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Abstract

This paper develops the first quantitative framework for analyzing distribu-

tional effects of incentive schemes in public education. The analysis is built

around a hump-shaped effort function, estimated semi-parametrically using

exogenous incentive variation and rich administrative data. We identify key

primitives that rationalize this effort function by estimating a flexible teacher

effort-choice model. Both the model and parameter estimates are necessary

components in our counterfactual framework for tracing the effects of alter-

native accountability systems on the entire test score distribution, with effort

adjusting endogenously. We find widespread schemes that set a fixed target

for all students give rise to a steep performance-inequality tradeoff. Fur-

ther, counterfactual incentive policies can outperform existing schemes for

the same cost – reducing the black-white test score gap by 7% (via student-

specific bonuses), and lowering test-score inequality across students by 90%

(via student-specific targets). Our quantitative approach opens up new pos-

sibilities for incentive design in practice.
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I. Introduction

Across many types of organization, schemes that provide incentives to exert effort are seen as an

important means of boosting performance – whether for CEOs, sales force personnel, production

line workers, or educators.1 Given that general promise, accountability schemes in an education

context have become increasingly widespread, with numerous studies analyzing the impacts of

existing programs on educational outcomes – see Figlio and Loeb (2011) for an informative survey.

Current research indicates that there may be scope for improving such schemes, and policy makers

have a keen interest in doing so, both to raise average performance and to address distributional

concerns. The latter are especially relevant as differences in outcomes while in school are known

to perpetuate, fuelling lifelong inequality. Yet from a policy perspective, no existing education

research allows policy designers to assess the effects of different possible accountability reforms on

the entire student performance distribution in a systematic way.

In this paper, we propose a quantitative framework to fill the gap. Our framework is built

around an effort function that maps formal incentives under the control of the policy maker into

teacher effort – a key input to education production. Teacher effort is typically unobserved, yet it

should (as a productive input) be reflected in observed output, and be responsive in predictable

ways to incentives. When accountability incentives change, we show how effort can be backed

out from observed changes in output without making further assumptions about the effort-setting

process, yielding the desired effort function.

We uncover the shape of the effort function in practice by leveraging rich administrative data

from North Carolina following all public school students over time, along with exogenous incentive

changes arising from the introduction of No Child Left Behind (‘NCLB’), a federal accountability

system. NCLB created well-documented incentives to focus on students predicted to score close to

a fixed passing threshold rather than students further away, in line with proficiency count schemes

elsewhere (in Texas, for example). We capture these non-uniform incentives with a continuous

measure of incentive strength for all students, equal to their predicted distance to the passing

threshold, with incentives being stronger closer by. Then we estimate the profile of conditional

average treatment effects of the policy throughout the incentive strength distribution, conditioning

on the incentive measure. The resulting profile has a pronounced hump, peaking where incentives

should be most intense and declining on either side. Further, supporting evidence indicates that

this pattern is not due to other relevant inputs being altered (including class sizes or teacher and

student classroom assignments), consistent with teachers adjusting their effort.2

1A vast literature in economics, discussed below, has studied such schemes; Lazear (2000) is a classic example.
2‘Effort’ in our analysis will be taken to refer to unobserved discretionary actions, distinct from other education
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We show this effort function can be rationalized using a flexible teacher effort-choice model,

adapted to features of the public school system in North Carolina; the further structure will be

necessary for our counterfactual approach. The model makes explicit how teacher effort is influenced

by incentives – formal and possibly informal – on the benefit side of the choice problem, while the

convex cost of teacher effort is flexible, allowing for cost spillovers across students. The model’s

benefit and cost parameters can be credibly identified, as we demonstrate, and the resulting model

estimates fit the data closely, including features of the data not targeted in the estimation routine.

These estimates indicate that teachers responded to the introduction of NCLB proficiency by

boosting effort on a targeted basis, taking account of the NCLB incentive threshold as well as

an informal low-stakes performance target established by the state prior to NCLB. Further, we find

the marginal cost of effort is increasing in the effort devoted to other students in the classroom.

At the heart of the analysis is a simulation framework for conducting policy-oriented counter-

factuals, drawing on both the model and the parameter estimates. The goal is to shed light on

the relative merits of alternative incentive systems in education in terms of the full distribution of

outcomes – the distinctive new output we produce. Our emphasis will be on feasible schemes that

are related to existing accountability systems, the most widely-used being schemes (such as NCLB)

that set fixed performance targets for all students in a given grade; we also consider value-added

schemes whose targets can be tailored to depend on prior scores of individual students.

Using our counterfactual policy framework, we first compare the relative performance of existing

schemes throughout the distribution, and then compute the effects of feasible schemes yet to be

implemented. In doing so, we can analyze the setting of alternative rewards and targets – key

issues in incentive design – while effort adjusts endogenously to the new incentives. We focus on

two summary measures under each reform: the average effort received by students3 (as an indicator

of efficiency) and the reciprocal of the variance in test scores (as an indicator of inequality). The

resulting counterfactual output then provides a menu of options enabling policymakers to select

their favored scheme according to their preferences, as defined over efficiency and inequality.4

Three new findings emerge from the counterfactual analysis. First, widely-used fixed target

regimes (of the form taken by NCLB) give rise to a clear, quantitatively significant tradeoff between

the average effort exerted by teachers and test score inequality across students. We are able to

establish this regularity by considering a broad range of possible targets in turn, showing that as the

fixed target moves up the predicted test score distribution, average effort increases at the expense

inputs, which alter test scores in ways attributable to incentive variation (see Section IV).
3This is equivalent to the average test score in our setup, given a monotonic relationship between effort and scores.
4This positive emphasis contrasts with the normative approach in the optimal contracting literature; see Mirrlees
(1975) and related theoretical studies. Implementing the optimal contract would raise feasibility issues beyond the
scope of the current analysis.
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of creating a wider outcome distribution. This makes target setting consequential, depending on

policy makers’ preferences over average performance (effort) versus inequality. Here, our framework

offers the first evidence to guide policy makers in terms of how steep the underlying tradeoff is.

Second, student-specific bonuses improve the performance of standard fixed target regimes signif-

icantly: attaching higher weight (in the form of bonus payments) to low-performing students raises

mean effort by 0.05 SD, reduces test score variance by 7.8 percent, and reduces the black-white

test score gap by 7 percent. These gains all come at no extra expense, as we apply a cost-equating

procedure to ensure that all schemes under consideration cost the same amount.

Third, student-specific targets allow policymakers to reduce inequality without sacrificing aver-

age effort. We show that switching from fixed to student-specific value-added targets (where the

target is a function of the student’s prior performance) reduces inequality across students by as

much as 90 percent, as value-added targets provide incentives to devote similar effort levels to all

students. Perhaps surprisingly, if policy makers place a high enough priority on limiting outcome

inequality, fixed targets can still dominate value-added schemes when the targets are set relatively

low in the performance distribution – below the 40th percentile in our analysis.

Overall, the findings draw attention to the scope for improved policy design by applying our

approach. We show that feasible schemes yet to be implemented are capable of reducing test score

inequality while also improving average student performance without increasing costs. Further, by

allowing policy makers to gain insight into the distributional consequences of alternative education

accountability systems, the approach enhances the prospects for using education reforms to combat

inequality in a cost effective manner, an especially critical public policy objective today.

The rest of the paper is organized as follows: The next section relates our study to existing

research. Section III describes the incentive variation and the administrative data used in the

analysis. Section IV presents our method for uncovering the effort-incentive strength relationship,

along with estimates and supporting evidence. Section V develops a model of effort setting that

can rationalize the estimated function, with Section VI describing the estimation and identification

of the model parameters, and Section VII presenting estimates and model fit. Section VIII sets

out our counterfactual framework, Section IX describes the counterfactual results, and Section X

concludes.

II. Related Research

This paper builds on several prior literatures, primarily in the personnel, labor and education

fields. First is a prominent line of research that studies the introduction of actual incentives in

the workplace. Lazear’s classic 2000 paper shows how replacing a fixed wage contract with a new
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piece-rate style incentive scheme by Safelite Glass Corporation led to an increase in company profits.

It also draws attention to distributional effects across workers, with high-productivity workers in

particular gaining from the new incentives.5 We develop the inequality theme, considering the

implications of incentive schemes for the distribution of student, rather than worker, outcomes.

The influential study by Bandiera, Barankay and Rasul (2005) also demonstrates that changes in

workplace incentives generated significant productivity gains, this time among fruit pickers when

moving from a relative incentive scheme to a piece rate. They provide clear evidence that workers

internalize the effects of their behavior on co-workers, a conclusion based on a novel calibration

procedure for recovering the parameters that influence worker effort choices. In our study, we are

also interested in the parameters governing effort choices when incentives change, and propose a

new estimation approach using the semi-parametric effort function as an input.6

Public education, the context for our study, provides a high-profile policy arena in which incen-

tive schemes have been adopted widely. Given their general aim of increasing teacher and school

effort and boosting measured performance, a substantial body of empirical research has already

examined the effects of education accountability schemes on student achievement – see Carnoy

and Loeb (2002), Figlio and Winicki (2005), Hanushek and Raymond (2005), Lavy (2009), Dee

and Jacob (2011), and Imberman and Lovenheim (2015), among others. Several convincing papers

document the way in which proficiency-count incentives have led educators to focus on some groups

of students at the expense of others – whether exempting disadvantaged students as in Cullen and

Reback (2006) and Figlio and Getzler (2006), or concentrating on students close to proficiency

targets rather than students far below or above – see Burgess, Propper, Slater and Wilson (2005),

Reback (2008), and Neal and Schanzenbach (2010), for example. Similarly, Deming, Cohodes, Jen-

nings and Jencks (2016) show that schools at risk of being classified as “low performing” under the

1990s accountability program in Texas responded by concentrating effort on lower-scoring students,

reflected both in achievement and long-run outcomes. Such varieties of non-uniform attention may

be especially concerning when it is disadvantaged students who are neglected. Building on this

evidence from existing programs, we study the effects of alternative accountability incentives on

the full distribution of student outcomes while in school, including the effects of schemes yet to be

enacted.

The approach we propose for recovering the effort function uses an incentive strength measure

building on prior work, including Reback (2008), Neal and Schanzenbach (2010), and Deming et

5Related to this, Bandiera, Barankay and Rasul (2007) explore how managerial incentives affect the mean and
dispersion of worker productivity using an experiment that introduced a performance bonus for managers.

6Other papers in the literature consider incentive variation more broadly, including Mas and Moretti’s (2009) study of
the productivity effects of varying peers among supermarket checkout staff, and Bandiera et al. (2010), who consider
social incentives based on friendship networks in the workplace as an alternative to monetary rewards.
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al. (2016). Two somewhat subtle aspects of our chosen measure are worth noting. First, because

it is continuous, it can be computed for each student.7 This will allow us to estimate effort at all

points in the incentive strength distribution, important for the subsequent estimation and policy

analysis. Second, the predicted student scores we use to form the measure are based on pre-reform

data, enabling us to make baseline effort predictions that plausibly exclude the treatment effect of

the reform (see Section IV).8

The estimable model of teacher effort setting we develop shares several features with a literature

that estimates principal-agent models directly using personnel data.9 In that literature, unobserved

effort decisions are cast in terms of an optimal effort choice model given prevailing incentives (as

in our analysis); in turn, distinctive patterns of output are related to prevailing incentives to infer

how unobserved effort must be set, and the model is taken to the data to estimate benefit and

cost parameters governing worker decisions – the 2009 study by Copeland and Monnet provides

an excellent example.10 In an education context, this type of model-focused approach is rarely

used, yet our model is necessary given the main goal of the analysis: to trace the impacts of

alternative accountability incentives (and the targets and rewards/penalties they entail) on the

resulting distribution of educational outcomes. Such design issues come naturally to mind when

considering the various education accountability schemes that have been used, including proficiency

schemes (such as NCLB) and value-added schemes whose targets condition on prior student scores.11

Beyond the impact of existing reforms, incentive designers often wonder about more speculative

considerations, looking to the effects of changing the parameters of existing schemes counterfac-

tually, or the effects of incentive schemes yet to be implemented in practice. Approaches that

combine a strategy for identifying effort under prevailing incentive provisions with a framework for

counterfactual analysis are thus appealing, as in recent research studying worker incentives – see

Misra and Nair (2011) for instance. In this vein, our counterfactual policy framework provides a

feasible means of constructing alternative incentive schemes that can be fed into the policy analysis,

and it allows their impacts to be measured on a comparable basis by equating costs. Further, their

effects on the full distribution of relevant outcomes can also be traced for the first time, allowing

7In related approaches, Deming et al. (2016) aggregate incentive strength to the school level, and Neal and Schanzen-
bach (2010) group students into deciles of the ability distribution.

8We calculate expected outcomes using a prediction algorithm similar to Reback (2008) and Deming et al. (2016);
those studies do not have access to a pre-reform period.

9For an illuminating survey of the personnel literature more generally, see Prendergast (1999).
10They provide a sophisticated dynamic analysis of individual worker effort choices in the context of threshold incentive

schemes in the check-clearing industry, along with estimates of the welfare costs of higher effort. Structural methods
have been used in recent papers in labor economics – for instance, to shed new light on the effects of imperfect
competition. See studies by Lamadon, Mogstad and Setzler (2021) and Kroft, Luo, Mogstad and Setzler (2021).

11Studies that focus on particular aspects of accountability schemes already in operation include Cullen and Reback
(2006), Neal and Schanzenbach (2010), and Macartney (2016).
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convenient summary measures to be computed,12 according to the preference of the analyst or

policy maker.

III. Institutional Setting and Data

Our analysis requires exogenous incentive variation and rich administrative data. The state of

North Carolina provides both.

Incentives: On the incentive front, we make use of the introduction of NCLB provisions in the

state in the 2002-03 school year, following the passage of the federal No Child Left Behind Act

in 2001. NCLB sought to close performance gaps by requiring schools to meet Adequate Yearly

Progress (‘AYP’) targets for students, while imposing penalties for under-performing schools (based

on proportions attaining the targets). We focus on the AYP targets shared by all students in a given

grade, treating those as a reasonable approximation to the prevailing incentives under NCLB.13

Doing so provides a potent source of across-student variation in teachers’ incentives to devote extra

effort, as we will demonstrate.14

The federal NCLB program was introduced on top of the state’s pre-existing school-based ac-

countability system, the ABCs of Public Education, which applied to all schools serving kinder-

garten through eighth grade starting in the 1996-97 school year. The ABCs assigned a school-

grade-specific target gain to each grade (from 3 to 8), and all teachers and the principal received

a monetary bonus if their school achieved its overall growth target, based on average school-level

gains across all grades. The pre-existing incentives under the ABCs contrast sharply with those

under NCLB: the former give incentives to exert reasonably uniform effort throughout the distri-

bution, while the latter are distinctly non-uniform. Prior research does not provide guidance in

terms of how to treat possible interactions between the two – a practical issue we address in the

estimation below.

Aside from formal incentives, with the ABCs focusing primarily on student growth, this precursor

to NCLB also assigned schools ‘low-stakes’ status labels based on school proficiency rates to allow

parents to keep track of performance. Specifically, the program featured three targets at different

points in the individual score distribution,15 students achieving proficiency status when their test

12An experimental study by Loyalka et al. (2019) uses random assignment of Chinese elementary school teachers to
explore the student achievement effects of incentives based on ‘pay-for-percentile’ (as in Barlevy and Neal 2012).

13The same stance is taken in Neal and Schanzenbach (2010).
14The NCLB legislation was complex, and provides several other viable sources of variation. For example, given that

AYP targets were also set for nine student demographic subgroups, prior studies (Reback 2008; Deming et al. 2016)
have used student subgroup membership to identify accountability pressure across students and schools.

15The first marked the boundaries between ‘insufficient’ and ‘inconsistent’ mastery, the second between ‘inconsistent’
and ‘consistent’ mastery, and the third between ‘consistent’ mastery and ‘superior’ performance.
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scores met or exceeded the second target. Upon NCLB’s introduction in 2002-03, North Carolina

used the second target as the NCLB proficiency standard, although the first and third may have

had some continued salience for educators and parents, a possibility we will examine.

Data: In addition to useful incentive variation, North Carolina offers rich longitudinal educa-

tion data from the entire state, provided by the North Carolina Education Research Data Center

(NCERDC). These data contain yearly standardized test scores for each student in grades three

through eight and encrypted identifiers for students and teachers, as well as unencrypted school

identifiers. Thus students can be tracked longitudinally and linked to a school and (via a stan-

dard matching procedure) to a teacher in any given year. Our main performance variables are

constructed from individual student test scores, which are measured on a developmental scale, de-

signed so that each additional point represents the same amount of knowledge gained irrespective

of the baseline score or school grade; this feature will be important for comparability.

Our sample period runs from school year 1996-97 to 2004-05 and we restrict attention to students

in third to fifth grade in the main dataset, where classes are self-contained and the most accurate

matching of students to teachers is possible.16 These restrictions notwithstanding, our sample is

very large, with nearly three million student-grade-year observations.

