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Abstract

The Ellsberg experiments provide an intuitive illustration that the
Savage approach, which reduces subjective uncertainty to risk, is not
rich enough to capture many decision makers' preferences. Exper-
imental evidence suggests that decision makers reduce uncertainty
to compound risk. This work presents a theoretical model of deci-
sion making in which preferences are de�ned on both Savage subjec-
tive acts and compound objective lotteries. Preferences are two-stage
probabilistically sophisticated when the ranking of acts corresponds
to a ranking of the respective compound lotteries induced by the acts
through the decision maker's subjective belief. This family of pref-
erences includes various theoretical models that have been proposed
in the literature to accommodate non-neutral attitude towards ambi-
guity. The principle of calibration, which was used by Ramsey and
de Finetti, allows an outside observer to relate preferences over acts
and compound objective lotteries. If preferences abide by the cali-
bration axioms, the evaluation of the compound lottery induced by
an act through the subjective belief coincides with the evaluation of
the corresponding compound objective lottery. Calibration provides
a foundation to formalize and understand the tight empirical associa-
tion between probabilistic sophistication and reduction of compound
lotteries, for all two-stage probabilistically sophisticated preferences.
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1 Introduction

One of the most important theoretical implications of the standard model of
decision-making under uncertainty, is the possibility to reduce uncertainty
to risk. Savage's theory of subjective expected utility distilled early ideas of
Ramsey and de Finetti to provide testable behavioral axioms, which allow
a modeler to derive subjective probabilities from preferences over acts. The
theory implies that the information about the likelihood of events matters
only to the extent that it a�ects the decision maker's subjective probability
assessments, and does not leave any room for the decision maker's con�dence
in those probabilistic assessments. This result was further generalized by
Machina and Schmeidler [28, 29] by relaxing the expected utility component,
and focusing on the probabilistic sophistication component of behavior.
Ellsberg's [12] thought experiments challenged this conclusion: in a se-

ries of ingenious and intuitive experiments he showed that decision makers'
con�dence in the likelihood of events, or as it is often called the degree of
ambiguity, plays a fundamental role in determining their choices. One way
to summarize his results is that \there are uncertainties that are not risks"
[12]. Following this line of thought several axiomatic models that generalize
subjective expected utility have been proposed. They all have in common a
primitive distinction between uncertainty and risk.
During the years since Ellsberg's paper, several researchers have ques-

tioned this accepted distinction between risk and uncertainty as the one un-
derlying ambiguity aversion. Smith [38] was the �rst to conjecture that most
decision makers who are ambiguity averse in Ellsberg's examples, would pre-
fer a simple one-stage lottery to a compound objective lottery. If this would
be the case, he wrote, we should ask \are there risks that are not risks?"
[38]. Kahneman and Tversky [24] (in an early draft of their Prospect Theory
contribution) conjectured that understanding of the Ellsberg paradox relies
on decision makers' preferences being de�ned over higher-order risks. Segal
[35, 36] showed that if a decision maker views the Ellsberg urn as a com-
pound lottery, and uses non-expected utility (in which she does not multiply
probabilities according to the laws of probability) then behavior consistent
with ambiguity aversion may result. Robson [31] and Halevy and Feltkamp
[23] provide an evolutionary and behavioral rationals for uncertainty aversion
that rely on a perception of an ambiguous lottery as composed of positively
correlated risks, with higher-order uncertainty.
Modern experimental literature provides support for this perspective.
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Halevy [22] establishes a direct empirical link between decision makers' choices
over objective compound lotteries and their attitudes towards ambiguity. A
decision maker is said to satisfy the reduction of compound lotteries (ROCL)
if her preferences depend only on the probabilities of �nal outcomes, which
she calculates by multiplying probabilities according to the laws of probabil-
ity. Halevy reports that decision makers who reduce compound objective lot-
teries are found to be neutral to ambiguity. That is, they reduce uncertainty
to risk. Furthermore, decision makers whose preferences over compound lot-
teries do not abide by the reduction axiom, have attitude towards ambiguity
that is generally consistent with a view of the ambiguous lottery as a com-
pound lottery. Halevy's �nding were replicated, strengethed and generalized
by Chew, Miao and Zhong [7], Gillen et al [19], Dean and Ortoleva [10], and
have been shown to persist in a representative sample of the US population
(Chapman et al [6]).1 The experimental association between ROCL and at-
titude to ambiguity suggests that in order to understand ambiguity, we must
link the DM's preferences over these two domains: compound lotteries and
acts (i.e., mappings from states of nature to outcomes). This is in contrast
to the standard approach in the literature which focuses only on the DM's
preferences over acts to derive representations of ambiguity averse behavior.2

In order to model and gain insight into the empirical link between ROCL
and ambiguity aversion, we extend the domain of the DM's preferences to
include the union of compound lotteries and Savage-acts. This extended
domain is just su�cient for our purposes, since if we �x a set of probability
measures over the state space, and consider a probability distribution over
the measures in this set, each act induces a compound lottery. The induced
compound lottery is constructed by �rst converting the act into a simple
lottery with respect to each measure in the set, and then assigning to each
such lottery the probability associated with the corresponding distribution.
We present a new property of preferences called Two-Stage Probabilistic

Sophistication (2SPS). A decision maker's preferences satisfy 2SPS if there

1Abdellaoui et al [1] document that among graduate French engineers the association
is not as tight as found in other studies.

2Evren [17], like Machina and Schmeidler [29], takes the union of preferences over acts
and simple lotteries as primitive. Restricting attention to recursive preferences as in Segal
[35], he identi�es ambiguity aversion over acts with a property similar to Dillenberger's
[11] preference for one-shot resolution of uncertainty and shows its relation to negative
certainty independence axiom [11]. Since the primitives do not include compound lotteries,
the paper is silent about two-stage probabilistic sophistication.
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exists a set of probability measures over the state space (given objectively
from the structure of the act), and a �xed subjective probability measure
over the measures in this set (representing the DM's belief over the mea-
sures), such that the DM is indi�erent between acts that induce the same
compound lottery. That is, a DM who satis�es 2SPS reduces all uncertainty
to compound risk. A DM who reduces all uncertainty to simple risk is Proba-
bilistically Sophisticated (Machina and Schmeidler [28]), which is frequently
used as a benchmark for ambiguity neutrality (Epstein [13]). 2SPS general-
izes probabilistic sophistication, and allows for behavior that is non-neutral
with respect to ambiguity, without restricting the utility function used to
evaluate each stage of the compound lottery.
We show that 2SPS is a consequence of two new behavioral axioms called

