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Abstract
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1 Introduction

In dynamic panel data models, ignoring the correlation between unobserved heterogeneity and
pre-determined explanatory variables can generate important biases in the estimation of dy-
namic causal effects. The literature distinguishes two approaches to deal with this issue. The
random effects (RE) approach integrates over the unobserved heterogeneity using a paramet-
ric assumption on the distribution of this heterogeneity conditional on the initial values of the
predetermined explanatory variables. In short panels, this distribution cannot be identified non-
parametrically, and random effects approaches are not robust to misspecification of parametric
restrictions. This is the so called initial conditions problem (Heckman, 1981). In contrast, fixed
effects (FE) approaches impose no restriction on this distribution such that the identification of
parameters of interest is robust to misspecification of this primitive.

In discrete choice models with short panels, a limitation of FE methods is that they cannot
deliver identification of the distribution of the time-invariant unobserved heterogeneity. This is
because the data consist of a finite number of probabilities – as many as the number of possible
choice histories – but the distribution of the unobserved heterogeneity has infinite dimension.
This identification problem has generated a more substantial criticism of FE approaches. The
applied researcher is often interested in estimating average marginal effects (AME) of changes in
explanatory variables or in structural parameters. Since these AMEs are expectations over the
distribution of the unobserved heterogeneity, and this distribution is not identified, the common
wisdom is that FE approaches cannot (point) identify AMEs.1

In this paper, we present new results on the point identification of AMEs in FE dynamic
logit models. We prove the identification of the AME of a change in the lagged dependent
variable. This is a key parameter in dynamic models as it measures the causal effect of an
agent’s past decision on her current decision. We show that the identification of this parameter
does not require knowledge of the full distribution of the unobserved heterogeneity. Our proof is
constructive and it provides a simple closed form expression for this AME in terms of probabilities
of choice histories in panels where the time dimension can be as small as T = 4.

We extend this identification result to more general models and to other AME parameters.
First, we show the identification of the AME n periods after the change in the dependent
variable, where n can be between 1 and the number of periods in the data minus two. We

1Examples of recent papers describing this common wisdom are Abrevaya and Hsu (2021) (on page 5: "For
’pure’ fixed effects models, where the conditional distribution is left unspecified, identification of the partial effects
described above would generally require T →∞.") and Honoré and DePaula (2021) (on page 2: "It is important to
recognize that knowing β [slope parameters] is typically not sufficient for calculating counterfactual distributions
or marginal effects. Those will depend on the distribution of αi [incidental parameters] as well as on β and they
are typically not point-identified even if β is.")
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denote this parameter the nperiods forward AME. This sequence of AMEs provides the impulse
response function associated to an exogenous change in the dependent variable. Second, we show
this identification also holds in dynamic models that include strictly exogenous explanatory
variables. Third, we consider a more general dynamic discrete choice model with duration
dependence and prove the identification of AMEs where duration is the causal variable. All
these identification results of AMEs apply to dynamic multinomial models. We obtain very
simple analytical expressions for the AMEs in terms of probabilities of choice histories.

This paper is related to a large literature on FE estimation of panel data discrete choice
models pioneered by Rasch (1961), Andersen (1970), and Chamberlain (1980) for static models,
and by Chamberlain (1985) and Honoré and Kyriazidou (2000) for dynamic models. Most
papers in this literature focus on the identification and estimation of slope parameters and do
not present identification results on AMEs. Two important exceptions of studies that deal with
the identification of AMEs in FE models are Chernozhukov, Fernandez-Val, Hahn, and Newey
(2013; hereinafter CFHN), and Honoré and Kyriazidou (2019).

CFHN (2013) study the identification of AMEs in nonparametric and semiparametric binary
choice models. In their nonparametric model, the distributions of all the unobservables – the
time-invariant and the transitory shock – is nonparametric. Their semiparametric model – that
corresponds to the model that we consider in this paper – assumes that the transitory shock has
a known distribution – e.g., FE dynamic probit and logit models. They propose a computational
method to estimate the bounds in the identified set of the AME. Using numerical examples, they
find that the bounds for the AME can be very wide for the fully nonparametric model, but that
these bounds shrink fast with T in the semiparametric model.

In contrast to CFHN, we consider a sequential identification approach.2 Given a sufficient
statistic for the unobserved heterogeneity (or incidental parameters, α), the log-likelihood func-
tion can be written as the sum of two functions: the log-likelihood of the data conditional on the
sufficient statistic, L1(β), that depends on the parameters of interest β but not on the incidental
parameters α; and the log-likelihood of the sufficient statistic, L2(α,β), that depends on the two
sets of parameters. Previous results on conditional likelihood estimation of dynamic logit models
establish the identification of slope parameters based on the maximization of the (conditional)
log-likelihood L1(β) (Chamberlain, 1985; Honoré and Kyriazidou, 2000; Aguirregabiria, Gu, and
Luo, 2021). This is the first stage of our sequential approach. In the second stage, we take the
β parameters as known to the researcher and consider the identification of AMEs. These AMEs
are defined as functions of the slope parameters β and the distribution of the unobserved het-

2The sequential approach that we consider in this paper has been also recently suggested by Honoré and
DePaula (2021) [on page 2 of their paper]: "it seems that point- or set-identifying and estimating β is a natural
first step if one is interested in bounding, say, average marginal effects."
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erogeneity. The log-likelihood of the sufficient statistic, L2(α,β), contains all the information
in the data about the distribution of the unobserved heterogeneity α. Therefore, given β, the
empirical distribution of the sufficient statistic contains all the information about the AMEs.
These statistics take a finite number of values such that the information about the AME can be
represented using a system of equations. We show that simple manipulations in this system of
equations provide a closed form expression for AMEs of interest. While the approach in CFHN
is computationally demanding due to the very large dimensionality of the distribution of the
unobserved heterogeneity – in fact, it has infinite dimension in FE models – our approach is
computationally very simple as it provides closed form expressions for AMEs.3

Honoré and Kyriazidou also propose a numerical approach to construct bounds for structural
parameters and marginal effects in FE dynamic binary choice models. Their approach is based
on Honoré and Tamer (2006). In their numerical examples, they obtain tight bounds for slope
parameters, showing that the identification of these parameters can be more general than the
existing results of point identification in the literature. Though similar results may apply to
AMEs, their numerical exercises do not provide evidence on these parameters.

Chamberlain (1984), Hahn (2001), and more recently Arellano and Bonhomme (2017), show
the identification of some AMEs in FE nonlinear panel data models. These are AMEs for
a particular subpopulation of individuals defined by the data. In contrast, we focus on the
identification of marginal effects that are averaged over the whole population of individuals. As
far as we know, the point identification of this type of AMEs has not been previously established
in FE dynamic discrete choice models.

As mentioned above, the first step of our sequential identification approach consists in the
conditional maximum likelihood estimation of slope parameters. To this respect, it is worth
to mention recent results by Honoré and Weidner (2020) and Dobronyi, Gu, and Kim (2021)
showing that, in some FE dynamic binary choice models, the conditional likelihood equations
do not contain all the identification restrictions on the slope parameters. There are additional
moment equalities and inequalities with information on these parameters.

The rest of the paper is organized as follows. Section 2 describes the models and the AMEs
of interest. Section 3 presents our main identification results. We illustrate our results using
Monte Carlo experiments (in section 4) and an empirical application to a model of dynamic
demand using consumer scanner data (in section 5). We summarize and conclude in section 6.

3It is important to note that CFHN approach can be used for any AME, while we have shown point identifi-
cation of some AMEs. However, given the computational complexity, all their numerical examples and empirical
illustrations deal with models with only one binary regressor.
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2 Model and Average Marginal Effects

2.1 Model

Consider a panel dataset {yit,xit : i = 1, 2, ..., N ; t = 1, 2, ..., T} where yit can take J + 1

values: yit ∈ Y = {0, 1, ..., J}. We study panel data dynamic logit models. In these models,
the dependent variable can be represented as the choice alternative that maximizes a utility or
payoff function. That is,

yit = arg max
j∈Y

{
αi(j) +

J∑
k=0

βkj(dit) 1{yi,t−1 = k}+ x′it γj + εit(j)

}
. (1)

where {βkj(d) : k, j ∈ Y , d = 1, 2, ...T} and {γj : j ∈ Y} are parameters of interest, and
αi ≡ {αi(j) : j ∈ Y} are incidental parameters. The unobservables {εit(j) : j ∈ Y} are i.i.d.
type 1 extreme value. Variable dit ∈ {0, 1, 2, ...} represents the duration in the choice at period
t− 1. More formally, dit = 1{yi,t−1 = yi,t−2} dit,−1 + 1. The explanatory variables in the K × 1

vector xit are strictly exogenous with respect to the transitory shocks εit(j): that is, for any pair
of time periods (t,s), variables xit and εis are independently distributed.

Parameters βkj(d) represent the change in utility associated to switching from alternative k to
alternative j given that the agent has been choosing k during the last d periods. This switching
cost may vary with the duration in the last choice, such that the parameters βj(1), βj(2), ...
can be different. Identification of the β parameters requires some normalization conditions, for
instance, βjj(d) = 0 and βj0(d) = 0 for any j ∈ Y and any d.

There are many applications of dynamic models where the dependent variable has duration
dependence. For instance, in a model of individual employment (where y = 1 represents em-
ployment and y = 0 unemployment), a worker’s productivity may increase with job experience
and this implies that the probability of employment increases with the duration in that state.
Similarly, in a model of firm market entry/exit (where y = 1 means a firm is active in the market
and y = 0 inactive), a firm’s profit may increase with its experience in the market.

The vector αi represents (permanent) unobserved individual heterogeneity in preferences
or payoffs. The marginal distribution of αi is fα(αi), and fα|x(αi|x{1,T}i ) is the distribution of
αi conditional on the history of x variables x

{1,T}
i = (xi1,xi2, ...,xiT ). These distributions are

unrestricted. Similarly, the probability of the initial values (yi1, di1) conditional on αi and x
{1,T}
i

– that we represent as p∗(yi1, di1|αi,x{1,T}i ) – is unrestricted. Following the standard setting in
fixed effect (FE) approaches, our identification results are not based on any restriction on the
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initial conditions.4

Assumption 1 summarizes the conditions in this model.

ASSUMPTION 1: (A) (Logit) εit(j) is i.i.d. over (i, t, j) with type 1 extreme value distribution,
and is independent of αi; (B) (Strict exogeneity of xit) for any two periods, t and s, the variables
εit(j) and xis are independently distributed; and (C) (Fixed effects) the probability density func-
tions fα(αi) and fα|x(αi|x{1,T}i ), and the probability of the initial condition p∗(yi1, di1|αi,x{1,T}i )

are unrestricted. �

The form of our identification results vary across different versions of the general model in
equation (1). We focus on four models.

(1) Model MNL-AR1. Multinomial choice AR1 model without duration dependence: that is,
βkj(d) = βkj for every value of d.

yit = arg max
j∈Y

{
αi(j) +

J∑
k=0

βkj 1{yi,t−1 = k}+ x′it γj + εit(j)

}
. (2)

(2) Model BC-Dur. Binary choice model (J + 1 = 1) with duration dependence in y = 1

but not in y = 0 (that is, β00(d) = β00 and β01(d) = β01 for every value of d), and without x

variables.
yit = 1 { αi + β(dit) yi,t−1 + εit ≥ 0} (3)

It is straightforward to verify the following relationship between the parameters in this model
and those in the original model in equation (1): αi = αi(1) − αi(0) + β01 − β00; and β(d) =

β11(d)− β10(d)− β01 + β00. Furthemore, we have that εit = εit(1)− εit(0).