Table 1 provides descriptive statistics for our sample. In the top part of the table, we summarize

the standardized test measures developed in North Carolina as part of the ABCs reform, prior to

the enactment of NCLB. Here mathematics scores (in levels) are reported separately in the periods

before and after 2000-01, the academic year North Carolina changed the mathematics test score

scale. These test scores are relevant under NCLB, which requires that each student exceeds a target

test score. As the table shows, both mathematics and reading scores increase monotonically across

grades, consistent with knowledge being accumulated in those subjects over time. The dataset also

provides useful demographic controls, summarized in the bottom portion of Table 1: individual

students’ race, disability, limited English proficiency, and free lunch eligibility. In aggregate, 39

percent of students are minorities (non-white), 6 percent are learning-disabled, only 3 percent are

limited English-proficient, and 44 percent are eligible for free or reduced-price lunch. Around a

quarter of students have college-educated parents.

16We follow prior research studying North Carolina (Clotfelter et al. 2006, for example) and take the teacher who
proctors the corresponding end-of-grade tests to be the classroom teacher during the school year in these grades.
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Table 1 – Student-Level Descriptive Statistics

Full Sample

Mean SD N

Performance Measures

Mathematics Scores
Pre-2001

Grade 3 142.87 11.17 396, 341
Grade 4 151.56 10.56 384, 349
Grade 5 158.18 10.23 376, 044

Post-2001
Grade 3 252.34 7.13 509, 571
Grade 4 257.82 8.08 507, 622
Grade 5 261.54 9.39 512, 425

Reading Scores
Grade 3 147.03 9.33 901, 235
Grade 4 150.65 9.18 887, 153
Grade 5 155.79 8.11 883, 689

Demographics

Male 0.51 0.50 2, 778, 454
Minority 0.39 0.49 2, 776, 729
Disabled 0.06 0.24 2, 778, 635
Limited English Proficient 0.03 0.17 2, 778, 623

Free or Reduced-Price Lunch(a) 0.44 0.50 1, 998, 653
College-Educated Parents 0.25 0.43 2, 757, 648

Notes: Summary statistics are calculated over all third to fifth grade
student-year observations from 1996-97 to 2004-05. (a)The free or
reduced-price lunch eligibility variable is not available prior to 1998-99.

IV. Recovering the Effort Function

In this section, we first estimate the conditional average treatment effects of NCLB, giving rise to a

hump-shaped profile with a distinctive right-skewed shape. We then present evidence that supports

a ‘teachers boosting effort’ interpretation of the policy response reflected in this profile, drawing on

our administrative data. This evidence will motivate the teacher effort choice model we develop in

the next section, which serves to rationalize the policy effects and also provides the foundation for

our counterfactual analysis.

IV.A. Policy Responses to Accountability

Measured responses to heightened accountability have already been documented widely in the

literature, as noted in Section II. In our setting, we measure the test score responses to the

introduction of NCLB in 2002-03 throughout the distribution of incentives. To do so, we adapt

standard methods and leverage our rich administrative data.

To set out the approach, we define some terms at the outset. The accountability threshold is

denoted by the target score, yT . The actual score for a given student i is yi, to be contrasted with

the student’s ex ante predicted score, denoted ŷi. The NCLB test score response at the individual
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level can then be defined by the difference between the actual score for student i and the student’s

predicted score (or yi − ŷi in the above notation).

The predicted score plays an important role in the analysis. The specific notion we have in

mind is the test score that the student would have earned in the absence of any policy, in the year

NCLB was introduced. To that end, we devise a prediction algorithm using data and test score

determination based on the years prior to NCLB being introduced. The predicted score is obtained

by applying the following steps:

1. Predict student performance using pre-reform data, saving the coefficients from a regression

of 2001-02 scores (prior to 2002-03, the year in which the reform came into effect) on cubics

in prior 2000-01 mathematics and reading scores, as well as student covariates.17

2. Then predict student performance in 2002-03 using the saved coefficients from the first step,

along with student covariates in 2002-03 and prior test scores from 2001-02, giving ŷi. (This

predicted score will, by construction, exclude any response to NCLB and is ex ante in that

sense.)

This approach provides accurate test score predictions. As an indication, we group students

into narrow bins based on their predicted scores, then show that the bin means of the actual scores

of students coincide almost exactly with the corresponding predicted scores defining each bin. This

is true throughout the predicted score distribution – see Figure A.1. Some prediction error still

remains (as reflected in the error bands in the figure), reflecting the uncertainty in the test score

process: our investigations show that an R-squared of around 0.73 for the prediction algorithm is

about as high as it is possible to go.

We capture the relevant incentives by defining a natural measure of incentive strength. This

is student-specific, given by the difference between the student’s predicted score, ŷi, and the ac-

countability threshold, yT . For convenience, we label the incentive strength measure πi ≡ ŷi − yT ,

noting that this ‘predicted minus target score’ difference is continuous and also straightforward to

construct for each student i in our administrative dataset.

To understand the incentives associated with this measure, threshold schemes of the form taken

by NCLB should (as noted) lead educators to focus on students predicted to be close to the

proficiency threshold. Thus incentives should be strongest where students are most marginal (π ≈

0), becoming weaker as the absolute value of the distance from the target increases, in either

direction. The corresponding test score effects should in turn be non-uniform, peaking where

students are most marginal.

17The student covariates consist of indicators for parental education, gender, race, free or reduced-price lunch eligi-
bility, and limited English proficiency.
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To assess whether this pattern emerges in our data, we will estimate the conditional average

treatment effects of NCLB (in terms of test scores) for different values of the incentive strength

measure. The test score response for student i can be expressed using standard ‘potential outcomes’

notation as yi(1)− yi(0), where yi(1) denotes the actual score and yi(0) is the counterfactual score

in the absence of the reform. Here we will assume that the counterfactual score can be represented

by the test score prediction from above, ŷi, plus a prediction error, εi. The rationale for using

this prediction is that it excludes – by construction – any impact of NCLB by using estimated

relationships from before the introduction of the policy, combined with covariates in the year the

policy was introduced. It should provide our best possible estimate of each student’s score in the

(counterfactual) absence of the policy.

Define the effect of the policy at the individual level as ei ≡ yi(1) − yi(0). Thus, substituting

for the counterfactual and noting that yi(1) = yi, the test score response relates to the policy effect

for student i as follows:

yi − ŷi = ei + εi .

We will allow the policy effect to be heterogeneous in terms of our incentive measure π, writing

ei = ei(πi). Further, we assume that the treatment effect is homogeneous when conditioning on

a given value of π, so that ei(πi) = e(πi = π), common to all students with the same incentive

strength. Thus, under this minimal structure, we have

yi − ŷi = e(πi = π) + εi , (1)

where εi is also implicitly linked, via the characteristics of student i, to a corresponding value of

π. The estimand of interest, the conditional average treatment effect of the policy, is then written

E[yi − ŷi|πi = π] for any given value of incentive strength π.

In principle, taking the conditional expectation using (1) for any π will yield the conditional

average treatment effect e(π), assuming E[ε|π] = 0. While this assumption is not directly testable,

we will offer grounds below for believing that it is reasonable in our application.

Our interest will be in recovering the entire profile of conditional average treatment effects of the

policy with our incentive measure (π) on the horizontal axis. To estimate the profile in practice,

we average the individual test score responses across all students within small intervals (bins) of

the incentive measure, defined by the value of π at the bin’s midpoint.18 Applying our binning

procedure, the estimated gains across the distribution are plotted in Figure 1 (with a bin size of 2),

18Formally, for bins of size h, compute [y − ŷ](π) = 1
Nπ

∑
i:|πi|<h/2[yi − ŷi], where Nπ ≡

∑
i:|πi|<h/2 1.
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using fourth grade test scores in 2002-03, post-NCLB.19 The test score response shows a distinctive

inverted-U shape, peaking where incentives under NCLB should be strongest (at zero) and declining

on either side of that. It also has an asymmetric shape, which we will seek to rationalize based on

the model in the next section.
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Figure 1 – Effort Responses

Our identifying assumption for the conditional average treatment effect profile is that no other

policy or input accounts for the estimated pattern. This amounts to assuming that the error term

has mean zero for each value of π (as stated), and is uncorrelated with the main policy effect,

given by e(π). These assumptions are plausible in this context, for two reasons: first, we will show

that no other policies would have the distinctive hump-shaped profile we have recovered from the

treatment effects estimation exercise, peaking where incentives should be strongest and declining

on either side.20 Second, we will find no evidence of shifts in other inputs that would generate

anything like the distinctive profile.

A seemingly appealing placebo comes to mind, essentially by computing the policy response for

a year prior to NCLB’s introduction. We note, however, that the resulting profile would not provide

a direct (or conclusive) representation of the relevant counterfactual. Any deviations from a flat

profile for a preceding year do not imply that the correct counterfactual placebo in the post-reform

year would not itself have a flat profile: the profile will capture unmeasured factors operating in

the pre-NCLB year at different points in the distribution. At the same time, any such factors

influencing scores are accounted for in our post-reform profile, given the coefficients used in the

post-reform prediction are estimated from entirely pre-reform data.21

19We focus on fourth grade as third and fifth grade students were subject to a prior student-level accountability
reform, and applying our procedure using them might conflate the effects of the two reforms.

20Here, we include a teaching approach that would target a specific point in the classroom distribution, as a matter
of choosing an appropriate teaching style suited to the students in the class.

21For completeness, we compute a feasible pre-NCLB profile and show it in Appendix A.2. The resulting profile is
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IV.B. Interpreting the Incentive Response

The incentive response profile in Figure 1 in hand, we now wish to provide an interpretation of the

profile’s estimated height for any given level of incentive strength. To inform that interpretation

and also guide our modeling choices in the next section, we explore what actions are being taken,

and by which agents?

Considering actions first, under school-level schemes such as NCLB, it is natural to think that

schools would pull various levers at their disposal in order to try and attain the fixed accountability

threshold. Here, the administrative data allow us to shed light on possible observable actions that

schools might take, including: assigning the most marginal students to the best teachers (based

on standard value-added measures); assigning the most marginal students to smaller classes; even

making classrooms more homogeneous in terms of student ability. We can also cast indirect light

on whether greater effort is given to marginal students, while acknowledging that we do not have

direct effort measures in our data.

Taking these in turn, we examine changes in student-teacher matching, based on the notion that

NCLB should lead higher ability teachers to be matched with more marginal students – in North

Carolina, these are located low in the distribution, given the placement of the passing threshold at

around only the 5th percentile. To investigate this, we plot the relationship between teacher ability

and student incentive strength in Figure 2a, controlling for school-year-grade fixed effects and using

pre-NCLB teacher value-added (VA) as our measure of teacher ability.22 The positive relationship

pre-reform, given by the dashed line, is indicative of positive assortative matching. Post-reform,

rather than seeing the expected flattening of the relationship, it remains little changed (becoming

steeper).

The fact that we do not see evidence of more able teachers being assigned to more marginal

students suggests either that it is too costly to reassign teachers or that NCLB incentives may not

override pre-existing informal incentives to focus on high-SES students. As we document below,

informal incentives will play an important role in this North Carolina context.

Next we consider whether marginal students are being assigned to smaller classes in Figure 2b,

which plots the relationship between class size and student incentive strength in both the pre-NCLB

period and in the first year under NCLB. The relationship becomes slightly steeper after NCLB’s

introduction, indicating that marginal students may have been assigned to smaller classrooms in

much closer to zero throughout the distribution of incentive strength than the post-reform profile shown in Figure
1.

22Specifically, we use the standard jackknife Empirical Bayes estimator of value added, controlling for cubic polyno-
mials of student prior scores and characteristics (see Kane and Staiger 2008, and Chetty, Friedman and Rockoff
2014).
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Figure 2 – Teacher Ability (VA) and Class Size versus Student Incentive Strength

Notes: Panel (a) is a binned scatter plot of the relationship between teacher ability and student incentive strength.
Panel (b) is a binned scatter plot of the relationship between class size and student incentive strength. These
figures are constructed as follows: In both, the pre-NCLB period and the first year of NCLB, we calculate a
predicted score for each student and then subtract off the known proficiency score target from this prediction –
the horizontal axes in both panels measure the difference. In panel (a), the vertical axis measures teacher ability,
which we estimate in the pre-NCLB period using the jackknife Empirical Bayes procedure. In panel (b), the
vertical axis measures the number of students in each student’s classroom – i.e., class size. In both the pre-NCLB
period and the first year of NCLB, we residualize both the y-axis and x-axis variables with respect to school-
grade-year fixed effects, adding back the unconditional mean of each variable to the residualized values to facilitate
interpretation of the scale. Then we group students into 20 equal-width bins on the horizontal axis. Within each
bin, we calculate the average of the y-axis and x-axis variables. The circles represent these bin-specific averages,
while the straight lines represent the linear fits that are estimated using the underlying student-level data.

response. The scale on the vertical axis indicates, however, that average class sizes change by less

than 0.1 students throughout the entire distribution of incentive strength – a magnitude unlikely

to make any meaningful difference to students’ test scores.23 Further, there is no evidence of

adjustments that could lead to a hump-shaped profile.

We also explore whether schools responded to NCLB by making classrooms more homogeneous.

Creating classes post-NCLB in which students had similar academic preparedness could potentially

make it easier for teachers to target instruction to a particular subset of students without necessarily

increasing overall effort. To assess this possibility, we first provide an estimate of the maximal

degree to which schools could make classrooms homogenous based on prior-year test scores and

then compare actual classroom compositions against this benchmark.

A ‘perfect sorting’ benchmark can be established by reassigning students counterfactually to

classrooms within a school-grade in a given year in order to maximize the between-classroom

variance in prior scores.24 For each school-grade, we then compare the actual fraction of the variance

23Indeed, we show this is the case directly, by recreating Figure 1 while controlling for classroom fixed effects below.
24Specifically, we arrange students in ascending order within each school-grade-year according to their prior-year

mathematics score. We then fix the number of classrooms at the school-grade-year to be the actual number and
proceed down the ranking to group students into these counterfactual classrooms while assigning each counterfactual
class to have (approximately) the same number of students.
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in prior scores that occurs between classrooms to the counterfactual fraction that would occur under

the benchmark scenario. Doing so reveals that the distribution of students across classrooms falls

well short of the perfect sorting benchmark. Specifically, the actual between-classroom variance

accounts for only 6 percent of the total variance on average, yet it could account for as much as 78

percent if schools grouped students into classrooms based entirely on their prior scores.

Post-reform, if schools responded to NCLB by making classrooms more homogeneous, we would

expect the observed between-classroom variance to account for a greater percentage of the maximum

possible between-classroom variance in the 2002-03 academic year. Figure 3 plots the mean of this

ratio over time (across all school-grades) relative to the baseline 1996-97 academic year, in which the

average school-grade achieved a between-classroom variance that was 6.2 percent of the maximum

possible variance. This fraction grows gradually over time, rising to 2 percentage points above the

baseline-year value in 2004-05. There is no abrupt change in 2002-03, however, as the point estimate

is not statistically different from the values in either of the two prior years (and only fractionally

greater than any prior year). Further, the between-classroom variance at the average school in 2002-

03 is only 8 percent of the maximum possible variance, indicating that schools tracking students

into classrooms by prior ability was far from being a prominent margin of adjustment.

While Figures 2 and 3 provide evidence that schools did not engage in meaningful re-sorting

of students in response to NCLB, one might still be concerned that the small documented change

in the class sizes of marginal students or the gradual increase in classroom homogeneity (based

on prior scores) could account for some of the distinctive pattern documented in Figure 1. One

might also worry that unobserved determinants of tests scores that we cannot measure directly

changed across classrooms in response to NCLB. To shed light on these issues, it is convenient to

reproduce the NCLB response profile from Figure 1, and compare that with a corresponding profile

constructed using only within-classroom variation.

Figure 4 shows the results. The near-perfect coincidence of the two profiles in the figure lends

strong support to the view that differences across classrooms in teacher ability, class size, classroom

homogeneity, or other unobservable factors do not drive the results. In addition, the use of classroom

fixed effects in Figure 4 suggests that actions are taken mainly at the classroom level: specifically,

teachers focus on directing their effort to more marginal students within-classroom. This evidence

speaks to the agency question raised above. Also in line with such a teacher effort response, we can

explore the relationship between teacher VA and classroom incentives (captured in a simple way

by the proportion of marginal students, found within a given distance of the threshold). Looking

within-teacher, as shown in Appendix Subsection A.3, we find that estimated teacher VA and

classroom incentives under NCLB exhibit a positive relationship, while no such relationship is
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Figure 3 – Fraction of Total Variance in Student Prior Mathematics Scores Occurring
Between Classrooms (Relative to Perfect Sorting Benchmark)

Notes: This figure shows the fraction of the total variance in students’ prior-year standardized mathe-
matics scores that occurs between classrooms relative to a counterfactual benchmark scenario in which
schools sort students perfectly into classrooms based on prior-year scores. To construct the figure, we
first sort students according to the ‘perfect sorting’ scenario (described in the main text). For each
school-grade-year, we then determine the counterfactual within- and between-classroom variance in
prior-year mathematics scores under this ‘perfect sorting’ scenario and compute both the actual frac-
tion of the total variance that occurs between classrooms and the counterfactual fraction of the total
variance that could occur between classrooms under the perfect sorting regime. We then divide the
actual fraction by the counterfactual and regress this variable on year fixed effects and school-grade
effects, treating the 1996-97 academic year as the baseline omitted category. The figure plots the es-
timated coefficients on the year fixed effects along with 95-percent confidence intervals. All estimates
are relative to a baseline of 6.2 percent in the 1996-97 academic year.

apparent pre-reform. This is highly indicative of a within-teacher effort response.