Calibration and First-Stage Probabilistic Beliefs. These axioms are very
much in the spirit of Ramsey and de Finetti who used simple lotteries in order
to calibrate the decision maker's subjective beliefs. Sarin and Wakker [33]
used the calibration approach in order to provide foundations for subjective
expected utility by calibrating Savage acts to one-stage lotteries. We use a
similar methodology by calibrating Savage acts to compound lotteries. We
show that if, in addition to Calibration and First-Stage Probabilistic Beliefs,
preferences satisfy ROCL then they must be Probabilistically Sophisticated,
and thus can not display ambiguity averse behavior. This result establishes
the formal link between ROCL and ambiguity neutrality.
An equivalent statement of the result is that non-neutral attitude to am-

biguity implies violation of ROCL. From a normative perspective, some may
view the latter as a \mistake" and the former as \rational" choice behavior.
Empirical evidence (as in [22, 7]) suggests that not only ROCL fails, but
also that the ambiguity attitude of decision makers is closely associated to
the form in which it fails. Our approach relies on this empirical evidence.
Moreover, we do not consider calibrating the choices in the subjective and
the objective domains as necessarily contradicting the above normative view.
To the contrary, the normative foundations for ambiguity aversion may shed
light on why and how decision makers violate reduction.
As a by-product, our work also provides a methodology for obtaining

straightforward foundations for several representations that have been pro-
posed in the literature. Calibration and First-Stage Probabilistic Beliefs al-
low to translate the structure imposed on preferences over compound lotteries
to preferences over subjective acts. Using this method we provide alternative
foundations for the recursive expected utility (REU) model (Klibano�, Mari-
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nacci and Mukerji [26], Nau [30], Ergin and Gul [16], Ahn [2] and Seo [37]),
and can provide similar foundations for the recursive nonexpected utility
(RNEU) model. Our axioms are simple to understand and are based entirely
on observable choices. They are not constrained to one functional form,
and are therefore consistent with the empirical evidence reported in Halevy
[22] and Chew et al [7] of non-uniform association between preferences over
compound lotteries and attitudes to ambiguity.
Finally, we present a thought experiment, in the spirit of Ellsberg's (also

Epstein [14] and Epstein and Halevy [15]), of a preference relation that is
not two-stage probabilistically sophisticated. Beyond demonstrating that the
property of 2SPS is refutable, it suggests that the current models of ambiguity
might lack the necessary hierarchical structure, that will allow one to capture
ambiguity at an arbitrary level.

2 Framework

Let C be an arbitrary set of consequences (prizes). L1 is the set of all sim-
ple objective lotteries. Elements of L1 are denoted by X, Y; etc. A simple
lottery that yields xj 2 C with probability qj for j = 1; 2; :::;m is denoted
by (x1; q1; : : : ;xm; qm) : L2 is the set of all compound objective lotteries. El-
ements of L2 are denoted by L1; L2; etc. A compound lottery that yields
the simple lottery Xj with probability pj for j = 1; 2; :::; n is denoted by
(X1; p1; : : : ;Xn; pn) : Simple lotteries can be associated with two subsets of
compound lotteries. The �rst is the set of compound lotteries that are de-
generate in the �rst stage. We refer to this set as � � f(X; 1) : X 2 L1g :
The second is the set of compound lotteries that are degenerate in the second
stage. We refer to this set as
� � f((x1; 1) ; p1; :::; (xn; 1) ; pn) : X = (x1; p1; : : : ;xn; pn) 2 L1g : For X 2 L1
the elements of � and � that correspond to a given simple lottery X are
denoted by �X and 
X respectively.
Denote by 
 the (�nite) state space, and by � the set of events. � (
)

is the set of probability measures on (
;�) ; and � (� (
)) is the set of all
probability measures with �nite support on � (
) :
An act is a function f : 
 ! C; measurable with respect to � and

assumed to have �nite range. Denote by F the set of all acts. Given a
partition fS1; :::; Smg of 
; an act that yields xi 2 C on event Si is denoted
by (x1; S1; :::;xm; Sm) :
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The set of all gambles is given by G = F[L2: Let% be a binary relation on
G: This is the minimal domain in which the decision maker can conceivably
compare compound lotteries and acts. One can imagine a larger domain (as in
Anscombe and Aumann's [3] original work) where preferences are de�ned over
roulette-lotteries on horse-race acts, whose outcomes are roulette-lotteries
(this domain is used by Seo [37]). Naturally, axioms in this domain are
stronger. However, it includes objects that are not part of most standard
choice problems. Hence, the behavioral implication of axioms there may not
be transparent. We chose a minimal domain, where the axioms' behavioral
implication are easily veri�able.
We make two preliminary assumptions over the binary relation % :

Axiom 1 (Weak Order) % on G is complete and transitive.

Though Weak Order is a standard axiom, note that in this framework it
requires the decision maker (DM) to compare compound lotteries and acts.
The following axiom requires that the DM is indi�erent between a degenerate
compound lottery that gives with probability one the lottery in which the
outcome x is received with probability one and a degenerate act that gives x
in every state.

Axiom 2 (Degenerate Lottery/Act Equivalence) For every x 2 C; �(x;1) �
(x;
) :

Using the previous axiom sometimes we write x � y where x and y may
refer to either degenerate compound lotteries or degenerate acts. To rule out
the trivial cases, assume that there exist two prizes x�; x� such that x

� � x�:

3 Preferences over Compound Lotteries

This subsection presents axioms only on compound (two-stage) objective
lotteries (L2).
The �rst axiom requires that there exists a function that represents the DM's
preferences over compound lotteries3.

3Representation over compound lotteries can be derived by adding appropriate conti-
nuity axiom to the weak order axiom.
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Axiom 3 (Representation over compound lotteries) There exists W : L2 !
R that represents % over compound lotteries.

Generalizing monotonicity of preferences with respect to �rst order stochas-
tic dominance to compound lotteries is not transparent, and is required to
state our main result below. We employ a de�nition suggested by Segal [36]
that generalizes the standard de�nition of �rst-order stochastic dominance.