(3) Model BC-AR1-X. Binary choice model without duration dependence but with x ex-
planatory variables.

yit = 1 { αi + β yi,t−1 + x′it γ + εit ≥ 0} . (4)

The relationship between the parameters in this model and those in equation (1) is β = β11 −
β10 − β01 + β00, and γ = γ1 − γ0.

(4) Model BC-AR1. Binary choice, without duration dependence, and without x variables.

yit = 1 { αi + β yi,t−1 + εit ≥ 0} . (5)

4For instance, some previous studies using random effects models assume that initial choice yi1 is a random
random draw from the individual-specific steady-state distribution of the endogenous variable.
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2.2 Average Marginal Effects (AME)

2.2.1 Average transition probabilities

For the definition of the AMEs and other parameters of interest, it is convenient to define
transition probabilities and their average versions. For j, k ∈ Y , define the individual-specific
transition probabilities:

πkj(αi,x, d) ≡ P (yi,t+1 = j | αi, yit = k, xi,t+1 = x, dit = d) (6)

For instance, in the binary choice version of the model, π11(αi,x, d) = Λ(αi +β(d) +x′γ), where
Λ(u) is the Logistic function eu/[1 + eu]. Similarly, we use πkj(αi) to represent these transition
probabilities in models without x variables and duration.

We define Πkj(x, d) as the average transition probability from k to j that results from inte-
grating the individual-specific transition probability over the distribution of αi conditional on
x
{1,T}
i = (x, ...,x). That is,

Πkj(x, d) ≡
∫
πkj(αi,x, d) fα(αi | x{1,T}i = [x, ...,x]) dαi (7)

Similarly, for models without x variables and duration, we use Πkj to represent the average
transition probability

∫
πkj(αi) fα(αi) dαi.

For the model without duration, We can extend these definitions to n − periods forward
transition probabilities. That is, for any integer n ≥ 1, we define π(n)

kj (αi,x) ≡ P(yi,t+n =

j|αi,xi,t+n = x, yit = k), and its average Π
(n)
kj (x) ≡

∫
π
(n)
kj (αi,x) fα(αi|x{1,T}i = (x, ...,x)) dαi.

2.2.2 One-period forward AME - Binary choice, no duration, no x’s

We start with a simple AME that is very commonly used in empirical applications. Consider
the BC-AR1 model in equation (5). Let ∆(1)(αi) be the individual specific causal effect on yit of
a change in variable yit−1 from 0 to 1. That is:

∆(1)(αi) ≡ E (yit | αi, yit−1 = 1)− E (yit | αi, yit−1 = 0)

= π11(αi)− π01(αi) = Λ(αi + β)− Λ(αi).
(8)

This parameter measures the persistence of individual i in state 1 that is generated by true state
dependence. It is also an individual-specific treatment (causal) effect.

Using a short panel, parameter β is identified (Chamberlain, 1985; Honoré and Kyriazidou,
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2000), but the individual effects αi are not identified because the incidental parameters problem
(Neyman and Scott, 1948; Heckman, 1981; Lancaster, 2000). That is, we can identify ∆(1)(α)

for an hypothetical value of α, but not for the value of α that actually corresponds to individual
i. Therefore, the individual-specific treatment effects ∆(1)(αi) are not identified. Instead, we
study the identification of the following Average Marginal Effect (AME):

AME(1) ≡
∫

∆(1)(αi) fα(αi) dαi

=

∫
[π11(αi)− π01(αi)] fα(αi) dαi = Π11 − Π01.

(9)

The sign of the parameter β tell us the sign of AME(1). However, the absolute magnitude
of β provides basically no information about the magnitude of AME(1). For instance, given any
positive value β, we have that AME(1) can take any value within the interval (0, 1) depending
on the location of the distribution of αi. This is why the identification of AMEs is so important.

EXAMPLE 1. Consider a model of market entry, where yit is the indicator that firm i is active
in the market at period t. Let Vit(1, yi,t−1) and Vit(0, yi,t−1) represent firm i’s value if active and
inactive, respectively. Firms make choices to maximize their value such that firm i chooses to
be active if Vit(1, yi,t−1)− Vit(0, yi,t−1) ≥ 0, or equivalently, if Vit(1, 0)− Vit(0, 0)+ yi,t−1 [Vit(1, 1)

−Vit(1, 0) −Vit(0, 1)+Vit(0, 0)] ≥ 0. Our model imposes the restriction that Vit(1, 0)−Vit(0, 0) =

αi + εit and Vit(1, 1) −Vit(1, 0) −Vit(0, 1) − Vit(0, 0) = β. Therefore, parameter β captures the
complementarity (or supermodularity) in the value function between the decisions of being active
at periods t and t− 1. It captures true state dependence in market entry and it can interpreted
as a sunk entry cost. However, this parameter by itself does not give us a treatment effect or
causal effect. Consider the following thought experiment. Suppose that we could split firms
randomly in two groups, say groups 0 and 1. Firms in group 0 are assigned to be inactive in the
market, and firms in group 1 are assigned to be active. Then, after one period we look at the
proportion of firms who are active in the market in each of the two groups. AME(1) is equal to
the proportion of active firms in group 1 minus the proportion of active firms in group 0. �

The parameter AME(1) is also related to the average treatment effects (ATEs) from two
policy experiments with economic interest. For concreteness, we describe these policy experi-
ments and their corresponding ATEs using the application in Example 1. Consider a policy
experiment where firms in the experimental group are assigned to active status at period t− 1.
For instance, they receive a large temporary subsidy to operate in the market. Firms in the
control group are left in their observed status at period t− 1. Then, at period t the researcher
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observes the proportion of firms that remain active in the experimental group and in the control
group. The difference between these two proportions is the average effect of this policy treat-
ment, that we can denote as ATE11,t. According to the model, this average treatment effect has
the following form:

ATE11,t ≡
∫
π11(αi) fα(αi) dαi − E(yit|t) = Π11 − E(yit|t) (10)

where E(yit|t) is the mean value of y in the actual distribution of this variable at period t. Since
this distribution may change over time, this ATE may also vary with t. We can consider a similar
experiment but where firms in the experimental group are assigned to be inactive at period t−1

– e.g., they receive a large temporary subsidy for being inactive. We use ATE01,t to denote the
average effect of this other policy treatment. By definition,

ATE01,t ≡
∫
π01(αi) fα(αi) dαi − E(yit|t) = Π01 − E(yit|t) (11)

Given the definitions of AME(1), ATE11,t, and ATE01,t in equations (9), (10), and (11), respec-
tively, it is clear that AME(1) = ATE11,t − ATE01,t.

In section 3.3, we show the identification of the parameters Π01 and Π11. This implies
the identification ATE01,t, ATE11,t, and AME(1). Knowledge of Π01 and Π11 also implies the
identification of other relevant causal effects, such as the ratio Π11/Π01, the percentage change
(Π11 − Π01)/Π01 (as long as Π01 6= 0), the additive effect Π01 + Π11, a weighted sum of Π01 and
Π11, or more generally, any known function of these parameters.

2.2.3 n-periods forward AME - Binary choice, no duration, no x’s

Researchers can be interested in the response to a treatment after more than one period. Let
∆(n)(αi) be the individual-specific causal effect on yi,t+n of a change in yit from 0 to 1.

∆(n)(αi) ≡ E (yi,t+n | αi, yit = 1)− E (yi,t+n | αi, yit = 0) = π
(n)
11 (αi)− π(n)

01 (αi). (12)

Similarly as discussed above for ∆(1)(αi), this n−periods forward individual effect is not identified
using a short-panel. We are interested in the average of this effect:

AME(n) ≡
∫

∆(n)(αi) fα(αi) dαi =

∫ [
π
(n)
11 (αi)− π(n)

01 (αi)
]
fα(αi) dαi = Π

(n)
11 − Π

(n)
01 . (13)

In general, this n-periods forward AME is different to the product of n times the 1-period
forward AME: that is, AME(n) 6= [AME(1)]n, such that the identification of AME(n) is not a
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simple corollary that follows from the identification of AME(1).

2.2.4 One-period forward AME - Binary choice, model with x’s

Consider the binary choice model with exogenous explanatory variables (BC-AR1-X ) as de-
scribed in equation (4). In this model, the AME of the effect of yit−1 on yit has to take into
account the presence of x and its correlation with αi. Let ∆(1)(αi,x) be the individual-specific
causal effect on yit of a change in variable yit−1 from 0 to 1 when xit = x.

∆(1)(αi,x) ≡ E (yit | αi, yit−1 = 1,xit = x)− E (yit | αi, yit−1 = 0,xit = x)

= π11(αi,x)− π01(αi,x).
(14)

This individual-specific marginal effect is not identified using short panels. In section 3.6,
we show the identification results of two different average versions of this effect. A first AME is
based on the condition that x remains constant over the T sample periods:

AME(1)(x) ≡
∫

[π11(αi,x)− π01(αi,x)] fα|x(αi|x{1,T}i = (x, ...,x)) dαi

= Π11(x)− Π01(x)

(15)

A second AME is defined as follows:

AME
(1)
x,t ≡

∫
[π11(αi,xit)− π01(αi,xit)] f(α,xt)(αi,xit) d(αi,xit) (16)

This second AME is not conditional to a value of x but integrated over the joint distribution of αi
and xit at period t. Chamberlain (1984) describes this AME as the expected causal effect for an
individual randomly drawn from the distribution of (αi,xit) at period t. Since this distribution
can change over time, these AMEs can vary over time.5

EXAMPLE 2. Consider the model of market entry/exit in Example 1, but now we extend this
model to include an exogenous explanatory variable xit that represents the population size of
the market where the firm considers entry/exit. Then, AME

(1)
x (x) represents the average effect

on a firm’s entry status at period t of going (exogenously) from inactive to active at t− 1, and
for the subpopulation of markets with size x over the T sample periods. The parameter AME

(1)
x,t

is a similar effect but averaged over all the markets (firms) according to their distribution of
5Given that we show the identification of these time-specific AMEs at every sample period, they can be used

to test the null hypothesis of stationarity of the distribution of (αi,xit).
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population size at period t. �

Similarly as for the AR1 model, we are also interested in n-periods forward AMEs for this
AR1X model. The AME conditional on a constant value of x is:

AME
(n)
x (x) =

∫
[π11(αi,x)− π01(αi,x)]n fα|x(αi|x{1,T}i = (x, ...,x)) dαi (17)

2.2.5 AME of a change in duration - Binary choice

Consider the binary choice model with duration dependence (BC-Dur) as described in equation
(3). We are interested in the causal effect on yit of a change in the duration variable dit. For
instance, in a model of firm market entry/exit, we can be interested on the causal effect of one
more year of experience on the probability of being active in the market.

Let ∆d→d′(αi) be the individual-specific causal effect on yit of a change in dit from d to d′.

∆d→d′(αi) ≡ E (yit | αi, dit = d′)− E (yit | αi, dit = d)

= πd′,1(αi)− πd,1(αi) = Λ(αi + β(d′))− Λ(αi + β(d)).
(18)

where πd,1(αi) ≡ E(yit|αi, dit = d). Note that, given the definition of the duration variable dit,
we have that dit = d > 0 implies yi,t−1 = 1 and dit = 0 implies yi,t−1 = 0, such that we do
not need to include explicitly yi,t−1 as a conditioning variable in these expectations. We are
interested in the identification of the following AME:

AMEd→d′ ≡
∫

∆d→d′(αi) fα(αi) dαi =

∫
[πd′,1(αi)− πd,1(αi)] fα(αi) dαi (19)

2.2.6 AMEs in the multinomial choice model

Consider the multinomial model MNL-AR1 in equation (2). Let ∆j,k→j(αi) be the individual-
specific causal effect on the probability of yit = j of a change in yi,t−1 from k to j.

