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Abstract

Following the increasing use of discrete ordinal data for wellbeing analysis, this
note builds on Hammond (H−) dominance concepts developed in Gravel et al. (2020)
for discrete ordinal variables by observing and exploiting the fact that the coefficients
associated with successive sums of cumulative distribution functions are Binomial co-
efficient functions of the order of dominance under consideration. Drawing first on
notions of stochastic dominance relations for continuous variables to develop analo-
gous concepts for discrete ordinal variables, it highlights the important limitation that
increasing orders of dominance lead to loss of degrees of freedom which can be signif-
icant when the number of categories is low, as is common among ordered categorical
variables, effectively bounding the maximum order of dominance. However, expanding
on H− dominance by utilizing the Binomial coefficients facilitates sequential consid-
eration of higher orders of H− dominance without this loss, thereby surmounting the
limitation.
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1 Introduction

Absence of cardinality in discrete ordinal variables makes utility functions based on at-
tributed cardinal scales difficult to interpret, hampering applications of stochastic domi-
nance techniques (Kahneman and Krueger (2006); Schröder and Yitzhaki (2017); Bond and
Lang (2019)). In an attempt to overcome these difficulties this note makes three contribu-
tions. By providing a simple formula for successive sums of cumulative distribution functions
(SSCDF’s) and using the objective function suggested by Gravel et al. (2020), it develops
necessary and sufficient conditions for ordinal dominance, and so extends stochastic domi-
nance techniques to the ordinal paradigm. It demonstrates that SSCDF’s are linear functions
of the probability density function (PDF), with coefficients that are binomial in form. Given
the well known asymptotic normality of maximum likelihood estimates of discrete PDF’s
this linearity makes statistical inference a relatively simple exercise (Rao 2009). It also high-
lights a key limitation associated with discrete variables that possess a limited number of
outcomes. An additional degree of freedom is lost with each successive order of dominance,
resulting in a concomitant bound on the maximum order of dominance. However, build-
ing on Hammond (H−) Dominance as developed in Gravel et al. (2020), this limitation is
surmounted by defining an alternative set of valuations linked to the Binomial coefficients,
which together with the associated necessary and sufficient conditions provided, facilitate
sequential examination of higher orders of H−dominance without the concomitant loss of
degrees of freedom. The application of both definitions is illustrated in a simple application
to self-reported health in China.

2 Stochastic Dominance for Discrete Ordinal Variables

Anderson and Leo (2021) provided the definition of stochastic dominance between two states
for discrete cardinal variables, and the necessary and sufficient conditions for various orders
of dominance. In the absence of cardinality, translation of those results to a discrete ordinal
environment requires a viable objective function. Gravel et al. (2020) perceptively noted
that for two samples of equal size, an ethical observer would prefer a state g to g′ if the
following were true:

J∑
i=1

ng
iαi ≥

J∑
i=1

ng′

i αi ⇒ n

J∑
i=1

fi,gαi ≥ n

J∑
i=1

fi,g′αi (1)

where αi is the subjective valuation for each category, n is the total number of observations,
ng
i is the number of observations in category i observed in state g, and fi,g for i = 1, . . . , J

in state g is the probability density function (PDF). This provides a similar objective to
expected utility comparisons.

Anderson and Leo (2021) show that successive sums of CDF’s (a discrete analogue to
integrated CDF’s) have a particularly useful form, the associated lemma is reproduced below

for reference. Denote the CDF as F
(1)
j =

∑j
i=1 fi,g, and successive sums of the CDF (SSCDF)

as F
(s)
j,g =

∑j
i=1 F

(s−1)
i,g . Then the following is true:
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Lemma 1: For order of successive sum s ≥ 1, the expression for the SSCDF for discrete
cardinal (or discrete ordinal) variables is,

F
(s)
j,g =

j∑
i=1

[j − i+ (s− 1)]!

(j − i)!(s− 1)!
fi,g =

j∑
i=1

(
[j − i+ (s− 1)]

s− 1

)
fi,g = β

(s−1)′
j f j

g (2)

where f j
g = [f1,g . . . fj,g]

′.

thus the density coefficients for each order of SSCDF are just binomial coefficients, which
are readily extended to the multidimensional case (Anderson and Leo 2021). Given the well
known asymptotic normality of maximum likelihood estimates of f j

g and the linearity of (2),
inference at the various orders of dominance comparison is relatively straight forward (Rao
2009).