In the model below, this evidence will lead us to treat teachers as the decision makers. At the

same time, the model will capture school -level incentives, where success is defined in terms of each

school attaining its target – a natural focus, given that incentives at the school level are the most

common. School-level incentives have the practical advantage that aggregating to the school level

guards against measurement error, yet they also give rise to possible free-riding on the part of

individual teachers. We show that free riding does not appear to be a serious issue in our setting:

specifically, comparing larger versus smaller schools, we do not find evidence that teacher effort is

significantly lower as school size increases (see Appendix Subsection A.4). This evidence will lead

us to abstract from free-riding concerns in the model that follows.

To summarize: based on the evidence we have assembled, the most plausible explanation for

the inverted-U pattern in Figure 1 involves teachers adjusting discretionary effort in response to

incentives. This targeting of what we term ‘effort’ to marginal students could take a variety of

unobserved forms: teachers raising their energy levels and delivering material more efficiently to
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Figure 4 – Student-Specific Targeting

Notes: This figure presents the mean test score gains in the first year of NCLB from Figure 1, along with the
95-percent confidence intervals. It also shows the mean gains in that year, estimated using only within-classroom
variation in test score gains and incentive strength. To construct the adjusted means using only within-classroom
variation, we first regress (at the student level) gains above predicted scores on a mutually exclusive and exhaustive
set of indicators for the bins on the incentive strength axis and classroom fixed effects. We then predict adjusted
mean gains as the estimated coefficient on the indicator for each bin, without including the estimated classroom
fixed effects in the prediction.

marginal students, or teaching some students more intensively ‘to the test.’25 While we do not

have direct information about different actions taken by individual educators within the classroom,

the post-reform profile takes on a shape that can be rationalized based on the known incentives.

Further, in line with that explanation, we do not find evidence of changes in important non-effort

inputs to education production: the inverted-U pattern is unchanged when controlling for teacher

ability or class size (through the use of classroom fixed effects above), so the incentive response

cannot be explained by school principals assigning marginal students to higher-ability teachers

or smaller classes, nor to school principals making classrooms more homogeneous, which could

otherwise allow for teachers to better target instruction to marginal students without increasing

overall effort. The teacher-focused emphasis will be reflected in the model we develop next.

V. Rationalizing the Effort Function: An Estimable Model

We now wish to rationalize the effort function shown in Figure 1 in terms of underlying primitives

of the effort-setting process, including those under the control of the policy maker. Our approach

will be to develop a flexible effort-setting model that is informed by the evidence above and also

25The administrative data do not provide accurate information about the deployment of teacher aides, either across
or within classrooms. The evidence above does not support the view that aides are being shifted across classrooms.
To the extent that the reform leads teacher aides to be shifted to marginal students within-classroom, we will
categorize that response as a component of ‘teacher effort’ – one that cannot be separately isolated in our setting.
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relevant features of the North Carolina context. In the model, teachers choose effort optimally

by balancing the benefits against the costs, providing – as we will argue – a natural lens for

interpreting the estimated effort profile. In turn, the model will provide the essential foundation

for the counterfactual analysis of incentive schemes that follows.

V.A. General Features of the Model

By way of overview, effort is the primary action taken by educators in the model in response to

heightened accountability: the findings in the previous section align with there being a conscious

effort response to the new incentives. In turn, we treat agency at the teacher level. The within-

classroom evidence we have presented is consistent with a devolved process by which schools let

teachers choose how much effort to devote to individual students in their classroom, leveraging

their local information; here, of note, free-riding does not appear to be an issue.

Given our focus on teachers and the effort decisions they make, we develop a tractable model

that can serve two purposes: (i) rationalize the effort function in a plausible way, and (ii) be

taken to the data. The model’s form will be guided by institutional features of our setting. The

introduction of NCLB, which provides our key source of exogenous variation, affects the benefit

side of the teacher effort choice problem. Consequently, this is where incentives will enter in our

formulation. In contrast, there is no compelling reason to think that the reform influenced the

cost of teacher effort; thus the form of the cost function should remain unchanged before and after,

reflected in the flexible convex cost-of-effort structure we use.

The profile of the estimated effort function will serve as a discipline on our modeling choices.

Here, two features are noteworthy: the asymmetric shape, especially elongated to the right, and

the distinctive way the profile remains high above zero well to the right. While a standard effort-

setting model can produce some degree of right-skewed asymmetry (the first feature), we will show

that the significant elevation in the upper tail cannot be explained well by many models that

might come to mind; those include models with complementarities on the production side, peer

effects, and inaccurate teacher expectations, among other alternatives. In contrast, our chosen

formulation with NCLB affecting the benefit side of the problem does a very good job of fitting the

semi-parametric profile, as we will show.

Next, we will describe the main features of the model, alongside viable alternatives. (A detailed

discussion of our modelling choices can be found in Appendix B.)
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V.B. Model Specifics

The model has four main elements: a production technology, an accountability incentive scheme,

a corresponding expected benefit function, and a cost of effort function. From these elements, we

construct the teacher’s objective, which will allow us to express the teacher’s optimal effort choice

in terms of key parameters, including features of the incentive scheme. The model we write down

is estimable, by design, allowing those parameters to be recovered on the basis of an estimation

routine presented in the next section.

Production Technology: We consider a technology that relates measured education output,

labelled y, to various inputs, including ‘effort’ – the discretionary actions of educators that can

increase output (as already described).26 In our formulation, ‘effort’ will refer to changes in output

– observable test scores – that are attributable to incentive variation rather than changes in other

inputs, such as teacher quality and class size (consistent with the evidence in the previous section).

We denote the effort directed to student i as ei, which is endogenous to the prevailing incentive

scheme. Student test scores also depend on various exogenous inputs, such as heterogeneous student

ability – students are treated as passive (rather than active) learners. We summarize the exogenous

inputs in a single measure, drawing on the discussion above – the predicted score for student i, ŷi.

Increases in this measure will capture more favorable exogenous ‘production’ conditions.27

In practice, the underlying technology is known to be complex and is imperfectly understood.

As an approximation to the true technology, we assume the following additive structure, consistent

with the treatment effects apparatus above:

yi = ŷi + ei + εi , (2)

where yi is student i’s observed score, ŷi captures all the exogenous inputs for student i, ei is the

teacher effort directed to student i post-reform, over and above baseline effort, and εi is a shock

to test scores.28 We assume that the error has a cumulative density function given by F (·), with

mean 0 and variance σ2.

26The analogy with firms is clear, quoting Laffont and Tirole (1993), page 1: “The firm takes discretionary actions
that affect its cost or the quality of its product. The generic label for such discretionary actions is effort. It stands
for the number of hours put in by a firm’s managers or for the intensity of their work. But it should be interpreted
more broadly.”

27Our goal, looking ahead, will be to predict the effects of alternative incentive schemes. With that in mind, we make
minimal assumptions about the production technology, focusing on the role of the teacher effort input (rather than
modeling the contributions of other educational inputs in detail).

28We omit time subscripts, as the model will be estimated using the impact of the NCLB incentive reform in 2002-03,
rather than also relying on variation from subsequent years. As a first pass, we do not view dynamic considerations
as being first order when exploring the distributional implications of rival incentive schemes – the main focus of
the analysis.
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Additivity is a minimal assumption, and one that is quite standard in the education literature.

While various input interactions can be readily allowed, we note that in our setting, non-negligible

complementarities (between student ability and teacher effort, for example) can be ruled out (see

Appendix B.2). We also note the flexibility of the specification: ŷi is a prediction using all prior in-

formation, and ei is a semi-parametric data-driven function of incentives, drawing on the treatment

effects estimation from the previous section.

Accountability Incentives: The accountability schemes we consider define a clear performance

metric along with corresponding rewards or punishments. We characterize an incentive scheme l

by a target level yTl and a corresponding reward bl, both of which are exogenously given. The

target could (variously) be an exogenously fixed score, a function of average student characteristics

including past performance, or even be student-specific – different possibilities are allowed for.

The reward parameter bl governs how target attainment maps into the educator’s payoff. This

will typically have a formal component: monetary rewards or non-monetary punishments under

standard accountability schemes. We will interpret it more broadly, allowing it to involve informal

components – psychological pressure, for instance. We assume that a teacher receives a benefit bl

for each student in her class whose score exceeds yTl (and so is proficient at level l). In the absence

of further information, we suppose all teachers share the same benefit from attaining target level l.

In the context of our study (especially, the actual incentives used to estimate the model param-

eters), the NCLB incentives consist of one explicit fixed target level yTM and a reward bM (the M

subscript standing for ‘middle’). Because they may be salient for educators and parents, we also

allow for the possibility that teachers respond to fixed targets designating other levels of student

proficiency (based on the regime in place prior to NCLB), specifically incorporating the high target,

denoted yTH (where yTM < yTH) with corresponding reward bH in the objective below. A simpler

model that only allows for teachers to respond to the NCLB target can be ruled out (see Appendix

B for the detailed argument).

Benefit of Exerting Effort: Taking the production technology and accountability incentives as

given, the teacher assigned to classroom c (‘teacher c’ for short) derives an expected benefit from

exerting effort depending on how that effort affects the probability of a student exceeding each of

the targets, summed across all students in her class – the evidence in the previous section supports

this teacher focus. At a general level, we will write this benefit as B(e1, . . . , eNc).

In practice, it is possible that teachers seek to overshoot the prevailing targets in order to protect

against potential negative shocks to test scores. We allow for this possibility in a straightforward

way: for each target yTl , overshooting is represented by a shift parameter, dl, which moves the
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effective target to yTl + dl.
29 The shifter parameters are homogeneous with respect to teachers

and schools. This is not simply for tractability: the evidence indicates that the semi-parametric

effort function is invariant to various teacher and school characteristics – teacher ability and class

size (already shown), as well as the prior preparation of a teacher’s students relative to the school

distribution (see Appendix Subsection A.5). The benefit is then given by:

B(e1, . . . , eNc) = bM

Nc∑
i=1

Pr[yi > yTM + dM ] + bH

Nc∑
i=1

Pr[yi > yTH + dH ]

= bM

Nc∑
i=1

[
1− F (yTM + dM − ŷi − ei)

]
+ bH

Nc∑
i=1

[
1− F (yTH + dH − ŷi − ei)

]
, (3)

where Nc is the number of students in the class taught by teacher c.

Cost of Exerting Effort: Teacher c faces a convex cost of effort that has the following flexible

form:

C(e1, . . . , eNc) =
ψ

2

[
Nc∑
i=1

e2
i + θ

(
Nc∑
j=1

ej

)2]
. (4)

The parameter ψ allows the marginal cost of effort to be scaled, while the parameter θ governs the

extent to which effort choices across students in a given class are interdependent.30 In the case where

θ = 0, the cost side collapses to one in which education provision amounts to fully individualized

tutoring, while θ > 0 allows the incremental cost of raising the effort supplied to a given student

to be higher the more energy the teacher supplies to the rest of the class. This parameterization

will enable us to assess whether such a spillover component is important in practice.

Objective Function: Typically, the objective function for public service providers is complex

and difficult to discern, which makes analyzing the behavior of agents working in the public sector

challenging; this is in contrast to a firm setting, where profit maximization is often a reasonable

approximation. In our application, we leverage the fact that an explicit portion of the objective is

known as a consequence of a formal accountability scheme being in place.

Taking the above elements together, we can write down the educator objective under different

incentive schemes. Doing so will allow us to explore the counterfactual implications of incentive

design. We focus on the effort decisions of teacher c, allowing each student to receive student-

29Such overshooting offers an additional degree of freedom when matching the effort profile. Indeed, it is necessary
in order to rationalize maximal effort being directed toward students with predicted scores that equal the target
(consistent with the effort pattern recovered in the previous section). This will be made clear when we describe the
conditions for optimal effort-setting in the next subsection.

30The parameter ψ is not separately identified from bM or bH , as we show in Section VI.B.
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specific effort ei. This is reasonable given the clear evidence from the previous section that the

teacher effort response is driven almost entirely by within- rather than across-classroom variation in

production conditions (summarized by ŷ). Because formal incentives under NCLB apply to schools

as a whole, it may seem surprising that effort decisions would be taken by individual teachers; a

natural interpretation is that school principals delegate ‘local’ decisions to teachers in service of

school-level objectives, in line with their likely informational advantage.31

Given the teacher focus, teacher c thus chooses a set of effort levels {e1, . . . , eNc} to maximize

the difference between her expected benefit of effort and the total effort cost:

Uc = B(e1, . . . , eNc)− C(e1, . . . , eNc) , (5)

where the explicit functions are given by equations (3) and (4).

V.C. Optimal Effort

For the given test score targets, yT = {yTM , yTH}, and predicted scores for the relevant class, {ŷi}Nci ,

optimal effort for every student taught by teacher c is jointly determined from the Nc first-order

conditions obtained by maximizing equation (5) with respect to the effort each student receives

from the teacher. The first-order condition for the effort teacher c directs toward student i is given

by:

bM
ψ
f
(
yTM + dM − ŷi − e∗i

)
+
bH
ψ
f
(
yTH + dH − ŷi − e∗i

)
=

[
e∗i + θ

Nc∑
j=1

e∗j

]
, ∀ i = 1, . . . , Nc , (6)

where the first row gives the marginal benefit and the second row, the marginal cost. The optimal

effort that solves this equation can be expressed as a function of (i) the model’s parameters, (ii)

the incentive targets, (iii) the student’s predicted score ŷi, and (iv) classroom factors. The latter

refer to the classroom-specific distribution of predicted scores ŷc ≡ {ŷj}j 6=i.32

31If well-managed, it is likely the entire school would agree how to respond to NCLB, but individual teachers would
be left to manage their classrooms by determining how best to apply their effort, keeping the agreed-upon overall
objective in sight. While this does not preclude the school administration (the principal, for instance) from also
taking actions that are observationally equivalent to teacher effort, we rule out the most obvious such actions as
drivers of our results.

32Recall that a non-zero value of the cost parameter θ implies that the effort applied to one student in the class
depends on the effort devoted to all other classmates. If that is the case, then the optimal level of teacher effort
directed to a particular student should depend on her place within the classroom distribution of predicted scores.
As a result, two otherwise identical students who face different classroom distributions may receive different levels
of effort – hence the conditioning variable, ŷc.
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The Solution – Intuition: As specified, optimal effort e∗ does not have a closed-form solution.33

Still, the model structure allows us to provide intuition regarding the way optimal effort is deter-

mined. Here we place additional structure on the form of the benefit, assuming that the density of

the test score shock is unimodal – we impose normality on the error for convenience.34

To begin with, suppose there is just one target. The first-order condition for the effort directed

to student i then simplifies to:

bM
ψ
f
(
dM − πi − e∗i

)
=

[
e∗i + θ

Nc∑
j=1

e∗j

]
, (7)

using equation (6) and substituting our measure of incentive strength πi ≡ ŷi − yTM . The marginal

benefit of effort will take on the bell shape associated with the assumed normal density of the test

score noise, scaled up or down by bM
ψ . The peak of the marginal benefit curve occurs at effort level

epeaki ≡ dM − πi, defined as the effort for which the argument of f(·) is zero: for large negative

and positive values, the marginal benefit is lower. As πi (and thus ŷi) increases, it follows that the

marginal benefit curve shifts leftward.

On the cost side, first consider the case where θ is set to zero. The marginal cost of effort is a

straight line through the origin with a slope of one. Given the unimodality of the density function

f(·), teacher effort will follow an inverted-U profile as a function of π, consistent with the patterns

documented in the previous section. The asymmetry we find in the effort function, skewed to the

right, is then a natural consequence of the first-order condition equating the marginal benefit with

the upward-sloping marginal cost, where the marginal benefit curve has the assumed unimodal

shape.

Next, suppose θ is non-zero. In this more general case, the same type of inverted-U pattern

emerges. The main difference is that aggregating the cost of effort to the classroom level allows for

‘negative’ values of effort in our model (interpreted as students realizing lower gains over predicted

scores than in the pre-reform period), a feature that affords a better match with the effort profile.35

Now consider the case in which the higher target also influences effort setting, alongside the

NCLB target. The optimal effort profile will now be the vertical summation of the effort profiles

implied by each of the two separate targets, as reflected in equation (6). The higher target will give

rise to a second peak in the effort profile; this will provide a fruitful way to explain the estimated

33An iterative process is required to determine optimal effort as the derivatives of the parameters in the nonlinear
first-order condition depend both on the effort level of interest and the parameters themselves.

