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Abstract

We revisit identification based on timing and information set assumptions in structural
models, which have been used in the context of production functions, demand equations,
and hedonic pricing models (e.g. Olley and Pakes (1996), Blundell and Bond (2000)).
First, we demonstrate a general under-identification problem using these assumptions,
illustrating this with a simple version of the Blundell-Bond dynamic panel model. In
particular, the basic moment conditions can yield multiple discrete solutions: one at the
persistence parameter in the main equation and another at the persistence parameter gov-
erning the regressor. Second, we propose possible solutions based on sign restrictions and
an augmented moment approach. We show the identification of our approach and propose
a consistent estimation procedure. Our Monte Carlo simulations illustrate the under-
identification issue and finite sample performance of our proposed estimator. Lastly, we
show that the problem persists in many alternative models of the regressor but disappears
in some models under stronger assumptions.
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1 Introduction

A number of recent papers address endogeneity in structural models using a panel data iden-
tification strategy based on timing and information set assumptions. A preeminent example
is estimation of production functions with endogenous input choice - in this context, timing
and information set assumptions are used for identification in two distinct lines of literature:
estimation methods using a proxy variable approach (e.g. Olley and Pakes (1996), Levinsohn
and Petrin (2003), and Ackerberg, Caves, and Frazer (ACF, 2015)), and estimation based on
what are often called dynamic panel methods (e.g. Blundell and Bond (2000)). The methods
proposed in these literatures have been used in thousands of papers, both in the context of
production functions and in many other structural models. In this paper, we study an interest-
ing identification problem that can arise in these methods. This under-identification issue has
been pointed out more narrowly in prior papers (see footnote 16 of ACF and Kim, Luo, and
Su (KLS, 2019)) which concern the proxy variable approach. In this paper, we illustrate how
this is a more widespread issue in estimation methods that rely on timing and information set
assumptions. In particular, we show that the under-identification problem can also arise in the
context of dynamic panel methods. Because dynamic panel methods have a relatively simple
representation, we then use this dynamic panel context to further study the under-identification
problem and suggest possible solutions.

The identification problem we study is unusual. While typical identification problems
involve regions of non-identification, this identification problem does not - in our simple models,
the moment conditions are zero at the true parameters and non-zero locally around the true
parameters, but also at a second distinct point in the parameter space. So, the model might be
described as being locally identified (around the true parameters) but not globally identified.
There is a quadratic aspect to the model and moment conditions that leads to the two possible
solutions. This form of the non-identification also impacts some of the solutions we propose
for the issue - in particular it means that we can leverage sign restrictions to resolve it.

Before proceeding, we discuss a couple of important issues. First, we illustrate the under-
identification problem with perhaps the simplest possible dynamic panel model. In particular,
our basic model does not include fixed effects, which are relatively common in the empirical
literature using these techniques. This is mainly to aid in our initial illustration of the problem
and solutions. Later in the paper, we show that the under-identification problem also exists
in dynamic panel models with fixed effects.

Second, much of our discussion is couched in the production function context. This is be-
cause production functions are perhaps the most frequent empirical context for the application
of these identification strategies based on timing and information set assumptions. However,
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it is important to note that there are many empirical applications of dynamic panel methods
(and timing/information set assumptions more generally) in other scenarios. One interesting
example is a set of recent work on demand estimation with potential endogenous product char-
acteristics, e.g. Sweeting (2009), Grennan (2013), Lee (2013), and Sullivan (2017). Another
example is some recent work on hedonic price regression models with a time-varying unob-
served attribute that is correlated with observed attributes and follows a persistent time-series
process, e.g. Bajari, Fruehwirth, Kim, and Timmins (2012) and Bishop and Murphy (2019).
The under-identification issues and potential solutions we propose are potentially relevant for
all this work as well.

The paper proceeds by first illustrating the under-identification problem in what is perhaps
the simplest possible dynamic panel model. We then discuss very explicit potential solutions
to the problem, in part based on specifying and estimating a model for the endogenous right-
hand-side variables (inputs in the production function context) and making a sign restriction.
We illustrate how these solutions can work in practice using Monte Carlo experiments. We then
broaden our scope to consider the under-identification problem more generally, showing how
it also manifests itself in more general models (e.g. dynamic panel models with fixed effects,
different data generating processes for the right-hand-side endogenous variables, and models
with multiple right-hand-side endogenous variables). We end by using lessons from our specific
solutions for the simple example to propose more general practical advice for researchers using
these methods in practice (applicable in both proxy variable and dynamic panel approaches) -
in an effort to avoid these under-identification problems.

2 The Under-Identification Problem

Consider a panel regression model

yit = α0 + β0xit + ωit + ηit (1)

where xit is correlated with error term ωit but not with ηit. Our main context is production
function estimation, in which yit is the output, xit is an input, ωit is a serially correlated
unobserved productivity shock, and ηit is, e.g. measurement error in output that is often
assumed to be uncorrelated across time.

Because inputs are endogenously chosen by firms, we want to allow xit to be correlated
with productivity shock ωit. To capture this, we assume the following data generating process
(DGP) for xit,

xit = π0 + θ0ωit + κit, (2)
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which allows firm choice of xit to depend on productivity shock ωit as well as another persistent
market factor κit.

We allow both ωit and κit to follow first-order autoregressive processes

ωit = ρ0ωωi,t−1 + ξit (3)

and
κit = ρ0xκi,t−1 + uit, (4)

where ξit and uit are the innovation components of these processes. If xit is labor input, then κit
can be interpreted as a wage factor that is persistent over time.1 A simple identification restric-
tion that has been used in the production function literature involves assuming the following
timing and information set conditions.

Assumption 1 E[ξi,t+1|Iit] = E[ui,t+1|Iit] = 0, where Iit represents firm i’s information set at
t and includes xit up to t and yit up to t− 1.

This is a simple form of a “timing and information set” assumption. Loosely speaking, it can
be interpreted as following from an economic model where (i) firms do not observe ωit and κit
until t, and (ii) firms choose xit at t - thereby implying (with some additional, more technical
assumptions) that future innovations in ωit and κit, e.g. ξi,t+1 and ui,t+1, are uncorrelated with
xit. Note how this is consistent with (2), where xit is chosen as a function of ωit and κit.2

For estimation, one also needs to make an assumption on the measurement error in output,
e.g. E[ηit|Iit] = 0. Given this, one can consider estimating the model parameters (α, β, ρω) by
ρω-differencing the production function

yit − ρ0ωyi,t−1 = α0(1− ρ0ω) + β0(xit − ρ0ωxi,t−1) + ωit − ρ0ωωi,t−1 + ηit − ρ0ωηi,t−1
= α0(1− ρ0ω) + β0(xit − ρ0ωxi,t−1) + ξit + ηit − ρ0ωηi,t−1.

Since, by assumption, ξit, ηit, and ηi,t−1 are all conditional mean independent of Ii,t−1, it follows
1Serial correlation in productivity and/or input price shocks is widely allowed in the literature. Empirical

studies that find strong persistence in firm input prices include Alonse-Borrego and Arellano (1999) and Grieco,
Li, and Zhang (2016). But it is worth noting that while we allow ωit and κit to be serially correlated, we do
not require it.

2Also note why this is not only a timing assumption, but also an assumption about firms’ information sets
at various points in time. For example, consider an alternative information set assumption where firms observe
the shocks ωit and κit one period ahead of time, i.e. ωi,t+1 and κi,t+1 are observed at t. Since, in general,
firm choice of inputs xit may have dynamic implications (e.g. capital, labor with any sort of adjustment costs),
those choices could optimally depend on ωi,t+1 and κi,t+1, implying that ξi,t+1 and ui,t+1 would no longer be
uncorrelated with xit. On the other hand, suppose ωi,t+1 and κi,t+1 continue to be observed at t, except with
an alternative timing assumption where firms must commit to xit at t − 1. This case brings us back to ξi,t+1

and ui,t+1 being uncorrelated with xit once again.
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that

E[(yit − ρωyi,t−1)− α(1− ρω)− β(xit − ρωxi,t−1)|Ii,t−1] = 0 at (α, β, ρω) = (α0, β0, ρ0ω). (5)

This is a very simple example of a type of dynamic panel moment condition that might
be used to estimate a production function (see, e.g., Blundell and Bond (2000) and Ackerberg,
Caves, and Frazer (2015) for a discussion of how the dynamic panel approach is related to proxy
variable approaches). Note that this model is simpler than those used in many applications of
dynamic panel methods. In particular, dynamic panel approaches often include a fixed effect αi
in the production function. This typically requires a second differencing to form usable moment
conditions.3 Our simplified model (5) excludes fixed effect for expositional purposes. Later, we
show that our under-identification result also applies to a model with a fixed effect.