To illustrate the significance, observe that for two states g and g′, where g’s SSCDF is
uniformly below g′’s at s, then,

F
(s)
j,g = β

(s−1)′
j f j

g ≤ β
(s−1)′
j f j

g′ = F
(s)
j,g′

=⇒ −β(s−1)′
j f j

g ≥ −β(s−1)′
j f j

g′

which means that the associated binomial coefficients can be used as valuations in (1) by set-
tingα = −β(s−1). Indeed, similar to the cardinal framework, the signs of the finite differences
between these coefficients could be used to define mutually exclusive permissable valuation
sets associated with each order. The following lemma highlights the relationships between
the finite differences of the binomial coefficients associated with each order of dominance,
the proof of which is in appendix A.1.

Lemma 2: For β
(s−1)
i , i = 1, . . . , J , at order s ≥ 2, define

∆1
(
β
(s−1)
i

)∣∣∣
s=2

=
(
β
(s−1)
i+1 − β

(s−1)
i

)∣∣∣
s=2

∆2
(
β
(s−1)
i

)∣∣∣
s=3

=
(

∆(1)β
(s−1)
i+1 −∆(1)β

(s−1)
i

)∣∣∣
s=3

... =
...

These differences can be written as

∆s−1
(
β
(s−1)
i

)
=

(−1)s−1(s− 1)!

(J − i)[J − (i+ 1)] . . . [J − (i+ (s− 2))]

(
J − i
s− 1

)
≥ 0 (3)

for s ≥ 2.

Further, the following lemma, proved in Anderson and Leo (2021) and similar to the con-
tinuous case covered in Davidson and Duclos (2000), indicates that, should the CDF of g
be uniformly below that of g′ at some order s upto outcome indexed j < J , then it will be
uniformly below that of g′ at a higher order s′ for some k, j < k < J .
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Lemma 3: If distribution Fj,g ≤ Fj,g′ at s = 1 with strict inequality somewhere in the

sequence, then for some arbitrary k, i ≤ k ≤ J , k > j, F
(s)
k,g ≤ F

(s)
k,g′ for a suitably selected

large s > 1.

Finally, to obtain the necessary and sufficient conditions, the following lemma on the
general decomposition of equation (1) is required (Gravel et al. (2020) demonstrated it for
the first order), the proof of which is in appendix A.2.

Lemma 4: Define the dth order finite difference of the coefficients in vector α with typical
element αj, j = 1, . . . , J , ∆dαj = ∆d−1αj+1−∆d−1αj, for d = 1, . . . , J−j. Then by repeated
decomposition,

J∑
i=1

fi,gαi =
i∑

k=1

(−1)k−1F
(k−1)
J−(k−1),g∆

k−1αJ−(k−1) +
J−i∑
j=1

(−1)iF
(i)
j,g∆iαj (4)

=
J∑

k=1

(−1)k−1F
(k−1)
J−(k−1),g∆

k−1αJ−(k−1)

Two important points have evaded analyst’s attention when moving from the continuous to

the discrete paradigm. Note that the first order decomposition of
J∑

i=1

fi,gαi can be written

as,

J∑
i=1

fi,gαi = αJ −
J−1∑
j=1

F
(1)
j,g ∆1αj

so that, for the usual first order dominance restriction of increasing differences valuation
(∆1αi ≥ 0 for i = 1, . . . , J − 1), the necessary and sufficient condition for state g to be

preferred to state g′ is F
(1)
j,g ≤ F

(1)
j,g′ ∀j = 1, . . . , J − 1, which excludes j = J . This is

no surprise since the number of finite differences are bounded by the number of discrete
outcomes. Expanding the expression to the second order,

