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EXPERIMENTAL ELICITATION OF AMBIGUITY ATTITUDE
USING THE RANDOM INCENTIVE SYSTEM

AURÉLIEN BAILLON, YORAM HALEVY AND CHEN LI

Abstract. We demonstrate how the standard usage of the random incentive sys-
tem in ambiguity experiments eliciting certainty and probability equivalents might
not be incentive compatible if the decision-maker is ambiguity averse. We propose a
slight modification of the procedure in which the randomization takes place before
decisions are made and the state is realized, and prove that if subjects evaluate the
experimental environment in that way (first - risk, second - uncertainty), incentive
compatibility may be restored.

1. Introduction

The ambiguity literature has been motivated by thought experiments (Keynes,
1921; Ellsberg, 1961). However, when it comes to experimental implementation, the-
oretical difficulties arise. This paper concerns the theoretical validity of the most
commonly used incentive mechanism - the random incentive system (RIS). This mech-
anism asks a subject to make a series of choices and then randomly implements only
one for payment.

To demonstrate the challenge, consider the basic Ellsberg two-color environment in
which a subject is asked to choose between a bet on an uncertain event (e.g., drawing
a red ball from an urn with an unknown composition of red and black balls) and a
bet on an event with a known probability of 0.5 (e.g., drawing a red ball from an urn
with 50% red balls and 50% black balls). Facing such a choice, most subjects will
choose the risky bet. This is not sufficient evidence for ambiguity aversion since we
could rationalize the choice by a simple prior over the composition of the unknown
urn. For example, the subject might be suspicious that the unknown urn is biased
to his disadvantage. Alternatively, he may simply believe that there are more black
balls than red balls in the unknown urn.

There are several ways to overcome these difficulties. One is to ask the subject to
choose the color to bet on, and only then ask him to choose between the urns (e.g.,
Halevy, 2007). This may overcome the suspicion concerns, but several drawbacks
remain.1 Indeed, many experimentalists opted for a different solution in which the
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beliefs over the colors. Second, even if the subject prefers a bet on the known urn, the experimenter
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2 AURÉLIEN BAILLON, YORAM HALEVY AND CHEN LI

subject is asked to make two choices: between a bet on red in the urn whose com-
position is unknown and a bet on red in the urn with 50% red balls, and similarly
between a bet on black in the unknown urn and a bet on black in the urn with 50%
black balls. Then, only one of the choices is selected at random to determine the
payment, usually using an objective randomization device (e.g., coin toss).

This usage of the random incentive system may be problematic for the following
reason. Consider an ambiguity-averse subject whose underlying preferences are to bet
on the two known rather than on the two ambiguous events. However, suppose he
views the two choices as a single decision problem. In that case, he may conclude that
by choosing bets on the two unknown events, he will win with a probability of 0.5,
independent of the event that will materialize. Similarly, he would obtain an identical
probability of winning by choosing the two risky bets. Therefore, he will be indifferent
between truthfully reporting his preferences and reporting the opposite preferences!
The underlying reason for this phenomenon is that the random incentive provides the
subject with a randomization device that allows him to hedge the ambiguity. This
point is closely related to Raiffa’s (1961) argument against the normative appeal of
Ellsbergian behavior, since the decision-maker can choose to flip a coin between the
two uncertain bets. While the cognitive requirements to implement Raiffa’s suggestion
may be high, the random incentive system implements this strategy for the subject.

Similar observations have been made by Bade (2015, first version 2011), Kuzmics
(2017, first version 2012) and Oechssler and Roomets (2014, first version 2013). Bade
(2015) considers a general (possibly uncertain) randomization mechanism. She dis-
cusses alternative ways to observe ambiguity preferences but concludes that there is,
in most cases, no clear solution. Kuzmics (2017) studies the implication of Wald com-
plete class theorem for ambiguity averse subjects. He argues that an experimenter
can never observe the true preferences of an ambiguity averse subject who is Wal-
dian and hence satisfies Anscombe and Aumann’s (1963) axiom of reversal of order
(i.e., the subject is indifferent between a risky lottery over acts or the equivalent act
yielding risky lotteries). Oechssler and Roomets (2014) make the point for Ellsberg
three-color experiments and discussed the risk of misclassifying subjects as ambiguity
neutral. Azrieli et al. (2018) study a general model of incentives in experiments and
show that a condition of statewise monotonicity, which is close to Savage’s P3,2 is
equivalent to incentive compatibility of a class of experiments that use the RIS. They
note that in the domain of uncertainty, reversal of order (which they term reduction)
together with statewise monotonicity implies ambiguity neutrality. It follows that if
a subject is ambiguity averse and satisfies reversal of order, there exist experiments
using the RIS that are not incentive compatible.

can measure ambiguity only by invoking an identifying assumption that beliefs are symmetric. This
is a major concern when symmetry is not a natural assumption (e.g., bets on the stock market or
weather).

2It also relates to Machina and Schmeidler’s (1995) substitution hypothesis, but in the latter, the
order of lotteries and acts is reversed.
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We begin by demonstrating (Proposition 5) that the problem of eliciting ambi-
guity preferences is pervasive in the most common elicitation mechanisms used by
experimentalists to study ambiguity attitudes – experiments in which probability or
certainty equivalents are elicited. If the experimentalist is using RIS in which the
randomization occurs after the realization of the event, an ambiguity averse subject
with maxmin expected utility preferences (Gilboa and Schmeidler, 1989) will exhibit
a behavior that can be rationalized by subjective expected utility preferences.3

We then turn to answer whether there exists an implementation of the RIS that
will be incentive compatible in eliciting ambiguity preferences. We note that the
above result depends on the randomization performed by the RIS occurring after the
uncertainty is resolved. This induces an Anscombe and Aumann (1963) act which
assigns to every state an objective lottery and where uncertainty can be hedged. If,
however, the randomization occurs before the resolution of uncertainty, and the sub-
ject evaluates the experiment in this order, incentive compatibility may be restored.
We prove this result assuming expected utility under risk and show that it extends
to some non-expected utility preferences.

Our theoretical approach to solving the practical problem is inspired by strong
experimental evidence suggesting that ambiguity aversion is tightly associated with
violation of reduction of compound lotteries (Halevy, 2007; Chew et al., 2017; Ab-
dellaoui et al., 2015; Gillen et al., 2019; Dean and Ortoleva, 2019). As shown by
Seo (2009), the relaxation of the reversal of order assumption is required to pro-
vide an axiomatic foundation to the smooth model that accommodates the violation
of reduction of compound lotteries (see also Saito 2015; Ke and Zhang 2020). We,
therefore, believe that relaxing the reversal of order axiom is a reasonable theoretical
approach. It follows that the elicitation of ambiguity preferences using the RIS is
incentive-compatible if the latter precedes the ambiguity studied in the experiment.
Note that we assume the same level of sophistication as we have assumed so far (i.e.,
the subject is able to see the whole experiment as a single decision problem). The
experimenter credibly informs him that the RIS is performed before the resolution
of uncertainty, and his perception of the ordering of the various stages changes ac-
cordingly. This order matters since his preferences do not satisfy reversal of order,
and therefore incentive compatibility is maintained. In the terminology introduced
by Azrieli et al. (2018): once reduction is relaxed, state monotonicity is equivalent to
incentive compatibility of RIS if the ordering of randomizations is “correct.”

Our theoretical results lead to a very practical recommendation for experiments
using RIS in ambiguous environments: the experimenter can make this order (risk

3This is very different from the existing critiques of the RIS, which rely on non-expected utility
under risk (Holt, 1986; Karni and Safra, 1987b; Segal, 1988; Freeman et al., 2019), since our result is
obtained even if the subject satisfies expected utility under risk. In that literature, violation of the
mixture independence axiom results in nonseparability of preferences that invalidates the incentive
compatibility of the RIS in general. Following the tradition in models of choice under uncertainty,
we will maintain the assumption of expected utility under risk and concentrate on the additional
complications introduced by violations of Savage’s (1954) Sure Thing Principle.
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before uncertainty) more salient by explicitly performing the RIS randomization be-
fore choices are made and the uncertainty is resolved. In this case, the experimental
design is internally consistent with the model under investigation.

