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Abstract

In structural dynamic discrete choice models, unobserved or mis-measured state variables

may lead to biased parameter estimates and misleading inference. In this paper, we show

that instrumental variables can address such measurement problems when they relate to state

variables that evolve exogenously from the perspective of individual agents (i.e., market-level

states). We define a class of linear instrumental variables estimators that rely on Euler

equations expressed in terms of conditional choice probabilities (ECCP estimators). These

estimators do not require observing or modeling the agent’s entire information set, nor solving

or simulating a dynamic program. As such, they are simple to implement and computation-

ally light. We provide constructive arguments for the identification of model primitives, and

establish the estimator’s consistency and asymptotic normality. Four applied examples serve

to illustrate the ECCP approach’s implementation, advantages, and limitations: dynamic

demand for durable goods, agricultural land use change, technology adoption, and dynamic

labor supply. We illustrate the estimator’s good finite-sample performance in a Monte Carlo

study, and we estimate a labor supply model empirically for taxi drivers in New York City.
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1 Introduction

Instrumental variables methods are widely used to address omitted variables and measurement

error problems in reduced-form models. In this paper, we show that instrumental variables can

play the same role in structural dynamic discrete choice (DDC) models, as long as the measurement

problems involve market-level state variables (also known as forcing variables), i.e., variables that

evolve exogenously from the perspective of individual agents. To that end, we define a class

of linear IV regression estimators for structural dynamic discrete choice models, which we call

Euler Equations in Conditional Choice Probabilities (ECCP) estimators. ECCP estimators are a

discrete-choice analog to the Euler equation approach for models with continuous choice variables

developed by Hall (1978), Hansen and Sargent (1980, 1982), and Hansen and Singleton (1982).1

Structural DDC models have proven useful in a variety of important fields – for example, in the

study of firm dynamics, consumer demand, labor markets, and environmental problems. Standard

methods for estimating DDC models require the computation of continuation value functions,

by either solving the full dynamic problem (Rust, 1987) or measuring the continuation values

by forward-solving (Hotz and Miller, 1993; Pesendorfer and Schmidt-Dengler, 2008) or forward-

simulating (Hotz, Miller, Sanders, and Smith, 1994; Bajari, Benkard, and Levin, 2007). In this

context, Arcidiacono and Miller (2011) and Aguirregabiria and Magesan (2013) represent two

major departures from prior work, providing strategies for estimating model parameters without

calculating continuation values, thereby reducing the computational burden of estimating DDC

models substantially. Arcidiacono and Miller (2011) define the finite dependence property and

show how it allows the econometrician to construct conditions from an agent’s optimization prob-

lem in which the continuation values cancel out.2 Aguirregabiria and Magesan (2013) propose a

representation of the discrete choice problem as a continuous decision problem in which the decision

variables are choice probabilities. Based on this representation, they derive first-order conditions

for optimization that are expressed in terms of choice probabilities, and that are similar to Euler

equations for continuous decision problems.

We build on these methodological contributions to allow for measurement problems in market-

level state variables, including serially correlated unobserved states, endogeneity problems, and

measurement error. It is widely acknowledged that the presence of such unobservables is an

important concern in empirical applications, and that ignoring them may lead to biased estimates

and misleading inference. Empirical work exploring finite dependence in structural DDC models

that allows for such measurement problems has appeared in the recent applied literature (Scott,

1Euler equation estimators rely on agents’ behavior in adjacent time periods, drawing on restrictions that are
necessary for dynamic optimization.

2Finite dependence requires that, starting from any two different states, there exist two finite sequences of actions
that will lead to the same distribution over states. See Altug and Miller (1998) for an early application exploiting
finite dependence, and Arcidiacono and Ellickson (2011) for further discussion of the role of finite dependence in
DDC models.
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2013; Diamond, McQuade, and Qian, 2018; De Groote and Verboven, 2019; Traiberman, 2019).3

However, the underlying class of models has yet to receive a comprehensive econometric treatment.

This paper aims to fill that gap.

To that end, we provide sufficient conditions for both parametric and nonparametric identifi-

cation of DDC model primitives. The identification arguments are constructive and lead naturally

to an estimator, the ECCP estimator. Like other conditional-choice-probability-based estimators

(Hotz and Miller, 1993; Aguirregabiria and Mira, 2002; Pesendorfer and Schmidt-Dengler, 2008),

the ECCP estimator involves two steps: first estimating conditional choice probabilities, and then

estimating parameters of the model. Unlike other CCP estimators, the second step amounts to

estimating a linear regression equation, making it easy to implement and computationally light.4

Both steps can be implemented using standard tools available in econometrics software packages

such as STATA and R. We establish the consistency and asymptotic normality of the estimator,

and we illustrate the finite-sample performance of the ECCP estimator in a Monte Carlo study

of dynamic demand for durable goods. We find that it performs well in finite samples while esti-

mation techniques ignoring measurement problems in state variables can be substantially biased.

We also illustrate the performance of the ECCP estimator empirically, in the context of dynamic

labor supply for taxi drivers in New York City. Here, we find that ignoring endogeneity issues

leads to the underestimation of labor supply responses to earnings – consistent with usual biases

in simultaneity problems – while the ECCP estimates provide plausible response patterns.

To identify and estimate structural parameters, the ECCP approach exploits moment restric-

tions implied by dynamic optimization. These moment restrictions can be constructed as long

as (a) the state variables can be decomposed into agent-specific state variables and market-level

states, and (b) there is finite dependence in the agent-specific state variables. Under these con-

ditions, ECCP equations (like Euler equations in general) involve relationships between current

behavior and expected future behavior. By using observed (realized) rather than expected behavior

in successive time periods, the ECCP equation can serve as a valid estimating equation. Further-

more, unobservable variables and measurement error can be represented in ECCP equations in

the same way that they are represented in standard regression equations, and handled similarly

through the use of instrumental variables.5

The ECCP approach allows researchers to deal with endogeneity problems using standard lin-

ear instrumental variables techniques. No assumptions are needed regarding the evolution of the

unobservable shocks, except that they satisfy exclusion restrictions (i.e., they are uncorrelated with

3Scott (2013) studies how US agricultural policies affect farmers’ land use choices; Diamond, McQuade, and
Qian (2018) study the welfare impacts of rent control on tenants and landlords; De Groote and Verboven (2019)
investigate the adoption of solar photovoltaic systems for electricity production; Traiberman (2019) focuses on
workers’ occupational reallocations from trade liberalization.

4As long as agents’ payoffs are linear-in-parameters, the resulting ECCP equation will also be linear-in-
parameters.

5The estimating equations involve CCPs in successive time periods, and so require sufficiently rich panel data
so that CCPs can be estimated separately for each cross section.
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instrumental variables). For example, cost shifters may be used as instruments for unobserved de-

mand shocks (De Groote and Verboven, 2019); lagged observed states form another possible source

of instruments available to researchers; quasi-experiments form yet another source of exogenous

variation.

Unlike other approaches to estimating DDC models, the ECCP approach does not require a

full model of the agent’s information set. This is a significant advantage, as modeling market-level

state variables can be both conceptually and computationally demanding in many applications. For

instance, it may be difficult for the econometrician to model the evolution of certain state variables

(e.g., when government policy is in flux as in De Groote and Verboven (2019)); observed market

states may be insufficient to capture the true extent of market heterogeneity (e.g., unobserved local

price variation as in Scott (2013)); or it may be difficult to reliably estimate how market-level state

variables evolve, as when the dimensionality of the state space is large relative to the length of the

panel data (e.g., when the state-space involves industry-level productivity shocks for a variety of

industries as in Traiberman (2019)).

Related Literature. This paper relates to several important prior studies examining the identi-

fication and estimation of structural DDC models. In addition to the previously mentioned con-

tributions (which focused mostly on estimation), there exists a growing literature on identification

that builds on the seminal work of Rust (1994) and Magnac and Thesmar (2002). Arcidiacono and

Miller (2020) investigate the nonparametric identification of DDC models for both stationary and

nonstationary environments in the presence of long and short panel data, relying on single-action

finite dependence to eliminate continuation values.6 Our results build on those of Arcidiacono

and Miller (2020) by (a) allowing for endogeneity problems in market-level state variables, and

(b) showing that parametric restrictions commonly imposed in applied work allow researchers to

relax the single-action requirement and identify model parameters under general patterns of finite

dependence. Blevins (2014) shows how models with discrete and continuous choice variables can

be identified in the presence of (observed) continuous states under the conditional independence

assumption on the unobservables. Our results can be combined with those of Blevins (2014) to gen-

erate an augmented set of moment restrictions that incorporates both the ECCP and the standard

Euler equations for continuous variables.

Serially correlated unobserved state variables in structural dynamic models are a widespread

problem without a standard econometric solution. Kasahara and Shimotsu (2009), Hu and Shum

(2012), Blevins, Khwaja, and Yang (2018), Aguirregabiria, Gu, and Luo (2019), and Berry and

Compiani (2019) represent other approaches to estimating DDC models with unobserved state

variables. Kasahara and Shimotsu (2009) restrict individual unobserved heterogeneity to have a

6Single-action finite dependence requires that the same action must be chosen repeatedly finitely many times in
order to reset the distribution of the state variables. The empirical papers cited above (Scott, 2013; Diamond, Mc-
Quade, and Qian, 2018; De Groote and Verboven, 2019; Traiberman, 2019) make use of one-period finite dependence
(specifically, terminal or renewal actions), which is a special case of single-action finite dependence.
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discrete distribution that is invariant over time (see also Arcidiacono and Miller, 2011). Hu and

Shum (2012) allow the unobserved state to follow a Markovian process, but require it to be a scalar,

to have the same cardinality as the action space, and to be realized before the realization of the

observed states. Blevins, Khwaja, and Yang (2018) use particle filtering methods to allow for an

unobservable state that follows a first-order autoregressive process. Aguirregabiria, Gu, and Luo

(2019) extend the conditional likelihood approach (in which the likelihood function conditional on

a sufficient statistic does not depend on individual fixed-effects) to estimate structural dynamic

logit models with fixed-effects and two endogenous state variables: the lagged decision variable

and the time duration in the last choice. Berry and Compiani (2019) allow for serially correlated

unobserved states and propose the use of lagged exogenous state variables as instrumental variables

for (econometrically) endogenous states, for models with both continuous and discrete actions, and

obtain partial identification of payoff function parameters in a discrete choice setting.7 Whereas

the ECCP approach allows for market-level unobserved heterogeneity very flexibly, these papers

allow for individual-level unobserved heterogeneity with stronger restrictions on the nature of that

heterogeneity. As such, the ECCP approach complements, and can be combined with, these other

contributions.

Models of dynamic demand is one area where dynamic discrete choice models have been esti-

mated while allowing for endogeneity concerns with market-level variables (i.e., prices being corre-

lated with market demand shocks). Existing studies impose strong functional form restrictions on

how observed and unobserved state variables evolve (Hendel and Nevo, 2006; Gowrisankaran and

Rysman, 2012; Melnikov, 2013). Such restrictions – in particular, inclusive value sufficiency – limit

the dimensionality of the state space to render the problem tractable, facilitating an estimation

approach that relies on solving agents’ dynamic problem. However, such restrictions effectively

impose that in two different states (e.g., high price with low unobserved product quality versus low

price with high unobserved product quality), consumers must have the same expectations. The

ECCP approach avoids both the need to solve the dynamic problem and the need to specify a

restrictive process for how state variables evolve in the estimation procedure.8

Morales, Sheu, and Zahler (2019) and Dickstein and Morales (2018) pioneered the use of Euler-

equation-like estimators for DDC models using moment inequalities. The ECCP approach, like

most estimation approaches for DDC models since Rust (1987), relies on the existence of con-

ditionally independent individual payoff shocks with a distribution that is known ex-ante (e.g.,

7Berry and Compiani (2019) assume the evolution of observed uncontrolled states (i.e., state variables whose
evolutions are not affected by individuals’ choices) is fully independent of the evolution of unobserved states, so
that they can be used as instruments for the observed controlled state variables. The ECCP method, in contrast,
does not require such full independence. Berry and Compiani’s approach and ours are therefore non-nested.

8Recently, and independently, Chou, Derdenger, and Kumar (2019) considered a special case of the ECCP
method for demand models, requiring two terminal actions for identification. In terms of consumer unobserved
heterogeneity, while the ECCP approach can accommodate finitely many unobserved types, as in Scott’s (2013) use
of Arcidiacono and Miller’s (2011) strategy, it does not, on its own, accommodate richer unobserved heterogeneity
(e.g., continuously distributed random coefficients on flow utilities). We regard extensions of the ECCP approach
that incorporate richer forms of consumer heterogeneity as an important avenue for future work.
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logit). In contrast, the moment inequalities approach allows researchers to impose less structure

on payoff shocks, requiring minimal distributional assumptions on the error term. However, the

moment inequalities approach yields only partially identified parameter estimates, and it has only

been shown to be robust to a limited set of endogeneity concerns (e.g., when the error terms are

fixed effects that can be differenced out; see Pakes (2010)).

The remainder of the paper is organized as follows. Section 2 describes the framework, and

introduces four applied examples (dynamic demand for durable goods, land use change, technology

adoption, and dynamic labor supply). Section 3 derives the ECCP equations, and illustrates them

in the context of the applied examples. Section 4 discusses the identification results, as well as

several possible extensions. Section 5 presents the ECCP estimator and establishes its asymptotic

properties. Section 6 shows the Monte Carlo evidence, and Section 7 presents the empirical exercise.

Section 8 concludes. (All proofs can be found in the Online Appendix.)

2 Model

In the model, time is discrete and indexed by t = 1, ..., T , where the time horizon T can be either

finite or infinite. There are N agents operating independently in M independent markets, such as

geographical locations. Every period t, agent i in market m chooses an action aimt ∈ A = {0, ..., A},
A <∞, with the goal of maximizing her expected discounted sum of payoffs

E

[
T∑
τ=t

βτ−t Πimτ |Iimt

]
,

where Πimt denotes per-period payoffs, β ∈ [0, 1) is the discount factor, and E [·|Iimt] denotes the

expectation operator conditioned on the information set Iimt available to agent i in market m at

time t.

The payoff function Πimt depends on the state variables simt = (kimt, wmt, ηmt, εimt), where

(kimt, wmt) are observed by the econometrician, while (ηmt, εimt) are not. The observed states

kimt ∈ K are “controlled”: their evolution can be affected by the agent’s actions; such states may

include a firm’s capital stock, size or type of product, lagged decisions, and duration in the last

choice. The market-level observed and unobserved states, wmt and ηmt, cannot be affected by

the agent’s actions; such states may include market demand variables, aggregate input prices, or

the government policy environment. We collect these market-level states into the vector ωmt =

(wmt, ηmt) ∈ Ω. We assume K is finite, as usually done in the literature, but we allow ωmt

to be continuous. Neither assumption is important and our results apply to both discrete and

continuous states. Our results do not require us to specify the dimension of ηmt, so there may

be many unobserved market-level state variables. Finally, the individual-level unobservable state
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εimt = (ε0imt, ..., εAimt) is i.i.d. across agents and time with a distribution function that is absolutely

continuous with respect to the Lebesgue measure in RA+1.

As usual, in each period t agents observe the state variables simt, make choices aimt, flow payoffs

are then realized, and states evolve. Agent’s information set Iimt therefore includes all current and

past state variables simt, as well as all past actions.

Assumption 1. (State Transitions) The state variables simt follow a controlled first-order Markov

process with transition distribution function that factors as,

F (simt+1|a, simt) = F k (kimt+1|a, kimt, wmt)F ω (ωmt+1|ωmt)F ε (εimt+1) , (1)

where ωmt = (wmt, ηmt). The distribution F ε (εimt+1) is known by the econometrician.

Equation (1) limits our focus to settings with small decision makers, as opposed to dynamic

games. It says that market-level state variables ωmt are perceived as exogenous by individual

agents, ruling out settings where an individual agent’s decision can have aggregate impacts (i.e.,

F ω does not depend on individual action a). It also rules out settings where there are externalities

acting through the agent-level state variables k, such as when one agent’s state depends on a

neighbor’s decision (i.e., F k for agent i does not depend on actions of agent j). Further, while

equation (1) accommodates impacts of observable states wmt on the evolution of individual-level

states kimt, it does not allow for impacts of aggregate unobserved states ηmt on kimt. Examples in

which the agent-level states kimt do not depend on aggregate states include capital stocks, time

duration since last action, lagged choices, among others. It is worth mentioning that Assumption

1 does not require that observable and unobservable states, wmt and ηmt, evolve independently

to each other; this allows for (econometric) endogeneity issues, as we discuss below. Finally,

the assumption that F ε is known by the econometrician is standard in the literature; typically,

researchers assume εimt follows a type 1 extreme value distribution or a multivariate normal.

Note that we do not allow for individual-level unobserved states other than εimt; extensions to

unobserved heterogeneity are possible and discussed in Remark 2 in Section 3.

Assumption 2. (Discount Factor and Payoff) The discount factor β ∈ [0, 1) is known by the

econometrician. The per period payoff function is given by,

Π (a, simt) = π (a, kimt, wmt) + ξ (a, kimt, ωmt) + εaimt. (2)

Assuming a known discount factor is also common in the applied literature. In principle, one

can relax this assumption by combining our approach with that of Abbring and Daljord (2019) to

point-identify β.

The payoff function is assumed additively separable in the unobservables ξ and ε. While it is

standard practice to include additively separable idiosyncratic shocks ε in dynamic discrete choice
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models (Rust, 1994), the other unobserved term of the payoff function, ξ, deserves some discussion.

The function π (a, k, w) depends on observed market-level state variables, w, and so the function

ξ (a, k, ω) captures the impact of unobserved market-level state variables η on the flow payoff. For

example, in dynamic demand models, this term may capture unobservable product characteristics

(Gowrisankaran and Rysman, 2012). In migration decision models, it may capture location-specific

unobservable amenities (Bishop, 2012; Diamond, McQuade, and Qian, 2018). The term ξ may also

reflect mis-measured profits or unobservable costs (Scott, 2013). In all these applied examples, ξ

enters the payoff function additively. Although assuming additive separability is not without loss

of generality (as it restricts marginal rates of substitutions between observable and unobservable

states), relaxing it is challenging for point-identification, as we discuss in Remark 3 in Section 3.

It is important to stress that ξ is a function of state variables k and ω = (w, η), and it need

not be a state variable itself. That is, the value of ξ at time t may not be a sufficient statistic for

the distribution of future values of ξ at time t+ 1. In the background, there are some (potentially)

more informative state variables ω that agents use to form their expectations about the future.