J∑
i=1

fi,gαi = αJ − F (1)
J−1∆

1αJ−1 +
J−2∑
j=1

F
(2)
j,g ∆2αj

so that, given the additional restriction that the increasing differences be at a decreasing
rate (i.e. ∆1αj ≥ 0 and ∆2αj ≤ 0), the necessary and sufficient conditions for second

order stochastic dominance for ordinal variables requires F
(1)
J−1,g ≤ F

(1)
J−1,g′ and F

(2)
j,g ≤ F

(2)
j,g′

∀j = 1, . . . , J − 2. Observe the additional restriction on the finite difference at the second
order removes the (J−1)th and J th outcome, in essence giving them a weight of zero. In and
of itself, this is not an issue until it is realized that ordinal variables are typically qualitative in
nature, and have a limited number of responses, so that the common definition of stochastic
dominance at increasing orders leads to necessary and sufficient conditions that reduce the
number of degrees of freedom available to the researcher, so that in the limit s −→ J − 1, we
would be comparing f1,g versus f1,g′ since F

(s)
1,g = f1,g for all s. Hence unlike the continuous

paradigm, stochastic dominance comparisons beyond s = J − 1 are not available.
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Given the above results, a definition of stochastic dominance for discrete ordinal variables
may be written as follows:

Definition 1: For all integer s = 1, . . . , J − 1, define the finite difference for the set of

feasible valuations
(
α
(s)
1 , . . . , α

(s)
J

)
for J discrete ordinal categories as,

∆1α
(s)
i = α

(s)
i+1 − α

(s)
i , for i = 1, . . . , J − 1

∆2α
(s)
i = ∆1α

(s)
i+1 −∆1α

(s)
i , for i = 1, . . . , J − 2

... =
...

where by lemma 4, the feasible set of valuations associated with each order of dominance is,

A(s) =
{(

α
(s)
1 , . . . , α

(s)
J

)
∈ RJ

∣∣∣ (−1)s∆dα
(s)
j ≤ 0, ∀d ≤ s,∀j = 1, . . . , J − s

}
(5)

Then an sth order ordinal stochastic dominance comparison between two states g versus
g′, each with density vector fJ

g and fJ
g′ respectively, with g dominating g′ with valuations

α
(s)
j ∈ A(s), for j = 1 . . . , J − s, when

n
J∑

j=1

α
(s)
j fj,g ≥ n

J∑
j=1

α
(s)
j fj,g′ (1.a)

⇐⇒ F
(s)
j,g ≤ F

(s)
j,g′ , ∀j = 1, . . . , J − s (6.a)

, F
(s)
j,g < F

(s)
j,g′ , for some j = 1, . . . , J − s (6.b)

& F
(s′)
J−s′,g ≤ F

(s′)
J−s′,g′ ,∀s

′ = 1, . . . , s− 1 (6.c)

and the discrete ordinal preorder relation is denoted by F
(s)
J,g �O F

(s)
J,g′

3 Extension of Hammond Dominance

As a resolution to the limitation on the order of dominance imposed by the limited number
of higher order moment restrictions available, using Hammond (1976), Gravel et al. (2020)
interpreted the valuations as importance weights allotted to the various outcomes. This
facilitated determination of whether the net gain from deriving one distributional state from
another was normatively achievable. Gravel et al.’s pertinent findings are noted in the
following definitions.

Definition 2: (Increment) A state g is obtained from state g′ through an increment if
there exists j ∈ {1, . . . , J − 1} such that:

ng
h = ng′

h , ∀h 6= j & j + 1;

ng
j = ng′

j − 1; ng
j = ng′

j+1 + 1
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which means that distribution g can be “constructed” in its likeness in g′ through raising
the mass in a higher ordered category. This “construction” could be similarly performed in
the opposite direction.

Definition 3: (Decrement) A state g is obtained from state g′ through a decrement if and
only if state g′ can be obtained from state g through an increment in the sense as defined in
definition 2.

A Hammond (1976) transfer is then obtained through the combination of both increment
and decrement:

Definition 4: (Hammond Transfer) A state g is obtained from state g′ through a Ham-
mond transfer if there exist categories 1 ≤ i < j ≤ k < l ≤ J such that:

ng
h = ng′

h , ∀h 6= i, j, k, l

ng
i = ng′

i − 1 ; ng
j = ng′

j + 1

ng
k = ng′

k + 1 ; ng
l = ng′

l − 1

Hammond transfers differ from those of Pigou-Dalton since the former does not equate an
increment to a similar decrement because in an ordinal scenario without cardinality, the net
effects have no meaning. The set of values for αi corresponding with definitions 2, 3, and 4
are as follows:

Definition 5: State g is derived from state g′ through increments as defined in definition 2
implies equation (1) for all lists of real numbered normative valuations (α1, . . . , αJ) ∈ AF ,
where