∆j,k→j(αi) ≡ E (1{yit = j}|αi, yi,t−1 = j)−E (1{yit = j}|αi, yi,t−1 = k) = πjj(αi)−πkj(αi). (20)

We are interested in identification of the following AMEs:

AMEj,k→j ≡
∫

∆j,k→j(αi) fα(αi) dαi = Πjj − Πkj (21)

and
ATEjj,t = Πjj − E (1{yit = j} | t) (22)
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3 Identification

We start, in section 3.1, reviewing existing results on the identification of the slope parameters
β and γ using the FE - conditional maximum likelihood (CML) approach. Then, we take these
slope parameters as known and study the identification of AMEs. In section 3.2, we establish the
identification of average transition probabilities Πjj. We show in section 3.3 that knowledge of
these average transitions implies the identification of one-period AMEs, AME(1), ATE(1)

11,t, and
ATE

(1)
01,t in binary choice models, and ATE(1)

jj,t in multinomial models. In section 3.4, we show
that these identification results extend to n-periods forward AMEs. In section 3.5 we present
a more general approach to show the identification of AMEs in this class of models. We apply
this approach to establish the identification of AME

(1)
x,t (in section 3.6) and of AMEs of changes

in duration (in section 3.7).

3.1 Identification of slope parameters β and γ

Here we review previous identification results of slope parameters using a FE sufficient statistics
approach. For the binary choice model without exogenous regressors or duration dependence
(model BC-AR1 ), the identification of the parameter β when T ≥ 4 has been proved in Cham-
berlain (1985). Honoré and Kyriazidou (2000) show the identification of the parameters β and γ
in binary and multinomial choice models with exogenous regressors. Their identification results
requires the vector of random variables xit− xi,t−1 to have support in a neighborhood of zero in
RK .6 Aguirregabiria, Gu, and Luo (2021) establish the identification of the duration-dependence
parameters βkj(d) (see Proposition 3 in that paper).

Let y
{1,T}
i ≡ (yi1, yi2, ..., yiT ) be the vector with the choice history of individual i, and let

x
{1,T}
i represent (xi1,xi2, ...,xiT ). The vector α ≡ (α1, α2, ..., αN) contains the fixed effects or

incidental parameters for the N individuals. The vector θ ≡(β, γ) contains the parameters of
interest. The log-likelihood function where α’s are treated as parameters is:

` (α, θ) =
N∑
i=1

lnP
(
y
{1,T}
i |x{1,T}i , αi, θ

)
=

N∑
i=1

ln

[
T∏
t=2

πyi,t−1,yit (αi,xit, θ) p∗(yi1, di1|αi)

]
(23)

where p∗(yi1, di1|αi) is the probability of the initial condition given αi.
For the general model in equation (1), the log-probability of a choice history has the following

structure:
lnP

(
y
{1,T}
i |x{1,T}i , αi, θ

)
= s(y

{1,T}
i )′ g(αi) + c(y

{1,T}
i )′ θ (24)

6This condition rules out, for instance, time dummies as explanatory variables in xit
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where s(y
{1,T}
i ) and c(y

{1,T}
i ) are vectors of statistics (functions of y{1,T}i ), and g(αi) is a vector

of functions αi. For notational simplicity, we use si and ci to represent s(y{1,T}i ) and c(y{1,T}i ),
respectively. Given this structure of the log-probability of a choice history, it is simple to show
that si is a minimal sufficient statistic for αi. That is, si is a sufficient statistic| for αi such
that P(y

{1,T}
i |x{1,T}i , αi, θ, si) = P(y

{1,T}
i |x{1,T}i , θ, si); and si is minimal because its elements are

linearly independent. More precisely, we have that:

P(y
{1,T}
i |x{1,T}i , αi, θ, si) =

P(y
{1,T}
i |x{1,T}i , αi, θ)

P(si|x{1,T}i , αi, θ)
=

exp {s′i g(αi) + c′i θ}∑
y:s(y)=si

exp
{
s′i g(αi) + c(y)′ θ

}

=
exp {c′iθ}∑

y:s(y)=si

exp
{
c(y)′θ

}
(25)

where
∑

y: s(y)=si
represents the sum over all the possible choice histories y with s(y) equal to

si. Furthermore, when T ≥ 4, the vectors of statistics ci and si are linearly independent.
This result implies that we can (point) identify θ using a Conditional Maximum Likelihood

(CML) approach. We can write the log-likelihood function as the sum of two likelihoods:

` (α, θ) = `C (C,S ; θ) + `S (S ;α, θ) (26)

with C = {ci : i = 1, 2, ..., N} and S = {si : i = 1, 2, ..., N}, and where

`C (C,S ; θ) =
N∑
i=1

lnP(y
{1,T}
i |x{1,T}i , θ, si) =

N∑
i=1

c′iθ −
N∑
i=1

ln

 ∑
y: s(y)=si

exp
{
c(y)′θ

} , (27)

and

`S (S ;α, θ) =
N∑
i=1

lnP(si|x{1,T}i , αi, θ) =
N∑
i=1

ln

 ∑
y:s(y)=si

exp
{
s′i g(αi) + c(y)′ θ

} . (28)

Function `C (C,S ; θ) is the conditional log-likelihood function. It has two important proper-
ties: it does not depend on the incidental parameters α; and the maximization of this function
with respect to θ uniquely identifies these parameters of interest. In fact, the (sample) condi-
tional log-likelihood function is globally concave in θ. Function `S (S ;α, θ) is the likelihood for
the sufficient statistic si. All the information in the sample about the incidental parameters
appears in this function. Note that it depends on the data only through the sufficient statistics
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si. Therefore, given θ, all the information in the data about the incidental parameters appears
in the empirical distribution of the sufficient statistic si. This result plays an important role in
our identification of the AMEs. For the rest of this section 3 we treat the parameters of interest
θ as known to the researcher.

3.2 Identification of average transition probabilities

Consider the general model in equation (1). Lemma 1 establishes a relationship between switch-
ing cost parameters βkj(d) and individual-specific transition probabilities that plays a key role
in our identification results.

Lemma 1. In the model defined by equation (1) and assumption 1, for any triple of choice
alternatives j, k, ` (not necessarily all different, but with j 6= k and j 6= `, the following
condition holds:

exp {βk`(d)− βkj(d) + βjj(d)− βj`(d)} =
πk`(αi,x, d) πjj(αi,x, d)

πkj(αi,x, d) πj`(αi,x, d)
. � (29)

Proof. Given the expression for the choice probabilities in the logit model, it is simple to verify
that πk`(αi,x, d)/πkj(αi,x, d) = exp{αi(`)−αi(j)+βk`(d)−βkj(d)}, and similarly, πjj(αi,x, d)/πj`(αi,x, d) =

exp{αi(j)− αi(`) + βjj(d)− βj`(d)}. The product of these two expressions is equation (29).

Proposition 1 establishes the identification of the average transition probabilities Πjj(x) in
the logit model without duration dependence.

Proposition 1. Consider the model without duration dependence in equation (2) under As-
sumption 1. If T ≥ 3, the average transition probabilities {Πjj(x) : j ∈ Y} are identified using
the following equation,

Πjj(x) = Pj,j(x) +
∑
k 6=j

[
Pk,j,j(x) +

∑
`6=j

exp {βk` − βkj + βjj − βj`} Pk,j,`(x)

]
, (30)

where Py1,y2,y3(x) and Py1,y2(x) represent the probability of choice histories (yi1, yi2, yi3) = (y1, y2, y3)

and (yi1, yi2) = (y1, y2), respectively, conditional on x
{1,3}
i = (x,x,x) . �

Proof. For notational simplicity, we omit x as an argument throughout this proof. However, it
should be understood that the probability of the initial conditions p∗, the density function of
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αi, the empirical probabilities of choice histories, and the average transition probabilities are all
conditional on x

{1,3}
i = (x,x,x). We can write Πjj as:

Πjj =

∫
[p∗(0|αi) + p∗(1|αi)...+ p∗(J |αi)] πjj(αi) fα(αi) dαi (31)

This expression includes the term p∗(j|αi) πjj(αi) fα(αi) dαi that is equal to the choice history
probability Pj,j. However, it also includes the "counterfactuals" δ(1)k,j,j ≡ p∗(k|αi) πjj(αi) fα(αi)

dαi for k 6= j. We can represent each of these counterfactuals as:

δ
(1)
k,j,j =

∫
p∗(k|αi) [πk0(αi) + πk1(αi) + ...+ πkJ(αi)] πjj(αi) fα(αi) (32)

That is, we have that δ(1)k,j,j =
∑J

`=0 δ
(2)
k,`,j,j, with δ

(2)
k,`,j,j ≡ p∗(k|αi) πk`(αi) πjj(αi) fα(αi). For

` = j, we have that δ(2)k,j,j,j corresponds to the choice history probability Pk,j,j. Therefore, we
have that:

Πjj = Pj,j +
∑
k 6=j

[
Pk,j,j +

∑
` 6=j

δ
(2)
k,`,j,j

]
. (33)

For the rest of the terms δ(2)k,`,j,j, we apply Lemma 1. According to Lemma 1, we have that πk`(αi)
πjj(αi) = exp{βk` − βkj + βjj − βj`} πkj(αi) πj`(αi). Finally, note that p∗(k|αi) πkj(αi) πj`(αi)
fα(αi) is the choice history probability Pk,j,`. Putting all the pieces together, we have that the
expression in equation (30).

Unfortunately, the procedure described in the proof of Proposition 1 does not provide an
identification result for the parameters Πjk with j 6= k when the number of choice alternatives
is greater than two. Nevertheless, we show in the next section 3.3 how Proposition 1 implies the
identification of important AMEs.

3.3 Identification of one-period AMEs

Corollary 1.1. For the binary choice model without duration dependence, as described in
equation (4), Proposition 1 implies the identification of Π01(x), Π11(x), AME(1)(x), ATE01,t,
and ATE11,t. We now develop these results in more detail. First, remember that, in this model,
the slope parameter β is equal to β11 − β10 − β01 + β00. Therefore, by Lemma 1 we have that:

exp {β} =
π11(αi,x) π00(αi,x)

π10(αi,x) π01(αi,x)
(34)
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The application of Proposition 1 to this binary model implies the identification of Π11(x) and
Π00(x) with the following expressions:

Π11(x) = P1,1(x) + P0,1,1(x) + exp {β} P0,1,0(x)

Π00(x) = P0,0(x) + P1,0,0(x) + exp {β} P1,0,1(x)

(35)

As shown in equation (15), AME(1)(x) = Π11(x)− Π01(x). In this binary model, we have that
Π01(x) = 1−Π00(x). Therefore, it is clear that AME(1)(x) is identified as Π11(x) + Π00(x)− 1.
After some simple algebra, we can obtain the following expression:

AME(1)(x) = [exp {β} − 1] [P0,1,0(x) + P1,0,1(x)] (36)

These results clearly imply the identification of the unconditional parameters Π11, Π01, and
AME(1) in the model without x variables. Finally, given the definitions ATE01,t = Π01−E (yit|t)
and ATE11,t = Π11 − E (yit|t), these causal effect parameters are also identified.

Corollary 1.2. Proposition 1 implies the identification of any parameter that is a nonlinear
function of the average transitions Πjj. For instance, in the binary choice model, for Π01 > 0, the
marginal effect in percentage change, (Π11−Π01)/Π01, is identified. Similarly, in the multinomial
case we can identify the log-odds ratio parameter ln (Πjj/Π00). This parameter measures the
degree of state dependence in choice alternative j relative to a baseline alternative 0.

