When N is sufficiently large, high types have so incentives to send

some applications to those relatively low wages in order to hedge against the risk of

remaining unmatched when applying to high wages. This precludes the existence of

a fully separating equilibrium. We then show that, in this case, an equilibrium exists

where low and high types send a subset of their applications to the same firms: there

is thus a submarket where the two types of workers pool. For the low-type workers

the wage in the pooling market is the highest to which they apply, while for the high

types it is the lowest. Hence, low types applying in the pooling market are hoping

for a ‘lucky punch’, whereas high types view jobs offered in this market as a fallback

option in case their preferred applications fail to generate offers. The main driver for

this result is the fact that, even though trade itself is exclusive—each worker can only

be hired by one firm—the application process is not, since a firm is unable to observe

the whole set of applications made by a worker. The opportunity cost for high types

of sending an application to a low wage is small and the same is true for low types

applying to a high wage. This limits the firm’s ability to screen a worker on the basis

of the liquidity of the market in which a worker is applying.

Finally, we show that, as the number of applications becomes large, the probabil-

ity that workers are hired in the pooling market converges to one. There are, however,

too many firms entering the market so that their hiring probability is bounded away

from one in the limit. Since firms need to be compensated for their entry cost in

equilibrium, workers pay for the excessive entry in the form of a wage below their

average net productivity. Equilibrium trading is thus frictional, even in the limit as

workers can apply to arbitrarily many firms. Other equilibria exist in this situation,

both with a single mixed market and with multiple mixed markets. We show that

in the latter case efficiency may obtain: there exists a sequence of equilibria where

multiple pooling markets are active in equilibrium such that, in the limit as N grows

to infinity, both types of workers are hired at a wage equal to the average net produc-

tivity. The limit allocation then corresponds to the pooling equilibrium allocation of

Akerlof (1970).

To sum up, our limit results demonstrate that a convergence to the set of equilibria

obtained in Walrasian markets á la Akerlof (1970) is possible but not necessary.3 We

3As shown by Akerlof (1970), for parameter values such that the lemons condition holds and the
share of high-type workers is sufficiently large, both a separating and a pooling Walrasian equilibrium
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thus provide a new, search-theoretic foundation for Akerlof (1970). At the same

time, we show that search frictions may persist in the limit as workers can contact

arbitrarily many firms.

Our findings have also important implications with regard to the welfare con-

sequences of facilitating contacts among traders and thus lowering search frictions.

With adverse selection these consequences become ambiguous. While low types al-

ways gain, high types may end up losing, and total welfare may also decrease. The

increased ability of traders to meet counterparts in the market limits the possibil-

ity of screening privately informed agents and may end up impairing their trading

possibilities.

Related literature. Our paper contributes to various strands of literature. The

first strand concerns models of simultaneous search, which dates back to Stigler

(1961). His pioneering work was extended by Chade and Smith (2006) and embed-

ded in an equilibrium setting by e.g. Albrecht et al. (2006), Galenianos and Kircher

(2009), Kircher (2009), Wolthoff (2018) and Albrecht et al. (2020). Our work builds

in particular on Kircher (2009), with respect to which we innovate by allowing for

heterogeneity among searchers and introducing asymmetric information.

The second strand of literature consists of work on adverse selection in directed

search environments, which includes Inderst and Müller (2002), Guerrieri et al. (2010)

and Chang (2018). A robust prediction in this line of work is that for one-dimensional

types the equilibrium must be separating. Our contribution is to show that this result

hinges on the assumption that workers can meet at most one firm at a time. When

instead workers can apply to multiple firms, the key innovation in our setup, equilibria

with pooling markets may arise.

The effect of multiple applications in terms of the reduced ability of buyers to use

the liquidity of the market in which they operate to screen sellers exhibits interesting

similarities to that of non exclusivity in contracting. The consequences of the latter

for the properties of equilibrium allocations in the environment considered by Akerlof

(1970) have been examined by Attar et al. (2011). The relationship of our analysis

with non exclusivity and this work will be discussed more in detail in the next sections.

Finally, some papers on frictional markets with adverse selection share important

analogies in some aspects with our work, but ultimately focus on rather different

exist. We show that both these equilibrium outcomes can be obtained in the limit as the search
friction valishes.
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questions from ours. Lester et al. (2019) consider a market where sellers may meet

either one or two buyers, but meetings are random. In their environment, the fact

that sellers may meet multiple buyers affects the price at which they trade, but not

their probability of trade. The main focus of their work is then on the effects of

multiple meetings on buyers’ market power. Kurlat (2016) and Board et al. (2020)

also consider a labor market in which heterogeneous workers contact multiple firms,

but the main emphasis is on the matching that arises when firms are heterogeneous

in their ability to detect workers’ types. Lauermann and Wolinsky (2016) and Kaya

and Kim (2018) consider the effect of vanishing search frictions, but in a sequential

random search environment with adverse selection and private noisy signals about

the type of the informed party. Kim and Pease (2017) also study sequential search

with adverse selection. In contrast to the previous papers, they allow the privately

informed party to choose his search intensity and show that lower search costs may

lead to worse equilibrium outcomes for the informed party. The result relies on the

observability of the informed party’s trading history, an important difference from

our analysis in Section 5.2.

2 Environment

Agents. We consider a static labor market populated by a continuum of size one of

workers and a large continuum of firms. Both types of agents are risk neutral. Workers

supply and firms demand one unit of indivisible labor. All firms are identical but

workers differ in their productivity, defining their type, which is private information.

In particular, a fraction σ of workers have low productivity, while the remaining ones

are of high productivity. We will index types by i ∈ {L,H}.

Market interaction. The market interaction between workers and firms proceeds

in multiple subsequent stages. In the first stage, firms decide whether to become

active or not. Active firms incur an entry cost k > 0 and subsequently choose and

post the wage p that they will pay their potential hire. The support of the distribution

of posted wages is denoted by F .

Workers observe all posted wages before sending N ∈ {1, 2, . . .} job applications to

firms in the second stage.4 As standard in the directed search literature and motivated

4While we will generally focus on N ≥ 2, we include N = 1 for completeness and to ease
comparison with the existing literature.
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by the idea that coordination among a continuum of agents in decentralized markets is

unrealistic, we restrict workers to symmetric and anonymous strategies, which creates

the search frictions we study. That is, for each application a worker selects a wage

and then picks at random one of the firms posting such wage to whom he applies. A

worker’s application portfolio is thus a list of N wages. As we will show, whenever

a worker has the opportunity to send an additional application, that application will

be sent to a (weakly) higher wage than the previous ones. It is then convenient to

order the applications sent in a weakly increasing order so a portfolio is described by

(p1, . . . , pN) ∈ FN , with p1 ≤ . . . ≤ pN . Although the worker sends all N applications

simultaneously, it will often be useful to refer to pn, i.e. the n-th lowest application,

as the worker’s n-th application.

After the applications are sent, matches are formed. Following Kircher (2009), we

model this in the spirit of deferred acceptance (Gale and Shapley, 1962). First, each

firm with applicants randomly selects one of them and make him a job offer. Workers

keep the best job offer they receive under consideration (without loss of generality, we

take this to be the offer with the highest index) and reject all worse job offers. Firms

whose job offers are rejected can then select a different applicant (as long as they still

have one) and make a new job offer. After this, the process repeats until there are

no more rejections. At that point, workers accept the job offer under consideration.5

Finally, after matches are formed, production takes place and payoffs are realized.

In particular, a match between a firm and a worker of type i results in an output

vi, where vH ≥ vL. The firm’s payoff from the match is the difference between this

output and the wage p that it pays. In contrast, the worker’s payoff from the match

is the difference between this wage and his outside option (or disutility from effort)

ci, where cH > cL. Unmatched workers and inactive firms receive a zero payoff.

Queues. Consider a (sub)market p ∈ F , defined as the collection of all the firms

posting this wage and of all the applications that they jointly receive. From the firms’

perspective, each application has two unobservable but payoff-relevant characteristics:

i) its position n ∈ {1, . . . , N} in the sender’s application portfolio, which affects the

firms’ matching probability, and ii) the type i ∈ {L,H} of its sender, which affects

5The same outcome can be motivated in other ways: i) as the stable matching on the network
created by workers’ applications, i.e. no firm remains unmatched while one of its applicants is hired
at a lower wage, where ties are broken randomly; or ii) as the result of a process in which the
market clears from the top, i.e. firms posting the highest wages make job offers first, followed by
firms posting the next highest wages, etc.
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the firms’ payoff conditional on a match.

Define the queue length λn,i(p) ∈ R+ as the endogenous ratio of the number of

applications with characteristics (n, i) to the number of firms in submarket p. As

well-known in the literature, the number of applicants with characteristics (n, i) at a

firm posting a wage p follows a Poisson distribution with mean equal to this queue

length, independently of the number of applicants with other characteristics.6

Some of these applicants are irrelevant from the firm’s point of view as they would

turn down a potential job offer due to better offers from other firms. Denote the

endogenous probability that an applicant with characteristics (n, i) would accept a job

offer by ξn,i(p) ∈ [0, 1]. The number of effective applicants with characteristics (n, i)

then follows a Poisson distribution with mean (or effective queue length) µn,i(p) =

ξn,i(p)λn,i(p) ∈ R+. For most of our analysis it will be convenient to aggregate these

queues and define

µ(p) ≡
∑
n

∑
i

µn,i(p) (1)

as the total effective queue length in market p, and

γ(p) ≡
∑
n

µn,L(p)/µ(p) (2)

as the effective fraction of L-type workers.

Payoffs. Given µ(p) and γ(p), we can construct the expected payoff π(p) of a firm

offering wage p. The firm incurs the entry cost and subsequently matches as long

as it has at least one effective applicant, which occurs with probability η (µ(p)) ≡
1 − e−µ(p). The hire will turn out to be an L-type worker with probability γ(p) and

an H-type worker with complementary probability. Therefore,

π(p) = η (µ(p)) (γ(p)vL + (1− γ(p))vH − p)− k. (3)

Active firms choose a posted wage p so as to maximize their profit π(p). Free entry

implies that in equilibrium these profits are zero.

Next, consider the expected payoff of a worker applying to (p1, . . . , pN). The

worker ends up earning a payoff pn − ci if two conditions are satisfied. First, the ap-

6See Lester et al. (2015) and Cai et al. (2017) for a detailed discussion of this property, which
they call invariance.
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plication to pn must result in a job offer, which happens with probability ψ (µ(pn)) ≡
η (µ(pn)) /µ (pn). Second, none of the applications to higher wages pn+1, . . . , pN must

result in a job offer, which is the case with probability
∏N

j=n+1 (1− ψ (µ (pj))). The

worker’s expected payoff uN,i from sending N applications therefore equals

uN,i = max
(p1,...,pN )∈FN

N∑
n=1

N∏
j=n+1

(1− ψ (µ(pj)))ψ (µn(p)) (pn − ci) .

As in Kircher (2009), this payoff can be rewritten in a recursive way, where

un,i = max
p∈F

ψ (µ(p)) (p− ci) + (1− ψ (µ(p)))un−1,i (4)

is the payoff of the first n applications, for all n ∈ {1, . . . , N}, and u0,i = 0. Intuitively,

the worker’s n-th application results in a wage offer p with probability ψ (µ(p));

with complementary probability, the worker does not receive such an offer, but still

has the chance that one of his applications to lower wages is successful, yielding a

conditional payoff equal to un−1,i. Since un−1,i is the expected payoff from sending n−1

applications to wages below pn and trading at those wages occurs with probability

less than 1, it follows from the above equation that un,i is strictly increasing in n.

Going forward, we will often refer to ci+un−1,i as the worker’s effective outside option

when sending his n-th application, and to un,i as his market utility from sending n

applications.

Beliefs. In order to decide whether to post a particular wage p, a firm needs to form

beliefs about the applicant pool (µ(p), γ(p)) that it will attract. If the wage is part

of the equilibrium choices of firms, these beliefs are determined by the consistency

conditions with firms’ and workers’ strategies, as described above. If instead the wage

is not part of the equilibrium, we follow the standard assumption in the directed search

literature that these beliefs are pinned down by the market utility condition, which

aims to capture the consequences of deviations in our continuum economy in the spirit

of subgame perfection.

To understand the market utility condition, consider an equilibrium wage p ∈ F .

For this wage, worker optimization implies that the effective queue length µ(p) must

satisfy

un,i ≥ ψ (µ (p)) (p− ci − un−1,i) + un−1,i, (5)
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with weak inequality for all (n, i) and with equality for at least one (n, i) if µ(p) > 0.

The market utility condition extends this idea to all p that are not part of an equilib-

rium. That is, a firm posting p /∈ F expects an effective queue length µ(p) implying

the smallest job offer probability that is needed to induce one of the workers’ types

to redirect one of their applications to p, indeed in the spirit of subgame perfection.

This also pins down beliefs about the market composition: at this wage, the firm

expects to attract applicants of a certain type only if (5) holds with equality for that

type for some n. That is, for any p /∈ F , γ (p) satisfiesγ (p)µ (p) = 0 if (5) holds with strict inequality for i = L and all n

(1− γ (p))µ (p) = 0 if (5) holds with strict inequality for i = H and all n.
(6)

Equilibrium. We can then define an equilibrium as follows.7

Definition 1. An equilibrium is a set of wages F posted by firms, effective queue

lengths and compositions (µ(p), γ(p)) for all p, and market utilities un,i for all n and

i, such that

1. Worker Optimization: a worker of type i sends his n-th application to wage

p ∈ F only if (5) holds as equality.