De�nition 1 Let L1 = (X1; p1; : : : ;Xn; pn) and L2 = (Y1; q1; : : : ;Y`; q`) be
two compound lotteries. L1 (strictly) dominates L2 by two-stage stochastic
dominance if and only if for every V : L1 ! R which is strictly increas-
ing with respect to �rst-order stochastic dominance,

Pn
i=1 piV (Xi) (>) �P`

i=1 qiV (Yi) :

The following axiom requires monotonicity of preferences over compound
lotteries with respect to two-stage stochastic dominance.

Axiom 4 (Two-stage Stochastic Dominance) If the compound lottery L1
(strictly) dominates the compound lottery L2 by two-stage stochastic dom-
inance then L1 (�) � L2:

The distinction between two-stage and one-stage lotteries disappears if
we assume that DMs care only about the ultimate probabilities of getting
various prizes. The following axiom (Segal, [36]) formalizes this:

Axiom 5 (Reduction of Compound Lotteries) Let Xi =
�
xi1; q

i
1; :::;x

i
mi
; qimi

�
for i = 1; :::; n and L = (X1; p1; :::;Xn; pn) : De�ne

R (L) =
�
x11; p1q

1
1; :::;x

1
m1
; p1q

1
m1
; :::;xn1 ; pnq

n
1 ; :::;x

n
mn
; pnq

n
mn

�
:

Then L � �R(L) = (R (L) ; 1) :

If the DM satis�es the Reduction of Compound Lotteries Axiom (ROCL),
then she multiplies probabilities of �nal outcomes according to the laws of
probability and is indi�erent between any compound lottery and the result-
ing one stage lottery.4 Note that ROCL is a property of preferences over

4Strictly speaking, preferences are de�ned only on compound lotteries. There are two
distinct subsets of compound lotteries which naturally correspond to one-stage lotteries,
�;� � L2. It does not matter which one of these sets is used in stating ROCL, since
L � �R(L) for all L, L � 
R(L) for all L:
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compound lotteries, and by itself does not restrict preferences over Savage
acts. Experimentally, however, we know that there is a strong connection
between ROCL and ambiguity neutrality { a property of preferences over
acts. We pursue this connection in Section 5.

4 Preferences over Acts: Two-Stage Proba-

bilistic Sophistication

In Savage's theory of Subjective Expected Utility [34] the evaluation of an
act can be decomposed into two components. The DM holds beliefs over the
state space and converts any act into a lottery over outcomes using this belief.
This lottery is then evaluated according to expected utility. Machina and
Schmeidler [28, 29] generalized Savage's theory by characterizing preferences
over acts where the �rst component is retained (that is, the DM converts acts
to lotteries using a consistent belief), but does not necessarily evaluate the
resulting lotteries according to expected utility. These preferences, referred to
as probabilistically sophisticated, achieve separation of beliefs from utilities
without imposing the additional requirements of expected utility. Next, we
present the formal de�nition of probabilistic sophistication.

De�nition 2 Let � 2 �(
) : Denote by ��;f the lottery induced by the act
f = (x1; S1; :::;Xm; Sm) through the measure � : ��;f = (x1; � (S1) ; :::;xm; � (Sm)) :
% on acts is probabilistically sophisticated if there exists a probability mea-
sure � 2 �(
) and a functional eV : � (X ) ! R increasing with respect to
�rst-order stochastic dominance such that

f % g , eV (��;f ) � eV (��;g)
where 	�;f ;	�;g 2 �(X ) are probability distributions induced from f and g
through the measure �:

Probabilistically sophisticated preferences de�ned above rule out aversion
to uncertainty (or ambiguity) as observed in Ellsberg type experiments5. An-
other perspective on probabilistic sophistication is that it reduces uncertainty

5Monotonicity with respect to �rst-order stochastic dominance is required for the typi-
cal behavior in Ellsberg to contradict the existence of probabilistically sophisticated belief.
There exist de�nitions of probabilistic sophisticated preferences that do not require this
monotonicity (Grant [20], Chew and Sagi [8]), but since our interest stems from studying
ambiguity averse decision makers, and monotonicity is a normatively mild assumption, we
retain it throughout.
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to one-stage risk, ruling out ambiguity aversion (Epstein, [13]). Note that
Machina and Schmeidler [28] do not include in their domain objective lotter-

ies. Hence, it is conceivable that the decision maker uses eV (�) to evaluate the
lottery induced by an act, but a di�erent V (�) to evaluate objective lotteries.
This possible distinction disappears in Machina and Schmeidler's later work
[29], which derives probabilistic sophisticated preferences in an Anscombe-

Aumann domain that includes objective lotteries, as eV (�) coincides with
V (�).6
A more general class of preferences that reduce uncertainty to compound

risk can accommodate non-neutral attitudes towards ambiguity in a natural
way.

De�nition 3 Let � 2 �(� (
)) ; that is - there are �1; :::; �n 2 �(
) such
that � (�j) > 0 and

Pn
j=1 � (�j) = 1: Denote by 	�;f the compound lottery in-

duced by the act f = (x1; S1; :::;Xm; Sm) through � : 	�;f = (X1; � (�1) ; :::;Xn;� (�n))
where Xj = (x1; �j (S1) ; :::;xm; �j (Sm)) : % on acts satis�es Two-Stage Prob-
abilistic Sophistication (2SPS) if there exists a probability measure � 2 �(� (
))
and a functional fW : � (� (X )) ! R increasing with respect to two-stage
stochastic dominance such that

f % g , fW (	�;f ) � fW (	�;g)

	�;f ;	�;g 2 �(� (X )) are compound lotteries induced from the acts f and
g through �:

A decision maker's preferences satisfy 2SPS if every Savage-act induces
a compound lottery through �, such that the ranking of acts corresponds to
the ranking of the compound lotteries induced by those acts using a utility
function fW (�). Furthermore, although formally not part of our de�nition of
2SPS, in actual choice problems a modeler would consider only the �rst-stage
lotteries that are consistent with the objective description of the state space.
If preferences over acts are represented by either the Recursive Expected

Utility (REU) or Recursive Non-Expected Utility (RNEU) models then they

6It is our impression that even in their 1992 paper, Machina and Schmeidler [28] in-
tended that the utility function used to evaluate the lottery induced by an act coin-
cides with the utility function used to evaluate objective lotteries. Otherwise, they would
not have motivated their representation as capable to accommodate Allais type behavior
(which is in the domain of objective lotteries).
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are 2SPS. To clarify this point consider �rst REU.7 In this model

fW (	�;f ) = E��
�
E�j

�
u2 (f)

��
=

nX
j=1

u1

 
CE

 
mX
i=1

u2 (f (si)) �j (si)