34Looking ahead to the estimation section, this will align with Assumption 4 below.
35To see how negative values of effort are allowed, note that the marginal cost of effort for each student i becomes a

straight line with slope (1 + θ) and vertical intercept θ
∑Nc
j 6=i e

∗
j . If θ is very small and

∑Nc
j 6=i e

∗
j is relatively large –

as we will find – then θ only has a first-order effect on the intercept. When θ > 0 and average classroom effort is
positive, the model permits solutions to equation (7) in which optimal effort is negative.
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shape of the effort function, considered below.

Properties: Building on this discussion, we are interested in exploring the relationship between the

resulting optimal effort profile, traced across all student types {ŷi} and the model parameters. To do

so, write optimal effort for student i (determined as the solution to equation (6)) as e∗(β; ŷi,y
T, ŷc),

where β ≡ {bψ ,d, θ, σ
2}. For any given values of the model’s parameters, the first-order conditions

allow us to recover a set of effort levels (across all students) that maximize the teacher objective,

summing across all teachers; Appendix C provides a detailed analysis.

Several comparative static results are worth noting. First, the spread of the effort profile is

increasing in σ2.36 This relationship is illustrated in panels (a) through (c) of Figure H.1. Second,

the proportion of the optimal effort profile taking negative values is increasing in the spillover

parameter θ – a straightforward consequence of the vertical intercept of the marginal cost curve

shifting up (and the horizontal intercept shifting left) as θ becomes larger.37 Third, allowing for

more than one target, the horizontal location of the two peaks is determined by dM and dH ,

respectively, with each peak shifting right as the associated ‘shift’ parameter increases – a property

illustrated for the M target in panels (d) through (f) of Figure H.1.38 Fourth, the height of the two

peaks is increasing in bM
ψ and bH

ψ , respectively – a property illustrated for the M target in panels

(g) through (i) of Figure H.1. As these parameters multiply the density function, each one affects

the height of the peak of the marginal benefit curve, which in turn affects the height of the peak

in the optimal effort profile. These properties will be useful for understanding model identification

in what follows.

VI. Model Estimation and Identification

This section describes the estimation of the model, and considers the identification of the model

parameters.

VI.A. Estimation

Our estimation strategy addresses two issues: teacher effort is an unobserved input, and optimal

effort in the model does not in general have a closed-form solution.

36The reason is that the marginal benefit curve broadens as σ2 increases, slowing the rate at which effort declines away
from its peak as it shifts against the marginal cost curve (where the intersection determines the effort solution).

37The reasoning is as follows: The marginal benefit curve can only take on positive values (as it consists of a scaled
density function), which means that the marginal cost must also be positive whenever the two curves intersect.
Thus, effort can only take on a negative value if the horizontal intercept of the marginal cost curve is itself negative.

38This occurs since each parameter affects the associated peak of the marginal benefit curve, which affects the
maximum of the optimal effort profile.
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Using the production technology in equation (2) and the first-order condition implicitly defining

optimal effort in equation (6), the test score for any student i can be written

yi = ŷi + e∗
(
β; ŷi,y

T, ŷc
)

+ εi . (8)

Our estimation routine selects values for the parameters β ≡ {bψ ,d, θ, σ
2} that maximize the joint

likelihood of observing the student test score outcomes in the data. To form the likelihood, we use

equation (8) and make a further distributional assumption:

Assumption: εi is normally distributed, with mean 0 and variance σ2.

We can then write the individual likelihood function for any student i as a function of observed

and predicted score data, as well as the effort level39 implied by the model’s parameters:

Li(β) = f

(
εi |

bM
ψ
,
bH
ψ
, dM , dH , θ, σ

2

)
=

1√
2πσ2

· exp

{
− 1

2σ2
·
(
yi − ŷi − e∗(β; ŷi,y

T, ŷc)
)2}

. (9)

Taking the natural log and summing over all students across the state (a total of N , without the

‘c’ subscript) results in the following log-likelihood function:

`(β) ≡
N∑
i=1

logLi(β)

= −N
2
· log(2π)− N

2
· log σ2 − 1

2σ2
·
N∑
i=1

(
yi − ŷi − e∗(β; ŷi,y

T, ŷc)
)2
. (10)

The Routine: We use a three-step iterative procedure to estimate the maximum likelihood

parameter vector, β̂. The first step begins with a guess for the value of the vector and solves

equation (6) for e∗(β; ŷi,y
T, ŷc), thus determining model-implied effort for each student.40 In the

realistic case in which θ 6= 0, the effort devoted to each student depends on the effort received by

all other students in her class; thus this step involves solving a system of Nc equations for each

classroom c. In the second step, we use the optimal effort levels to calculate a test score for each

student as ŷi + e∗
(
β; ŷi,y

T, ŷc
)
, which allows us to evaluate the likelihood in equation (10) in the

39It is worth noting that effort for a given student i is not simply read off from the corresponding height of the
estimated profile, yielding ei = e∗(π). Our implementation is necessarily more complex, given the optimal effort
applied to a particular student as a solution to the teacher effort problem depends on the vector of predicted scores
of all students in the corresponding classroom (following the form of the cost function). Thus, while two students
in different classrooms may have the same predicted score, the optimal effort levels applied to them can differ,
depending on the classroom distributions of exogenous student characteristics.

40See Appendix D for a description of the numerical approach.
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third step, the resulting parameter estimates then feeding back into the first step above.41 The

routine continues iterating over possible parameter vectors in this way, stopping once it finds the

parameter vector that maximizes the likelihood.

To estimate the model, we use the sample of fourth grade students in 2002-03 with non-missing

data for actual mathematics and predicted test scores.42 The proficiency target is set equal to 247

developmental scale points, the actual NCLB proficiency target (yTM ) in fourth grade; similarly, the

target required for ‘superior’ performance (yTH) is set equal to 258 scale points, the corresponding

fourth grade value. We also restrict the sample to students in classrooms with at least 7 and no

more than 40 students, given our interest in teachers redistributing effort across students within

classrooms; in practice, this restriction does not affect our estimates.

Descriptive statistics for the sample used to estimate the model are presented in Table H.1. The

table makes clear this sample looks quite similar to the full sample of students (in Table 1) in terms

of demographic variables, although mean test scores are slightly higher in the former.

VI.B. Identification of Parameters

We now discuss the identification of each of the main parameters of interest.

The σ2 parameter: This parameter captures the variability in effort from the model’s predictions.

It equals the true variance of test score shocks using the production technology. As such, the

parameter is identified outside the teacher’s problem and does not depend on the values of the other

parameters. Based on the first-order conditions of the maximum likelihood objective function, the

parameter σ2 is equal to the average of the sum of squared deviations between the estimated effort

function and effort implied by the model.

The θ parameter: This governs the within-classroom tradeoffs in effort that teachers must make

across their students. The evidence in Section V.C indicates that θ > 0, given the estimated effort

profile shows positive average classroom effort
∑Nc

j 6=i e
∗
j along with some ‘negative’ effort values.43 A

positive θ implies that the marginal cost of effort directed to any student i is an increasing function

of the effort directed to any other student. Identification of θ follows from the values of ŷ (on

the left and right of the peak) for which the estimated effort profile turns negative, conditional on

average classroom effort and σ2.44

41Estimation is carried out in MATLAB using the ‘fmincon’ package.
42The focus on fourth grade follows the justification in the semi-parametric method above.
43Negative effort values can only arise if the marginal cost curve is shifted upward from the origin; given that the

vertical intercept is θ
∑Nc
j 6=i e

∗
j , this implies that θ and

∑Nc
j 6=i e

∗
j have the same sign.

44A positive value of θ implies a negative horizontal intercept for the MC curve. Thus, there will be two critical
values of ŷ (one low and one high) for which the intersection of the MB and MC curves (and thus implied effort)
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The b
ψ and d parameters: The height of the M and H peaks is influenced by bM

ψ and bH
ψ ,

respectively, and the horizontal location of each peak, by dM and dH , respectively (as in Section

V.C). Suppose that the M and H targets are far enough apart so that they do not interact

in determining optimal effort around each peak – in practice, the targets are far apart (with

yTH − yTM ≈ 11), making any interplay between the response to each target unlikely.45 This allows

us to consider identification of the M - and H-related parameters separately.

The coordinates of the peak of the effort profile corresponding to each of the two targets come

from the estimated effort profile in Section IV. We define effort at the M peak to be e∗peak,M (the

vertical coordinate) and the incentive strength at the peak to be πpeak,M (the horizontal coordinate).

We have e∗peak,M = bM
ψ f(0)− θ

∑Nc
j 6=i e

∗
j , since peak effort occurs at dM = πpeak,M + e∗peak,M . Given

that e∗peak,M , f(0) and θ
∑Nc

j 6=i e
∗
j are known quantities, this implies that bM

ψ is identified.46 The

parameter dM is then identified from dM = πpeak,M + e∗peak,M . An analogous argument can then

be used to identify bH
ψ and dH , using the coordinates for the H peak.

VII. Model Estimates

The parameter estimates and evidence of model fit are described next.

VII.A. Estimated Parameter Values

Table 2 presents the estimates of the model’s parameters. In terms of the cost side of the model,

the estimates indicate that (as expected) it is costly for teachers to exert effort ( bMψ > 0) and that

the marginal cost of effort for any given student is increasing in the amount of effort devoted to

other students in the classroom (θ > 0).

The estimates also indicate that teachers reacted strongly to NCLB’s introduction, in two ways:

First, considering the response to the actual NCLB proficiency target (yTM ), teachers had an in-

centive to try harder in order to guard against the possibility of a negative test score shock. Such

behavior is observationally equivalent to teachers acting (under our formulation) as if the test score

proficiency target (yTM ) were higher than its mandated level. Here, the estimate of dM = 3.19

implies that teachers behave as if the effective target were over 3 developmental scale points higher

than the mandated target.

Second, teachers would also be led to exert additional effort if they were responding to the high

target (yTH), which marks the difference between ‘proficient’ (required for NCLB) and ‘superior’

will turn negative.
45We expand the argument to allow for possible interactions in Appendix C.
46Here, f(0) = 1√

2πσ2
≈ 0.1, given an estimate of 15.7 for σ2.
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performance. Here, the estimated ratio bH
ψ is positive and significant. This is consistent with

teachers behaving as though there were additional benefits to helping students clear the threshold

for superior performance, despite this standard not being legislated by NCLB.47 It is worth noting

that the estimates imply a more muted response to the high target than the proficiency target.

Specifically, the estimated benefit of helping students clear it is two-thirds of the benefit of helping

them clear the proficiency threshold (= 24.001/36.297), and teachers also appear to overshoot the

high performance target (dH = 1.634) by around half the overshooting that occurs for the NCLB

proficiency target (dM = 3.19).

Table 2 – Parameter Estimates

Parameter Estimate

bM
ψ

36.297∗∗∗

(0.6234)

bH
ψ

24.001∗∗∗

(0.5450)

dM 3.1945∗∗∗

(0.0647)

dH 1.634∗∗∗

(0.0950)

θ 0.0075∗∗∗

(0.0010)

σ2 15.702∗∗∗

(0.0084)

N 89,271

Notes: Standard errors appear in parentheses
and are calculated using the outer-product of gra-
dients method. *** denotes significance at the 1%
level.

VII.B. Model Fit

In terms of model fit, we start by plotting the 2002-03 data from Figure 1 along with the effort

predicted by the model. We use the model to generate effort for each student and then collapse

model-implied effort levels into binned means along the horizontal axis for visual ease. It is clear

from the figure that the model fits the data very well, as its mean effort prediction is within or very

close to the confidence intervals of the means from the data in almost all cases, aside from a few

points, including those closer to the far right and left of the incentive strength distribution.

47One rationalization for this is that NCLB made school performance (in terms of attaining targets) more salient,
especially to parents, and schools wished to demonstrate that better prepared (higher ŷ) students also gained
following NCLB’s introduction.

27



-2
-1

0
1

2
3

E
ffo

rt

-8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Incentive Strength

Estimated Effort 95% CI for Estimated

Model Effort

Notes: This figure presents the profile of the estimated effort function in 2002-03
from Figure 1 along with the 95 percent confidence intervals for that function and
the binned means of model-implied effort.

Figure 5 – Inverted-U Response to NCLB and Model Fit

Next, we can use equation (8) to predict student test scores based on the model and assess how

well the model matches various test score moments. To that end, Table 3 shows comparisons of

observed and model-predicted moments across several student subgroups. It is worth noting that

our estimation routine does not target these subgroup moments directly, making the comparisons

an informative test of the model’s fit. All numbers in Table 3 are rounded to 2 decimal places. It

is clear that the fit is exceptionally tight, with the model and the data usually differing only at the

third decimal place (not reported in the table for expositional clarity).

The within-classroom variance of the realized mathematics score accounts for 74 percent of the

overall variance across all students (not reported in the table). Alongside that, the within-classroom

variance of the predicted mathematics score from the model accounts for 80 percent of the overall

variance, implying that the model replicates the sources of test score variation in the data in a

reasonably accurate way.

Figures E.1 and E.2 in Appendix E illustrate the model’s fit further by plotting the full distribu-

tions of observed and model-predicted test scores for both the full sample of students and various

sub-samples. As can be seen there, the model fits all test score distributions very closely indeed.

VIII. Counterfactual Framework

In this section, we set out our counterfactual approach, based on a framework that combines the

plausible structure of the model with the estimates from the previous section. Using this, we can
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Table 3 – Model Fit of Proficiency Rates and Test Scores

Subgroup Proficiency Rates and Test Scores Observed in Data Predicted by Model

Proficiency Rate
Overall 0.96 0.96

(0.19) (0.19)

White 0.98 0.98
(0.14) (0.13)

Black 0.92 0.92
(0.27) (0.27)

College-Educated Parents 0.99 0.99
(0.11) (0.10)

Non-College-Educated Parents 0.94 0.94
(0.23) (0.23)

Economically Disadvantaged 0.93 0.93
(0.25) (0.25)

Non-Economically Disadvantaged 0.99 0.99
(0.12) (0.12)

Mathematics Score
Overall 259.51 259.47

(7.17) (7.19)

White 261.49 261.46
(6.82) (6.84)

Black 255.71 255.70
(6.36) (6.38)

College-Educated Parents 262.73 262.72
(6.70) (6.79)

Non-College-Educated Parents 257.26 257.20
(6.61) (6.57)

Economically Disadvantaged 256.54 256.47
(6.51) (6.48)

Non-Economically Disadvantaged 261.99 261.97
(6.73) (6.79)

Notes: This table presents observed and model-predicted proficiency rates and test scores
for both the overall sample and several sub-samples.

explore a variety of alternative incentives and their effects on outcomes in a systematic way; of

note, the designation of marginal students adjusts endogenously as incentive provisions change. In

turn, we are able to assess the effects of different accountability schemes on the entire distribution

of student outcomes, both in terms of the effort students receive and the test scores that result.

This includes students who are marginal with respect to the target under proficiency schemes – the

main focus of prior research48 – as well as the remainder, constituting the majority.

We present the simulation framework next. Then we describe the set of proficiency targets

considered using the framework and a cost-equating procedure to ensure comparability, before

turning to the counterfactual results themselves in the following section.

48See, for example, Reback (2008), Neal and Schanzenbach (2010), Ladd and Lauen (2010), and Deming et al. (2013).
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VIII.A. Framework

Our simulation framework has three elements, each necessary to simulate the full counterfactual

score distribution under a given accountability scheme. These are: the incentive parameters of

that accountability scheme, an effort-setting condition under the counterfactual incentives, and an

education production technology that incorporates effort, generating the counterfactual test scores

as output.

Accountability Schemes: These schemes can each be characterized by a set of targets and

bonuses (or punishments). Under NCLB, both the proficiency target yTM and bonus payment

bM are taken to be constant across all students, as is appropriate. We consider several different

counterfactual targets beyond those implemented in practice, along with two contrasting weighting

systems for implementing differential bonus payments across students. In specifying alternative

targets and bonuses, we therefore allow for the possibility that these may be student-specific.

Accordingly, we will write the proficiency target (superscripted ‘T ’) for student i at time t as yTit

and the student-specific bonus bi ≡ wi · bM , where wi is a weight placed on student i that allows

the bonus, bM , paid for each proficient student to be scaled heterogeneously.

Effort Setting: Our primary interest is in the way accountability incentives influence teacher

effort. In line with the model presented in Section V, we will think of effort as being the result

of a teacher optimization problem. Specifically, teacher c chooses a set of effort levels in period t,

{e1t, . . . , eNct}, one for each student in her class, to maximize the objective given by a variant of

equation (5).49

In our simulation framework, we let ŷit be student i’s predicted score in year t and continue to

define ŷc as the classroom-specific distribution of predicted scores. Students’ predicted scores in

the absence of accountability incentives are held fixed across all of our counterfactual simulations,

and we keep the model’s parameters at their estimated values (β̂ ≡ [ b̂Mψ , d̂M , θ̂, σ̂
2]). In each

simulation, we either set new proficiency targets (yTit) or change the bonus paid per proficient

student (bi ≡ wi · bM ) via multiplying the parameter estimate b̂M
ψ by a student-specific weight wi

when we wish to make bonus payments vary across students. Taking as given students’ predicted

scores and the model’s underlying parameter values, we then use the updated proficiency targets

and bonus payments to compute optimal effort under each counterfactual simulation.50 Optimal

effort for student i is given by e∗it = e∗
(
wi, y

T
it ; β̂, ŷit, ŷc

)
.