2. Firm Optimization: π(p) = 0 for any p ∈ F , and π(p) ≤ 0 for any p /∈ F .

3. Consistency: for any p ∈ F , µ(p) and γ(p) are consistent with workers’ and

firms’ strategies.

4. Out-of-Equilibrium Beliefs: for any p /∈ F , γ(p) satisfies (6) and µ (p) satisfies

(5) with weak inequality for any (n, i), and with equality for at least one (n, i)

if µ(p) > 0.

3 Preliminaries

3.1 Indifference and Isoprofit Curves

Most of our analysis of workers’ and firms’ choices and hence of equilibria can be

presented graphically by considering workers’ indifference curves and firms’ isoprofit

7To keep notation simpler in the main text, in the definition of equilibrium we state the consis-
tency condition somewhat informally. We provide the full details in Appendix C.
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curves. To facilitate this approach, we introduce these curves here and discuss some

useful properties.

Isoprofit curves. As equation (3) shows, firms’ profits depend not only on the

price p and the effective queue length µ, but also on the queue composition γ. Hence,

we need to specify the value of γ before being able to determine a firm’s isoprofit

curve as the set of all combinations of µ and p satisfying the free entry condition.

The two extremes in which the firm respectively attracts only low (i.e. γ = 1) or

high types (γ = 0) will prove to be particularly useful for our analysis. The isoprofit

curves in those two cases is defined as follows:

Πi ≡
{

(µ, p) ∈ R2 : η (µ) (vi − p) = k
}
, (7)

with i ∈ {L,H}.

Indifference curves. The indifference curve In,i of a worker of type i sending his

n-th application consists of all combinations of µ and p that solve (5) with equality.

In,i ≡
{

(µ, p) ∈ R2 : ψ (µ) (p− ci) + (1− ψ (µ))un−1,i = un,i
}
. (8)

Differentiation of (5) reveals that the slope of a worker’s indifference curve equals

dµ

dp
= − ψ (µ)

ψ′ (µ)

1

p− ci − un−1,i

> 0.

This expression highlights some helpful properties. In particular, the slope depends

on the type of the worker (only) through the effective outside option ci + un−1,i. As

long as these effective outside options differ, the two types have different marginal

rates of substitution between wage and matching probability for their n-th applica-

tion, which creates scope for screening. For the first application, this is the case by

assumption since u0,L = u0,H = 0 and cH > cL. For applications with higher indices

(n = 2, 3, . . .) however, the effective outside option is endogenous. It is easy to see

that a worker’s indifference curves becomes steeper as the index n of the application

increases. Intuitively, as the effective outside option of a worker increases, he is willing

to tolerate a larger increase in the effective queue length to obtain a higher wage. It

is also clear that, for the same number of the application, the high type has steeper

indifference curves, i.e. cL + un−1,L < cH + un−1,H for all n. What is less obvious,
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however, is how cL + un−1,L compares to cH + um−1,H for n > m. This question will

be at the center of our analysis in the following section.

3.2 Observable Types

It will be useful to first describe the equilibrium allocation that arises if worker types

are observable to firms and hence incentive constraints are absent, as obtained by

Kircher (2009).

Equilibrium allocation. Due to free entry, the equilibrium allocation can be de-

termined for each type i worker in isolation. It is entirely pinned down by the free

entry condition and the first-order condition of the firms’ choice problem, taking into

account beliefs as determined by market utility. Graphically, these beliefs are rep-

resented by the upper envelope of workers’ indifference curves In,i, n ∈ {1, . . . , N}
in the (p, µ) space. The effective queue lengths and wages for the N applications of

each worker are then determined by the tangency points between the firms’ isoprofit

curve Πi and this upper envelope, as illustrated in Figure 1. As shown by Kircher

(2009), letting p∗n,i denote the wage to which a worker of type i sends his n-th appli-

cation, one can combine these conditions to recursively characterize the equilibrium

effective queue length µ∗n,i ≡ µ(p∗n,i) and the associated market utility u∗n,i for each

application n and each type i = L,H. The procedure is as follows: set u∗0,i = 0 and

let {µ∗n,i, u∗n,i}Ni=1 be such that

k =
(
η
(
µ∗n,i
)
− µ∗n,iη′

(
µ∗n,i
))

(vi − ci − u∗n−1,i), (9)

u∗n,i = u∗n−1,i + η′
(
µ∗n,i
)

(vi − ci − u∗n−1,i). (10)

Since the indifference curves become steeper as the index n of the application

increases, the tangency point for this application moves up the firms’ isoprofit curve

to a higher wage and effective queue length.

The allocation implied by (9) and (10) will be different for workers of different

types, since the firms’ willingness to offer a wage p with queue length µ depends on

the worker’s type i, determining the firm’s payoff vi from hiring the worker. Similarly,

workers of different types exhibit different preferences over portfolios of applications

because their tradeoff between the wage and the probability of being hired depends on

their outside option ci. Hence, with heterogenous, observable types, the equilibrium

features a separate submarket for each type and each application (at least generically).
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vi - k

Figure 1: Equilibrium wages and effective queue lengths for the case where the type
is observable and workers send three applications.

Vanishing search frictions. Kircher (2009) shows that, as the number of appli-

cations N goes to infinity, the equilibrium allocation tends to the Walrasian outcome

in which all firms active in the market hire a worker with probability one and every

worker finds a job. To see this, notice first that the difference uN,i− uN−1,i converges

to zero as N → +∞, since uN,i is strictly increasing in N and bounded above by the

gains from trade, vi − ci − k. This property implies that the effective queue length

µ∗N,i tends to +∞, as can be seen from (10).8 Since limn→+∞ µ
∗
N,i = +∞, every firm

hires a worker, so the free-entry condition (9) requires that a worker’s expected utility

from his portfolio of applications, u∗N,i, tends to vi − ci − k as N → +∞. Because no

firm would offer a wage greater than vi − k, this implies that, in the limit, a worker

is hired at a wage vi − k with probability one. It further means that the measure of

firms posting wages that are bounded away from vi − k (or, equivalently, the proba-

bility of a firm attracting a finite effective queue length) tends to 0. In other words,

all entering firms hire with probability one in the limit. The impact of the search

friction thus disappears in the limit where each worker can submit infinitely many

applications and the equilibrium allocation converges to the Walrasian outcome.

8Since uN,i − uN−1,i → 0, (10) implies that η′ (µ(p)) = e−µ(p) → 0 and hence µ(p)→∞.
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4 Equilibria with Adverse Selection

As seen in the previous section, allowing workers to apply simultaneously to multiple

firms mitigates the search friction and therefore increases the trading probability of

workers and firms when this friction is the only impediment to trade. We show next

that the same result may not hold in environments with adverse selection because

incentive constraints also limit trades. When workers submit multiple applications,

the screening role of market liquidity is diminished, since workers can hedge against

the possibility of not being hired in an illiquid market by sending some of their

applications to more liquid markets. This second effect exhibits a close analogy to

that of non-exclusivity in contracting, in which case the possibility of carrying out

additional trades without being detected limits the possibility of screening agents via

the design of contracts specifying different levels of trade. In markets with adverse

selection, we thus face an interesting tradeoff: allowing workers to submit multiple

applications reduces the search friction on the one hand, but restricts the possibility

of screening workers on the other hand. In what follows, we will analyze how this

trade-off shapes the properties of equilibrium allocations.

Incentive constraints. When types are unobservable, the allocation described in

the previous section will often not be sustainable in equilibrium. The reason is that,

due to the interdependence of values, L-type workers may find it profitable to send

some applications to the submarkets designed for H-type workers. This point is

illustrated in Figure 2, where we display the equilibrium allocation when both types

are observable. Graphically, there are two relevant isoprofit curves for the firms, one

for hiring the H-type and one for hiring the L-type. The H-isoprofit curve is shifted

to the right with respect to the L-isoprofit curve, because, for each effective queue

length µ, a firm is willing to pay a higher wage p for a worker of high productivity. In

Figure 2, incentive compatibility is violated for L-type workers when they can send

N ≥ 2 applications. They can gain, for instance, by sending their second application

to the market where H-type workers send their first.

Note that incentive constraints may be binding already in the case where workers

send a single application. Multiple applications, however, tighten this constraint. In-

deed, if vH is strictly greater than vL, incentive constraints necessarily bind whenever

the number of applications that workers can send is sufficiently large. To see this,

recall that the equilibrium with observable types converges to the Walrasian alloca-
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tion when N → +∞. In this limit, both types of workers are hired with probability

one, but the expected wage for the H-type, vH − k, is strictly greater than that for

the L-type, vL − k. As a result L-type workers have strict incentives to send some of

their applications to a market with a wage strictly above vL−k. Hence the allocation

found in Section 3.2 does not constitute an equilibrium when workers’ productivity

is only privately known by them.

p

μ

1

2

3

1

2

3

ΠL
ΠH

Figure 2: Equilibrium wages and effective queue lengths for the low type (blue) and
the high type (red) when types are observable.

4.1 Market Segmentation

When workers can only send a single application, we know from Gale (1992) and

Guerrieri et al. (2010) that complete market segmentation always obtains in equi-

librium: L-type workers apply to a different market, with a lower price and a lower

queue length, than the one to which high types apply, featuring a higher price and a

higher queue length. We show first that this is no longer true when workers apply to

several firms simultaneously: with multiple applications, fully separating equilibria do

not always exist.

To characterize the conditions under which L- and H-type workers self-select into

different markets, we introduce first the L-type’s lower contour set in the allocation

that is obtained when his type is observable, i.e. all the pairs (µ, p) that the L-type

worker does not prefer to (µ∗n,L, p
∗
n,L), characterized in Section 3.2, for all n ∈ N:

UL ≡
{

(µ, p) ≥ (µ∗1,L, p
∗
1,L) : ∀n ∈ N, ψ (µ)

(
p− cL − u∗n−1,L

)
≤ u∗n,L − u∗n−1,L

}
.
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In Figure 2, the set UL is the area lying above (i.e., less preferred than) the indifference

curves associated to all the applications chosen by type L (for N → ∞). If the

difference between the productivity of L- and H-type workers is sufficiently small,

i.e. vH is close to or equal to vL, the set UL has a non-empty intersection with the

H-type isoprofit curve, ΠH . In this case, we can find a pair (µ, p) that yields zero

profits with the H-type and does not attract L-type workers in that they prefer an

L-type market over (µ, p) for all of their applications. As vH increases, the set ΠH

shifts down to the right in the figure, while UL is unaffected, making the intersection

of the two sets smaller until it vanishes at some point. Let v̄H be the largest value

of vH such that UL ∩ ΠH 6= ∅. Figure 2 illustrates the case vH > v̄H , where the two

sets do not intersect. In this case, for any given N , the only incentive compatible

pairs (µ, p) yielding zero profits with the H-type are the points in ΠH lying above the

intersection with IN,L.

Building on this, the following proposition establishes necessary and sufficient

conditions for the existence of a (fully) separating equilibrium for any number of

applications that workers can send.

Proposition 1. If vL−k ≤ cH , for all N ≥ 1, there exists a separating equilibrium. If

vH > v̄H , for a separating equilibrium to exist for all N ≥ 1, the condition vL−k ≤ cH

is also necessary.

The first part of Proposition 1 claims that a separating equilibrium exists, re-

gardless of the number of applications that workers can send, under the condition

vL − k ≤ cH , that is, when the outside option of the H-type worker exceeds the pro-

ductivity of the low type net of entry costs, referred to in the literature as the lemons

condition (see e.g Daley and Green, 2012). As shown in the proof in the appendix,

the incentive constraints of the high-productivity workers are slack in any separat-

ing equilibrium. Hence, the effective queue lengths and wages in markets for L-type

workers are the same as in the unconstrained solution of Section 3.2, i.e. µn,L = µ∗n,L
and pn,L = p∗n,L, for all n = 1, ..., N . When vL − k ≤ cH , H-type workers send their

applications to wages that are strictly higher than any wage to which the L-type

workers apply, that is, pj,H > p∗n,L for all n, j. As a consequence, the only incentive

constraint that is potentially binding in equilibrium is the one associated to the low

type’s N -th application.

The wages and effective queue lengths in the H-type markets can then be con-

structed sequentially. If the unconstrained solution associated to the H-type’s first
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application, (µ∗1,H , p
∗
1,H) satisfies the L-type’s incentive constraint associated to his

N -th application, then the effective queue lengths and wages in all H-type markets

are determined by the unconstrained solution. If, on the other hand, (µ∗1,H , p
∗
1,H) vio-

lates the L-type’s incentive compatibility constraint (and, as argued in the previous

section, this always happens for N large enough), (µ1,H , p1,H) is given by the smallest

effective queue length and wage on the isoprofit curve ΠH such that incentive compat-

ibility holds. Proceeding to the H-type’s second application, we can determine the

tangency between ΠH and the H-type worker’s second indifference curve, i.e. the one

corresponding to the effective outside option cH +u1,H . If this tangency point satisfies

µ2,H > µ1,H , incentive compatibility is satisfied and the terms of trade in the markets

for the H-type’s remaining applications are determined in a similar way. Otherwise,

incentive compatibility also binds for the H-type’s second application, in which case

the H-type workers send the first and second application to the same market. We

repeat this procedure for the H-type’s next application, until we reach the last appli-

cation n = N . The feature that a worker may send multiple applications to the same

submarket does not arise in the observable type case, as it is driven by the binding

incentive constraints. We illustrate this property for the case of two applications in

Figure 3.

p

μ

1,L

2,L

1,H = 2,H

I1,L

I2,L

I1,H I2,H

Figure 3: Equilibrium wages and effective queue lengths when workers send two
applications and incentive constraints bind for both applications of the high type.