2. Description of typical experiments under ambiguity

Let S = {s1, · · · , sn} be a finite set of states of nature. Events are subsets of S
and are typically denoted by E. Acts map states into [0, 1], the outcome set, with
generic elements denoted by f, g. A bet on E is the binary act 1E0, paying 1 if event
E obtains and 0 otherwise. A constant act, which assigns the same outcome k to all
states of the world, is denoted by its unique outcome.

The first type of experiments we study are those eliciting certainty equivalents.
The objective of the experimenter (“she”) is to find the sure amount of money that a
subject (“he”) values as much as an act f . If only one act is studied, the experimenter
can use a Becker-DeGroot-Marschak (1964, henceforth, BDM) procedure: she asks the
subject to report a number k, then she randomly draws a number 0 ≤ ` ≤ 1, and the
subject receives ` if ` > k and f otherwise. Alternatively, she can use a series of choices
(e.g., a choice list) and RIS: the subject is asked to choose between a sure amount `
and f for many possible realizations of `, and one of the choices is randomly selected
for payment.4 If the subject’s preferences satisfy the expected utility assumptions,
both procedures (BDM or sequence of choices with RIS) are theoretically equivalent
here5 and would not pose any difficulty if the experimenter considers only one act. Of
course, as shown by Holt (1986) and Karni and Safra (1987b), these procedures would
be problematic should we not assume expected utility under risk. Here, we focus on
a different challenge caused by the fact that the experimenter uses several acts in the
experiment, which creates hedging opportunities for the subject. As explained in the
Introduction, experiments studying ambiguity attitudes have to elicit preferences for
bets on more than a single event, and therefore deal with more than a single act. This
implies that the experimenter must randomly select which act will be considered for
payment (first randomization), and implement a second randomization for this act
(the BDM procedure or the randomization over the choices the subject made for this
act).

We now turn to formally describe such an incentive scheme. Let f = (f1, ..., fm) be
a list of acts, ĩ be a random distribution governing the randomization of which act
will determine the subject’s payment with realization i and support {1, ...,m}.

4The highest ` for which the act is chosen and the lowest ` chosen over the act give an interval
for the k elicited in the BDM. See Bardsley et al. (2009) pp.266-267 and 271 for variants of the RIS
and the BDM.

5We assume both procedures are understood by the subject, while empirically the BDM is prob-
ably more demanding.
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Definition 1. Let k = (k1, · · · , km) ∈ [0, 1]m be a vector of reports and ` be a random

number following distribution ˜̀ with support [0, 1].6

I (f, k, i, `) =

{
fi if ` ≤ ki,

` otherwise.

A Certainty Equivalent Random Incentive Scheme (CERIS) is defined by I
(
f,k, ĩ, ˜̀

)
.

A second type of experiment involves probability equivalents. Let ∆ ([0, 1]) be
the set of simple lotteries over [0, 1], and 1p0 be a binary lottery, which pays 1 with
probability p and 0 otherwise. If the experimenter elicits the binary lottery 1p0 that
the subject finds as good as an act f , we call p the probability equivalent of f . If f is a
bet on E, we can think of p as the subjective belief of E. This procedure can be used to
detect departures from additivity of belief and study ambiguity attitudes. Probability
equivalents p can be elicited with a BDM procedure (as suggested by Grether, 1981;
Holt, 2007; Karni, 2009) or with a series of choices and RIS. As discussed above,
difficulties arise when considering experiments eliciting probability equivalents for
more than a single act, which necessitates determining which act will be considered
for payment. We now define such an incentive scheme for probability equivalents:

Definition 2. Let p = (p1, · · · , pm) ∈ [0, 1]m be a vector of reports and q ∈ [0, 1] be
a random number following distribution q̃ with support [0, 1]

J (f, p, i, q) =

{
fi if q ≤ pi,

1q0 otherwise.

A Probability Equivalent Random Incentive Scheme (PERIS) is defined by

J
(
f,p, ĩ, ˜̀

)
.

An incentive scheme (CERIS or PERIS) designed by the experimenter is charac-

terized by a vector of acts and a description of the random processes ĩ, and ˜̀ or q̃
underlying i, and ` or q. For simplicity, we will assume that these random variables
follow uniform distributions (discrete or continuous) over their respective (full) sup-
port. With everything clearly defined, we may suppress all arguments and use only
I and J to denote the incentive scheme.

We assume that the incentive scheme is fully described to the subject, who is
asked to report k (for CERIS) or p (for PERIS). We call the incentive scheme given
the subject’s report an experiment (when all uncertainties have not been resolved).
Suppose that the subject’s preferences over experiments are represented by the utility
function v (·). The subject chooses a report that maximizes the utility from the
experiments given by v. The subject employs the same utility function to evaluate

6Implementations of the BDM mostly employ discrete distributions (for instance, ` can only take
values expressed in cents). For mathematical simplicity, in what follows, we assume a continuous
uniform distribution of `.
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acts and experiments.7 In what follows, v will always be expressed in terms of a
utility index u over outcomes (normalized by u (0) = 0 and u (1) = 1).

For example, suppose that v is subjective expected utility8 (Savage, 1954). There
exists an additive belief µ over S such that the subject evaluates each act by the
expected utility of the lottery that µ induces through the act. Imagine PERIS where
f = (1E0).9 The subject evaluates the act f by v (1E0) = µ(E), i.e., it is worth him
as much as 1µ(E)0, and therefore his probability equivalent should be p = µ(E). The
subject’s evaluation of the experiment is more subtle: for each report p he receives the
bet 1E0 with probability p, and otherwise a lottery 1q0, where q is in [p, 1]. The utility

of the experiment is v (J ((1E0) , (p) , (1, q̃))) = pµ(E) +
� 1

p
qdq. Therefore, according

to the first-order condition, the subject’s optimal strategy is to report p∗ = µ(E).
Under the assumption that the subject’s preferences are represented by subjective
expected utility, the incentive scheme does not distort his report: he reports his
valuation of the act if he optimally responds to the experimental environment. Such
an incentive scheme will be referred to as incentive compatible.

We now define the optimal report strategy of a subject in an incentive scheme and
then use it to define incentive compatibility for any evaluation function v.

Definition 3. A subject’s optimal report strategy is a vector of reports k∗ =
(k∗1, ..., k

∗
m) or p∗ = (p∗1, ..., p

∗
m) that maximizes his evaluation of the experiment in-

duced by his report through the incentive scheme:

k∗ ∈ argmaxkv
(
I
(

(f1, · · · , fm) , (k1, · · · , km) ,
(
ĩ, ˜̀
)))

p∗ ∈ argmaxpv
(
J
(
(f1, · · · , fm) , (p1, · · · , pm) ,

(̃
i, q̃
)))

We now define incentive compatibility:

Definition 4. CERIS is incentive compatible (IC) with respect to v if v (k∗i ) = v (fi)
for all k∗i . Similarly, PERIS is IC with respect to v if v

(
1p∗i 0

)
= v (fi) for all p∗i .

7The domain of v is an extension of the domain used by Seo (2009). A typical element of it has
the first two stages of events with given probabilities (risk), followed by one stage of events without
given probabilities (ambiguity), and then two stages of risk (Seo had only one stage of risk before
and after the ambiguity stage). In the domain of v, acts can be modeled as an element with all risk
stages degenerate. In section 3 (4), we will consider only elements whose first (last) two stages are
degenerate.

8For events with objectively given probabilities, their subjective probabilities are equated to the
objectively given ones.

9The subject knows E is out of the experimenter’s control (e.g. E is related to the weather) and
since his evaluation function is subjective expected utility, he is not ambiguity averse. Hence, the
explanation, which required to use more than a single act, does not apply here.
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3. Random Incentive after Uncertainty Resolves

We now show that if the randomization used in the incentive scheme occurs after
uncertainty is resolved, CERIS and PERIS may not be incentive compatible. We con-
sider a subject whose preferences are represented by maxmin expected utility (MEU,
Gilboa and Schmeidler, 1989), and a simple experiment whose goal is to evaluate the
subject’s behavior under ambiguity. We prove that the subject’s optimal response
under CERIS and PERIS is to act as if he had a unique probability measure over
the state space and not a set of priors as the model assumes. As a consequence, the
experimenter would underestimate the extent of deviation from ambiguity neutrality
in her experiment.