!!
� (�j) (1)

where ur : C ! R (r = 1; 2) is increasing with respect to preferences over
outcomes, � = u1 � (u2)�1 and CE denotes the certainty equivalent with
respect to u2.
In the Recursive Non-Expected Utility model (Segal [35]) fW (	�;f ) can

be written as follows. Let ��;f be a lottery that gives CE
�
V
�
��j ;f

��
with

probability � (�j) where CE denotes the certainty equivalent with respect
to V and V : L1 ! R is increasing with respect to �rst-order stochastic
dominance. Then, fW (	�;f ) = V (��;f ) (2)

Preferences that can be represented by (1) and (2) are both increasing with
respect to two-stage stochastic dominance and thus they are both 2SPS.8

To describe the Maxmin Expected Utility (MEU) model (Gilboa and
Schmeidler [18], Casadesus-Masanell, Klibano� and Ozdenoren [4]) consider

fW (	�;f ) = min
�2co(supp(�))

mX
i=1

u (f (si)) � (si) (3)

However, this representation is not strictly increasing with respect to two-
stage stochastic dominance. This is because if we improve (in the sense of
�rst order stochastic dominance) a second stage lottery that does not receive

the minimum expected utility, then the value of fW does not change.
As in the de�nition of Probabilistic Sophistication, one can conceivably

imagine that the decision maker uses fW (�) to evaluate the compound lot-
tery induced by the acts, while using a di�erent W (�) to evaluate compound
lotteries. Indeed, this is the interpretation taken by previous work that main-
tained the traditional distinction between risk and uncertainty, even when
applied to reduction of compound lotteries. For example, Klibano� et al 's
[26] preferred interpretation is that reduction of compound lotteries holds for

7The REU functional form has been axiomatized by Klibano� et al [26], Ergin and Gul
[16], Nau [30] and Seo [37]. In each case, the domain of preferences includes simple acts
but includes other choice objects (that varies across di�erent representations.)

8If u1 � u2 then REU reduces to SEU. If V is linear in probabilities then RNEU reduces
to SEU.
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W (�) ; but fails for fW (�). Our axioms below, as in Machina and Schmeidler
[29], impose restrictions on the relations between the two functions.

5 Calibration

The following two axioms establish the essential connection between prefer-
ences over compound objective lotteries and acts, which is the focus of this
study. The relation over these two domains was established experimentally in
Halevy [22], and the current paper provides its theoretical foundation. The
connection between the two domains of preferences, acts and compound lot-
teries is made through two calibration axioms. Axiom 6 (Calibration) makes
the connection between subjective bets and compound lotteries where the
second stage consists of objective bets. Axiom 7 (First-Stage Probabilistic
Beliefs) extends the calibration to arbitrary acts.

Axiom 6 (Calibration) There exists a strictly positive probability measure
p = (p1; : : : ; pn) such that for all disjoint events S and S

0; there exist com-
pound lotteries (X1; p1; : : : ;Xn; pn) and (X

0
1; p1; : : : ;X

0
n; pn) with

(x�; S;x�; S
c) � (X1; p1; : : : ;Xn; pn) ;

(x�; S 0;x�; S
0c) � (X 0

1; p1; : : : ;X
0
n; pn)

where Xj = (x
�; qj;x�; (1� qj)) and X 0

j =
�
x�; q0j;x�;

�
1� q0j

��
for j 2 f1; :::; ng

with qj + q
0
j � 1 and�

x�; S [ S 0;x�; (S [ S 0)c
�
� (X 00

1 ; p1; : : : ;X
00
n; pn)

where X 00
j =

�
x�; qj + q

0
j;x�;

�
1� qj � q0j

��
for j 2 f1; :::; ng :

Figure 1 illustrates the Calibration Axiom that incorporates two require-
ments. First, the axiom guarantees the existence of a �xed �rst-stage prob-
ability measure such that the DM is indi�erent between any subjective bet
and some compound lottery over objective bets with these �xed �rst-stage
probabilities. Second, the axiom requires that probabilities at the second-
stage are additive. That is, the DM is indi�erent between a bet on the union
of two disjoint events and a compound lottery that additively aggregates the
winning probabilities of the corresponding compound lotteries at the second-
stage.
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p1 p j pn
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... ...S SC

*x*x

~
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*x*x
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... ...
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( )CSS '∪'SS ∪ p1 pj pn

qj+q'j 1­qj­q'j

... ...

*x *x

~φ=∩ 'SS

... ...

... ...

... ...

AND

Figure 1: The Calibration Axiom

Axiom 7 (First-Stage Probabilistic Beliefs) Suppose that S1; :::; Sm is a par-
tition of 
 such that�

x�; Sj;x�; S
c
j

�
�
�
X1
j ; p1; : : : ;X

n
j ; pn

�
where Xk

j =
�
x�; qkj ;x�;

�
1� qkj

��
for j = 1; :::;m and k = 1; :::; n withPm

j=1 q
k
j � 1: Then

(x1; S1; :::;xm; Sm) � (X1; p1; : : : ;Xn; pn)

where Xk =
�
x1; q

k
1 ; : : : ;xm; q

k
m

�
:

Figure 2 illustrates the First-Stage Probabilistic Beliefs Axiom. Fix a
partition of the state space. Suppose that for each element of this parti-
tion, the decision maker is indi�erent between a bet on this element and a
compound lottery, where the �rst-stage is constant across elements in this
partition, and the second stage are bets. It is intuitive to think of the second-
stage probabilities of winning the bets as possible probability assessments of
the corresponding event. Indeed, the axiom requires that the DM's prefer-
ences are consistent with respect to these probability assessments. Formally,
consider a general act, that gives a di�erent outcome on each event in the
partition. Consider also a compound lottery, where the �rst-stage is iden-
tical to the �rst-stage above and the second-stage lotteries are obtained by
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Figure 2: First-Stage Probabilistic Beliefs

assigning to each outcome the corresponding probability assessment of the
event on which this outcome is attained. The axiom requires that the DM is
indi�erent between the act and this induced compound lottery.

Theorem 1 shows that Calibration and First-Stage Probabilistic Beliefs
(together with the rest of the axioms) imply 2SPS, which captures heteroge-
nous ambiguity attitudes. That is, if the decision maker's preferences satisfy
our calibration axioms then for every Savage-act, there exists an indi�er-
ent compound objective lottery, such that its �rst-stage represents the DM's
assessments of possible probability distributions over the state space (and
therefore is constant across acts). Therefore, the DM is 2SPS. Moreover,
the Theorem establishes theoretically the empirical link between ROCL and
probabilistic sophistication, independently of a speci�c functional represen-
tation of preferences.

