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Abstract

Gollin and Udry (2021) estimate the contribution of mismeasurement to productiv-
ity dispersion among production units and conclude that previous studies have over-
estimated the potential e�ciency gains from factor reallocation. We show that this
conclusion is incorrect based on their own empirical evidence, which instead corrobo-
rates the importance of misallocation emphasized in the macro-development literature.
We also point out important limitations in the implementation of the plot-level anal-
ysis that overstates the importance of mismeasurement in understanding productivity
di�erences.
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1 Introduction

In a recent article, Gollin and Udry (2021) (henceforth, GU) propose an intuitive method

to assess the importance of measurement error in estimates of productivity dispersion across

production units using micro data. In particular, the approach exploits a specific feature

of agricultural economies whereby the predominant unit of production, the household farm,

may operate more than one plot of land. Based on panel data from two African countries,

they find that “[l]ate-season production shocks, measurement error, and heterogeneity in

inputs together account for as much as 70% of the variance in measured productivity” (p.5).

From this evidence they conclude that previous studies of misallocation have overestimated

the potential productivity gains from factor reallocation and that the “e�cient reallocation

of land and other agricultural inputs would not dramatically close the income gaps between

African countries and the world’s rich economies” (p.5). In this article, we show that i)

these conclusions are incorrect based on their own evidence and ii) GU’s plot-level analysis

overstates the extent of mismeasurement.

The article’s empirical evidence in fact corroborates the importance of misallocation

in agriculture in the developing world. The e�ciency gain associated with GU’s preferred

measure of productivity, after correcting for mismeasurement, is substantial: a 566% increase

from a nationwide reallocation. This magnitude is larger than e�ciency gains documented

in the related literature and, hence, does not support GU’s conclusion that “the gains from

a hypothetical reallocation are thus correspondingly overstated by a factor of two or three”

(p.48).

What explains seemingly opposing conclusions from the same evidence? GU’s approach

focuses on the variance of plot-level productivity as a key metric to gauge the extent of mis-

measurement. The narrative is that a large variance in plot-level productivity overstates the

extent of misallocation as they find a substantial reduction in the dispersion of productivity
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when adjusting for mismeasurement. For the authors, this suggests that there must be a

relatively minor scope for reallocation gains.

We show, however, that the use of plot-level data, as opposed to farm-level data used in

the literature, substantially magnifies the measure of productivity dispersion. This choice of

plot-level analysis means that an assessment of the extent of misallocation based on changes

in productivity dispersion is misleading since the starting point is a much higher level of

dispersion. Furthermore, we also show that the plot-level specification a�ects production

function estimates in a way that actually increases the estimated gains from reallocation.

We also provide evidence that the use of plot-level data exacerbates the problem of

measurement error. This can occur, for instance, if farmers round-up plot size or are unable

to recall the amount of farm-level inputs allocated to each plot. This measurement error is

attenuated when aggregating data at the farm level. We document that measurement error in

land input (measured as the di�erence between self-reported and GPS data) is substantially

larger at the parcel level, a unit above the plot, than at the farm level.

As an alternative, we evaluate the extent of measurement error in farm-level data using

a similar method that exploits the panel dimension of the data (Bils et al., 2017) instead

of suspect plot-level variation. Contrary to GU, we find modest amounts of measurement

error using farm-level measures of TFP from GU’s data and methods. These results are

consistent with findings for farms in Chinese agriculture in Adamopoulos et al. (2017) but

di�erent from findings in Bils et al. (2017) for manufacturing plants in India and the United

States, reinforcing our emphasis on the importance of farm-level analysis in this context and

suggesting caution in making generalizations about the role of measurement error in micro

data in di�erent sectors, countries, and applications.

GU address an important issue, as estimating the quantitative contribution of measure-

ment error to productivity dispersion is policy-relevant, particularly in the context of small-

scale farming in low-income countries. While there may be advantages in using plot-level
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data to identify shocks and measurement issues pertaining to productivity in agriculture

(and quantify them), this approach is not appropriate when assessing the potential gains

from factor reallocation in agriculture. Contrary to the article’s narrative and conclusions,

the empirical evidence in GU corroborates the importance of misallocation in agriculture in

developing countries.