We know moment condition (5) equals zero at true parameters values. Here, we show that
this moment condition generally has an additional zero - one where ρω = ρ0x, i.e. where the
productivity persistence parameter is not equal to its true value, but instead equal to the
persistence parameter of the input process. This identification issue has been noted in the
context of the proxy variable literature on estimating production functions (see footnote 16 of
ACF and discussions in Kim, Luo, and Su (2019)). KLS (2019) studies this “pseudo”-solution
using Monte Carlo simulations in the context of the proxy variable literature. In this paper, we
show that this under-identification is a more general issue that also applies to the dynamic panel
literature. Studying the issue in the dynamic panel approach is particularly useful because the
framework is simpler in some respects, and this allows us to better understand the nature of
the under-identification problem. This allows us to propose more general approaches that we
think might help mitigate the problem.

To see the pseudo-solution in the current model, consider moment condition (5), where ρω
3Moreover, many dynamic panel models include lagged y (i.e. models with state dependence) instead of the

serially correlated ω in our model. The nature of these alternative models is somewhat different. Including
lagged y directly in the structural model means the persistence in y is causal (lagged y causes current y), while
in the models we study, the persistence originates from the persistent unobserved state ω. The models we study
are used more often in the production function literature (as well as the demand and hedonic literature cited in
the introduction), as there is typically more concern about serially correlated unobserved productivity shocks
than true state dependent phenomena (although there are exceptions, e.g. a production function with learning
by doing has causal state dependence).
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is incorrectly set at ρ0x, α is incorrectly set at α0 − π0

θ0
, and β is incorrectly set at β0 + 1

θ0
:

E[(yit − ρωyi,t−1)− α(1− ρω)− β(xit − ρωxi,t−1)|Ii,t−1]

= E[(yit − ρ0xyi,t−1)−
(
α0 − π0

θ0

)
(1− ρ0x)−

(
β0 +

1

θ0

)
(xit − ρ0xxi,t−1)|Ii,t−1]

= E[α0(1− ρ0x) + β0(xit − ρ0xxi,t−1) + ωit − ρ0xωi,t−1 + ηit − ρ0xηi,t−1

−
(
α0 − π0

θ0

)
(1− ρ0x)−

(
β0 +

1

θ0

)
(xit − ρ0xxi,t−1)|Ii,t−1]

= E[
π0

θ0
(1− ρ0x)−

1

θ0
(xit − ρ0xxi,t−1) + ωit − ρ0xωi,t−1 + ηit − ρ0xηi,t−1|Ii,t−1]

= E[
π0

θ0
(1− ρ0x)−

1

θ0
(
(
1− ρ0x

)
π0 + θ0

(
ωit − ρ0xωi,t−1

)
+
(
κit − ρ0xκi,t−1

)
)

+ ωit − ρ0xωi,t−1 + ηit − ρ0xηi,t−1|Ii,t−1]

= E[− 1

θ0
(
κit − ρ0xκi,t−1

)
+ ηit − ρ0xηi,t−1|Ii,t−1]

= E[− 1

θ0
uit + ηit − ρ0xηi,t−1|Ii,t−1]

= 0,

where the second and fourth equalities come from substituting in the true DGP from (1) and
(2) respectively. This derivation shows that, at this alternative parameter vector (α, β, ρ) =

(α0 − π0

θ0
, β0 + 1

θ0
, ρ0x), our simple dynamic panel moment condition essentially recovers the

innovation in the input demand shock κit (i.e. uit) rather than the innovation in the productivity
shock ωit (i.e. ξit). So given that we assume innovation in κit has the same properties as
innovation in ωit, our moment condition also equals zero at this pseudo-solution. This is
perhaps the simplest illustration of the under-identification issue we study, though we develop
more intuition for it momentarily.

Because the two zeros of the moment condition arise at different values of ρ, one may think
that the identification issue does not arise when ρ0ω = ρ0x. While this is not the focus of the
paper, we show that in this case the identification problem is even worse in that there is an
entire region of non-identification. To see this argument from the input demand equation (2),
note that if ρ0ω = ρ0x = ρ0, then

xit − ρ0xi,t−1 = π0(1− ρ0) + θ0(ωit − ρ0ωi,t−1) + (κit − ρ0κi,t−1)

= π0(1− ρ0) + θ0ξit + uit.

In other words, when ρ0ω = ρ0x, the differencing xit − ρxi,t−1 dispenses with all remaining infor-
mation in xit other than the innovation terms, which are orthogonal to Ii,t−1. It follows that,
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for an arbitrary (α, β), moment equation (5) at (α, β, ρω) = (α, β, ρ0) satisfies

0 =E[(yit − ρ0yi,t−1)− α(1− ρ0)− β(xit − ρ0xi,t−1)|Ii,t−1]

=E[(α0 − α)(1− ρ0) + (β0 − β)(xit − ρ0xi,t−1) + ξit + ηit − ρ0ηi,t−1|Ii,t−1]

=E[(α0 − α)(1− ρ0) + (β0 − β)(π0(1− ρ0) + θ0ξit + uit) + ξit + ηit − ρ0ηi,t−1|Ii,t−1]

=(α0 − α)(1− ρ0) + (β0 − β)[π0(1− ρ0)],

where the second and third equalities come from substituting in the true DGP from (1) and (2),
respectively, for which we impose ρ0ω = ρ0x = ρ0. The last result holds since, given the timing
and information set assumptions, the unobservables ξit, uit, ηit, and ηi,t−1 are orthogonal to the
information available at time t− 1. In other words, the moment equation has arbitrarily many
solutions of (α, β) that satisfy

(α0 − α)(1− ρ0) + (β0 − β)[π0(1− ρ0)] = 0.

Therefore, moment condition (5) does not contain any information on β when ρ0ω = ρ0x. In-
tuitively this is similar to the non-identification result for time-invariant variables in a fixed
effects panel model. In any case, our focus is on the existence of the pseudo-solution that arises
from moment condition (5) in a general setting. Therefore, for the remainder of the paper, we
avoid this more severe problem by assuming:

Assumption 2 ρ0ω 6= ρ0x,

which, again, is analogous to ruling out a time-invariant xit in a fixed effects model.
Returning to our main point, when ρ0ω 6= ρ0x, we have verified that the basic moment condi-

tion of the dynamic panel approach may fail identification by yielding two solutions: one at the
true AR(1) parameter of the productivity shock and the other at the AR(1) parameter of the
input demand shock. In the next section, we consider a possible identification approach that
utilizes additional moments based on the DGP of xit. Our approach also benefits from the fact
that, in the production function context (and likely in many other contexts), one may be willing
to make assumptions about the sign of θ, which can be seen as the direction of endogeneity.

3 Identification Using the Input Process

In this section, we investigate an augmented approach that aids identification by adding addi-
tional moment conditions based on the input equation (2). This equation (and its unobserved
input factor κit) depends on three additional parameters, π, θ, and ρx, so we are now considering
estimating an econometric model with six parameters (α, β, π, θ, ρω, ρx) .

7



To derive a second moment condition, we can express the input demand equation as

xit = π0 + θ0ωit + κit (6)

= π0 + θ0
(
yit − α0 − β0xit − ηit

)
+ κit

=

(
1

β0θ0 + 1

)(
π0 − θ0α0 + θ0yit − θ0ηit + κit

)
.

Since the persistent input factor κit is correlated with the various observables, a natural strategy
is to ρx-difference this equation to isolate its innovation component (just like what is done with
ωit to estimate the production function). This results in

xit−ρ0xxi,t−1 =

(
1

β0θ0 + 1

)((
1− ρ0x

) (
π0 − θ0α0

)
+ θ0

(
yit − ρ0xyi,t−1

)
− θ0

(
ηit − ρ0xηi,t−1

)
+ uit

)
.

With the model’s timing/information set assumptions, the unobserved term in this equation,(
1

β0θ0+1

)
(−θ0 (ηit − ρ0xηi,t−1) + uit), is orthogonal to Ii,t−1, i.e. to xi,t−1, yi,t−2 and further lags

of these variables. Therefore, one can construct a moment condition

E[(xit − ρxxi,t−1)−
(

1

βθ + 1

)
((1− ρx) (π − θα) + θ (yit − ρxyi,t−1)) |Ii,t−1] = 0 , (7)

which equals zero at (α, β, π, θ, ρω, ρx) = (α0, β0, π0, θ0, ρ0ω, ρ
0
x). Intuitively, (6) (and the mo-

ment derived from it, i.e. (7)) might be described as providing information on θ0 through
relating xit to the residual from the production function, which contains the productivity
shock. Given this, one might think of combining this second moment with the original
moment (5) derived in the previous section, and using both moments together to estimate
Φ = (α, β, π, θ, ρω, ρx).

However, the under-identification problem also manifests itself here. To see this, multiply
(7) by −βθ+1

θ
= −

(
β + 1

θ

)
, move the terms around to form

e2 (Φ) ≡ E[(yit − ρxyi,t−1)− (1− ρx)
(
α− π

θ

)
−
(
β +

1

θ

)
(xit − ρxxi,t−1) |Ii,t−1] = 0,

and compare this version of the new moment, e2 (Φ), to the original moment (5):

e1 (Φ) ≡ E[(yit − ρωyi,t−1)− α(1− ρω)− β(xit − ρωxi,t−1)|Ii,t−1] = 0.