49We will set bH
ψ

= 0, effectively constraining teachers to respond only to the real NCLB proficiency target.
50Here we follow the same computational procedure as in the model above (described in full in Appendix D): that

is, we solve Nc first-order conditions in each classroom simultaneously to recover the full distribution of effort.
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Technology and Counterfactual Output: With the counterfactual effort vector in hand, we

then use the technology in (8) along with the distribution of test score shocks to obtain the implied

test score for any student i under proficiency target yTit and corresponding bonus payment regime

wi · bM according to:
yit = ŷit + e∗

(
wi, y

T
it ; β̂, ŷit, ŷc

)
+ εit, (11)

where ŷit is the student’s predicted score based on all prior information,51 e∗
(
wi, y

T
it ; β̂, ŷit, ŷc

)
is the

optimal effort level directed to that student under the counterfactual incentive scheme, and εit is an

error term that reflects unobserved determinants of the test score. We assume that the test score

shock faced by student i is given by εit, distributed as N(0, σ̂2), where the variance is estimated

previously. Equation (11) can then be used to recover the associated test score distribution across

all students.

VIII.B. Counterfactual Incentives

With that basic structure in place, our counterfactual exercises involve setting different student

proficiency targets and bonus payments, then exploring the consequences of those for test score

outcomes using the estimated production technology. We consider a variety of relevant incentive

schemes, including ones that go beyond schemes currently implemented.

Fixed Schemes involve targets that are the same for all students – for example, students in a

certain grade, as is the case under NCLB. Let the proficiency target that applies under a fixed

scheme be yT (with no i-subscript). Payoffs under the fixed scheme are determined by a threshold

rule, given by bi · 1( yit ≥ yT ), where bi is the reward if student i’s test score at time t, yit, exceeds

the student-invariant target yT (or the sanction if the score does not exceed the target, as under

NCLB). The underlying predicted score distribution determines how many students are likely to

be in the vicinity of a given target: based on standard intuition, those marginal students should be

expected to receive most effort under fixed target regimes.

Our interest centers on the effects of moving the fixed target through the predicted score dis-

tribution in a counterfactual way. Here, the actual NCLB target provides a useful benchmark:

we explore the effects of setting targets that differ from this, using the model to determine the

associated effort decisions and the implied test score distribution in each counterfactual instance.

In total, we cover a range of different settings (seven in all), spanning the full predicted score

distribution.52

51We described the general prediction approach in Section IV. Applying that here, ŷit is constructed using a prediction
equation that is estimated in the pre-NCLB period. It therefore represents an ex-ante prediction of each student’s
test score that does not contain any incentive response.

52See Appendix F.1.
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Within the class of fixed schemes, our framework allows us to consider counterfactual regimes

that make student-specific bonus payments, unlike any scheme currently in operation. Allowing for

student-specific bonus payments affords policymakers an additional degree of freedom with which

to improve outcomes. For concreteness, we consider two highly contrasting cases: in the first, a

higher weight (in the form of a higher student bonus) is given to lower-performing students, with the

weight decreasing linearly in students’ predicted scores; in the second, the weight increases linearly

in students’ predicted scores, thereby creating incentives to favor higher-performing students (see

Appendix F.2).

Value-added (‘VA’) Schemes set targets that are student-specific, depending on a student’s

prior-year test score, yi,t−1. In our formulation, we will express the VA target for student i by

yTit = δ + αyi,t−1, the relevant threshold benefit rule written bi · 1( yit ≥ yTit), as before. The

parameter δ influences the mean of the incentive strength (ŷ − yT ) distribution, while α governs

the variance of that distribution.53

We explore the effects of different VA targets on outcomes by varying the target parameters

systematically, as follows: each value-added target can be linked precisely to a corresponding fixed

target, noting that a fixed target is a special case of a VA target in our formulation, where α = 0

and δ = yT . Taking a given fixed target (the NCLB benchmark score of 247, for example), then

for any multiplicative coefficient, α, we choose δ(α) so that the mean of the resulting incentive

strength distribution under the VA target matches the mean under the given fixed target.54 In the

counterfactuals below, for each fixed target we analyze, we consider a host of different values for

the multiplicative coefficient, α – twelve in total, in the range 0.1 to 1.9. In doing so, we place more

or less emphasis on the prior score, thereby considering the effects of using VA targets to change

the spread of the incentive strength distribution (relative to a given fixed target) while leaving the

mean unchanged.55

VIII.C. Cost Equating

For comparability, we place all the counterfactual incentive schemes under consideration on a com-

mon footing. Specifically, we ensure that every target regime results in the same cost, changing the

bonus payment until we achieve cost-equivalence across regimes. Having ensured cost-equivalence

53To see why, note that the mean VA target across all students is given by ȳTt = δ + αȳt−1 and the variance is
given by var(yTt ) = α2var(yt−1). Therefore, one can shift the mean by varying δ and manipulate the variance by
changing α.

54Thus under the NCLB benchmark, for instance, setting δ(α) = 247−αȳt−1 implies that the mean of the VA targets
(across all students) is 247. It follows that the mean of incentive strength – or (ŷ− yT ) – under both the fixed and
VA targets is ¯̂yt − ȳTt = ¯̂yt − 247, where ¯̂yt is the mean predicted score.

55Appendix F.3 describes the construction of VA targets in detail.
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across regimes, we can then compare the effort decisions and test score outcomes that result from

alternative fixed and value-added targets.

Under a constant bonus scheme, equating costs across schemes is equivalent to preserving a

given statewide proficiency rate, recalling that the state must pay a bonus for each student deemed

proficient.56 The essence of the cost-equating procedure in this case is as follows: given teachers’

optimal effort choices are influenced by the incentive parameters in the effort-setting first-order

condition, changing the actual bonus payment bM counterfactually will influence passing probabil-

ities, and thus the implied cost of the resulting scheme. While bM is not separately identified in

our estimation framework, as noted, we normalize bM to one and multiply the estimate of bM
ψ by

a constant k: setting k < 1 is equivalent to decreasing the bonus payment and setting k > 1, to

increasing it. Under each target regime, we then pick the value of k that equates the cost to the

actual cost (equivalent to the passing rate) under the prevailing NCLB target.

The cost-equating procedure when bonuses are student-specific is somewhat more involved.

Appendix F.4 gives a fuller description of this case, and the cost-equating procedures we follow

more generally.

IX. Counterfactual Results

This section presents the main results of our counterfactual policy analyses. We first consider the

outcome distributions associated with fixed targets when bonus payments are the same across all

students. Then we show how heterogeneous bonus payments further influence outcomes under fixed

targets, before documenting the outcomes under value-added targets (alongside fixed targets that

are directly comparable). Because we recover the full counterfactual test score distribution in each

instance, we are able to compute a variety of informative ‘output’ measures. In what follows, we

will focus specifically on mean effort and the dispersion of test score outcomes, as these capture

notions of efficiency and inequality: other informative measures are easily computed.

IX.A. Fixed Targets with Homogeneous Bonus Payments

Schemes featuring fixed targets that do not alter the bonus according to student type are easily

the most widespread form of accountability scheme. For such schemes, we show that the choice

of the fixed target gives rise to an inherent tradeoff between average teacher effort and test score

inequality – a result that is new to the education literature.

To demonstrate this regularity, we first use our counterfactual framework to compute mean

56The target cost that all regimes are equated to involves a proficiency rate of 0.96, the observed rate in 2002-03
under the actual NCLB target.
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effort and a measure of spread – the inverse of the test score variance57 – for each of a series of

fixed targets. Starting at the bottom of the predicted score distribution, we raise the proficiency

target up to the real NCLB target and on to higher percentiles in the distribution. In Figure 6,

we plot the resulting ‘mean effort-inverse variance’ points to trace out the frontier. In the figure,

we label seven illustrative points associated with seven separate fixed targets, where target labels

correspond to target percentile positions in the predicted score distribution.
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Figure 6 – Fixed Frontier with Homogeneous Bonus Payment

The frontier shows a clear tradeoff: higher fixed targets lead to greater mean effort but at the cost

of higher test score inequality (or lower inverse test score variance). Furthermore, the magnitudes

involved are quantitatively significant: moving the proficiency target from the 20th to the 40th

percentile of the predicted score distribution increases mean effort by 0.06 standard deviations (in

terms of the test score) but at the cost of increasing the test score variance by 18 percent. The

figure also indicates that setting progressively higher fixed targets is associated with an increasingly

steep tradeoff – for example, raising the target from the 40th to the 60th percentile increases mean

effort by only 0.04 standard deviations but raises the test score variance by 27 percent.

To understand why this tradeoff arises, note that when the proficiency target is set relatively

low in predicted score distribution (below the median), increasing it makes a progressively larger

mass of students marginal. This creates strong incentives to direct effort to a larger fraction of

57Taking the inverse implies our inequality measure increases when the outcome is better – in this case, when
inequality is lower.
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students, thereby raising mean effort.58 But higher targets imply that much of the additional effort

is directed to progressively better students (those with higher predicted scores), which works to

exacerbate performance disparities, raising the test score variance.

Continuing through the distribution, the explanation for the downward slope becomes somewhat

more subtle. When the target is set relatively high, raising it further makes a progressively smaller

mass of students marginal and a larger mass of students likely to miss the proficiency target.

Without a cost adjustment to keep all schemes comparable, mean effort would decline in these cases

because it would be prohibitively costly for teachers to help students meet proficiency standards.

That is, teachers would be discouraged by the overly-ambitious standards, responding optimally

by exerting less effort (because the probability of target attainment would be very low). Thus to

equate the cost (proficiency rate) under each scheme with that under the actual NCLB target, the

bonus payment needs to be raised so that teachers increase effort and with it, the proficiency rate.

Doing so increases mean effort but also increases test score variance, as high-performing students

benefit disproportionately from the higher bonus payment due to their marginal position in the

incentive strength distribution.

IX.B. Fixed Targets with Heterogeneous Bonus Payments

Next we construct frontiers for the two markedly contrasting heterogeneous bonus-payment regimes

described above, favoring low- and high-performing students respectively. Doing so indicates how

much outcomes can be altered as a result of redistributing bonus payments.

In particular, Figure 7 shows that the scheme placing more weight on low-performing students

dominates the homogeneous bonus payment regime, which in turn dominates the scheme that places

more weight on high-performing students. In terms of magnitudes, suppose we hold the proficiency

target fixed at the real NCLB value but attach more weight to low-performing students. Doing so

increases mean effort by 3.2 percent of a standard deviation and decreases test score variance by

7.5 percent. In contrast, attaching more weight to high-performing students decreases mean effort

by 4.3 percent of a standard deviation and increases test score variance by 11 percent.59

To understand why outcomes improve when we place more weight on low-performing students,

first consider holding the target fixed at a relatively low level (similar to the real target under

NCLB) and switching to this regime from the ‘constant bonus payments’ regime.60 The new regime

58We offer an exact decomposition of the relevant forces at play in Appendix G.1.
59Averaging across all fixed targets, 4.6 percent of a standard deviation more effort and 7.8 percent less variance are

achieved under the first regime, and 5.2 percent of a standard deviation less effort and 7.2 percent more variance
are achieved under the second regime.

60Here, we explain the intuition for frontier shifting and provide a decomposition of the relevant forces in Appendix
G.2.
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Figure 7 – Fixed Frontiers with Heterogeneous Bonus Payments

increases mean effort because it assigns the most weight to low-performing students, essentially

‘doubling up’ on the already strong incentives for those students. They experience the largest

gains in teacher effort as result, which also decreases test score inequality. Continuing through the

predicted score distribution, when targets are set relatively high, the new regime creates a tension

between the incentive to devote effort to relatively high-performing students (owing to the location

of the target in the predicted score distribution) and to low-performing students (due to the greater

weight placed on them by the bonus payment system). Without cost equating across regimes, these

conflicting incentives would result in less overall effort and lower proficiency rates (relative to using

the same fixed target but with constant bonus payments). In these cases, the frontier shifts out.

This is because we must increase the bonus payment to raise effort sufficiently in order to ensure

that all schemes are comparable in terms of cost (i.e., the resulting proficiency rate interacted with

the bonus payment paid per proficient student).

It is clear from Figure 7 that the scheme that assigns more weight to high-performing students

is dominated by both other regimes. The forces that lead to the inward shift of the frontier when

switching to this regime follow a similar logic, now in reverse.61

61In this case, the essence is as follows: when targets are set relatively low in the distribution, a conflict arises between
the incentives attached to the location of the proficiency target and those stemming from the nature of the bonus
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Test Score Gaps Across Demographic Groups: We have shown that the regime offering

higher bonus payments for low-performing students dominates the homogeneous bonus payment

regime, both in terms of mean effort and test score variance. Further, and it is worth reiterating,

this scheme costs the same as the incentive scheme that policymakers actually implemented. The

potential gains from switching to such a feasible regime are substantial. One way of highlighting the

gains is to compute the implied effects of the regime on test score gaps across student subgroups.

Table 4 reports three test score gaps that are of interest to policymakers: the white-black test

score gap, the gap between students of college-educated and non-college educated parents, and the

gap between the 90th and 10th percentile of the test score distribution. For each, columns (1) and

(2) show the observed gap in the data and the gap predicted by our model, respectively.

It is clear our model predicts the observed gaps very well. In column (3), we show the percentage

of the predicted gap that can be eliminated by switching to the regime where bonus payments are

higher for low-performing students. Redistributing bonus payments across students in this way

reduces the black-white test score gap by 6.8 percent of its original value, again without changing

overall costs. The gap between children of college-educated and less than college-educated parents

also falls by a substantial margin – by 5.2 percentage points.

Table 4 – Test Score Gaps and Alternative Schemes

(1) (2) (3) (4)

Percent Change in Gap

Test Score Gap Observed Predicted Fixed Target VA Target
(SD Units) (SD Units) b decreasing in ŷ with α = 0.93

White versus Black 0.78 0.78 -6.8% +15.3%

College-Educated versus 0.74 0.75 -5.2% +12.6%
less than College-Educated Parents

90th versus 10th Percentile 2.55 2.57 -3.7% +12.5%

In columns (1) and (2), test score gaps are reported in (student-level) standard deviation units. Column (3)
reports the percentage change in the predicted gap (column 2) arising from a switch to the heterogeneous
bonus payment regime while continuing to use the real NCLB fixed target of 247 developmental scale points
– the fifth percentile of the predicted score distribution. Column (4) reports the percentage change in
the predicted gap arising from switching to a VA target regime (with constant bonus payments) using a
multiplicative coefficient in the VA target of α = 0.93 and an intercept δ that ensure the mean VA target
across all students is equal to the fixed NCLB target of 247 developmental scale points.

payment, resulting in less overall effort being exerted. When targets are set relatively high in the distribution,
teachers face strong incentives to direct effort to high-performing students because of both the location of the
proficiency target and the nature of the bonus payment. Average effort increases as a result, but we must scale it
back by decreasing the bonus payment to keep all schemes comparable in terms of cost. (See in Appendix G.3.)
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IX.C. Value-Added Targets

We now explore the properties of value-added (VA) targets. As we will see, VA targets provide

the policy maker with an additional lever, compared to fixed targets: by incorporating student-

specific prior information, they provide a means to adjust the variance of incentive strength across

students. In turn, this additional lever allows the policy maker to promote the equalization of

effort across across students, rather than teachers focusing on marginal students – consistent with

students receiving the same level of investment while attending the same school.

In what follows, we exploit the linkage between fixed and value-added targets described in

the previous section, whereby each VA target shares the same incentive strength mean (across

all students) as a given fixed target but can have a different variance.62 Our interest centers on

how outcomes change as we vary the VA multiplicative coefficient, α, thereby incorporating more

student-specific information into the target (through the use of the prior score) and in turn altering

the variance of the incentive strength distribution.

The discussion below will reference the incentive strength variance-minimizing value of α, de-

noted α∗. This variance-minimizing value, given by cov(ŷt, yt−1)/var(yt−1), is straightforward to

derive.63 Relative to fixed targets (for which α = 0), increasing α up to this critical value α∗ reduces

the variance in incentive strength, causing teachers to apply similar levels of effort to all students;

further increasing α past α∗ then increases the variance of incentive strength, eventually leading to

greater dispersion in effort than under fixed targets.

Conditioning proficiency targets on students’ prior scores allows policymakers to use VA targets

to make a higher fraction of students marginal than under fixed targets, resulting in lower inequality

in teacher effort across students. Figure 8 shows that, compared against the fixed target baseline,

increasing α toward α∗ (the latter indicated by the vertical line) reduces the variance in effort

across students progressively, while increasing α above α∗ increases the variance progressively (as

reflected in the solid line dipping down then rising back up). At the variance-minimizing choice,

α∗, VA targets produce less than 20 percent of the effort variance observed under fixed targets.