Consequently, ξ need not evolve according to a first-order Markov process, while ω does.

In addition, π and ξ may be correlated because they may depend on the same state variables w,

or because w and η may not be independent to each other (see Assumption 1). These are reasons

to consider the use of instrumental variables to identify and estimate the model. Without loss of

generality, we assume that ξ is mean zero, and, to simplify notation, define

π ≡ π + ξ.

Next, we introduce four applied examples to illustrate what the ξ term can capture in practice,

and we preview the advantages of the ECCP approach in the context of each example.

Example 1. Demand for Durable Goods. In our Monte Carlo study, we consider a model

of dynamic demand for a durable good. Each period t, consumer i in market m decides whether

or not to purchase a unit of a durable good, in turn discarding the old version of the good if she

already owns a unit. The choice set is A = {b, nb}, where b means buying the good, and nb means

not buying the good.

Consumer i controls state kimt ∈ {0, 1} where kimt = 0 if the consumer does not have a unit of

the good at the beginning of time period t, and kimt = 1 when she already owns it. If the consumer

chooses not to buy a new unit of the good (aimt = nb) when she already owns it (kimt = 1), then

there is probability φ of product failure, resulting in kimt+1 = 0. Formally, state k evolves as

follows:

Pr (kimt+1 = 1|kimt, aimt, wmt) =


1 if aimt = b

0 if aimt = nb, kimt = 0

1− φ if aimt = nb, kimt = 1.
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We consider one observed exogenous state, the price of the product wmt, and one unobserved

exogenous state, a quality shock ηmt. They evolve independently of individual consumers’ decisions

(i.e., consumers are price-takers), but they are not independent to each other: As usual in demand

estimation, prices and unobserved quality shocks correlate. State transitions therefore satisfy

Assumption 1.9

The consumer enjoys the following flow utility when purchasing the product:

π (b, kimt, ωmt) = θ0 + θ1wmt + ξ(b, kimt, ωmt),

where ξ(b, kimt, ωmt) = ηmt, i.e., the term ξ equals the product unobserved quality. We impose

θ1 < 0 so that demand slopes down. When not purchasing the product, the consumer enjoys utility

π (nb, kimt, ωmt) =

θ0 if kimt = 1

0 if kimt = 0.

Notice that the θ0 term appears in the utility function when the good is being consumed, either

through purchase or because the consumer already owns the good. The parameter θ0 can be

interpreted as the flow value of consumption. Note also that we assume ξ(nb, kimt, ωmt) = 0. Since

the demand shock η enters into consumption only conditional on purchase, we can interpret η as

a quality shock that the consumer only cares about when the product is newly purchased, such

as the quality of the in-store experience or some non-durable services associated with the durable

good. Finally, the utility of not consuming the good is set to zero.

Our Monte Carlo example is a simplified version of more general dynamic demand models; ex-

tensions to the general case are straightforward. Other approaches to estimating dynamic demand

systems (e.g. Hendel and Nevo (2006); Gowrisankaran and Rysman (2012)) rely on solving a con-

sumer’s dynamic problem and imposing strong functional form restrictions on how observed and

unobserved state variables evolve. Such restrictions – the so-called “inclusive value sufficiency” –

limit the dimensionality of the state space to render the problem tractable. However, they effec-

tively impose that in two different states (e.g., high price with low quality versus low price with

high quality), consumers must have the same expectations. The ECCP approach avoids both the

need to solve the dynamic problem and the need to specify a restrictive process for how state

variables evolve.

Example 2. Land Use Change. Scott (2013) adopts this framework to model farmers’ land

use choices. In every period t, farmer i in county m chooses whether to plant crops or not,

A = {crops, other}. The farmer’s controlled state variable is the number of years since the field

was last in crops (up to some limit K), so that kimt ∈ {0, 1, . . . , K}. This field state reflects vegetal

9Note that if the probability of product failure φ were a function of the unobserved quality η, then the transition
F k would depend on η, violating Assumption 1.
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cover and the state of the terrain. Formally, k follows a deterministic process: Let k′ (a, k) denote

the next period state given a and k, then k′ (a, k) = 0 if a = crops, and k′ (a, k) = min {k + 1, K}
if a = other.

Market-level state variables include agricultural prices, input costs, government taxes and sub-

sidies, among other relevant variables. Scott assumes farmers are price takers and cannot influence

government policies, which implies that F ω does not depend on individual actions a nor individual

states k. The farmer’s payoff consists of expected returns from the chosen land use and involves

both observed (e.g. crop prices and yields), represented by R, and unobserved returns and costs,

represented by ξ. The payoff function can be written as

π (a, k, ωmt) = θ0 (a, k) + θ1R (a, wmt) + ξ (a, k, ωmt) ,

where θ0(a, k) are switching costs parameters. The land-use switching costs create dynamic incen-

tives for landowners.

Expected returns R may be calculated based on input and output prices, but price data may

be available only at a regional level, leading to measurement error in returns coming from the

unobserved local price variation. The ξ term captures this measurement error in expected returns.

Measurement error can plausibly render ξ serially correlated. High-priced localities in one year

are likely to be high-priced localities the next year. The ECCP approach can be implemented in

the presence of such serially correlated unobserved local price variation.

Furthermore, in the context of agricultural markets, it is difficult to model the evolution of

observed market-level state variables, given the large set of variables that can influence farmers’

expected returns (e.g., technological conditions, uncertain government policies, crop stocks, etc.).10

As mentioned previously, the ECCP approach does not require specifying what all the relevant

market-level state variables are in the decision making process, nor specifying (and estimating)

how all such variables evolve.

Example 3. Technology Adoption. De Groote and Verboven (2019) study the adoption of

renewable energy technologies for electricity production: the solar photovoltaic (PV) systems. In

every period t, a household i in region m may either choose to not adopt a photovoltaic system,

a = 0, or it may choose to adopt one of the available PV alternatives, so that A = {0, 1, ..., A}.
They assume the controlled state kimt is a dummy variable equal to zero when no solar panel

has been installed, and equal to the type of solar panel when one is already installed, so that

kimt+1 = aimt. They also assume the household no longer makes a PV adoption decision when

10For example, see Wright (2014) for a discussion of how traditional models of competitive storage fail to explain
recent grain price movements. Wright argues that changes in government policy are crucial in explaining recent grain
market behavior. Modeling and estimating beliefs on policy changes, however, are difficult in practice. Further,
Scott’s measure of crop returns R incorporate the prices of eleven different crops: estimating price evolution using
an unrestricted vector autoregression model would then involve 121 parameters, many of which would be difficult
to estimate accurately given that crop prices movements tend to be highly correlated across crops over time.
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kimt ≥ 1. The adoption decision is therefore a terminating state; not adopting provides the option

of waiting for when the prices may have decreased or when the subsidies for adoption (or the PV

quality) may have increased.

Each alternative a 6= 0 is characterized by observable attributes wamt (including capacity sizes,

upfront investment prices, electricity cost savings, benefits from subsidies for adoption), and by

the unobserved quality (which can be captured by η). The vector of observed state variables is

given by wmt = (w1mt, . . . , wAmt), and the vector of unobserved quality is ηmt = (η1mt, ..., ηAmt).
11

Individual households are price-takers and not able to influence the evolution of product attributes.

De Groote and Verboven specify a linear-in-parameters flow payoff. Specifically, if no PV has

been adopted (i.e., k = 0), the payoff from adopting option a 6= 0 is

π (a, 0, ωmt) = wamtθ + ξ(a, 0, ωmt),

where ξ(a, 0, ωmt) = ηamt. The payoff of the outside option is set to zero: π (0, k, ωmt) = 0 for all k

and ωmt.

Given that the adoption subsidies are large (and that their levels change substantially over

time), government policy is an important observable state variable. The ECCP approach allows

for the estimation of the dynamic model without requiring an explicit specification of the law

of motion for government policy. Traditional approaches would either assume that changes in

government policy are either fully anticipated or complete surprises (Ryan, 2012; Kalouptsidi,

2018); the ECCP approach can accommodate these assumptions but does not require them for

identification and estimation.

Example 4. Dynamic Labor Supply. A primary goal of labor economics is to understand how

agents make labor supply decisions. Recent studies have used the DDC framework to investigate

the daily labor supply decisions of taxi drivers, taking advantage of available rich data on taxi

trips in New York City (Buchholz, 2019; Fréchette, Lizzeri, and Review, 2019; Schmidt, 2019).

In our empirical application, we make use of this data to estimate taxi drivers’ optimal stopping

decisions.

At the beginning of each hour t of day m, taxi driver i decides whether to continue working

(a = 1) or to stop (a = 0), so that A = {0, 1}. The decision to stop is a terminal choice that

ends the decision making process for the day. The controlled state variable kimt is the number of

hours the driver has been working during the shift, k ∈ K = {0, 1, ..., K}. It captures the disutility

from fatigue as the shift progresses. This state variable evolves deterministically: k′(k, a) =

min{k + a,K}.
Following the previous studies, we take the market-level observed state, wmt, to be the total

earnings the driver expects to make during hour t. It depends on the the probability of finding a

11In principle, one can consider additional unobserved states. I.e., the unobserved product qualities can be just
a subvector of ηmt.
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customer, the basic fare (earnings per minute of driving), the trip length, and the customers’ tips.

The unobserved state ηmt captures costs and disutility the driver experiences from factors such

as congestions, weather shocks, construction sites, city events, etc., that are not observed by the

econometrician and are common to all drivers. These shocks may correlate with observed earnings

wmt leading to potential (econometric) endogeneity issues.

Given state k, the driver’s flow payoff when he decides to continue working (a = 1) during hour

t is

π (1, k, ωmt) = θ0 + θ1wmt + θ2 k + ξ(1, k, ωmt),

where ξ(1, k, ωmt) = ηmt for all k. We expect θ1 > 0 (so that supply slopes up) and θ2 < 0

(reflecting the disutility from fatigue). The payoff when the driver decides to stop is set to zero:

π (0, k, ωmt) = 0 for all k and ωmt.

The ECCP approach allows for serially correlated unobservable factors affecting the working

decisions while not requiring explicit specification for how the unobserved shocks evolve, extending

therefore the scope of structural estimation for labor supply models.

2.1 Value Functions and Choice Probabilities

To simplify exposition, we now focus on stationary infinite horizon models. Our results apply

however to both non-stationary and finite-horizon specifications, with the usual proper adjustments

to the framework; see Remark 1 in Section 3.

Let V (simt) be the value function of the dynamic programming problem, i.e., the expected

discounted stream of payoffs under optimal behavior. By Bellman’s principle of optimality,

V (simt) = max
a∈A
{Π (a, simt) + βE [V (simt+1) |a, simt]} .

Following the literature, we define the ex ante value function:

V (kimt, ωmt) ≡
∫
V (kimt, ωmt, εimt) dF

ε (εimt) ,

and the conditional value function:

va (kimt, ωmt) ≡ π (a, kimt, ωmt) + βE [V (kimt+1, ωmt+1) |a, kimt, ωmt] . (3)

The agent’s optimal policy is given by the conditional choice probability (CCP) function:

pa (k, ω) =

∫
1 {va (k, ω) + εa ≥ vj (k, ω) + εj, for all j ∈ A} dF ε (ε) , (4)

where 1 {·} is the indicator function. Define the (A+ 1)×1 vector of conditional choice probabilities
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p (k, ω) = {pa (k, ω) : a ∈ A}.12

Finally, it is worth noting that for any (a, k, ω), there exists a real-valued function ψa (.) derived

only from F ε that satisfies the following equality (Arcidiacono and Miller, 2011, Lemma 1):

V (k, ω) = va (k, ω) + ψa (p (k, ω)) . (5)

Equation (5) states that the ex ante value function V equals the value obtained by choosing

a today and optimally thereafter (va) plus a correction term (ψa), because choosing action a

today is not necessarily optimal. When εimt follows the type 1 extreme value distribution, then

ψa (p (k, ω)) = γ − ln pa (k, ω), where γ is the Euler constant.13

3 ECCP Equations

In this section, we derive the ECCP equation in a simple case and discuss the main identifica-

tion ideas. To that end, we first consider the available data and relevant objects that can be

estimated directly from the data. Then, we present two important concepts that we rely on in

our identification arguments: expectational errors and the finite dependence property. Based on

these concepts, we then derive the ECCP equations, and illustrate them in the context of the four

examples discussed above. The objective here is to identify the per-period payoff function π. In

Section 4, we present a general ECCP equation and our main identification results; see also Online

Appendix A.

Data. Assume the available data set is {yimt = (aimt, kimt, wmt, zmt) : i = 1, ..., N ;m = 1, ...,M ; t =

1, ..., T}, where the vector zmt consists of instrumental variables, as explained below. For our

identification arguments, we assume the joint distribution of yimt is known.

Even though the market state ωmt is not fully observed, the conditional choice probabilities

pa (k, ωmt) for a particular market m and time period t can be estimated given a sufficiently rich

cross section of agents within market m. That is, if we observe many agents with each value of the

individual state within each market and time period, then pa (k, ωmt) can be estimated using a sim-

ple frequency estimator. The law of motion for the agent-controlled states, F k (kimt+1|a, kimt, wmt),
can also be estimated using a simple frequency estimator (when it is not known in advance). For

our identification results, we treat pa (.) and F k (.) as known objects (which implies ψa (.), for all

a, are known as well).14 In contrast, the law of motion for market-level states F ω (ωmt+1|ωmt)

12Choice probabilities are invariant to scale normalizations; here we normalize the scale parameter to one. I.e.,
we take Πa = πa + ξa + σεa, with σ = 1.

13The Arcidiacono-Miller Lemma can be derived from the Hotz-Miller inversion (Proposition 1 of Hotz and
Miller, 1993). Chiong, Galichon, and Shum (2016) propose a novel approach that can calculate ψa for a broad set
of distributions F ε (see also Dearing, 2019).

14See Online Appendix C for a formal justification. In practice, some smoothing across markets or individual
states may be needed.
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cannot be estimated without strong assumptions. (As state ωmt is not fully observed, F ω cannot

be estimated directly from the data.)

Expectational Errors. We now define expectational errors (also known as forecast or prediction

errors). As will be clear below, expectational errors are useful as they allow us to “dispose” of the

actual expectations when identifying and estimating the model.

Definition 1. (Expectational errors) For any function h (k, ω) and particular realization ω∗ ∈ Ω,

eh (k′, ω, ω∗) ≡ Eω′|ω [h (k′, ω′) |ω]− h (k′, ω∗) ,

eh (a, k, ω, ω∗) ≡
∑
k′

eh (k′, ω, ω∗)F k (k′|a, k, w) ,

where k′ and ω′ denote next period values for k and ω.

The expectational error eh (k′, ω, ω∗) is the prediction error of h (k′, ω′) for a particular realized

value of the individual state k′; and eh (a, k, ω, ω∗) is the corresponding prediction error conditioned

on k, w, and a, integrating over the realizations of the individual state k′. An important property

of forecast errors is that, under rational expectations, they are mean independent of variables that

belong to the agent’s information set Iimt (see Lemma 1 in Section 4).15

Finite Dependence. Next, we discuss the finite dependence property, proposed by Arcidiacono

and Miller (2011). To do so, we introduce the following notation: let F k
amt be the K×K transition

matrix for market m at time period t with (n, l) element equal to Pr (kimt+1 = kl|a, kimt = kn, wmt).

We focus our definition on F k because, as explained below, our approach requires that just the

individual-level transition process must satisfy finite dependence. Importantly, note that finite

dependence is not a behavioral assumption, but a property that the state transition process may

or may not satisfy in the data.

Definition 2. (Finite Dependence) A pair of choices a and j satisfies τ -period finite dependence

if there exist two sequences of actions (a, a1, . . . , aτ ) and (j, j1, . . . , jτ ) such that, for all t,

F k
amtF

k
a1mt+1 . . . F

k
aτmt+τ = F k

jmtF
k
j1mt+1 . . . F

k
jτmt+τ . (6)

We say that τ -period finite dependence holds for the model if all pairs of actions satisfy τ -period

finite dependence.16

15In models in which agents have perfect foresight with respect to ω, there is no prediction error and so eh (·) = 0.
In contrast, when agents have biased beliefs, their conditional expectations do not necessarily coincide with the
true (data generating) conditional expectations, which implies E

[
eh
(
a, kimt, ωmt, ω

∗
mt+1

)
|Iimt

]
6= 0 .

16The terms in the sequences (a, a1, . . . , aτ ) and (j, j1, . . . , jτ ) depend on the particular initial pair of actions
(a, j) chosen; for ease of exposition, we do not incorporate this dependence on the initial pairs into our notation.

14



The τ -period finite dependence property holds if, starting from any two distributions of in-

dividual states at the beginning of time period t, there are sequences of actions (not necessarily

optimal) that result in the same distribution of state variables at t+τ . Single-action τ -period finite

dependence is a special case that requires the sequences of actions to be of the type (a, J, . . . , J)

and (j, J, . . . , J), for any actions a and j, and some action J . Exchangeable τ -period finite depen-

dence is another special case requiring two sequences composed of the same set of choices taken in

different time periods (but not necessarily with the same total number of times); e.g., (a, J) and

(J, a), for a one-period dependence, and (a, J, a) and (J, a, J), for a two-period dependence.

Common special cases of one-period dependence are renewal and terminal actions. Action J

is a renewal action if, taking action J in period t + 1 leads to the same distribution of states

at the beginning of time period t + 2, regardless of which state the agent was in during period t.

Examples of renewal actions are replacing the bus engine (Rust, 1987), planting crops (Scott, 2013),

and choosing occupations (Traiberman, 2019). A terminal action ends the decision making process.

Examples of terminal actions include a worker retiring (Rust and Phelan, 1997), a mortgage owner

defaulting (Bajari, Chu, Nekipelov, and Park, 2016), and a household adopting a PV system

(De Groote and Verboven, 2019). For both renewal and terminal actions, (6) simplifies to

F k
amtF

k
Jmt+1 = F k

jmtF
k
Jmt+1. (7)

for all t and all a, j.

Other models require more than one period to eliminate dependence in state variables. For

example, Bishop (2012), Coate (2016), and Ma (2019) consider different models of migration

decisions with relocation costs and limited memory, so that the utility a household derives from

living at some location at time t+ 2 depends on where it was located at the previous period t+ 1,

but not on where it was located before that. I.e., dependence on initial choice at t can be broken

after two periods, resulting in two-period finite dependence.