Consider an incentive scheme based on two acts (1E10, 1E20), such that the events
E1 and E2 partition the state space. For example, the events may correspond to
drawing a red/black ball in the Ellsberg ambiguous urn. Assume that the subject
has MEU preferences, and evaluates such acts by the lowest expected utility it might
generate over his set of priors C, i.e. v (1Ei

0) = minµ∈C [µ(Ei)u(1) + (1− µ(Ei))u(0)].
Let [a, b] denote all the values µ(E1) can take in C, we obtain v (1E10) = a and
v (1E20) = 1 − b. The experimenter would like to observe these values to obtain the
boundaries of the subject’s set of priors. By definition of IC, CERIS is IC only if k∗i
satisfies v(k∗i ) = v(1Ei

0) for i = 1, 2, which implies k∗1 = u−1(a) and k∗2 = u−1(1− b).
Similarly, noting that v(1pi0) = pi,

10 PERIS is IC only if p∗1 = a and p∗2 = 1− b.
Consider PERIS J

(
(1E10, 1E20) , (p1, p2) ,

(̃
i, q̃
))

. If realization of the events is
perceived as occurring before that of the random processes used in the incen-
tive scheme, the subject might perceive the experiment as an Anscombe-Aumann
act, i.e. a mapping h from S to ∆ ([0, 1]). For such act h, MEU is defined as
v(h) = minµ∈C

∑
S [µ(s)Eu (h (s))], where C is the subject’s (convex) set of priors

and Eu is the expected utility functional.
The subject’s perception of the experiment induced by his report through the

incentive schemes is depicted in Figure 3.1a.
He understands that if E1 happens, he has a 50% probability to be paid based on

the report p1 for 1E10, where he gets 1 with probability p1,
11 and otherwise faces a

lottery 1q0 such that q ∈ [p1, 1]; he also has a 50% probability of being paid based
on the report p2 for 1E20 and would receive 0 with probability p2 and otherwise a
lottery 1q0 whose winning probability is in [p2, 1]. Following the same reasoning for
the case when E1 does not happen, his utility of the experiment induced by his report
(p1, p2)through the PERIS is:

10Formally, define an event with an objective probability of pi and require that every prior in C
assigns to this event a probability of pi.

11If q < p1 (hence with probability p1 knowing that q̃ is uniform over [0, 1]), he gets 1E0. Since
E occurred, he gets 1.



8 AURÉLIEN BAILLON, YORAM HALEVY AND CHEN LI

q ≤ p1

1 q > p1

p1

q = 1q = 0
q ≤ p2

q > p2

p2

q = 1

q = 0

1
2

1
2

q ≤ p1

0
q > p1

p1

q = 1

q = 0

E1

E2

1
2

1
2

q ≤ p2

1q > p2

p2

q = 0q = 1

0

1

0q
1− q

1

0q
1− q

1

0 q

1− q

1

0
1− q

q

(a) PERIS

ℓ ≤ k1

1 ℓ > k1

k1

ℓ = 1ℓ = 0

ℓ

ℓ ≤ k2

ℓ > k2

k2

ℓ = 1

ℓ = 0

1
2

1
2

ℓ ≤ k1

0
ℓ > k1

k1

ℓ = 1

ℓ = 0

ℓ

E1

E2

1
2

1
2

ℓ ≤ k2

1ℓ > k2

k2

ℓ = 0

ℓ

ℓ = 1

ℓ

0

(b) CERIS

Figure 3.1. Experiments with RIS after resolution of uncertainty



EXPERIMENTAL ELICITATION OF AMBIGUITY ATTITUDE 9

(3.1)
v
(
J
(
(1E10, 1E20) , (p1, p2) ,

(̃
i, q̃
)))

= minµ∈C

[
1
2

[(µ(E1)× p1 + (1− µ(E1))× p2)] + 1
2

(� 1

p1
qdq +

� 1

p2
qdq
)]

A similar analysis can be applied to a CERIS experiment, described in Fig-
ure 3.1b. The experiment induced by his report of (k1, k2) through CERIS is

I
(

(1E10, 1E20) , (k1, k2) ,
(
ĩ, ˜̀
))

. Hence, he understands that if E1 obtains, he has

a 50% probability to be paid based on the report k1 he made for 1E10. If so, he gets
1 with probability k1,

12 and ` ∈ [k1, 1] otherwise; he also has a 50% probability to be
paid based on the report k2 he made for 1E20, and would receive 0 with probability
k2; otherwise, ` ∈ [k2, 1]. Following the same reasoning for the case when E1 does not
happen, he obtains the evaluation for the experiment :

(3.2)

v
(
I
(

(1E10, 1E20) , (k1, k2) ,
(
ĩ, ˜̀
)))

= minµ∈C

[
1
2

[(µ(E1)× k1 + (1− µ(E1))× k2)] + 1
2

(� 1

k1
u(`)d`+

� 1

k2
u(`)d`

)]
As a maxmin EU decision maker, the subject chooses p∗1 and p∗2 (k∗1 and k∗2) so as

to maximize Eq. 3.1 (Eq. 3.2). The following proposition establishes that PERIS
and CERIS are not IC under the assumptions we have made in this section.

Proposition 5. Consider an incentive scheme with the acts f = (1E10, 1E20) defined
over complementary events E1 and E2, and assume maxmin expected utility with a
set of priors such that µ(E1) ∈ [a, b]. With CERIS, the subject reports

(k∗1, k
∗
2) =


(u−1(b), u−1 (1− b)) a < b < 0.5

(u−1 (0.5) , u−1 (0.5)) a ≤ 0.5 ≤ b

(u−1 (a) , u−1 (1− a)) 0.5 < a < b

With PERIS, the subject reports

(p∗1, p
∗
2) =


(b, 1− b) a < b < 0.5

(0.5, 0.5) a ≤ 0.5 ≤ b

(a, 1− a) 0.5 < a < b

Hence, CERIS and PERIS are not IC.

Proof. See Appendix A. �

The Appendix considers all possible cases in detail. Here, we provide the intuition
for the simplest case with PERIS. Consider a MEU subject whose set of priors [a, b] for
event E1 contains 1

2
, and b > a as the decision maker thinks other probabilities are also

12If ` < k1 (hence with probability k1 knowing that ˜̀ is uniform over [0, 1]), he gets 1E10 and
since E1 occurred, he gets 1.
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possible. However, by reporting p1 = p2, Eq. 3.1 becomes
[
1
2
p1 +

� 1

p1
qdq
]
, which does

not depend on µ . Hence, the Anscombe-Aumann act generated by the experiment
as a whole is no longer ambiguous if the decision maker reports p1 = p2. Maximizing
1
2
p1 +

� 1

p1
qdq = 1

2
(p1 + 1 − p21) results in the optimal strategy p∗1 = p∗2 = 1

2
, which

differs from the valuations v (1E10) = a and v (1E20) = 1 − b that the experimenter
should have observed had the experiment been IC.

When [a, b] does not include 1
2
, we show in the Appendix that no matter which

prior the decision-maker relies on, the optimal strategy always imposes p∗1 = 1 − p∗2.
This arises from both acts being evaluated simultaneously, i.e., with the same prior.
Once a particular prior is fixed (by the minimization operator), the best strategy for
the whole experiment consists of reporting it for both acts. Hence, in these cases
again, the experimenter observes one prior only and wrongfully concludes that the
decision-maker is ambiguity neutral. The arguments for CERIS are very similar. The
only change is the additional impact of utility.

To sum up, Proposition 5 shows that neither PERIS nor CERIS is IC when un-
certainty is resolved before the implementation of the random incentive. The results
for CERIS and PERIS highlight that the experimenter will not be able to observe
the set of priors [a, b]. She will conclude that the subject has a degenerate set of
priors ({b},

{
1
2

}
, or {a}), compatible with subjective expected utility or probabilistic

sophistication, i.e., ambiguity neutrality. As a consequence, using CERIS or PERIS
when the resolution of uncertainty precedes the random incentives lead to underesti-
mating ambiguity aversion if the subject integrates the whole experiment into a single
decision problem.