Figure 8 also shows VA targets deliver at least as much average effort as fixed targets, with mean

effort under VA targets peaking at 110 percent of the value under fixed targets when α is equal to

α∗.

62See Appendix F.3. When we set a given VA target, we assume that all of the rules under NCLB continue to operate
– there are many, relating to demographic subgroups, confidence intervals, ‘safe harbour’ provisions (etc.) – with
the important exception that test score proficiency targets are now made student-specific.

63Let var(ŷt − yTit) denote the variance of incentive strength across all students. For VA targets, we have yTit =
δ+αyit−1, ∀i, which allows us to write the variance in incentive strength as var(ŷt−yTit) = var(ŷt) + α[αvar(yt−1)−
2cov(ŷt, yt−1)]. Taking the partial derivative with respect to α and setting it equal to zero, the variance of incentive
strength across all students is minimized at α∗ ≡ cov(ŷt, yt−1)/var(yt−1). (From another perspective, the critical
value α∗ is the coefficient from the linear regression of ŷt on yt−1, which is estimated to be 0.937 in our data.)
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Figure 8 – Percentage of Fixed Target Mean and Variance Achieved by VA Targets

Next, Figure 9 shows the mean and variance properties of VA targets in terms of effort (alongside

the fixed frontier from Figure 6, for reference), while setting α = α∗ for all VA targets. Because

of the incentive to equalize effort, there is little variance in effort across students as we change

δ and shift the distribution of VA incentive strength, the test score variance is nearly constant

across all VA target choices, as all students always receive similar boosts to test scores. The test

score variance is higher (the inverse variance is lower) under VA targets than fixed targets when

fixed targets are set low in the distribution of student predicted scores (lower than the thirtieth

percentile). Here, fixed targets provide stronger incentives to redistribute effort to low-performing

students, thus reducing the variance in test scores. The relative inability of VA targets to reduce

inequality in these cases is further documented in column (4) of Table 4, which shows that switching

to VA targets significantly increases test score gaps. The white-black test score gap increases by

15.6 percent, for instance, while the gap between students of college-educated and non-college

educated parents increases by 12.6 percent. Intuitively, because VA targets produce relatively little

variance in incentive strength across students, they maintain (instead of help to close) performance

gaps.

For fixed targets above the fortieth percentile, the test score variance under VA targets is lower

(inverse variance is higher) because the fixed target regimes result in more effort being allocated to

relatively high-performing students. VA schemes also result in greater average effort. This follows

from the tight incentive strength distribution under VA targets, which implies that a larger mass of
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Figure 9 – Fixed and VA Target Frontiers

students have a reasonable chance of achieving proficiency than under the fixed target, encouraging

teachers to exert more effort. Our simulations indicate that VA targets outperform fixed targets (in

terms of mean effort and test score variance) when policymakers set a relatively high proficiency

threshold. In these cases, using student prior scores to narrow the incentive strength distribution

results in both greater average effort and lower test score inequality.

X. Conclusion

This paper has set out a new approach for studying the design of incentives, applied to an education

context. Our approach is built around the estimated relationship between accountability incentives

and teacher effort. Here, we showed how features of the North Carolina context (in particular,

the exogenous incentive variation associated with the introduction of a prominent accountability

reform) could be used to identify the effort response of teachers based on changes in test scores.

Our method for doing so rests on minimal assumptions, is easy to implement, and can be applied

in other settings to identify teacher effort (detailed administrative data and appropriate policy

variation permitting) – valuable given that effort is typically unobserved and thus difficult to pin

down.
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We then proposed a structural procedure based on a flexible model of effort setting, which we

used to identify the primitives underlying the teacher effort response. Estimates of the model

showed that within-classroom tradeoffs in effort across students are important, and that teachers

boosted effort following NCLB’s introduction.

The model and estimates formed the basis of a counterfactual framework at the heart of the

paper for measuring the performance of different feasible incentive schemes on a comparable basis.

This framework allowed us to assess how effort would change with counterfactual incentives, and to

compute the full distribution of scores under counterfactual incentive provisions for the first time,

generating policy-relevant insights. In particular, we compared the performance of alternative

incentive schemes, including those yet to be implemented, having placed them all on a common

footing by equating costs.

Three main findings emerged from the policy analysis, each relevant to incentive design in educa-

tion. First, we showed that fixed targets (of the form taken by NCLB) give rise to a quantitatively

significant tradeoff between teacher effort and student test score inequality: higher targets boost

average effort at the expense of greater outcome dispersion. Second, the performance of fixed tar-

gets can be improved markedly by introducing student-specific bonuses that attach higher weight

to low-performing students, reducing the black-white test score gap and the score gap between

children of college educated versus non-college educated parents at no extra cost. Third, switch-

ing from fixed to student-specific targets allows policymakers to reduce inequality in teacher effort

across students by as much as 90 percent without any sacrifice in aggregate effort.

Beyond the current analysis, our counterfactual approach provides a valuable policy design tool

at a time when states are re-visiting education incentives. By offering insight into the distributional

consequences of education accountability policies, it clarifies how education reforms can be used to

combat inequality in a cost-effective manner – an enduring objective of public policy, and one that

is especially important today.
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Appendices

A. Incentive Responses: Further Evidence

This appendix presents evidence to supplement the discussion in Section IV and Section V.

A.1. Prediction Accuracy

As a gauge of the accuracy of our prediction algorithm, described in Section IV, we present the following

figure.
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Figure A.1 – Prediction Error versus Predicted Mathematics Score

Notes: This figure plots the error in predicted mathematics scores along the y-axis, defined as the difference
between the realized and predicted score, against the predicted score on the x-axis. The predicted score is the
fitted value from a student-level regression of current mathematics scores on cubic functions of prior mathematics
and reading scores, along with indicator variables for student race, gender, free-lunch status, English proficiency
status, and disability status. The R2 from this regression is 0.727. Along the x-axis, we group students into 20
equal-sized bins (with almost exactly 4,000 observations per bin) and calculate the average of the y- and x-axis
variables within each bin. The circles represent these averages. Across all student observations within a given
bin, we also calculate the standard deviation of the prediction error. The dashed lines indicate plus and minus
one standard deviation of the mean prediction error in each bin.

What is striking, as noted in the main text, is the way the mean deviation of the predicted from the actual

score is very close to zero for each bin in the figure, throughout the predicted score distribution.

A.2. Pre-Reform Treatment Effect Profile

For completeness, we compute a pre-NCLB profile and place it alongside the inverted-U profile shown in the

main text. The profile is for 1999-00, predicted using data from 1998-99 and 1997-98.64

What is apparent from the figure is just how much closer to zero the pre-reform profile is than the

post-reform profile shown in Figure 1. There is no obvious explanation for the estimated ‘bumps’ that we

64A change in the developmental scale of test scores in 2000-01 means that a profile for 2001-02 (the year immediately
preceding the introduction of NCLB) or 2000-01 cannot be constructed.
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Figure A.2 – Effort Responses & Placebo

can discern in the pre-reform profile. At the same time, there is no reason to expect that this ‘placebo’

profile should be entirely flat anyway: any factor in the pre-reform years that operates at a particular range

in the incentive strength distribution would affect the estimated profile. We also note that any such factors

are already accounted for in the algorithm used to construct the post-reform profile.

A.3. Within-Teacher Performance Improvements

We explore whether stronger NCLB incentives caused greater within-teacher performance improvements,

relevant to the agency issue. We do so by relating the difference in teacher-year fixed effects for a given

teacher (after vs. directly before the reform) to the fraction of marginal students taught by each teacher in

2002-03, the year NCLB came into effect. In this context, the fraction of marginal students (mj,02−03) is

defined very simply as the proportion of students with a value of the incentive measure (ŷ − yT ) between

-4 and 4.65 We can also carry out an informative ‘placebo’ comparison using successive years prior to the

reform.

Specifically, we estimate the following equation at the teacher level:

q̂j02−03 − q̂j01−02 = α+ χmj02−03 + g(q̂j01−02) + ζj02−03, (12)

where q̂jt on the LHS is defined as the estimated teacher-year fixed effect obtained from a value-added

regression of student test scores on demographic controls and teacher-year indicators in year t. The main

parameter of interest is χ, reflecting any relationship between NCLB incentives and within-teacher perfor-

mance improvements, and g(q̂j01−02) is a cubic function of 2001-02 teacher-year VA, which we include to

account for mean reversion in teacher performance.66

65Other thresholds for defining a student as marginal yield similar results.
66Within-teacher fluctuation in performance could be driven by mean reversion when, for example, teachers with high

fractions of marginal students 2002-03 were ‘unlucky’ in 2001-02 and had performed unusually poorly in that year.
In that case, we would expect their performance to improve mechanically from one year to the next, independent of
the new NCLB performance incentives. We account for any such mechanical relationship between lagged VA and
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Figure A.3 shows a binned scatter plot of the partial relationship between the performance improvement

in 2002-03 and mj,02−03 along with the associated linear fit (given by the solid line) from the underlying

teacher-level data; see Macartney et al. (2021) for a fuller treatment.

Within-teacher performance improvements are clearly increasing in the fraction of marginal students

in the classroom in 2002-03, shown by the upward-sloping line. Because the specification in equation (12)

removes any effect of (fixed) teacher ability, it is unlikely that differential sorting of students to teachers

based on ability can explain our results. A pooled regression of all pre-NCLB years (with transitions from

year t− 1 to t) is used as a placebo control, showing a relatively flat relationship (given by the dashed line),

and further supporting the claim that the estimated 2002-03 relationship reflects NCLB effort incentives.
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Figure A.3 – Change in VA vs. Proportion Marginal

Notes: This figure plots the change in teacher-year value-added for a given teacher between year t and t− 1 as a
function of the proportion of students in her year-t class who are marginal, comparing pairs of years before and
after NCLB’s introduction. To construct the figure, we first define a student as marginal if the difference between
her predicted score and the NCLB proficiency target (the x-axis variable in Figure 1) is between −4 and 4, and
then we define mjt as the proportion of marginal students in the classroom of teacher j in year t. We also define
q̂jt as the estimated teacher-year fixed effect from a value-added regression of student test scores on demographic
controls and a teacher-year indicator for year t. In both the first year of NCLB and in the pre-NCLB period, we
then residualize mjt with respect to a cubic function of q̂jt−1 and, in the pre-NCLB years, year fixed effects. We
then add back the unconditional mean of mjt to the residualized values to facilitate interpretation of the scale,
and plot this variable on the x-axis. The y-axis measures the change in the estimated teacher-year fixed effects for
each teacher between year t and t−1, given by q̂jt− q̂jt−1. On the x-axis, we group teacher-year observations into
20 equal-sized bins and calculate the average of the y- and x-axis variables within each bin. The circles and dots
represent these averages. The lines represent the associated linear fits, estimated on the underlying teacher-year
data.

A.4. Free-Riding Concerns

In this subsection, we show that teacher free-riding is not a central driver of differences in the effort response

across schools, helping to motivate the teacher-focused model in Section V.

Figure A.4 plots the same relationship as Figure 1, but it does so separately for schools of varying size.

If free riding were an important factor influencing effort provision in our context, we would expect to see a

performance improvement in a flexible way (with the cubic function of lagged VA), thereby identifying the effect
of NCLB incentives conditional on that relationship.
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much compressed effort profile in the largest schools, where free-riding should be most severe, relative to the

effort profile that prevails in the smallest schools, where there are fewer teachers to share in effort provision.

The patterns in Figure A.4 across school quartiles suggest that free-riding concerns are not first order.
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(b) Second Quartile
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(c) Third Quartile
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Figure A.4 – NCLB Effort Response by Quartile of School Size

Notes: This figure plots the same relationship as Figure 1, but it does so separately for schools in different quartiles
based on size. The y- and x-axis variables are measured and constructed as in Figure 1. We then further divide
schools into quartiles of the school size (total student enrollment) distribution in the first year of NCLB and plot
separate relationships between test score gains and incentive strength among schools in each quartile, panel (a)
plotting the relationship for schools in the bottom quartile (the smallest schools), and so on (second, third and
fourth quartiles in panel (b), (c), and (d).
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A.5. Response to Target, Not Position in School-Specific Distribution

Our maintained hypothesis is that effort is responsive to the incentive measure (π) that we have constructed.

As an alternative, effort might vary with respect to a student’s relative position in the predicted score (ŷ)

distribution within her school. For example, it is possible that educators responded to NCLB by targeting

students at a particular point of the predicted distribution, this point just happening to coincide with

the value of ŷ where π under NCLB was close to zero.67 If teachers in North Carolina responded to

NCLB’s introduction by tailoring teaching methods best-suited for students at the point in the ability

distribution where incentive strength (π) equalled zero, then varying π counterfactually to make inferences

about competing accountability schemes might seem unwarranted.

To assess this possibility, we exploit the richness of the administrative data – specifically, by determining

the effort responses and corresponding incentive strength densities separately for four types of school, dividing

them according to the mean of their ex-ante predicted pass rates and grouping them on the basis of which

quartile (in terms of that predicted pass rate) they are in.68 If schools responded to NCLB by tailoring effort

to a particular part of the ability (i.e., predicted score) distribution, we should observe the peak of the effort

response shifting to the right as that point in the ability distribution shifted right across the types of school.

Figure A.5 plots the effort responses and incentive strength densities separately for schools in each

quartile of the school-level ex-ante predicted pass rate. As one moves up the quartiles, the incentive distri-

bution shifts rightward (as shown in the panels on the right), implying that a student with a value of π near

zero in bottom quartile schools will have a different relative position in the ŷ distribution than a student

with a value of π near zero in the second, third or top quartile schools. Yet the peak effort response occurs

close to π = 0 and the effort function maintains a similar shape in each of the quartiles, indicating that it is

the students who are most marginal with respect to the NCLB threshold who receive most attention. This

supports the view that schools respond to a student’s proximity to the proficiency threshold and not her

relative position in the predicted score distribution.

67Such a response is in the spirit of Duflo, Dupas, and Kremer (2011), who set out a model in which teachers choose
a particular method of teaching such that students at a certain point in the ability distribution will benefit most.
Students who are further away from this point require a different type of effort or teaching style, so they do not
benefit as much and may even perform worse than they otherwise would.

68Recall that a student is predicted to pass when π = ŷ − yT > 0.
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(c) Effort in Q2 Pass-Rate Schools
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(d) π Density in Q2 Pass-Rate Schools
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(e) Effort in Q3 Pass-Rate Schools
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(f) π Density in Q3 Pass-Rate Schools
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(g) Effort in Q4 Pass-Rate Schools
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Figure A.5 – Responding to Incentive Strength π rather than the Relative Position of ŷ
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B. Modeling Choices

Formal NCLB incentives only apply to the attainment of a single target – the middle proficiency target under

North Carolina’s pre-existing assessment system. Our model in Section V provides additional flexibility,

reflecting institutional arrangements in North Carolina. It allow teachers to respond to other pre-existing

proficiency targets that may be salient to parents and teachers. In this appendix, we first provide evidence

in support of our multiple-target formulation, before assessing alternative modeling choices that all involve

a single target.

Table B.1 provides motivating evidence, giving the fraction of students scoring above the low, middle

(proficiency), and high (superior performance) targets in each grade and year around the time of NCLB’s

introduction. The evidence suggests that schools did respond to more than the middle target. Specifically,

the fraction of students scoring above the high target (thereby achieving ‘superior performance’) increased

in 2002-03 by nearly as much or more in each grade than for the proficiency target, even though this was

a low-stakes achievement target. In contrast, there is virtually no change in terms of the low achievement

target, with nearly 100 percent of students in each grade attaining it throughout; thus, helping students

clear this low target was not a relevant margin of adjustment following the introduction of NCLB. Further,

in the following year (2003-04), almost no changes in any of the fractions are evident.

Table B.1 – Fractions of students scoring above low, middle (proficiency), and high
(superior performance) targets, by grade and year

Year
Grade and Target 2001-02 2002-03 2003-04

Third Grade
Low 96.9% 98.9% 98.9%
Proficiency 78.3% 89.2% 89.2%
High 37.1% 44.8% 45.1%

Fourth Grade
Low 99.1% 99.3% 99.2%
Proficiency 89.5% 94.9% 94.6%
High 45.8% 60.5% 60.6%

Fifth Grade
Low 98.3% 98.9% 99.1%
Proficiency 89.1% 92.7% 93.5%
High 55.6% 63.1% 64.5%

As shown in Figure 5 (in Section VII.B), our multi-target-response model produces a very good fit with

respect to the estimated effort function. We now assess whether a similarly close fit between model predictions

and estimates could be achieved through alternative modeling choices. To anticipate, our evaluation of several

alternatives will indicate this is not the case, based on the implied fit alongside the estimated effort function.
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B.1. A Benchmark: Single-Target Scheme

As a benchmark, consider the simple single-target model, shown in Figure B.1. It is apparent that the fit is

poor, particularly in terms of the effort devoted to high-achieving students.