Interestingly, while moments e1 (Φ) and e2 (Φ) are distinct in terms of parameters (and thus
contain distinct information on the true parameters), their structure is identical in terms of
observables yit, yi,t−1, xit, and xi,t−1. What are the implications of this?
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First, this provides an alternative proof of our original under-identification result. Because
the structure of the two moments is so similar, the fact that the new moment e2 (Φ) equals
zero at the true parameters Φ0 = (α0, β0, π0, θ0, ρ0ω, ρ

0
x) clearly implies that the original mo-

ment e1 (Φ) must equal zero at a pseudo-parameter vector that is different from the truth, i.e.
(α, β, ρω) =

(
α0 − π0

θ0
, β0 + 1

θ0
, ρ0x

)
.

More importantly at this point, this also shows that simply adding moment e2 (Φ) does not
solve the under-identification problem. In particular, if β is set to β0 + 1

θ0
to “incorrectly” zero

moment e1 (Φ) at the pseudo-solution, then one can also set θ = −θ0, which means that the
coefficient on (xit − ρxxi,t−1) in e2 (Φ) equals

β +
1

θ
= β0 +

1

θ0
+

1

−θ0
= β0,

which can help zero e2 (Φ) as well (because this is the true coefficient on (xit − ρωxi,t−1) in
e1 (Φ)). In fact, examination of e2 (Φ) and e1 (Φ) together implies there is a joint pseudo
solution to both moments, where

ΦP =
(
α0 − π0/θ0, β0 + 1/θ0, π0,−θ0, ρ0x, ρ0ω

)
. (8)

Essentially, this pseudo-solution is simply reversing the moments (which is possible because
of the similar structure in terms of observables). The first moment equals zero at the pseudo-
parameters, because those pseudo-parameters make it equivalent to the second moment at
the true parameters. And similarly, the second moment equals zero at the pseudo-parameters
because those pseudo-parameters make it equivalent to the first moment at the true parameters.

While this shows that simply adding a second moment condition based on the input choice
equation does not in itself solve the under-identification problem, examination of the pseudo-
solution (8) does lead to two important conclusions that we rely on in our proposed solutions.
First, note that at the pseudo-solution, coefficient θ is negated, i.e. θP = −θ0. In other words,
if in the true DGP, firm choice of input level xit depends positively on productivity shock
ωit, then in the pseudo-DGP described by the pseudo-parameters, firm choice of input level xit
depends negatively on productivity shock ωit. This observation can be helpful at distinguishing
true parameters from pseudo-parameters as, in many cases, one may be willing to a priori sign
(e.g. in the production function context, firm profit maximization would likely imply θ0 > 0; in
other econometric contexts, one might be willing to sign the endogeneity problem (e.g. Manski
and Pepper (2000)). Second, note that pseudo-parameter βP = β0 + 1/θ0. This also implies
that, if we know the sign of θ0, we know whether βP is higher or lower than β0.
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3.1 Discussion

Before discussing some additional restrictions of the model, we highlight two additional points.
First, while we focus on a sign restriction as a crucial part of trying to address the under-
identification problem, there are other possible approaches. In particular, an economic model
might make functional restrictions between the six parameters (α, β, π, θ, ρω, ρx). Production
functions are a particularly good example of this, as if perfectly competitive firms choose xit to
statically profit maximize (where κit is proportional the (log) cost of a unit of the input), then
firm FOC implies that θ = 1

1−β . Imposing this restriction would resolve the under-identification
problem in the joint moment conditions e1 (Φ) and e2 (Φ). This is directly related to work in the
production function literature that imposes FOC from profit maximization to make inferences
on production function parameters, e.g. Gandhi, Navarro, and Rivers (2020). We do not pursue
this approach here as we want to instead investigate broader approaches to addressing the
under-identification problem. In many examples where dynamic panel methods are used, one
might be unwilling to make such cross-equation restrictions. Even in the production function
case, one might be unwilling to assume perfectly competitive static profit maximization (or one
might want to allow the objective function to depend on other factors that imply θ 6= 1

1−β ).
4

Second, note that ΦP is actually not the only pseudo-solution to the joint moment conditions
e1 (Φ) and e2 (Φ). In particular, consider

Φ∞1 =
(
α0, β0, anything,∞, ρ0ω, ρ0ω

)
and

Φ∞2 =
(
α0 − π0/θ0, β0 + 1/θ0, anything,∞, ρ0x, ρ0x

)
.

Note that these additional spurious solutions are both obtained by setting θ = ∞. In doing
this, e1 (Φ) and e2 (Φ) essentially become the same equation, since the coefficient on the x terms
are the same, i.e. β0 = β0 + 1/θ0. Intuitively, the spurious solutions Φ∞1 and Φ∞2 are not
giving the two solutions we need to distinguish between – instead, they are finding the same
solution twice. Furthermore, it is not clear whether this solution is the truth or ΦP . This
issue is what leads us to study additional moment restrictions implied by the model.

3.2 Additional Moment Restrictions

To further aid in addressing the under-identification problem, we derive some additional equa-
tions generated by our model. First, we further work with input demand function (6) to derive

4For example, if productivity shock ωit is allowed to impact the unit cost of input, then cross-equation
restriction θ = 1

1−β would not hold.
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a reduced form process by which xit evolves over time. Given that we can invert out the un-
observed productivity term as ωt = xt−κt−π0

θ0
, we can use the AR(1) process for ωit and (3), by

replacing ωt with xt−κt−π0

θ0
. By rearranging terms, we obtain

xit = π0 + θ0ωit + κit

= π0 + θ0
(
ρ0ωωi,t−1 + ξit

)
+ ρ0xκi,t−1 + uit

= π0 + θ0ρ0ω

(
xi,t−1 − κi,t−1 − π0

θ0

)
+ θ0ξit + ρ0xκi,t−1 + uit

= (1− ρ0ω)π0 + ρ0ωxi,t−1 + (ρ0x − ρ0ω)κi,t−1 + uit + θ0ξit, (9)

where for the second equality, we utilize the AR(1) process of κt, i.e., (4). We then apply the
ρx-differencing again to remove κi,t−1 as follows.

xit = (1− ρ0ω)π0 + ρ0ωxi,t−1 + (ρ0x − ρ0ω)(ρ0xκi,t−2 + ui,t−1) + uit + θ0ξit

= (1− ρ0ω)π0 + ρ0ωxi,t−1 + uit + θ0ξit

+ (ρ0x − ρ0ω){ρ0x
1

(ρ0x − ρ0ω)
(xi,t−1 − (1− ρ0ω)π0 − ρ0ωxi,t−2 − ui,t−1 − θ0ξi,t−1) + ui,t−1}

= (1− ρ0ω)π0 + ρ0ωxi,t−1

+ ρ0x(xi,t−1 − (1− ρ0ω)π0 − ρ0ωxi,t−2 − ui,t−1 − θ0ξi,t−1) + (ρ0x − ρ0ω)ui,t−1 + uit + θ0ξit

= (1− ρ0ω)(1− ρ0x)π0 + (ρ0ω + ρ0x)xi,t−1 − ρ0xρ0ωxi,t−2 + uit − ρ0ωui,t−1 − ρ0xθ0ξi,t−1 + θ0ξit,
(10)

where in the first equality we replace κi,t−1 with ρ0xκi,t−2 + ui,t−1 using (4), and in the second
equality, we replace κi,t−2 in terms of x using (9). This result shows that xt indeed follows a
type of ARIMA(2,1) process, with two moving average terms, ut and ξt.

Because we know the properties of the unobserved terms in (10), we can consider estimating
the parameters. While our model implies that xt−1 is correlated with both ut−1 and ξt−1,
one could consider using an IV estimation strategy using xt−2 and xt−3 as instruments. This
regression would identify π0, and two composite parameters, ψ0

1 = ρ0ω+ρ0x and ψ0
2 = −ρ0xρ0ω that

are functions of ρ0x and ρ0ω. However, despite there being these two composite parameters in two
unknowns, they do not uniquely identify ρ0x and ρ0ω. Essentially, this is another representation
of the under-identification problem from above.

Interestingly, however, this new equation (10) does add something when combined with
moments e1 (Φ) and e2 (Φ) studied above. Recall that these two moments have two additional
pseudo-solutions, Φ∞1 and Φ∞2 , where Φ∞1 involves ρω = ρx = ρ0ω, and Φ∞2 involves ρω =

ρx = ρ0x. We now show that enforcing the additional information in (10) rules out both of these
pseudo-solutions, i.e. given that (10) identifies ψ0

1 and ψ0
2 (asymptotically), the two-equation
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system

ψ0
1 = ρω + ρx

ψ0
2 = −ρxρω

has no solutions where the two ρ parameters are equal.
First, recall that we already assume that ρ0ω 6= ρ0x (as explained in the previous section, an

absence of this assumption would give us even more severe identification problems5). Next,
note that if the two unknowns are equal in the above system, i.e., ρx = ρω, we would need
ψ0
2 = −[

ψ0
1

2
]2. On the other hand, the true parameters satisfy ψ0

1 = ρ0x + ρ0ω and ψ0
2 = −ρ0xρ0ω.