Corollary 1.3. The identification of Πjj implies the identification ATEjj,t. Remember that
ATEjj,t is the average treatment effect on 1{yit = j} from a randomized experiment where
individuals in the experimental group are assigned to yt−1 = j, and individuals in the control
group receive no treatment. By definition, ATEjj,t = Πjj − E (yit|t), such that ATEjj,t is
identified at any period t in the sample.

3.4 Identification of n-periods forward AMEs

We now establish, in Proposition 2, the identification of n-periods forward AMEs in the binary
choice model without duration dependence in equation (4). Our proof of this Proposition builds
on the following Lemma.

Lemma 2. Consider the binary choice model defined by equation (4) and Assumption 1. Suppose
that x{1,n}i = (x, ...,x). Then, the n-periods forward individual-specific causal effect ∆(n)(αi,x)
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satisfies the following equation:

∆(n)(αi,x) = [exp{β} − 1]n [π10(αi,x)]n [π01(αi,x)]n . � (37)

Proof. For notational simplicity, we omit x as an argument throughout this proof. However, it
should be understood that all the probabilities are conditional on x

{1,n}
i = (x,x,x). Using the

Markov structure of the model and the chain rule, we have that:

E(yi,t+n | αi, yit) = P (yi,t+n−1 = 0 | αi, yit) π01(αi) + P (yi,t+n−1 = 1 | αi, yit) π11(αi)

= π01(αi) + E (yi,t+n−1 | αi, yit) [π11(αi)− π01(αi)]
(38)

Given the definition of ∆(n)(αi) as E(yi,t+n | αi, yit = 1) − E(yi,t+n|αi, yit = 0), and applying
equation (38), we have that:

∆(n)(αi) = [E (yi,t+n−1 | αi, yit = 1)− E (yi,t+n−1 | αi, yit = 0)] [π11(αi)− π01(αi)]

= ∆(n−1)(αi) [π11(αi)− π01(αi)]
(39)

Applying this expression recursively, we obtain that ∆(n)(αi) = [π11(αi)−π01(αi)]n = [∆(1)(αi)]
n.

Finally, an implication of Lemma 1 is that π11(αi)− π01(αi) = [exp{β} − 1] π10(αi) π01(αi). To
see this, note that by Lemma 1, exp{β} π10(αi) π01(αi) = π11(αi) π00(αi). This implies that
[exp{β} − 1] π10 π01 = π11 π00− π10 π01 = π11(1− π01)− (1− π11)π01 = π11 − π01.

Proposition 2. Consider the binary choice model defined by equation (4) and Assumption 1.
Let n be any positive integer, suppose that x

{1,2n+1}
i = (x, ...,x), and let 1̃0

n
be the choice

history that consists of the n-times repetition of the sequence (1,0), e.g., for n = 2, we have that
1̃0

2
= (1, 0, 1, 0). If T ≥ 2n + 1 , then parameter AME(n) is identified as:

AME(n)(x) = [exp{β} − 1]n
[
P0,1̃0

n(x) + P1̃0
n
,1(x)

]
(40)

where P0,1̃0
n(x) and P1̃0

n
,1(x) are the probabilities of choice histories (0, 1̃0

n
) and (1̃0

n
, 1) con-

ditional on x
{1,2n+1}
i = (x, ...,x). �

Proof. For notational simplicity, we omit x as an argument throughout this proof. W.l.o.g.
we consider that T = 2n + 1. Given the definition of histories (0, 1̃0

n
) and (1̃0

n
, 1), it is
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straightforward to see that:
P0,1̃0

n =

∫
p∗(0|αi) [π10(αi)]

n [π01(αi)]
n fα(αi) dαi

P1̃0
n
,1 =

∫
p∗(1|αi) [π10(αi)]

n [π01(αi)]
n fα(αi) dαi

(41)

Applying equation (37) from Lemma 2, we have that:
P0,1̃0

n =
1

[exp{β} − 1]n

∫
p∗(0|αi) ∆(n)(αi) fα(αi) dαi

P1̃0
n
,1 =

1

[exp{β} − 1]n

∫
p∗(1|αi) ∆(n)(αi) fα(αi) dαi

(42)

Adding up these two equations, multiplying the resulting equation times [exp{β} − 1]n, and
taking into account that p∗(0|αi)+p∗(1|αi) = 1, we have that AME(n) = [exp{β}−1]n [P0,1̃0

n +

P1̃0
n
,1] such that AME(n) is identified.

3.5 A general procedure for identification of AMEs

In the identification results presented above, we show that AMEs are weighted sums of probabili-
ties of choice histories. In this section, we present a general method to obtain these weights. The
derivation of this method provides a better understanding of our approach for the identification
of AMEs. In sections 3.6 and 3.7, we use this procedure to obtain the identifications of AMEs
with x variables and duration dependence, respectively.

As in Section 3.1, let s(y) be the sufficient statistic for αi. Let ST be the set of possible values
of s, Ps the probability of a value s, and Ps ≡ {Ps : s ∈ ST} the probability distribution of this
statistic. Given θ, the empirical distribution Ps contains all the information in the data about
the distribution of αi, and therefore, about AMEs. Let AME =

∫
∆(αi, θ)fα(αi)dαi be one of

the AMEs described in section 2.2. We are interested in obtaining a function that depends only
on Ps and θ, say function h (Ps, θ), such that AME = h (Ps, θ). Lemma 3 presents a necessary
and sufficient condition to obtain this result.

The model determines how Ps depends on the parameters of interest θ, the distribution of
the incidental parameters, fα, and the probability of the initial conditions. Taking into account
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the structure of the probability of a choice history in equation (24), the model implies:

Ps =
∑

y: s(y)=s

[∫
exp{s′ g(αi) + c(y)′ θ} fα(αi) dαi

]
(43)

For the presentation of our results, it is convenient to distinguish two components in the sufficient
statistic: the initial condition (y1, d1), and the rest of statistics which we represent as s̃ such
that s = (y1, d1, s̃). Similarly, we distinguish two components in the vector g(αi) such that we
have:

exp{s′ g(αi)} = p∗(y1, d1|αi) exp{s̃′ g̃(αi)} (44)

Lemma 3. Consider the general model defined by equation (1) and Assumption 1. A necessary
and sufficient condition for the existence of a function h(Ps, θ) such that AME = h (Ps, θ) is
that there are weights {ms̃(θ) : s̃ ∈ S̃T} which are known functions of θ and satisfy the following
equation for every αi ∈ RJ : ∑

s̃∈S̃T

ms̃(θ) exp{s̃′ g̃(αi)} = ∆(αi, θ). (45)

Furthermore, this condition implies the following form for the function h(Ps, θ):

AME = h(Ps, θ) =
∑
s∈ST

ws Ps, (46)

where ws(θ) ≡ ms̃(θ)/
∑

y: s(y)=s exp{c(y)′ θ}. �

Proof. In the Appendix, section 7.1.

Based on equation (45) in Lemma 3, we develop a general and simple procedure to obtain the
analytical expression of the weights ms̃(θ) in the binary choice versions of the model. Equation
(45) defines an infinite system of equations – as many as values of αi. The researcher knows the
functions g̃(αi) and ∆(αi, θ) for every possible value αi. The unknowns in this system are the
weights ms̃(θ) for every s̃ ∈ S̃T . The vector of unknowns has finite dimension: the number of
points in set ST .

Proposition 3 presents our main result in this subsection. We show that equation (45) can
be represented as a finite order polynomial in the variable exp{αi}, and that this implies that
we can obtain close-form expressions for the weights ms̃(θ) as the analytical solution of a (finite
dimensional) system of linear equations.
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It is helpful to remember that, for the binary choice model in equation (5), we have that:7

θ = β; s(y) = (y1, yT , n1) with n1 =
∑T

t=2 yt; c = n11 ≡
∑T

t=2 yt−1yt; the individual effect
∆(αi, θ) is equal to eαi(eβ − 1)/(1 + eαi+β)(1 + eαi); and

s̃′ g̃(α) = (T − 1) ln

(
1

1 + eα

)
+ yT ln

(
1 + eαi+β

1 + eα

)
+ n1 ln

(
eα(1 + eα)

1 + eα+β

)
(47)

Therefore, equation (45) takes the following form:

1∑
yT=0

T−2+yT∑
n1=yT

myT ,n1(β)

(
1

1 + eα

)T−1(
1 + eα+β

1 + eα

)yT (eα (1 + eα)

1 + eα+β

)n1

=
eα(eβ − 1)

(1 + eα+β)(1 + eα)
. (48)

Proposition 3. Consider the binary choice model defined by equation (5) and Assumption 1,
and suppose that T ≥ 3. The RHS and LHS of equation (48) can be represented as polynomials
of order 2T − 3 in variable eαi. For this equation to hold for every value of αi, we need that
each of the 2T − 2 monomials in this polynomial have the same coefficient in the RHS and LHS
of the equation. This condition implies a system of 2T − 2 linear equations (i.e., the number
of monomials) and 2T − 2 unknowns (i.e., the weights {myT ,n1(β) : yT ∈ {0, 1}, n1 − yT ∈
{0, 1, ..., T − 2}}). The solution to this system exists, is unique,and it provides a closed-form
expression for the weights ms̃(β). �

Proof. In the Appendix, section 7.2.

Given weights {ms̃(β)}, it is straightforward to obtain weights {wy1,s̃(β)} by simply applying
its definition in Lemma 3, and then calculate AME(1).

In section 7.3 in the Appendix, we use Proposition 3 to obtain the closed-form expression
of the weights when T is equal to 3, 4, 5, 6, and 7, respectively. For a given length T of the
choice histories, the weights that solve the system are unique. However, this does not mean that
AME(1) is just-identified. In fact, for panels with T ≥ 4 there are over-identifying restrictions
on AME(1). This is because we can use the panel to construct the empirical distribution of
3-period histories, of 4-period histories, and so on up to T-period histories. For each of these
groups of histories, we can use the corresponding weights that solve the system in Proposition 3
to obtain a separate estimator of AME(1). Therefore, the model implies T − 3 over-identifying
restrictions on AME(1).

7See, for example, Aguirregabiria, Gu, and Luo (2021) for more details on this.
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3.6 Identification of AMEx,t

The AMEs conditional on x that we have identified in sections 3.3 and 3.4 apply to the sub-
population of individuals where the exogenous variable is constant over the sample. Since we
can identify this AME for any value of x, it is clear that we can obtain an integrated AME
over all the values of x. However, that integrated AME is still imposing the restriction that the
exogenous variables are constant over time, and therefore, it is an AME for that subpopulation
of individuals. We would like to obtain an AME that does not impose this restriction. This type
of AME corresponds to AME

(1)
x,t that we have defined in equation (16). Proposition 4 establishes

the identification of AME
(1)
x,t .

Proposition 4. Consider the binary choice model defined by equation (5) and Assumption 1,
and suppose that T ≥ 3. Then, AME

(1)
x,t , as defined in equation (16), is identified for any period

t ≥ 3 in the sample. For instance, for T = 3 and t = 3, we have that:

AME
(1)
x,3 =

∑
(x1,x2,x3)∈X {1,3}

Px1,x2,x3


w(0,0,1;x) P(0,0,1) | (x1,x2,x3)

+w(0,1,0;x) P(0,1,0) | (x1,x2,x3)

+w(1,0,1;x) P(1,0,1) | (x1,x2,x3)

+w(1,1,0;x) P(1,1,0) | (x1,x2,x3)

 (49)

where Px1,x2,x3 and P(y1,y2,y3) | (x1,x2,x3) are the density functions of (x1,x2,x3) and (y1, y2, y3)

conditional on (x1,x2,x3), respectively. The weights w(y1,y2,y3;x) are:

w(0,0,1;x) =
ex
′
2γ − ex′3γ

ex
′
3γ

; w(0,1,0;x) =
eβ+x′3γ − eβ+x′2γ

ex
′
2γ

;

w(1,0,1;x) =
eβ+x′2γ − ex′3γ

ex
′
3γ

; w(1,1,0;x) =
ex
′
3γ − ex′2γ

ex
′
2γ

. �

(50)

Proof. In section 7.4 in the Appendix.