It is immediate to see that when the lemons condition does not hold and N is

sufficiently large, the separating allocation described in the previous paragraphs no

longer constitutes an equilibrium. If vL−k > cH , some of the wages to which low types
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apply are also acceptable for high types. Moreover, as N becomes sufficiently large,

the low types’ effective outside option associated with their N -th application, cL +

u∗N−1,L, exceeds the high types’ outside option associated with their first application,

cH . This follows from the property u∗N,L → vL − cL − k as N → +∞, established

in Section 3.2. The crossing of the two types’ indifference curves associated to these

applications is then reversed: the one of the first application of high types becomes

flatter than the one of the N -th application of low types.9 This implies that high

types strictly prefer to send their first application to p∗N,L rather than to p1,H , so that

the candidate separating equilibrium under consideration is no longer an equilibrium.

The condition vH > v̄H assures that no other kind of separating equilibrium—where

H-type workers send their first application to a market with a wage smaller than

p∗N,L—exists either.

Remark 1. The restriction vH > v̄H requires that there is sufficient interdependence in

the values of workers and firms. To understand the role of this assumption, consider

the private value case (vL = vH), where the inequality vH > v̄H is clearly violated.

Since in such case firms do not care which type of worker they hire, no type can

gain by imitating the other type. Hence, incentive constraints are always slack and

the allocation described in Section 3.2 for the observable type case continues to be

the unique equilibrium when types are only privately observed. In this equilibrium,

the intervals defined by the range of prices to which low and high types send their

applications overlap: H-type workers send their first application to a firm posting

a lower wage than the one offered by firms to which L-type workers send their last

application. The same is true for vH−vL positive but small: a separating equilibrium

exists with overlapping price ranges, even when the number of applications N becomes

large. If instead vH > v̄H , overlapping price ranges cannot be sustained in equilibrium.

The lemons condition vL−k ≤ cH also assures existence of a separating equilibrium

in a Walrasian market environment à la Akerlof (1970), where there are no search

frictions (typically with k = 0) and agents can trade at a single price, which they take

as given. In such a market, the probability of trade, or the quantity traded, cannot

be used to separate different types, except in the extreme case where some types

9As explained in Section 3.1, the slope of the indifference curve at (µ, p) is determined by a
worker’s effective outside option ci + un−1,i. Hence, when cL + un−1,L > cH the slope of the
indifference curve for the first application of high types is flatter than that for the n-th application
of low types.
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choose not to trade at all in the market. For the economy we considered, with two

levels of quality, it is well known that there are only two possible kinds of competitive

equilibria with markets à la Akerlof (1970): one with a low price p = vL− k and only

low types active in the market (i.e. a separating outcome), and one with a higher price

p = σvL+(1−σ)vH−k and both types active in the market (i.e. a pooling outcome).

The separating equilibrium exists if cH ≥ vL−k, while the pooling equilibrium exists

if cH ≤ σvL + (1− σ)vH − k.

Vanishing search frictions. Proposition 1 shows that, when workers can send

several applications, a separating equilibrium always exists if the same condition on

the parameters of the economy holds under which a separating equilibrium exists in

Walrasian markets à la Akerlof (1970). The equilibrium allocation is however different

for the two market structures, since high types trade with positive probability in the

search equilibrium. This difference is not surprising as the search friction still matters

for any finite N. It is however of interest to examine the outcome when N →∞ and

workers essentially face no constraints in their ability to contact firms. In that case,

as we noticed for the observable type case, the search friction vanishes in the limit.

As we increase the number of applications that workers can send, the constraints

imposed on the trading probability of H-type workers become tighter. Since both µ∗N,L
and p∗N,L increase with N , and the associated indifference curve becomes steeper, an

increase in N pushes up the wage p1,H and the effective queue length µ1,H in the

market where high types apply. This is a clear evidence of the fact that market

liquidity is less effective as a screening instrument when workers can send several

applications: to separate themselves, high types must choose less and less liquid

markets. Hence, as N increases, high types send more applications but also face

increasingly congested markets. The following proposition shows that the latter effect

outweighs the former and H-type workers are eventually driven out of the market.

Proposition 2. Assume vL − k < cH . As N → +∞, the probability that an H-type

worker is hired in a separating equilibrium tends to zero. The market utilities for L-

and H-type workers take the following limits:

lim
N→+∞

uN,L = vL − cL − k,

lim
N→+∞

uN,H = 0.

To prove the result, we consider a candidate separating equilibrium that involves
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H-type workers being hired with a strictly positive probability and construct a prof-

itable deviation for low types. If low types follow the equilibrium strategy and send

all their applications to the respective L-type markets, their probability of being hired

tends to one and their wage to vL − k. Suppose instead an L-type worker sends half

of his applications to the first N/2 L-type markets and the remaining applications

to the H-type market with the lowest effective queue length. Since N is arbitrarily

large, the probability of being hired in one of the L-type markets is still arbitrarily

close to one and the wage is arbitrarily close to vL − k. We then show that sending

half of the applications to the H-type market allows the L-type worker to be hired in

that market with strictly positive probability. Since the wage in the H-type market

is greater than cH , which in turn is greater than vL−k, the described portfolio of ap-

plications generates a strictly higher expected wage and thus constitutes a profitable

deviation.

Summarizing, we conclude that, as the search friction vanishes, the allocation in

the separating search equilibrium converges to the one with Walrasian markets à la

Akerlof (1970).

4.2 Equilibria with Pooling Markets

We establish next another important implication of allowing workers to send multiple

applications: pooling markets may be active in equilibrium. When this happens, there

are typically multiple ways in which workers can pool some of their applications and

hence multiple equilibria exist. This result is in stark contrast with the case in which

workers can only send one application, where the equilibrium is unique and fully

separating.

To properly explain our finding, it is useful to briefly review first the argument why

equilibria with pooling cannot exist when workers can only send a single application.

The reason is that in such a situation a profitable cream-skimming deviation always

exists. To see this, consider a situation in which there is a pooling market (µ̄, p̄)

attracting both types, as illustrated by the green point in Figure 4. Since firms

attract both types, the isoprofit curve associated with zero profits lies between ΠL

and ΠH , as illustrated by the green curve in the figure. Due to the higher outside

option, the indifference curve of the H-type passing through (µ̄, p̄) is steeper than that

of the L-type. This difference in marginal rates of substitution implies that high types

are willing to tolerate longer effective queue lengths than low types in any market
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Figure 4: Cream-skimming deviation in the single-application case.

with a wage higher than p̄. In other words, the H-type worker has more to gain by

applying to a wage above p̄ than an L-type worker. If a firm deviates and increases

the wage above p̄, it thus expects to attract only H-type workers. Hence, a marginal

increase in the wage and the associated queue length leads to a discrete improvement

in the composition of the applicant pool and thus constitutes a profitable deviation,

effectively a cream-skimming deviation. As we will show, this argument is not always

valid when workers send more than one application.

Example. Before stating our result formally, we illustrate it graphically for the

same environment considered in Figure 4. Figure 5 describes an equilibrium where

each worker sends two applications. There are three active markets: one with a

low wage where each low-type worker sends his first application (1, L), one with a

high wage to which each high-type worker sends his second application (2, H), and

one with an intermediate wage where each low- (resp. high-) type worker sends his

second (resp. first) application. We refer to the latter market as the pooling market,

since both types send applications there. Low types apply to the pooling market

hoping to receive an offer at the wage posted in that market, but insure themselves

by sending also one application to a lower wage, where the chance of getting an offer

is higher. In contrast, for high types the pooling market represents the fallback option

in case their application to a firm offering a higher wage fails. As in Figure 4, let

p̄ and µ̄, respectively, denote the wage and the effective queue length in the pooling

market. Note however that now the isoprofit curve (green curve) is different from the
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one in Figure 4: the effective composition in the pooling market is not equal to the

population average but worse than that, because high types only agree to trade at

the pooling wage p̄ if they receive no offer in the high-wage market 2, H.

p

μ 2,L =1,H

1,L

2,H

Figure 5: Equilibrium wages and effective queue lengths in an equilibrium with a
pooling market with N = 2.

To be able to claim that the described allocation constitutes an equilibrium, we

need to verify that firms have no incentives to deviate by offering a different wage. In

particular, we must rule out the profitability of cream-skimming deviations like the

ones we saw existed for the pooling allocation in Figure 4, when workers could only

send one application. To assess the profitability of a deviation to a different wage,

we must again determine which type of worker this wage is more likely to attract. In

Figure 5, the L-type’s indifference curve associated with his second application (the

dashed blue curve) is steeper than the H-type’s indifference curve associated with his

first application (solid purple curve). As already noticed in Section 3.1, this happens

when the effective outside option for this application of the L-type, cL+u∗1,L, is higher

than the outside option for the H-type’s first application, cH . This reversal of the

‘sorting condition’ relative to Figure 4 implies that it is not the H-type who has

most to gain from applying to wages slightly above p̄ but rather the L-type with his

second application. Hence, a firm contemplating to offer one of those wages expects

to attract only L-type workers, which implies these cream skimming deviations are

no longer profitable. For wages below p̄, it is again the low type who has most to

gain, this time by sending his first application. Hence, firms can only worsen the

composition of the set of workers they attract by deviating to a wage slightly above
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or below p̄, which means that no profitable cream-skimming deviation exists.

General result. We proceed now to formally establish conditions under which

equilibria with pooling markets exist. As the previous discussion suggests, a key

ingredient is the reversal of the sorting condition at any submarket where both low

and high types send applications. This reversal cannot happen for the first application

of L-type workers, since their outside option is cL < cH . Let us then define l as the

highest value of n for which the sorting condition is still valid (if low types send

their first n applications to separate markets with the same terms of trade µ∗j,L, p
∗
j,L,

j = 1, .., n as in a separating equilibrium):

l ≡ min{n ∈ N : u∗n,L + cL ≥ cH}. (11)

Such a value exists if and only if vL − k > cH , i.e. when the lemons condition is vio-

lated.10 Figure 5 illustrates the case where l = 1, in which case the sorting condition

is reversed for the second application of the low types.

Assuming that the lemons condition does not hold and N > l,11 the construction

in Figure 5 can then be generalized as follows. Low and high types send, respectively,

their first and their last l applications to separate markets, while all remaining ap-

plications are sent to a single pooling market with wage p̄. The terms of trade in

the L-type markets are the same as in the separating equilibrium, while the terms of

trade in the pooling market are such that the L-type is indifferent between sending his

l-th application to the pooling market or to the respective L-type market. The wages

and effective queue lengths of the H-type markets are determined by the L-type’s

incentive constraint associated to his N -th application, using a procedure analogous

to the one described in Section 4.1.

To ensure that the allocation constructed in this way constitutes an equilibrium,

we need to verify two properties. First, deviating to a price slightly below or above p̄

does not allow a firm to improve the composition of the applicant pool received at p̄,

i.e. no profitable cream skimming deviation exists. The condition u∗l−1,L + cL < cH ,

which follows from the definition of l, ensures that for wages below p̄ it is the L-

type who has most to gain, by redirecting his l-th application to such wages. Next,

10Recall that u∗n,L + cL tends to vL − k as n→ +∞.
11These are exactly the conditions under which the separating equilibrium we constructed in

Section 4.1—featuring high types sending their applications to strictly higher wages than low types—
fails to exist.
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given that both types of workers send N − l applications to the pooling market and,

therefore, have the same chance of receiving an offer in that market, the condition

u∗l,L+cL ≥ cH implies u∗N,L+cL ≥ uN−l,H+cH (see the proof of Proposition 3). Hence,

for wages just above p̄ it is again the L-type, this time with his N -th application,

who has most to gain from applying to these wages. Firms deviating to wages slightly

below and above p̄ thus expect to attract only low types.

The second property we need to verify is that firms do not find it profitable to

attract L-type workers at any off-path wages. This property is satisfied as long as

the L-type’s indifference curves in the candidate equilibrium do not intersect the

isoprofit curve ΠL. It is easy to see that it suffices to verify this property for the

indifference curve associated to the N -th application, the last one sent to the pooling

market. When N becomes large this indifference curve becomes vertical. To ensure

the property holds for any N , the wage in the pooling market needs then to be higher

than the vertical asymptote of ΠL and thus higher than vL − k.

To find a sufficient condition guaranteeing this property, consider the pair (µ, p)

determined by the intersection between the indifference curve Il,L and the isoprofit

curve associated with zero profits when the fraction of low types in the market is

the population value σ. This intersection is obtained as the solution to the following

system of equations:12

u∗l,L − u∗l−1,L = ψ (µ)
(
p− c− u∗l−1,L

)
, (12)

η (µ) (σvL + (1− σ)vH − p) = k. (13)

It is immediate to verify that the solution for p of this system is increasing in vH and

there exists a value v̂H at which the solution equals p = vL − k. This implies that

when vH > v̂H there can be no intersection between the L-type’s indifference curve

IN,L passing through the point (p, µ), determined by (12-13), and the isoprofit curve

ΠL, no matter how large is N .13 The same property holds in equilibrium as long

as the terms of trade in the pooling market are sufficiently close to the solution of

(12-13), which, as argued below, is true whenever N is sufficiently large.

12As one can see from Figure 5, two intersections/solutions exist; the relevant one is that with the
highest price.