Theorem 1 Suppose % satis�es 1, 2, 3, 4, 6 and 7.

1. Preference over acts satis�es two-stage probabilistic sophistication andfW (�) � W (�).
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2. Reduction of Compound Lotteries (Axiom 5) implies probabilistic so-
phistication. In other words, if preferences over acts are not probabilis-
tically sophisticated then reduction fails.

Proof. Fix an event S in �: By the Calibration Axiom (Axiom 6) there
exist two-stage lotteries

(X1; p1; : : : ;Xn; pn) and (X
0
1; p1; : : : ;X

0
n; pn)

where Xj = (x
�; qj;x�; 1� qj) and X 0

j =
�
q0j; x

�;x�; 1� q0j
�
for j 2 f1; :::; ng

satisfying
(x�; S;x�; S

c) � (X1; p1; : : : ;Xn; pn) ;

(x�; Sc;x�; S) � (X 0
1; p1; : : : ;X

0
n; pn)

and
(x�;
) � (X 00

1 ; p1; : : : ;X
00
n; pn)

where X 00
j =

�
x�; qj + q

0
j;x�; 1�

�
qj + q

0
j

��
for j 2 f1; :::; ng : This implies

that either qj + q
0
j = 1 or pj = 0: To see this, suppose that pj > 0 and

qj+ q
0
j < 1 for some j: Then by Degenerate Lottery/Act Equivalence Axiom,

(x�;
) � (X; 1) where X = (x�; 1) : Note that by Two-Stage Stochastic
Dominance we know that (X; 1) � (X 00

1 ; p1; : : : ;X
00
n; pn) � (x�;
) which is a

contradiction. Moreover, by the Calibration Axiom pj > 0, so it must be
that qj + q

0
j = 1: Now let Pj (S) = qj: If S and S

0 are disjoint events then
by the Calibration Axiom (Axiom 6), Pj (S [ S 0) = Pj (S) + Pj (S

0) which
proves that Pj is additive.
De�ne the probability measure � in � (� (
)) by � (Pj) = pj:
Fix an act f = (x1; S1; :::;xm;Sm) : Use axiom 6 to inductively construct

(x�; S1 [ � � � [ Si�1;x�; (S1 [ � � � [ Si�1)c) �
�
X�
1;i�1; p1; : : : ;X

�
n;i�1; pn

�
where

X�
j;i�1 =

�
x�; q�j;i�1;x�; 1� q�j;i�1

�
;

(x�; Si;x�; S
c
i ) � (X1;i; p1; : : : ;Xn;i; pn)

where
Xji = (x

�; Pj (Si) ; x�; 1� Pj (Si))
and

(x�; S1 [ � � � [ Si;x�; (S1 [ � � � [ Si)c) � (X 00
1i; p1; : : : ;X

00
ni; pn)
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where
X 00
ji =

�
x�; q�j;i�1 + Pj (Si) ; x�; 1�

�
q�j;i�1 + Pj (Si)

��
and q�j;i = q

�
j;i�1 + Pj (Si) : Note that

Pj (S1 [ � � � [ Si�1)
= Pj (S1 [ � � � [ Si�2) + Pj (Si�1)
= q�j;i�2 + Pj (Si�1)

...

=
i�1X
k=1

Pj (Sk) :

So Pj (S1 [ � � � [ Sm) =
Pm

k=1 Pj (Sk) � 1 for j = 1; :::; n: Now let Xj =
(x1; Pj (S1) ; :::;xm; Pj (Sm)) ; and let L1 = (X1; p1; ::;Xn; pn) : By Axiom 7,
(x1; S1; :::;xm; Sm) � L: But note L1 is the two stage lottery induced by �
and f;i.e., L1 = 	�;f : Repeat the construction for an arbitrary act g, and
similarly construct the two-stage lottery induced by � and g - 	�;g. Therefore

f � g if and only if fW (	�;f ) = W (	�;f ) � W (	�;g) = fW (	�;g) : Finally,fW is increasing with respect to second-order stochastic dominance follows
directly from Axiom 4, which proves part (1).
Now de�ne the probability measurem 2 �(
) so thatm (S) =

Pn
j=1 pjPj (S).

If Reduction holds then 	�;f � R (	�;f ) : But note that R (	�;f ) is the proba-
bility measure induced from f using m; i.e., R (	�;f ) = �m;f : For any lottery
X de�ne V (X) = W (�X) : Since reduction holds, V (�m;f ) = W

�
��m;f

�
=

W (	�;f ) : Therefore f � g if and only if V (�m;f ) � V (�m;g) : Moreover,
by Theorem 5 in Segal [36] V must be increasing with respect to �rst-order
stochastic dominance, proving part (2).
In Appendix A we demonstrate the usage of this framework and axioms.

We start from a REU representation of preferences over compound lotteries
(one may be obtained from Kreps and Porteus [27] or Segal [36]). Using
the calibration and second order probabilistic belief axioms we show that
preferences over Savage-acts can be represented by the recursive structure
suggested recently [26, 16, 30, 37]. The advantage of this representation is
that it explicitly builds on the relation between preferences over compound
objective lotteries and Savage-acts and is based on behavioral testable ax-
ioms.
The second part of the Theorem establishes the theoretical link between

reduction and ambiguity neutrality, independently of a speci�c functional
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form. In Anscombe and Aumann framework, Seo [37] (in an independent
and concurrent study) was able to prove this link for the REU representation.
However, Halevy's �ndings [22] indicate that the relation between ambiguity
neutrality and ROCL holds beyond the REU preferences, which account for
only about one-half of the decision makers that hold a non-neutral attitude
towards ambiguity.