Combining these two conditions gives −ρ0xρ0ω = −[ρ
0
x+ρ

0
ω

2
]2, which is equivalent to (ρ0x−ρ0ω)2 = 0,

a contradiction to our maintained assumption. Therefore, forcing the two coefficients in (10) to
equal ρω + ρx and −ρxρω, respectively, rules out Φ∞1 (for which we should have ρω = ρx = ρ0ω)
and Φ∞2 (for which we should have ρω = ρx = ρ0x).

While (10) is useful for understanding the under-identification and excluding Φ∞1 and Φ∞2 ,
using it in the estimation would make directly estimating this ARIMA(2,1) equation impracti-
cal. Due to the endogeneity of regressors in the ARIMA(2,1) process, we need to use instruments
further lagged than Ii,t−1, such as xt−2 and xt−3. This may lead to imprecise estimates because
further lagged instruments are typically less informative.6 To this end we do not implement the
additional moment based on the above. Instead, we form a similar moment as follows. First,
invert (9) to obtain

κi,t−1 =
1

(ρ0x − ρ0ω)

(
xit − (1− ρ0ω)π0 − ρ0ωxi,t−1 − uit − θ0ξit

)
,

which implies

κit = ρ0xκi,t−1 + uit =
ρ0x

(ρ0x − ρ0ω)
[xit − (1− ρ0ω)π0 − ρ0ωxi,t−1 − uit − θ0ξit] + ut. (11)

Also we plug ωt, inverted from the input demand equation (2), into the production function
and obtain

yit = α0 + β0xit +
xit − π0 − κit

θ0
+ ηit = (α0 − π0/θ0) + (β0 + 1/θ0)xit − κit/θ0 + ηit. (12)

5Relatedly, when ρ0ω = ρ0x, (9) shows that xit follows only an AR(1) process and hence one (asymptotically)
obtains a zero coefficient on term xi,t−2 if one estimates the ARIMA(2,1) equation (10). Therefore, at least
in theory, one could test whether ρ0ω = ρ0x holds in the true DGP. In other words, the very fact that one
(asymptotically) obtains a non-zero coefficient on xi,t−2 rules out the case ρ0ω = ρ0x.

6Utilizing the ARIMA(2,1) equation (10), our Monte Carlo experiments show poor estimates of the ρ pa-
rameters. These results are available upon request.

12



Then, combining (11) and (12), we obtain

yit = (α0 − π0/θ0) + (β0 + 1/θ0)xit

−{ ρ0x
θ0(ρ0x − ρ0ω)

[xit − (1− ρ0ω)π0 − ρ0ωxi,t−1 − uit − θ0ξit] + uit/θ
0}+ ηit

= γ00 + γ01xit + γ02xi,t−1 + eit, (13)

where γ00 = α0 + π0ρ0ω(1−ρ0x)
θ0(ρ0x−ρ0ω)

, γ01 = [(β0 + 1/θ0) − ρ0x
θ0(ρ0x−ρ0ω)

] = β0 − ρ0ω
θ0(ρ0x−ρ0ω)

, γ02 = ρ0xρ
0
ω

θ0(ρ0x−ρ0ω)
and

eit = ρ0ωuit+θ
0ρ0xξit

θ0(ρ0x−ρ0ω)
+ ηit. Since the unobservables in et are all mean independent of Ii,t−1, we can

form the following moment condition

e3 (Φ) ≡ E[yit − γ0 − γ1xit − γ2xi,t−1|Ii,t−1] = 0.

In summary, we have derived three moments, e1 (Φ), e2 (Φ), and e3 (Φ) – one based on the
production function, one based on the input demand function, and one based on a higher order
time series properties of these functions. Note how estimation using the additional moment
e3 (Φ) implicitly helps impose ρω 6= ρx; when ρω approaches ρx, the composite coefficients
γ0, γ1, and γ2 become unbounded. As we have discussed previously, imposing ρω 6= ρx also
naturally rules out pseudo-solutions Φ∞1 and Φ∞2 . Then, combined with a sign restriction on
θ0, this should resolve the under-identification problem, and we implement this computationally
in the next section.

4 Joint Estimation

In this section, we propose a joint estimation approach that estimates all parameters in the
benchmark model described in Section 2. It is worth noting that this estimator relies on the
specifics in this model and builds on our identification result in Section 3. Specifically, it
exploits the known distance between the two solutions, the known sign of endogeneity, i.e. θ,
and the additional moment restrictions derived from a specific input choice equation. Later on,
in Section 7, we discuss some different ways in which one might take the intuition from this
section (as well as previous sections) to more general models. In the simple model, we start
with an initial estimate of β from the dynamic panel approach, which could be either the true
or the spurious solution in finite samples, and then finalize the estimate by two simple searches
along the direction of θ. To facilitate our global minimization, we concentrate out (ρω, ρx, α, π)

and estimate (θ, β) jointly.
We first illustrate our estimation strategy in Figure 1, and then formally develop our es-

timation procedure below. In this illustration, we assume only β is unknown. The red solid

13



line represents the GMM objective function using the usual dynamic panel approach. The
blue dashed line represents our proposed GMM objective function by augmenting the moment
conditions generated from the input demand process. In the first step, we use the dynamic
panel approach (red solid line) to find an initial estimate of β, say β̃. As suggested in Section
2, estimate β̃ can be either true parameter β (point A in the figure), or spurious solution β + 1

θ

(point B). Since we cannot immediately tell whether β̃ equals β or β + 1
θ
, we hypothesize it

as point A (true minimum) or B (spurious minimum) and try to minimize the proposed GMM
objective function in the direction that is suggested by the A or B hypotheses. We have two
possible cases.

In the first case, the dynamic panel approach yields point A, i.e., β̃ = β. 1) If we hypothesize
it as A (the true solution), we would fix the β estimate to be β̃ and search for θ. In this case,
we seek no further improvement in the direction of β and stay at the minimum of the blue line,
point A. 2) If we hypothesize it as B (the spurious solution), we would fix the β + 1

θ
estimate

to be β̃ and search for θ > 0. Or equivalently, we search for β on the left-hand side of point A.
In this case, the objective function is strictly higher than point A for any θ > 0. Either way,
our approach yields point A if the dynamic panel approach does.

In the second case, the dynamic panel approach yields point B, i.e., β̃ = β + 1
θ
. 1) If we

hypothesize it as A (the true solution), we would fix the β estimate to be β̃ and search for
θ. In this case, we seek no further improvement in the direction of β and stay at point B′ in
the blue line, straight above point B. 2) If we hypothesize it as B (the spurious solution), we
would fix the β + 1

θ
estimate to be β̃ and search for θ > 0. Or equivalently, we search for β on

the left-hand side of point B. In this case, the proposed objective function (blue dashed line)
is minimized at point A. By comparing the two hypotheses (points B′ and A), we again arrive
at point A. Therefore, our approach yields point A even if the dynamic panel approach yields
point B (the spurious minimum).

14



dynamic panel

ours

A B

B′

β β + 1
θ

Figure 1: Illustration of the Proposed Estimator

Now, we formally describe the above estimation procedure in four steps.
Step 1: Obtain an initial estimate of β from the dynamic panel approach. Take

the ρω differencing of yt and yt−1 to get

yt − βxt = ρω(yt−1 − βxt−1) + (1− ρω)α + ξt + ηt − ρωηt−1.

Fix a trial value of β, and construct both yt−βxt and yt−1−βxt−1 to run the above regression.
While yt−1 and ηt−1 are correlated, parameter ρω, profiled by β (i.e. for a given β), can
be consistently estimated using IV regression. For example, we can use yt−2 − βxt−2 as the
instrument for yt−1 − βxt−1 to obtain consistent estimates ρ̂ω and α̂ =

̂(1−ρω)α
1−ρ̂ω , profiled by β.

To obtain a moment condition for β from these profiled estimates, we can construct residual e1t
as

e1t = ξt + ηt − ρωηt−1 = yt − βxt − ρ̂ω(yt−1 − βxt−1)− (1− ρ̂ω)α̂, (14)

and construct moment condition (i) as:

E[e1t |It−1] = 0,

where we can take, e.g., It−1 = xt−1 or It−1 = (xt−1, xt−2). Then, search over β to minimize
the GMM objective function based on moment condition (i). This gives us β̃, which is either
the true solution or the spurious solution. Step 1 can be regarded as a concentrated dynamic
panel approach.