Proposition 5 considers one model only. Such a counterexample is enough to prove
that PERIS and CERIS with RIS after uncertainty resolution is generally not IC for
any class of preferences that includes MEU preferences, such as uncertainty averse
preferences of Cerreia-Vioglio et al. (2011), the most general class of ambiguity averse
preferences in the literature or α-MEU, which allows for ambiguity-seeking prefer-
ences.

Our result demonstrates how hedging affects the measurements of certainty equiv-
alents and probability equivalents. It is not surprising in the sense that it could
be predicted by the results of Bade (2015). It does highlight, though, that a MEU
decision-maker, even if he mimics the optimal strategy of an ambiguity neutral agent,
may still bear some ambiguity (if 1

2
is not in the set of priors). The decision-maker

faces a tradeoff between hedging and taking advantage that one event is more likely
than the other for all priors.

In what follows, we relax the reversal of the order axiom and show that the elic-
itation of ambiguity preferences using the RIS is incentive-compatible if the latter
precedes the ambiguity studied in the experiment. Note that we assume the same
level of sophistication as we have assumed so far (i.e., that the subject is able to see
the whole experiment as one decision). The experimenter will credibly inform him
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that the RIS is performed before the resolution of uncertainty and his perception of
the ordering of the various stages changes accordingly.

4. Random Incentive Before Uncertainty Resolves

In this section, we show that if the random incentive system is employed before
the resolution of uncertainty, and the subject evaluates the experiment in this order,
CERIS and PERIS are IC if we assume expected utility under risk. We further study
the robustness of this result by relaxing the expected utility assumption. All results
below are derived for an arbitrary ambiguity model expressed in u terms, with u
being the utility index that the subject uses under risk. In other words, v assigns
utility u(k) to outcome k. Virtually all ambiguity models satisfy this property. See
for instance the general families of models proposed by Ghirardato and Marinacci
(2001), Cerreia-Vioglio et al. (2011), and Grant and Polak (2013).13

Consider an experiment on f = (f1, · · · , fm) with CERIS and random incentives
preceding subjective uncertainty. The experiment can be represented as in Figure
4.1b (for m = 2). With probability 1

m
, the subject’s payoff depends on his report

of ki (and not on any kj 6=i). In this case, he receives fi (that he values at v (fi))
with probability ki, and ` ∈ [ki, 1] otherwise. Figure 4.1a illustrates PERIS when the
incentive system precedes subjective uncertainty (for m = 2). With probability 1

m
,

the subject’s payoff depends on his report of pi (and not on any pj 6=i). In this case, he
receives fi (that he values at v (fi)) with probability pi, and the lottery (1q0) where
q ∈ [pi, 1] otherwise.

4.1. Expected utility under risk. Assuming expected utility,14 the subject’s opti-
mal report of k∗ in CERIS maximizes

(4.1)
m∑
i=1

(
ki
m
v (fi) +

1

m

� 1

ki

u(`)d`

)
.

We show that for all i reporting k∗i such that u (k∗i ) = v (fi) is the subject’s optimal
strategy. First, reporting ki such that u (ki) > v (fi) is a dominated strategy since
the experiment induced by reporting ki > u−1(v(fi)) through CERIS can be obtained
from that induced by reporting ki = u−1(v(fi)) by transferring positive probability
mass from higher utility values to v(fi). Conversely, reporting ki such that u (ki) <
v (fi) would also be suboptimal, as the subject would receive outcomes with utility less
than v (fi) instead of fi. Therefore CERIS is IC, under the assumption of expected
utility under risk.

Similarly, when determining optimal reports p∗ for PERIS, assuming expected util-
ity under risk, the subject maximizes

13We do not consider models with more than one utility index, such as Cerreia-Vioglio et al.
(2015).

14We assume here the canonical expected utility model, satisfying reduction of compound lotteries.
A generalization of expected utility with no reduction of compound lotteries was first introduced by
Kreps and Porteus (1978).



12 AURÉLIEN BAILLON, YORAM HALEVY AND CHEN LI

q ≤ p1

E2

1

0

q > p1

p1

q = 1q = 0
q ≤ p2

E2

0

1

q > p2p2

q = 1q = 0

1
2

1
2

1

0q
1− q

1

0q
1− q

E1
E1

(a) PERIS

ℓ ≤ k1

E2

1

0

ℓ > k1

k1

ℓ = 1ℓ = 0

S

ℓ

ℓ ≤ k2

E2

0

1

ℓ > k2
k2

ℓ = 1ℓ = 0

S

ℓ

1
2

1
2

E1 E1

(b) CERIS

Figure 4.1. Experiments with RIS before uncertainty (m = 2)

(4.2)
m∑
i=1

(
pi
m
v (fi) +

1

m

� 1

pi

qdq

)
.

by reporting p∗i = v (fi). The proof follows identical dominance argument as used
above for CERIS.
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Proposition 6. Assume expected utility under risk with utility index u and an ambi-
guity model expressed in u terms. If the random incentive system (RIS) precedes the
resolution of uncertainty, then CERIS and PERIS are incentive compatible (IC).

4.2. Nonexpected utility under risk with compound independence. So far,
we allowed for deviations from (subjective) expected utility for uncertain acts, but
not for risky lotteries. We now relax the assumption of expected utility for risk, as
nonexpected utility models have been shown to pose difficulties with random incen-
tives. We consider all non-expected utility models for risk with utility index u that
satisfies weak-ordering and stochastic dominance. If an incentive scheme is incentive
compatible, the subject should report, under the assumption of weak-ordering and
stochastic dominance: k∗i = u−1 (v (fi)) in CERIS, and p∗i such that v

(
1p∗i 0

)
= v (fi)

in PERIS for all i ∈ {1, · · · ,m}.
Consider CERIS on f = (f1, · · · , fm). Figure 4.1b demonstrates that a report

of k induces a three-stage experiment through CERIS. The first stage corresponds
to the resolution of ĩ, the random selection of the report ki on which the subject’s
payoff depends. The second stage corresponds to the resolution of ˜̀, and the third
stage is either the act fi or a sure amount `. Since expected utility is linear in
probabilities, reducing the first two stages into a single stage does not impact the
valuation of the experiment. However, when probabilities are weighted, this does not
hold anymore. Therefore, the optimal report depends on the subject’s evaluation of
compound objective lotteries.

In this subsection, we consider a subject who does not reduce multi-stage lotteries
but whose behavior satisfies the compound independence axiom (recursivity) instead
(Segal, 1990).

Let (X1, r1; ...;Xn, rn) be a (possibly multi-stage) lottery yielding Xi with probabil-
ity ri, where Xi may be a (possibly multi-stage) lottery or an act. The experiment I
induced by a report of k can be written as I =

(
B1,

1
m

; · · · ;Bm,
1
m

)
where Bi denotes

the ith second-stage branch, implied by i being drawn in the first stage and in which
the subject’s payoff depends on the report ki. Compound independence (recursivity)
implies that the evaluation function satisfies:

v(I) = v(u−1(v(B1)),
1

m
; · · · ;u−1(v(Bm)),

1

m
)

That is, the subject substitutes all second-stage branches by their certainty equiva-
lents and then evaluate the implied one-stage lottery according to his risk preferences.
Compound independence is, at the level of the evaluation function, what Azrieli et al.’s
(2018) statewise monotonicity is for preferences.

Since there is no interaction between different branches, maximizing each v(Bi) is
sufficient to maximize v(I). With the subject’s risk preference satisfying stochastic
dominance, following identical reasoning to the one employed for EU, the optimal
report to maximize v (Bi) is: k∗i = u−1 (v (fi)). Indeed, the experiment induced by
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reporting ki > u−1 (v (fi)) (or ki < u−1 (v (fi))) transfers positive probability masses
from higher utility values (or v (fi)) to v (fi) (or lower utility values).