5.1 Discussion: Relation with Experimental Findings

Theorem 1 explains two regularities observed in Halevy [22] and Chew, Miao
and Zhong [7]: di�erent decision makers may hold di�erent �rst-stage beliefs
(heterogeneous �), and even for identical �rst-stage beliefs, the evaluation of
the compound lottery induced by the act through the �rst-stage belief may
vary (heterogeneous fW (�)).
In order to demonstrate this point consider a DM who evaluates a bet

on the color of a ball drawn from an urn, containing ten balls with un-
known composition of red and black balls. A bet on the correct color
wins $x and an incorrect bet wins $0: The natural second-stage is given
by: f($x; k=10; $x; 1� k=10) : k 2 f0; : : : ; 10gg.
If the DM's preferences satisfy reduction of compound (objective) lotter-

ies, then she will be indi�erent among all compound objective lotteries with
a symmetric �rst-stage measure, and the above second-stage. The second
part of Theorem 1 implies that if the DM holds any symmetric �rst-stage
subjective belief, she will be indi�erent between the ambiguous Savage act
described above and these symmetric compound objective lotteries (and in
particular, a �rst-stage objective lottery that is degenerate at the second-
stage lottery of ($x; 0:5; $0; 0:5), which corresponds to a bet on the color of
a ball drawn from an urn containing 5 red and 5 black balls). This holds for
any utility function used to evaluate compound lotteries, as long as it satis-
�es ROCL. This is exactly Halevy's [22] �rst experimental result. Therefore
the second part of Theorem 1 provides the theoretical foundation that is
necessary to understand this observation.
If, however, the DM is not ambiguity neutral the experimental results in

Halevy [22] and Chew et al [7] indicate that she doesn't satisfy reduction
of compound objective lotteries, and her preference ordering over Savage-
acts is consistent with her preferences over compound lotteries. In other
words, the DM does not make a distinction between the compound lottery
induced by the act through a subjective �rst-stage belief, and a compound
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lottery in which the �rst-stage (appropriately calibrated) is objectively given.
The �rst-stage probability measure in which each DM is indi�erent between
the compound lottery and the Savage act, varies across decision makers. In
other words, the �rst-stage belief varies across decision makers. For exam-
ple, while one DM may be indi�erent between the ambiguous Savage lottery
and a compound lottery where the �rst-stage is uniform, another may be
indi�erent between the same act and a compound symmetric lottery with
hypergeometric �rst-stage (10 balls are sampled without replacement out of
20 balls, half of which are red and half black). As a result, even if two de-
cision makers have identical preferences over compound objective lotteries
they might di�er in their evaluation of the ambiguous (Savage) act since it
induces di�erent compound lotteries, through the di�erent �rst-stage beliefs.
Moreover, the preference ordering over compound objective lotteries varies

across decision makers. In particular, Halevy [22] and Chew et al [7] found
that two utility functions can represent most decision makers' preferences
(with about equal frequency). If the DM holds recursive non-expected util-
ity (RNEU) preferences, she uses a non-expected utility function to evaluate
each stage of the compound lottery (like in Segal [35]). As a result, she is
indi�erent between a compound lottery with a degenerate �rst-stage (that
assigns probability 1 to a second-stage lottery that pays $x with probabil-
ity 0:5) and a compound lottery with an extreme �rst-stage (that assigns
probability 0:5 to a second-stage lottery that pays $x with probability 1 and
probability 0:5 to a second-stage lottery that pays $x with probability 0) {
preferences termed by Segal [36] \time neutral." If, however, the DM's pref-
erences are represented by REU, her ranking of compound objective lotteries
is monotonically decreasing in the dispersion of the �rst-stage probability
measure:
The experimental evidence [22, 7] indicate that (for most DMs) the rank-

ing of the Savage act is consistent with a ranking of the compound lottery
induced by the act through the �rst-stage belief according to RNEU or REU,
which were derived in the domain of compound objective lotteries. That is,
the evidence is consistent with 2SPS preferences and the fact that the func-
tion fW (�) used to evaluate the compound lottery induced by an act through
the �rst-stage belief coincides with the function W (�), used to evaluate com-
pound objective lotteries.
Although the REU representation was recently applied to decision mak-

ing under ambiguity (by Klibano� et al [26], Ergin and Gul [16], Nau [30]),
all those applications assume that the source for the failure of reduction is
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the distinction between subjective (�rst-stage) and objective (second-stage)
risks. Although formally speaking they are 2SPS according to our de�ni-
tion, their domain does not include compound objective lotteries. Hence,
the question whether the utility function they derive, which is used to eval-
uate the compound lottery induced by the act through the �rst-stage belief,
coincides with a utility function used to evaluate compound objective lot-
teries is a matter of interpretation that will be further discussed in Section
7.1. As noted above, the experimental �nding in Halevy [22] demonstrate
that there is a tight correspondence between the two. That is, the DM's
ranking of a Savage act is consistent with her ranking of compound objective
lotteries. As noted above, Seo [37] provides an axiomatic foundation for the
REU model based on the original Anscombe-Aumann framework, in which
ambiguity aversion is tied to violation of the reduction axiom in that model,
through relaxation of the \reversal of order" axiom in Anscombe and Au-
mann [3].9 Our result (Theorem 1) explains the relation between preferences
over objective compound lotteries and Savage acts in a minimal domain in
which both exist, without relying on a speci�c functional form and without
excluding common preference ranking (either REU or RNEU).

6 Calibration at Work

An important implicit component in the Calibration axioms and the de�ni-
tion of 2SPS is that the set of second-stage probability measures is exogenous
and objectively known. This set is apparent from the problem at hand. We
believe that this discipline is necessary in order for the agent to be rational.
Otherwise, a DM might assign positive �rst-stage probability to a second-
stage measure that is known to be false. Under this maintained assumption
it is easy to identify the �rst-stage probabilities directly using continuity of
preferences. To illustrate this point, de�ne continuity:

Axiom 8 For any act f and simple lotteries X1; :::; Xn, the sets
f(p1; :::; pn) jf % (X1; p1; : : : ;Xn; pn)g and f(p1; :::; pn) j (X1; p1; : : : ;Xn; pn) % fg
are both closed.