Remark 4.1. Proposition 4 does not impose any restriction on the stochastic process of xit –
other than it is strictly exogenous with respect the transitory shock εit. Furthermore, though the
notation in the enunciate and proof of Proposition 4 assumes that the support of xit is discrete,
this identification result trivially extends to the case of continuous x variables.

Remark 4.2. There is a relationship between the identification of AME
(1)
x,t in Proposition 4 and

the identification of AME(1)(x) in Corollary 1.1 of Proposition 1. These two AMEs are the same
if xit is constant over time – with probability one – for every individual in the sample. Under
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this condition, the (sub)population of individuals with constant xit is simply the population of
all the individuals, and we can confirm that the weights to obtain AME

(1)
x,t in equation (50) are

equal to the weights to obtain AME(1)(x) in equation (36). That is:

w(0,0,1;x) = w(1,1,0;x) =
ex
′γ − ex′γ

ex′γ
= 0 ; w(0,1,0;x) = w(1,0,1;x) =

eβ+x′γ − ex′γ

ex′γ
= eβ − 1. (51)

3.7 Identification of AMEs of changes in duration

Proposition 5. Consider the binary choice model with duration dependence defined by equation
(3) and Assumption 1, and suppose that T ≥ 4. Under these conditions, AME0→1, AME1→2,
and AME0→2 – as defined in equation (19) – are identified.

AME0→1 =
eβ(1) − 1

2
[P0,0,1,0 + P0,1,0,0] +

eβ(1) − 1

eβ(1)
P0,0,1,1

+
(
eβ(1) − 1

)
[P1,0,1,0 + P1,0,1,1]

(52)

In section 7.5 in the Appendix, we provide the expression for the identification of AME0→2 and
AME0→2. �

Proof. In section 7.5 in the Appendix.

4 Monte Carlo experiments

The purpose of these Monte Carlo experiments is twofold. First, we illustrate the precision of the
FE estimator of AME(1) using sample sizes that we find in actual applications, and compare the
bias and variance of this FE estimator to those from a RE estimator that imposes restrictions
that we typically find in applications of RE models. Second, we compare the power of two
testing procedures for rejecting a misspecified RE model: the standard Hausman test based on
the difference between RE and FE estimates of slope parameters, and a new Hausman test that
we propose based on the difference between RE and FE estimates of AMEs.

The DGP is the binary choice AR1 model without exogenous explanatory variables in equa-
tion (5). The model for the initial condition is yi1 = 1{αi + ui ≥ 0} where ui is i.i.d. Logistic
and independent of αi and εit. The number of periods in the sample is T = 4. We present
results for two different sample sizes N , 1000 and 2000. We consider six different DGPs based
on two different values of parameter β (i.e., β = −1 and β = 1) and three distributions of the
unobserved heterogeneity αi: no unobserved heterogeneity, such that αi = 0 for any individual
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i; finite mixture with two points of support such that αi = −1 with probability 0.3, and αi = 0.5

with probability 0.7; and a mixture of two normal random variables such that αi ∼ N (−1, 3)

with probability 0.3, and αi ∼ N (0.5, 3) with probability 0.7. Note that this mixture of normals
implies an asymmetric and bimodal distribution.

Table 1 summarizes the six DGPs, the labels we use to represent each of them, and the corre-
sponding true value of AME(1) in the population. Note that, keeping parameter β constant, the
AME can vary substantially when we change the distribution of the unobserved heterogeneity.
This is why the identification of AME, and not only β, is important to measure causal effects.
For instance, when β = 1, AME is equal to 0.23 in the DGP without unobserved heterogeneity,
0.20 for the finite mixture, and 0.11 when α has a mixture of normals distribution. We find
similar variation when β = −1.

Table 1
DGPs and true values of AME

Distribution of αi
Value of β αi = 0 Finite mixture Mixture of normals

β = −1
NoUH(-1)

AME(1) = −0.2311

FinMix(-1)
AME(1) = −0.2164

MixNor(-1)
AME(1) = −0.113

β = 1
NoUH(+1)

AME(1) = 0.2311

FinMix(+1)
AME(1) = 0.2059

MixNor(+1)
AME(1) = 0.1108

For each DGP, we simulate 1, 000 random samples with N individuals (with N = 1, 000 or
N = 2, 000) and T = 4. For each sample, we calculate three estimators of β and AME(1):
(1) a FE estimator, that we denote FE-CMLE ;8 (2) a maximum likelihood estimator of a RE
model that assumes that the distribution of αi is discrete with two mass points, that we de-
note RE-MLE ; and (3) a maximum likelihood estimator that assumes there is no unobserved
heterogeneity, that we denote NoUH-MLE.9

8For parameter β, the fixed effect estimator is the CMLE proposed by Chamberlain (1985). For parameter
AME(1), we use a plug-in estimator based on the formula for the identified AME(1) when T = 4 that we present
in Table 5 (see section 7.3 in the Appendix). In that formula, we replace parameter β with its CML estimate,
and the probabilities of choice histories with their frequency estimates.

9For the DGPs without unobserved heterogeneity (i.e., NoUH(-1) and NoUH(+1)), we do not report results
for the RE MLE. This is because, for these DGPs, the finite mixture (two-types) RE model is not identified
and the estimates of β are extremely poor. As expected, the estimate of the mixing probability in the mixture
is close to zero, but the points in the support of αi are not identified and they take extreme values. This also
affects the estimation of β that presents very large bias and variance. For this reason, we have preferred not to
present results for this combination of estimator and DGP. However, it is important to note that avoiding these
numerical/identification problems in the estimation of the distribution of α is one of the key advantages of FE
estimator.
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Tables 2 and 3 present results from the experiments with sample sizes 1000 and 2000, respec-
tively. The results are quite similar for the two samples sizes except that, as one would expect,
all the estimators have lower bias and variance when the sample size increases. Therefore, we
focus our discussion in the results with N = 1000 in Table 2.

Table 2
Monte Carlo Experiments with sample size N=1,000

Statistics
True Mean Std True Mean Std RMSE
β β̂ β̂ AME ÂME ÂME ÂME

DGP FE-CMLE -1.0 -1.0074 0.1310 -0.2311 -0.2314 0.0235 0.0235

NoUH(-1) RE-MLE -1.0 NA NA -0.2311 NA NA NA

NoUH-MLE -1.0 -0.9998 0.0798 -0.2311 -0.2309 0.0175 0.0175

DGP FE-CMLE -1.0 -1.0012 0.1338 -0.2164 -0.2160 0.0222 0.0221

FinMix(-1) RE-MLE -1.0 -1.0036 0.1214 -0.2164 -0.2165 0.0215 0.0214

NoUH-MLE -1.0 -0.5979 0.0781 -0.2164 -0.1430 0.0183 0.0757

DGP FE-CMLE -1.0 -1.0136 0.2160 -0.1113 -0.1110 0.0178 0.0176

MixNor(-1) RE-MLE -1.0 -0.3604 0.1825 -0.1113 -0.0470 0.0218 0.0679

NoUH-MLE -1.0 1.7190 0.1028 -0.1113 0.4022 0.0214 0.5139

DGP FE-CMLE 1.0 1.0013 0.1654 0.2311 0.2344 0.0526 0.0527

NoUH(+1) RE-MLE 1.0 NA NA 0.2311 NA NA NA

NoUH-MLE 1.0 0.9980 0.0778 0.2311 0.2305 0.0176 0.0176

DGP FE-CMLE 1.0 0.9982 0.1841 0.2059 0.2089 0.0539 0.0539

FinMix(+1) RE-MLE 1.0 0.9864 0.1296 0.2059 0.2034 0.0315 0.0316

NoUH-MLE 1.0 1.4100 0.0843 0.2059 0.3212 0.0183 0.1168

DGP FE-CMLE 1.0 1.0055 0.2873 0.1108 0.1169 0.0511 0.0515

MixNor(+1) RE-MLE 1.0 1.4863 0.1828 0.1108 0.2120 0.0367 0.1078

NoUH-MLE 1.0 3.2453 0.1194 0.1108 0.6645 0.0166 0.5541
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Table 3
Monte Carlo Experiments with sample size N=2,000

Statistics
True Mean Std True Mean Std RMSE
β β̂ β̂ AME ÂME ÂME ÂME

DGP FE-CMLE -1.0 -1.0045 0.0951 -0.2311 -0.2315 0.0169 0.0169

NoUH(-1) RE-MLE -1.0 NA NA -0.2311 NA NA NA

NoUH-MLE -1.0 -1.0030 0.0566 -0.2311 -0.2316 0.0123 0.0123

DGP FE-CMLE -1.0 -1.0006 0.0985 -0.2164 -0.2160 0.0165 0.0164

FinMix(-1) RE-MLE -1.0 -1.0018 0.0898 -0.2164 -0.2163 0.0159 0.0158

NoUH-MLE -1.0 -0.5941 0.0576 -0.2164 -0.1421 0.0135 0.0755

DGP FE-CMLE -1.0 -1.0096 0.1514 -0.1113 -0.1116 0.0126 0.0124

MixNor(-1) RE-MLE -1.0 -0.3522 0.1281 -0.1113 -0.0467 0.0156 0.0665

NoUH-MLE -1.0 1.7142 0.0757 -0.1113 0.4012 0.0158 0.5128

DGP FE-CMLE 1.0 1.0051 0.1171 0.2311 0.2339 0.0366 0.0367

NoUH(+1) RE-MLE 1.0 NA NA 0.2311 NA NA NA

NoUH-MLE 1.0 1.0008 0.0527 0.2311 0.2311 0.0120 0.0120

DGP FE-CMLE 1.0 1.0059 0.1306 0.2059 0.2089 0.0370 0.0371

FinMix(+1) RE-MLE 1.0 0.9986 0.0925 0.2059 0.2055 0.0228 0.0228

NoUH-MLE 1.0 1.4166 0.0598 0.2059 0.3229 0.0130 0.1177

DGP FE-CMLE 1.0 1.0028 0.2005 0.1108 0.1137 0.0327 0.0327

MixNor(+1) RE-MLE 1.0 1.4992 0.1274 0.1108 0.2146 0.0255 0.1069

NoUH-MLE 1.0 3.2432 0.0844 0.1108 0.6645 0.0118 0.5538

(i) Bias of FE estimators relative to MLE. The mean biases of the FE estimator is very small:
between 0.1% and 0.7% of the true value for β, and between 0.2% and 1.4% for AME(1). FE
estimation of AME(1) does not involve a substantially larger bias than the FE estimation of
β. This bias is of similar magnitude as the ones of NoUH-MLE and RE-MLE estimators when
these estimators are consistent (i.e., when the DGPs are NoUH ) and FinMix, respectively).

(ii) Variance of FE estimators relative to RE-MLE. As percentage of the true value, the standard
deviation of the FE estimator is between 10% and 20% for the estimator of β, and between 7%

and 30% for the estimator of AME(1). These ratios are substantially smaller for the RE-MLE
estimator: between 9% and 13% for the estimator of β, and between 8% and 23% for the
estimator of AME(1). As expected, the FE estimators have larger variances than the RE-MLE
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estimators. However, the loss of precision associated with FE estimation is of similar magnitude
when estimating AME(1) than when estimating β.