Step 2: Estimate θ by hypothesizing the initial estimate of β as the true solution.
Assume that β̃ is the true parameter, i.e. β̃ = β0. Fix β = β̃, take a trial θ > 0, and stack up
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the three moments constructed following Step 2(a) and 2(b) below, i.e.,

E[(e1t , e
2
t , e

3
t )|It−1] = 0, (15)

where we can again take It−1 = xt−1 or include further lagged instruments. Minimize the
proposed GMM objective function, based on the moments (15), by searching over θ. The
starting values of θ can be a grid search on R+, i.e. imposing a sign restriction. We then obtain
estimates (β̂A = β̃, θ̂A) under (true minimum) hypothesis A.

2(a) Given θ, construct both yt−(β̃+1/θ)xt and yt−1−(β̃+1/θ)xt−1 to run another regression.
In particular, take the ρx differencing of yt and yt−1 and obtain

yt − (β̃ + 1/θ)xt = ρx(yt−1 − (β̃ + 1/θ)xt−1) + (1− ρx)(α− π/θ)− ut/θ + ηt − ρxηt−1.

Parameter ρx, profiled by θ, can be consistently estimated with an IV regression by using
yt−2 − (β̃ + 1/θ)xt−2 as the instrument for yt−1 − (β̃ + 1/θ)xt−1. As in Step 1, we obtain
ρ̂x , π̂ = θ(α̂−

̂(1−ρx)(α−π/θ)
1−ρ̂x ), and residual e2t as

e2t = −ut/θ+ηt− ρ̂xηt−1 = yt− (β̃+ 1/θ)xt− ρ̂x(yt−1− (β̃+ 1/θ)xt−1)− (1− ρ̂x)(α̂− π̂/θ),

and construct moment condition (ii) for θ as:

E[e2t |It−1] = 0.

2(b) Again, for a given θ, construct residual e3t from (13) as

e3t =
ρωut + θρxξt
θ(ρx − ρω)

+ ηt = yt − γ0 − γ1xt − γ2xt−1,

where γ0 = α + πρω(1−ρx)
θ(ρx−ρω) , γ1 = β − ρω

θ(ρx−ρω) , and γ2 = ρxρω
θ(ρx−ρω) . Plugging in the profiled

estimates β̃, ρ̂ω, ρ̂x, α̂, π̂ from Step 1 and 2(a) to obtain e3t , we can construct our moment
condition (iii) as a function of θ:

E[e3t |It−1] = 0.

Step 3: Estimate θ by hypothesizing the initial estimate β as the spurious solu-
tion.
Assume that β̃ is the spurious solution, i.e. β̃ = β0 + 1/θ0. Fix β = β̃ − 1/θ profiled by θ.
Repeat Step 2 (with β̃ − 1/θ replacing β̃ in the above description) and obtain another set of
estimates (β̂B = β̃ − 1/θ̂B, θ̂B) under hypothesis B.

16



Step 4: Final Estimate
Compare the two values of the GMM objective function obtained in Step 2 and 3, respectively:
the estimates associated with the smaller objective function value is our final estimate.

5 Monte Carlo Simulation

Our design of the simulations is twofold. First, we conduct experiments to demonstrate the
identification issues of the original dynamic panel approach. Second, we adopt our joint estima-
tion approach as discussed in Section 4 and demonstrate its performance. Our DGP is based
on the dynamic panel setup described in Section 2.

For the true parameter values, we set β0 = 0.6, θ0 = 1, ρ0x = 0.5, ρ0ω = 0.7, and α0 = 0, π0 =

0. The i.i.d shocks ξit, uit and ηit are normally distributed: ξit ∼ N (0, 1), uit ∼ N (0, 1) and
ηit ∼ N (0, 0.12). To construct the productivity series and the persistent input factor from the
AR(1) processes (3) and (4), we set the initial values ωi0 = 0 and κi0 = 0. Based on the setup
above, we simulate 1,000 panel datasets, each with 1,000 firms and 10 time periods.7

5.1 Original Dynamic Panel Procedure

We follow the dynamic panel literature (Blundell and Bond (2000), Ackerberg, Caves, and
Frazer (2015)) and adopt the concentrated moment approach for estimation described by Step
1 in Section 4. From residual function (14), we use the following moment condition:

E[e1it × Ii,t−1] = 0

for GMM estimation, where Ii,t−1 denotes information available at time t− 1. We use two lags
of x as our instruments, i.e., Ii,t−1 = (xi,t−1, xi,t−2)

′.8

Our main point is to illustrate how the dynamic panel procedure sometimes ends up near
the true parameters and sometimes ends up near the pseudo-parameter. For each simulated
dataset we randomly pick a starting value of β from the uniform distribution on [0.5, 1.5] and
estimate β by minimizing the objective function using fminunc in Matlab. Figure 2 clearly
illustrates the two distinctive modes of the dynamic panel – one is located around the true
value of 0.6, and the other is around the spurious minimum of 1.6. Specifically, 31.8% of the

7To minimize the influence of the random initial values of ωi0 and κi0, we generate 40 periods of data and
select the last 10 periods of data for our experiments.

8In both the dynamic approach and our joint estimation approach, we use xi,t−1 and xi,t−2 as “instruments”
to form unconditional moments, as the overidentified model appeared to help with numeric stability - important
when doing many Monte Carlo replications. Because of its simplicity, and because the scale of our moments
is similar, we simply use the identity matrix to weight the moments. One important note in practice is that,
in our joint estimation procedure, the same weighting matrix must be used for both Step 2 and Step 3 in order
for comparison in Step 4 to be valid.
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Table 1: Dynamic Panel and Joint Estimation Approaches

Panel A: Dynamic Panel Approach
Coefficient # of Replications Mean Std Dev Min Max

β 1,000 0.918 0.475 0.226 1.836
Percentage of spurious minimum

β > 1 31.8%
Panel B: Joint Estimation Approach

Coefficient # of Replications Mean Std Dev Min Max
β 1,000 0.597 0.075 0.226 0.765
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Figure 2: Dynamic Panel Approach

replications converge to the spurious minimum. As a consequence, the mean of the 1,000-
simulation estimate of β is biased upward, i.e. 0.918, and the standard deviation is equal to
0.475 (see Panel A of Table 1).

5.2 Experiments with the Joint Estimation Approach

Next, we adopt our joint estimation approach to jointly estimate (β, θ), as described in Section
4. We first obtain an initial estimate of β from the dynamic panel approach, as in the prior
section with a starting value randomly selected from [0.5, 1.5]. This means that the initial
estimate of β is sometimes near the true parameter, and sometimes near the pseudo-parameter.
In each of Stages 2 and 3, we search over θ using a grid of starting values between 0 and 2 (in
increments of 0.2). We impose a positivity constraint on θ by searching over γ = −log(θ)9

In this experiment, we see clearly from Figure 3 that the distribution of the estimated
parameter β only has a single mode, near the true minimum of 0.6. Panel B of Table 1
shows that the experiment yields a close-to-unbiased estimate of β: the mean across the 1,000
replications is 0.597. Compared to the estimates from the dynamic panel approach (Panel
A of Table 1), the standard deviation of the estimated β by this new approach also declines
significantly to 0.075. Clearly, our proposed joint estimation approach outperforms the original
dynamic panel approach in that it appears to avoid the spurious minimum.

9Note that if we used a grid for the starting point in the original DP procedure, we would typically find
multiple zeros (or “close to” zeros) - one near the true parameter, and one near the pseudo-parameter. But since
the DP objective function cannot distinguish between them, this would not help in and of itself.
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Figure 3: Joint Estimation Approach

5.3 DGPs with varying parameters

5.3.1 Varying ρ0x

In this experiment, we modify the DGPs by varying the values of ρ0x from 0.3 to 0.6 with a
step size of 0.1.10 For each DGP, we again simulate 1,000 panel datasets of 1,000 firms and
10 time periods. The remaining parameters are set as in the baseline DGP. We experiment
with both the dynamic panel and our proposed joint estimation approach, again with xt−1 and
xt−2 as the instruments for the moment conditions. Table 2 shows that our proposed approach
outperforms the dynamic panel approach by avoiding the spurious solution, which continues
to be problematic for the dynamic panel approach (in 26.0% to 37.1% of the 1,000 simulation
runs).