Given the single-target model, a substantially larger σ2 parameter would broaden out the predicted

profile on the right-hand side (via the teacher’s first-order condition), as noted when discussing the compar-

ative static properties of optimal effort. Yet this would be at odds with the value of σ2 that is identified

outside the teacher’s problem, depending only on the difference between estimated and model-implied effort

(see Section VI.B).
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Notes: This figure presents the estimated effort profile in 2002-03 from Figure 1, along with the 95 percent
confidence intervals, and the binned means of effort implied by the single-target scheme.

Figure B.1 – Inverted-U Response to NCLB and Model Fit of Single-Target Scheme

In contrast, as Figure 5 shows, allowing for teachers to respond to the higher target serves to broaden out the

model-implied effort profile for high-achieving students, resulting in an exceptionally good match between

model and empirics. It is worth considering whether alternative modeling choices could achieve the same

end under a single-target scheme, as we assess next.

B.2. Complementarity in Production

One potential alternative way to broaden out the effort profile without changing σ2 would be to allow for a

complementarity in production between student ability and teacher effort, expressed as yi = ŷi+ei+γŷiei+εi.

If γ were positive, then teacher effort would go further with more able students, resulting in a higher level

of optimal effort for those students.

Two considerations count against this alternative formulation. The first relates to the way the coeffi-

cient on the interaction term (γ) influences the shape of the implied effort profile. Figure B.2 simulates the
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Notes: The panels in the figure explore the relationship between optimal effort e∗ as a function of ŷi (the
predicted score or student ‘ability’) and the complementarity parameter γ, capturing an interaction between
optimal effort and ability. The dashed line on the left corresponds to the middle (NCLB) proficiency target,
while the second dashed line corresponds to a student with a predicted score that is ten points above the
middle target (to facilitate comparisons with the estimated effort function in Figure 5).

Figure B.2 – Simulation of Effort Function for Different Degrees of Complementarity

effort profile for different values of γ.69 Relative to the case in which there is no complementarity (Figure

B.2(a), as in our actual model), increasing γ does broaden the right-hand side of the effort profile. Yet doing

so would require a very large value of γ, which in turn would ensure that the two profiles would not match

on the left (see the bottom two panels, where effort declines precipitously to the left of the first vertical

dashed line, representing the NCLB target yTM ).

The second consideration relates to the way the marginal benefit and cost curves intersect for different

student types (based on their predicted scores, ŷi). If the complementarity parameter is strong enough to

broaden the right-hand side enough to match the estimated effort profile, as required, this will increase the

slope of the marginal benefit curve, at some point making it steeper than the marginal cost curve. If this

occurs, it will cause optimal effort to jump discontinuously for values of ŷi above a threshold level (given the

properties of the effort-setting model).70 Such jumps start to occur in our model for values of γ = 0.0046,

or greater. Yet we see no such evidence of a discontinuity in the estimated effort profile, which rules out

complementarities large enough to generate the observed breadth of the effort profile.

69To develop intuition, we suppress the cost parameter θ, allowing us to focus on effort setting on a student-by-student
basis.

70Figures B.3(a) and B.3(b) demonstrate this feature clearly for γ = 0.006, showing that a low-ability student with
ŷi = 240 or ŷi = 242 receives close-to-zero effort, while a low-ability student with a fractionally higher predicted
score, ŷi = 243 or above, receives substantially higher effort.
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(a) ŷi = 240 (b) ŷi = 242

(c) ŷi = 243 (d) ŷi = 250

Figure B.3 – Simulation of Optimal Effort (MB = MC) for γ = 0.006

B.3. Peer Spillovers

Another possibility for broadening out the effort profile would be to allow for peer effects in the production

technology. Consider, for example, a technology given by yi = ŷi + ρ¯̂y + ei + εi, where the test score of

student i also depends on the average ability of the other students in the classroom (¯̂y). If such peer effects

are positive, as is plausible (i.e., ρ > 0), the model cannot generate a broader effort profile on the right-hand

side of the horizontal (incentive strength) axis, where needed. To understand why, note that the peer effects

term effectively lowers the proficiency target faced by each student in a classroom-specific way, where yT

becomes yT − ρ¯̂y. Reducing the effective target creates incentives to direct more effort toward students with

low values of ŷ, but we require stronger incentives for students with high values of ŷ to generate a broader

effort profile on the right-hand side. Thus, introducing peer effects into the model does not allow us to

replicate the observed patterns in the data.

B.4. Prediction Error

Suppose that teachers face uncertainty about student ability, observing a noisy signal of ŷi, given by ỹi =

ŷi + νi, where (for illustration) ν is independent of ε and is normally distributed with mean µν and variance

σ2
ν . From the teacher’s perspective, the test score technology would be given by

yi = ỹ + ei + εi = ŷi + ei + νi + εi︸ ︷︷ ︸
ηi

= ŷi + ei + ηi. (13)

Because ε and ν are both normally distributed, their sum, η = ε + ν, is also normally distributed, and the
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relevant mean and variance parameters in the teacher’s problem are given by µη = µε+µν and σ2
η = σ2

ε + σ2
ν ,

respectively.

The variance σ2
ε is pinned down by the observed difference between estimated and model-implied effort,

as noted above, and it is too small to generate the required broadening of the effort profile on the right-hand

side. While the variance term associated with prediction error (σ2
ν) could close the gap between the two,

its value would need to be exceedingly large to do so: the total variance of the teacher-observed signal (ỹ)

would need to be more than three times larger than the observed variance of ŷ, and the interquartile range

of ỹ would be nearly two times wider than that of ŷ. Such values are implausible. In addition, it is likely

that teachers are in a position to predict the performance of their students quite accurately, leading us to

rule out prediction error as a viable alternative explanation.
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C. Properties of the Optimal Effort Solution

In this appendix, we analyze the properties of optimal effort, building on the discussion in the main text.

There, we noted that effort in our model does not have a closed-form solution (see Section V.C). Further,

the model does not generically have a unique solution. Yet we are able to compute a global maximum

numerically, necessary for the estimation and simulation exercises we carry out in the main text. We are also

able to show (via simulation) how the global optimum is likely to translate into a unique set of corresponding

model parameters, as we now discuss.71 We will focus on the subset of parameters β̃ ≡ ( bMψ ,
bH
ψ , dM , dH) ⊂ β.

This is because σ2 is identified externally from the teacher’s problem, and θ is identified from the two values

of ŷ for which the estimated effort profile turns negative (conditional on average classroom effort and σ2) –

see Section VI.B.

A simulation approach can be used to show that a given effort profile corresponds to a unique set

of parameter values β ≡ (β̃; θ, σ2). Here, we appeal to the estimated effort profile combined with the

model’s first-order conditions; specifically, for each predicted score ŷi, we replace e∗i in the expression for the

first-order condition with the corresponding value from the estimated profile.

Formally, let e∗(β̃;πi) be the optimal effort exerted by a teacher of student i, with πi ≡ ŷi − yTM .

Recalling equation (6) and using the fact that the M and H targets differ by eleven developmental scale

points (yTH = yTM + 11), optimal effort satisfies

bM
ψ
f(dM − πi − e∗i ) +

bH
ψ
f(dH − πi − e∗i + 11)− e∗i − θ

Nc∑
j=1

e∗j = 0 ,

where θ = 0.0075 and σ2 = 15.702 from Section VII,
∑Nc
j=1 e

∗
j is known from applying the effort profile to

the average teacher,72 and e∗i is used as shorthand for e∗(β̃;πi).

The optimizing solutions under consideration are restricted to the subset of parameter vectors that

satisfy the first-order condition, given that the empirical effort profile is taken as the truth. There are many

such vectors, but this subset is far smaller than all possible parameter vectors, most of which are unable to

recover the effort pattern we observe. Limiting ourselves to the smaller feasible subset of parameter vectors

makes the problem tractable. Uniqueness is then defined in the following way: there does not exist β̃
′ 6= β̃

such that e∗(β̃;πi) = e∗(β̃
′
, πi) ∀ i for a given level of incentive strength. In words, two different feasible

parameter vectors cannot both yield the same global maximum in terms of the teacher objective across all

student types.

We use a four-dimensional grid search (using different initial guesses for each of the four parameters) to

solve for candidate parameter vectors that satisfy the function. While there are approximately forty discrete

student types contained within the support of our estimated effort function (given that developmental scale

71Fixed point theorems can be used to establish uniqueness analytically for lower dimensionality problems (e.g., if
there were only one target to consider, with two parameters). They do not apply in our setting, however, given
that it involves four interdependent parameters, two of which (dM and dH) shift the effective distance between the
two known targets.

72We compute the sum of effort for the average teachers classroom by calculating the implied effort for each student
in a classroom (according to her ŷ and the effort profile) and then summing those values across all students in the
classroom.
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points are integers); for tractability, we select ten representative points from that function to match in the

simulation that follows. Doing so takes advantage of information from the estimated profile about how effort

declines away from each of the peaks. In particular, any interplay between the response to each target will

be stronger for values of ŷ in between the two targets than values to the left of the M target or the right of

the H target; by considering points in each region of the predicted distribution, our simulation exercise is

able to account for such interplay.

We discretize the parameter space in terms of what to consider for initial guesses. In particular, we

consider eleven initial points for each of the four parameters. The set of initial value guesses is represented by

the ϕ(·) function, where ϕ( bMψ ) = ϕ( bHψ ) = {0, 10, . . . , 90, 100} and ϕ(dM ) = ϕ(dH) = {−10,−8, . . . , 8, 10}.
The parameter space of β̃ ≡ ( bMψ ,

bH
ψ , dM , dH) is then ϕ( bMψ )× ϕ( bHψ )× ϕ(dM )× ϕ(dH). Given the number

of data points we match (i.e., the number of non-linear equations – ten in our case), initial value vectors

are constructed from the resulting grid values and then used as a starting point when solving the system

of non-linear equations with the gradient method. The grid is comprehensive, with 14,641 (= 114) initial

starting points for the vector β̃.

Across all 14,641 initial value combinations, there are only two candidate vectors that maximize the

teacher objective globally: β̃1 = (30.49, 23.91, 3.13, 1.74) and β̃2 = (23.91, 30.49, 12.74,−7.87). Both solutions

result in a teacher objective value of 335.886 and an error rate of 0.5686.73 The first solution (β̃1) is reached

from 11,281 (or 77%) of the initial starting points, while the second solution (β̃2) is reached from 2,071 (or

16%) of them. Around 7% of starting points are unstable, converging to a different objective value each

time.74 In short, there is no convergence of the gradient method for these initial grid vectors.

At first glance, it might seem problematic that there are two viable candidates, β̃1 and β̃2, which both

imply the same objective value. However, closer inspection reveals that they are simply mirror images of

each other, a possibility which our simulation does not rule out. In particular, [ bMψ ]1 = [ bHψ ]2 = 30.49 and

[ bHψ ]1 = [ bMψ ]2 = 23.91, while [dM ]2 = 12.74 = [dH ]1 + 11 and [dH ]2 = −7.87 = [dM ]1 − 11. That is, the

second candidate simply swaps the M and H labels, producing exactly the same solution. Thus, fully 93%

of initial starting points converge to the same global solution of β̃1 = (30.49, 23.91, 3.13, 1.74).

We note that while β̃1 is qualitatively similar to our estimated parameters in Section VII, it is not an

exact match.75 This is not surprising, as our simulation routine abstracts from how students are distributed

across classrooms and exploits only a subset of the information contained in the estimated effort function.

Nevertheless, this simulation exercise shares enough in common with the full estimation routine for the

uniqueness argument to carry over.

73The error rate is
√
g21 + . . .+ g210, where gi ≡ bM

ψ
f(dM − πi − e∗i ) + bH

ψ
f(dH − πi − e∗i + 11) − e∗i − θ

∑Nc
j=1 e

∗
j is

evaluated using the candidate parameter vector and effort is taken from point i of the empirical effort function.
It measures how closely the parameters satisfy the first-order conditions, across all ten points under consideration
from the effort function, with an error rate of zero implying that they are exactly satisfied.

74They also have associated error rates that are at least five times larger than the two stable candidates, which
indicates that the resulting ‘solutions’ do not actually satisfy the first-order conditions.

75Recall that the estimates are ( bM
ψ
, bH
ψ
, dM , dH) = (36.3, 24, 3.19, 1.63).
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D. Computation Appendix

In this appendix, we describe how effort is computed in the model presented in Section V. For a given value of

the parameter vector β ≡ (b
ψ ,d, θ, σ

2), we solve for the optimal level of effort devoted to each student (denoted

by e∗
(
β; ŷi,y

T, ŷc
)
) by maximizing the corresponding teacher’s objective function in equation (5) with re-

spect to the full vector of optimal effort levels for all students in the class {e∗
(
β; ŷ1,y

T, ŷc
)
, . . . , e∗

(
β; ŷNc ,y

T, ŷc
)
}.

As shown in Section V.C, this results in Nc first-order conditions for each classroom, given by equation (6),

where the unknown variables are the Nc optimal effort values; the first-order conditions are interdependent

within classrooms, as the effort devoted to any given student in the class depends on the effort received

by all other students. The first-order conditions are independent across classrooms, however, implying that

solving for the full distribution of optimal effort amounts to solving Nc first-order conditions simultaneously

in each classroom.

In practice, we carry out this exercise in Matlab by maximizing the teacher’s objective function in each

classroom with respect to the Nc effort levels. We do so using Matlab’s built-in unconstrained minimization

package fminunc, while supplying both the gradient vector and Hessian matrix to ensure that the solution

vector to the first-order conditions in equation (6) indeed maximizes the teacher’s objective.76 We loop over

all classrooms in the data, maximizing a new teacher’s objective function on each iteration, until we recover

the full distribution of optimal effort levels across all students.

76Because fminunc is a minimization routine, we apply it to the negative of the teacher’s objective function, ensuring
the recovered solution maximizes the objective function.
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E. Model Fit
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Notes: This figure presents the density of observed test scores (measured in devel-
opmental scale units) and the density of test scores predicted by the model for the
full sample.

Figure E.1 – Distributions of Observed and Model-Predicted Scores
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Notes: These figures present the density of observed test scores (measured in de-
velopmental scale units) and the density of model-predicted test scores for various
sub-samples of students.

Figure E.2 – Subgroup Distributions of Observed and Model-Predicted Scores
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F. Simulation Appendix

This appendix provides background to the counterfactual simulations. In it, we describe the setting of targets

and bonus payments, and the cost-equating procedures we use.

F.1. Counterfactual Fixed Targets

We construct counterfactual fixed targets designed to cover the full predicted score distribution. The targets

are measured on the End-of-Grade Mathematics test developmental scale, following the protocol under

NCLB. In total, we consider 17 fixed targets, starting from 237 developmental scale points and increasing

the target by an increment of 2 points on each iteration. The set of fixed targets is thus

yT ∈ Y f = {237, 239, 241, . . . 247, . . . 263, 265, 269}.

Table F.1 shows the mapping between each developmental scale point target and the corresponding

percentile in the predicted score distribution (of ŷ); the actual NCLB test score proficiency target (in bold

in the table) is set at 247 developmental scale points, corresponding to the fifth percentile of the predicted

score distribution. The table makes clear this set of fixed targets covers the entirety of the predicted score

distribution, aside from the very top.

Table F.1 – Developmental Scale Point Targets and
Corresponding Percentiles

Developmental Scale Percentile in Predicted
Point Target Score Distribution

237 -
239 1
241 1
243 1
245 2
247 5
249 11
251 19
253 29
255 39
257 49
259 59
261 68
263 76
265 84
267 90
269 95

F.2. Heterogeneous Bonus Payments

We consider two different regimes in which bonus payments are heterogeneous across students: In the first

case, the student-specific bonus payment is given by bL(ŷi) = bM
(ŷmax+1−ŷi)
ŷmax−ŷmed+1 , where ŷmax is the maximum

value of ŷi across all students in the state and ŷmed is the median value of ŷi, implying that the bonus payment
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is greatest for the lowest-performing students (those with the lowest predicted scores). The parameter bM

is the per-student bonus payment under NCLB, now scaled by the student-specific weight wi = wL(ŷi) =
(ŷmax+1−ŷi)
ŷmax−ŷmed+1 . In the second case, the student-specific bonus payment is given by bH(ŷi) = bM

(ŷi−ymin+1)
ŷmed−ŷmin+1 ,

where ŷmin is the minimum value of ŷi across all students in the state, implying that the bonus payment is

greatest for the highest-performing students (those with the highest predicted scores ŷ).77

To illustrate the form of these two heterogeneous bonus payment parameterizations, Figure F.1 shows

each of them as a function of predicted scores along with the baseline homogeneous bonus payment case in

which wi = 1, ∀ i, with the density of the predicted score distribution in the background.

The two chosen parameterizations of the heterogeneous bonus payment are convenient for three reasons.

First, they cover two informative extremes. Second, they ensure that the original payment bM is being

multiplied by a number that ensures cost control: in the first case, bM is multiplied by a value greater than

1 for students below the median and by a value less than 1 for students above the median: the reverse

is true in the second case. (In both cases, the median student has bM multiplied by 1.) Third, since the

parameterizations are determined in a data-driven way, they can be calculated in any dataset.