2 The evidence

Gollin and Udry (2021) find a substantial reduction in plot-level productivity dispersion

after accounting for mismeasurement and, as a result, conclude that the potential gains

from reallocation are substantially smaller than those found in the literature. We show,

using GU’s own estimates, that this conclusion is incorrect, as the change in productivity

dispersion does not accurately characterize the extent of remaining misallocation.

Productivity dispersion and misallocation Productivity dispersion across plots in

Uganda is extremely large.1 The top panel in Table 1, columns (1) and (2), reports statistics

on the dispersion of unadjusted productivity across plots (TFPA), which correspond to the

reported variances in GU (Table A3). We use GU’s data and production function estimates

to compute the e�cient allocations that maximize aggregate output given resources, and the

implied e�ciency gains at three levels of geographical disaggregation. The e�ciency gain, a

standard measure of the extent of misallocation in the literature, is simply the average of the

ratio of e�cient to actual aggregate output across season-years (Hsieh and Klenow, 2009).2

The results are presented in the bottom panel of Table 1.
1For this comment we focus on Uganda because this is the country that features the largest reduction

in productivity dispersion due to mismeasurement. Moreover, we are more familiar with the data and
institutional context in Uganda (Aragon et al., 2019). Nevertheless, our comments and assessment also
apply to Tanzania.

2Conceptually, it is not clear what it means to reallocate factors including land across plots as units
of production, but we nevertheless for illustration and comparison compute e�ciency gains as in GU (see
Appendix A6, page 63).
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Table 1: Productivity dispersion and e�ciency gains in Gollin and Udry’s data

Plot-level TFPA Plot-level TFPB Farm-level TFPA
2SLS IVCRC 2SLS IVCRC 2SLS IVCRC
(1) (2) (3) (4) (5) (6)

A. Dispersion
90-10 log di�erence 2.69 2.67 1.74 1.29 2.07 2.04
90-10 ratio 14.76 14.43 5.67 3.64 7.90 7.68
Variance of log 1.26 1.25 0.53 0.29 0.78 0.77

B. E�ciency gains
Nationwide 23.92 31.40 6.66 6.66 14.28 17.46
Region 16.38 20.57 5.36 4.69 8.35 10.94
Parish (Village) 4.05 4.46 2.47 2.17 2.11 2.30

Notes: Mean of e�ciency gains across season-years. TFPA is unadjusted productivity at the plot level and
aggregated to the household level. TFPB is adjusted productivity at the plot level.

Reallocation gains are extremely large. For instance, if the allocations of land and labor

were to change to the e�cient allocations, agricultural output and the associated aggregate

productivity would increase between 23.9 and 31.4-fold, that is an increase of more than

2200%.

The gain from reallocation across plots implied by this data is not a good starting point

to challenge the findings of the misallocation literature. These gains are not just exceedingly

larger than macro studies of the agricultural sector, but also larger than studies of plant-level

reallocation in manufacturing. The closest to plot-level analysis in the literature would be

the reallocation across plants in the manufacturing sector of China and India in Hsieh and

Klenow (2009). But whereas the variance of log plant-level productivity is similar than those

in GU for plots, 1.12 in 1998 China and 1.51 in 2005 India, the reallocation gains are only

115% in China and 128% in India. Clearly, the extent and costs of misallocation are not

well characterized by the variance of productivity alone. The extent of misallocation is very

di�erent across plots than across plants, but also are the likely measurement issues between
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the agricultural and manufacturing sectors.

GU’s main message is that an adjusted measure of productivity (TFPB) that accounts

for late season output shocks, unobserved quality inputs, and measurement error, reduces

considerably any apparent misallocation since the variance of adjusted productivity (log

TFPB) is 70% lower than the variance of unadjusted productivity (log TFPA).

We explore this implication explicitly by analyzing GU’s adjusted measure of TFP

(TFPB) for e�ciency gains at three levels of geographical variation in columns (3) and (4)

of Table 1. A nationwide reallocation using the adjusted measure of productivity in GU’s

data generates an increase in agricultural productivity of 566%. This increase is much larger

than those found in the related macro-development literature: 53% in China (Adamopoulos

et al., 2017), 97% in Ethiopia (Chen et al., 2021), 186% in Uganda (Aragon et al., 2019), and

259% in Malawi (Restuccia and Santaeulalia-Llopis, 2017). Reallocation gains are large even

within narrower geographical areas. For instance, the within-village reallocation is 147% in

GU’s adjusted data, whereas they are only 24% in China (Adamopoulos et al., 2017).