We illustrate how to identify the �rst-stage probabilities with a simple
example in which for each distribution there exists an event such that betting

9For the importance of relaxing the \revarsal of order" in the study of hedging under
ambiguity see Saito [32], Ke and Zhang [25] and Gul and Pesendorfer [21].
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on that event is essentially betting on the distribution. Speci�cally, consider
an urn that has two balls that are each either red or black. Suppose that
the decision maker draws both balls in order from this urn and considers
various bets on the color of the two balls. A natural state space for this
problem is fBB;BR;RB;RRg where IJ (I; J 2 fB;Rg) denotes a state
in which the �rst ball is of color I and the second ball is of color J . The
possible second-stage probabilities are also apparent from the description
since either both balls are black, or both balls are red, or one ball is black and
the other ball is red. These three possibilities correspond to three possible
probability distributions. Denote by P2B the probability measure that assigns
probability one to the state BB; by P1B1R the probability measure that
assigns probability 1 to the event fBR;RBg ; and by P2R the probability
measure that assigns probability 1 to the state RR. Let p2B; p1B1R and p2R
be the �rst-stage probabilities on the corresponding probability measures.
Consider �rst the bet where the decision maker gets x > 0 dollars if both
balls are red and zero otherwise. This bet corresponds to the f (RR) = x
and f (BR) = f (RB) = f (BB) = 0: By the continuity axiom there exists a
compound lottery (X1

1 ; q;X
1
2 ; 1� q) where X1

1 = (x; 1) and X
1
2 = (0; 1) such

that f � (X1
1 ; q;X

1
2 ; 1� q) : Thus we have identi�ed that p2R = q: We can

identify p1B1R and p2B in a similar way.

7 Beyond 2SPS: A Two Urn Thought Exper-

iment

In this section we provide an example of a preference relation that is not two-
stage probabilistically sophisticated. Our example has the 
avor of Ellsberg's
two color urn example. The �rst urn (Urn 1) has two balls that are each either
red or black. Thus this urn may contain two black balls, two red balls, or
one black and one red ball. There is no further information on how the urn
is �lled. The other urn (Urn 2) is �lled in the following way: two balls are
put in the urn where each ball is equally likely to be black or red. That is,
the urn contains two black or two red balls - each with probability 1=4; and
one black and one red ball with probability 1=2.
Two balls are drawn from both urns in order without replacement. We

will consider several bets on the color of these balls. The state space for this
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problem can be written as:


 = f(!1; !2) j!1; !2 2 fBB;BR;RB;RRgg

where !i speci�es the colors of the balls from Urn i in the order they are
drawn. For example, (BB;BR) corresponds to the state where both balls
drawn from Urn 1 are black and the �rst ball drawn from Urn 2 is black and
the second is red.
In the following, we will discuss several acts (bets), and a possible pref-

erence ordering over these acts. If this preference is 2SPS then each act
corresponds to a compound lottery. As discussed above, in order to identify
the corresponding compound lottery, we consider only second-stage measures
that are consistent with the possible composition of the urns. The following
table describes all possible compositions of the two urns and the correspond-
ing second-stage measures over the states.

Urns Contain Probabilities of States (with positive probability)
(2B; 2B) P1 ((BB;BB)) = 1
(2B; 1B1R) P2 ((BB;BR)) = 1=2; P2 ((BB;RB)) = 1=2
(2B; 2R) P3 ((BB;RR)) = 1
(1B1R; 2B) P4 ((BR;BB)) = 1=2; P2 ((RB;BB)) = 1=2

(1B1R; 1B1R)
P5 ((BR;BR)) = 1=4; P5 ((BR;RB)) = 1=4;
P5 ((RB;BR)) = 1=4; P5 ((RB;RB)) = 1=4

(1B1R; 2R) P6 ((BR;RR)) = 1=2; P6 ((RB;RR)) = 1=2
(2R; 2B) P7 ((RR;BB)) = 1
(2R; 1B1R) P8 ((RR;BR)) = 1=2; P8 ((RR;RB)) = 1=2
(2R; 2R) P9 ((RR;RR)) = 1

A two-stage probabilistically sophisticated DM assigns a probability to
each of the distributions P1; :::; P9:

10 Denote the probability assigned to dis-
tribution Pi by pi: Let �; �; 
; �

0; �0; 
0 be de�ned by

� = p1 + p2 + p3; � = p4 + p5 + p6; 
 = p7 + p8 + p9;

�0 = p1 + p4 + p7; �
0 = p2 + p5 + p8; 


0 = p3 + p6 + p9:

10Note that we restrict the DM's support of �rst-stage belief to distributions that are
consistent with the physical environment. This relates to a known identi�cation issue in all
two stage models. As discussed by Seo [37] on page 1585 and Appendix C, unless the ana-
lyst is willing to restrict the utility function to a particular functional form, identi�cation
(uniqueness) of second-order beliefs is not possible even within the REU model.
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Next we consider the following four pairs of bets.
Betting on the color of the �rst ball drawn from Urn 1 : The DM

chooses black or red. If the DM matches the color of the �rst ball drawn
from Urn 1, she wins x dollars where x > 0. If the bet is incorrect, the DM
receives zero. Bets on either color can be represented as a mapping from
states to f0; xg as shown below:

Bet on black from Urn 1
Urn 1nUrn 2 BB BR RB RR
BB x x x x
BR x x x x
RB 0 0 0 0
RR 0 0 0 0

Bet on red from Urn 1
Urn 1nUrn 2 BB BR RB RR
BB 0 0 0 0
BR 0 0 0 0
RB x x x x
RR x x x x

A second order probabilistically sophisticated DM converts these two acts
into the compound lotteries as shown in Figures 3 and 4.

1 0.5 0.5 1

x x 0 0

α β γ

Figure 3: The compound lottery induced by a bet that the �rst ball drawn
from Urn 1 is Black

Suppose that the DM is indi�erent between betting on red and betting on
black. Two stage stochastic dominance implies that � = 
:
Betting whether the balls drawn from Urn 1 are the same or
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1 0.5 0.5 1

0 x 0 x

α β γ

Figure 4: The compound lottery induced by a bet that the �rst ball drawn
from Urn 1 is Red.

di�erent color: These bets can be represented as the following two acts:

Bet on the two balls from Urn 1 being of the same color

Urn 1nUrn 2 BB BR RB RR
BB x x x x
BR 0 0 0 0
RB 0 0 0 0
RR x x x x

Bet on the two balls from Urn 1 being of di�erent color

Urn 1nUrn 2 BB BR RB RR
BB 0 0 0 0
BR x x x x
RB x x x x
RR 0 0 0 0

A second order probabilistically sophisticated DM converts these two acts
into the compound lotteries shown in Figures 5 and 6. Suppose that the DM

1 1

x x

α β γ

1

0

Figure 5: The compound lottery induced by a bet that both balls drawn
from Urn 1 have the same color
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1 1