AF =
{

(α1, . . . , αJ) ∈ RJ
∣∣α1 ≤ · · · ≤ αJ

}
(7)

thus requiring that ∆1αj ≥ 0 for j = 1, . . . , J − 1. Further,

Definition 6: State g is derived from state g′ through Hammond Transfers as defined in defi-
nition 4 implies equation (1) for all lists of real numbered normative valuations (α1, . . . , αJ) ∈
AH , where

AH =
{

(α1, . . . , αJ) ∈ RJ
∣∣ (αi+1 − αi) ≥ (αk − αi+1), i = 1, . . . , J − 1

}
(8.a)

It is the inequality in (8.a) that provides the necessary “curvature”. As will be observed,
α = −β(s) ∈ AH for s ≥ J , so that the Hammond Dominance defined by Gravel et al. (2020)
can be extended and build upon. Finally, Hammond dominance is defined as follows:

Definition 7: For the H function in state g,

HJ,g =
J∑

j=1

ajfj,g (9.a)
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where (a1, . . . , aJ) is defined as ai = 2J−i, so that (−a1, . . . ,−aJ) ∈ AH .

ng

J∑
j=1

(−aj)fj,g ≥ ng′
J∑

j=1

(−aj)fj,g′ (1.b)

⇐⇒ Hj,g ≤ Hj,g′ ∀j ∈ {1, . . . , J} (9.b)

and we say state g H−dominates g′, or HJ,g �H HJ,g

Gravel et al. (2020) showed that inequality (1) is true if and only if HJ,g �H HJ,g′ ,
and that state g is obtained through a finite sequence of increments, and/or Hammond
Transfers from state g′. It is interesting to note that αi = 2J−i is the discrete equivalent of
the exponential function ex, since ∆12J−i = 2J−i. Tempting as it is to link definition 1 to
H−dominance, it must be kept in mind that ordinal dominance stops at s = J − 1, whereas
H−dominance starts at s ≥ J .

Since the binomial coefficients associated with the SSCDFs are decreasing at an increasing
rate as s increases, they suggest themselves as candidates for α as defined in definition 7.
Indeed, this is viable by the following lemma for s ≥ J , the proof of which is in appendix
A.3.

Lemma 5: Define α(t) = −β(J−1+t)
J with typical element −β(J−1+t)

i i = 1, . . . , J , and t =

0, 1, 2, . . . . Then α(t) ∈ A(t)
H , where

A(t)
H =

{(
α
(t)
1 , . . . , α

(t)
J

)
∈ RJ

∣∣∣ (α(t)
i+1 − α

(t)
i

)
≥
(
α
(t)
k − α

(t)
i+1

)
, ∀1 ≤ i < k ≤ J − 1

}
(8.b)

Then the set AH makes continual refinement of the α valuations possible if H−dominance
at lower orders are not achieved, although not in exactly the same manner, or motivated by
the expansion of the objective function in inequality (1). Nonetheless, statistically significant
H−dominance can be achieved incrementally from lower to higher orders as formally stated
below.

Definition 8: Define α(t) as in lemma 5 given a choice of t. For the H function in state g,

H
(t)
J,g =

J∑
j=1

β
(J−1+t)
j fj,g = F

(J+t)
J,g (10.a)

state g is preferred to g′,

n

J∑
j=1

α
(t)
j fj,g ≥ n

J∑
j=1

α
(t)
j fj,g′ (1.c)

⇐⇒ H
(t)
j,g ≤ H

(t)
j,g′ ∀j = 1, . . . , J − 1 (10.b)

and state g is said to H−dominate g′ at order t, or H
(t)
J,g �H H

(t)
J,g, for t = 0, . . . ,∞.

There are several points to note. Firstly, the modified H−dominance defined in definition
8 is based on a chosen α(t) at a specified t. It can be a very large number, and will not be
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limited by the number of ordered categories. Secondly, since the modified H−dominance is
basically the SSCDF when s ≥ J , the link between the objective function and the SSCDF
is retained. Decomposing inequality (1.c) to refine the conditions for higher orders is no
longer valid since decomposition will rely on lower orders of the SSCDF below J . Thirdly,
stochastic dominance as defined by definition 1 implies H−dominance at all possible t by
lemma 3. Finally, by lemma 1, both approaches of H−dominance and stochastic dominance
of definition 1 have well known asymptotic sampling behaviours (Rao 2009) which facilitates
statistical inference.