In the case of PERIS, the experiment induced by a report of p can be written as
J =

(
B′1,

1
m

; · · · ;B′m,
1
m

)
where B′i denotes the ith second-stage branch, implied by i

being drawn in the first stage and in which the subject’s payoff depends on the report
pi. Assuming weak ordering, and stochastic dominance, compound independence also
implies that maximizing each valuation v (B′i) is sufficient to maximize v (J). It follows
that the optimal report is p∗i such that v

(
1p∗i 0

)
= v (fi). By stochastic dominance,

v (1pi0) > v (1pi∗0) implies pi > p∗i . Hence, overreporting pi (pi > p∗i ) transfers
positive probability masses from lotteries with higher utility values (e.g. v (1pi0)) to
v (fi). With similar arguments, underreporting pi < p∗i is also suboptimal.

Proposition 7. Assume weak ordering, stochastic dominance, and compound inde-
pendence under risk with utility index u and an ambiguity model expressed in u terms.
If the random incentive system precedes the resolution of uncertainty, then CERIS and
PERIS are IC.

Our result is in line with the result of Azrieli et al. (2018), showing that RIS is IC if
statewise monotonicity holds. The next section will show that statewise monotonicity
is unnecessary and that CERIS is still IC even if subjects reduce compound lotteries.

4.3. Nonexpected utility under risk with reduction of compound lotteries.
In this subsection, we no longer assume that the subject’s behavior satisfies compound
independence. Instead, we analyze the situation in which reduction of compound
lotteries (ROCL) applies. Under this assumption, CERIS remains IC. Reducing the
first and second stages simply means multiplying each second stage probability (or
density) by 1

m
. Over-reporting ki still implies a transfer of probability mass from

outcomes with higher utility values to v (fi), and underreporting ki implies a transfer
of probability mass from v (fi) to outcomes with lower utility values.

However, in Appendix B we provide a counterexample that demonstrates that
PERIS may not be incentive compatible when ROCL is assumed in conjunction with
RDU (which satisfies weak-ordering and stochastic dominance). This result originates
in the subject possibly being paid a lottery 1q0. This lottery is compounded with the
RIS stages. Therefore, under RDU and ROCL, the RIS stages influence the utility
derived from the lottery and affect the subject’s optimal report. By contrast, the
utility of the outcome ` is independent of the RIS stages in CERIS, which retains
incentive compatibility.

Proposition 8. Assume weak ordering, stochastic dominance, and ROCL under risk
with utility index u and an ambiguity model expressed in u terms. If the random
incentive system precedes the resolution of uncertainty, then CERIS is IC, but PERIS
may not be.

For CERIS and PERIS to be incentive-compatible, the order of uncertainty reso-
lution and compound independence are the essential conditions to be satisfied. They
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allow subjects to carry out backward induction. For CERIS, ROCL happens to induce
the same decision situation as compound independence, whereas for PERIS, ROCL
implies violation of compound independence, leading to incentive incompatibility in
the same way as highlighted by Karni and Safra (1987a) for experiments under risk.

5. Empirical evidence from the literature

We reviewed the implementation of RIS in the experimental literature to analyze
whether it influences how much ambiguity aversion was found. Taking our results
at face value, we expect ambiguity aversion to be stronger when RIS is implemented
before the resolution of uncertainty and even more so before the subjects complete the
tasks. We would also expect more ambiguity aversion with CERIS than with PERIS.
These predictions, however, rely on two strong assumptions: (i) enough (if not all)
subjects should perceive the whole experiment as a single decision problem, and (ii)
other methodological differences should remain minor. These two assumptions are
far from being warranted, but we focused on studies based on Ellsberg’s tasks to keep
the results as comparable as possible.

We included papers reviewed by Trautmann and van de Kuilen (2015) and added
papers that were published after 2015. We excluded papers that did not use PERIS or
CERIS. We also excluded studies that were hypothetical or which were not incentive
compatible even under expected utility. Table 1 presents a summary of the remaining
papers. As Trautmann and van de Kuilen (2015) do in their Table 3.4, we report
the average ambiguity premium of each study, defined as either the “the difference
between the valuation of the risky act and valuation of the ambiguous act, divided
by the expected value of the risky act” for CERIS or “the difference between the
ambiguity-neutral matching probability and the actual matching probability for the
ambiguous urn, divided by the ambiguity-neutral matching probability” for PERIS.

The rightmost column describes the order of implementation between the task (the
decision phase), CERIS or PERIS, and the resolution of uncertainty. In all these stud-
ies, ambiguity was resolved last. This shows the relevance of our Section 4, studying
incentive compatibility when the RIS is implemented before the uncertainty. Theo-
retical arguments made by Oechssler and Roomets (2014) and Bade (2015) assumed
uncertainty to be resolved first. We did find two studies for which uncertainty was
resolved first. Baillon and Bleichrodt (2015) and Baillon et al. (2018), not listed in
Table 1 because they did not use an Ellsberg task but used the variation of a stock
index during the experiment as the source of ambiguity. In the way these studies
were conducted, the uncertainty had already been resolved when the RIS was imple-
mented. These papers found some evidence for ambiguity seeking, but it could be due
to their specific source of uncertainty. By contrast, a few recent papers implemented
the RIS even before the decision task, making it salient that uncertainty was resolved
last. Epstein and Halevy (2019) found ambiguity aversion with CERIS first and no
evidence for hedging. Baillon and Placido (2019) and Li et al. (2020) also found some
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Table 1. Literature Review Table

Study Country Task Prize N VM* IM**
Ambiguity
Premium

(in %)
RIS implementation***

Abdellaoui et al. (2011) France 2-color ¿25 ($34) 66 CE CL 2.5 Task-CERIS-Ambiguity

Abdellaoui et al. (2015) France
2-color (2
balls)

¿50 ($67)
94 CE CL

5.8
Task-CERIS-Ambiguity

2-color (12
balls)

¿50 ($67) 17.7

Akay et al. (2012) Ethiopia 2-color
ETN20
($.5)

93 CE CL 12.9 Task-CERIS-Ambiguity

Baillon and Placido
(2019)

Netherlands 3-color ¿30 ($39) 78 PE CL 4.5 PERIS-Task-Ambiguity

Borghans et al. (2009) Netherlands 2-color ¿2 ($3) 347 WTA BDM 13.2 Task-CERIS-Ambiguity
Cettolin and Riedl
(2010)

Netherlands 2-color ¿15 ($20) 55 PE CL 10.0 Task-PERIS-Ambiguity

Chew et al. (2017) Singapore 2-color S$40 ($30) 56 CE CL 22.9 Task-CERIS-Ambiguity

Cohen et al. (1987) France 2-color
FF1,000
($150)

134 CE CL 23.4 Task-CERIS-Ambiguity

Cubitt et al. (2018) Netherlands 2-color ¿16 ($21) 88 CE CL 0.6 Task-CERIS-Ambiguity
Eisenberger and Weber
(1995)

Germany 2-color DM10 ($7) 54
WTP BDM 18.8

Task-CERIS-Ambiguity
WTA BDM 9

Fairley and Sanfey
(2017)

Netherlands 2-color ¿5 ($6) 172 CE CL 6.9 Task-CERIS-Ambiguity

Fox and Tversky (1995) USA
2-color $20 52 CE CL 12.4 Task-CERIS-Ambiguity
3-color $50 53 WTA BDM 10.3 Task-CERIS-Ambiguity

Füllbrunn et al. (2014)
Germany 2-color

¿15 ($19.5)
or ¿6.2
($8.5)

20 WTP BDM 7.2
Task-CERIS-Ambiguity

Netherlands 2-color
¿15 ($19.5)
or ¿6.2
($8.5)

12 WTP BDM 4.8

Epstein and Halevy
(2019)

Canada 2-color $25 74 CE CL 12.8 CERIS-Task-Ambiguity

Keck et al. (2014) USA 2-color $20 90 CE CL 17.5 Task-CERIS-Ambiguity
König-Kersting and
Trautmann (2016)

Germany
2-color

¿10 ($12) 194
PE C 12

Task-PERIS-Ambiguity
10-color PE C -12

Li et al. (2020) Netherlands 3-color ¿15 ($20) 80 PE C 7 PERIS-Task-Ambiguity
Maffioletti and Santoni
(2005)

Italy 2-color
ITL100,000
($51)

25 WTA BDM 24.2 Task-RIS-BDM-Ambiguity

Ross et al. (2012) Laos 2-color
LAK20,000
($2.5)

66 PE CL 1.8 Task-PERIS-Ambiguity

Sutter et al. (2013) Austria 2-color ¿10 ($13) 487 CE CL 15.3 Task-CERIS-Ambiguity
Trautmann et al.
(2011)

Netherlands
2-color ¿50 ($67) 74 WTP BDM 40.7 Task-CERIS-Ambiguity
2-color ¿50 ($67) 79 CE CL 10.9 Task-CERIS-Ambiguity

Qiu and Weitzel (2011) Netherlands 2-color ¿10 ($13) 208 WTP BDM 21.7 Task-CERIS-Ambiguity

[*] *VM means valuation methods, CE stands for certainty equivalent, WTA (WTP) stands
for willingness to accept (to pay), PE stands for probability equivalent (also called matching
probability).
[**] **VM means incentive methods, CL stands for the choice list, C stands for separate choices,
and BDM stands for the Becker-deGroot-Marschak procedure.