13In the case where vH < v̂H and N is sufficiently large, there might be an intersection at a wage
between p̄ and the lowest wage in the H-type markets.
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Proposition 3. Assume cH < vL − k and vH > v̂H . Then, if N is sufficiently large,

there exists an equilibrium where the low and the high types send, respectively, their

last and first N − l applications to the same market.

The fact that workers can send more than one application limits the ability of

employers to screen workers via distinct wage offers. This feature generates different

outcomes for different values of the parameter space. We saw in Proposition 1 that

when cH ≥ vL − k, high and low types still trade in separate markets in equilibrium,

but—compared to the case where a single application is sent—high types trade with a

lower probability, which vanishes as N →∞. When instead cH < vL−k, Proposition

3 shows that separation breaks down in equilibrium, as high and low types send at

least some of their applications to the same market.14

Remark 2. We should point out that, besides the equilibrium we illustrated in Figure

5 and whose existence we established more generally in Proposition 3, other equilibria

exist where low types send less than l applications to separate markets and a larger

number of applications than high types to a pooling market. In these equilibria,

the composition of applicants in the pooling market is strictly worse than in the

equilibrium we constructed (the pooling market lies on an isoprofit curve strictly to

the left of the green curve in Figure 5), while the effective queue length and the

wage are lower. In contrast, there are no equilibria where low types send more than

l applications to separate markets and where the effective queue length and wage

are higher in the pooling market than in the equilibrium described in Proposition 3.

In this sense, the equilibrium we constructed constitutes an important benchmark,

also for the analysis which follows. Note also that there cannot exist a fully pooling

equilibrium in which both types send all their applications to the same market. In

that case, the same cream-skimming deviation argument as in the one-application

case applies.

Vanishing search frictions. When cH < vL − k, the Walrasian equilibrium à la

Akerlof (1970) is unique and features all types trading at a single pooling price. Under

the same condition, Proposition 3 shows that some of the trades of low and high types

occur at the same price. We will now show that as N → ∞, equilibria with pooling

14Both results require that vH is sufficiently high, or that the economy considered is sufficiently
different from the private-value case where vH = vL.

24



markets may not converge to the ones of Akerlof (1970) and exhibit inefficiency due

to excessive entry.

To this end, it is important to point out one feature of the equilibrium constructed

in the proof of Proposition 3: the switching point at which the low type starts applying

to the pooling market does not depend on the total number of applications N . Hence,

when N increases, the number of applications sent to the H- and L-type markets

remains unchanged, equal to l. All additional applications go to the pooling market.

What changes with N is the effective composition of applications in the pooling

market. Even though both types send the same number of applications to that

market, the high type sometimes gets an offer better than p̄ and in that case would

reject a wage offer equal to p̄. Thus, as already mentioned, the effective composition

is worse than the population average σ. However, as N → +∞ the probability that

a high type trades in any of the H-type markets converges to zero, by the same

argument as the one used for the separating equilibrium. As a consequence, the

effective composition in the pooling market converges to the population average and

the associated terms of trade (µ, p) converge to the solution of (12-13). The effective

queue length in the pooling market thus remains finite in the limit (see Figure 6).

p

μ

l,L

Figure 6: Equilibrium wages and effective queue lengths in an equilibrium with one
pooling market.

The latter property has significant implications for the properties of the allocation

obtained in the limit. Since the number of applications low and high types send to

the pooling market tends to infinity as N → ∞, a finite value of µ implies that the

probability that any type ends up receiving an offer in the pooling market converges
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to one. In contrast, the probability that a firm hires a worker in the pooling market

is bounded away from one and the wage is bounded away from σvL + (1− σ)vH − k.

Hence, there is excessive entry in the limit and, thus, a failure of convergence to the

allocation obtained in the pooling equilibrium in Akerlof (1970). It also entails an

efficiency loss relative to the latter outcome. This is an important result, as it shows

that, in the presence of adverse selection, the inefficiency of the search equilibrium

may not vanish in the limit when workers can send infinitely many applications to

firms.

The first part of the next proposition establishes this result formally. As already

noticed in Remark 2, uniqueness of the search equilibrium fails with multiple applica-

tions and we may have several equilibria with one pooling market. The second part

of the proposition shows that the inefficiency result extends to all such equilibria.

Proposition 4. Assume cH < vL − k. Then, as N → +∞,

(i) at the equilibrium characterized in Proposition 3, the workers’ probability of be-

ing hired in the pooling market converges to one and their market utility satisfies

lim
N→+∞

(σuN,L + (1− σ)uN,H) < σ(vL − cL) + (1− σ)(vH − cH)− k, (14)

hence there is excessive entry in the limit;

(ii) if vH > v̄H , (14) also holds at any other equilibrium with a single pooling market.

The claim is established by contradiction. If (14) is violated and holds as an

equality, this means that in the limit (a) all gains from trade in the market are

exploited and (b) there is no excessive entry. We then show that (a) implies that the

probability that workers are hired in the pooling market converges to 1, while from

(b) it follows that the queue length in the pooling market tends to infinity. But this

requires that low types send an arbitrarily large number of applications to separate

markets which, under the stated conditions, contradicts incentive compatibility: high

types would want to deviate and send some applications to L-type markets.

We show next that the multiplicity of equilibria extends beyond the situation

discussed in Remark 2 and that this has important implications for the properties of

equilibrium allocations in the limit as search frictions vanish. In particular, under the

same parameter conditions as in Proposition 3, we can find a sequence of equilibria
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with two pooling markets where, as N tends to infinity, the probability that both

types are hired converges to one and excessive entry vanishes. The key idea is the

following: the first pooling market takes care of the incentives of high types to hedge

by sending some applications to lower wages, which we saw in Proposition 4 leads

to excessive entry when there is a single pooling market. But now a second pooling

market is also active in equilibrium and the wage in this market increases with the

number of applications, so that the queue length tends to infinity in the limit. Thus

almost all applications are sent to the second pooling market and excessive entry

vanishes, as we establish in the next proposition.15 The construction is illustrated in

Figure 7.

p

μ

l,L

Figure 7: Equilibrium wages and effective queue lengths in an equilibrium with two
pooling markets.

Proposition 5. Assume cH < vL − k and vH > v̂H . For each ε > 0 arbitrarily close

to zero, we can find some Nε such that, for all N > Nε, there exists an equilibrium

with two pooling markets and

σuN,L + (1− σ)uN,H ≥ σ(vL − cL) + (1− σ)(vH − cH)− k − ε. (15)

The consequences for the properties of equilibrium outcomes of allowing multiple

applications in the presence of search frictions have interesting analogies to those

15Since the main steps of the proof are very similar to the ones of Proposition 3, we relegate the
proofs of Proposition 5 and Proposition 6 in the following subsection to the Online Appendix.
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of the non-exclusivity in contracting without such frictions. The latter also limits,

though in different ways, the ability of firms to screen workers. Our environment

features exclusivity in contracting, as each worker can accept only one offer, but not

in applications as the worker can apply to many firms. When firms compete with non-

exclusive contract offers, Attar et al. (2011) find that pooling obtains in equilibrium

under the same no lemons condition as Proposition 3. Moreover, the equilibrium

allocation is unique and coincides with the efficient pooling Walrasian equilibrium of

Akerlof (1970). As demonstrated, our findings are different and suggest that non-

exclusivity at the application stage has distinct implications from non-exclusivity in

contracting.16

4.3 Co-Existence of Separating and Pooling Equilibria

In the previous section, we considered situations where the lemons condition is vio-

lated and established the existence of equilibria with pooling markets. We now show

that such equilibria also exist when cH > vL − k, provided the proportion of H-type

workers is sufficiently high, i.e. cH < σvL+(1−σ)vH−k. Under these two conditions,

we know from Akerlof (1970) that when agents trade in Walrasian markets there are

two equilibria, one separating and one pooling, the latter being Pareto dominating.

We have seen in Propositions 1 and 2 that in this parameter region a fully separating

equilibrium exists for all N and converges to the separating equilibrium of Akerlof

(1970) as N →∞. We show in what follows that the pooling equilibrium can also be

obtained in the limit.

To this end, we focus our attention on the case where the number of applications

workers can send is large and establish a similar result to Proposition 5: a search

equilibrium exists where the allocation is approximately the same as in the efficient

pooling equilibrium of Akerlof (1970), i.e. both firms and workers are matched with

probability one. The equilibrium differs however in some important aspects from the

one characterized in Proposition 5. In particular, it features a single pooling market,

where low types send a strictly greater number of applications than high types. The

effective queue length in the pooling market approaches infinity in the limit and so

does the number of applications sent by both types to that market.

To gain some understanding, we should recall that when the lemons condition is

16As discussed in the next section, an important role is also played by the fact that in our set-up
firms can hire at most one worker.
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violated, high types are willing to be hired at some of the wages in L-type markets.

To ensure that the incentive constraints of high types are satisfied, separate markets

for low types can then only exist for sufficiently low wages. In particular, as argued

in Remark 2, they can send no more than l (defined in (11)) applications to separate

markets. In contrast, when the lemons condition holds, high types are not willing to

be hired in any of the L-type markets, hence their incentive constraints do not impose

restrictions for the existence of these markets. We can thus have an arbitrarily large

number of L-type markets (equivalently, l = ∞). As a consequence, we can set the

number of applications sent by low types to separate markets at a sufficiently high

level so that the queue length in the pooling market is arbitrarily large.

Proposition 6. Let cH ∈ (vL − k, σvL + (1− σ)vH − k). For each ε > 0 arbitrarily

close to zero, we can find some Nε such that, for all N > Nε, an equilibrium with a

single pooling market exists and

σuN,L + (1− σ)uN,H ≥ σ(vL − cL) + (1− σ)(vH − cH)− k − ε. (16)

In our environment, as we showed in Section 4.2, multiple equilibria exist whenever

we have pooling markets in equilibrium. The multiplicity persists in the limit, as the

search friction vanishes. Proposition 6 shows that the multiplicity of equilibria extends

to the coexistence of equilibria with pooling markets and fully separating equilibria.

This stands in contrast with the findings of Kircher (2009) for the observable type case,

where search equilibria are always unique. What is more striking, it also stands in

contrast with the results obtained for the same parameter configuration of Proposition

6 when firms compete strategically in contract offers without search frictions. Both

Attar et al. (2011), with general contracts under non-exclusivity, and e.g. Mas-Colell

et al. (1995), with exclusive contracting when trade quantities are restricted to {0, 1},
find a unique equilibrium outcome, given by the Pareto dominant pooling allocation.

A key role behind this difference in equilibrium outcomes is played by the fact that

in our environment firms are interested in hiring at most one worker, i.e. firms compete

for workers but face an effective capacity constraint that limits the impact of their

deviations on the market allocation. What ultimately matters is the presence of some

capacity constraint, but not that the capacity is one. Without any capacity constraint,

firms would find it profitable to deviate from the separating equilibrium by posting

higher wages to attract all workers. In contrast, with a capacity constraint, firms
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would only attract the workers who are most keen to apply to higher wages and these

are the low types (as illustrated in Figure 3). Our analysis therefore suggests that

the presence of capacity constraints, as well as the decentralized nature of markets,

have important consequences in markets with adverse selection.

Remark 3. Competitive search models with adverse selection and a single opportunity

to contact a potential trading partner, such as Guerrieri et al. (2010), feature the stark

property that the equilibrium outcome does not depend on the type distribution.

Thus, the presence of low types severely distorts the equilibrium allocation for high

types, even as the fraction of low types in the population vanishes. The discontinuity

in the allocation at the point where this fraction is zero is sometimes viewed as

unappealing, particularly when cH > vL − k (see, for example, Lester et al., 2019).

The same criticism applies to our model if we consider the separating equilibrium that

exists in this case. However, as Proposition 6 shows, if σ is small, other equilibria

with partial pooling exist and the efficient outcome can be approached in the limit

as N → +∞. Hence, if we focus on the most efficient equilibrium, we can say that,

comparing to the single-application benchmark, the discontinuity becomes smaller

when workers can send multiple applications and disappears when N → +∞.

5 Discussion

5.1 Welfare

When workers’ types are publicly observable, the only effect of allowing them to

submit multiple applications is to alleviate the search friction. Hence, the welfare

implications of increasing the number N of applications workers can submit are un-

ambiguous: the welfare of all workers increases with N. In contrast, when the produc-

tivity of a worker is only privately observed by him, increasing N not only mitigates

the search friction but also affects, as discussed earlier, the set of allocations that are

incentive compatible. The welfare consequences of allowing multiple applications are

thus no longer unambiguous.

When the lemons condition holds, that is under the parameter conditions of Propo-

sition 1, and the fraction of low productivity workers in the population is not too low

(cH > σvL + (1− σ)vH − k), L-type workers gain when they can send a large number

of applications, but H-type workers lose. It is interesting to point out that the welfare

of high types may be non-monotone in the number of applications: while it may be
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increasing in N for N small, it must eventually decrease since their probability of

trade converges to zero as search frictions vanish (N → ∞). Furthermore, provided

the firms’ entry cost is sufficiently small, the overall, ex-ante welfare of workers is

strictly higher at the equilibrium with a single application than at the one with van-

ishing search frictions. The reason for these findings, rather distinct from the case

where types are observable, is that the constraints imposed by incentive compatibility

on admissible trades becomes stronger with multiple applications.