4 Empirical Illustration

The increasing urban−rural coastal−inland inequities in the provision of health care and
insurance coverage since the economic reforms in China has been well documented (Grogan
1995; Zhang and Kanbur 2008), and it would be interesting to see if these disparities are
reflected in peoples’ perceptions of their health status. Here the use of both ordinal and
H−dominance criteria are illustrated using individual self-reported health (SRH) status
extracted from the Chinese General Social Survey (CGSS), a nationwide social survey project
conducted by the Renmin University of China (Bian and Li 2012). The survey encompassed
Chinese households across the country between 2003 to 2017, of which the years 2008, 2010,
2012, 2015, and 2017 are used here. The application demonstrates how dominance techniques
can be used to examine potentially nonlinear changes in perceptions across regions, gender
and time. There are five response categories with ‘1’ being “Very Unhealthy”, and ‘5’ being
“Very Healthy”. The data is summarized in figure 1, with several notable features. Under
arbitrary attribution of scale, the means for all groups across years have been stable at
category ‘4’ (“Relatively Healthy”), with the coastal communities having a greater tendency
towards category ‘5’. A tendency towards poorer responses in the latter years suggesting
a fall in perceptions of individual health across the country is also apparent. There also
appears to be gender disparity throughout the country, with males having higher perceptions
of personal health than females.

The rankings reported below through the Hasse diagrams of figures 2 and 3 were derived
through statistical inference. For ordinal dominance of definition 1, each pairwise comparison
is tested via this couplet of hypotheses:

vs.

{
H0 : F

(1)
j,g ≤ F

(1)
j,g′

H1 : F
(1)
j,g > F

(1)
j,g′

,∀j = 1, . . . , 4 & vs.

{
H0 : F

(1)
j,g ≥ F

(1)
j,g′

H1 : F
(1)
j,g < F

(1)
j,g′

,∀j = 1, . . . , 4

so that dominance at the first order is achieved if either F
(1)
j,g ≤ F

(1)
j,g′ or F

(1)
j,g ≥ F

(1)
j,g′ with

strict inequality at some j = 1, . . . , 4. If both are statistically significant or insignificant, the
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test moves on to the next order. At the second order, the complete set of hypotheses are,

vs.

{
H0 : F

(2)
j,g ≤ F

(2)
j,g′

H1 : F
(2)
j,g >

(2)
j,g′

,∀j = 1, . . . , 3 & vs.

{
H0 : F

(2)
j,g ≥ F

(2)
j,g′

H1 : F
(2)
j,g < F

(2)
j,g′

,∀j = 1, . . . , 3

& vs.

{
H0 : F

(1)
4,g ≤ F

(1)
4,g′

H1 : F
(1)
4,g > F

(1)
4,g′

& vs.

{
H0 : F

(1)
4,g ≥ F

(1)
4,g′

H1 : F
(1)
4,g < F

(1)
4,g′

The hypothesis tests for H−dominance are in turn,

vs.

{
H0 : H

(0)
j,g ≤ H

(0)
j,g′

H1 : H
(0)
j,g > H

(0)
j,g′

,∀j = 1, . . . , 4 & vs.

{
H0 : H

(0)
j,g ≥ H

(0)
j,g′

H1 : H
(0)
j,g < H

(0)
j,g′

,∀j = 1, . . . , 4

These tests make use of the fact that the maximum likelihood estimator of fj,g is f̂j,g =∑n
i=1 I(xi,g=j)

n
, and that

√
n
(
f̂ g − f g

)
a−→ N(0,Σg), where f g = [f1,g f2,g . . . fJ,g]

′, and

Σg = diag(f ′g)−f gf
′
g (Rao 2009). If the sample sizes are not the same, the limiting bahavior

is modified as
√
m
(
f̂ g − f g

)
a−→ N(0,Σg) for m =

ngng′

ng+ng′
. Then for ordinal dominance,

√
n
(
F̂

(s)
j,g − F

(s)
j,g

)
=
√
nβ

(s−1)′
j

(
f̂

j

g − f j
g

)
a−→ N

(
0,β

(s−1)′
j Σj,gβ

(s−1)
j

)
for j = 1, . . . , J and s = 1, . . . , J − 1, where β(s) is the vector of the binomial coefficients,
with β