Given the substantial reallocation gain of 566% in GU’s adjusted measure of productivity,

the conclusion that “previous estimates of misallocation have probably overestimated the

potential productivity losses due to misallocation” (p.46) is not warranted from this evidence.

The pattern of misallocation An important theme in the literature has been the connec-

tion between misallocation and land markets, first emphasized by Adamopoulos and Restuc-

cia (2014) and subsequently analyzed using more detailed micro data in di�erent contexts.

This literature documents a weak connection between farm inputs and farm productivity,

especially arising from frictions in land markets, whereas an e�cient allocation of factors

would feature a strong positive relationship between inputs and productivity.

We assess whether the adjusted measure of productivity in GU (TFPB) features a dif-

ferent pattern of misallocation. Figure 1 reports two panels, each plotting log land input
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Figure 1: Land input and productivity in Gollin and Udry (2021)

(a) Unadjusted TFPA (b) Adjusted TFPB

(operated land) on log TFP. Panel (a) reports the unadjusted measure (log TFPA) while

panel (b) reports the measure adjusted by measurement error (log TFPB). Even though

there is much less dispersion in TFPB than in TFPA, in both cases there is a weak negative

relation between land input and productivity (fitted line). This is in sharp contrast to the

strong positive relationship implied by an e�cient allocation.3 The evidence clearly indicates

that land input is not strongly associated with farm TFP and this pattern of misallocation

is no di�erent when using GU’s adjusted productivity measure.

This result is not surprising both from an economic and a methodological point of view.

First, if misallocation is driven by land institutions that distribute land uniformly and/or

prevent reallocation across households, then we should not expect that disaggregating the

data at the plot level would address the issue. Second, GU’s method simply removes random

variation in productivity since the adjustment amounts to a scalar reduction in variance,

which is proportional to the productivity variance across plots within households. As a
3It is worth noting that GU’s estimated plot-level production function is close to constant returns to

scale. In this context, low levels of misallocation would essentially require limited TFP dispersion, which is
far from what GU’s estimates show.
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result, the fundamental relationship between land input and productivity is una�ected.4

The plot versus the farm The macro-development literature on misallocation focuses on

the household farm as the unit of analysis and reallocation instead of the plot, an emphasis

that is in part driven by the fact that land institutions in developing countries allocate

land rights at the household level (Restuccia, 2020). The distinction between the plot and

the farm analysis is important in rationalizing GU’s evidence and properly assessing the

importance of mismeasurement and misallocation in agricultural economies. In this context,

a more pertinent comparison with the misallocation literature is to assess the extent of

mismeasurement at the household-farm level.

It is straightforward to use GU’s production function to map plot-level productivity to

the farm level in a way that is quite comparable to the literature for given estimates of

production function parameters. To aid in comparability, we simply use GU’s data and

estimates to aggregate their measures to the farm level. With a slight change in notation,

the plot-level production function (household h, plot j, season-year t) in GU’s equation (13)

is Yhjt = eÊhjt(Lhjt)–L(Xhjt)–X . Given n operated plots for household h in period t, we can

write the aggregated household-level output in each period as:

Yht = sht(Lht)–L(Xht)–X ,

where Lh and Xh are the total amounts of land and labor used by the household, and farm

TFP is sht = qn
j=1 eÊhjt(„L

hjt)–L(„X
hjt)–X , where „L

hjt and „X
hjt are the shares of a household’s

total inputs (Lh, Xh) used in plot j in period t.