F.3. Counterfactual Value-Added Targets

In general, value-added (‘VA’) targets are set based on information contained in students’ prior scores. As

such, there are many potential ways of constructing them.78 To keep the analysis tractable, we restrict

attention to counterfactual VA targets that use students’ prior scores from only one subject (mathematics)

and that are linear in those scores. Thus we write a student i’s specific VA target at time t as yTit = δ+αyit−1,

where yit−1 is i’s mathematics score at t− 1.

As noted in the main text, fixed targets can be viewed as special cases of VA targets – specifically, where

δ = yT and α = 0. By setting the δ parameter appropriately, we can ensure that a given fixed target has a

VA counterpart that delivers the same mean for the distribution of incentive strength (ŷit − yTit) across all

students as the fixed target does. The VA counterparts will generally have smaller variances because the use

of the prior score allows student-specific targets to be set that can make many more students marginal. By

considering several different multiplicative coefficients (α) for each fixed target, and adjusting the intercept

(δ) to match the mean of the fixed target, we are able to explore the effects on student outcomes of both

mean shifts of, and variance changes to, the incentive strength distribution.

Along those lines, we take each fixed target in the set Y f in turn in our simulations. By varying

α ∈ Ω = {0, 0.1, 0.25, 0.5, 0.75, 0.9, 1, 1.1, 1.25, 1.5, 1.75, 1.9}, we allow the prior score to play a progressively

more important role. For each α, we then select the intercept of the VA target δ so that the mean of the

student VA targets matches the value (in developmental scale points) of a given fixed target in the set Y f . For

example, suppose we are matching the real NCLB fixed target of 247. In that case, we set δ = 247− αȳt−1,

which implies that the mean VA target is also 247.

77Here, the bonus payment bM is scaled by the student-specific weight wi = wH(ŷi) = (ŷi−ymin+1)
ŷmed−ŷmin+1

.
78For example, during the 1990s, North Carolina’s own ABCs program used both prior mathematics and reading

scores entering linearly when setting targets for either subject, while South Carolina’s accountability program used
both scores and incorporated linear, quadratic, and interacted terms.
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We conduct this exercise for each fixed target in Y f , looping through successive values of yT ∈ Y f .

For each yT , we then loop through α ∈ Ω. In doing so, for a given α ∈ Ω, we pick δ(α) = yT − αȳt−1, thus

ensuring that the mean VA target is equal to yT , the mean fixed target.79

F.4. Cost-Equating Procedure

Since the state must ‘pay’ bM for each student who is proficient, we can write the average cost under a set

of counterfactual targets R as

QR =

bM
∑Nt
i=1 1

(
ŷit + e∗

(
wi, y

R
it ; β̂, ŷit, ŷc

)
+ εit − yRit ≥ 0

)
Nt

, (14)

where Nt is the total number of students in the state, β̂ ≡ [ b̂Mψ , d̂M , θ̂, σ̂
2],80 and εi ∼ N(0, σ̂2). Note that

the set R can be either drawn from the family of fixed targets, in which case each student has the same

target, yRit = yR, ∀ i, and yR is an element of the set Y fixed above, or from the family of VA targets, in

which case each student has a student-specific target given by yRit = δR + αRyit−1.

To explain the cost-equating procedure, we first focus on the case where bonus payments are constant

across students and wi = 1 for all students. While the parameter bM is not separately identified from ψ

in our model, we can without loss of generality normalize bM to one and interpret the estimated ratio b̂M
ψ

accordingly. To equate costs across target regimes, we define b(k) to be the original bonus payment value

multiplied by a constant k > 0. Multiplying bM by k implies evaluating the effort function in equation (14)

at the argument k · b̂Mψ instead of b̂M
ψ and multiplying the sum in the numerator by k (instead of bM , which

is normalized to one). We let Q∗ denote the common average cost that all regimes must share, setting Q∗

equal to the cost that prevails when our model is used to predict outcomes under the real NCLB fixed target

of yT = 247.81

With this notation in place, we use the following procedure to equate the cost that prevails under the

set of targets R to the value Q∗. We first calculate the difference between the realized cost and the target

cost, QR − Q∗. If the two costs are equivalent and the difference is zero, we stop. If they are different in

absolute value, we adjust b(k) by updating the value of k until QR = Q∗.

Changing k has two effects on average costs. The first effect is to change in a direct way the amount

paid per student who passes. This is seen by recognizing that the sum of the indicator variables in equation

(14) is multiplied by a different value each time k adjusts. The second effect comes from the impact of

changing k (equivalently, the bonus payment) on teacher effort decisions, which is made clear by the effort

79To see this, note that we have yTit = δ + αyit−1 = yT − αȳt−1 + αyit−1, thus implying that the mean value of yTit
(across all students) is yT . Because both the fixed and VA targets have the same mean, it then necessarily follows
that the mean of incentive strength under the fixed target is equivalent to the mean of incentive strength under the
VA target. Letting ¯̂yt denote the mean predicted score across all students in time t, mean incentive strength under
both the fixed and VA targets is given by ¯̂yt − yT .

80When bonus payments are homogeneous, we set wi = 1 for all students.
81In that case, the pass rate (average cost) is 0.9608, implying that just over 96 percent of fourth grade students

were deemed proficient across the state. For comparison, the real pass rate in fourth grade in 2003 was also 0.96,
implying that our model fits the data well and that this choice of Q∗ reflects a cost policymakers are willing to pay.
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function in equation (14) being evaluated at the argument k · b̂Mψ instead of b̂M
ψ . Increasing k increases costs

by raising both the payment per each passing student and incentivizing teachers to exert more effort, itself

leading to more students reaching proficiency status. In contrast, decreasing k decreases costs by paying less

per passing student and causing fewer students to pass (because teachers exert less effort).

Heterogeneous Bonus Payments: Modifying the Cost-Equating Procedure

Under heterogeneous bonus payment regimes, average costs under the scheme that places more weight on

low-performing students and the scheme that places more weight on high-performing students are determined

by

QLR =

bM
∑Nt

i=1w
L(ŷit)1

(
ŷit + e∗

(
wL(ŷit), y

R
it ; β̂, ŷit, ŷc

)
+ εit − yRit ≥ 0

)
Nt

(15)

and

QHR =

bM
∑Nt

i=1w
H(ŷit)1

(
ŷit + e∗

(
wH(ŷit), y

R
it ; β̂, ŷit, ŷc

)
+ εit − yRit ≥ 0

)
Nt

, (16)

respectively. For each heterogeneous bonus payment case, we cost-equate across regimes to Q∗ using the

same methodology described above: we normalize bM to 1, multiply it by k, and adjust k until costs equate

to Q∗.
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with the vertical line indicating the median value of the predicted score.

Figure F.1 – Bonus Payment Weights and Predicted Score Density
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G. Fixed Target Frontier Appendix

In this appendix, we provide decompositions of the factors that explain movements along, and shifts of, the

fixed target frontier under constant and heterogeneous bonus payments, respectively.

G.1. Constant Bonus Payments

In Section IX, we showed that increasing the fixed target to higher points in the distribution of the predicted

score causes aggregate effort to increase but at the expense of also increasing test score inequality (variance).

In this appendix, we provide a more detailed discussion of the movements along the fixed target frontier

under constant bonus payments, showing that the effort-variance tradeoff reflects the operation of two effects.

The first, which we label the ‘distributional effect’ (or ‘DE’) for convenience, captures the response of teacher

effort as the target is set higher in the predicted score distribution. The second – labelled the ‘cost-equating

effect’ (or ‘CEE’) – reflects how outcomes change when we adjust the bonus payment to equate costs across

all target regimes. For each target we consider, the magnitude of each effect is calculated relative to the

baseline mean effort and inverse test score variance that prevail under the real NCLB target.

Which force dominates in determining the shape of the frontier depends in an intuitive way on the range

in which the proficiency target falls. When the proficiency target is below the median of the predicted score

distribution, the shape of the frontier reflects the DE. Increasing the fixed target while it still below the median

makes a progressively larger mass of students marginal, creating sharper incentives for more students82 and

leading to higher mean effort. But increasing the target also makes progressively better students marginal,

implying that low-performing students receive relatively little effort, exacerbating performance inequality and

increasing test score variance. Setting progressively higher targets in this range therefore increases mean

effort and raises test score variance (thus lowering the inverse variance), resulting in the downward-sloping

frontier shape depicted in Figure 6.

When the target is above the median of the predicted score distribution, raising the target further

makes a progressively smaller mass of students marginal, with a progressively larger mass of students being

predicted to miss the proficiency target.83 The DE leads to reductions in mean effort because the targets

make it prohibitively costly for teachers to help their students meet proficiency standards. In such cases,

the bonus payment bM must be increased to raise effort and equate costs with the benchmark regime given

by the real NCLB target. Doing so increases both mean effort and the test score variance (so decreasing the

inverse variance), as high-performing students benefit disproportionately from the higher bonus payment,

owing to their marginal position in the incentive strength distribution.

The relevant forces at play are further illustrated in Table G.2, which shows the precise magnitudes of

82This is true empirically. Suppose we define a student as ‘marginal’ if her predicted score is within 4 developmental
scale points of the target – a relatively tight window. Then the fractions of marginal students when targets are
set at the 5th, 20th, and 40th percentiles of the predicted score distribution are 0.19, 0.34, and 0.4, respectively.
(Other candidate ‘marginal’ windows lead to similar patterns.)

83Defining a student as ‘marginal’ if his or her predicted score is within 4 developmental scale points of the target,
the fractions of marginal students at targets at the 75th and 95th percentiles of the predicted score distribution are
0.31 and 0.15, respectively, while the fractions of non-marginal students who are predicted to fail are 0.50 and 0.84.

65



the DE and CEE (on both mean effort and inverse variance) for several representative fixed targets.

Table G.2 – Decomposition of the Distributional and Cost-Equating Effects in Moving
Along the Frontier

(1) (2) (3) (4)
Target Mean Effort Inverse of the Test Score Variance
(Percentile Position) DE CEE DE CEE

10 0.23 0.07 -0.00006 0.0003
20 0.40 0.12 -0.00087 0.0003
30 0.49 0.27 -0.00223 -0.0005
40 0.50 0.47 -0.00369 -0.0003
60 0.32 0.96 -0.00593 -0.0009

In columns (1) and (2), we present the impacts of the Distributional Effect (DE) and Cost-Equating Effect (CEE), as
defined in the text, on mean effort, respectively, as we move along the frontier in Figure 6 from the point corresponding
the the real NCLB target to points corresponding to the other targets on the frontier. In columns (3) and (4), we do
the same, though reporting effects of the DE and CEE on the inverse of the test score variance.

G.2. Heterogeneous Bonus Payments Decreasing in Students’ Predicted Scores

Next, we explain why outcomes improve when we switch to a regime that places more weight on low-

performing students. Holding the target fixed at the real NCLB target and switching regimes from homo-

geneous to heterogeneous bonus payments increases mean effort because the new regime assigns the most

weight to low-performing students, essentially ‘doubling up’ on already strong incentives for those students.84

In addition, because students at the bottom receive disproportionately more effort, there is a decrease in

the test score variance. Therefore, for relatively low proficiency targets, simply changing the bonus payment

regime generates the outward shift in the frontier, causing both an increase in mean effort and a reduction

in test score variance.

For higher targets on the frontier, cost-equating across regimes is required to increases mean effort when

switching bonus payment regimes. At relatively high proficiency targets,85 the new bonus regime creates

tension between the incentive to devote effort to (relatively) high-performing students and the incentive

to devote effort to low-performing students due to the heterogeneous bonus payments. As a result, high-

performing students are allocated less effort than under the homogeneous bonus payment regime, whereas

low-performing students receive more, the net effect being an overall reduction in average effort.86 Lower

(unadjusted) mean effort under the new regime implies that costs are too low. Thus, in order to equate

84For example, at the real NCLB target, the mean effort gain (from switching bonus payment regimes) among students
below the median of the predicted score distribution is 0.49 developmental scale points (7 percent of a standard
deviation). In contrast, students above the median lose 0.03 developmental scale points (on average), implying that
the decline in effort among those at the top of the distribution is not high enough to offset the gains at the bottom
(because incentives for high-performing students students were quite low initially).

85More specifically, simply switching regimes results in mean effort increases for targets up to the 20th percentile of
the predicted score distribution, after which point cost-equating is needed to increase mean effort and generate the
frontier’s outward shift.

86For example, when the target is set at the 30th percentile of the predicted score distribution, students with predicted
scores above the median receive 0.10 developmental scale points less effort (on average) after switching regimes,
while students with predicted scores below the median receive 0.19 developmental scale points more effort. These
effects are equivalent to 0.013 and 0.026 standard deviations of the test score, respectively.
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costs with the NCLB benchmark, a higher bonus payment must be offered to increase teacher effort and the

proficiency rate. In these cases, the change to aggregate effort following from cost-equating more than offsets

the loss from the new bonus structure, increasing mean effort above the original value under heterogeneous

bonus payments and resulting in an outward shift in the frontier.

Table G.3 precisely quantifies these forces that cause the shift out of the frontier in Figure 7. In

the table, we distinguish between the effects that arises purely from switching to the new bonus payment

structure without ensuring cost equivalence – i.e., the ‘bonus payment effect’ – and the effect that then

arises subsequently when equating costs – i.e., the ‘cost-equating effect.’87 For each target we consider, the

magnitude of each effect is calculated relative to the prevailing mean effort and inverse test score variance

under that same target in the homogenous bonus payments case.

Table G.3 – Decomposition of the Bonus Payment and Cost-Equating Effects when
Switching to Bonus Payments that are Decreasing in Predicted Scores

(1) (2) (3) (4)
Target Mean Effort Inverse of the Test Score Variance
(Percentile Position) Bonus Payment Effect Cost-Equating Effect Bonus Payment Effect Cost-Equating Effect

5 0.23 0.00 0.0015 0.0000
10 0.21 0.00 0.0015 0.0000
20 0.16 0.20 0.0012 0.0008
30 -0.04 0.45 0.0005 0.0011
40 -0.35 0.79 0.0003 0.0008

In columns (1) and (2), we present the bonus payment effect and the cost-equating effect on mean effort, respectively,
that occur in Figure 7 when we shift out from the homogeneous bonus payments frontier to the frontier associated
with the bonus scheme that attaches more weight to low-performing students. In columns (3) and (4), we do the same
but report the effects of the magnitude of each effect on the inverse of the test score variance.

G.3. Heterogeneous Bonus Payments Increasing in Students’ Predicted Scores

As Figure 7 makes very clear, the scheme that assigns more weight to high-performing students is dominated

by both other regimes. We now discuss this regime in more detail; for brevity, we do not provide a full

decomposition of the effects in terms of the BPE and CEE that occur when switching from the homogeneous

bonus payments regime to the regime that attaches more weight to high performers. Instead, we provide a

summary of the resulting adjustment.

As is the case for the regimes described above, the mechanics of the adjustment depend on the location

of the proficiency target. When the proficiency target is relatively low, it presents teachers with strong

incentives to devote effort to low-performing students but the heterogeneous bonus payments provide strong

incentives to devote effort to high-performing students. Low-performing students are thus allocated less

effort than under the homogeneous bonus payment regime, whereas high-performing students receive more,

leading to a increase in test score variance (a reduction in inverse variance). At high proficiency targets,

both proficiency target incentives and bonus payment incentives are strongest for students who are high

87There is no DE here because the target does not change. The description we offer explains shifts in the frontier,
not movements along a frontier. The DE only comes into play when we consider changing the target and moving
to a different point along the same frontier.
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in the predicted test score distribution. These students receive the largest amount of extra effort, while

low-performing students experience the largest reduction. Because the strongest students experience test

score gains and weakest experience losses, inequality (test score variance) also rises. Together, the effects

on mean effort and test score variance result in a frontier that is interior to the frontiers of the other two

regimes.
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H. Supplemental Tables and Figures

Table H.1 – Student-Level Descriptive Statistics

Structural Analysis Sample

Mathematics Score 259.51
(7.17)

Reading Score 152.89
(8.05)

College-Educated Parents 0.26
(0.44)

Male 0.50
(0.50)

Minority 0.40
(0.49)

Disabled 0.05
(0.22)

Limited English Proficient 0.03
(0.16)

Free or Reduced-Price Lunch 0.45
(0.50)

Sample Size 89, 271

Notes: Summary statistics are calculated over all fourth
grade student observations from 2002-03.
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Figure H.1 – Comparative Statics of Optimal Effort with Respect to Changing the Model
Parameters

Notes: The panels in the figure illustrate the response of the optimal effort profile to changes in model
parameters, focusing on a single target (the NCLB target, indicated by the vertical dashed line). Panels
(a) through (c) show how the spread of the profile increases as σ2 rises; panels (d) through (f) show how
the horizontal location of the profile’s maximum shifts rightward as the ‘shift’ parameter d rises; panels (g)
through (i) show how the height of the profile increases as the scaled benefit of passing, b

ψ
, rises.
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