In contrast, when the lemons condition does not hold, the equilibria with one or

more pooling market we constructed in the proofs of Propositions 3 and 5 Pareto-

dominate the equilibrium with a single application. In this case, both L- and H-type

workers gain when they can send a large number of applications compared to the case

where they can only send a single application. In such a situation, not only the search

friction is mitigated, but there is a dimension in which the diminished effectiveness

of market liquidity as a screening device expands admissible trades, allowing pooling

markets to be sustained in equilibrium. Moreover in this case, as we saw, multiple

Pareto ranked equilibria exist.

The above considerations show that the welfare consequences of allowing workers

to submit multiple applications can go in opposite directions for the different types

and that it may not be possible to reach unambiguous conclusions.

5.2 Endogenizing Applications

In our model, we exogenously fixed the number of applications L- and H-type workers

can send and assumed this number is the same for both types. The benefits from

sending additional applications are however generally different for the two types of

workers. If workers could choose how many applications to send facing a fixed, equal

cost z per application, H- and L-type workers may thus make different choices. In

what follows, we extend the analysis to this case. We show that the total number of

applications sent by L-type workers is in fact higher than for H-type workers. The

implication of this is that high types send fewer applications to separate markets and

may not trade in such markets even away from the limit. Despite this difference,

we show that the main properties of equilibrium allocations remain valid when the

number of applications sent by each type is endogenously determined.

Let Ni denote the total number of applications a worker of type i = L,H chooses

to send in equilibrium. Given NH , NL, the definition of an equilibrium is analogous
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to the one in Definition 1. In addition, to assess the optimality of Ni, recall that for

all n ∈ N, the benefit for a worker of type i from sending one additional application

to an optimally chosen market, after having sent n− 1 of them, is equal to

un,i − un−1,i = max
p∈F

ψ (µ(p)) (p− ci − un−1,i).

For Ni to be optimal, we need that for all n ≤ Ni, the benefit un,i − un−1,i exceeds

the application cost z, while it is lower than z for all n > Ni. The fact that un−1,i is

increasing in n directly implies that the utility gain un,i − un−1,i is decreasing in n.

Hence, the total number of applications a worker of type i sends in equilibrium, Ni,

is uniquely pinned down by the following condition:

Ni = max{n ∈ N : un,i − un−1,i ≥ z}

To examine the consequences for the properties of equilibrium allocations, assume

first that the lemons condition holds, cH ≥ vL − k, and consider the separating

equilibrium characterized in Proposition 1. As we saw, the markets for L-type workers

coincide with the unconstrained solution described in Section 3.2. Hence, the total

number of applications low types send is given by the largest number NL that satisfies

u∗NL,L − u∗NL−1,L ≥ z. This condition ensures that L-type workers do not wish to

send an additional application to a separate market (for which the utility gain is

u∗NL+1,L−u∗NL,L < z). We also need that they have no incentives to send an additional

application to the lowest wage to which high types apply.17 Letting (µH , pH) describe

this market, we must have

ψ(µH)(pH − cL − uNL,L) ≤ z (17)

for uNL,L = u∗NL,L. Since cH ≥ vL−k > u∗NL,L+cL, inequality (17) implies ψ(µH)(pH−
cH) < z. Hence, in equilibrium, incentive constraints limit the gains high types can

achieve by trading in the market so much that they will prefer not to participate at

all. Hence, with endogenous applications, a separating equilibrium exists under the

conditions of Proposition 1 and featuresNL application of low types and 0 applications

17This condition is different than the L-type incentive constraint relative to his last application,
u∗NL,L

− u∗NL−1,L ≥ ψ (µH) (pH − cL − u∗NL−1,L), which only guarantees that the L-type has no
incentives to divert his last application to wage pH .
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of high types.

Turning then to the case cH < vL − k, consider the equilibrium with one pooling

market described in Proposition 3. As we show in the proof of this proposition, in

the equilibrium allocation we constructed, market utilities satisfy the condition

u`+n−1,L + cL < un,H + cH ≤ u`+n,L + cL for all n ≥ 0. (18)

Letting (µ̄, p̄) denote again the terms of trade in the pooling market, the total number

NL of applications that the low type sends must then be the largest number satisfying

ψ(µ̄)(p̄− cL − uNL−1,L) ≥ z. (19)

Using (18), this implies ψ(µ̄)(p̄− cH − uNL−`−1,H) ≥ z, which means that, when low

types are willing to send NL − ` applications to the pooling market together with `

applications to separate markets, high types are also happy to send NL−` applications

to the pooling market.

Suppose now that an H-type market exists with terms of trade (µH , pH). For

the considered allocation to be an equilibrium with endogenous applications, it must

be that low types do not want to send any additional application to this market

(inequality (17) is satisfied) nor to redirect any of their NL applications to that market

(ensured by the incentive constraints already imposed in the construction used in the

proof of Proposition 3). By the second inequality in (18) we have uNL−`,H + cH ≤
uNL,L + cL, so it is possible that ψ(µH)(pH − uNL−`,H − cH) ≥ z and (17) are both

satisfied. If that is the case, high types find it profitable to send one application to

market (µH , pH) while low types do not. However, due to the first inequality in (18),

we also have uNL−`+1,H + cH > uNL,L + cL, so that sending a second application to

market (µH , pH) is never profitable. Hence, under the conditions stated in Proposition

3, there exists an equilibrium with a pooling market whenever z satisfies (19) for some

NL > `, and high types send at most one application to a separate market.

6 Conclusion

We study a market in which firms post wages to attract applications from workers

with private information about their productivity. We demonstrate how increasing

contacts in such a market not only decreases search frictions but also reduces firms’
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screening ability. The subtle interaction between these forces creates a rich set of

outcomes. In particular, we find that—in contrast to a situation where each worker

can only send a single application—the existence of a fully separating equilibrium

is only guaranteed if adverse selection is sufficiently severe. When this condition

is not satisfied, the equilibrium features pooling markets, giving rise to equilibrium

multiplicity. Fully separating allocations and allocations with pooling may also co-

exist in equilibrium, as in Akerlof (1970).

We analyze the properties of these equilibria as the number of applications grows

large. While the allocation in the separating search equilibrium converges to the one

with Walrasian markets à la Akerlof (1970), the same is not true for all equilibria with

pooling markets: some of them exhibit frictional trade and thus inefficiency in the

limit due to excessive entry. Finally, we show that, with adverse selection, the welfare

consequences of facilitating contacts among market participants are ambiguous.

Appendix A Proofs

In what follows, we will denote by

Ii(un−1,i, un,i) = {(µ, p) : ψ(µ)(p− ci − un−1,i) = un,i − un−1,i}

type i = L,H’s indifference curve associated to utility levels un−1,i, un,i and by

Πγ = {(µ, p) : η(µ)(γvL + (1− γ)vH − p) = k}

the firms’ isoprofit curve when the fraction of L-types is γ.

A.1 Proof of Proposition 1

Suppose a candidate separating equilibrium exists. In such an equilibrium, the market

utilities un,L and effective queue lengths µn,L for the L-type workers’ applications are

given by the unconstrained solution, unless at least one of the H-type’s incentive

constraint is binding. Towards a contradiction, suppose that the H-type’s incentive

compatibility is binding for some n ≤ N . There exists then a market (m,L) such that

the H-type is indifferent between sending his n-th application to (n,H) or sending

it to (m,L). Since the L-type must weakly prefer to send his m-th application to

market (m,L), single crossing implies that for wages pm,L + ε with ε > 0, we have
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γ(p)µ(p) = 0 as long as ε is sufficiently small (see the market utility condition). Hence,

for wages slightly above pm,L, firms believe to attract only the high type. Since µ(p)

is continuous in p, offering a wage slightly higher than pm,L constitutes a profitable

deviation, as the quality composition improves discretely. Hence, in a separating

equilibrium, the property un,L = u∗n,L and µn,L = µ∗n,L holds for all n = 1, 2, . . . , N .

Notice that the associated wages in each of these markets, p∗n,L, are strictly smaller

than vL − k.

Next, we consider the markets for H-type workers in a candidate separating equi-

librium. When vL−k ≤ cH , wages in the L-type markets are below the outside option

of H-type workers, hence pn,H > p∗m,L for all n ≤ N and m ≤ M . Single-crossing of

the L-type’s indifference curves then implies that the only incentive constraint po-

tentially binding is the one associated to the L-type’s N -th application. The same

property is satisified if vL − k ≤ cH is violated but vH > v̄H holds. In the latter

case, there is a unique intersection between the upper envelope of the low type’s

indifference curves and ΠH . This intersection is with IL(u∗N−1,L, u
∗
N,L), so again we

get that the only incentive constraint potentially binding is the one associated to the

L-type’s N -th application. Given that either vL−k ≤ cH or vH > v̄H holds, incentive

compatibility thus requires:

u∗N,L ≥ ψ (µn,H) (pn,H − cL) + (1− ψ (µn,H))u∗N−1,L. (20)

Let (µ
H
, p

H
) be the (unique) values of (µn,H , pn,H) > (µ∗N,L, p

∗
N,L) satisfying (20) as

an equality and (µn,H , pn,H) ∈ ΠH .

Suppose first µ∗n,H ≥ µ
H

for all n ≥ 1. In this case incentive constraints are not

binding. We set for all n, µn,H = µ∗n,H and un,H = u∗n,H . Notice that the associated

wages satisfy p∗1,L < p∗2,L < ... < p∗N,L < p∗1,H < p∗2,H < ... < p∗N,H . For each p, we set

µ(p) = max{µ : ψ(µ)(p− ci − un−1,i) ≤ u∗n,i − u∗n−1,i for some i ∈ {L,H}, n ≤ N}

and γ(p) = 0 for all p such that the previous max is attained at i = H and γ(p) = 0

otherwise. It can be easily verified that this specification of the functions µ, γ satisfies

the market utility condition and that, given µ, γ, firms have no profitable deviations.

If µ∗1,H < µ
H

, we follow a recursive procedure to find the effective queue lengths

and market utilities in the H-type markets. We start by setting µ1,H = µ
H

and

u1,H = ψ(µH)(p
H
− cH). Given u1,H , we calculate the unconstrained solution of µ2,H .
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Setting n = 2, the solution is determined by

(1− e−µn,H − µn,He−µn,H )(vH − cH − un−1,H) = k (21)

If the value of µ2,H solving this condition is weakly greater than µ
H

, it is the effective

queue length in market (2, H). The associated market utility is

un,H = e−µn,H (vH − cH) + (1− e−µn,H )un−1,H (22)

The queue lengths and market utilities of the remaining markets (N > 2) are then

determined by the same set of conditions.

If instead µ2,H solving (21) for n = 2 is strictly smaller than µ
H

, we set µ2,H = µ
H

.

The market utility u2,H is then determined by (22). We repeat the procedure for all

n > 2. Having fixed market utilities in this way, the functions µ, γ can be specified

as follows. For all p < p
H

we set γ(p) = 1 and for all p ≥ p
H

we set γ(p) = 0. For

wages p < p
H

, the queue length µ(p) is then determined as the upper envelope of the

indifference curves IL(u∗n−1,L, u
∗
n,L), n = 1, ..., N ; for wages p ≥ p

H
it is determined

as the upper envelope of the indifference curves IH(un−1,H , un,H), n = 1, ..., N with

{un,H}Nn=1 specified by the recursive procedure.

Existence: The equilibrium exists if and only if the H-type has no incentives

to deviate and send a set of his applications to L-type markets. If the condition

cH ≥ vL − k is satisfied, the wages in the L-type markets are strictly below the

H-type’s outside option, hence such deviation cannot be profitable. Therefore, if

cH ≥ vL − k, the separating equilibrium exists for all N ≥ 1. What remains to

be shown is that if cH < vL − k and vH > v̄H , there is an N̄ > 1 such that the

separating equilibrium does not exists whenever N ≥ N̄ . Letting ψn,i ≡ ψ (µn,i)

denote the probability of receiving an offer in market i, n, incentive compatibility

generally requires that for any (n, i) 6= (n′, i′) with un,i + ci ≤ un′,i′ + ci′ , we have

ψn,i ≥ ψn′,i′ , which follows from standard arguments. Notice then that as N → +∞,

the L-type’s outside option associated to his last application, u∗N−1,L, converges to

vL − cL − k, as proven by Kircher (2009). Hence, given cH < vL − k, we can find

an N sufficiently large such that there is an n < N with u∗n,L + cL > cH . Incentive

compatibility for the H-type then requires ψ1,H ≥ ψn,L or equivalently µH ≤ µ∗n,L.

However, as we have argued above, whenever vH > v̄H holds, incentive compatibility

for the L-type requires that µ1,H is weakly greater than µ
1,H

, which is strictly greater
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than µ∗n,L for all n ≤ N . Hence, no separating equilibrium exists.

A.2 Proof of Proposition 2

A straightforward extension of Proposition 6 in Kircher (2009) shows that limN→+∞ uN,L =

vL − cL − k. We now want to prove that the probability with which the H-type is

hired in equilibrium tends to zero. Since wages are bounded above by the firms’

valuation (net of entry cost), this directly implies limN→+∞ uN,H = 0. Letting

(µ1,H(N), p1,H(N)) describe the terms of trade in market (1, H) when the number

of available applications is N , we can define the probability of being hired when

sending Ñ applications to market (1, H):

α(Ñ ,N) := 1−
(
1−

(
1− e−µ1,H(N)

)
/µ1,H(N)

)Ñ
.

Since µ1,H ≤ µn,H for all n, α(N,N) is an upper bound for the equilibrium probability

with which the H-type is hired when sending N applications.