5.3.2 Varying θ0

In this experiment, we modify the DGPs by varying the values of θ0 from 0.6 to 1 with a step
size of 0.1. Examining (2), note that the degree of endogeneity grows as θ0 gets larger. Other
than θ0, the setup is the same as above. The results again show that the proposed approach
consistently outperforms the dynamic panel approach by avoiding the spurious minimum. For

10We do not experiment with ρ0x = 0.7 = ρ0ω for which the dynamic panel moment has more severe non-
identification with infinitely many solutions, as discussed in Section 2. One would expect deteriorating per-
formances of both the dynamic panel approach and the augmented moment approach as ρ0x becomes closer to
ρ0ω. In other words, if we were in (or near) this knife-edge case, one would obtain very large standard errors
regardless of the estimation procedure used.
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Table 2: Simulation Results for Varying ρ0x

Estimated β (β0 = 0.6)
Dynamic Panel Joint Estimation

ρ0x # of Replications Mean Std Dev Percentage of β > 1 Mean Std Dev
0.3 1,000 0.862 0.449 26.0% 0.604 0.079
0.4 1,000 0.876 0.457 28.1% 0.592 0.059
0.5 1,000 0.954 0.487 35.6% 0.594 0.077
0.6 1,000 0.963 0.514 37.1% 0.582 0.167
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Table 3: Simulation Results for Varying θ0

Estimated β (β0 = 0.6)
Dynamic Panel Joint Estimation

θ0 # of Replications Mean Std Dev Percentage of β > 1 Mean Std Dev
0.6 1,000 0.847 0.597 14.7% 0.602 0.061
0.7 1,000 0.915 0.606 22.0% 0.597 0.062
0.8 1,000 0.901 0.542 24.2% 0.600 0.067
0.9 1,000 0.957 0.526 32.3% 0.596 0.073
1 1,000 0.918 0.475 31.8% 0.597 0.075
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this experiment as well, the spurious solutions continue to exist for the dynamic panel approach
(in 14.7% to 32.3% of the 1,000 simulation runs). However, the effect of varying θ0 on the
performance of the dynamic panel approach is non-trivial since θ0 influences both the degree
of endogeneity and the location of the spurious minimum.

6 Extensions

As noted earlier, our above model is a very simplified version of the traditional dynamic panel
model. We now show how the under-identification problem also exists in some more general
models.

6.1 Model with Fixed Effects

In particular, traditional dynamic panel models include fixed effects in the main equation, e.g.

yit = αi + β0xit + ωit + ηit. (16)

Here, we show that this model also has the under-identification problem.
In model (16), forming usable moments requires an additional difference to remove the fixed

effect αi. More specifically, the ρ0ω-difference

yit − ρ0ωyi,t−1 = αi(1− ρ0ω) + β0(xit − ρ0ωxi,t−1) + ξit + ηit − ρ0ωηi,t−1.

contains αi, so an additional first difference is typically done to obtain(
yit − ρ0ωyi,t−1

)
−
(
yi,t−1 − ρ0ωyi,t−2

)
= β0

(
(xit − ρ0ωxi,t−1)− (xi,t−1 − ρ0ωxi,t−2)

)
+ ξit − ξi,t−1 +

(
ηit − ρ0ωηi,t−1

)
−
(
ηi,t−1 − ρ0ωηi,t−2

)
Since this eliminates αi, one can proceed to estimate β0 with a moment condition based on
this, e.g.

E[(yit − ρωyi,t−1)−(yi,t−1 − ρωyi,t−2)−β ((xit − ρωxi,t−1)− (xi,t−1 − ρωxi,t−2)) |Ii,t−2] = 0. (17)

To show that this moment condition may also have the under-identification problem, again
consider a DGP for input xit. Since the DGP for yit includes a fixed effect, it is natural to
include one here as well, e.g.

xit = πi + θ0ωit + κit.
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Following the previous argument, substitute the inverted production function into

xit = πi + θ0
(
yit − αi − β0xit − ηit

)
+ κit

=

(
1

β0θ0 + 1

)(
πi − θ0αi + θ0yit − θ0ηit + κit

)
and ρ0x-difference to obtain

xit−ρ0xxi,t−1 =

(
1

β0θ0 + 1

)((
1− ρ0x

) (
πi − θ0αi

)
+ θ0

(
yit − ρ0xyi,t−1

)
− θ0

(
ηit − ρ0xηi,t−1

)
+ uit

)
.

First differencing this equation results in(
xit − ρ0xxi,t−1

)
−
(
xi,t−1 − ρ0xxi,t−2

)
=

(
θ0

β0θ0 + 1

)((
yit − ρ0xyi,t−1

)
−
(
yi,t−1 − ρ0xyi,t−2

))
−
(

θ0

β0θ0 + 1

)((
ηit − ρ0xηi,t−1

)
−
(
ηi,t−1 − ρ0xηi,t−2

))
+

(
1

β0θ0 + 1

)
(uit − ui,t−1) ,

and given that the unobservable terms in this equation are assumed to be mean independent
of Ii,t−2, this implies

E[
(
yit − ρ0xyi,t−1

)
−
(
yi,t−1 − ρ0xyi,t−2

)
−
(
β0 +

1

θ0

)(
(xit − ρ0xxi,t−1)− (xi,t−1 − ρ0xxi,t−2)

)
|Ii,t−2] = 0.

(18)
Comparing (18) to (17), it is clear that there will be a pseudo-solution to moment condition

(17) in the same location as the model without a fixed effect, i.e. where ρω = ρ0x and β = β0+ 1
θ0
.

Note that this argument does not depend on the existence of a fixed effect in the input demand
equation, i.e. there is a pseudo-solution even if πi = π.

6.2 Multiple Endogenous Variables

We next examine the under-identification problem where we have multiple variable inputs in
the production function context or, more generally, multiple endogenous regressors. Consider
a panel regression model with two endogenous regressors x and z,

yit = α0 + β0xit + γ0zit + ωit + ηit, (19)

where

xit = π0
x + θ0ωωit + θ0κκit + θ0℘℘it,

zit = π0
z + δ0ωωit + δ0κκit + δ0℘℘it.
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Here, ℘it and κit denote two persistent market factors – such as input prices – and they follow
autoregressive processes ℘it = ρ0z℘i,t−1 + vit and κit = ρ0xκi,t−1 + uit, respectively. Note that
both inputs depend on both factors – this is typically the case in practice as the optimal choice
of one variable input typically depends on the prices of all variable inputs.

On the one hand, exploiting the AR(1) process of productivity ωit = ρ0ωωi,t−1 + ξit, and
ρ0ω-differencing leads to

yit − ρ0ωyi,t−1 = α0(1− ρ0ω) + β0(xit − ρ0ωxi,t−1) + γ0(zit − ρ0ωzi,t−1) + ξit + (ηit − ρ0ωηi,t−1),

which can be used for constructing the following moment condition, as a generalization of
moment condition (5),

E[yit − ρωyi,t−1 − α(1− ρω)− β(xit − ρωxi,t−1)− γ(zit − ρωzi,t−1)|Ii,t−1] = 0. (20)

On the other hand, consider a linear combination of the two endogenous inputs

δ0κxit − θ0κzit = (δ0κπ
0
x − θ0κπ0

z) + (δ0κθ
0
ω − θ0κδ0ω)ωit + (δ0κθ

0
℘ − θ0κδ0℘)℘it,

where the expression on the right-hand side follows from the two input functions. This shows
that we can write a linear combination of two inputs as a linear function of two sources of
persistence (one for productivity and one for market factor) – similar in structure to the one
input in the benchmark model. Solving for ωit and plugging it into the output equation (19)
leads to a similar structure of the output function, except that ωit is replaced by ℘it and the
coefficients on inputs are different from the true production function parameters. Notice that
this is similar in structure to the alternative expression of the output function like the equation
we derived for the one input case (12) .

Therefore, following similar arguments as before, we can derive a spurious solution of mo-
ment function (20) by taking ρ0z-differencing due to the autoregressive process of ℘it, instead of
the productivity. As the result, this spurious solution is at the dynamic parameter ρω = ρ0z of
the persistence market factor ℘it, not the productivity. Similarly, a different linear combination
δ0℘xit−θ0℘zit leads to another spurious solution of moment (20). This solution is at the dynamic
parameter ρω = ρ0x of the persistence market factor κit.

In summary, we conclude that when the production function has multiple inputs, the dy-
namic panel moments yield the same number of spurious solutions as the number of flexible
inputs that have persistent shocks.
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6.3 Fixed Input

The under-identification problem still exists when we have both fixed and flexible inputs. Con-
sider a panel regression model with a flexible input x and a fixed input z like capital as follows

yit = α0 + β0xit + γ0zit + ωit + ηit, (21)

where the flexible input function is given by

xit = π0 + θ0ωωit + θ0zzit + κit,

and persistent market factor κit follows the AR(1) process κit = ρ0xκi,t−1 + uit as before.
Solving for ωit in the input function and plugging it into (21) leads to a similar structure

of the alternative expression of the output function, except that ωit is replaced by κit and
the coefficients on inputs are different from the true production function. Following similar
arguments as before, we can derive a spurious solution of the dynamic panel moment due to
this similar structure where the spurious solution is at the dynamic parameter ρω = ρ0x of
persistence market factor κit.