The variance of the FE estimator is substantially larger when β is positive than when it is
negative, but this is not the case for the RE-MLE estimators. This has a clear explanation.
The histories that contribute to the identification of the parameters β and AME(1) involve some
alternation of the two choices over time, e.g., {0, 1, 0, 1} or {0, 0, 1, 1}.These histories occur more
frequently when β is negative than when it is positive. It is easier to identify negative state
dependence than positive state dependence because the former has very different implications
than unobserved heterogeneity, while the later have similarities with unobserved heterogeneity.

(iii) Bias of RE-MLE estimators due to misspecification. The biases due to the misspecification
of the RE model are substantial. The bias in the estimation of β from ignoring unobserved
heterogeneity, when present, is between 41% of the true value (with the finite mixture DGP)
and 270% (with the mixture of normals DGP). The bias is even larger in the estimation of
AME(1): 60% of the true value in the finite mixture DGP, and more than 500% in the mixture
of normals DGP. The bias is also substantial for the RE-MLE that accounts for heterogeneity
but misspecifies its distribution: between 50% and 65% in the estimation of β; and between 58%

and 93% for AME(1). As a result, the FE estimator clearly dominates the RE-MLE in terms of
Root Mean Square Error (RMSE) in the cases where the RE model is misspecified.

(iv) Testing for misspecification of RE models. A common approach to test the validity of a RE
model consists in using a Hausman test that compares the FE estimator of β (consistent under
the null and the alternative) and the RE-MLE of β (efficient under the null but inconsistent under
the alternative). See Hausman (1978) and Hausman and Taylor (1981). Given our identification
results, we can define a similar Hausman test but using the FE and RE estimators of AME(1).
Therefore, we have two different Hausman statistics to test for the validity of a RE model. The
statistic based on the estimators of β:

HSβ =

(
β̂FE − β̂RE

)2
V̂ ar

(
β̂FE

)
− V̂ ar

(
β̂RE

) under H0 ∼ χ2
1 (53)

And the statistic based on the estimators of AME(1):

HSAME =

(
ÂMEFE − ÂMERE

)2
V̂ ar

(
ÂMEFE

)
− V̂ ar

(
ÂMERE

) under H0 ∼ χ2
1 (54)

The Hausman test based on AME has several advantages with respect the test based on β.

25



First, the researcher can be particularly interested in the causal effect implied by the model and
not on the slope parameter itself. Second, and more substantially, the test on the parameter
β may suffer of a scaling problem that does not affect the test on the AME. That is, the
parameter β depends on the variance of the transitory shock εit, and this variance depends on
the specification of RE model. For instance, when we compare β̂FE with β̂NoUH−MLE part of
the reason why these two estimators are different is because in the model that does not account
for unobserved heterogeneity the actual error term is αi + εit, and the variance of this variable
is larger than the variance of εit. The estimation of AME – using either FE or RE approaches
– is not affected by this scaling problem.

We compare the power of these two tests using our Monte Carlo experiments. Figures 1
to 6 summarize our results. Each figure corresponds to one DGP and presents the cumulative
distribution function of the p-value – for each of the two tests– of the null hypothesis of valid
RE model. More specifically:

Figure 1: DGP is FinMix(-1) and null hypothesis is no unobserved heterogeneity.
Figure 2: DGP is FinMix(+1) and null hypothesis is no unobserved heterogeneity.
Figure 3: DGP is MixNor(-1) and null hypothesis is no unobserved heterogeneity.
Figure 4: DGP is MixNor(+1) and null hypothesis is no unobserved heterogeneity.
Figure 5: DGP is MixNor(-1) and null hypothesis is the finite mixture model.
Figure 6: DGP is MixNor(+1) and null hypothesis is the finite mixture model.

Figures 3 and 4 show that both tests have very strong power to reject the null of no unobserved
heterogeneity when the DGP is a mixture of normals. In Figures 1 and 5, we can see that the
two test have also strong power when the true value of β is negative. The relevant comparison
appears in Figures 2 and 6. The results are mixed. In the DGP with a mixture of normals
(Figure 6), the HSAME test has substantially larger power than the test HSβ. In particular,
HSβ has a serious problem of low power. For this test, the p-value is greater than 5% for more
than half of the samples, such that with a 5% significance level we could reject the null for less
than half of the samples. In contrast, the HSAME test has reasonable power. For this test, the
p-value is greater than 5% for one-fifth of the samples, such that with a 5% significance level we
do reject the null for 80% of the samples. In Figure 1, the HSβ test has more power than the
HSAME test. However, the differences in power are much smaller than in Figure 6 and neither
of the two tests has a serious problem of low power. Overall, the HSAME test has larger power
than the test HSβ. Therefore, this test seems a useful byproduct of identification of AMEs in
Fixed Effects models.
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Figures 1 to 6: Empirical distribution of p-values of Hausman tests
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5 State Dependence in Consumer Brand Choice

We apply our identification results to measure state dependence in consumer brand choices.
There is an important literature on testing and measuring state dependence in consumer brand
choices, with seminal papers by Erdem (1996), Keane (1997), and Roy, Chintagunta, and Haldar
(1996).10 These applications use consumer scanner panel data and estimate dynamic discrete
choice models with persistent unobserved heterogeneity in consumer brand preferences and state
dependence generated habits or/and brand switching costs. The main goal is to determine the
relative importance of unobserved heterogeneity and state dependence to explain the observed
time persistence of consumer brand choices. Disentangling the contribution of these two fac-
tors has important implications on demand elasticities, competition, consumer welfare, and the
evaluation of mergers.11 All these previous studies estimate Random Effects (RE) models. In
this application, we consider a FE model, estimate average transition probabilities Πjj, and use
them to measure the contribution of state dependence to brand-choice persistence.

5.1 Data

The dataset is A.C. Nielsen scanner panel data from Sioux Falls, South Dakota, for the ketchup
product category.12 It contains 996 households and covers a 123-week period from mid-1986 to
mid-1988.13 For our analysis, a time period is a household purchase occasion. That is, periods
t = 1, 2, ... represent a household’s first, second, ... purchase of ketchup during the sample period.
This timing is common in this literature (e.g., Erdem, 1996; Keane, 1997). Ti is the number of
purchase occasions for household i. The total number of observations or purchase occasions in
this sample is

∑N
i=1 Ti = 9, 562. Table 4 presents the distribution of Ti.

Table 4
Distribution of number of purchase occasions (Ti)
Minimum 5% 25% Median 75% 95% Maximum

3 4 5 8 12 21 52

10Other contributions in this literature are Seetharaman, Ainslie, and Chintagunta (1999), Erdem, Imai, and
Keane (2003), Seetharaman (2004), Dubé, Hitsch, and Rossi (2010), and Osborne (2011), among others. There is
also growing literature on the implications of brand-choice state dependence on market competition (see Viard,
2007, and Pakes, Porter, Shepard, and Calder-Wang 2021.

11See Erdem, Imai, and Keane (2003) for a detailed discussion of the important economic implications of
distinguishing between unobserved heterogeneity and state dependence in consumer demand.

12Our sample comes from Erdem, Imai, and Keane (2003). We thank the authors for sharing the data with us.
13The raw data contains 2797 households. Here we use the same working sample of 996 households as in

Erdem, Imai, and Keane (2003). This sample focuses on households who are regular ketchup users. See page 30
in that paper for a description of the selection of this working sample.
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There are four brands in this market: three national brands, Heinz, Hunt’s and Del Monte;
and a store brand. We ignore the quantity purchased and focus on brand choice. Table 5
presents brands’ market shares (i.e., shares in number of purchases) and the matrix of transition
probabilities between the four brands. Heinz is the leading brand, with 66% share of purchases,
followed by Hunts at 16%, Del Monte at 12% and Store brands at 5%. A measure of choice
persistence for brand j is the difference between the transition probability Pr(yi,t+1 = j|yit = j)

and the unconditional probability or market share Pr(yit = j). This measure shows choice
persistence for all the brands, with the largest for Del Monte and Store brands with 21.88% and
21.66%, respectively, followed by Hunts with 16.67%, and Heinz with 12.30%. This persistence
may be due both to consumer taste heterogeneity and state dependence. Our maim goal in this
application is to disentangle the contribution of these two factors.

Table 5
Matrix of Transition Probabilities of Brand Choices

(percentage points)
Brand choice at t+ 1 Total

Brand choice at t Heinz Hunts Del Monte Store
(j = 0) (j = 1) (j = 2) (j = 3)

Heinz (j = 0) 78.95 10.67 6.98 3.40 100.00
Hunts (j = 1) 45.16 32.30 15.76 6.78 100.00

Del Monte (j = 2) 41.11 18.98 34.07 5.83 100.00
Store (j = 3) 42.32 17.11 13.38 27.19 100.00

Market share (Pj) 66.65 15.63 12.19 5.53 100.00
Choice persistence (Pj|j − Pj) 12.30 16.67 21.88 21.66

5.2 Model

Let yit ∈ {0, 1, 2, 3} be the brand choice of household i at purchase occasion t. We consider the
following brand choice model with habit formation:

yit = arg max
j∈{0,1,2,3}

{ αi(j) + βjj 1{yi,t−1 = j}+ εit(j) } . (55)

Parameter βjj represents habits in the purchase/consumption of brand j: the additional utility
from keeping purchasing the same brand as in previous purchase. Parameter β00 (for Heinz) is
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normalized to zero. Variable αi(j) represents the household’s time invariant taste for brand j.
For simplicity, we ignore duration dependence. We also omit prices.14

Following Aguirregabiria, Gu, and Luo (2021), equation (55) can be interpreted as a model
where households are forward-looking. That is, the fixed effects αi(j) can be interpreted as
the sum of two components: a fixed effect in the current utility of choosing brand j; and the
continuation value (expected and discounted future utility) of choosing brand j today. In this
model, these continuation values depend on the current choice j but not on the state variable
yi,t−1 or on current εit.

5.3 Estimation

To illustrate our method using a short panel, we split the purchasing histories in the original
sample into subs-histories of length T , where T is small. We present results for T = 6 and T = 8.

Table 6
Conditional Maximum Likelihood Estimates

of Brand Habit (βjj) Parameters
Parameter T = 6 sub-histories T = 8 sub-histories

βjj Estimate (s.e.)(1) Estimate (s.e.)(1)

Heinz 0.00 (.) 0.00 (.)

Hunts 0.2312 (0.0590) 0.2566 (0.0570)

Del Monte 0.1155 (0.0718) 0.1191 (0.0722)

Store 0.3245 (0.1166) 0.4675 (0.1106)

# histories of length T 4, 764 3, 396

(1) Standard errors (s.e) are obtained using a boostrap method. We generate

1,000 resamples (independent, with replacement, and with N = 996) from the

996 purchasing histories in the original dataset. Then, we split each history

of the bootstrap sample into all the possible sub-histories of length T .

Table 6 presents our Fixed Effect estimates of the brand habit parameters βjj. We use
the Conditional Maximum Likelihood estimator described in section 3.1. Standard errors are
obtained using a bootstrap method that resamples the 996 purchasing histories in the original

14In this dataset, supermarkets follow High-Low pricing and prices can stay at the high (regular) level for
relatively long periods. Omitting prices in our model can be interpreted in terms of estimating the model using
choice histories where prices remain constant.
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dataset.15 Parameter estimates with T = 6 and T = 8 are very similar. They are significantly
greater than zero at 5% significance level, showing evidence of state dependence in brand choice.
The magnitude of the parameter estimate is not monotonically related to the brand’s market
share, or to the degree of brand choice persistence shown in Table 5. However, we need to take
into account that a larger value of βjj does not imply a larger degree of state dependence as
measured by the Average Transition Probabilities or AMEjj. The parameters βjj do not provide
a measure of the contribution of state dependence to the observed brand choice persistence.