Table 1 reports the variance and e�ciency gains for TFPA aggregated at the household-

farm level in columns (5) and (6). The results illustrate that a large portion of the adjustment

in GU’s TFPB measure is already accomplished in the literature by considering the farm as
4We find a similar pattern when looking at the allocation of labor across plots.
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the unit of analysis. For instance, simply aggregating unadjusted plot TFP to the farm level

reduces the variance by about 40% (1 ≠ 0.78/1.26). This represents about two-thirds of the

reduction in variance emphasized by GU. Similarly, using 2SLS, the nationwide reallocation

gain falls from 23.9-fold across plots to 14.3-fold at the household level, whereas within

villages falls from 4-fold to 2.1-fold.

GU provide a metric of overstatement of the potential gains from reallocating resources

which is based on the di�erence in the variance of TFP, which is almost 3-fold in the case

of Uganda, and conclude that the “extent of misallocation is substantially overstated if

the contributions of risk and measurement error to the apparent dispersion of TFP are

neglected” (p.45). This conclusion is, however, misleading since in no place in the literature

reallocation across plots is the starting point. In particular, when comparing TFP variances,

the overstatement relative to TFPB is instead a much more modest 1.28-fold when using farm

productivity instead of TFPA. In terms of misallocation, e�ciency gains from village-level

reallocations may be even smaller across farms than across plots with adjusted productivity.

To summarize, taking GU’s adjusted measure of productivity and production function

estimates at face value, it is clear from the evidence that factor misallocation remains a

critical component of agriculture in the developing world, contrary to GU’s conclusions.

Moreover, there are reasons to be concerned that GU adjustment over-attributes variation

to mismeasurement as we discuss in detail in the next section.

3 Limitations of plot-level analysis

While the evidence indicates a large role for factor misallocation in African agriculture, a

proper assessment of mismeasurement remains relevant. However, we show that some aspects

of GU’s method hinder it. For example, the assumption that the farm household does not face

frictions in adjusting inputs across plots is inconsistent with a long literature documenting
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frictions within the household, driven by intra-household allocations or variation in the

property rights of the plots (Shaban, 1987; Goldstein and Udry, 2008; Udry, 1996).

In this section, we focus on the use of plot-level data instead of the standard approach

of focusing on household farms. We present evidence that measurement error is larger in

parcels, a unit above the plot, compared to farm-level data, biasing upwards the extent of

mismeasurement in GU’s analysis. Using instead a method that relies on time variation in

panel data we find a modest role for measurement error in farm-level data. We also show the

implications for productivity dispersion and misallocation when estimating the production

function at the farm level.

Measurement error in parcel-level data We assess measurement error by comparing

self-reported size of land holdings to their GPS measure. GPS data is only available at

the parcel level. However, as the parcel is a level of aggregation above the plot, this is a

conservative assessment. We use the data for Uganda in Aragon et al. (2019).5 We obtain

parcel size and then aggregate it to the farm level. Figure 2 shows the distribution of self-

reported land size and the corresponding GPS measures at the parcel and household levels.

There are three important observations. First, there is bunching in the distribution of

self-reported land size. This is consistent with respondents (or surveyors) rounding parcel

sizes. Second, deviations from the GPS value, which can be attributed to measurement

error, are more pronounced for smaller parcels and farms. In particular, measurement error

measured as the ratio of self-reported to GPS land size virtually disappears on the right tail

of the distribution. This suggests that measurement error in land is non-classical, something

already discussed in the micro-literature on farm size and productivity.6 Third, measurement
5We do this because the GPS data is not provided in Gollin and Udry (2021). We use the Uganda Panel

Survey for 2009-10, 2010-11, 2011-12 and 2013-14.
6See, for example, the evidence in Abay et al. (2019) on the negative correlation between measurement

error and plot size, a pattern we also find in our data at the parcel level. Also note that GU assume classical
measurement error.
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Figure 2: Self-reported and GPS-measured parcel and farm size

error is larger at the parcel than at the farm level.

Table 2 provides summary statistics of the ratio of self reported to GPS land size, our

proxy of measurement error, for parcel data and data aggregated at the household level.

We observe that aggregating the data at the household level reduces the magnitude and

dispersion of measurement error. For the median observation, measurement error is around

1.7% using parcel-level data, but around 0.04% using household level data. Similarly, the

90-10 ratio drops from 4.2 to 3.5 and the variance of log from 0.54 to 0.45 when aggregating

at the household farm level.