Altug and Miller (1998) consider female labor supply with human capital appreciation and de-

preciation in which full depreciation of human capital occurs if a woman stays out of the workforce

for τ periods, leading to a single-action finite dependence. Khorunzhina and Miller (2019) also

rely on single-action finite dependence to study housing choices and fertility decisions.

Applications taking advantage of τ -period exchangeable finite dependence include work on

consumers’ stock market participation (Khorunzhina, 2013), schooling and work decisions with in-

formation frictions (Arcidiacono, Aucejo, Maurel, and Ransom, 2016), smoking with rational addic-

tion and learning (Matsumoto, 2016), and self-employment decisions (Humphries, 2018; Gendron-

Carrier, 2018).

Arcidiacono and Miller (2011, 2019) define finite dependence in terms of stochastic sequences

of actions, which is more general than the deterministic sequences presented in Definition 2. We

extend our results to incorporate stochastic sequences in Online Appendix A, at the cost of more
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burdensome notation. Allowing for stochastic sequences enlarges the set of models that can be

analyzed and estimated. For example, Ransom (2019) exploits a two-period stochastic finite de-

pendence property (using employment probabilities as mixing weights) to study the role of labor

market frictions and moving costs in migration behavior of workers. Importantly, (stochastic)

finite dependence can be learned from data based on a finite number of steps; see the algorithm

proposed by Arcidiacono and Miller (2019). Learning whether finite dependence holds in the data

is important because, while it is conceivable that finite dependence may be satisfied when one takes

sufficiently long sequences of stochastic choices to (eventually) reset the distribution of states, this

property is not guaranteed to be satisfied in short panels; i.e., finite dependence may hold in the

model but not in the data when τ > T . Evidently, our identification arguments assume that finite

dependence is satisfied with τ < T .17

ECCP equation with one-period finite dependence. We now start the derivation of the

ECCP equation. For the sake of exposition, we first focus on deriving it for models with renewal

and terminal actions (and so, satisfying one-period finite dependence). In Section 4, we show that

the ECCP approach extends to models with τ -period finite dependence more generally.

First, note that by combining the conditional value function (3) with equation (5), we obtain:

π (a, kimt, ωmt) = V (kimt, ωmt)− βE [V (kimt+1, ωmt+1) |a, kimt, ωmt]− ψa (kimt, ωmt) , (8)

where ψa (k, ω) is a short-cut notation for ψa (p (k, ω)). Next, note that the expectation of contin-

uation values E [V (kimt+1, ωmt+1) |a, kimt, ωmt] is given by:

∑
k′

∫
ω′
V (k′, ω′) dF ω (ω′|ωmt)F k (k′|a, kimt, wmt)

=
∑
k′

(
Eω′|ωmt [V (k′, ω′) |ωmt]

)
F k (k′|a, kimt, wmt)

=
∑
k′

V (k′, ωmt+1)F k (k′|a, kimt, wmt) + eV (a, kimt, ωmt, ωmt+1) , (9)

where eV (·) is the expectational error of the value function V (·). Substituting (9) in (8), we obtain

the following equation:

π (a, kimt, ωmt) + βeV (a, kimt, ωmt, ωmt+1)

= V (kimt, ωmt)− β
∑
k′

V (k′, ωmt+1)F k (k′|a, kimt, wmt)− ψa (kimt, ωmt) . (10)

17There are important classes of models in which finite dependence is not valid. For instance, in discrete
choice models in which k depreciates at a constant rate, kimt+1 = δkimt + aimt, where δ < 1 is the depreciation
rate. Examples include capital stock, human capital, and learning-by-doing (as in Benkard, 2000). Yet, finite
dependence can be restored in the absence of depreciation rate, δ = 1, or when the depreciation is stochastic,
kimt+1 = kimt+aimt− fimt, where fimt is a random shock, as in Besanko, Doraszelski, Kryukov, and Satterthwaite
(2010).
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Here, we make use of realized values of agents’ future expected payoffs V (k′, ωmt+1) as a noisy

measure of agents’ expected future payoffs. The use of realized values allows us to relax typical

assumptions about how agents form beliefs about the evolution of the (market-level) state variables.

Next, we simplify the notation and use (m, t) subscripts to denote functions that depend on

ωmt. We rewrite payoffs as πmt (a, k) ≡ π (a, k, ωmt), while πmt(a, k), ξmt(a, k), Vmt (k), pamt (k) and

ψamt (k) are similarly defined. We also make use of matrix notation, so that πamt is a K× 1 vector

that stacks πmt (a, k) for all k ∈ K (and similarly for the vectors Vmt, pamt and ψamt). Therefore,

(10) in matrix form becomes:

πamt + βeVam,t,t+1 = Vmt − βF k
amtVmt+1 − ψamt, (11)

for all a, where eVam,t,t+1 stacks eVmt,t+1 (a, k) ≡ eV (a, k, ωmt, ωmt+1) for all k ∈ K, and recall that

F k
amt is the K ×K transition matrix for k in market m at time period t.

We now eliminate the continuation values Vmt and Vmt+1 from (11) to obtain our regression

equation. First, note that the time-t value function term, Vmt, can be removed by simply differ-

encing equation (11) across two different actions, a and j:

ψjmt − ψamt = πamt − πjmt + β
(
eVam,t,t+1 − eVjm,t,t+1

)
− β

(
F k
jmt − F k

amt

)
Vmt+1. (12)

Equation (12) states that the difference in utilities the agent obtains by choosing a today and

optimally thereafter versus choosing j today and optimally in the future equals the difference

between ψjmt and ψamt. This can be viewed as an indifference condition: when the realized

idiosyncratic shock εjimt − εaimt is smaller than the difference in utilities on the right-hand side

of (12), the agent prefers choosing a today and optimally afterwards than j today and optimally

later (see equation (4)); when the realization of εjimt − εaimt is greater than the right-hand side of

(12), she prefers action j over a (and then optimally in the future); and when the realization of

εjimt− εaimt equals ψjmt−ψamt, the agent is indifferent between the two sequences of choices. The

term ψjmt − ψamt can therefore be viewed as providing the agent’s “indifferent type.”

Next, we rewrite (12) by separating payoffs into the observable and unobservable components:

ψjmt − ψamt = πamt − πjmt + ξamt − ξjmt + β
(
eVam,t,t+1 − eVjm,t,t+1

)
− β

(
F k
jmt − F k

amt

)
Vmt+1. (13)

Note that in the static case where β = 0, equation (13) simplifies to

ψjmt − ψamt = πamt − πjmt + ξamt − ξjmt. (14)

This is a standard logistic regression when ε has a type 1 extreme value distribution (Berry,

1994). In the static logit model, the left hand side of (14) is the log odds ratio of the choice
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probabilities, ψjmt − ψamt = ln
(
pamt
pjmt

)
. The right-hand side includes the payoff function π and

the unobservables ξ. If the payoffs for one reference action were known or pre-specified (e.g.,

set πjmt = 0, which is common practice), then πamt can be estimated using standard methods for

regression models. When the unobservables ξ correlate with w (which is an argument of πamt), then

we need instruments for w, and we can estimate the model parameters using standard instrumental

variables techniques.

In the dynamic model, we still need to handle the time-(t + 1) value function term, Vmt+1,

before (13) can be used for identification and estimation. As shown by Arcidiacono and Miller

(2011), continuation values can be eliminated when the finite dependence property holds.

Let J be a renewal or terminal action. If we recursively substitute Vmt+1, in equation (13), we

obtain

ψjmt − ψamt = πamt − πjmt + ξamt − ξjmt + β
(
eVam,t,t+1 − eVjm,t,t+1

)
− β

(
F k
jmt − F k

amt

)
(πJmt+1 + ξJmt+1 + ψJmt+1) , (15)

because the Vt+2 portions of the value function cancel conditional on action J being chosen in

period t+ 1.18

One can view (15) as an Euler equation. Intuitively, much like in equation (12), the equality

in (15) reflects an indifference condition: When the realization of εjimt − εaimt equals ψjmt −
ψamt, the agent is indifferent between choosing a today, J tomorrow and optimally in the future

versus choosing j today, J tomorrow and optimally thereafter. This is similar to traditional Euler

equations, in which perturbations on choices in adjacent time periods followed by optimal choices

in the future in ways that keep the agent indifferent express intertemporal first-order conditions

implied by optimal dynamic behavior. Even though it is not immediately obvious that (15) can be

viewed as a first-order condition, Aguirregabiria and Magesan (2013) have shown that if we treat

the choice probabilities as choice variables themselves, we could derive equation (15) as a first-

order condition, formalizing the analogy between (15) and traditional Euler equations for dynamic

problems with continuous choice variables.19

Finally, by rearranging (15) we obtain

ψjmt − ψamt + β
(
F k
jmt − F k

amt

)
ψJmt+1 = πamt − πjmt − β

(
F k
jmt − F k

amt

)
πJmt+1 + uajmt, (16)

18Formally, use (11) for J in t+ 1 to solve for Vmt+1 and replace the latter in (11) for any a in t:

πamt + βeVam,t,t+1 = Vmt − ψamt
−βF kamt

[
πJmt+1 + βF kJmt+1Et+1 [Vmt+2] + ψJmt+1

]
.

Next, evaluate the above at a and j and subtract to obtain (15) using property (7).
19Aguirregabiria and Magesan (2013) do not allow for unobserved state variables as we do, but their approach

to deriving Euler equations by treating choice probabilities as choice variables could be applied in our setting.
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where the econometric error term is uajmt = ξ̃ajmt + ẽVajmt, with

ξ̃ajmt = (ξamt − ξjmt) + β(F k
amt − F k

jmt)ξJmt+1, (17)

ẽVajmt = β(eVam,t,t+1 − eVjm,t,t+1). (18)

The Euler equation (16) can be used to construct moment restrictions that are well-suited

for identification and estimation of the payoff function π. Compared to the static model (see

the logistic regression in equation (14)), equation (16) adds some terms that “correct” for agents’

dynamic behavior. Once the adjustment terms are incorporated into the equation, we can estimate

a regression function that is similar to the static logistic model to recover the parameters of interest.

To summarize, in addition to Assumptions 1 and 2, the main ingredients of the ECCP approach

to identify and estimate the payoff function are: (a) the finite dependence property on individual-

level states k to derive the Euler equation itself, (b) valid instruments to identify the regression

function on the right-hand-side of (16), and (c) pre-specifying the payoff function for some reference

action, as usual in discrete choice models, in order to disentangle the individual flow payoffs in the

regression function.

Next, we return to each of our applied examples, illustrating the regression equations from the

ECCP equation (16) in each context. For the first example, we also outline the steps involved in

the derivation of the ECCP equation, as the derivation for the special case is considerably simpler

than the general derivation above.

Example 1 (continued). Demand for Durable Goods. Recall that the choice set is A =

{b, nb}, where b means buying the good, and nb means not buying the good, and that the consumer

controls state kimt ∈ {0, 1} where kimt = 0 if the consumer does not have a unit of the good at the

beginning of time period t, and kimt = 1 when she already owns it. This means that the action of

buying the product, aimt = b, is a renewal action, and so F k satisfies one-period finite dependence.

Assume logit errors. We begin with the Hotz-Miller inversion, or equation (5) differenced across

the two actions:

ln

(
pb (kimt, ωmt)

pnb (kimt, ωmt)

)
= vb (kimt, ωmt)− vnb (kimt, ωmt) .

In estimating this model, it suffices to focus on kimt = 0. Notice that when kimt = 0 (when the

agent does not own a unit of a good), the state variable kimt is a deterministic function of aimt.

(This simplifies the derivation of the Euler equation substantially.) We expand the conditional

value function given kimt = 0, and introduce expectational errors, as follows:

ln

(
pb (0, ωmt)

pnb (0, ωmt)

)
= θ0 + θ1wmt + ξmt + β (V (1, ωmt+1)− V (0, ωmt+1))

+β
(
eV (1, ωmt, ωmt+1)− eV (0, ωmt, ωmt+1)

)
. (19)

We now exploit the fact that purchasing the good is a renewal action, resulting in the state
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k′ = 1 regardless of what the initial state k is. As a result, when we substitute for V (1, ωmt+1) and

V (0, ωmt+1) in equation (19) using equation (5), the time-(t+ 2) value functions cancel, leaving

ln

(
pb (0, ωmt)

pnb (0, ωmt)

)
= θ0 + θ1wmt + ξmt + β [− ln pb (1, ωmt+1) + ln pb (0, ωmt+1)]

+β
(
eV (1, ωmt, ωmt+1)− eV (0, ωmt, ωmt+1)

)
. (20)

Equation (20) is the Euler equation for this model, and we can construct a regression equation by

rearranging it to have all the choice probabilities on the left-hand side:

Ymt = θ0 + θ1wmt + umt, (21)

where

Ymt = ln

(
pb (0, ωmt)

pnb (0, ωmt)

)
+ β ln

(
pb (1, ωmt+1)

pb (0, ωmt+1)

)
, (22)

and

umt = ξmt + β
(
eV (1, ωmt, ωmt+1)− eV (0, ωmt, ωmt+1)

)
. (23)

Note that, compared to a static logistic regression, we just need to add an adjustment term to

the dependent variable involving the probability of buying the product at t + 1, and incorporate

the expectational errors to the econometric error term. Given an instrumental variable that is

correlated with the price wmt but not with the error term umt, we can estimate equation (21) using

a linear instrumental variables regression.

Example 2 (continued). Land Use Change. Farmers decide whether to plant crops or not,

A = {crops, other}, and the controlled state variable k equals the number of years since the field

was last in crops. This implies that a = crops is a renewal action, resetting k to zero.

Assuming logit errors, equation (16) can be rewritten for each k as

Ymt (k) = θ̃0 (k) + θ1 [R (crops, wmt)−R (other, wmt)] + umt,

where
Ymt (k) = ln

(
pcrops,mt(k)

pother,mt(k)

)
+ β ln

(
pcrops,mt+1(0)

pcrops,mt+1(k′(other,k))

)
,

θ̃0 (k) = θ0 (crops, k)− θ0 (other, k)

+β (θ0 (crops, 0)− θ0 (crops, k′ (other, k))) ,

umt = ξmt (crops, k)− ξmt (other, k)

+β (ξmt+1 (crops, 0)− ξmt+1 (crops, k′ (other, k)))

+β
(
eVm,t,t+1 (0)− eVm,t,t+1 (k′ (other, k))

)
.
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Again, given estimates of CCPs, one can construct Ymt (k) and estimate θ̃0 (k) and θ1 using

linear IV regressions. Under the assumption that θ0 (other, k) = 0 for all k, we can recover the

switching costs parameters θ0 (crops, k) from the regression equation intercepts θ̃0 (k).

Example 3 (continued). Technology Adoption. Households choose to adopt one of the

available PV alternatives, or to not adopt any. Given that all adoption choices a > 0 are terminal

actions, (16) can be established for any a > 0 given k = 0. Here we take j = 0 and use J = 1 as

the terminal action in period t+ 1 to obtain for any a ≥ 2,

Yamt = (wamt − βw1mt+1) θ + ua0mt,

where

Yamt = ln

(
pamt (0)

p0mt (0)

)
− β ln p1mt+1 (0) ,

and

ua0mt = ξamt − βξ1mt+1 + β
(
eVm,t,t+1 (a)− eVm,t,t+1 (0)

)
,

noting that there is no time-t + 1 choice probability term corresponding to kimt+1 = a in the

definition of Yamt because no decision is made once a PV system has been installed; i.e., p1mt+1 (k) =

0 for k ≥ 1.20

As usual, prices may correlate with unobserved quality ξamt (which are part of the error term

ua0mt); one needs therefore to instrument for prices to estimate the model parameters. De Groote

and Verboven (2019) use the prices of Chinese modules as instruments, arguing that these prices

are plausibly exogenous to demand shocks in the Belgian market (and therefore a valid instrument)

and that the modules are an important component of solar PV installation costs (therefore, making

module prices a strong instrument).

Example 4 (continued). Dynamic Labor Supply. Taxi drivers decide when to stop working,

implying that action a = 0 is a terminal choice. Focusing on drivers who have been working for at

least one hour (recall that we are not modeling the decision to start the shift), and assuming logit

errors, equation (16) can be written for each k ≥ 1 as

Ymt(k) = θ0 + θ1wmt + θ2 k + umt, (24)

where

Ymt(k) = ln

(
p1mt (k)

p0mt (k)

)
+ β ln p0mt+1 (k + 1) , (25)

20In deriving the regression equation with terminal actions, it is convenient to assume that the idiosyncratic
errors have a mean-zero distribution, e.g., the standard type 1 extreme value distribution demeaned by Euler’s
constant. As a result, the expected flow payoffs in the terminal state do not depend on whether or not the agent
still receives an idiosyncratic shock in that state.
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and

umt = ξmt + β eVm,t,t+1 (k + 1) , (26)

noting that, in contrast to the technology adoption case, the t+ 1 terms drop from the regression

equation because the agent’s continuation value equals zero once the terminal action is chosen. In

addition, in the last decision period, the future CCP drops from the definition of Ymt(k) given that

there is no more decision to make in the terminal period.

As mentioned previously, the expected hourly earnings wmt can be correlated with the unob-

servable factors ξmt. In our application, we consider two instruments for wmt. The first instrument

is the (within-day) lagged earnings, wmt−1. Using lagged regressors as instruments is standard

practice in panel data models; validity of this instrument requires restrictions on the serial corre-

lation of the econometric error term. The second is a “Hausman-type” of instrument: the hourly

earnings in the same hour of the day t but in the previous day m−1; i.e., wm−1,t. This instrument,

which takes the price of the same service in a different market, is valid when the unobservables are

independent across markets (even when they are serially correlated within markets) – see Hausman

(1996) and Nevo (2000).

Before proceeding to the general case, three remarks are in order.

Remark 1. (Finite-horizon and Nonstationary Models.) Note that the Euler equation (16) holds

regardless of the agents’ time horizons. The ECCP method can therefore be implemented in models

with finite-horizons (as in our taxi drivers example above). Further, by noting that the time index t

can also be a component of the observed state wmt, our approach can be extended to nonstationary

models in which payoffs and observed state transitions can depend directly on the time index t.

Remark 2. (Unobserved Heterogeneity.) The ECCP approach can incorporate individual-level

unobserved heterogeneity by following the strategies proposed by Kasahara and Shimotsu (2009)

and Hu and Shum (2012). They provide conditions to identify type-specific conditional choice

probabilities and transition functions for finitely-many unobserved types in a first step. After type-

specific CCPs and (agent-level) transition functions are identified in each market m and time period

t, equation (16) can be used to identify and estimate the payoffs of each individual-level unobserved

type, complementing therefore the ECCP approach.