(s)
j being its first j elements, f j

g are the associated vector of densities, with variance

Σj,g = diag(f j
g)− f j

gf
j′
g . By extension, the limiting behavior of H

(t)
j,g is,

√
n
(
Ĥ

(t)
j,g −H

(t)
j,g

)
=
√
nβ

(J−1+t)′
j

(
f̂

j

g − f j
g

)
a−→ N

(
0,β

(J−1+t)′
j Σj,gβ

(J−1+t)
j

)
for t = 0, 1, . . . ,∞.

The ranking results depicted in the Hasse diagrams of figures 2 and 3 reflect the impres-
sions gained from figure 1. The rankings of figure 2 were achieved at the first order (at 10%
level of significance), with the sole exception of the second order dominance of coastal fe-
males in 2015 over coastal females in 2010. Overall, it is clear that coastal males’ perception
of their health dominates their compatriots, followed by coastal females, then inland males
and inland females respectively. The deteoriation of health perceptions over time across the
spectrum of groups is equally evident.
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Figure 1: Self-Reported Health Box Plot by Gender, Region & Year
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Figure 2: Hasse Diagram based on Ordinal Dominance

Coastal Male, 2008

Coastal Male, 2010

Coastal Male, 2015

Inland Male, 2008 Coastal Female, 2008 Coastal Male, 2012 Coastal Male, 2017

Coastal Female, 2015

-2

Coastal Female, 2010

Coastal Female, 2012

Inland Male, 2010

Inland Male, 2015

Coastal Female, 2017

Inland Female, 2008 Inland Male, 2012

Inland Female, 2015

Inland Male, 2017

Inland Female, 2010

Inland Female, 2012

Inland Female, 2017
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Figure 3: Hasse Diagram based on Hammond Dominance

Coastal Male, 2008

Coastal Male, 2015

Coastal Female, 2008

Inland Male, 2008

Coastal Male, 2010

Coastal Male, 2012

Coastal Female, 2015

Coastal Male, 2017

Coastal Female, 2010 Coastal Female, 2012

Inland Male, 2015

Inland Female, 2008

Inland Male, 2010

Inland Male, 2012

Coastal Female, 2017

Inland Female, 2015

Inland Male, 2017

Inland Female, 2010

Inland Female, 2012

Inland Female, 2017

Although most of the dominance relationships (at 10% level of significance) are main-
tained for Hammond Dominance in figure 3, there are significant increases in “no dominance”
relationships, as suggested by the boxplots of figure 1, so that in consequence, there is a pro-
liferation of “edges”. Nonetheless, the observed dominance of coastal communities over those
inland, males over females across geography, and deteoriation of perceived health over time
remains. One may legitimately ask why the rankings of figure 2 are not replicated in figure
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3, as would have been suggested by lemma 3. The relationships which became indetermi-
nate occured where the first order dominance occured at a single category at the right tail,
with the remainder categories being statistically not significant. With the change of weights,
which is essentially what occurs moving from definition 1 to 8, the variance increase conse-
quently diluted the initially observed statistical significance, causing the increase in ranking
indeterminancy. Indeed, to achieve similar sets of ranking, the level of statistical significance
needs to be relaxed to 15%− 20%.

5 Conclusion

Building on work by Gravel et al. (2020) and Anderson and Leo (2021), two approaches of
extending stochastic dominance concepts to discrete ordinal variables are proposed. The
first translates well known stochastic dominance techniques to the ordinal discrete paradigm
using the objective function suggested by Gravel et al. (2020) while using binomial coefficients
associated with SSCDFs (Anderson and Leo 2021). This approach is however limited by the
small number of distinct ordered categories commonly seen in discrete ordinal variables. The
second approach builds on Gravel et al.’s H−dominance ideas, and proposes an alternative
valuation system using the binomial coefficients associated with increasing orders of SSCDFs.
This latter approach facilitates systematic higher order dominance examination. Given the
well known statistical sampling theory for ordered categorical data, statistical inference at
all orders of dominance is straightforward, and is demonstrated in the illustrative example
for self-reported health in China.