0 0

α β γ

1

x

Figure 6: The compound lottery induced by a bet that the balls drawn from
Urn 1 have the di�erent color

is indi�erent between these bets as well.11 Two stage stochastic dominance
implies that � = �+ 
: Thus we must have � = 
 = 1=4 and � = 1=2:
Suppose also that the DM exhibits similar preferences for bets generated

from Urn 2. That is, the DM is indi�erent between betting on whether the
�rst ball drawn from Urn 2 is red or black, and whether the two balls drawn
from Urn 2 are of the same or di�erent color. Similar reasoning implies that
we must have �0 = 
0 = 1=4 and �0 = 1=2:
Finally, suppose that the DM is asked to choose an urn and bet on the

color of the �rst ball drawn from the chosen urn. Suppose that the DM
strictly prefers to bet on either color from the known urn (Urn 2) to betting
on either color from the unknown urn (Urn 1): If her preferences were 2SPS,
a bet on the color of the �rst ball drawn from either urn would induce the
same compound lottery and she would be indi�erent among all such bets.
Therefore, if the hypothetical preferences described above display strict pref-
erence for a bet on the known urn to a bet on the unknown urn, they are
inconsistent with 2SPS.
Next, we discuss two possible interpretations of this example.

11It is important to note that evolutionary (Robson [31]) and behavioral (Halevy and
Feltkamp [23]) rationals for ambiguity aversion rely on the species' or the decision maker's
regular environment to incorporate positive correlation among di�erent risks. This reason-
ing may suggest that the DM will prefer a bet that the two balls are of the same color. In
other words, indi�erence between the bets above indicates that the DM believes that the
color assignment of the �rst ball is uncorrelated with the color assignment of the second
ball. With this in mind, we view this indi�erence as an empirical question, that is worth
further experimental investigation. Our goal in this example, however, is to provide a
sequence of plausible decisions that is inconsistent with 2SPS.
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7.1 Discussion

It is useful to compare this example to the standard two-color Ellsberg ex-
ample. In that case the DM is indi�erent between betting on red or black
in the ambiguous urn. Probabilistic sophistication implies that the DM's
subjective probability of either color is one half. However (goes the standard
argument), preference for betting on the risky rather than the ambiguous urn
(together with monotonicity with respect to �rst order stochastic dominance)
implies that this belief must be smaller than one half. Hence, preferences in
the Ellsberg example cannot be probabilistically sophisticated. A way to ac-
commodate failure of probabilistic sophistication is to consider more general
preferences, like those that are two-stage probabilistically sophisticated. This
generalization seem to be consistent with the existing experimental evidence.
Alternatively, several authors (Tversky and Wakker [39], Chew and Sagi [9]
and Ergin and Gul [16]) argue that the failure of probabilistic sophistication
is due to the fact that the DM perceives the two urns as two di�erent sources
of uncertainty: objective and subjective. If attention is restricted to only
one source, probabilistic sophistication may be maintained on the restricted
domain. For example, the DM uses V (�) to evaluate one-stage objective
lotteries, and eV (�) to evaluate the lottery induced by the act through her
belief. Machina and Schmeidler [28] are silent on this issue, although in their
later work [29] the utility functions over the objective and subjective domains
coincide, which rules out source preference.
The thought experiment presented above and the failure of 2SPS admits

two similar interpretations. To accommodate strict preference for betting on
Urn 2 one could consider higher orders of compound lotteries (e.g. three-
stage), in which the DM may be three-stage probabilistically sophisticated.
The need to allow for higher orders of compound lotteries suggests that this
avenue of considering higher order probabilistic sophistication might not be
of a closed form. In this case, the level of probabilistic sophistication may
be determined endogenously by the model considered. Alternatively, the
DM may perceive the two urns as di�erent sources of compound uncertainty:
subjective and objective. The DM may be 2SPS on each domain separately,
but use di�erent utility functions to evaluate compound objective lotteries
and compound lotteries induced by an act through the �rst-stage belief (i.e.

W (�) may be di�erent from fW (�)). For example, the DM's preferences on
the subjective domain may be represented by REU, and she may be expected
utility (and satisfy reduction) on the objective domain (which is Klibano� et
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al's [26] preferred interpretation of their model). However, if one is willing to
admit source preference as discussed above, Ellsberg-type preference can be
accommodated without resorting to higher order beliefs. Furthermore, the
empirical evidence suggests that most DMs have preferences over acts that
can be calibrated to their preferences over compound objective lotteries as
presented in this study.
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A Recursive Expected Utility Representation

In this appendix we provide an axiomatic foundation for the recursive ex-
pected utility model. Fix a continuous function u : C ! R and a strictly
increasing continuous function � : R! R and pj � 0 for j = 1; :::; n withPn

j=1 pj = 1:We de�ne VKP (L) �
Pn

j=1 � (E (u (Xj))) pj for all L = (X1; p1; : : : ;Xn; pn) :

Axiom 9 (Kreps-Porteus)There exists a continuous function u : C ! R, a
strictly increasing continuous function � : R! R and pj � 0 for j = 1; :::; n
with

Pn
j=1 pj = 1 such that � on L2 is represented by VKP ; i.e.,

L1 � L2 if and only if VKP (L1) � VKP (L2) :
This axiom can be obtained from more basic axioms for example as in

Kreps and Porteus [27] or Segal [36].

Next we state the representation result:

Proposition 1 � satis�es Weak Order, Calibration, Second Order Proba-
bilistic Beliefs and Kreps-Porteus if and only there exists p1; :::; pn � 0 withPn

i=1 pi = 1 and probability measures P1; :::; Pn : � ! [0; 1] such that V can
be extended to the set of all acts through

VKP (f) = VKP (	�;f ) =
nX
i=1

�

 
mX
j=1

u (xj)Pi (Sj)

!
pi

where f = (x1; S1; :::;xm; Sm) and the function VKP represents the preference
relation � over all gambles.

Proof. By axiom 9 there exists a continuous function u : X ! R, a strictly
increasing continuous function � : R! R and a probability measure P :
R! [0; 1] such that for any L1 and L2 in L2;

L1 � L2 if and only if VKP (L1) � VKP (L2) :
Note that VKP satis�es Two-stage Stochastic Dominance. It follows from

the proof of Theorem 1 that there exists � 2 �(� (
)) ; and �1; :::; �n 2
�(
) such that � (�j) > 0 and

Pn
j=1 � (�j) = 1; and a functional W :

� (� (X )) ! R increasing with respect to two-stage stochastic dominance
such that

f % g , VKP (	�;f ) � VKP (	�;g)
where 	�;f ; 	�;g are the compound lotteries induced by the acts f and g
through �: This concludes the proof.
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