Remark 3. (Additive Separability in Payoffs.) Assumption 2 requires additive separability in flow

payoffs, π = π + ξ, which severely restricts marginal rates of substitutions between observable and

unobservable states. One reasonable alternative is to assume monotonicity in payoffs, i.e., assume

π(a, k, w, ξ) is strictly increasing in ξ (in the same manner as in the static nonseparable model

of Matzkin, 2003). However, this monotonicity condition implies that the regression function in

(16) would then include too many unobservables in a nonlinear way (ξamt, ξjmt, ξJmt+1, and the

expectational error eV ). Given that the unobservables cannot be combined into a single-index term,
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we cannot exploit the strategies proposed by Matzkin (2003) or Chernozhukov and Hansen (2005)

to identify the payoff function. (The same difficulties arise if we drop Assumption 1 and allow F k

to depend on unobservable states.) Identifying structural parameters in such settings remains an

open question.

4 Identification

We now discuss the identification of the payoff function π under more general forms of finite depen-

dence. We start the discussion presenting our main propositions, then we turn to the conditions

to obtain valid instruments (Section 4.1), and we close the section with three relevant extensions

to the ECCP framework (Section 4.2).

Take two sequences of actions (a, a1, . . . , aτ ) and (j, j1, . . . , jτ ) satisfying τ -period finite de-

pendence (see Definition 2).21 Extending equation (16) to τ -period dependence, we obtain the

following equation (see Online Appendix A for a detailed derivation):

ψjmt − ψamt + F k
jmt

τ∑
d=1

βdΛjmtd ψjdmt+d − F k
amt

τ∑
d=1

βdΛamtd ψadmt+d

= πamt − πjmt + F k
amt

τ∑
d=1

βdΛamtd πadmt+d − F k
jmt

τ∑
d=1

βdΛjmtd πjdmt+d

+ uajmt, (27)

where the K ×K matrix Λamtd is observed (estimable), and is defined recursively

Λamtd = I, for d = 1,

Λamtd = Λamt,d−1 F
k
ad−1mt+d−1, for d ≥ 2,

and the econometric error term is now uajmt = ξ̃ajmt + ẽVajmt, with

ξ̃ajmt = ξamt + F k
amt

τ∑
d=1

βdΛamtd ξadmt+d

− ξjmt − F k
jmt

τ∑
d=1

βdΛjmtd ξjdmt+d, (28)

ẽVajmt = βeVam,t,t+1 + F k
amt

τ∑
d=1

βd+1Λamtd e
V
ad,m,t+d,t+d+1

− βeVjm,t,t+1 − F k
jmt

τ∑
d=1

βd+1Λjmtd e
V
jd,m,t+d,t+d+1. (29)

21Recall that the sequences depend on the particular initial pair of actions (a, j) chosen. That is, we use ad to
denote the d−th action following the initial action a when the alternative initial action is j.
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As discussed in the context of the applied examples, to identify and estimate the model pa-

rameters based on the regression equation (27), it is key to access valid and relevant instrumental

variables. We therefore assume the researcher has access to such instruments.

Assumption 3. (Instrumental Variables) There exist instruments zmt such that:

(i) For all functions q (wmt) with finite expectation, if E [q (wmt) |zmt] = 0 almost surely, then

q (wmt) = 0 almost surely,

(ii) E[ξ̃ajmt|zmt] = 0, for all a and j, and

(iii) E[ẽVajmt|zmt] = 0, for all a and j.

Assumption 3.(i) is the well-known “completeness condition,” which is the nonparametric ana-

log of the standard rank condition for linear models (Newey and Powell, 2003). Assumptions 3.(ii)

and 3.(iii) are usual exclusion restrictions, requiring mean independence between the instruments

and both the structural errors ξ and the expectational errors eV . We discuss instrument validity

in the next subsection, after presenting our main propositions.

Proposition 1. Suppose Assumptions 1, 2, and 3 hold. Assume that:

(i) For all pair of actions a and j, the single-action τ -period finite dependence property, with

τ < T , holds for the agent-level transition F k and for action J .

(ii) The payoff π (J, k, w) is known for all (k, w).

Then, given the joint distribution of observables yimt = (aimt, kimt, wmt, zmt), the flow payoff

π (a, k, w) is identified for all (a, k) and almost all w.

Proposition 1 states that the primitive of interest π is nonparametrically identified provided

that single-action finite dependence holds for some action J and that the flow payoff is known

for that same action. Arcidiacono and Miller (2020) have obtained identification results under

similar conditions for nonstationary models with short panels, but ignoring serially correlated

unobservables and endogeneity problems.

Intuitively, the regression function on the right-hand-side of (27) is nonparametrically identified

in the presence of valid instruments. When action J is chosen repeatedly (τ times) to reset the

distribution of states, the regression function in (27) becomes a function of the payoffs πamt, πjmt,

and πJmt+d, for d = 1, ..., τ . By taking j = J and assuming πJmt is known for all states, one can

recover the only remaining unknown in the regression function: the flow payoff πamt, for all a 6= J .

Proposition 1 has two limitations. In general, structural dynamic discrete choice models require

restrictions on the payoff function for identification (Rust, 1994; Magnac and Thesmar, 2002). In

the literature, identification typically relies on a restriction of the form π (J, s) = 0 for all states
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s and an arbitrary action J .22 Proposition 1, however, requires such a restriction on a specific

action J ; this is an unusually strong requirement in the dynamic discrete choice literature. For

instance, in a setting with a renewal or terminal action, Proposition 1 requires that the renewal

or terminal action’s payoffs to be known (i.e., restricted ex-ante). While this is satisfied in our

taxi labor supply example (as the flow utility obtained when stop working – a terminal choice –

is set to zero), the other three applied examples presented above do not impose this restriction on

payoffs: In the durable demand example, we do not impose known flow utility when consumers buy

the durable good (noting that buying the good is a renewal action); likewise, the switching costs

parameters of the land use model are set to zero for the “noncrops” action (while the “crops”

choice is renewal); and none of the payoffs obtained from installing a PV system are assumed

known by De Groote and Verboven (even though all such choices are terminal actions). This

means that, while sufficient for identification, assuming π (J, k, w) is known for the specific action

J is not necessary for identification.

Similarly, while single-action finite dependence is part of the sufficient conditions for identi-

fication in Proposition 1, it is not necessary. The next proposition shows that, at the cost of

imposing parametric restrictions on payoffs, identification can be obtained under a more general

notion of finite dependence, and it does not require the payoff of a specific action J to be known.

There exists therefore a clear trade-off between the identification of parametric and nonparametric

models in the present context.

Proposition 2. Suppose Assumptions 1 and 2 hold. Assume τ -period finite dependence holds for

the agent-level transition process F k, with τ < T . Assume also a linear-in-parameters flow payoff:

π (a, k, w) = x (a, k, w) θ, where θ ∈ RP and x (a, k, w) is a known 1×P vector function. Let Xamt

be a K × P matrix with elements given by x (a, k, wmt), so that πamt = Xamtθ, and define

X̃ajmt ≡ Xamt + F k
amt

τ∑
d=1

βdΛamtd Xadmt+d

−Xjmt − F k
jmt

τ∑
d=1

βdΛjmtd Xjdmt+d. (30)

Denote the K × 1 vector on the left hand side of (27) by Yajmt. Stack equation (27) for all Q

feasible combinations of actions (a, j) ∈ A to obtain the following equation

Ymt = X̃mtθ + umt, (31)

where the QK× 1 vectors Ymt and umt stack Yajmt and uajmt, respectively, and the QK×P matrix

X̃mt stacks X̃ajmt. Let Zmt be an L × QK matrix of instrumental variables with L ≥ P . The

22Such identifying restrictions matter for some, but not all counterfactuals; see Aguirregabiria (2010), Norets and
Tang (2014), Arcidiacono and Miller (2020), and Kalouptsidi, Scott, and Souza-Rodrigues (2019) for more details.
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parameter θ is identified provided E [Zmtumt] = 0 and rank(E[ZmtX̃mt]) = P .

Compared to Proposition 1, Proposition 2 imposes a linear-in-parameter payoff function, but

does not require the single-action finite dependence property for some J , nor pre-specifying the

payoff of that same action J . General patterns of finite dependence, including exchangeable se-

quences, can be accommodated because the regression function in (31) is a linear function of the

parameters θ for any such sequences of choices. Proposition 2 can therefore be used to extend

previous empirical applications exploring more than one-period (and not just single-action) finite

dependence to incorporate serially correlated unobservable states and endogeneity (e.g., Coate,

2016; Matsumoto, 2016; Ma, 2019). The extension of Proposition 2 to stochastic finite dependence

is shown in the Online Appendix (see Proposition A1 in Online Appendix A).

It is important to notice that while Proposition 2 does not require the payoff parameters of

a particular action to be known, the rank condition rank(E[ZmtX̃mt]) = P still implicitly limits

the number of parameters than can be identified. See, e.g., the dynamic land use change model

discussed in Example 2. However, the condition is straightforward to check for a given data set

and parametric specification.

4.1 Discussion: Instrument Validity

In this subsection, we discuss conditions for instrument validity. We consider the two components

of the econometric error term, umt = ξ̃mt + ẽVmt. We start the discussion with the structural

unobservable term ξ̃mt, and then we move to the expectational error ẽVmt. To simplify, we ignore

endogeneity issues related to one component when discussing the other one, but one should keep

in mind that instrumental variables must be uncorrelated with both components. We close this

subsection by focusing on the specifics of our four examples.

Structural Errors ξ. Recall that ξmt is a function of observed and unobserved market-level

states ωmt = (wmt, ηmt). If (a) ξmt is a function of ηmt but not of wmt, and (b) the observed and

unobserved market-level states, wmt and ηmt, evolve independently to each other, then wmt and

ξmt are fully independent and wmt can be taken as exogenous in the regression equation (27). In

contrast, if ξmt depends on wmt (e.g., when ξ captures measurement errors), or if wmt and ηmt

do not evolve independently (e.g., when w are observed prices and η captures quality shocks in

demand models), then wmt and ξmt are correlated, in which case the use of excluded instruments

becomes necessary for identification.

One possible source of instruments comes from the structure of simultaneity problems, as

the identification of demand models using supply shifters as instruments; see, e.g., De Groote

and Verboven (2019). Another possibility is to use Hausman-type of instruments by exploring

independence across markets m and using observable states in other markets, as we do in our taxi

drivers’ empirical illustration.
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A third possible source of instruments in panel data settings is lagged regressors. Requiring

lagged state variables to be uncorrelated with ξ̃mt demands restrictions on the evolution of ξmt.

For instance, suppose wmt is serially correlated but ξ̃mt is not, as when ξ̃mt = ξmt captures i.i.d.

measurement error in w. Then, any lagged regressor, wmt−d with d ≥ 1, may serve as valid

instrument. Lagged covariates may also serve as instruments when ξ̃mt = ξmt, but ξmt is itself

serially correlated (as in Example 1; see the Monte Carlo study in Section 6). More generally,

when ξ̃mt incorporates both ξmt and future values ξmt+1 (as in Examples 2 and 3 above), then ξ̃mt

will be serially correlated by construction (even when ξmt is i.i.d.), which means that further lags

of wmt may be needed to obtain valid instruments.23

The use of lagged states as instrumental variables in dynamic models is also explored by

Berry and Compiani (2019). Similar to the ECCP approach, they allow for serially correlated

unobservable states that also correlate with observable states, resulting in econometric endogeneity

problems. However, in contrast to the ECCP approach, they assume that the unobservable states

are correlated with the controlled states, but are fully independent of the uncontrolled states. In

our notation, they assume that ξ (or η) correlate with k, but ξ (or η) evolves independently of w,

rendering lagged w valid instruments for k. The ECCP approach addresses a different endogeneity

problem: it does not require full independence between ξ and w, but it does require that the

transition process for k does not depend on unobserved states.24

Expectational Errors eV . We now discuss the expectational error term, ẽVmt. It is clear that, to

obtain variables that are uncorrelated with prediction errors, we need to make (minimal) assump-

tions on agents’ information sets and beliefs. One common assumption in the applied literature is

rational expectations.

Assumption 4. (Rational expectations) Agent’s expectations conditional on the information set

Iimt correspond to the conditional expectations of the true data generating process given Iimt.

Rational expectations is useful for the ECCP approach because it offers sources of instrumental

variables. Intuitively, when agents have rational expectations, forecast errors are mean independent

of variables that belong to the agent’s information set Iimt (Hansen and Sargent, 1980; Hansen

and Singleton, 1982). The next lemma formalizes this intuition in the present context:

Lemma 1. Suppose Assumption 4 holds. Then,

23The unobservable ξ̃mt may also correlate over time when it involves an additive market-level fixed-effect. In
this case, it is possible to difference the fixed-effect out as usually done in linear panel data settings.

24Berry and Compiani (2019) estimate the policy function in the first step by regressing actions on states, and
then estimate model parameters in the second step in a spirit similar to Bajari, Benkard, and Levin (2007). They
make use of the generalized instrumental variable (GIV) approach proposed by Chesher and Rosen (2017) in the first
step. When actions are discrete, the policy function is partially identified, implying set-identified model parameters
in the second step. Importantly from a practical point of view, while the GIV approach allows for a large number
of unobservables in theory, it is computationally difficult to calculate the identified sets in the presence of many
unobservables. The ECCP approach does not suffer from this difficulty.
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(i) For any action a and individual state k, the expectational error term eh
(
a, k, ωmt, ω

∗
mt+1

)
is

mean zero given the information set available to the agent: E
[
eh
(
a, k, ωmt, ω

∗
mt+1

)
|Iimt

]
= 0.

(ii) For zmt ∈ Iimt, E[eh
(
a, k, ωmt, ω

∗
mt+1

)
|zmt] = 0, for all a and k.

(iii) Expectational errors are serially uncorrelated.

Lemma 1 shows that, when agents have rational expectations, and when instruments belong

to agents’ information sets, expectational errors eV are mean independent of zmt. Assumption 4

therefore implies Assumption 3.(iii).25 Furthermore, because lagged values of wmt are in agent’s

contemporaneous information set, they can serve as instruments under the rational expectations

assumption.

Future values of the state variables, in contrast, cannot be used as instruments because they

correlate with forecast errors. Specifically, recall that the expectational error term at t captures

the difference between realized value functions at t + 1, Vmt+1, and their time-t expectations,

E[Vmt+1|Iimt], and note that the realization of the value function at t + 1 will be correlated with

realized covariates at t+ 1, wmt+1. Put differently, wmt is not strictly exogenous in the regression

equation (27), making lead covariates invalid instruments.

Another important and related aspect of the problem is that in some (but not all) models,

the regression function in (27) includes future values of the covariates. In parametric models,

the right-hand-side variable X̃mt in equation (31) may include covariates observed at t + 1 or

subsequent periods, as specified in (30) (see, e.g., Example 3). As explained in the previous

paragraph, future values of wmt correlate with forecast errors; this creates a mechanical endogeneity

problem in the ECCP equation. For such cases, the researcher needs appropriate instruments in

the contemporaneous information set for those future values of covariates.26

To be more concrete, we now close this section by focusing the discussion of instrument validity

exclusively in the context of our examples. In the durable demand model (Example 1), the econo-

metric error term is umt = ξmt + ẽVmt, with ξmt capturing serially correlated unobserved product

quality shocks. In our Monte Carlo exercise (Section 6), we use supply shifters as instruments for

product prices, assuming supply shifters are uncorrelated with demand shocks ξ, and assuming

25Strictly speaking, Lemma 1 implies that E[eVajmt|zmt] = 0 while condition (iii) of Assumption 3 requires

E
[
ẽVajmt|zmt

]
= 0, where ẽVajmt includes eVajmt as well as potentially eVajm,t+d terms with d ≥ 1. As discussed

in the proof of Lemma 1, an instrument zmt in the time-t information set will also be uncorrelated with future
expectational error terms.

26Endogeneity problems due to expectational errors are also a central concern in Dickstein and Morales (2018)
and Morales, Sheu, and Zahler (2019). They construct discrete-choice analogues of Euler equations by comparing
observed choice paths and paths involving one-period deviation in models with one-period finite dependence. Given
that observed paths should be preferred to deviations, revealed-preference arguments provide the basis to construct
moment inequalities, featuring forecast errors at the t+ 1 time period. While their approach allows for large choice
sets (which is difficult to accommodate in the ECCP approach), it rules out unobserved heterogeneity, including
serially correlated unobserved states, implying that observationally equivalent agents in their setups always prefer
the same path of choices than the constructed alternative deviations.

28



consumers do not make systematic mistakes in predicting future values Vmt, so that consumers’

forecast errors ẽV do not correlate with supply shocks. In the dynamic land use change model

(Example 2), Scott (2013) uses lagged observed returns as instruments for contemporaneous re-

turns, R(crops, wmt) − R(other, wmt), therefore imposing restrictions on the serial correlation of

the econometric error term. Scott also assumes farmers have rational expectations, so that lagged

returns do not correlate with expectational errors by construction.27 In the technology adoption

problem (Example 3), the econometric error term includes both present and future demand shocks,

ξmt and ξmt+1, in addition to the prediction error. De Groote and Verboven (2019) use time-t cost

shifters as instruments for PV prices (as mentioned previously), assume these shifters are part of

households’ information sets, and impose rational expectations. Under these assumptions, cost

shifters are uncorrelated with both demand shocks and forecast errors. In our taxi drivers’ labor

supply application (Example 4), we take each working day as a market and use hourly earnings in

previous days (i.e., in other markets) as instruments for today’s earnings. We assume unobserv-

able factors are independent across markets, and assume rational expectations (so that earnings

in previous days are part of agents’ information sets).

4.2 Extensions

We now briefly discuss three relevant extensions to the ECCP framework: the potential use of

quasi-experiments as plausible sources of exogenous variation, models with biased beliefs or perfect

foresight as alternatives to the standard rational expectations framework, and models with learning.

Quasi-Experiments. The ECCP approach can be combined with randomized control trials or

quasi-experiments to identify the model parameters. For instance, Diamond, McQuade, and Qian

(2018) extend the linear IV approach to a set of difference-in-differences regressions that explore

variation in the assignment of rent control due to a 1994 ballot initiative in San Francisco. The

idea is that equation (27) holds for both (randomly assigned) treatment and control groups. Given

that families in both groups can live in the same neighborhood m, it is possible to difference (27)

across groups to eliminate local unobservable amenities ξmt that correlate with observable variables

wmt and estimate the model parameters. In this way, they avoid the need to find instrumental

variables to handle the correlation between ξ and w.