A Mathematical Appendix

A.1 Proof of Lemma 2

First note that for first order stochastic dominance, all categories are equally weighted re-
gardless of whether the variable is continuous cardinal, discrete cardinal or discrete ordinal,
so that the difference is 0. For the second order, s = 2, all we need is for the first difference
to be positive. So from lemma 1,

β
(s−1)
i =

(
[J − i+ (s− 1)]

s− 1

)

12



for i ∈ {1, . . . , J}, keeping in mind that β
(s−1)
i is strictly decreasing in i. Then for any

adjacent coefficients, β
(s−1)
i and β

(s−1)
i+1 , their difference can be written as,

∆1β
(s−1)
i = β

(s−1)
i+1 − β

(s−1)
i =

(
[J − (i+ 1) + (s− 1)]

s− 1

)
−
(

[J − i+ (s− 1)]
s− 1

)
⇒ ∆1β

(s−1)
i

∣∣∣
s=2

=

(
[J − (i+ 1) + (s− 1)]

s− 1

)
−(s− 1)

J − i

∣∣∣∣
s=2

=

(
J − i

1

)
−1

J − i
< 0

In turn when s = 3, the second order finite difference is,

∆2β
(s−1)
i = ∆1β

(s−1)
i+1 −∆1β

(s−1)
i =

(
β
(s−1)
i+2 − β

(s−1)
i+1

)
−
(
β
(s−1)
i+1 − β

(s−1)
i

)
⇒ ∆2β

(s−1)
i

∣∣∣
s=3

=
(s− 2)(s− 1)

[J − i][J − (i+ 1)]

(
[J − (i+ 2) + (s− 1)]

s− 1

)∣∣∣∣
s=3

=

(
J − i

2

)
2

[J − i][J − (i+ 1)]
> 0

For s = 4

∆3β
(s−1)
i = ∆2βi+1 −∆2βi

⇒ ∆3β
(s−1)
i

∣∣∣
s=4

=
−(s− 3)(s− 2)(s− 1)

(J − i)[J − (i+ 1)][J − (i+ 2)]

(
[J − (i+ 3) + (s− 1)]

s− 1

)∣∣∣∣
s=4

=

(
J − i

3

)
−(3!)

(J − i)[J − (i+ 1)][J − (i+ 2)]
> 0

This suggests that the dth difference can be written as,

∆dβ
(s−1)
i =

(−1)d(s− d) . . . (s− 2)(s− 1)

(J − i)[J − (i+ 1)] . . . [J − (i+ (d− 1))]

(
[J − (i+ d) + (s− 1)]

s− 1

)
So that the (d+ 1)th difference is,

∆d+1β
(s−1)
i = ∆dβ

(s−1)
i+1 −∆dβ

(s−1)
i

=
(−1)d(s− d) . . . (s− 2)(s− 1)

[J − (i+ 1)][J − (i+ 2)] . . . [J − ((i+ 1) + (d− 1))]

(
[J − (i+ 1 + d) + (s− 1)]

s− 1

)
− (−1)d(s− d) . . . (s− 2)(s− 1)

(J − i)[J − (i+ 1)] . . . [J − (i+ (d− 1))]

(
[J − (i+ d) + (s− 1)]

s− 1

)
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=
(−1)d(s− d) . . . (s− 2)(s− 1)

(J − i)[J − (i+ 1)][J − (i+ 2)] . . . [J − (i+ (d− 1))]

(
[J − (i+ (d+ 1)) + (s− 1)]

s− 1

)
×
[

(J − i)− [J − (i+ d) + (s− 1)]

J − (i+ d)

]
=

(−1)d(s− d) . . . (s− 2)(s− 1)

(J − i)[J − (i+ 1)][J − (i+ 2)] . . . [J − (i+ (d− 1))]

(
[J − (i+ (d+ 1)) + (s− 1)]

s− 1

)
[

(−1)[s− (d+ 1)]

J − (i+ d)

]
which is as required and this completes the proof by induction for the differences. In turn,
we may now write the (s− 1)th finite difference for the sth order dominance as,

∆dβ
(s−1)
i

∣∣∣
d=s−1

=
(−1)d(s− d) . . . (s− 2)(s− 1)

(J − i)[J − (i+ 1)] . . . [J − (i+ (d− 1))]

(
[J − (i+ d) + (s− 1)]

s− 1

)∣∣∣∣
d=s−1

=

(
J − i
s− 1

)
(−1)s−1(s− 1)!