6.4 Beyond Linearity and AR(1)

In the above three extensions to our basic model, we were able to analytically show that the
pseudo-solution (or pseudo-solutions) continue to be a potential problem. In this section, we
consider some additional extensions. While we are unable to analytically show the existence of
pseudo-solutions in these extensions, we are able to use simulations to show that they continue
to exist, at least in neighborhoods of our benchmark model. In particular, we consider relaxing
the assumed linearity of the input demand function and the AR(1) process for unobserved shock
κit in that input demand function.

It is important to note that we continue to assume that ωit follows an AR(1) process. This
means that our basic dynamic panel moment condition, i.e. e1 (Φ), continues to be zero at the
true parameter value. What we are focused on is not the zero at the true parameter value,
but whether there continues to be a pseudo-solution (or pseudo-solutions), and the location
of such pseudo-solutions. To do this, we start with the same basic DGP of Section 5 as our
benchmark case and consider perturbations of this model. There is no need to do multiple
Monte Carlo replications to study this – it is easier to simply boost the number of observations
(to 200,000) to simulate the “asymptotic” objective function and examine the location of zeros.
In the benchmark case we know there are “asymptotic” zeros at 0.6 and 1.6. In the alternative
models, we know there is an “asymptotic” zero at 0.6. The question is whether there are other
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pseudo-solutions as well.
First, we consider an alternative model where the input function is a non-linear function of

the productivity process, i.e.:

xit = π0 + θ01ωit + θ02ω
2
it + κit,

where θ01 = 1, as in the benchmark model. Figure 4 shows the basic dynamic panel objective
function (based on e1 (Φ)), for both the benchmark model (without nonlinearity, i.e. θ02 = 0)
and this alternative model where we set θ02 = 0.5 and 1.11 For easy visualization, we display the
objective function as a function of just β by concentrating out the constant term and AR(1)
parameter.12 The objective functions for the alternative model also have pseudo-solutions, at
β quite close to the pseudo-solution in the benchmark model. Interestingly, to the right of
the pseudo-solution, the objective function becomes flatter than the benchmark case, especially
when θ02 = 1. However, the main finding is that the pseudo-solution does not appear to disappear
when the xit process is not linear in ωit.

Figure 4: Nonlinearity in the Productivity Process

Second, we consider a model where there is a nonlinearity in the first-order Markov process
11For ease of comparison, we rescale objective functions such that they are equal at β = 0 in Figures 4-7.
12To concentrate out ρω and the constant, for a candidate β = β̃, we estimate ρω and the constant with the

linear equation (
yit − β̃xit

)
= α(1− ρω) + ρω

(
yi,t−1 − β̃xi,t−1

)
+ ξit + ηit − ρωηi,t−1

using instrumental variables with
(
yi,t−2 − β̃xi,t−2

)
as an instrument for

(
yi,t−1 − β̃xi,t−1

)
. So that this ob-

jective function illustrates exact zeros (rather than “close to zeros”), we only interact moment e1 (Φ) with xi,t−1.
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for κit. Specifically, we consider:

κit =
eθ

0
2 |κi,t−1|

1 + eθ
0
2 |κi,t−1|

κi,t−1 + uit.

When we set θ02 = 0, e
θ02|κi,t−1|

1+e
θ02|κi,t−1| = 0.5 ∀κi,t−1, so this model is equivalent to the benchmark

case (where the AR(1) parameter = 0.5). When θ02 > 0, the Markov-process is non-linear. One
interpretation of this is that the extent to which κi,t−1 depreciates depends on the level of |κi,t−1|.
Note that since |κi,t−1| is positive, the heterogeneous depreciation rate in this model is between
0.5 and 1. Figure 5 shows the (concentrated) objective function for this model when θ02 = 0.5

and 0.75. Again, the pseudo-solution persists, but moves down relative to the benchmark
model. In these examples, the pseudo-solutions are at approximately 1.46 and 1.51 for θ02 = 0.5

and 0.75, respectively. Interestingly, the effect of θ02 on the location of the pseudo-parameter is
non-monotonic. This appears to be because changing θ02 affects multiple things in the model -
e.g., it simultaneously changes both the average level of depreciation and its heterogeneity.

Figure 5: Nonlinearity in the Input Market Persistence Process

Third, we change the κit process in a different way - keeping linearity but allowing it to
follow an AR(2) process instead of an AR(1) process, i.e.

κit = ρx1κi,t−1 + ρx2κi,t−2 + uit.

As in the benchmark case, we set ρx1 to 0.5 and compare the benchmark, i.e. ρx2 = 0, to
alternative models where ρx2 = 0.01 or 0.02. Figure 6 shows the (concentrated) objective

28



functions. Like in the other alternative models, there is still a pseudo-solution in this model.
However, in this case the pseudo-solution is at a higher β, at approximately 1.67 and 1.82 for
ρx2 = 0.01 and 0.02, respectively.

Figure 6: AR(2)

In summary, these models suggest that the existence of pseudo-solutions is not a knife-edge
result that relies on the very specific input demand equation in our benchmark model. While the
exact locations of these pseudo-solutions differ from the benchmark model, the general patterns
are similar - in particular, the pseudo-solutions are at a larger β than the true parameter β0

(=0.6). Obviously, this is only a small set of alternative models and there could very well be
alternative models without pseudo-solutions, especially as one moves parameters further away
from the benchmark model. In other experiments, we have found that many things can happen
- for example, in the following model (where the curvature of the non-linearity in κit is reversed),

κit =

(
1− e|κi,t−1|

1 + e|κi,t−1|

)
κi,t−1 + uit

we see multiple pseudo-solutions, one slightly above 1.6, and one at approximately β = 1.95

(Figure 7). However, the results hint that this is a general issue - the ρ-differencing moment
(5) of the dynamic panel approach (and likely of related quasi-differencing approaches, e.g. the
proxy variable approaches of OP/LP/ACF) creates a quadratic form indeterminacy that seems
to exist relatively generally. As such, we believe that this is an issue that researchers should be
aware of when using these techniques.
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Figure 7: Alternative Model Where the Curvature of the Non-linearity in κit is Reversed

6.5 Stronger Timing/Information Set Assumptions

Interestingly, we have found one class of modeling assumptions that does appear to remove the
pseudo-solution. Recall Assumption 1, the timing and information set assumption that the
moment conditions of our benchmark model are predicated on. Again, this can be interpreted
as following from an economic model where 1) firms do not observe ωit and κit until t, and
2) firms choose xit at t and hence implying (with some additional assumptions) that future
innovations in ωit and κit, i.e. ξiτ and uiτ for τ > t, are uncorrelated with xit.

Some work in this literature has been willing to make such timing (and information set)
assumptions stronger. For example, in OP/LP/ACF procedures, it is often assumed that firms
need to commit to their capital choice at t − 1. In demand models considering endogenous
product characteristics, it is sometimes assumed that those product design decisions are made
one or more periods before the product is sold. If one assumes that xit is chosen at t − 1

(and one continues to make the assumption that firms do not observe ωit and κit until t) then
information set Iit−1 in Assumption 1 additionally includes xit. This means that (5) implies
an additional orthogonality condition that can be used for estimation (since ξit is now mean
independent of xit). Intuitively, since xit is chosen at t − 1, innovations that are not observed
until after that choice, e.g. ξit are orthogonal to it.

In the dynamic panel literature, this assumption is often referred to as xit being “predeter-
mined”. Ackerberg (2020) details how these timing and information set assumptions can be
strengthened or relaxed – an important point is that it is not only the timing of when xit is
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chosen that matters but also what the firm knows at that time. For example, if xit is chosen
at t− 1 but one assumes that firms observe ωit and κit also in t− 1 (one period earlier), then
one does not obtain additional moment restrictions.

So, consider an alternative model where firms make input decisions at time t−1 as a function
of their information set Ii,t−1, e.g.

xit = π0 + θ0ρ0ωωi,t−1 + κi,t−1. (22)

Note that ρ0ωωi,t−1 is a conditional expectation of ωit at time t − 1. In a production function
context, it makes sense that a firm would base their xit decision on their expectation of ωit,
but this assumption is not necessary as our derivation is for arbitrary θ0. Since xit is chosen at
t − 1, it is now a function of κi,t−1 instead of κit (because, like ωit, κit has not been observed
yet).13

Following the arguments of the benchmark case, we can consider the basic dynamic panel
moment evaluated at the pseudo-parameters (β, ρω, α) = (β0 + 1

θ0
, ρ0x, α

0 − π0

θ0
). The first part

of the derivation from Section 2 stays the same:

E[(yit − ρωyi,t−1)− α(1− ρω)− β(xit − ρωxi,t−1)|Ii,t−1] (23)

= E[(yit − ρ0xyi,t−1)−
(
α0 − π0

θ0

)
(1− ρ0x)−

(
β0 +

1

θ0

)
(xit − ρ0xxi,t−1)|Ii,t−1]

= E[α0(1− ρ0x) + β0(xit − ρ0xxi,t−1) + ωit − ρ0xωi,t−1 + ηit − ρ0xηi,t−1

−
(
α0 − π0

θ0

)
(1− ρ0x)−

(
β0 +

1

θ0

)
(xit − ρ0xxi,t−1)|Ii,t−1]

= E[
π0

θ0
(1− ρ0x)−

1

θ0
(xit − ρ0xxi,t−1) + ωit − ρ0xωi,t−1 + ηit − ρ0xηi,t−1|Ii,t−1].