Now suppose each worker has available 2n + j applications where n ∈ N and

j ∈ {0, 1}. If the L-type sends no applications to any of the H-type markets, his

payoff is u∗2n+i,L < vL−cL−k. If instead he sends n+ j applications to the L-markets

with the lowest n+ j wages and n applications to market (1, H), his payoff is

α(n, 2n+ j)(p1,H(2n+ j)− cL) + (1− α(n, 2n+ j))u∗n+j,L. (23)

In equilibrium, (23) must be smaller than vL−cL−k. Since limn→+∞ u
∗
n+j,L = vL−cL−

k and p1,H(2n+ j)− cL > cH− cL > vL− cL−k, this requires limn→+∞ α(n, 2n+ j) =

0, j = 0, 1.

Finally, we want to show that α(n, 2n+ j)→ 0 implies α(2n+ j, 2n+ j)→ 0. To

this end, notice that the function α(·, 2n + j) : R → [0, 1] is strictly increasing and

strictly concave with α(0, 2n+ j) = 0. Hence,

α(n, 2n+ j) >
n

2n+ j
α(2n+ j, 2n+ j).

Given limN→+∞ n/(2n+j) = 1/2, this inequality and the property limn→+∞ α(n, 2n+

j) = 0 imply limn→+∞ α(2n+ j, 2n+ j)/2 = 0. Hence, limN→+∞ α(N,N) = 0. As we

stated above, α(N,N) is an upper bound for the equilibrium probability with which
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H-type workers are hired. In the limit this type is hired with probability zero and

limN→+∞ uN,H = 0.

A.3 Proof of Proposition 3

Candidate equilibrium. We begin the proof by constructing a candidate equi-

librium where L-types send the last m applications to the pooling market, while

H-types send the first m′ applications to that market and, for now, we allow m to

differ from m′. The first N −m applications of the L-type are sent to separate mar-

kets, which are the same as in equilibrium with observable types (or the separating

equilibrium). Hence, the effective queue lengths and market utilities in these markets

are µn,L = µ∗n,L and un,L = u∗n,L, for all n ≤ N −m.

We will first determine the effective queue lengths and wages in the pooling market

and the H-type markets, taking as given the number of applications the two types

send to the pooling market, m and m′, and the composition in that market, given by

the effective fraction γ̄ of L-type workers. Let µ̄ and p̄ be, respectively, the effective

queue length and the wage in the pooling market. We set their values to be such

that the L-type is indifferent between sending the N − m-th application to market

(N −m,L) and sending it to the pooling market. The terms of trade in the pooling

market (µ̄, p̄) must then satisfy

(µ̄, p̄) ∈
(
Πγ̄ ∩ IL(u∗N−m−1,L, u

∗
N−m,L)

)
. (24)

It is easy to verify that this condition has a unique solution on the domain (µ̄, p̄) >

(µ∗N−m,L, p
∗
N−m,L). Let us denote such value with µ̄(γ̄), p̄(γ̄) and set µ̄ = µ̄(γ̄), p̄ = p̄(γ̄).

To find the utility gains L- and H-types attain by trading in the pooling market,

it is useful to define the probability of receiving an offer in a market with effective

queue length µ when sending n ≥ 1 applications to that market:

β(n, µ) := 1− (1− ψ(µ))n (25)

The market utility of H-type workers associated to their first m′ applications is then

un,H(γ̄) = β(n; µ̄(γ̄))(p̄(γ̄) − cH), n = 1, ...,m′, while the market utility of L-type

workers associated to their last m applications is uN−m+n,L(γ̄) = β(n; µ̄(γ̄))(p̄(γ̄) −
cL) + (1− β(n, µ̄(γ̄)))u∗N−m,L, n = 1, ...,m.
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To determine the separating markets to which H-types send their (m+ 1)-th and

subsequent applications, let (µH(γ̄), pH(γ̄)) be the unique solution of

(µH , pH) ∈ (ΠH ∩ IL(uN−1,L(γ̄), uN,L(γ̄))

satisfying (µH , pH) > (µ̄, p̄). Note that pH(γ̄) is the lowest wage to which only H-

types are willing to apply. We then need to compare the utility they attain by sending

applications to pH(γ̄) and to higher wages, at which incentive constraints no longer

bind. When H-types send n ≥ 1 applications to market pH(γ̄), they attain a utility

level

um′+n,H = β(n;µH(γ̄))(pH(γ̄)− cH) + (1− β(n, µH(γ̄)))um′,H . (26)

If the solution for µ of

(1− e−µ − µe−µ)(vH − cH − um′+n−1,H) = k (27)

is greater than µH(γ̄), this means that the unconstrained solution for the (m′ + n)-th

application (starting from reservation utility um′+n−1,H) is feasible and hence preferred

to market pH(γ̄). Let n̄ be the lowest value of n for which this happens, that is, at

which the L-type incentive constraint no longer binds. In equilibrium H-types will

then send n̄−1 ≥ 0 applications to wage pH(γ̄). For all n ≥ n̄, we set µm′+n,H(γ̄) equal

to the unconstrained solution, solving (27) for a level of the market utility um′+n,H

determined by (10), starting from the value um′+n̄−1,H pinned down by (26). Set

then µm′+n,H(γ̄) equal to µH(γ̄) for n = 1, .., n̄− 1 and to the unconstrained solution,

solving (27), for n = n̄, ..N −m′.
Using these values we can derive the value of the probability with which an H-

type worker is not hired in one of the H-type markets as a function of the effective

composition γ̄ in the pooling market:

τH(γ̄;m′) =
N−m′∏
n=1

(1− ψ(µm′+n,H)). (28)

For any given m,m′ ≥ 1, the effective composition γ̄ in the pooling market is

determined by:

γ̄ =
σm

σm+ τH(γ̄;m′)(1− σ)m′
(29)
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To see that (29) has a solution, for any m,m′, notice that both the left-hand side

and the right-hand-side are continuous in γ̄ on (0, 1).18 Since τH(γ̄) belongs to (0, 1),

the value of the right-hand side belongs to the interval ( σm
σm+(1−σ)m′

, 1). As γ̄ → 0 the

left-hand side is then strictly smaller than the right-hand side, which is always greater

than σm
σm+(1−σ)m′

. In contrast, as γ̄ → 1, the left-hand side is strictly greater than the

right-hand side, since for any given N,m,m′, limγ̄→1 τH(γ̄;m′) > 0. Hence, a solution

of (29) always exists, constituting a candidate equilibrium for any m,m′ ≥ 1.

No profitable deviations: We focus our attention in what follows on a candidate

equilibrium with m = m′ = N − l and l determined as in (11). By the assumption

cH < vL − k stated in Proposition 3, such a value of l exists whenever N is large

enough (recall limn→+∞ u
∗
n,L + cL = vL − k). We show that for m = m′ = N − l, the

candidate equilibrium constructed above is indeed an equilibrium for N sufficiently

large, as no agent has a profitable deviation. The following lemma pins down the

off-path beliefs regarding the composition in the candidate equilibrium. The proof is

in the Online Appendix.

Lemma 7. Consider the candidate equilibrium constructed in Section A.3 with m =

m′ = N − l. For all p ∈ [0, p̄) and p ∈ (p̄, pH), we have γ(p) = 1.

According to Lemma 7, firms believe to attract the L-type when posting a wage

below p̄. Single crossing and L-type’s indifference between sending the l-th application

to p∗l,L and p̄ imply that for any p < p̄, the pair (p, µ(p)) belongs to the upper

envelope of the indifference curves of the L-type’s first l applications. This property

and γ(p) = 1 imply that there is no p < p̄ such that η(µ(p))(vL − p) > k.

For wages p belonging to (p̄, pH) the queue length µ(p) is such that

(µ(p), p) ∈ IL(uN−1,L, uN,L). (30)

We need to show that any such pair (p, µ(p)) yields a weakly negative profit for firms:

η(µ(p))(vL − p) ≤ k. Since un,L is increasing in n and bounded from above, the

difference uN,L − uN−1,L converges to zero as n→ +∞. Given that µ̄ = µ(p̄) is finite

(it lies on the indifference curve IL(u∗l−1,L, u
∗
l,L)), condition (µ(p̄), p̄) ∈ IL(uN−1,L, uN,L)

implies that p̄ tends to cL + uN−1,L as N → +∞. Hence, for any p > p̄ > cL + uN−1,L

18It is immediate to verify that the map µH(γ̄), defined above, is continuous in γ̄, while for n ≥ n̄
the map µm′+n,H(γ̄) is in fact independent of γ̄.
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the belief µ(p) determined by (30) tends to +∞ as N → +∞. To guarantee that

η(µ(p))(vL − p) ≤ k is satisfied for all p ∈ (p̄, pH) as N becomes large, we thus need

the wage in the pooling market to satisfy p̄ ≥ vL − k.
We show next that p̄ ≥ vL − k is satisfied if vH > v̂H . The fact that for p > p̄,

µ(p) → +∞ as N → +∞ implies that the probability for H-type workers to be

hired in an H-type market, τH , tends to zero as N → +∞ and, hence, that the

effective composition γ̄ tends to the population average σ (see (29)). Hence, as

N → +∞, p̄ tends to the wage lying at the intersection between the indifference

curve Il,L(u∗l−1,L, u
∗
l,L) and the isoprofit curve Πσ. The threshold v̂H is defined as

the value of vH such that the wage at this intersection is exactly vL − k. By the

assumption vH > v̂H , the limit of p̄ is then a number strictly greater than vL − k.

Hence, for N large, condition η(µ(p))(vL−p) ≤ k is satisfied for all p ∈ (p̄, pH), ruling

out a deviation to a wage in the interval (p̄, pH).

Finally, standard arguments imply that firms do not want to deviate to wages

p > pH (where γ(p) = 0), as such a deviation would constitute a move away from the

unconstrained solution of the problem of attracting H-types, with reservation utility

uN−l,H .

A.4 Proof of Proposition 4

Part (i) of the claim in the proposition was established in the main text, we thus focus

here on the proof of claim (ii). Consider an arbitrary equilibrium with a single pooling

market, that is, with a single wage level at which both H- and L-type workers send

some applications. Let p̄ denote the wage and µ̄ denote the effective queue length in

that market. Towards a contradiction, suppose the equilibrium allocation satisfies

lim
N→+∞

σuN,L + (1− σ)uN,H = σ(vL − cL) + (1− σ)(vH − cH)− k. (31)

Under this condition workers extract all the surplus. This means that in the limit

there is no welfare loss: all workers are thus hired with probability one and all firms

hire with probability one. By an analogous argument to the one used in the proof

of Proposition 2, we can exclude the possibility that high types are hired at strictly

higher wages than low types with a probability that is positive in the limit. It thus

follows that, as N → +∞ the probability of trades taking place outside the pooling

market tends to zero. In order for firms to hire with probability one, the effective
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queue length in the pooling market µ̄ must then tend to +∞ as N → +∞.

Let ñ+ 1 indicate the first application which L-types send to the pooling market.

We allow ñ to be equal to 0, in which case the first application of L-types is sent

to the pooling market. When ñ ≥ 1 the terms of trade in the separate markets

where only L-types send applications, indexed by n ≤ ñ, are determined as in the

equilibrium where types are observable (see the argument in the proof of Proposition

1). In equilibrium L-types must then prefer to send their (ñ + 1)-th application to

the pooling market rather than to the L-type market where they send their (ñ+ 1)-

th application in the equilibrium with observable types (if this condition is violated,

posting wage p∗ñ+1,L constitutes a profitable deviation for firms). Hence, ñ must be

such that19

ψ(µ̄)(p̄− cL − u∗ñ,L) + u∗ñ,L ≥ ψ(µ∗ñ+1,L)(p∗ñ+1,L − cL − u∗ñ,L) + u∗ñ,L.

As argued above, for (31) to hold, µ̄ must tend to +∞ as N → +∞. Notice further

that p̄ is bounded above by the size of the gains from trade, i.e. σvL + (1− σ)vH − k.

It then follows that the left-hand side of the above inequality converges to u∗ñ,L as

N → +∞. In order for the inequality to hold, given p∗ñ,L− cL−u∗ñ,L > 0, the effective

queue length µ∗ñ,L must then also diverge to +∞ as N → +∞. Hence, the index ñ

must tend to +∞ as N → +∞: L-types send an infinite number of applications to

L-type markets, where only such types apply.

Next, we can show that in any equilibrium with a single pooling market H-types

send their first application to the pooling market. By the assumption vH > v̄H , there

is a unique intersection between the upper envelope of the L-types’ indifference curves

associated to the first ñ applications and ΠH . This intersection is with indifference

curve IL(uñ−1,L, uñ). Since the wage at this intersection is strictly greater than p̄ (ΠH

lies to the right of Πγ̄ in the (p, µ) space), there cannot be a market with a wage p < p̄

to which only H-types apply and firms make non-negative profits. High types must

therefore send their first application to the pooling market, as claimed.

For the allocation to be incentive compatible and ensure H-types do not want to

deviate and apply to any L-type market, since µ̄ > µ∗ñ,L,20 the H-types’ outside option

associated to their first application must be greater than the L-types’ outside option

19When ñ = 0, u∗0,L = 0.
20The effective queue length is increasing in the index of the low types’ applications.
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associated to their ñ-th application, that is: cH ≥ cL+u∗ñ−1,L. Since ñ tends to +∞ as

N → +∞, the market utility u∗ñ−1,L tends to vL−cL−k. Having assumed cH < vL−k,

the term cL + u∗ñ−1,L thus tends to a limit strictly greater than cH as N → +∞. The

above inequality is violated in the limit, which yields the contradiction.
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— Online Appendix —

Appendix B Additional Proofs

B.1 Proof of Lemma 7

We show first that for wages p < p̄ the market utility condition and (6) imply that

firms’ beliefs are γ(p) = 1. We begin by establishing the property for all p ∈ (p∗l,L, p̄).