[***] *** The RIS implementation was inferred from the methods section of the corresponding

papers.

degree of ambiguity aversion with PERIS coming before the decision tasks. Both pa-
pers’ average ambiguity premiums are slightly lower than that of Epstein and Halevy
(2019), possibly due to the use of PERIS instead of CERIS.
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All studies reported in Table 1 found evidence of ambiguity aversion. There are
at least two possible explanations for this. A first interpretation is that these empir-
ical results are consistent with our theoretical results that RIS before ambiguity is
incentive compatible (if subjects do not reduce compound lotteries). Alternatively,
and maybe even more likely, subjects might not have perceived the whole experiment
as one decision, unlike in our model, but simply made each choice in isolation. This
would be in line with the literature on narrow bracketing (Tversky and Kahneman,
1981; Kahneman and Lovallo, 1993; Barberis et al., 2006; Rabin and Weizsäcker,
2009). Note that for subjects exhibiting narrow bracketing, any RIS is IC, since
subjects do not perceive the interdependence between their various choices.

We discuss other studies that did not use PERIS or CERIS but other types of tasks
with RIS. Several found little evidence for ambiguity aversion. Charness et al. (2013)
used a task varying the degree of ambiguity, where the RIS preceded the resolution
of uncertainty. A large majority of their subjects were classified as ambiguity neutral
and less than 10% as ambiguity averse. Binmore et al. (2012) and Voorhoeve et al.
(2016), with a variation of PERIS in a three-color Ellsberg experiment, found little
evidence of ambiguity aversion as well. Ahn et al. (2014) conducted a portfolio-choice
experiment with numerous budget sets and argued that it was difficult for subjects
to figure out how to hedge. About 60% of their participant were ambiguity neutral,
but they found evidence of ambiguity aversion among the others. Stahl (2014) varied
outcomes assigned to ambiguous events and observed a majority of ambiguity neutral
subjects.

By contrast, two papers that avoided hedging possibilities and used certainty equiv-
alents or probability equivalents provided unequivocal support for ambiguity aversion.
Halevy (2007) and Cettolin and Riedl (2019) eliminated the possibility of hedging by
letting subjects choose the winning color (and therefore relying on belief symmetry
to identify ambiguity seeking). The former elicited certainty equivalents and the lat-
ter probability equivalents. They both found substantial ambiguity aversion. Table
1 suggests that introducing RIS before the resolution of uncertainty and measuring
certainty or probability equivalents (hence using PERIS or CERIS) still leads to ob-
serving ambiguity aversion. Some tasks, such as those of the studies mentioned in
the previous paragraph, might be more sensitive to hedging when combined with RIS
than certainty and probability equivalents.

We are aware of two direct attempts to study whether people behave the same
way if randomization / risk precedes vs. succeeds ambiguity. Oechssler et al. (2019)
asked their subjects to choose between four objects combining risk and ambiguity,
where two objects provided a hedge against ambiguity, while the remaining two did
not. Oechssler et al. (2019) also varied the order of resolving risk and ambiguity. In
a second study called “alternative specification”, they also included a treatment in
which the risk mechanism preceded the decision. They found that the choices did not
seem to be influenced by the various orders they implemented. Another attempt, by
Baillon et al. (2021) (the authors of the present paper), directly compared the level
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of ambiguity aversion measured in a simple Ellsberg task in the absence vs. in the
presence of RIS. Subjects were asked to choose between a bet based on a risky bag
and a bet based on an ambiguous bag, with the latter paying 20 cents more (to break
indifference). In the benchmark treatment, in which subjects only bet on the color
they chose (without RIS), half of them preferred to bet on the risky bag, displaying
strict ambiguity aversion. The introduction of RIS reduced this proportion to about
30%. However, there was little to no difference when changing the order of timing
when the bags were prepared, RIS was implemented, draws from the bag occurred,
and subjects made their decisions.

6. Conclusion

This study demonstrated the theoretical challenges posed by using a random incen-
tive system in ambiguity experiments. In particular, we showed that when RIS follows
the resolution of uncertainty, incentive compatibility might be lost. The reason for
this result is that the RIS is incompatible with the structure of the preferences inves-
tigated. There could be an intrinsic inconsistency between the experimental design
and the goal of measuring ambiguity aversion for subjects who perceive the whole
experiment as a single decision problem.

We further showed that consistency with the ambiguity models requires that the
RIS precedes the resolution of uncertainty. In this case, incentive compatibility of
CERIS and PERIS is restored if the subject satisfies expected utility under risk.
We extended this result to more general models of choice under risk and showed
that both PERIS and CERIS are incentive-compatible if compound independence
(recursivity) is satisfied. However, if the subject reduces compound objective lotteries
(without compound independence), then only the incentive compatibility of CERIS
is guaranteed.

The consistency obtained by having the RIS preceding the uncertainty resolution
can be viewed as a minimum requirement. It does not guarantee that the RIS will
be IC for all ambiguity-averse subjects who perceive the whole experiment as a single
decision problem. It guarantees that it will be IC for at least some of these subjects
(besides those who exhibit narrow bracketing). This is analogous to experiments
measuring risk aversion assuming expected utility. Researchers know that many sub-
jects may deviate from the expected utility. Nevertheless, we believe an experimental
design that fails incentive compatibility under expected utility does not satisfy the
minimum requirement for measuring risk aversion in experimental economics.

Our theoretical results have practical implications for experimental design involving
ambiguity. To satisfy the minimal consistency requirement between the experiment
and the decision model under investigation, RIS should precede the resolution of un-
certainty. The experimenter can facilitate the subject’s perception of this ordering
by implementing the RIS before the decision is made and choosing a source of un-
certainty whose resolution occurs after the decision. In practice, implementing the
RIS before the decision can be implemented easily by letting the subject randomly
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draw a sealed envelope (containing the choice problem to be implemented) from a
pile of envelopes at the beginning of the experiment. At the end of the experiment,
the envelope is opened, and the uncertainty relating to the respective choice problem
is resolved to determine the subject’s payoff. Such strategy was successfully imple-
mented by Epstein and Halevy (2019), who also included in their protocol choice
problems that allowed the experimenter to observe if a subject “reversed the order”
and hedged the ambiguity. Johnson et al. (2021) discussed other advantages of simi-
lar implementations of this protocol. These advantages, unlike the arguments of the
present paper, go beyond the measurement of ambiguity aversion.
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Appendix A. Proof of Proposition 5

Proof. PERIS: the subject maximizes Eq. 3.1, which can be simplified as:

(A.1) v = min
µ(E1)∈[a,b]

1

2
(p1µ(E1) + p2(1− µ(E1)) +

1− p21
2

+
1− p22

2
)

The DM has three different kinds of strategies: report p1 < p2, p1 > p2, or p1 = p2.
Depending on the DM’s prior beliefs, he chooses the strategy that maximizes his
utility. We first list all available strategies and then analyze his optimal strategy
given different prior beliefs.
Strategy 1: report p1 < p2. In this case, the valuation is decreasing in µ(E1).
Therefore a minimum is attained at µ(E1) = b:

v1 =
1

2
(bp1 + (1− b) p2) +

1

2

(
1− p21

2
+

1− p22
2

)
Whenever the constraint p1 < p2 is satisfied, the optimal strategy, given by the first
order condition, is to report (p∗1, p

∗
2) = (b, 1− b) if it satisfies p1 < p2 .