Biased Beliefs and Perfect Foresight. Although rational expectations is a useful assumption

that helps find plausible instrumental variables, it is clear that Propositions 1 and 2 do not require

such assumption. Identification of model primitives can therefore be obtained under biased beliefs.

The challenge in this case is to find plausible instruments that do not correlate with systematic

errors eV .

27In addition, Scott (2013) differences out county-level fixed-effects in the ECCP regression.
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The main difficulty under biased beliefs is not just that expectational errors are not mean zero, it

is that the errors may also be serially correlated. Given that systematic prediction errors correlate

with serially correlated covariates wmt, they then also correlate with lagged covariates wmt−d,

turning lagged regressors invalid instruments. Unless the researcher imposes more restrictions on

agents’ beliefs (such as imposing some learning process combined with limited memory so that

systematic mistakes do not extend for more than a limited number of time periods), the researcher

cannot make use of lagged regressors as instrumental variables.

An alternative is to construct other moment restrictions based on (27) or (30) that do not

require rational expectations. That is indeed the solution proposed by Diamond, McQuade, and

Qian (2018). While they exploit the difference in treatment and control groups to eliminate local

unobserved amenities ξmt, as mentioned previously, they still need to handle endogeneity problems

related to the expectational error terms – composed of the difference between the forecast errors of

treatment and control groups. In their differenced Euler equations, there is a mechanical correlation

between future covariates in the regression function and forecast errors. They use lagged states

in agents’ information sets as instruments. While lagged states may correlate with forecast errors

under biased beliefs, they assume that the difference in expectations between treatment and control

households in the same year are zero on average. I.e., agents may have biased beliefs, but cannot

have beliefs that differ systematically across groups. That is a plausible assumption given the

random assignment of households to treatment and control groups. They therefore combine their

difference-in-differences approach with instrumental variables to estimate their model.

At the other extreme, the same Euler equation (27) can be derived from the assumption that

agents have perfect foresight about the market state ωmt. Recall that our regression equations

have residuals of the form umt = ξ̃mt + ẽVmt. When agents have perfect foresight about ωmt,

the unobservable component of the payoff becomes the entire residual, i.e., umt = ξ̃mt. This

reinterpretation of the residual is of no consequence for the method-of-moments estimators we

propose, since the moments depend only on the value of the entire residual umt.
28

Learning Models. The ECCP approach can be used to study learning models in which learning

depends on individuals’ choices and experiences. For Bayesian learning processes, the same number

(and intensity) of signals along two exchangeable sequences of choices result in the same expected

distribution of a future period’s beliefs. I.e., the timing of the signals (obtained from individual

choices) that reveal information to agents about an underlying parameter does not matter, while

the number of signals do; this is a mechanical result from Bayesian updating. In this way, one can

take advantage of exchangeable finite dependence to study decisions under information frictions

(see, e.g., Arcidiacono, Aucejo, Maurel, and Ransom, 2016; Matsumoto, 2016). Similarly, learning-

28Note however that a misspecified perfect foresight model would ignore the mechanical endogeneity problem
coming from the expectational error terms (as discussed above, expectational error terms are generally correlated
with realized values of future variables). This would give the wrong impression that future covariates could be used
as instruments, which in turn would produce biased parameter estimates.
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by-doing models with (stochastic) organizational forgetting, as in Besanko, Doraszelski, Kryukov,

and Satterthwaite (2010), can exploit exchangeable finite dependence to identify and estimate

the model primitives. For both types of learning models, the ECCP approach can allow for

unobservable states and be flexible with respect to how these states evolve over time.

5 Two-stage Estimation

In this section, we present the ECCP estimator and establish its asymptotic properties. We follow

the tradition of Hotz and Miller (1993) and estimate conditional choice probabilities and transition

probabilities in the first step, and estimate the model parameters in the second step. To simplify

exposition, we assume a large number of individuals N and markets M , but we hold the number

of time periods T fixed. Asymptotic results can be extended to large T by imposing stationarity

and ergodicity assumptions.

Although it is possible to estimate the payoff function π nonparametrically (following Proposi-

tion 1), here we consider a parametric model π (a, k, w; θ0), where θ0 ∈ Θ ⊂ RP is the parameter of

interest. Parametric models estimated using panel data involving large number of cross-sectional

observations and small number of time periods is common in applied work.29

5.1 First Stage

In the first stage, we estimate pamt (.) and F k
amt (.) in all markets m and all available time periods

t. Denote the estimators for the CCPs and transition probabilities by p̂amt and F̂ k
amt. Because K

is finite, we consider the frequency estimators:30

p̂amt (k) =

∑N
i=1 1 {aimt = a, kimt = k}∑N

i=1 1 {kimt = k}
,

F̂ k
amt (k′|k) =

∑N
i=1 1 {aimt = a, kimt = k, kimt+1 = k′}∑N

i=1 1 {aimt = a, kimt = k}
.

We impose the following condition for each market m and each time period t.

29Nonparametric payoff functions π can be estimated in the second step using estimators proposed by Newey
and Powell (2003) or by Escanciano, Hoderlein, Lewbel, Linton, and Srisuma (2018). While the former involves
ill-posed inverse issues, the latter combines standard kernel estimation with the computation of a matrix eigenvector
problem in a way that avoids the ill-posed inverse problem. Aradillas-Lopez (2015) investigates the semiparametric
efficiency properties of estimators of parametric models with rational expectations in which agents’ beliefs are treated
nonparametrically as “generated regressors.” This approach may be useful in our context when k is a continuous
variable.

30Recall that results can be adapted to more complicated estimators of CCP and transitions. For instance, we
can incorporate time-invariant observables that affect individuals’ choices, as well as unobservable heterogeneity as
in Kasahara and Shimotsu (2009) and Arcidiacono and Miller (2011) (see also Scott, 2013).
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Condition 1. The observations {aimt, kimt : i = 1, ..., N} are i.i.d. conditional on the market level

state ωmt.

Condition 1 formalizes the idea that ωmt is a common shock affecting all agents i in market

m at time period t. As shown in Andrews (2005), this assumption is valid when the sample of

individuals are drawn randomly from the population. (Sources of spatial dependence among agents

within markets other than the common shock ω can be accommodated in our framework, but is

beyond the scope of the paper.)

The probability limits of p̂amt and F̂amt can be determined following the Law of Large Numbers

for exchangeable random variables (see Hall and Heyde, 1980). In addition, the result can be

strengthened to a law of iterated logarithm, which is an important input to derive the asymptotic

results for the second step. To simplify notation, stack the vectors (p̂amt, F̂
k
amt) and

(
pamt, F

k
amt

)
for

all actions and states, and denote them, respectively, by δ̂mt and δmt. Note that δmt is itself random

because
(
pamt, F

k
amt

)
depends on the realization of ωmt. In what follows, we use the Euclidean norm

‖.‖.31

Lemma 2. Suppose Condition 1 holds. Then,

δ̂mt → δmt a.s., (32)

as N →∞. Moreover, ∥∥∥δ̂mt − δmt∥∥∥ = Oa.s.

(√
log logN

N

)
. (33)

5.2 Second Stage

Recall that, for each combination of a and j, the unobservable uajmt is the K × 1 vector satisfying

(27). Define the vector umt(θ, δmt) that stacks uajmt for all feasible combinations of (a, j), and

define the function gmt (θ) = h (zmt)umt(θ, δmt), where h (zmt) is a conformable function of the

instrumental variables. The unconditional moment restriction (implied by Assumption 3) is then

E [h (zmt)umt(θ0, δmt)] = 0. (34)

Define the function g (θ) ≡ E [gmt(θ)]; the GMM population criterion function is given by

Q (θ) = g (θ)′Wg (θ) , (35)

31Although we do not exploit the asymptotic distribution of δ̂mt in this paper, note that it can be obtained
following the arguments in Andrews (2005). Specifically, under the regularity conditions stated in Andrews (2005),√
N(δ̂mt − δmt) converges in distribution to a mixture of normal distributions that depend on the common shock

ωmt.
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where W is a (non-stochastic) positive-definite weighting matrix. By the identification results, θ0

is the unique minimizer of Q (θ).

Next, consider the sample analogue of (35). Define the functions

ĝmt (θ) = h (zmt)umt(θ, δ̂mt), and (36)

ĝM (θ) =
1

M (T − τ)

M,(T−τ)∑
m=1,t=1

ĝmt (θ) , (37)

where τ reflects the τ -finite dependence assumption (see Definition 2). The GMM criterion function

is then given by

Q̂M (θ) = ĝM (θ)′WM ĝM (θ) , (38)

where WM is a positive-definite weighting matrix that may depend on data. The estimator θ̂M

minimizes Q̂M (θ) over Θ.

The next set of conditions suffices for consistency of θ̂M .

Condition 2. Conditions for consistency:

(i) The vector (wmt, zmt) is i.i.d. across markets m.

(ii) WM
p→W as M →∞.

(iii) Θ is compact.

(iv) θ0 uniquely minimizes Q (θ) over Θ.

(v) πamt (θ) is continuous at each θ ∈ Θ for all a ∈ A.

(vi) E [supθ∈Θ ‖h (zmt)umt(θ, δmt)‖] <∞.

(vii) E
[
supθ∈Θ ‖h (zmt)∇δumt(θ, δmt)‖2] ≤ B <∞, where B is a finite constant.

Condition 2 establishes standard regularity conditions that guarantee the problem is well-

behaved. The assumption that market-level variables are independent across markets simplifies

the derivation of the asymptotic results (Condition 2(i)), but results can be extended to allow for

spatial dependence across markets (Conley, 1999; Andrews, 2005; Kuersteiner and Prucha, 2013).

Condition 2(ii)–(vi) are standard. Condition 2(vii) is used in conjunction with equation (32) in

Lemma 2 of Section 5.1, to guarantee uniform convergence in probability of the criterion function

to its population version. The term ∇δumt is the derivative of the vector umt with respect to δ,

which in turn, depends on the derivative of ψa with respect to the CCPs (see equation (27)). As

shown in Kalouptsidi, Scott, and Souza-Rodrigues (2019), ψa is indeed a differentiable function

of p (k, ω), provided p (k, ω) lies strictly between zero and one (which is satisfied when payoffs are

bounded and εimt has full support on RA+1).

Proposition 3. Under Conditions 1 and 2, θ̂M
p→ θ0 as (M,N)→∞.

To obtain the asymptotic distribution of θ̂M , we impose the following:
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Condition 3. Conditions for asymptotic distribution:

(i) θ0 ∈ interior (Θ).

(ii) πamt (θ) is continuously differentiable in a neighborhood N of θ0 with probability approaching

one for all a ∈ A.

(iii) E[‖h (zmt)umt(θ0, δmt)‖2] <∞, and E [supθ∈N ‖h (zmt)∇θumt(θ, δmt)‖] <∞.

(iv) G′WG is nonsingular for G = E
[

1
T−τ

∑T−τ
t=1 h (zmt)∇θumt(θ0, δmt)

]
.

Similar to Condition 2, Condition 3 imposes standard regularity conditions to make the problem

well-behaved. The next proposition follows.

Proposition 4. Suppose Conditions 1, 2 and 3 hold. Assume (M log logN)/N → 0, as (M,N)→
∞. Then, √

M
(
θ̂M − θ0

)
p→ N (0,V) ,

where

V = (G′WG)
−1

G′WΣWG (G′WG)
−1
,

and

Σ = E

[(
1

T − τ

T−τ∑
t=1

gmt (θ0)

)(
1

T − τ

T−τ∑
t=1

gmt (θ0)

)′]
.

The asymptotic distribution of θ̂M in Proposition 4 is the same as the distribution of an

unfeasible estimator in which δmt is observed instead of estimated in the first step. The first step

estimators δ̂mt, for all markets and time periods, do not affect the asymptotic variance of θ̂M

when the number of observations within markets N is sufficiently large compared to the number

of markets M . The rate at which N must increase to eliminate the influence of the first step on

the variance of the second step is M log logN
N

→ 0 as (M,N) → ∞. This rate is a direct result of

the Law of Iterated Logarithm obtained in Lemma 2.32

Consistent estimators for V and optimal weighting matrices for W can be obtained using

standard arguments and are omitted here (see, e.g., Theorem 4.5 in Newey and McFadden (1994)).

We close the section with a discussion of two practical concerns regarding asymptotic inference.

Remark 4. (Macroeconomic Shocks.) The presence of aggregate shocks can pose difficulties to

estimation and inference in nonlinear panel data models in general (see, e.g., Hahn, Kuersteiner,

and Mazzocco, 2019). In the present case, the difficulty may depend on whether the researcher

has a short or long panel. Recall that when the instruments belong to the agent’s contemporaneous

information set, and when agents have rational expectations, the instruments are uncorrelated with

ẽVmt. Yet, it is important to note that, while the expectational error terms are mean-zero given Iimt,
there is a distinction between the way eV averages out in the cross-sectional dimension M and the

32When N is not sufficiently large relative to M , the first step may affect the distribution of the estimator in the
second step. See Chernozhukov, Escanciano, Ichimura, Newey, and Robins (2018) and Dearing (2019) for strategies

to orthogonalize the influence of the first step on the distribution of θ̂M .
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way it averages out in the time-series dimension T . For instance, if in a given time period t, a

macro shock affects all agents in all markets, then the prediction errors eV do not average out to

zero asymptotically when M →∞. For this averaging out to happen as the cross-section becomes

large, we do need to make a substantive assumption about the correlation across markets. Such type

of assumption may be appropriate for some applications, but it may not be appropriate when, for

example, markets are geographically defined and state variables include prices whose movements

over time are strongly correlated around the world (e.g., transportable commodities).

In contrast, in a large-T setting, asymptotic convergence involving eV terms does not require a

substantive assumption about how markets are correlated. Instead, rational expectations guarantees

that expectational error terms are serially uncorrelated (see Lemma 1). Intuitively, when T →∞,

macro shocks wash out in the limit. We investigate this possibility in our Monte Carlo exercise by

exploring the finite sample performance of the ECCP estimator with different sample sizes M and

T , both in the presence and absence of macro shocks.

Remark 5. (Observation Weights.) The efficiency of the ECCP approach can potentially be

improved by considering observation weights in the second stage. In general, in the presence of

heteroscedastic errors, optimal regression weights are inversely proportional to the variance of each

observation’s error term umt. The variance of the error term depends on the (first-stage) choice

probabilities and can therefore be inferred from the choice probability estimates and the sample

size used to estimate them. From this, the variance of the dependent variable in equation (16)

can be computed, yielding appropriate observation weights. Note that these weights can reduce the

influence of imprecisely estimated first stage CCP’s, since, in practice, even large data sets can

have small sample sizes after conditioning on certain state variables.

6 Monte Carlo

In this section, we present a Monte Carlo experiment to illustrate the performance of the ECCP

estimator, focusing on the dynamic demand model for a durable good discussed in Example 1.

Recall that the choice set is A = {b, nb}, where a = b if the consumer buys the good, and

a = nb if she does not buy it. The individual-level state kimt reflects whether she already owns the

product or not at the beginning of time period t. We consider two market-level state variables:

observed price wmt and unobservable quality ξmt.
33 We also consider an observed supply (cost)

shifter zmt (that will play the role of an instrumental variable). The price is a function of zmt and

ξmt, determined as follows:

wmt = γ0 + γ1zmt + γ2ξmt + εwmt, (39)

33Recall that, formally, we can define ηmt as the state variable, while the function ξ(a, k, ωmt) equals ηmt when
a = b, and equals zero when a = nb. I.e., the unobserved quality enters into the utility of purchasing the good and
not into the utility of not purchasing (whether the good is already owned or not). To simplify notation, we take
ξmt as the state variable.
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where εwmt is a mean-zero normally distributed i.i.d. price shock with variance σ2
w. Note that γ1

represents how variation in the observed cost shifter zmt passes through to prices. ξmt is included

in the price equation to capture the idea that demand shocks may influence the price.

The supply shifter zmt and unobserved quality ξmt follow independent AR(1) processes:

ξmt+1 = ρ1 + ρ2ξmt + εξmt,

zmt+1 = ρ3 + ρ4zmt + εzmt,

where εξmt and εzmt are normally distributed zero-mean i.i.d. shocks with variances σ2
ξ and σ2

z ,

respectively. Recall that ξmt has mean zero by assumption, so we take ρ1 = 0.

We consider two settings in our simulations, depending on whether the unobservable state ξ is

present in the data generating process or not. When there is no unobserved states, we set ξmt = 0

for all m and t (or, equivalently, we set σ2
ξ = 0).

As many applications may feature aggregate shocks, we also consider two scenarios: with and

without macro shocks. In the scenario with aggregated shocks, we incorporate them into the term

εzmt. Specifically, we simulate εzmt = εzm,t,1 + εzt,2, where the (mean-zero) macro shock εzt,2 accounts

for a fraction λz of the variance in εzmt. (Recall that macro shocks wash out in the limit when

the number of time periods goes to infinity, but they may not wash out in the limit when the

asymptotics is in the number of markets.)

We consider several possible sample sizes with different combinations of M and T . For each

sample structure, we generate 5,000 Monte Carlo replications. For the first sample period, we

generate the value of the state variables from their steady-state distributions. The supports of the

market-level state variables are discretized to take integer values. We solve the individual dynamic

optimization problem by value function iteration on the discretized state space.34 The parameters

of the data generating process in our Monte Carlo study are summarized in Table 1.

The main parameters of interest are the payoff parameters θ = (θ0, θ1), which are estimated

based on the regression equation (21). We estimate θ using two ECCP estimators: the first

estimator is based on the Ordinary Least Squares (OLS) estimator, while the second one is based

on instrumental variables – specifically, the Two-Stage Least Squares (2SLS) estimator.

We also estimate θ using a standard CCP estimator similar to Hotz and Miller (1993). This

procedure relies on a full specification of what the state variables are and how they evolve. To

implement this procedure, we assume that the price wmt is the only market-level state variable and

model its evolution as a first-order Markov process. So, when the unobserved quality is a relevant

state (i.e., when σ2
ξ > 0), this strategy is based on a mis-specified model. See Online Appendix D

for details.