This is achieved by showing that, under the assumptions made, the following condition

holds, for all n = 1, .., N − l:

ψ(µ)(p− cL) + (1− ψ(µ))u∗l−1,L = u∗l,L, (32)

ψ(µ)(p− cH) + (1− ψ(µ))un−1,H < un,H . (33)

Solving the first equation for ψ(µ) and substituting into the second inequality yields

u∗l,L − u∗l−1,L

p− cL − u∗l−1,L

<
un,H − un−1,H

p− cH − un−1,H

. (34)

Recalling that, in the candidate equilibrium under consideration, u∗l,L = ψ(µ̄)(p̄ −
cL) + (1− ψ(µ̄))u∗l−1,L and un,H = ψ(µ̄)(p̄− cH) + (1− ψ(µ̄))un−1,H , we have:

u∗l,L − u∗l−1,L

p̄− cL − u∗l−1,L

=
un,H − un−1,H

p̄− cH − un−1,H

. (35)

Using this condition to substitute for (un,H − un−1,H) /
(
u∗l,L − u∗l−1,L

)
in the above

inequality and simplifying terms, we obtain:

p
(
cH + un−1,H − cL − u∗l−1,L

)
< p̄

(
cH + un−1,H − cL − u∗l−1,L

)
. (36)

Finally, notice that for all n ≤ l − 1, we have u∗n,L + cL < cH by definition of l and

hence

u∗l−1,L + cL < un−1,H + cH , for all n = 1, ..N. (37)

Hence inequality (36) reduces to p < p̄, which establishes the claim. A similar argu-

ment applies to wages weakly below p∗l,L—for this case, it is in fact the same as for

the separating equilibrium.
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Next, we consider wages in the interval (p̄, pH). We will show that for all p ∈
(p̄, pH), γ(p) = 1 again holds. By definition of l we have u∗l,L + cL ≥ cH . Hence for

all n = 0, 1, 2, ..., N − l − 1, in the candidate equilibrium under consideration the

following holds:

ul+n,L + cL = β(n; µ̄)p̄+ (1− β(n; µ̄))(u∗l,L + cL)

≥ β(n; µ̄)p̄+ (1− β(n; µ̄))cH (38)

= un,H + cH .

This means that the reservation utility for the n-th application sent to the pooling

market is greater for low than for high types, for all n = 0, .., N − l−1. In particular,

we have

uN−1,L + cL ≥ uN−l−1,H + cH . (39)

We also want to show that the reservation utility for the N -th application sent by

low types to the pooling market is smaller than the one for the first application sent

by high types to a H-type market, that is:

uN−1,L + cL < uN−l,H + cH . (40)

Recalling that ul+n,L + cL = β(n; µ̄)p̄ + (1 − β(n; µ̄))(u∗l,L + cL), using the property

β(n; ·) = β(n− 1; ·) + (1−β(n− 1; ·))β(1; ·) and the fact that u∗l,L = β(1; µ̄)(p̄− cL) +

(1− β(1; µ̄))u∗l−1,L, when n = N − l − 1, we obtain

uN−1,L = β(N − l − 1; µ̄)(p̄− cL) + (1− β(N − l − 1; µ̄))u∗l,L

= β(N − l; µ̄)(p̄− cL) + (1− β(N − l; µ̄))u∗l−1,L.
(41)

This implies

uN−1,L + cL = β(N − l; µ̄)p̄+ (1− β(N − l; µ̄))(u∗l−1,L + cL)

< β(N − l; µ̄)p̄+ (1− β(N − l; µ̄))cH

= uN−l,H + cH ,

(42)

where the inequality in the second line follows from u∗l−1,L + cL < cH , which as we
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already pointed out, holds by definition of l. This then establishes (40).

Having shown (39) and (40), we want to prove that the following conditions hold

for all p ∈ (p̄, pH) and n = 1, ..., N :

ψ(µ)(p− cL) + (1− ψ(µ))uN−1,L = uN,L (43)

ψ(µ)(p− cH) + (1− ψ(µ))un−1,H ≤ un,H (44)

Again solving for ψ(µ) the first equation and substituting into the second one yields

uN,L − uN−1,L

(p− cL − uN−1,L)
≤ un,H − un−1,H

(p− cH − un−1,H)
(45)

For n ≤ N − l the above inequality holds as an equality at (µ̄, p̄). Following the same

argument as above, we can use this equality to substitute for (un,H − un−1,H) / (uN,L − uN−1,L)

and rewrite (45) as an inequality similar to (36):

p
(
cH + un−1,H − cL − u∗N−1,L

)
≤ p̄

(
cH + un−1,H − cL − u∗N−1,L

)
(46)

Due to condition (39), the terms in the brackets are negative for all n ≤ N − l, so

(45) holds. Hence, (43,44) is satisfied for p ∈ (p̄, pH) and n ≤ N − l.
Next, consider the applications that are sent by high types to the market with

wage pH : n = N − l + 1, ..., N − l + n̄− 1. Using the property that for n = N − l +

1, ..., N − l + n̄− 1 condition (45) holds as an equality at pH (since in the candidate

equilibrium we are considering, high types send those applications to pH), we can

again rewrite (45) as follows:

p (cH + un−1,H − cL − uN−1,L) ≤ pH (cH + un−1,H − cL − uN−1,L) . (47)

Under condition (40), we have uN−1,L + cL < un−1,H + cH , so the inequality holds for

all p ∈ (p̄, pH).

For applications n ≥ N − l+ n̄, the L-type incentive constraint is slack (by defini-

tion of n̄) and the terms of trades for these applications are given by the unconstrained

solution, described in (27). This implies that to attract applications from high types

for which their reservation utility is given by uN−l+n̄−1, firms cannot make positive

profits. Since for all p ∈ (p̄, pH) and µ satisfying (43) firms would make positive prof-

its if they could attract applications only from high types, i.e. (1− e−µ)(vH − p) > k,
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it follows that (44) is satisfied for all n ≥ N − l + n̄.

B.2 Proof of Proposition 5

Candidate equilibrium. The logic of the argument is very close to that used to

prove Proposition 3. Consider the candidate equilibrium we constructed in the proof

of that proposition A.3 with m = m′ = N− l; that is, with the last N− l applications

and the first N− l applications sent respectively by low and high types to the pooling

market. Let us reassign the same fraction of these applications both for low and high

types to a second pooling market, with a higher wage and effective queue length.

Let n̂ > l indicate the application after which the low type switches from the first

pooling market to the second one. The low types’ application strategy consists thus

in sending the first l applications to L-type markets, where only low types are present,

the next n̂ − l applications to pooling market 1 and the last N − n̂ applications to

pooling market 2. The high types’ application strategy consists in sending the first

n̂− l to pooling market 1, the next N − n̂ applications to pooling market 2, and the

last l applications to H-type markets. We show next that the effective composition

in the two pooling markets, resulting from this reassignment, is the same. Let us

denote it by γ̄, while (µ̄1, p̄1) denote the terms of trade in the first pooling market

and (µ̄2, p̄2) those in the second pooling market.

Proceeding similarly to the proof of Proposition 3, we also indicate with τ2,H

the probability that a high type receives no wage offer strictly above p̄2. In pooling

market 2 low types send N − n̂ effective applications (since all offers received are

accepted) , while high types only send τ2,H(N−n̂) effective applications. The effective

composition in this market is thus given by the following expression, analogous to (29):

σ(N − n̂)

σ(N − n̂) + (1− σ)τ2,H(N − n̂)
=

σ

σ + (1− σ)τ2,H

Let β(N − n̂; µ̄2) denote again the probability for any of the two types of receiving

an offer in pooling market 2, with effective queue length µ̄2, when sending n ≥ 1

applications to that market. It thus follows that the effective composition in pooling

market 1 is:

σ (n̂− l) (1− β(N − n̂; µ̄2))

σ(n̂− l)(1− β(N − n̂; µ̄2)) + (1− σ)(n̂− l)τ2,H(1− β(N − n̂; µ̄2))
=

σ

σ + (1− σ)τ2,H

,
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the same as the effective compositions in pooling market 1.

The terms of trade in pooling market 1 are determined by the same condition

(24) pinning down the terms of trade in the single pooling market in Section A.3. In

pooling market 2 they are then determined as the unique solution satisfying p̄2 > p̄1

of the analogous condition:

(µ̄2, p̄2) ∈ (Πγ̄ ∩ IL(un̂−1,L, un̂,L)) . (48)

with un̂,L obtained analogously to uN,L in Section A.3. It is easy to see21 that such a

solution exists whenever n̂ is sufficiently large. The terms of trade in the high quality

markets are determined by the same procedure as in Section A.3,22 starting from the

utility attained by high types from their applications to pooling markets 1 and 2

uN−l,H = β(N − n̂, µ̄2)(p̄2 − cH) + (1− β(N − n̂, µ̄2)) β(n̂− l; µ̄1)(p̄1 − cL)︸ ︷︷ ︸
=un̂−l,H

,

and the wage p2,H lying at the intersection of the low types’ indifference curve asso-

ciated to their last application to pooling market 2 and the H-isoprofit curve.

Having found the effective queue lengths in the H-type markets, the high types’

probability of being hired in one of these markets τ2,H can be determined as a function

of γ̄ in the same way as in (28). Proceeding as in Section A.3 allows us then to prove

that a fixed point for γ̄ exists. This fixed point depends on the switching point n̂, as

do the other equilibrium variables (except for the terms of trade in the low quality

markets). In what follows we make this dependence explicit by writing the variables

as functions of n̂.

It will be useful to establish some limit properties of these variables. First,

since un̂,L is strictly increasing in n̂ and bounded above by the gains from trade

σvH +(1−σ)vL−k, the difference un̂,L−un̂−1,L converges to zero as n̂→ +∞. Given

this property and p̄2(n̂) > p̄1(n̂) > cL+un̂−1,L, condition (48) implies limn̂→+∞ µ̄2(n̂) =

+∞. The fact that the effective queue length in the second pooling market tends +∞
implies that also the effective queue lengths in the high type markets tend to +∞.23

21A solution of (48) is always given by µ̄1, p̄1. Note that the isoprofit curve of pooling market 1 is
convex while the indifference curve of the n̂-th application of the low types (sent to pooling market
1) is concave. Hence if the latter is steeper than the first one at µ̄1, p̄1, a property satisfied for n̂
sufficiently high, a second solution exists and features p̄2 > p̄1.

22In particular, see equations (27), (26) and the text immediately below them.
23Recall that the effective queue length increases in the index of the application—in this case the
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Noticing that the number of applications that high types send to these markets is

l and thus independent n̂, it follows that the probability with which high types re-

ceive an offer in one of the high type markets tends to zero as n̂ → +∞. Hence,

limn̂→+∞ τ2,H(n̂) = 1. Due to this property, the effective composition γ̄(n̂), as deter-

mined by (29) with m′ = m = n̂, tends to σ as n̂→ +∞.

No profitable deviations. Next, we need to show that there are no profitable

deviations. For wages p < p̄1(n̂) and p > p2,H(n̂) the proof in Section A.3 directly

applies. Considering wages p ∈ (p̄1(n̂), p2,H(n̂)), we want to show that for any p

in this interval, γ(p) = 1 holds except at p = p̄2(n̂). For wages in the interval

(p̄1(n̂), p̄2(n̂)) we can again apply the proof in Section A.3, conditions (39) and (40),

simply replacing N with n̂. Thereby, we obtain un̂−1,L(n̂) + cL ≥ un̂−l−1,H(n̂) + cH

and un̂−1,L(n̂) + cL < un̂−l,H(n̂) + cH , thus proving γ(p) = 1 for all p ∈ (p̄1(n̂), p̄2(n̂)).

Next, consider the interval (p̄2(n̂), p2,H(n̂)). To show γ(p) = 1 for wages in

this interval, we must prove that analogous inequalities hold: uN−1,L(n̂) + cL ≥
uN−l−1,H(n̂) + cH and uN−1,L(n̂) + cL < uN−l,H(n̂) + cH . We have argued above

that un̂,L(n̂) + cL ≥ un̂−l,H(n̂) + cH is satisfied. Using this property, we obtain:

uN−1,L(n̂) + cL = β(N − 1− n̂; µ̄2(n̂))p̄2(n̂) + (1− β(N − 1− n̂; µ̄2(n̂)))(un̂,L(n̂) + cL)

≥ β(N − 1− n̂; µ̄2(n̂))p̄2(n̂) + (1− β(N − 1− n̂; µ̄2(n̂)))(un̂−l,H(n̂) + cH)

= uN−l−1,H(n̂) + cH ,

which establishes the first inequality. To prove the second inequality, uN−1,L(n̂)+cL <

uN−l,H(n̂) + cH , it is sufficient to notice that un̂,L(n̂) = β(1, µ̄1(n̂))(p̄1(n̂) − cL −
un̂−1,L(n̂)) + un̂−1,L(n̂) holds (low types are indifferent between sending their n̂-th

application to the first or second pooling market). With β(n; ·) = β(n − 1; ·) +

(1 − β(n − 1; ·))β(1; ·), we can follow the same steps as in (41-42), Section A.3, to

establish that uN−1,L(n̂) + cL < uN−l,H(n̂) + cH holds. We thus have γ(p) = 1 for all

p ∈ (p̄1(n̂), p̄2(n̂)).