Measurement error in farm-level data If plot-level data is problematic, how can we

assess the extent of measurement error in measures of misallocation? The intuition behind

GU’s adjustment is that “observed variation in labor inputs across the plots of a single farmer

that is not correlated with either output or other inputs is attributable to measurement error

in labor.” A similar approach can be applied to variation over time in panel data. This is
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Table 2: Measurement error in land

Measurement error in land
Parcel data Household data

(1) (2)
Mean 1.611 1.407
Median 1.017 1.004
p(10) 0.526 0.560
p(90) 2.222 1.961

90-10 ratio 4.222 3.503
Variance (log) 0.536 0.447

Notes: The proxy for measurement error in land is the ratio of self-reported / GPS land size. Estimates
using parcel level data (column 1) and aggregated at the household farm level (column 2).

indeed the approach in Bils et al. (2017), exploiting variation in output, relative to variation

in inputs, as an alternative measure of revenue productivity (distortions). The extent to

which variation over time in inputs is not reflected in variation in output, which varies

across levels of revenue productivity, provides a metric of the extent of measurement error

in measured distortions.

We apply this method using GU data but aggregated to the farm level to prevent ad-

ditional measurement issues at the plot level. We report, in Table 3, an estimate of ⁄, the

fraction of the dispersion in revenue productivity (TFPR) that is due to true variation in

distortions.

We find that, regardless of the specification, the estimate of ⁄ is fairly high (0.90 and

0.83), implying that between 10 and 17% of the variation in misallocation can be ascribed

to measurement error. These results are consistent with the findings in Adamopoulos et al.

(2017) using Chinese panel data, where this method detects only 4% measurement error in

farm-level distortions measures and 10% in cross sectional farm-level data. The extent of

farm-level measurement error is substantially smaller than that implied by GU’s analysis at

the plot level. It is also much smaller than in the manufacturing sector analyzed in Bils et

al. (2017) for India and the United States, which suggests caution in making comparisons of
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Table 3: Measurement error in distortions

Using farm
TFPA

2SLS IVCRC
(1) (2)

⁄̃ 0.90 0.83
S.E. 0.06 0.05
95% C.I. [0.78 - 1.01] [0.70 - 0.94]

Notes: Estimates of ⁄ as proposed in Bils et al. (2017), representing the share of the dispersion in TFPR
that is due to true variation in distortions. All regressions include year and season fixed e�ects. Columns
(1) and (2) use estimates of TFPA estimated by Gollin and Udry (2021) aggregated to the farm level.

measurement error across sectors, countries, and applications.

Plot versus farm level analysis Taking plot-level measurement issues aside, and the fact

that the relevant unit of analysis for the practical purposes of reallocation is the household

farm, we now address the di�erences in insights between the adjusted plot-level estimates

in GU and a farm-level analysis. We use estimates of the farm-level production function

documented in Aragon et al. (2019). These estimates are obtained using the same dataset

as GU and a similar Cobb-Douglas specification. However, we use data aggregated at the

household-farm level and exploit within-household variation for identification. In particular,

we estimate the following panel data model with fixed e�ects:7

ln Yit = ln si + –L ln Lit + –X ln Xit + ”weatherit + ÷t + ‘it,

where Y , L and X are the amounts of farm agricultural output, land and labor. weatherit

and ÷t are measures of local weather (temperature and precipitation) and period fixed e�ects
7This approach addresses time-invariant unobserved productivity. Our results are, however, similar when

using a dynamic panel approach as in Shenoy (2017). As noted in Ackerberg et al. (2015), this approach
can address time-variant unobserved productivity as long as it follows a first-order autoregressive process.
We prefer using panel data methods rather than proxy variable methods, such as Olley and Pakes (1996),
Levinsohn and Petrin (2003), Ackerberg et al. (2015), or Gandhi et al. (2020), because their key identifying
assumptions fail in the presence of input market frictions (Shenoy, 2020).
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that capture common productivity shocks, while ln si are household fixed e�ects. We call this

last variable “farm productivity” and use it as a measure of the time-invariant component

of household-farm total factor productivity.