34We simulate conditional choice probabilities for each market-period and assume these CCPs are observed by
the econometrician. Thus, we abstract away from any first-stage sampling uncertainty in the estimation of choice
probabilities and effectively assume a (sufficiently) large number of agents N within each market-year.
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Table 2 presents results for a model with no unobservable demand shocks (i.e., σ2
ξ = 0). For

each model parameter, each sample structure, and each estimator, we report the average estimate,

the relative mean bias (as a percentage of the true parameter), the standard deviation, and the

root-mean squared error (RMSE) of the estimator. On the left panel, we present results for the

scenario with no macro shocks (i.e., λz = 0), and on the right panel, we present the estimated

results with aggregated shocks (λz 6= 0).

In the absence of macro shocks, all estimation strategies appear to be consistent, as expected.

Not surprisingly, the standard CCP approach exhibits smaller standard deviations and RMSE

when compared to the ECCP OLS and IV estimators.

Table 2 also illustrates that there can be a difference between the number of markets and

time periods for the asymptotic properties of ECCP estimators in the scenario with macro shocks

(λz = .7). We have several columns with the same sample size M × T = 1600, and within these

columns, there is non-trivial bias in the OLS and IV estimates for short panels when the aggregate

shocks are present. However, the bias is reduced when the time dimension increases, and for long

panels, the ECCP estimators have little or no bias.35

Table 3 presents the results for the main specification, where the unobserved demand shock

ξmt is present. Because price wmt and the unobserved quality ξmt are correlated by construction

(since γ2 6= 0), we expect OLS to be biased. Indeed, the OLS estimator is now highly biased for

both the intercept θ0 and price coefficient θ1.

The supply shifter zmt provides a valid instrument given that it correlates with prices wmt and

is independent of ξmt, and mean-independent of the expectational errors. When using the cost

shifter as an instrument for price, we see that the ECCP IV estimator has little-to-no bias, either

in the absence of aggregate shocks or when T is large (aggregate shocks still pose problems for

short panels, as expected).

The standard CCP estimator is now severely biased, for it treats the market state space as

including only the observable price wmt while the unobservable demand shock ξmt also plays a

role. The mis-specification is important regardless of the presence or absence of macro shocks. In

particular, the relative bias of the standard CCP estimator is larger than the bias of the ECCP

IV estimator in the presence of aggregated shocks in short panels.

Counterfactuals. While the ECCP approach avoids the need for a full model of how state

variables evolve, counterfactual analysis typically requires a full model to solve and simulate a

counterfactual dynamic problem. Thus, while the ECCP approach has an advantage in requiring

weaker modeling assumptions for estimation, stronger assumptions are still needed to compute

counterfactuals. Here we note that, when possible, it may be desirable to estimate model param-

35In our simulations, aggregate shocks only affect the evolution of the observable variables (zmt directly, and wmt
indirectly). However, these aggregate shocks in the observables lead to aggregate shocks in the expectational error
terms. In turn, aggregate shocks in the expectational error terms implies that our regression equation’s residual
features aggregate shocks.

37



eters with as few assumptions (and potential sources of bias) as possible, and impose additional

assumptions needed for counterfactuals simulations only after estimating those parameters.

In the context of dynamic demand, the computation of a long-run elasticity represents a coun-

terfactual of interest. Computing long-run elasticities requires an explicit model of how prices

and demand shocks jointly evolve, even when ECCP estimation does not. We find that using the

ECCP approach for estimation and then imposing restrictive assumptions on unobservable shocks

only for counterfactuals outperforms an approach that imposes the same restrictive assumptions

in both estimation and counterfactual simulation.36 Online Appendix E presents these results in

detail.

7 Empirical Application

We now illustrate the ECCP approach in the context of an empirical labor supply model for taxi

drivers in New York City (NYC) in 2013.37

As in many studies of labor supply, our goal is to estimate how labor supply responds to

wages. The taxi driver data allows us to see how labor supply decisions respond to wages at

the hourly level, but one might worry that the variation in taxi driver wages might be correlated

with unobserved factors that shift taxi drivers’ labor supply. Indeed, such correlations should be

expected from the simultaneous determination of labor supply and wages. Fortunately, the ECCP

framework allows us to easily incorporate instrumental variables in the estimation of a dynamic

model of taxi driver labor supply.

Institutional Background. Operating a taxicab in NYC requires a medallion and a NYC Taxi

and Limousine Commission (TLC) driver’s license. Most drivers rent medallions from the owners

or intermediaries and must return the car by the end of the shift (the daily lease rate in 2013 was

between $115 and $139). The cap for the total number of medallions was set at 13,437 in 2013.

A common feature in NYC is the ‘2-shift rule’: almost all rental agreements between drivers and

taxi fleets start or end at 5 AM or 5 PM; the day shift starts at 5 AM and ends at 5 PM, while

the night shift starts at 5 PM and ends at 5 AM. Fares are regulated by TLC and did not change

during the sample period. For more details, see Schmidt (2019).

Data. The transaction-level data is based on the Taxicab Passenger Enhancement Project

(TPEP), organized by TLC. The data contain information about every yellow cab trip, including

drivers’ identifier; information regarding the length, distance, and duration of the trip; the fare,

surcharges, tolls, and tips paid by costumers; as well as the geo-spatial start and endpoint of the

36Specifically, we set the unobserved demand shock at its long-run mean when calculating the long-run demand
elasticity. The unobserved demand shock has zero mean with no loss of generality, given that a non-zero mean term
is absorbed by the constant term in the regression.

37We are grateful to Øystein Daljord and Walter Zhang, who generously shared the data with us.
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trip. We focus on data from January 1st to December 31st of 2013. We use a sample of 10,500

licensed drivers that have been active in that year. The transaction-level data is aggregated to

the driver-hour level (indexed by i and t, respectively), so that the unit of time t is an hour of

the day. Expected market hourly earnings wmt is defined as the total earnings (including fare and

tips) averaged across drivers in that hour t of that day m. We restrict our sample to consider only

drivers who were working during the day shifts, and that worked for at least one hour and at most

12 hours. Following the literature, we also restrict the sample to the weekdays Monday–Thursday

because supply patterns across these days are very similar (Buchholz, 2019; Fréchette, Lizzeri, and

Review, 2019). The final data set used for estimation is an unbalanced panel with N = 3, 937

drivers observed in M = 209 days during the T = 12 hours between 5 AM and 5PM.38 The taxi

data was merged to data on hourly weather conditions from Open Weather Map data and the Na-

tional Weather Service (NWS) of the National Oceanic and Atmospheric Administration (NOA).

These data contain information on temperature, atmospheric pressure and humidity, rainfall, and

wind speed, among other weather conditions.

Table 4 shows the summary statistics by hour of the day, averaged across drivers and days.

The table indicates that the share of drivers who decide to continue working in the morning hours

is high (above 95%). The share of working drivers then declines slowly in the afternoon, and drops

substantially to 51% by 4 PM because they start to return to the garages before the end of shift

by 5 PM. Average hourly earnings is $32, with higher returns between 6 AM and 9 AM, when

demand is higher. The average number of hours working is approximately 7.5 hours per day.

Model and Estimation. We consider the model presented in Example 4, extended to incor-

porate three additional types of observed market-level states: (i) dummy variables for important

holidays (namely, Memorial Day, the Fourth of July, United Nations week, and New Year’s Eve),

(ii) dummy variables for weather conditions, as they may affect the disutility of driving,39 and

(iii) the hour of the day t, which may reflect the fact that driving during some hours may be less

pleasant (e.g., during lunch time or rush hours). We assume all these variables enter the flow

payoffs additively. The discount factor is set at β = 0.999999 (implying an annual interest rate of

approximately 0.87%).

To obtain the CCPs in the first stage, we estimate flexible logit regressions separately for each

hour of the day. These regressions include a fourth-order polynomial on k and dummies for the

day of the month, the month in the year, the holidays, and the weather conditions – in doing

so, we effectively smooth the CCPs across markets m to improve accuracy given the sample size.

38Because the transaction-level data does not provide direct information of the contractual shifts, we follow the
previous studies and define any time period of more than 6 hours between trips as time ‘off work,’ separating the
time shifts. We consider day shifts starting any time between 5 AM and 2 PM, and ending at any hour between 8
AM and 5 PM. To simplify, we ignore breaks during the shift and we do not model the spatial distribution of all
trips – allowing for such extensions are possible, but beyond the scope of our paper.

39The weather dummies include the following classifications: Clear, Clouds, Drizzle, Fog, Haze, Mist, Rain,
Snow, and Thunderstorm.
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The estimated results are not very sensitive to the parametric specification.40 In the second stage,

we estimate equation (24) as explained in Example 4, and augmented to include the additional

variables mentioned above.

Results. Table 5 presents the results. In the first column, we show the OLS estimates; in the sec-

ond column, the 2SLS estimates using the within-day lagged earnings (wmt−1) as the instrumental

variable for hourly earnings (wmt); and in the third column, the 2SLS estimates using the earnings

in the same hour of the day but in the previous day (wm−1,t) as the instrument – a “Hausman-IV.”

For ease of exposition, we omit from the table the coefficients on all state variables other than w

and k.

The estimated coefficients on hourly earnings (θ1) are positive in all specifications, as expected,

and the value of the OLS estimate is substantially smaller than the 2SLS estimates. This is

consistent with the standard bias of OLS in demand and supply models: labor supply parameters

are underestimated when simultaneity problems are ignored. Instrumenting for wmt increases the

supply response to earnings. The 2SLS estimate for θ1 when using the within-day lagged earnings

as the instrument is almost twice as large as the OLS estimate; and the 2SLS estimate based

on the previous day earnings as the instrument is approximately six times larger than the OLS

estimate (and it is statistically significant at the 5% level). Both instruments are strong, with the

first-stage F-statistics well above usual critical values for weak-IV tests (Montiel Olea and Pflueger,

2013; Andrews, Stock, and Sun, 2019). Still, one might worry that the unobservables ξmt might

be highly persistent within the day, casting doubts on whether the within-day lagged earnings

is a valid IV. (The fact that the first-stage F-statistic is extremely large for that instrument is

consistent with that suspicion.) In that sense, our second IV (the previous day earnings) seems to

be more plausibly exogenous.41

The estimated coefficients on the individual states k (θ2) – corresponding to the fatigue cost of

driving – are all negative as expected, and stable across specifications. Yet, the implied monetary

values for the fatigue costs (i.e., the estimated ratio θ2/θ1) differ substantially: the implied value for

the OLS estimates is approximately $81 per hour of driving, which is much higher than the average

hourly earnings: $32/hour. The implied fatigue cost based on the within-day lagged IV estimates

is smaller than the corresponding OLS costs but still greater than the average earnings: $43/hour.

Finally, the previous day IV results in estimates that are more plausible, around $13/hour.

40We have also estimated flexible logits with polynomials of the 2nd up to the 6th order on k, and interaction
terms between k and the day of the month dummies, as well as between k and the month of the year dummies,
with qualitatively similar (but more noisy) results. The second stage estimates are not sensitive to changes in the
definition of the shifts, to the inclusion of all days of the week in our sample, nor to the value of the discount factor
β.

41We have also used the earnings in the same hour of the day and the same day of the week but in the previous
week (wm−7,t) as the instrumental variable. This instrument is strong (F = 43.4) and delivers a similar point

estimate as the “previous day” IV (θ̂1 = 0.0198), but the coefficient is less precisely estimated.
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8 Conclusion

In this paper we provide a comprehensive econometric treatment of a new class of linear instru-

mental variables estimators for structural dynamic discrete choice models: the ECCP estimators.

This class of estimators shares many of the advantages of the continuous-choice Euler equation

approach originally developed by Hall (1978), Hansen and Sargent (1980, 1982), and Hansen and

Singleton (1982).

We provide constructive identification results that lead naturally to estimators, we establish

the consistency and asymptotic normality of the estimators, we provide evidence that they perform

well in finite-samples based on a Monte Carlo study of a dynamic demand for durable goods, and

we illustrate the method empirically in the context of dynamic labor supply of taxi drivers in NYC.
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Fréchette, G. R., A. Lizzeri, and T. S. A. E. Review (2019): “Frictions in a Competitive,

Regulated Market: Evidence from Taxis,” American Eonomic Review, forthcoming.

43



Gendron-Carrier, N. (2018): “Understanding the Careers of Young Entrepreneurs,” Discussion

paper, McGill University.

Gowrisankaran, G., and M. Rysman (2012): “Dynamics of consumer demand for new durable

goods,” Journal of Political Economy, 120(6), 1173–1219.

Hahn, J., G. Kuersteiner, and M. Mazzocco (2019): “Estimation with Aggregate Shocks,”

The Review of Economic Studies, forthcoming.

Hall, P., and C. C. Heyde (1980): Martingale limit theory and its application. Academic press.

Hall, R. E. (1978): “Stochastic Implications of the Life Cycle-Permanent Income Hypothesis:

Theory and Evidence,” Journal of Political Economy, 86(6), 971–87.

Hansen, L. P., and T. J. Sargent (1980): “Formulating and estimating dynamic linear rational

expectations models,” Journal of Economic Dynamics and Control, 2, 7–46.

(1982): “Instrumental variables procedures for estimating linear rational expectations

models,” Journal of Monetary Economics, 9(3), 263–296.

Hansen, L. P., and K. J. Singleton (1982): “Generalized instrumental variables estimation

of nonlinear rational expectations models,” Econometrica: Journal of the Econometric Society,

pp. 1269–1286.

Hausman, J. A. (1996): Valuation of new goods under perfect and imperfect competitionchap. 5,

pp. 209–248. University of Chicago Press.

Hendel, I., and A. Nevo (2006): “Measuring the Implications of Sales and Consumer Inventory

Behavior,” Econometrica, 74(6), 1637–1673.

Hotz, V. J., and R. A. Miller (1993): “Conditional Choice Probabilities and the Estimation

of Dynamic Models,” Review of Economic Studies, 60(3), 497–529.

Hotz, V. J., R. A. Miller, S. Sanders, and J. Smith (1994): “A Simulation Estimator for

Dynamic Models of Discrete Choice,” Review of Economic Studies, 61(2), 265–89.

Hu, Y., and M. Shum (2012): “Nonparametric identification of dynamic models with unobserved

state variables,” Journal of Econometrics, 171(1), 32–44.

Humphries, J. E. (2018): “The Causes and Consequences of Self-Employment over the Life

Cycle,” Discussion paper, Yale University.

Kalouptsidi, M. (2018): “Detection and Impact of Industrial Subsidies: The Case of Chinese

Shipbuilding,” Review of Economic Studies, 85(2), 1111–1158.

44



Kalouptsidi, M., P. T. Scott, and E. A. Souza-Rodrigues (2019): “Identification of

Counterfactuals in Dynamic Discrete Choice Models,” Quantitative Economics, forthcoming.

Kasahara, H., and K. Shimotsu (2009): “Nonparametric Identification of Finite Mixture

Models of Dynamic Discrete Choices,” Econometrica, 77(1), pp. 135–175.

Khorunzhina, N. (2013): “Structural estimation of stock market participation costs,” Journal

of Economic Dynamics and Control, 37(12), 2928–2942.

Khorunzhina, N., and R. A. Miller (2019): “American dream delayed: shifting determinants

of home ownership,” Discussion paper, Copenhagen Business School.

Kuersteiner, G. M., and I. R. Prucha (2013): “Limit theory for panel data models with cross

sectional dependence and sequential exogeneity,” Journal of Econometrics, 174(2), 107–126.

Ma, L. (2019): “Learning in a hedonic framework: Valuing Brownfield remediation,” International

Economic Review, 60(3), 1355–1387.

Magnac, T., and D. Thesmar (2002): “Identifying Dynamic Discrete Decision Processes,”

Econometrica, 70(2), 801–816.

Matsumoto, B. (2016): “Lighting the fires: Explaining youth smoking initiation and experi-

mentation in the context of a rational addiction model with learning,” Discussion paper, U.S.

Bureau of Labor Statistics.

Matzkin, R. L. (2003): “Nonparametric Estimation of Nonadditive Random Functions,” Econo-

metrica, 71(5), 1339–1375.

Melnikov, O. (2013): “Demand for differentiated durable products: The case of the us computer

printer market,” Economic Inquiry, 51(2), 1277–1298.

Montiel Olea, J., and C. Pflueger (2013): “A robust test for weak instruments,” Journal

of Business and Economic Statistics, 31, 358–369.

Morales, E., G. Sheu, and A. Zahler (2019): “Extended gravity,” The Review of Economic

Studies, 86(6), 2668–2712.

Nevo, A. (2000): “Mergers with differentiated products: The case of the ready-to-eat cereal

industry,” RAND Journal of Economics, 31, 395–421.

Newey, W. K., and J. L. Powell (2003): “Instrumental variable estimation of nonparametric

models,” Econometrica, 71(5), 1565–1578.

Norets, A., and X. Tang (2014): “Semiparametric Inference in dynamic binary choice models,”

The Review of Economic Studies, 81(3), 1229–1262.

45



Pakes, A. (2010): “Alternative models for moment inequalities,” Econometrica, 78(6), 1783–1822.

Pesendorfer, M., and P. Schmidt-Dengler (2008): “Asymptotic Least Squares Estimators

for Dynamic Games,” The Review of Economic Studies, 75(3), 901–928.

Ransom, T. (2019): “Labor Market Frictions and Moving Costs of the Employed and Unem-

ployed,” Discussion Paper 12139, IZA Institute of Labor Economics.

Rust, J. (1987): “Optimal Replacement of GMC Bus Engines: an Empirical Model of Harold

Zurcher,” Econometrica, 55(5), 999–1033.

(1994): “Structural estimation of Markov decision processes,” Handbook of Econometrics,

4(4), 3081–3143.

Rust, J., and C. Phelan (1997): “How social security and medicare affect retirement behavior

in a world of incomplete markets,” Econometrica, 65(4), 781–831.

Ryan, S. P. (2012): “The Costs of Environmental Regulation in a Concentrated Industry,”

Econometrica, 80(3), 1019–1061.

Schmidt, M.-A. (2019): “Valuing Flexibility: A Model of Discretionary Rest Breaks,” Discussion

paper, University of Toronto.

Scott, P. T. (2013): “Dynamic Discrete Choice Estimation of Agricultural Land Use,” Discus-

sion paper, New York University.

Traiberman, S. (2019): “Occupations and Import Competition: Evidence from Denmark,”

American Economic Review, (109), 4260–4301.

Wright, B. (2014): “Global biofuels: key to the puzzle of grain market behavior,” Journal of

Economic Perspectives, 28(1), 73–98.