Given γ(p) = 1 for p ∈ (p̄1(n̂), p̄2(n̂)) ∪ (p̄2(n̂), pH(n̂)), the associated profits for

firms are weakly below k as long as p̄1(n̂), p̄2(n̂) ≥ vL−k is satisfied (see the argument

in Section A.3 following (30)). Given the assumption vH > v̂H , we can choose n̂

sufficiently large, and hence γ̄(n̂) sufficiently close to σ, such that p̄1(n̂) ≥ vL − k

application of high types.
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holds. By construction, we have p̄2(n̂) > p̄1(n̂), hence p̄2(n̂) ≥ vL − k holds as well.

Putting these pieces together allows us to conclude that for N sufficiently large,

we can find a threshold n̂0 sufficiently high such that there is an equilibrium with two

pooling markets for each switching point n̂ ∈ {n̂0, N − 1}.

Expected payoffs. We are now ready to prove the statement in the proposition.

Fix ε arbitrarily close to zero and let δ1, δ2 be a pair of positive numbers such that

δ1(vH − vL) +
δ2

1− δ2

k ≤ ε.

Since, as shown earlier, limn̂→+∞ µ̄2(n̂) = +∞ and limn̂→+∞ γ̄(n̂) = σ, we can find a

value for n̂ such that γ̄(n̂) < σ + δ1 and 1− e−µ̄2(n̂) > 1− δ2. In what follows we fix

then the number of applications sent to pooling market 1 to be equal to a value of n̂

such that these inequalities are satisfied. As N → +∞, the number of applications

sent to the first pooling market is then fixed to n̂− l, while the number of applications

sent to the second pooling market tends to infinity. We want to show that we can

find N large enough so that (15) holds.

Using the inequalities γ̄(n̂) < σ + δ1 and 1 − e−µ̄2(n̂) > 1 − δ2 together with the

free-entry condition imposed by (48) yields:

p̄2(n̂) > (σ + δ1)vL + (1− (σ + δ1))vH −
k

1− δ2

.

7



The level of total surplus attained by workers in equilibrium satisfies the following:

σuN,L(n̂) + (1− σ)uN,H(n̂)

> σuN,L(n̂) + (1− σ)uN−l,H(n̂)

= σ [β(N − n̂; µ̄2(n̂))(p̄2(n̂)− cL) + (1− β(N − n̂; µ̄2(n̂)))un̂,L(n̂)]

+(1− σ) [β(N − n̂; µ̄2(n̂))(p̄2(n̂)− cH) + (1− β(N − n̂; µ̄2(n̂)))un̂−l,H(n̂)]

= β(N − n̂; µ̄2(n̂))(p̄2(n̂)− σcL − (1− σ)cH)

+(1− β(N − n̂; µ̄2(n̂)))(σun̂,L(n̂) + (1− σ)un̂−l,H(n̂))

≥ β(N − n̂; µ̄2(n̂))

(
σ(vL − cL) + (1− σ)(vH − cH)− k − δ1(vH − vL)− δ2

1− δ2

k

)
+(1− β(N − n̂; µ̄2(n̂)))(σun̂,L(n̂) + (1− σ)un̂−l,H(n̂))

≥ β(N − n̂; µ̄2(n̂)) (σ(vL − cL) + (1− σ)(vH − cH)− k − ε)

+(1− β(N − n̂; µ̄2(n̂)))(σun̂,L(n̂) + (1− σ)un̂−l,H(n̂))

Since n̂ is fixed, µ̄2(n̂) is bounded and β(N − n̂; µ̄2(n̂)) tends to 1 as N → +∞
(workers send infinitely many applications to a market with a finite effective queue

length). We thus have

lim
N→+∞

(σuN,L(n̂) + (1− σ)uN,H(n̂)) ≥ σ(vL − cL) + (1− σ)(vH − cH)− k − ε.

B.3 Proof of Proposition 6

Let cH ∈ (vL − k, σvL + (1 − σ)vH − k) and consider the candidate equilibrium we

constructed in the proof of Proposition 3, with m as the number of applications low

types send to the pooling market and m′ as the number of applications high types

send to the pooling market. For any m,m′ ≥ 1 there exists a value of the wage

p̄(m,m′), queue length µ̄(m,m′) and effective fraction of low types γ̄(m,m′) in the

pooling market satisfying (24) and (29).

Next, we impose the following condition on m,m′ : for any m, let m′ be determined

as follows

m′ = arg max{m̃ ≥ 0 : β(m−m̃; µ̄(m, m̃))p̄(m, m̃)+(1−β(m−m̃, µ̄(m, m̃)))(u∗N−m,L+cL) ≥ cH}.
(49)
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This condition will play a role analogous to (11) (never satisfied when cH > vL − k).

As we show in the next paragraph, a solution to (49) always exists provided N,m are

sufficiently large so that p̄(m,m′) > cH .

This follows from the fact that, for any sequence of valuesm,m′ →∞, withm−m′

bounded (converging to some number greater or equal than 1), we have γ̄(m,m′)→ σ.

If in addition the switching point N −m→∞ we have µ̄(m,m′)→∞ and then also

p̄(m,m′) → σvL + (1 − σ)vH − k. Hence for m,m′, N −m sufficiently large and m′

m

sufficiently close to 1 we have

γ̄(m,m′)vL + (1− γ̄(m,m′))vH − k > cH (50)

and also, since σvL + (1− σ)vH − k > cH , p̄(m,m
′) > cH .

No profitable deviations. Next, we verify that firms have no incentives to deviate.

For wages p in the interval (p∗N−m,L, p̄), we can follow steps (32-36), replacing l with

N −m, to establish that γ(p) = 1 and hence no deviation to wages in this range is

profitable. The analogous condition to (37) is u∗N−m−1,L + cL < cH + un−1,H for all

n = 1, ..., N , which follows from

u∗N−m−1,L + cL < vL − k < cH ,

and holds then for all N−m. Hence the switching point to the pooling market N−m
can now take an arbitrarily large value.

Consider next wages p ∈ (p̄, pH), Since m′ satisfies (49), we have

uN−m′,L + cL = β(m−m′; µ̄)p̄+ (1− β(m−m′, µ̄))(u∗N−m,L + cL) ≥ cH .

Hence, proceding similarly as in (38), we obtain:

uN−1,L + cL = β(m′ − 1; µ̄)p̄+ (1− β(m′ − 1; µ̄))(uN−m′,L + cL)

≥ β(m′ − 1; µ̄)p̄+ (1− β(m′ − 1; µ̄))cH

= um′−1,H + cH ,

the analogue of condition (39) in our candidate equilibrium, saying that the reserva-

tion utility for the last application sent to the pooling market is greater for the low

than for the high types.
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The analogue of (40) in our candidate equilibrium is uN−1,L + cL < um′,H + cH ,

requiring that the reservation utility for the last application sent by low types to the

pooling market is smaller than the one for the first application sent by high types to

a high quality market. Since m′ is the largest value of m̃ satisfying the inequality in

(49), we have

uN−m′−1,L+cL = β(m−(m′+1); µ̄)p̄+(1−β(m−(m′+1), µ̄))(u∗N−m,L+cL) < cH . (51)

We proceed then similarly as in (42) to obtain:

uN−1,L + cL = β(m′ − 1; µ̄)p̄+ (1− β(m′ − 1; µ̄))(uN−m′,L + cL)

= β(m′; µ̄)p̄+ (1− β(m′; µ̄))(uN−m′−1,L + cL)

< β(m′; µ̄)p̄+ (1− β(m′; µ̄))cH

= um′,H + cH ,

where the inequality sign follows from (51). This establishes the analogue of (40) we

intended to show.

Having shown these properties, we can follow the steps of the proof of Proposition

3, conditions (43-47), to show that γ(p) = 1 for all p ∈ (p̄, pH). To show that

no deviation to a wage in this interval is profitable it remains then to show that

η(µ(p))(vL−p) ≤ k holds for µ(p) satisfying (µ(p), p) ∈ IL(uN−1,L, uN,L). This is true

since p̄ ≥ vL − k, always holds here, as p̄ > cH and cH > vL − k.

The non profitability of deviations to wages p < p∗N−m,L and p > pH follows then

directly by the same argument as in the proof of Proposition 3.

Expected payoffs. In the next and final step, we use a similar argument as in the

proof of Proposition 5, taking the switching point for low types to the pooling market

large enough. Fix ε arbitrarily close to zero and let δ be a positive number such that

δ

1− δ
k < ε. (52)

Recalling that µ∗n−1,L → +∞ as n → +∞, let the low types’ switching point to the

pooling market N −m be the smallest number κ satisfying 1 − e−µ∗κ,L ≥ 1 − δ. For

δ small, this condition implies p̄ ≥ cH as long as N is sufficiently large. Having set

N −m = κ, we can write all equilibrium variables as a function of N . For any N ,
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the number of applications low types send to the pooling market is m = N − κ and

the number of applications high types send to the pooling market, m′(N − κ), is

determined by (49).

We consider then N → +∞. Since (µ̄(N − κ), p̄(N − κ)) lies on the indifference

curve associated to the κ-th application of the low types, as N → +∞ both µ̄(N −κ)

and p̄(N − κ) tend to a finite limit. This implies that also m − m′ = N − κ −
m′(N − κ) has a finite limit as N → +∞.24 Hence limN→+∞m

′(N − κ) = +∞ and

limN→+∞
m′(N−κ)
N−κ = 1. Also limN→+∞ γ̄(N − κ) = σ.

Using the above properties, we want to show that we can find N large enough so

that (16) holds. Since L-type workers send their κ+1-th application to the pooling

market which features a higher effective queue length than their κ-th application,

sent to a low market, we have

η(µ̄(m)) > η(µκ,L) ≥ 1− δ.

Together with the free-entry condition η(µ̄(m))(γ̄(m)vL + (1− γ̄(m))vH − p̄(m)) = k,

this implies:

lim
N→+∞

p̄(N − κ) = σvL + (1− σ)vH − lim
N→+∞

k

η(µ̄(N − κ))
≥ σvL + (1− σ)vH −

k

1− δ
.

Taking then the limit of the expression of total surplus in equilibrium, as N → ∞,

we obtain:

lim
N→+∞

(σuN,L(N) + (1− σ)uN,H(N))

≥ lim
N→+∞

(σuN,L(N) + (1− σ)uN−κ,H(N − κ))

= lim
N→+∞

(
σ
[
β(N − κ); µ̄(N − κ))(p̄(N − κ)− cL) + (1− β(N − κ); µ̄(N − κ)))u∗κ,L(N − κ)

]
+(1− σ)β(N − κ; µ̄(N − κ))(p̄(N − κ)− cH)

)
= lim

N→+∞
p̄(N − κ)− σcL − (1− σ)cH

≥ σ(vL − cL) + (1− σ)(vH − cH)− k − δ

1− δ
k

> σ(vL − cL) + (1− σ)(vH − cH)− k − ε
24Take m,N large enough so that a solution to (49) exists. Let then N → +∞ so that also

m = N − κ→ +∞. The solution for m′ obtained from (49) is such that m−m′ is either unchanged
or decreases.
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where we used limN→+∞ β(N−κ); µ̄(N−κ)) = 1 and, in the last inequality, condition

(52). Hence this proves that (16) is satisfied.

Appendix C Equilibrium Definition

Definition 2. An equilibrium is a measure of vacancies φ, a distribution of wages F ,

application distributions (GL, GH), effective queue lengths µ(p), and effective queue

compositions γ(p) such that

1. For any n ∈ {1, . . . , N} and p ∈ F , λn,L (p) satisfies

φ

∫ p

0

λn,L (p′) dF (p′) = σGn,L (p)

and λn,H (p) satisfies

φ

∫ p

0

λn,H (p′) dF (p′) = (1− σ)Gn,H (p) .

2. For any i ∈ {L,H}, n ∈ {1, . . . , N}, and p ∈ F , µn,i (p) satisfies

µn,i (p) = λn,i (p)

∫
Fn−1

N∏
j=n+1

(
1− 1− e−µ(pj)

µ (pj)

)
dG−n,i (p−n; p) .

3. For any p ∈ F , µ (p) satisfies

µ (p) =
N∑
n=1

∑
i=L,H

µn,i (p) .

4. For any p ∈ F , γ (p) must satisfy

γ (p) =

∑N
n=1 µn,L (p)

µ(p)
.
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5. For any i ∈ {L,H} and n ∈ {1, . . . , N}, every p ∈ supp Gn,i solves

un,i =
1− e−µ(p)

µ (p)
(p− ci − un−1,i) + un−1,i.

6. For any p ∈ P\F , µ (p) solves

un,i ≥
1− e−µ(p)

µ (p)
(p− ci − un−1,i) + un−1,i (53)

with weak inequality for any (n, i), and with equality for at least one (n, i) if

µ(p) > 0.

7. For any p ∈ P\F , γ (p) satisfiesγ (p)µ (p) = 0 if (53) holds with strict inequality for i = L and all n

(1− γ (p))µ (p) = 0 if (53) holds with strict inequality for i = H and all n

8. Any p ∈ F solves

(
1− e−µ(p)

)
[γ (p) vL + γ (p) vH − p] = π∗ ≡ max

p′

(
1− e−µ(p′)

)
[γ (p′) vL + γ (p′) vH − p′] .

9. φ ≥ 0 and π∗ ≤ k, with complementary slackness.
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