Table 7
Fixed Effects Estimates of Average Transition Probabilities (ATPs) and AMEs

T = 6 sub-histories T = 8 sub-histories
Pers ATP AME UHet Pers ATP AME UHet
( s.e.) (s.e.) ( s.e.) (s.e.) ( s.e.) (s.e.) ( s.e.) (s.e.)

Heinz 0.1230 0.6744 0.0079 0.1151 0.1230 0.6708 0.0043 0.1187

(0.0033) (0.0057) (0.0066) (0.0068) (0.0033) (0.0062) (0.0067) (0.0069)

Hunts 0.1667 0.1752 0.0189 0.1478 0.1667 0.1788 0.0225 0.1442

(0.0077) (0.0075) (0.0107) (0.0109) (0.0077) (0.0072) (0.0106) (0.0109)

Del Monte 0.2188 0.1324 0.0105 0.2183 0.2188 0.1345 0.0126 0.2062

(0.0090) (0.0067) (0.0112) (0.0115) (0.0090) (0.0062) (0.0110) (0.0113)

Store 0.2166 0.0736 0.0183 0.1983 0.2166 0.0805 0.0252 0.1914

(0.0062) (0.0071) (0.0094) (0.0099) (0.0062) (0.0072) (0.0094) (0.0099)

(1) Pers is brand choice persistence, Pj|j − Pj , as measured at the bottom line of Table 6.

(2) ATP is the brand’s Average Transition Probability, Πjj .

(3) AME is the one defined in equation (10): Πjj − E(1{yit = j}).

(4) UHet is defined as Pj|j −Πjj . By construction, Pers = AME + UHet.

(5) Standard errors (s.e) are obtained using the same boostrap method as for the estimates in Table 6.

15Using the original sample of 996 purchasing histories, we resample independently and with replacement 996
histories. Then, we generate all the possible sub-histories of length T from these histories. We also obtained
asymptotic standard errors, Bootstrap standard errors are only a bit larger (at the second or third significant
digit) than the asymptotic ones.
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Table 7 presents Fixed Effect estimates of average transition probabilities (ATPs), and pro-
vides a decomposition of brand choice persistence into the contributions of state dependence
and unobserved heterogeneity. Column labelled Pers provides brand choice persistence as mea-
sured by the difference between the transition probability Pj|j and the uncodnitional probability
Pj. The estimates of ATPs (in the columns labelled ATP) are very precise and similar for
T = 6 and T = 8. The column labelled AME presents the AME defined in equation (22):
ATEjj = Πjj − E(1{yit = j}). This AME is a measure of the contribution of state dependence
to brand choice persistence. For all the brands, this contribution is quite small: between 1 and
2 percentage points. In fact, for Heinz and Del Monte, we cannot reject the null hypothesis that
this AME is zero at 5% significance level. The Store brand is the one with the largest contribu-
tion of state dependence. The column labelled UHet presents the contribution of consumer taste
heterogeneity to brand choice persistence, as measured by the difference between brand choice
persistence and AMEjj. This heterogeneity accounts for most of the brand choice persistence.
This finding contrasts with results found in studies using similar models and data but with a
Random Effects specification of consumer unobserved taste heterogeneity (e.g., Keane, 1997).

6 Conclusion

Average marginal effects (AMEs) are useful parameters to represent causal effects in econometric
applications. AMEs depend on the structural parameters of the model but also on the distri-
bution of the unobserved heterogeneity. In fixed effects nonlinear panel data models with short
panels, the distribution of the unobserved heterogeneity is not identified, and this problem has
been associated with the common belief that AMEs are not identified.

In the context of dynamic logit models, we prove the identification of AMEs associated with
changes in lagged dependent variables and in duration variables. Our proofs of the identification
results are constructive and provide simple closed-form expressions for the AMEs in terms of
frequencies of choice histories that can be obtained from the data.

We illustrate our identification results using both simulated data and real-world consumer
scanner data. In contrast to previous studies using similar models and data but with a Ran-
dom Effects specification of consumer unobserved taste heterogeneity, we find that most brand
choice persistent can be attributed to consumer taste heterogeneity, and state dependence has
a negligible contribution.

32



7 Appendix

7.1 Proof of Lemma 3
It is convenient to define the weights w(y1,d1 ,̃s)(θ) ≡ ms̃(θ) /

∑
y: s(y)=(y1,d1 ,̃s)

exp{c(y)′θ}, such that
equation (45) can be re-written as:

∑
s̃∈S̃T

w(y1,d1 ,̃s)(θ) exp{s̃′ g̃(αi)}

 ∑
y: s(y)=(y1,d1 ,̃s)

exp{c(y)′ θ}

 = ∆(αi, θ). (56)

Given the structure of the probability of a choice history in (24), we have that (56) is equivalent to:

∑
s̃∈S̃T

w(y1,d1 ,̃s)(θ)

 ∑
y: s(y)=(y1,d1 ,̃s)

P (y | y1.d1, αi, θ)

 = ∆(αi, θ). (57)

(A) Sufficient condition. Multiplying (57) times p∗(y1, d1|αi) fα(αi), integrating over αi, and taking
into account that

∫
P (y | y1, d1, αi, θ) p∗(y1, d1|αi) fα(αi) dαi is equal to Py, we obtain:

∑
s̃∈S̃T

w(y1,d1 ,̃s)(θ)

 ∑
y: s(y)=(y1,d1 ,̃s)

Py

 =
∫

∆(αi, θ) p
∗(y1, d1|αi) fα(αi) dαi. (58)

We can sum equation (58) over all the possible values of (y1, d1). Given that the sum of p∗(y1, d1|αi)
over all values of (y1, d1) is equal to 1, the right-hand-side becomes

∫
∆(αi, θ) fα(αi) dαi which is the

AME. Furthermore,
∑

y: s(y)=s Py = Ps. Therefore, h (Ps, θ) has the form in equation (46):

∑
s∈ST

ws(θ) Ps = AME. (59)

(B) Necessary condition. The proof has two parts. First, we prove that function h (Ps, θ) should be
linear in Ps. Second, we show that the system of equations in (45) should hold.

Necessary (i). Equality h (Ps, θ) = AME should hold for every distribution fα. In particular, it should
hold for: (Case 1) a degenerate distribution where αi = c with probability one; (Case 2) a degenerate
distribution where αi = c′ 6= c with probability one; and (Case 3) a distribution with two points of
support, c and c′, with q ≡ fα(c). AME has the following form: (Case 1) AME = ∆(c); (Case 2)
AME = ∆(c′); and (Case 3) AME = q ∆(c)+ (1− q) ∆(c′). Function h (Ps, θ) should satisfy:

Case 1 : h
(
P

(1)
s , θ

)
= ∆(c)

Case 2 : h
(
P

(2)
s , θ

)
= ∆(c′)

Case 3 : h
(
P

(3)
s , θ

)
= q ∆(c) + (1− q) ∆(c′)

(60)

where P
(1)
s , P(2)

s , and P
(3)
s represent the distributions of the statistic s under the DGPs of cases 1, 2,
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and 3, respectively. Note that P(3)
s = q P

(1)
s + (1− q)P(2)

s . These conditions are for arbitrary values for
c, c′ , and q ∈ [0, 1]. Multiplying (60 - Case 1) times q, multiplying (60 - Case 2) times (1− q), adding
up these two conditions, and then subtracting (60 - Case 3), we get that h (Ps, θ) should satisfy:

q h
(
P

(1)
s , θ

)
+ (1− q) h

(
P

(2)
s , θ

)
= h

(
q P

(1)
s + (1− q) P

(2)
s , θ

)
. (61)

The only possibility that equation (61) holds for every c, c′ ∈ R and q ∈ [0, 1] is that the function
h (Ps, θ) is linear in Ps, such that h (Ps, θ) =

∑
s∈STws(θ) Ps.

Necessary (ii): Given equation
∑

s∈ST ws(θ) Ps = AME, then (57) holds for every value αi ∈ RJ . The
proof is by contradiction. Suppose that: (a)

∑
s∈ST ws(θ) Ps = AME is satisfied for any distribution

fα; and (b) there is a value of αi – say αi = c – and a value of the initial condition s1 ≡ (y1, d1), w.l.o.g.
s1 = 0 such that

∑
s̃∈S̃Tw0,̃s(θ)

[∑
y: s(y)=(0,̃s)P (y | 0, c, θ)

]
6= ∆(c) We show below that condition (b)

implies that there is a density function fα (in fact, a continuum of density functions) such that condition
(a) does not hold. W.l.o.g. consider distributions of αi with only two points support, c and c′, with
fα(c) ≡ q. Also, for notationaly simplicity but W.l.o.g. suppose that s1 ∈ {0, 1}. Define:

d(αi, s1) ≡
∑
s̃∈S̃T

ws1 ,̃s(θ)
[∑

y: s(y)=sP (y | s1, c, θ)
]
−∆(αi) (62)

Condition (b) implies that d(c, 0) 6= 0. Applying the same operations as in the proof of the sufficient
condition, we get:∑
s∈ST

ws(θ) Ps−AME = q [p∗(0|c) d(c, 0) + p∗(1|c) d(c, 1)] + (1−q)
[
p∗(0|c′) d(c′, 0) + p∗(1|c′) d(c′, 1)

]
(63)

By definition, the values of d(αi, s1) do not depend on the distribution fα. Therefore, there always exist
(a continuum of) values of q such that the right hand side of (63) is different to zero, and condition (a)
does not hold. �

7.2 Proof of Proposition 3
We use a to represent eα and b to represent eβ . We multiple equation (48) times [1 + ab]T−2 [1 + a]T−1

to eliminate the denominator. We get:∑
s̃

ms̃(β) an1 [1 + a]n1−yT [1 + ab]T−2−n1+yT = [b− 1] a [1 + a]T−2 [1 + ab]T−3 . (64)

We apply the Binomial Theorem to expand the terms [1 + x]n as
∑n

k=0

(
n

k

)
xk.

∑
s̃

ms̃(β) an1

[
n1−yT∑
k=0

(
n1 − yT

k

)
ak

][
T−2−n1+yT∑

k=0

(
T − 2− n1 + yT

k

)
bkak

]

= [b− 1] a

[
T−2∑
k=0

(
T − 2

k

)
ak

][
T−3∑
k=0

(
T − 3

k

)
bkak

]
.

(65)
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To solve (65) with respect to the 2T − 2 weights {myT ,n1(β)}, note that each side of this equation is a
polynomial in a ≡ eα. The order of this polynomial is 2T − 3. For this equation to hold for every value
of α, the coefficient of each monomial should be the same in RHS and LHS. This requirement implies a
system 2T −2 linear equations (i.e., the number of monomials in a polynomial of order 2T −3, including
the constant term) and 2T − 2 unknowns (i.e., the weights myT ,n1).

7.3 Applying Proposition 3
Tables 8 and 9 present the weights for AME(1) in the binary choice AR(1) model for different values of
T . These weights have been derived using the procedure in Proposition 3. For the sake of illustration,
we describe here the derivation of these weights for T = 3.