46



Table 1: Parameters of the Monte Carlo Data Generating Process

Payoff Parameters: θ0 1 ξ ∼ Normal AR(1) ρ1 0
θ1 −.1 ρ2 .2

σ2
ξ 0 or 16

Prob. of Product Failure: φ .1
z ∼ Normal AR(1) ρ3 0

Discount Factor: β .95 ρ4 .7
σ2
z 25

Process for price wmt: γ0 40
γ1 1 Aggregate Shocks λz 0 or .7
γ2 1
σ2
w 4
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Table 2: Monte Carlo Experiments without Unobserved Demand Shock

σ2
ξ = 0 True Parameters: θ0 = 1, θ1 = −.1

λz = 0 λz = .7

Estimator T 40 160 10 40 160 10 160
M 40 10 160 40 10 160 160

ECCP: θ0 Mean Est. 1.01 1.01 1.01 0.92 0.99 0.75 0.99
OLS Rel. Bias 0.64% 0.74% 0.81% -8.05% -1.49% -24.6% -1.38%

SD 0.04 0.04 0.04 0.17 0.09 0.29 0.09
RMSE 0.04 0.04 0.04 0.19 0.10 0.38 0.09

θ1 Mean Est. -0.10 -0.10 -0.10 -0.10 -0.10 -0.09 -0.10
Rel. Bias 0.16% 0.18% 0.20% -1.98% -0.38% -6.20% -0.33%
SD 1.01e-3 1.04e-3 9.97e-4 4.05e-3 2.22e-3 6.78e-3 2.05e-3
RMSE 1.02e-3 1.06e-3 1.02e-3 4.50e-3 2.26e-3 9.19e-3 2.07e-3

ECCP: θ0 Mean Est. 1.01 1.01 1.01 0.91 0.98 0.72 0.98
IV (2SLS) Rel. Bias 0.70% 0.79% 0.87% -9.0% -1.66% -28.2% -1.57%

SD 0.04 0.04 0.04 0.19 0.10 0.33 0.09
RMSE 0.04 0.05 0.04 0.21 0.10 0.43 0.10

θ1 Mean Est. -0.10 -0.10 -0.10 -0.10 -0.10 -0.09 -0.10
Rel. Bias 0.18% 0.19% 0.22% -2.22% -0.42% -7.08% -0.38%
SD 1.06e-3 1.08e-3 1.03e-3 4.46e-3 2.40e-3 7.67e-3 2.23e-3
RMSE 1.07e-3 1.10e-3 1.06e-3 4.98e-3 2.44e-3 0.01 2.26e-3

Standard θ0 Mean Est. 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CCP Rel. Bias -0.29% -0.27% -0.11% -0.49% -0.31% -0.02% -0.19%

SD 9.22e-3 8.45e-3 0.01 0.04 0.02 0.07 0.02
RMSE 9.66e-3 8.87e-3 0.01 0.04 0.02 0.07 0.02

θ1 Mean Est. -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Rel. Bias -0.48% -0.51% -0.30% -0.70% -0.60% -0.64% -0.25%
SD 4.40e-4 3.88e-4 6.41e-4 7.96e-4 5.27e-4 1.33e-3 5.18e-4
RMSE 6.48e-4 6.42e-4 7.08e-4 1.06e-3 7.95e-4 1.48e-3 5.73e-4

Notes: 5000 Monte Carlo replications for each sample structure. SD is the
standard deviation of the estimators across replications. RMSE is root-mean

squared error. Relative Bias is bias as percentage of the true parameter.
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Table 3: Monte Carlo Experiments with Unobserved Demand Shock

σ2
ξ = 16 True Parameters: θ0 = 1, θ1 = −.1

λz = 0 λz = .7

Estimator T 40 160 10 40 160 10 160
M 40 10 160 40 10 160 160

ECCP: θ0 Mean Est. -8.62 -8.63 -8.61 -9.54 -8.81 -11.60 -8.85
OLS Rel. Bias -962% -963% -961% -1050% -981% -1260% -985%

SD 0.59 0.58 0.57 1.79 1.03 2.77 0.89
RMSE 9.64 9.64 9.62 10.70 9.86 12.90 9.89

θ1 Mean Est. 0.14 0.14 0.14 0.16 0.15 0.22 0.15
Rel. Bias -240% -241% -240% -264% -245% -315% -246%
SD 0.01 0.01 0.01 0.04 0.02 0.06 0.02
RMSE 0.24 0.24 0.24 0.27 0.25 0.32 0.25

ECCP: θ0 Mean Est. 1.02 1.00 1.02 0.97 1.02 0.87 0.99
IV (2SLS) Rel. Bias 1.62% -0.20% 1.82% -3.49% 1.97% -12.8% -0.76%

SD 0.77 0.77 0.75 0.83 0.78 0.90 0.20
RMSE 0.77 0.77 0.75 0.83 0.78 0.91 0.20

θ1 Mean Est. -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
Rel. Bias 0.50% -0.05% 0.42% -1.00% 0.44% -3.25% -0.19%
SD 0.02 0.02 0.02 0.02 0.02 0.02 4.96e-3
RMSE 0.02 0.02 0.02 0.02 0.02 0.02 4.96e-3

Standard θ0 Mean Est. 0.26 0.26 0.25 0.26 0.26 0.26 0.17
CCP Rel. Bias -74.4% -74.4% -74.7% -74.3% -74.3% -73.5% -83.3%

SD 0.03 0.03 0.03 0.04 0.03 0.05 0.02
RMSE 0.75 0.75 0.75 0.74 0.74 0.74 0.83

θ1 Mean Est. -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 2.12e-3
Rel. Bias -88.1% -87.8% -89.2% -88.4% -87.8% -89.9% -102%
SD 5.38e-3 5.12e-3 5.74e-3 6.33e-3 5.41e-3 9.24e-3 3.66e-3
RMSE 0.09 0.09 0.09 0.09 0.09 0.09 0.10

Notes: 5000 Monte Carlo replications for each sample structure. SD is the
standard deviation of the estimators across replications. RMSE is root-mean

squared error. Relative Bias is bias as percentage of the true parameter.
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Table 4: Summary Statistics

Hour of the Day Share of Drivers that Hourly Earnings ($)
Continue Working (%) Mean Std Dev

6:00 AM 100 32.68 3.14
7:00 AM 100 35.14 3.01
8:00 AM 98.12 37.20 3.10
9:00 AM 97.60 34.70 2.44
10:00 AM 96.45 29.97 2.19
11:00 AM 95.04 29.21 2.27
12:00 PM 94.88 30.96 2.23
1:00 PM 94.28 30.80 2.24
2:00 PM 91.49 33.83 2.21
3:00 PM 79.39 34.98 1.98
4:00 PM 51.37 24.84 2.09
5:00 PM 0 - -

Number of Drivers 3937
Number of Days 209

Notes: The unit of observation is a taxi driver working in a given hour

of a week day (Monday–Thursday) in 2013. The sample is restricted to

day shifts and drivers working for at least one hour and at most twelve

hours. The numbers in the cells are sample averages (and standard

deviations) across drivers and days for each hour of the day.

Source: authors’ calculations.
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Table 5: Parameter Estimates

(1) (2) (3)
OLS IV – Within Day Lagged IV – Previous Day

Hourly Earnings (θ1) 0.00358 0.00672 0.0223
(0.00201) (0.00346) (0.00621)

Hours Driving (θ2) -0.291 -0.291 -0.291
(0.00462) (0.00461) (0.00462)

F-statistic - 3066 105.4
Number of Days 209 209 208
Number of Hours 12 11 12
Observations 2508 2299 2496

Notes: The unit of observation is an hour (t) of a day (m) in 2013. The dependent variable is the

log odds ratio of the conditional choice probabilities of continue working versus stopping at t plus

the discounted choice probability of stop working at t+ 1. The first column presents the OLS

estimates. The second column, the 2SLS estimates using the within-day lagged earnings (wmt−1)

as an instrument for hourly earnings (wmt). And the third column, the 2SLS estimates using

the earnings in the same hour of the day but in the previous day (wm−1,t) as the instrument.

All specifications include dummy variables for (i) important holidays, (ii) hourly weather

conditions, and (iii) the hour of the day, as explained in the main text (omitted from the table).

Robust standard errors in parentheses are clustered at the ‘market’ level m (corresponding to

a day in 2013).
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This supplemental material consists of the following sections: Section A presents general deriva-

tions of Euler equations for both deterministic and stochastic finite dependence. It also extends

Proposition 2 in the main text to allow for stochastic sequences of choices (see Proposition A1).

Sections B and C present all proofs of the lemmas and propositions presented in the main paper:

Section B focuses on the identification results, while Section C shows the proofs of the asymptotic

properties of the ECCP estimator. Section D explains the standard CCP approach implemented

in the Monte Carlo experiment to estimate the model parameters. Finally, Section E extends the

Monte Carlo study presented in Section 6 of the main paper by investigating how the biases in the

parameter estimates pass through to biases in countefactuals calculations.

A General ECCP Equation Derivation

In this section, we offer a general derivation of Euler equations in conditional choice probabilities

relying first on deterministic finite dependence as defined in Section 3, and then exploring stochastic

sequences of choices. We also present Proposition A1, which extends the identification result in

Proposition 2 (presented in the main text) to allow for stochastic finite dependence. Recall that

finite dependence is not a behavioral assumption (whether based on deterministic or stochastic

sequences); it is rather a property that the state transition process may or may not satisfy in the

data.
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A.1 ECCP Equation Under Deterministic Finite Dependence

Arcidiacono and Miller (2011) show that the conditional value functions, va, can be represented

by functions of flow payoffs and conditional choice probabilities for any sequence of future choices,

optimal or not. To derive such a representation, begin with an arbitrary initial state ωmt. Consider

a sequence of actions from t to t+ τ (where τ ≥ 1). Suppose the initial choice at time period t is

a, and let j denote another element of the choice set A. Let ad ∈ A denote the d−th choice in the

sequence following a, and define jd ∈ A similarly.

Recall equation (11) in the main paper, rewritten below for convenience. It stacks vectors

across rows of the individual state k and absorbs the aggregate state ωmt into mt subscripts:

πamt + βeVam,t,t+1 = Vmt − βF k
amtVmt+1 − ψamt.

We then substitute for Vmt+1 using equation (11) again, using a1 as the action instead of a:

πamt + βeVam,t,t+1 = Vmt − ψamt − βF k
amt

(
πa1mt+1 + βeVa1,m,t+1,t+2 + ψa1mt+1

)
−β2F k

amtF
k
a1mt+1Vmt+2.

Repeated substitution of Vmt+d above leads to:

πamt + βeVam,t,t+1 = Vmt − ψamt

−F k
amt

[
τ∑
d=1

βdΛamtd

(
πadmt+d + βeVad,m,t+d,t+d+1 + ψadmt+d

)]
−βτ+1F k

amtΛamt,τ+1Vmt+τ+1, (A1)

where the matrices Λamtd are defined recursively:

Λamtd = I, for d = 1,

Λamtd = Λamt,d−1 F
k
ad−1mt+d−1, for d ≥ 2.

Next, finite dependence allows us to eliminate the Vmt+τ+1, resulting in an ECCP equation

that forms the basis of our identification arguments. Recall Definition 2 in Section 3: Given τ -

period finite dependence, for a pair of actions (a, j), we can construct sequences (a, a1, . . . , aτ ) and

(j, j1, . . . , jτ ) such that1

F k
amtF

k
a1mt+1 . . . F

k
aτmt+τ = F k

jmtF
k
j1mt+1 . . . F

k
jτmt+τ ,

i.e.,

F k
amtΛamt,τ+1 = F k

jmtΛjmt,τ+1. (A2)

1Recall that the terms in the sequences depend on the particular initial pair of actions (a, j) chosen.
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We then difference equation (A1) across the two sequences of actions. Because of (A2), the

last term cancels, and the result is equation (27).

A.2 ECCP Equation Under Stochastic Finite Dependence

Consider now a known mixing sequence of actions from t to t + τ (where τ ≥ 1). Suppose the

initial choice at t is action a. For the next period, t+1, let αat+1(kimt+1, ωmt+1) be a vector on RA+1

with elements αalt+1(kimt+1, ωmt+1), l ∈ A, such that
∑A

l=0 α
a
lt+1(kimt+1, ωmt+1) = 1. Each element

αalt+1(kimt+1, ωmt+1) of the vector αat+1 can be interpreted as the weight given to action l ∈ A in

period t + 1 at state (kimt, ωmt) after the initial choice a at t. For deterministic sequences, one

element of the vector αat+1 equals one and the others equal zero. For probabilistic sequences, all

elements of αat+1 are positive an add up to one. More generally, the mixing may involve negative

weights, provided that they sum up to one (Arcidiacono and Miller, 2019). For the other time

periods, d = 2, ..., τ , take the sequence of weight choices in a similar way, αat+d(kimt+d, ωmt+d). In

this section, we abuse terminology and use the terms “mixing” and “stochastic” interchangeably.

It is useful to represent the weight choices in matrix notation. Define the diagonal matrix

αalmt = diag {αalt (k, ωmt) ; k ∈ K}, for l ∈ A and any time period t. In words, αalmt is a K × K

matrix that collects the individual terms αalt(kimt, ωmt) for all possible values of k. Note that

αalt(kimt, ωmt) is one element of the vector αat (kimt, ωmt), as defined in the previous paragraph.

Clearly, because the mixing requires
∑A

l=0 α
a
lt(kimt, ωmt) = 1, we have that

∑A
l=0 α

a
lmt = IK , where

IK is the K ×K identity matrix.

Now, recall equation (11). For any initial choice a, take a mixing αat+1(kimt+1, ωmt+1) over

choices in A at t+ 1, and replace Vmt+1 in (11) to get

πamt + βeVam,t,t+1 = Vmt − ψamt − βF k
amt

[
A∑
l=0

αalmt+1

(
πlmt+1 + βeVlm,t+1,t+2 + ψlmt+1

)]

−β2F k
amt

[
A∑
l=0

αalmt+1F
k
lmt+1

]
Vmt+2.

Next, we follow the steps outlined in Section A.1 of this Appendix. Repeated substitution of

Vmt+d above leads to:

πamt + βeVam,t,t+1 = Vmt − ψamt

−βF k
amt

[
τ∑
d=1

βd−1Λam,t,d

A∑
l=0

αalmt+d
(
πlmt+d + βeVlm,t+d,t+d+1 + ψlmt+d

)]
−βτ+1F k

amtΛam,t,τ+1Vmt+τ+1, (A3)

3



where the observed (estimable) matrices Λam,t,d are defined recursively:

Λam,t,d = I, for d = 1

Λam,t,d = Λam,t,d−1

[∑A
l=0 α

a
lmt+d−1F

k
lmt+d−1

]
, for d ≥ 2.

(A4)

As before, we make use of finite dependence to eliminate the Vmt+τ+1. First, we extend Defini-

tion 2 in Section 3 to stochastic sequences of choices:

Definition 1. (Stochastic Finite Dependence) A pair of choices a and j satisfies stochastic τ -period

finite dependence if there exist two sequences of mixings starting at a and j such that, for all t,

F k
amtΛam,t,τ+1 = F k

jmtΛjm,t,τ+1, (A5)

where Λam,t,τ+1 is defined in (A4).

Under this condition, Vmt+τ+1 is eliminated when we difference equation (A3) across two mixing

sequences of actions, starting respectively at a and j. Recalling that π = π + ξ, we then obtain

the ECCP regression equation:

ψjmt − ψamt + β
τ∑
d=1

A∑
l=0

βd−1
[
F k
jmtΛjm,t,dα

j
lmt+d − F

k
amtΛam,t,dα

a
lmt+d

]
ψlmt+d

= πamt − πjmt + β
τ∑
d=1

A∑
l=0

βd−1
[
F k
amtΛam,t,dα

a
lmt+d − F k

jmtΛjm,t,dα
j
lmt+d

]
πlmt+d

+ uajmt, (A6)

where the econometric error term is uajmt = ξ̃ajmt + ẽVajmt, with

ξ̃ajmt = ξamt − ξjmt + β
τ∑
d=1

A∑
l=0

βd−1
[
F k
amtΛam,t,dα

a
lmt+d − F k

jmtΛjm,t,dα
j
lmt+d

]
ξlmt+d,

and

ẽVajmt = β
(
eVam,t,t+1 − eVjm,t,t+1

)
+ β

τ∑
d=1

A∑
l=0

βd
[
F k
amtΛam,t,dα

a
lmt+d − F k

jmtΛjm,t,dα
j
lmt+d

]
eVlm,t+d,t+d+1.

We can now extend Proposition 2 to identify payoff parameters under the assumption of general

stochastic finite dependence.

Proposition A1. Suppose Assumptions 1 and 2 hold. Assume τ -period stochastic finite de-

pendence holds for the agent-level transition process F k, with τ < T . Assume also a linear-

in-parameters flow payoff: π (a, k, w) = x (a, k, w) θ, where θ ∈ RP and x (a, k, w) is a known
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1 × P vector function. Let Xamt be a K × P matrix with elements given by x (a, k, wmt), so that

πamt = Xamtθ, and define

X̃ajmt ≡ Xamt −Xjmt + β
τ∑
d=1

A∑
l=0

βd−1
[
F k
amtΛam,t,dα

a
lmt+d − F k

jmtΛjm,t,dα
j
lmt+d

]
Xlmt+d. (A7)

Denote the K × 1 vector on the left hand side of (A6) by Yajmt. Stack equation (A6) for all Q

feasible combinations of actions (a, j) ∈ A to obtain the following equation

Ymt = X̃mtθ + umt, (A8)

where the QK× 1 vectors Ymt and umt stack Yajmt and uajmt, respectively, and the QK×P matrix

X̃mt stacks X̃ajmt. Let Zmt be an L × QK matrix of instrumental variables with L ≥ P . The

parameter θ is identified provided E [Zmtumt] = 0 and rank(E[ZmtX̃mt]) = P .

The proof of Proposition A1 is identical to the proof of Proposition 2 and is therefore omitted.

In fact, Proposition 2 is a special case of Proposition A1, when finite dependence is restricted to

satisfy deterministic sequences of actions.

Proposition A1 can be used to extend previous empirical applications exploring stochastic finite

dependence (e.g., Ransom, 2019) to incorporate serially correlated unobservable states, measure-

ment error, and endogeneity problems. It can also serve as the basis for identification arguments

in future applications featuring all these attributes. Evidently, the same set of issues discussed

extensively in Section 4 involving deterministic finite dependence (regarding instrument validity,

limitations of and extensions to the ECCP approach) applies here as well.