Strategy 2: report p1 > p2. In this case, µ(E1) = a gives the minimal utility:

v2 =
1

2
(ap1 + (1− a)p2) +

1

2

(
1− p21

2
+

1− p22
2

)
and a similar analysis shows that the optimal strategy is to report (p∗1, p

∗
2) = (a, 1− a)

if it satisfies p1 > p2 .
Strategy 3: report p1 = p2. The term µ(E1) drops out and the utility becomes:

v3 =
1

2
(p1 + 1− p21)

and the optimal strategy is to report (p∗1, p
∗
2) =

(
1
2
, 1
2

)
.

We next show how the DM chooses among the three strategies according to his prior
beliefs.
Prior belief 1: a < b < 1

2

For strategy 1, p1 < p2 is satisfied since b < 1
2

implies b < 1 − b. The attained

maximum is: v∗1 = 1
2
(3
2

+ b2 − b), which is minimized at 1
2
. Given that b < 1

2
then

v∗1 >
5
8
,

For strategy 3, the maximum is v∗3 = 5
8
.

For strategy 2, a < 1
2

implies a < 1−a and therefore p1 > p2 is not satisfied. We show

that when a < 1
2

then strategy 2 (i.e., p1 > p2) implies v∗2 <
5
8
:The first inequality is

obtained by replacing a by 1
2

and the second by maximizing the quadratic function

in p1 and p2. It is maximized at
(
1
2
, 1
2

)
.

Therefore v∗1 > v∗3 > v∗2, implying that when the prior belief is a < b < 1
2
, reporting

(p∗1, p
∗
2) = (b, 1− b) is the optimal strategy.

Prior belief 2: 1
2
< a < b
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In this case, when b > 1
2

then strategy 1 (i.e., p1 < p2) implies v∗1 <
5
8
: the first

inequality is obtained by replacing b by 1
2

and the second by maximizing the quadratic

function in p1 and p2. The maximum of 5
8

is attained at
(
1
2
, 1
2

)
. As a consequence,

v∗1 <
5
8
, v∗2 = 1

2
(3
2

+ a2 − a) (because a > 1− a), and v∗3 = 5
8
. Therefore, v∗2 > v∗3 > v∗1,

implying that reporting (p∗1, p
∗
2) = (a, 1− a) is the optimal strategy.

Prior belief 3: a ≤ 1
2
≤ b

In this case, v∗1 < 5
8

and v∗2 < 5
8
. This can be proven as above, noting that the

maximum 5
8

of 1
4

(2− p21 − p22 + p1 + p2) is only reached if p1 = p2 = 1
2

and therefore,

not if p1 < p2 or p1 > p2. Furthermore, we know that v∗3 = 5
8

and therefore, v∗3 >

v∗1, v
∗
3 > v∗2. This implies that reporting (p∗1, p

∗
2) =

(
1
2
, 1
2

)
is the optimal strategy.

-
CERIS
The subject maximizes his utility of the experiment as represented by

v
(
I
(

(f1, f2) , (k1, k2) ,
(
ĩ, ˜̀
)))

= minµ∈C

[
1
2

[(µ(E1)× k1 + (1− µ(E1))× k2)] + 1
2

(� 1

k1
u(`)d`+

� 1

k2
u(`)d`

)]
The DM can have three different strategies: reporting k1 < k2, k1 > k2 or k1 = k2.
Depending on the prior beliefs of the DM, he chooses the strategy that maximizes
his utility. We first list all available strategies and then analyze his optimal strategy
given different prior beliefs.
Strategy 1: report k1 < k2. In this case, the valuation is decreasing in µ(E1)
therefore, µ(E1) = b gives the minimal valuation:

v1 =
1

2
[(bk1 + (1− b) k2)] +

1

2

(� 1

k1

u(`)d`+

� 1

k2

u(`)d`

)
Whenever the constraint k1 < k2 is satisfied, the optimal strategy, given by the first-
order condition, is to report (k∗1, k

∗
2) = (u−1 (b) , u−1 (1− b)) if it satisfies k1 < k2.

Strategy 2: report k1 > k2. In this case, µ(E1) = a gives the minimal valuation:

v2 =
1

2
[(ak1 + (1− a) k2)] +

1

2

(� 1

k1

u(`)d`+

� 1

k2

u(`)d`

)
and a similar analysis shows that the optimal strategy is to report (k∗1, k

∗
2) =

(u−1 (a) , u−1 (1− a)) if it satisfies k1 > k2.
Strategy 3: report k1 = k2. The µ(E1) term drops out and valuation becomes:

v3 =
1

2
k1 +

� 1

k1

u(`)d`

and the optimal strategy is to report (k∗1, k
∗
2) =

(
u−1

(
1
2

)
, u−1

(
1
2

))
.

Next, we analyze the subject’s optimal strategy for three different cases of prior
beliefs.
Prior belief 1: a < b < 1

2
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Since b < 1
2
, we have 1 − b > b. Hence, (k∗1, k

∗
2) = (u−1 (b) , u−1 (1− b)) satisfies

k1 < k2 (u−1 is increasing) and therefore the maximum valuation under strategy 1 is
attained at:

v∗1 =
1

2

[(
bu−1(b) + (1− b)u−1(1− b)

)]
+

1

2

(� 1

u−1(b)

u(`)d`+

� 1

u−1(1−b)
u(`)d`

)
For strategy 3, the maximum is v∗3 =

� 1

u−1( 1
2
)
u(`)d`+ 1

2
u−1(1

2
)).

Next we show v∗1 > v∗3. Consider the function:

(A.2) f(x) =
1

2
(

� 1

u−1(x)

u(`)d`+

� 1

u−1(1−x)
u(`)d`+ xu−1(x) + (1− x)u−1(1− x)).

The first order condition gives:

(A.3) − x
(
u−1
) ′

(x)− (1− x)
(
u−1
) ′

(1− x) + u−1 (x) +

x
(
u−1
) ′

(x) + (1− x)
(
u−1
) ′

(1− x)− u−1 (1− x) = 0.

Simplifying Eq. A.3 gives

(A.4)
1

2
(u−1(x)− u−1(1− x)) = 0.

This implies that u−1(x) = u−1(1 − x) gives a stationary point. Since u−1 increases
monotonically, it holds only for x = 1− x = 1

2
. It is a minimum, since f

′
(x) < 0 for

x < 1
2

and f
′
(x) > 0 for x > 1

2
. Therefore, the minimum is attained at x = 1

2
.

Hence, v∗1 = f(b) > f(1
2
) = v∗3 as b < 1

2
.

For strategy 2, (k∗1, k
∗
2) = (u−1 (a) , u−1 (1− a)) does not satisfy k1 > k2 since a < 1

2

and u−1 is increasing. Below we show that v2 cannot exceed v∗3:

v2 = 1
2

[(ak1 + (1− a) k2)] + 1
2

(� 1

k1
u(`)d`+

� 1

k2
u(`)d`

)
< 1

4
(k1 + k2) + 1

2

(� 1

k1
u(`)d`+

� 1

k2
u(`)d`

)
≤

� 1

u−1( 1
2
)
u(`)d`+ 1

2
u−1(1

2
)).

The first inequality is obtained by replacing a with 1
2

and the second by
maximizing the function with respect to k1and k2. The maximum is reached at(
u−1

(
1
2

)
, u−1

(
1
2

))
and it is v∗3. Therefore v∗1 > v∗3 > v∗2, implying that reporting

(k∗1, k
∗
2) = (u−1 (b) , u−1 (1− b)) is the optimal strategy.