However, (xit − ρ0xxi,t−1) is now different. Using (22), we have

(xit − ρ0xxi,t−1) =
(
1− ρ0x

)
π0 + θ0

[
ρ0ωωi,t−1 − ρ0xρ0ωωi,t−2

]
+
(
κi,t−1 − ρ0xκi,t−2

)
.

and note also that we can write

ωit − ρ0xωi,t−1 = ρ0ωωi,t−1 − ρ0xρ0ωωi,t−2 + ξit − ρ0xξi,t−1.
13Working with κit instead of κi,t−1 does not change our result (i.e. firms knowing κit at time t− 1). What

matters for our result is firm i knowing only ωi,t−1 at time t−1, not ωit. It does not matter for κit. In some sense
it is just a relabeling of κit. More generally, what is important for a stronger timing/information assumption to
rule out the pseudo-solution is the unobserved factor that enters both the productivity function and the input
function, not for the unobserved factor(s) that only enters the input function.
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Substituting these in to (23), we get

E[
π0

θ0
(1− ρ0x)−

1

θ0
(xit − ρ0xxi,t−1) + ωit − ρ0xωi,t−1 + ηit − ρ0xηi,t−1|Ii,t−1]

= E[
π0

θ0
(1− ρ0x)−

1

θ0
[(

1− ρ0x
)
π0 + θ0

[
ρ0ωωi,t−1 − ρ0xρ0ωωi,t−2

]
+
(
κi,t−1 − ρ0xκi,t−2

)]
+ρ0ωωi,t−1 − ρ0xρ0ωωi,t−2 + ξit − ρ0xξi,t−1 + ηit − ρ0xηi,t−1|Ii,t−1]

= E[− 1

θ0
ui,t−1 + ξit − ρ0xξi,t−1 + ηit − ρ0xηi,t−1|Ii,t−1]

Importantly, because xit is chosen at t − 1, it is in Ii,t−1. And because xit is chosen as a
function of ωi,t−1 and κi,t−1, it is clearly correlated with ui,t−1 and ξit−1. Hence, as long as xit
is utilized in the formation of moment conditions, the pseudo-solution can be ruled out.14 Of
course, at the true parameters, the dynamic panel moment condition is

E[(yit − ρ0ωyi,t−1)− α0(1− ρ0ω)− β0(xit − ρ0ωxi,t−1)|Ii,t−1]

= E[(yit − α0 − β0xit)− ρ0ω(yi,t−1 − α0 − β0xi,t−1)|Ii,t−1]

= E[ωit − ρ0ωωi,t−1 + ηit − ρ0ωηi,t−1|Ii,t−1] = E[ξit + ηit − ρ0ωηi,t−1|Ii,t−1] = 0,

and since ξit is not in Ii,t−1 and hence not correlated with xit, this continues to hold.
In conclusion, if one is willing to make stronger timing assumptions, it appears that the

pseudo-solution we consider is ruled out. Presumably this is also the case if one is willing
to make even stronger timing assumptions, e.g. where xit is chosen at some t − ∆ where ∆

> 1. Of course, and as evidenced by the empirical literature, these are often assumptions
that researchers are unwilling to make, such as in the case of variable inputs in the production
function context.

7 More General Lessons

Sections 3 and 4 suggested specific moment equations and procedures to avoid the pseudo-
solution in our simple model. However, the additional moments we derive rely on the specific
DGP for xit given by (2) and (4). Given that the previous section suggests that, with more
general xit DGPs, these dynamic panel and proxy variable approaches have similar identification
issues, a natural question is what to do in those cases. In particular, suppose a researcher is
not willing to impose (2) and (4) and instead wants to allow for (or model) a more general
xit process. Obviously, it is difficult for us to give exact advice given the many possible
models that researcher may construct. However, our illustration of the simple case provides

14Of course, this does not preclude other possible pseudo-solutions, but we have not found any in simulations.
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some constructive advice on how researchers might reduce the likelihood of ending up at a
pseudo-solution in more complex models.

One possibility would be to specify the DGP for xit up to parameters and follow the logic
of Section 3 and/or 4 to derive analogous estimating equations. This could involve use of two
moments (analogous to e1t and e2t ) or three moments (adding e3t ), and given the intuition above
one would likely want to impose assumptions on the direction of the relationship between xit
and ωit, analogous to the sign restriction on θ we use above. In numeric optimization, one
might also be on the lookout for the possibility of ending up at pseudo-solutions similar to Φ∞1

and Φ∞2 .
However, suppose one is unwilling to commit to assuming a specific model for xit. This is

perhaps more natural given this literature - one nice aspect of both the dynamic panel and proxy
variable methods is that they do not rely on fully specifying a parametric DGP for xit (though
often they do make some assumptions on these DGPs, e.g. the scalar unobservable assumption
used in the proxy variable literature). We also believe our findings lead to constructive practical
advice in this situation. In particular, in our simple model (and in “nearby” more complex
models), the pseudo-solution for β is greater than the true β0 (this is based on θ0 > 0, the
reverse is true when θ0 < 0). This means that we know the direction in which we might err.
In particular, if one has found a candidate estimate β̂ (and believes θ0 > 0), one might want
to be extra diligent in continuing to search for minima at parameters where β < β̂. This is
because one is erroneously at the spurious zero, the non-pseudo-solution should be below β̂.
Of course, while one should always be diligent in numeric search to avoid local minima, the
results here suggest one should be extra concerned about local minima in one specific direction
relative to a candidate estimate β̂.

A related possibility is to estimate the model based on only e1t , i.e. without specifying a
DGP for xit, but to then do some ex-post testing of that solution. In particular, given a
candidate estimate (α̂, β̂, ρ̂ω) based on e1t , one can construct the residuals

̂ωit + ηit = yit − α̂− β̂xit.

Again, assuming one is willing to sign θ, one could examine the relationship between xit and this
residual, e.g. through a regression or correlation analysis. Although this regression cannot be
interpreted causally because of the existence of ηit in the constructed residual, the measurement
error tends to attenuate the coefficient.15 So, at least in models “close to” our simple model,
one would expect that the sign of this relationship at the pseudo-solution would be the reverse
of what one would expect. In other words, if one believes that θ > 0, an indication of a possible

15Note that this would be easier in the proxy variable methods, as a by-product of the assumptions guaran-
teeing invertibility in those models allows one to separately identify ω̂it and η̂it.

33



pseudo-solution would be finding a negative correlation between ̂ωit + ηit and xit.16

Lastly, one might consider starting by estimating a model that is more robust to the pseudo-
solution problem but is not necessarily an appropriate model. Initial estimates from this
misspecified model can be used as starting values for estimating the correct model to reduce
the likelihood of ending up at a pseudo-solution in the correct model. Our above analyses
suggest at least two possibilities for this. First, even if one does not believe the stronger timing
assumption of Section 6.5, one might estimate that model anyway. Then one could use the
estimates as starting values for a model with the (correct) weaker timing assumption. The
hope is that the stronger timing assumption does not overly bias the parameters, and thus
keeps the numeric search procedure from straying to a pseudo-solution. Second, one could
assume input choice (2) and use our augmented procedure, even if one does not believe that
the input choice equation is exactly specified. One could again use the resulting estimates as
starting parameters for an estimation procedure that does not impose a specific input choice
equation. Again, the hope is that while those starting parameters may be inconsistent, they
may be close enough to the truth to be helpful at getting the numeric search procedure to the
true solution instead of the pseudo-solution.

Of course, these informal suggestions are not foolproof in avoiding pseudo-solutions, and in
some datasets with even more complex xit processes, there may not even be pseudo-solutions.
However, we feel that being aware of the possibility of such pseudo-solutions and this guidance
for avoiding them can be useful for applied researchers.

8 Conclusion

We have studied a potential identification problem in methods that use timing and information
set assumptions to resolve endogeneity problems in structural models. These methods have been
applied widely, both in the production function context and elsewhere. Prior work calls atten-
tion to this identification problem in a fairly narrow context. We show that the identification
problem appears to be endemic across a broad set of models using these types of assumptions,
and demonstrate how to resolve it using a sign restriction and additional modelling. Our Monte
Carlo simulations illustrate that our procedure works in a simple example, and we suggest ways
of extracting intuition from that solution to more complex empirical settings.

16Note that this is related to the practice of comparing these coefficient estimates to those of standard OLS,
i.e. assessing signing the bias of OLS. This is because the sign of the OLS bias is related to θ. So the possibility
of pseudo-solutions provides another rationale for doing this, i.e. if one is at the pseudo-solution, the sign of the
OLS bias may be the opposite of what one expects it to be.
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