Table 4 reports the productivity dispersion and gains from reallocation using plot- and

household-level estimates from GU and Aragon et al. (2019). While the dispersion remains

larger in the household fixed e�ects specification than in GU’s TFPB (see panel A), the

resulting reallocation gains are substantially larger when using GU’s estimates (panel B). For

example, nationwide reallocation gains are 566% in GU’s adjusted measure of productivity

compared with 186% in farm-level estimates, whereas village level reallocation is 147% in

GU compared with 57% in farm estimates.

Table 4: Productivity dispersion and e�ciency gains in Gollin and Udry’s adjusted data and
Aragon et al. (2019)

Plot-level TFPB Farm
2SLS IVCRC productivity

(ln si)
(1) (2) (3)

A. Dispersion
90-10 log di�erence 1.74 1.29 2.23
90-10 ratio 5.67 3.64 9.30
Variance of log 0.53 0.29 0.84

B. E�ciency gains
Nationwide 6.66 6.66 2.86
Region 5.36 4.69 2.48
Parish (Village) 2.47 2.17 1.57

C. Production function estimates
Land (–̂L) 0.69 0.53 0.37
Labor (–̂X) 0.22 0.43 0.34

Notes: Mean of e�ciency gains across season-years. TFPB is plot level productivity adjusted for late season
output shocks, unobserved input quality, and measurement error using plot-level variation within household
farms. Farm productivity (ln si) from Aragon et al. (2019). Estimates in Panel C from Table A2 in Gollin
and Udry (2021) and from Aragon et al. (2019).
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From this perspective, even though there is a larger variance in farm-level productivity

than in GU’s adjusted TFPB, the reallocation gains and hence the extent of misallocation

are about half in the farm-level analysis than in GU’s adjusted data.

The di�erence arises because the cost of misallocation depends not only on the variance

of productivity, but also on the parameters of the production function. Using household-level

data, Aragon et al. (2019) finds decreasing returns to scale, while GU estimate a near linear

production function at the plot level (with returns to scale ranging from 0.91 to 0.96). Thus,

reallocation gains, even from smaller dispersion, are quite large.

There is a vast literature discussing the potential dangers of estimating production func-

tions in the presence of distortions and unobserved variables, both of which may render

estimates at the plot level less reliable than at the farm. A clear indication of this limitation

is the fact that farm size and productivity are negatively related in GU’s plot-level estimates,

whereas the correlation is small but positive at the farm level (Aragon et al., 2019).

These considerations suggest that a farm-level analysis, as carried out in the macro

development literature, provides a more accurate assessment of the extent of misallocation

and relevant measurement error in agriculture than the plot-level analysis in Gollin and Udry

(2021).

4 Conclusions

We use the evidence in Gollin and Udry (2021) to argue with the authors’ conclusion that the

misallocation literature vastly overestimates potential gains from factor reallocation in agri-

culture in low-income countries. The striking finding is that there is more misallocation as-

sociated with GU’s adjusted measure of productivity than in the related macro-development

literature. We show that GU’s plot-level approach induces an increase in raw productivity

dispersion and estimates of production function coe�cients that generate unusually large
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reallocation gains. As a consequence, focusing on the reduction in the variance of TFP, as

done in GU, is not informative of the extent of misallocation in agriculture.

After accounting for other sources of dispersion, such as measurement error, idiosyncratic

shocks and input heterogeneity, GU’s own estimates are consistent with substantial gains

from factor reallocation, even at the village level. Moreover, GU’s adjusted productivity

measures are at odds with standard patterns of e�cient allocations, as their data shows a

negative correlation between productivity and input use.

We show that the standard approach in the macro-development literature of using the

household farm as the unit of analysis deals to a large extent with some of the drivers of

productivity dispersion between adjusted and unadjusted measures estimated in GU.

We also provide evidence suggesting larger measurement error at the plot level compared

with the farm level, implying an upward bias on the extent of mismeasurement in GU’s

plot-level analysis. We instead assess the extent of measurement error in farm-level data

using a similar approach but that leverages on panel data rather than on suspect plot-level

data (Bils et al., 2017). We find much smaller scope for measurement error than in GU, and

even relative to manufacturing plants in India and the United States, which highlights the

importance of farm-level analysis in this context and suggests caution in making comparisons

of measurement error across sectors, countries, and applications.
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