Prior belief 2: 1
2
< a < b

Since a > 1
2
, we have a > 1 − a. Hence, (k∗1, k

∗
2) = (u−1 (a) , u−1 (1− a)) satisfies

k1 > k2 (u−1 is increasing) and therefore the maximum valuation under strategy 2 is
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attained at:

v∗2 =
1

2

[(
au−1(a) + (1− a)u−1(1− a)

)]
+

1

2

(� 1

u−1(a)

u(`)d`+

� 1

u−1(1−a)
u(`)d`

)
For strategy 3, the maximum is again v∗3 =

� 1

u−1( 1
2
)
u(`)d`+ 1

2
u−1(1

2
)).

Next we show v∗2 > v∗3. Consider the function f as defined above and its first order
condition Eq. A.3. With the same arguments as above, we obtain v∗2 = f(a) >
f(1

2
) = v∗3 as a > 1

2
.

For strategy 3, (k∗1, k
∗
2) = (u−1 (b) , u−1 (1− b)) does not satisfy k1 < k2 since b > 1

2

and u−1 is increasing. Below we show that v1 cannot exceed v∗3:

v1 = 1
2

[(bk1 + (1− b) k2)] + 1
2

(� 1

k1
u(`)d`+

� 1

k2
u(`)d`

)
< 1

4
(k1 + k2) + 1

2

(� 1

k1
u(`)d`+

� 1

k2
u(`)d`

)
≤

� 1

u−1( 1
2
)
u(`)d`+ 1

2
u−1(1

2
))

The first inequality is obtained by replacing b with 1
2
and the second by maximizing

the function with respect to k1 and k2. The maximum is reached at
(
u−1

(
1
2

)
, u−1

(
1
2

))
and it is v∗3.
Therefore v∗2 > v∗3 > v∗1, implying that reporting (k∗1, k

∗
2) = (u−1 (a) , u−1 (1− a)) is

the optimal strategy.
Prior belief 3: a ≤ 1

2
≤ b

In this case, v∗1 < v∗3 and v∗2 < v∗3. This can be proven as above, noting that the

maximum v∗3 of 1
4

(k1 + k2) + 1
2

(� 1

k1
u(`)d`+

� 1

k2
u(`)d`

)
is only reached if k1 = k2 =

u−1
(
1
2

)
and therefore, not if k1 < k2 or k1 > k2. This implies that reporting (k∗1, k

∗
2) =(

u−1
(
1
2

)
, u−1

(
1
2

))
is the optimal strategy. �

Appendix B. PERIS for RDU with ROCL may not be Incentive
Compatible: An Example

To give an example where PERIS is not incentive-compatible, we consider a subject
whose preference for risk is represented by rank-dependent utility (RDU, Quiggin,
1982), which also corresponds to cumulative prospect theory (Tversky and Kahneman,
1992) restricted to gains.

Let F denote a cumulative distribution function over the outcome set [0, 1]. The

expected utility of F is
� 1

0
u(x)dF (x) which is equivalent to

� 1

0
(1 − F (x))du(x). Its

RDU value is
� 1

0
w(1 − F (x))du(x), where w (·) is a weighting function that is in-

creasing and satisfies w(0) = 0 and w(1) = 1. RDU generalizes expected utility by
allowing not only outcomes but also probabilities that are subjectively transformed by
the subject. The RDU value of a binary lottery 1p0 is w(p). If an incentive scheme
is incentive compatible, the subject should report, under the assumption of RDU:
p∗i = w−1 (v (fi)) in PERIS for all i ∈ {1, · · · ,m}.
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Consider the experiment J
(
(f1, f2) , (p1, p2) ,

(̃
i, q̃
))

induced by reporting (p1, p2) in
PERIS. Assume RDU and ROCL under risk. We show that optimal reports (p∗1, p

∗
2)

may deviate from (w−1 (v(f1)) , w
−1 (v(f2))). The reduction of J can be written as

(f1, r1; 1, r2; 0, r3; f2, r4), where r1 = p1
2

, r2 =
1−p21
4

+
1−p22
4

, r3 = (1−p1)2
4

+ (1−p2)2
4

, and
r4 = p2

2
.

To determine the RDU value of J , we need to know how the subject ranks the four
acts f1, 1, 0, and f2. The constant acts 1 and 0 are obviously ranked highest and
lowest, respectively. The ranks of the other two acts depend on their respective utility.
Let’s take for instance v(f1) = v(f2) . The subject’s valuation of the experiment is:

(B.1) v (J) = w(r2) + (w(r1 + r2 + r4)− w(r2)) v(f1)

The first order condition for p1 implies:

(B.2) w′(r2)
∂r2
∂p1

+

(
w′(r1 + r2 + r4)

∂(r1 + r2 + r4)

∂p1
− w′(r2)

∂r2
∂p1

)
v(f1) = 0.

Note that ∂r2
∂p1

= −p1
2

, ∂r1
∂p1

= 1
2
, and ∂r4

∂p1
= 0 by definition. The first order condition

then simplified to:

(B.3)
−p1

2
w′(r2) +

(
1− p1

2
w′(r1 + r2 + r4)−

1− p1
2

w′(r2)

)
v(f1) = 0.

Assume w(r) = r2. The first order condition becomes

(B.4) − p1r2 + (1− p1) (r1 + r4) v(f1) = 0.

Suppose PERIS is IC and therefore (p∗i )
2 = v(fi) should satisfy the first order

condition. Using (p∗i )
2 = v(fi) and also r1 = p1

2
, r2 =

1−p21
4

+
1−p22
4

, and r4 = p2
2

, the
first order condition is now:

(B.5) 3p31 − 2p41 − p1 = 0.

We show that there exists v (fi) such that the first-order condition does not hold for
p∗i satisfying the IC condition (p∗i )

2 = v(fi). Assume for instance v(fi) = 0.01 and
therefore p∗i should be 0.1 for PERIS to be IC. However, Eq. B.5 does not hold in
this case. This proves by contradiction that PERIS is not IC.
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(2013): “Impatience and uncertainty: Experimental decisions predict adolescents’
field behavior,” American Economic Review, 103, 510–31.

Trautmann, S. T. and G. van de Kuilen (2015): “Ambiguity Attitudes,” in
The Wiley Blackwell Handbook of Judgment and Decision Making, ed. by G. Keren
and G. Wu, Wiley-Blackwell, vol. 1, 89–116.

Trautmann, S. T., F. M. Vieider, and P. P. Wakker (2011): “Preference
reversals for ambiguity aversion,” Management Science, 57, 1320–1333.

Tversky, A. and D. Kahneman (1981): “The framing of decisions and the psy-
chology of choice,” science, 211, 453–458.

——— (1992): “Advances in prospect theory: Cumulative representation of uncer-
tainty,” Journal of Risk and Uncertainty, 5, 297–323.

Voorhoeve, A., K. Binmore, A. Stefansson, and L. Stewart (2016): “Am-
biguity attitudes, framing, and consistency,” Theory and Decision, 81, 313–337.

Baillon and Li: Erasmus School of Economics, Erasmus University Rotterdam.
P.O. Box 1738, 3000DR Rotterdam, the Netherlands. e-mail:baillon@ese.eur.nl,
c.li@ese.eur.nl. Web: http://aurelienbaillon.com,http://goo.gl/unzb6H .

mailto:baillon@ese.eur.nl
mailto:c.li@ese.eur.nl
http://aurelienbaillon.com
http://goo.gl/unzb6H


EXPERIMENTAL ELICITATION OF AMBIGUITY ATTITUDE 29

Halevy: Department of Economics, University of Toronto. Max Gluskin
House, University of Toronto, 150 St. George St., Toronto, Ontario M5S 3G7,
Canada and Department of Economics, Hebrew University of Jerusalem. e-mail:
yoram.halevy@utoronto.ca. Web: https://uoft.me/yoramhalevy

mailto:yoram.halevy@utoronto.ca
https://uoft.me/yoramhalevy

	1. Introduction
	2. Description of typical experiments under ambiguity
	3. Random Incentive after Uncertainty Resolves
	4. Random Incentive Before Uncertainty Resolves
	4.1. Expected utility under risk
	4.2. Nonexpected utility under risk with compound independence
	4.3. Nonexpected utility under risk with reduction of compound lotteries

	5. Empirical evidence from the literature
	6. Conclusion
	Appendix A. Proof of Proposition 5
	Appendix B. PERIS for RDU with ROCL may not be Incentive Compatible: An Example 
	References