When T = 3, the statistics (yT , n1) can take four possible values: (0, 0), (0, 1), (1, 1), and (1, 2).
Therefore, there are four weights myT ,n1 . Equation (65) takes the following form:

m0,0 a
0

[
0∑

k=0

(
0

k

)
ak

][
1∑

k=0

(
1

k

)
bkak

]
+m0,1 a

1

[
1∑

k=0

(
1

k

)
ak

][
0∑

k=0

(
0

k

)
bkak

]

+ m1,1 a
1

[
0∑

k=0

(
0

k

)
ak

][
1∑

k=0

(
1

k

)
bkak

]
+m1,2 a

2

[
1∑

k=0

(
1

k

)
ak

][
0∑

k=0

(
0

k

)
bkak

]

= [b− 1] a

[
1∑

k=0

(
1

k

)
ak

][
0∑

k=0

(
0

k

)
bkak

]
.

(66)

Or equivalently,

m0,0 [1 + b a] +m0,1

[
a+ a2

]
+m1,1

[
a+ b a2

]
+m1,2

[
a2 + b a3

]
= [b− 1]

[
a+ a2

]
. (67)

Making equal the coefficients in the RHS and LHS for each monomial, we get the following system of
four equations with four unknowns.

m0,0 = 0

m0,0 b+m0,1 +m1,1 = b− 1

m0,1 +m1,1 b+m1,2 = b− 1

m1,2 = 0

(68)

The solution to this system is m0,0 = m1,2 = m1,1 = 0 and m0,1 = b − 1. Therefore, with T = 3,
only histories with (yT , n1) = (0, 1) receive positive weight in the identification of AME(1). There
are two choice histories with this condition: (0, 1, 0) and (1, 1, 0). Finally, to obtain the weights ws
of these histories we apply the formula: wy1,yT ,n1 = myT ,n1 /

∑
y:s(y)=(y1,yT ,n1)

exp{βn11(y)}. That is,
w0,1,0 = (b− 1)
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Table 8
Weights ws for histories with y1 = 0

(y1, yT ,
T∑
t=2
yt) T = 4 T = 5 T = 6 T = 7

(0, 0, 0) 0 0 0 0

(0, 0, 1) eβ−1
2

eβ−1
3

eβ−1
4

eβ−1
5

(0, 1, 1) 0 0 0 0

(0, 0, 2) 0 eβ−1
1+2eβ

2(eβ−1)
3+3eβ

3(eβ−1)
6+4eβ

(0, 1, 2) eβ−1
1+eβ

eβ−1
2+eβ

eβ−1
3+eβ

eβ−1
4+eβ

(0, 0, 3) Not possible 0 eβ−1
2+2eβ

(eβ−1)(1+2eβ)
1+6eβ+3e2β

(0, 1, 3) 0 eβ−1
2+eβ

(eβ−1)(1+eβ)
1+4eβ+e2β

(eβ−1)(2+eβ)
3+6eβ+e2β

(0, 0, 4) Not possible Not possible 0 eβ−1
3+2eβ

(0, 1, 4) Not possible 0 eβ−1
3+eβ

(eβ−1)(2+eβ)
3+6eβ+e2β

(0, 0, 5) Not possible Not possible Not possible 0

(0, 1, 5) Not possible Not possible 0 eβ−1
4+eβ

(0, 1, 6) Not possible Not possible Not possible 0

Table 9
Weights ws for histories with y1 = 1

(y1, yT ,
T∑
t=2
yt) T = 4 T = 5 T = 6 T = 7

(1, 0, 0) 0 0 0 0

(1, 0, 1) eβ−1
1+eβ

eβ−1
2+eβ

eβ−1
3+eβ

eβ−1
4+eβ

(1, 1, 1) 0 0 0 0

(1, 0, 2) 0 eβ−1
2+eβ

(eβ−1)(1+eβ)
1+4eβ+e2β

(eβ−1)(2+eβ)
3+6eβ+e2β

(1, 1, 2) eβ−1
2

eβ−1
1+2eβ

eβ−1
2+2eβ

eβ−1
3+2eβ

(1, 0, 3) Not possible 0 eβ−1
3+eβ

(eβ−1)(2+eβ)
3+6eβ+e2β

(1, 1, 3) 0 eβ−1
3

2(eβ−1)
3+eβ

(eβ−1)(1+2eβ)
1+6eβ+3e2β

(1, 0, 4) Not possible Not possible 0 eβ−1
4+eβ

(1, 1, 4) Not possible 0 eβ−1
4

3(eβ−1)
6+4eβ

(1, 0, 5) Not possible Not possible Not possible 0

(1, 1, 5) Not possible Not possible 0 eβ−1
5

(1, 1, 6) Not possible Not possible Not possible 0
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7.4 Proof of Proposition 4
W.l.o.g. we consider T = 3 and t = 3. We first obtain the expression for the probabilities of (y1, y2, y3)

conditional on (x1,x2,x3) and on αi, that we represent as P(y1,y2,y3) | (x1,x2,x3,αi).

P(0,0,1) | (x1,x2,x3,αi) = p∗(0|αi,x1,x2,x3)
1

1 + eαi+x′2γ

eαi+x′3γ

1 + eαi+x′3γ

P(0,1,0) | (x1,x2,x3,αi) = p∗(0|αi,x1,x2,x3)
eαi+x′2γ

1 + eαi+x′2γ

1

1 + eαi+β+x′3γ

P(1,0,1) | (x1,x2,x3,αi) = p∗(1|αi,x1,x2,x3)
1

1 + eαi+β+x′2γ

eαi+x′3γ

1 + eαi+x′3γ

P(1,1,0) | (x1,x2,x3,αi) = p∗(1|αi,x1,x2,x3)
eαi+β+x′2γ

1 + eαi+β+x′2γ

1

1 + eαi+β+x′3γ

(69)

Now, consider that we multiply each of these four probabilities P(y1,y2,y3) | (x1,x2,x3,αi) by the correspond-
ing weighting value w(y1,y2,y3;x) as defined in (50). We have that:

w(0,0,1;x) P(0,0,1) | (x1,x2,x3,αi) = p∗(0|αi,x1,x2,x3)
eαi+x′2γ eαi+x′3γ[

1 + eαi+x′2γ
] [

1 + eαi+x′3γ
]

w(0,1,0;x) P(0,1,0) | (x1,x2,x3,αi) = p∗(0|αi,x1,x2,x3)
eαi+β+x′3γ − eαi+x′2γ[

1 + eαi+x′2γ
] [

1 + eαi+β+x′3γ
]

w(1,0,1;x) P(1,0,1) | (x1,x2,x3,αi) = p∗(1|αi,x1,x2,x3)
eαi+β+x′2γ − eαi+x′3γ[

1 + eαi+β+x′2γ
] [

1 + eαi+x′3γ
]

w(1,1,0;x) P(1,1,0) | (x1,x2,x3,αi) = p∗(1|αi,x1,x2,x3)
eαi+β+x′3γ − eαi+β+x′2γ[

1 + eαi+β+x′2γ
] [

1 + eαi+β+x′3γ
]

(70)

To obtain the expression in the right hand side of equation (49) we first add these four terms. After
some operations and taking into account that p∗(0|αi,x1,x2,x3)+ p∗(1|αi,x1,x2,x3) = 1, we get:∑

y1,y2,y3

w(y1,y2,y3;x) P(y1,y2,y3) | (x1,x2,x3,αi) = Λ(αi + β + x′3γ)− Λ(αi + x′3γ) = ∆(1)(αi,x3) (71)

Equation (71) holds for every value of (αi, xi1,xi2,xi3). We can integrate (71) over the distribution
of (αi, xi1,xi2,xi3). In the RHS, we obtain AME

(1)
x,3. For the LHS, we take into that the empirical

distribution P(y1,y2,y3) | (x1,x2,x3) is equal to
∫
P(y1,y2,y3) | (x1,x2,x3,αi) fαi(αi|x1,x2,x3) dαi. We get:

∑
(x1,x2,x3)∈X {1,3}

Px1,x2,x3

[ ∑
y1,y2,y3

w(y1,y2,y3;x) P(y1,y2,y3) | (x1,x2,x3)

]
= AME

(1)
x,3 (72)

and AME
(1)
x,3 is identified. �

7.5 Proof of Proposition 5
We proceed similarly as for the proof of Proposition 4 in section 7.4. For the sake of illustration, we
present this proof for AME0→1, but it proceeds the same for the other AMEs. We start with the
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probabilities of choice histories conditional on αi, that is, P(y1,y2,y3,y4) | αi . First, we write the expression
for these probabilities implied by the model as functions of parameters β and αi. Second, for each of
these probabilities, we multiply the equation times the weights w(y1,y2,y3,y4) that appear in the enunciate
of Proposition 4. For the probabilities with non-zero weights for AME0→1, we have:

eβ(1) − 1

2

[
P(0,0,1,0) | αi + P(0,1,0,0) | αi

]
= p∗(0|αi)

(
eβ(1) − 1

)
eαi(

1 + eαi+β(1)
)

(1 + eαi)2

eβ(1) − 1

eβ(1)
P(0,0,1,1) | αi = p∗(0|αi)

(
eβ(1) − 1

)
eαieαi(

1 + eαi+β(1)
)

(1 + eαi)2(
eβ(1) − 1

) [
P(1,0,1,0) | αi + P(1,0,1,1) | αi

]
= p∗(1|αi)

(
eβ(1) − 1

)
eαi
(
eαi+β(1) + 1

)(
1 + eαi+β(1)

)2
(1 + eαi)

(73)

Third, we sum these (three) equations for every choice history (y1, y2, y3, y4) with non-zero weight.
Simplifying factors and taking into account that p∗(0|αi)+ p∗(1|αi) = 1, we get:

eβ(1) − 1

2

[
P(0,0,1,0) | αi + P(0,1,0,0) | αi

]
+
eβ(1) − 1

eβ(1)
P(0,0,1,1) | αi +

(
eβ(1) − 1

) [
P(1,0,1,0) | αi + P(1,0,1,1) | αi

]
=

(
eβ(1) − 1

)
eαi(

1 + eαi+β(1)
)

(1 + eαi)
=

eαi+β(1)(
1 + eαi+β(1)

) − eαi

(1 + eαi)
= ∆0→1(αi)

(74)
Finally, we integrate the two sides of this equation over the distribution of αi to obtain:

eβ(1) − 1

2
[P0,0,1,0 + P0,1,0,0] +

eβ(1) − 1

eβ(1)
P0,0,1,1 +

(
eβ(1) − 1

)
[P1,0,1,0 + P1,0,1,1] = AME0→1 (75)

such that AME0→1 is identified. We can proceed similarly to prove the identification of the others
AMEd→d′ . In particular, we can prove that:

AME1→2 =
eβ(2) − eβ(1)

2
[P0,0,1,0 + P0,1,0,0] +

eβ(2) − eβ(1)

eβ(1)
P0,0,1,1

+

(
eβ(2)

(
1− eβ(2)

)
eβ(1)

+ eβ(2) − 1

)
P0,1,1,0

+

(
1− eβ(1)

eβ(2)

)
[P1,0,1,0 + P1,0,1,1] +

(
eβ(2) − 1

eβ(1)
− 1 +

1

eβ(2)

)
P1,1,0,0

(76)

and

AME0→2 =
eβ(2) − 1

2
[P0,0,1,0 + P0,1,0,0] +

eβ(2) − 1

eβ(1)
P0,0,1,1

+

(
eβ(2)

(
1− eβ(2)

)
eβ(1)

+ eβ(2) − 1

)
P0,1,1,0

+

(
eβ(1) − eβ(1)

eβ(2)

)
[P1,0,1,0 + P1,0,1,1] +

(
eβ(2) − 1

eβ(1)
− 1 +

1

eβ(2)

)
P1,1,0,0 �

(77)
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