(J − i)[J − (i+ 1)] . . . [J − (i+ (s− 2))]

for s ≥ 2. �

A.2 Proof of Lemma 4

The method of decomposition which is essentially the discrete version of integration by parts
was also used in Gravel et al. (2020) in the ordinal variable case, and is here expanded. We
start with the second order since the first was already shown by Gravel et al. (2020). Stating
the first order expansion:

J∑
i=1

fi,gαi =
∑J

j=1 αjfg(xj) = αJ −
J−1∑
j=1

F
(1)
j,g ∆1αj

This process can be repeated so that,

J−1∑
j=1

F
(1)
j,g (αj+1 − αj)

=



F
(1)
1,g ∆1α1

+ F
(1)
2,g ∆1α1 + F

(1)
2,g [∆1α2 −∆1α1]

+ F
(1)
3,g ∆1α1 + F

(1)
3,g [∆1α2 −∆1α1] + F

(1)
3,g [∆1α3 −∆1α2]

+ . . .

+ F
(1)
J−1,g∆

1α1 + F
(1)
J−1,g[∆

1α2 −∆1α1]+

F
(1)
J−1,g[∆

1α3 −∆1α2] + · · ·+ F
(1)
J−1,g[∆

1αJ−1 −∆1αJ−2]

14



so that

=



F
(1)
J−1,g∆

1α1

+
(
F

(1)
J−1,g − F

(1)
1,g

)
[∆1α2 −∆1α1]

+
[
F

(1)
J−1,g −

(
F

(1)
1,g + F

(1)
2,g

)]
[∆1α3 −∆1α2]

+ . . .

+
[
F

(1)
J−1,g −

(∑J−2
j=1 F

(1)
j,h

)]
[∆1αJ−1 −∆1αJ−2]

= F
(1)
J−1,g∆

1αJ−1 −
J−2∑
j=1

F
(2)
j,g ∆2αj

where F
(2)
j,g =

∑j
k=1 F

(1)
k,g . So that,

J∑
i=1

fi,gαi = αJ − F (1)
J−1,g∆

1αJ−1 +
J−2∑
j=1

F
(2)
j,g ∆2αj

More generally,

J∑
i=1

fi,gαi = αJ +
i∑

k=2

(−1)k−1F
(k−1)
J−(k−1),g∆

k−1αJ−(k−1) +
J−i∑
j=1

(−1)iF
(i)
j,g∆iαj

= αJ +
J∑

k=2

(−1)k−1F
(k−1)
J−(k−1),g∆

k−1αJ−(k−1)

which is the discrete analogue of Ekern’s (1980) result.�

A.3 Proof of Lemma 5

We need to show the inequality (αi+1 − αi) ≥ (αk − αi+1) for all i, j, k ∈ {1, . . . , J}, where
1 < i < j < k ≤ J . First define,

αi =

 −
(

[j − i+ (s− 1)]
s− 1

)
for i ∈ {1, . . . , j}

0 for i ∈ {j + 1, . . . , J}

Then for i ≥ j + 1,

αi+1 − αi = 0− 0 = αk − αi+1

Similarly, for i = j, then

αi+1 − αi = αj+1 − αj = 0 + 1

> 0 = αk − αj+1 = αk − αi+1
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Finally, for i < j

αi+1 − αi = −
(

[j − (i+ 1) + (s− 1)]
s− 1

)
+

(
[j − i+ (s− 1)]

s− 1

)
= −

(
[j − (i+ 1) + (s− 1)]

s− 1

)[
1− [j − i+ (s− 1)]

(j − i)

]
=

(
[j − (i+ 1) + (s− 1)]

s− 1

)
s− 1

j − i
≥
<

{(
[j − (i+ 1) + (s− 1)]

s− 1

)
= αk − αi+1

{
if s ≥ j
if s < j

where the last inequality couplet follows since what we need is for the inequality to be true
for all i, j, and since maxi{j − i} = j − 1, the result follows. Thus it shows that for any
j ≤ J − 1, the inequality (αi+1−αi) ≥ (αj −αi+1) holds if s ≥ j, or when we consider order
of dominance s ≥ J . �
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