B Proofs: Identification

B.1 Proof of Proposition 1

Assume single-action τ -period dependence holds for action J . Then, equation (27) simplifies to

(ψjmt − ψamt) +
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd ψJmt+d

= πamt − πjmt −
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d + uajmt, (B1)

where the matrix ΛJmtd is defined recursively

ΛJmtd = I, for d = 1

ΛJmtd = ΛJmt,d−1 F
k
Jmt+d−1, for d ≥ 2,
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and the unobservable term is uajmt = ξ̃ajmt + ẽVajmt, with

ξ̃ajmt = (ξamt − ξjmt)− (F k
jmt − F k

amt)
τ∑
d=1

βdΛJmtd ξJmt+d, (B2)

ẽVajmt = β
(
eVam,t,t+1 − eVjm,t,t+1

)
−
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd e
V
Jm,t+d,t+d+1. (B3)

For any known (and comformable) function h (zmt), multiply both sides of (B1) and take the

expectation. We eliminate the error terms ξ̃ajmt and ẽVajmt by Assumption 3.(ii)–(iii). Then,

E

[
h (zmt)

(
(ψjmt − ψamt) +

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd ψJmt+d

)]

= E

[
h (zmt)

(
πamt − πjmt −

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d

)]
, (B4)

where the expectations are taken over (zmt, wmt, ..., wmt+τ ).

The LHS of (B4) can be recovered from the data (using the results of Lemma C1, in Appendix

C.4). Then, for any two primitives π and π′,

E

[
h (zmt)

(
πamt − πjmt −

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d

)]

= E

[
h (zmt)

(
π′amt − π′jmt −

(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd π
′
Jmt+d

)]
.

By the completeness condition (Assumption 3.(i)),

πamt − πjmt −
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd πJmt+d

= π′amt − π′jmt −
(
F k
jmt − F k

amt

) τ∑
d=1

βdΛJmtd π
′
Jmt+d, (B5)

for almost all (wmt, . . . , wmt+τ ). Consider (B5) for j = J . Because πJ (k, w) is known for all

observed states (k, w), we conclude that πamt = π′amt almost surely.

B.2 Proof of Proposition 2

Equation (31) is a linear regression equation, and E [Zmtuajmt] = 0 and rank(E[ZmtX̃ajmt]) = P

are the standard orthogonality and rank conditions, respectively, for parameter identification.

6



B.3 Proof of Lemma 1

We omit the subscripts i and m to simplify notation. Suppose Assumption 4 holds.

(i) From the definition of eh
(
a, k, ωt, ω

∗
t+1

)
,

E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|It
]

= E

[∑
k′

eh
(
k′, ωt, ω

∗
t+1

)
F k (k′|a, k, wt) |It

]

= E

[∑
k′

(∫
ω′
h (k′, ω′) dF ω (ω′|ωt)− h

(
k′, ω∗t+1

))
F k (k′|a, k, wt) |It

]

=
∑
k′

∫
ω′
h (k′, ω′) dF ω (ω′|ωt)F k (k′|a, k, wt)

−
∑
k′

∫
ω∗t+1

h
(
k′, ω∗t+1

)
dF ω

(
ω∗t+1|ωt

)
F k (k′|a, k, wt)

= 0.

(ii) By the law of iterated expectations,

E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|zt
]

= E
[
E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|It
]
|zt
]

= 0,

where the second equality follows from (i).

Note also that, given that the time-t information set It includes current and past variables,

Lemma 1 also implies that E
[
eh
(
a, k, ωt, ω

∗
t+1

)
|zt−d

]
= 0, for all a, k and any d ≥ 1. (And in

particular, E
[
eh
(
a, k, ωt+d, ω

∗
t+d+1

)
|zt
]

= 0.)

(iii) Next, fix a and k, and simplify notation further by defining eh
(
a, kt, ωt, ω

∗
t+1

)
= eht+1. Note

that not only current and past states (k, ω) belong to the information set available to agents It,
but also past prediction errors. I.e.,

{
eht , e

h
t−1, ..., e

h
1

}
∈ It. We can then let zt = eht−d for d ≥ 1

and use result (ii) above to establish that E
[
eht−de

h
t

]
= 0. Thus, expectational errors are serially

uncorrelated.

C Proofs: Estimation and Inference

C.1 Proof of Lemma 2

Given that {aimt, kimt : i = 1, ..., N} are i.i.d. conditional on ωmt, the first part of the Lemma (the

almost sure convergence) follows by an immediate application of the Law of Large Numbers for

exchangeable random variables (see Hall and Heyde (1980), p. 202, (7.1)).

The second part is obtained in three steps. First, Horvath and Yandell (1988) presents a Law

of Iterated Logarithm (LIL) applied to both kernel and nearest neighbor estimators for conditional

probabilities (see their Corollary 5.1). The i.i.d. sample in Horvath and Yandell (1988) can be
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replaced by the assumption that the sample is i.i.d. conditional on the common shocks following

the arguments in Souza-Rodrigues (2016).2 The LIL then holds for almost all ωmt. Finally, it

is straightforward to adapt the kernel regression results to simple frequency estimators (i.e., use

simple indicator functions as kernel functions).

C.2 Proof of Proposition 3

Recall that gmt (θ) = h (zmt)umt(θ, δmt). Define the following functions:

g̃M (θ) =
1

M (T − τ)

M,(T−τ)∑
m=1,t=1

gmt (θ) , (C1)

and

Q̃M (θ) = g̃M (θ)′WM g̃M (θ) . (C2)

The criterion function Q̃M (θ) is similar to Q̂M (θ) but makes use of δmt instead of the estimator

δ̂mt. I.e., Q̃M (θ) is an unfeasible GMM criterion function, while Q̂M (θ) is feasible. The unfeasible

estimator θ̃M (approximately) minimizes Q̃M (θ) over Θ.

A straightforward application of Theorem 2.6 in Newey and McFadden (1994) proves that the

unfeasible estimator θ̃M is a consistent estimator of θ0. To show that the feasible estimator θ̂M

is consistent as well, it suffices to show that Q̂M (θ) converges in probability to Q̃M (θ) uniformly

over Θ. To do so, define the difference vmt = ĝmt (θ)− gmt (θ), and

vM (θ) =
1

M (T − τ)

M,(T−τ)∑
m=1,t=1

vmt (θ) .

Then,

Q̂M (θ) = [g̃M (θ) + vM (θ)]′WM [g̃M (θ) + vM (θ)]

= Q̃M (θ) + vM (θ)′WMvM (θ) + 2g̃M (θ)′WMvM (θ) .

Given Condition 2(ii), it suffices to show that both g̃M (θ) and vM (θ) converge to zero in probability

uniformly over Θ.

By Conditions 2(i),(iii),(v), and (vi), g̃M (θ) satisfies the uniform Weak Law of Large Numbers,

and therefore converges in probability to zero uniformly over Θ as M →∞. Now consider vM (θ).

Note that

vmt = h (zmt)
(
umt(θ, δ̂mt)− umt(θ, δmt)

)
,

2Souza-Rodrigues (2016) establishes the asymptotic properties of the kernel regression estimator for cross-
sectional data in the presence of common shocks.
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and take a mean-value expansion of umt(θ, δ̂mt) about δmt:

umt(θ, δ̂mt)− umt(θ, δmt) = ∇δumt(θ, δ
∗
mt)
(
δ̂mt − δmt

)
,

where δ∗mt lies between δ̂mt and δmt. Next, note that

E

[
sup
θ∈Θ
‖vM (θ)‖

]
≤ 1

M (T − τ)

M,(T−τ)∑
m=1,t=1

E

[
sup
θ∈Θ
‖h (zmt)∇δumt(θ, δ

∗
mt)‖

∥∥∥δ̂mt − δmt∥∥∥]

≤ B

M (T − τ)

M,(T−τ)∑
m=1,t=1

E

[∥∥∥δ̂mt − δmt∥∥∥2
]

(C3)

where the second inequality follows from the Cauchy–Schwarz inequality and Condition 2(vii).

Because
∥∥∥δ̂mt − δmt∥∥∥ p→ 0, as N →∞, by Lemma 2, we have that E

[∥∥∥δ̂mt − δmt∥∥∥2
]

= o (1), and,

so, the right-hand-side of (C3) converges to zero as N →∞ for all M and T . We conclude that

sup
θ∈Θ

∥∥∥Q̂M (θ)− Q̃M (θ)
∥∥∥ p→ 0, as (M,N)→∞.

C.3 Proof of Proposition 4.

By standard arguments (see Theorem 3.2 in Newey and McFadden (1994), the unfeasible estimator

θ̃M satisfies

θ̃M − θ0 = − [G′WG]
−1

G′Wg(θ0) + op

(
1/
√
M
)
, (C4)

and is asymptotically normal, √
M
(
θ̃M − θ0

)
p→ N (0,V) ,

under Conditions 3(i)-(iv). The asymptotic distribution of the feasible estimator θ̂M is the same

as the asymptotic distribution of the unfeasible θ̃M provided∥∥∥θ̂M − θ̃M∥∥∥ = op

(
1√
M

)
.

From (C4), it is clear that

θ̃M − θ̂M = [G′WG]
−1

G′WvM(θ0) + op

(
1/
√
M
)
.

So, ∥∥∥θ̂M − θ̃M∥∥∥ ≤ ∥∥∥[G′WG]
−1
∥∥∥ ‖G‖ ‖W‖ ‖vM(θ0)‖+ op

(
1/
√
M
)
.
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Note that

E [‖vM (θ0)‖] ≤ B

M (T − τ)

M,(T−τ)∑
m=1,t=1

(
E

[∥∥∥δ̂mt − δmt∥∥∥2
])1/2

by Condition 2(vii). Because E

[∥∥∥δ̂mt − δmt∥∥∥2
]

= O
(

log logN
N

)
, by Lemma 2, we have that ‖vM(θ0)‖ =

Op

(√
log logN

N

)
, which implies

√
M
∥∥∥θ̂M − θ̃M∥∥∥ = Op

(√
M log logN

N

)
= op (1) ,

provided M log logN
N

→ 0.

C.4 Additional Result

The next lemma provides a result that is used in Proposition 1. Proposition 1 claims that, for a

known function f of δτmt = (δmt, ..., δmt+τ ), quantities of the type E [h (zmt) f (δτmt)] can be recovered

from the data. (More specifically, f (δτmt) in the proof of Proposition 1 corresponds to the term in

parenthesis on the LHS of equation (B4).)

Lemma C1. Suppose the vector (wmt, zmt) is i.i.d. across markets m. Assume

E
[
‖h (zmt)∇δf (δτmt)‖

2] ≤ C <∞.

Then
1

M

M∑
m=1

h (zmt) f(δ̂
τ

mt)
p→ E [h (zmt) f(δτmt)] ,

as (M,N)→∞.3

Proof. First, note that

1

M

M∑
m=1

h (zmt) f(δ̂
τ

mt) =
1

M

M∑
m=1

h (zmt) f (δτmt) +
1

M

M∑
m=1

h (zmt)
[
f(δ̂

τ

mt)− f (δτmt)
]
.

The first term on the right-hand-side converges in probability to E [h (zmt) f (δm)] as M →∞ by

the Weak Law of Large Numbers. Applying a mean-value expansion on the second term, we get

1

M

M∑
m=1

h (zmt)
[
f(δ̂

τ

mt)− f (δτmt)
]

=
1

M

M∑
m=1

h (zmt)∇δf (δτ∗mt)
[
δ̂
τ

mt − δτmt
]

3The same result applies if (wmt, zmt) is stationary and ergodic, if we average the term [h (zmt) f(δ̂
τ

mt)] over
T − τ time periods, and if we take (T,N)→∞.
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where δτ∗mt lies between δ̂
τ

mt and δτmt. Next, note that

E
[∥∥∥h (zmt)∇δf(δτ∗mt)

[
δ̂
τ

mt − δτmt
]∥∥∥] ≤ (

E
[
‖h (zmt)∇δf (δτ∗mt)‖

2]E [∥∥∥δ̂τmt − δτmt∥∥∥2
])1/2

≤ C

(
E

[∥∥∥δ̂τmt − δτmt∥∥∥2
])1/2

,

where the first inequality follows from the Cauchy–Schwarz inequality, and the second inequality

from the regularity condition E
[
‖h (zmt)∇δf (δτmt)‖

2] ≤ C <∞. By Lemma 2, E

[∥∥∥δ̂τmt − δτmt∥∥∥2
]

converges to zero as N →∞, which implies

1

M

M∑
m=1

h (zmt)
[
f(δ̂

τ

mt)− f (δτmt)
]

p→ 0, as N →∞, for all M .

D The Standard CCP Estimator

Here we explain the standard CCP approach implemented in the Monte Carlo experiment to

estimate the model parameters. By “standard,” we mean involving a full specification of how

all state variables evolve, and not relying on Euler equations. Following Hotz and Miller (1993),

this CCP approach avoids the computational burden of solving the dynamic problem within the

estimation algorithm associated with Rust’s (1987) nested fixed point approach.

The estimation here follows Section 2 of Kalouptsidi, Scott, and Souza-Rodrigues (2019) and

we refer readers to it for details. Estimation begins by estimating choice probabilities conditional

on individual states and the modeled exogenous state variable, i.e., p (k, w). Let Fb represent the

stochastic matrix for observable state variables (k, w) conditional on buying the product, and let

Fnb represent the stochastic matrix when the action is not buying the product. Kalouptsidi, Scott,

and Souza-Rodrigues (2019) shows that

πb = Aπnb + b,

where A = (I − βFb) (I − βFnb)−1 and b = Aψnb − ψb, where ψa stacks ψa (p (k, w)) across all

values of (k, w).

We estimate the payoff parameters θ using a Minimum Distance estimator, i.e., by minimizing

the L2 norm of

πb (θ)− Aπnb (θ)− b.
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Given the parameterization, this is achieved by a linear regression of the vector b on the matrix[
(1− Ak) ,w

]
,

where 1 is a vector of ones, k is a dummy vector equal to one in states where the good is owned,

and w is the vector of prices.4

E Monte Carlo: Counterfactual

In the Monte Carlo presented in Section 6, we consider only the estimation of the parameters of

agents’ utility function. Typically, applied researchers are also interested in the outcomes of policy

simulations or counterfactuals. In this section, we extend the Monte Carlo experiment in Section

6 to study counterfactual simulations. Specifically, we consider how the biases in the parameter

estimates pass through to biases in countefactuals. Before doing so, we must consider the question

of how to do counterfactuals within the ECCP framework.

Much of the ECCP approach’s appeal comes from the fact that it takes seriously the possibility

that the econometrician might be facing important measurement issues; e.g., some market-level

state variables might not be observed, and/or it might be difficult to specify how they evolve.

However, when doing counterfactuals, researchers typically solve for a new equilibrium of the

model, which normally involves fully specifying all the relevant state variables and how they evolve.

Thus, prima facie, ECCP estimation seems to be at odds with doing counterfactual simulations.

A counterfactual is a function of the model parameters, and sometimes that function does not

depend (or depends only minimally) on the presence of unobservable variables or on the precise

specification of how state variables evolve. Therefore, the modeling issues that motivate the

ECCP approach need not undermine the use of parameter estimates for counterfactual analysis.

De Groote and Verboven (2019) provide a clear example. They use an ECCP estimator to estimate

the rate of time discounting of Belgian households in deciding whether to install solar photovoltaic

systems (the ECCP estimator allows them to flexibly include demand shocks and avoid specifying

a process for how government policy evolved). They find that households’ estimated discount rate

is considerably lower than the interest rate that the Belgian government can borrow at. As they

argue, this disparity means that it would be more cost effective for the government to support solar

PV installations with up-front payments, rather than the ongoing payments that the government

actually used. This conclusion follows intuitively from the disparity in discount rates and plausibly

is not affected in an important way by how government policy and unobservable states evolve. The

conclusion, however, may be highly sensitive to biases in the estimation of the discount factor. In

4Note that one can estimate the model parameters either by minimizing the distance between b and πb(θ) −
Aπnb(θ), or by minimizing the distance between the (nonparametrically) estimated CCP, p, and the CCP generated
by the model, p(θ). See Pesendorfer and Schmidt-Dengler (2008).
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other words, the estimation of a mis-specified model may crucially affect policy recommendations.

In what follows, we show that some counterfactuals – specifically, long-run demand elasticities

from our durable good demand model – are robust to the omission of unobservable state variables

that are present in the data generating process. Or more specifically, long-run demand elasticities

are well approximated by a model in which we set ξ at its long-run mean (i.e., ξ = 0). Furthermore,

we show that the biases that result from leaving the unobservable shocks out of the counterfactual

simulations can be smaller than the biases that result from using an estimation approach that is

not robust to their presence.

We perform both a real and feasible counterfactuals for the durable good demand model. Our

real counterfactuals take the parameter estimates from various estimations presented in Section 6

and plug them into a counterfactual that uses the true data generating process (notably including

the true law of motion for the unobservable demand shock ξmt). That is, the real counterfactuals

rely on our understanding of an unobservable that an econometrician who was not simulating the

data would not have access to. Our feasible counterfactuals, in contrast, simulate a simple model

that an econometrician could easily implement: a model that sets ξ = 0.5

The counterfactual we consider is an increase in the mean price level (formally, we increase

γ0 by .01; see Table 1 in Section 6), and we calculate the long-run change in the demand level.

That is, we calculate the unconditional probability of purchase Pr (a = b) in the steady state after

solving the consumer’s dynamic problem. We present this counterfactual in the form of a long-run

demand elasticity, i.e., the ratio of the percentage change in the probability of purchase to the

percentage change in the long-run price.

Table E1 shows the counterfactuals from the ECCP (OLS and IV) and standard CCP estimators

based on the parameter estimates from the above simulations with M = 160 and T = 160. A first

observation is that the real and feasible counterfactuals at the true parameters differ by a factor

of about 10%. Second, consistent with the biases in the underlying parameter estimates, we find

that the ECCP IV estimates yield very little bias in the counterfactuals relative to the true values

while the other estimators result in substantially biased counterfactuals. Furthermore, the biases

in the long-run elasticities from the OLS and standard CCP estimators (whether we consider the

real or feasible versions) are larger than the gap between the real and feasible estimators.

Evidently, counterfactuals are not always robust to setting ξ at its unconditional mean. The

broader point we make in this section is that robustness to the presence of unobserved shocks

can be assessed through a procedure similar to what we do here. That is, when researchers are

concerned about the presence of unobservables, they might adopt a robust estimation approach

that delivers consistent estimates of important parameters despite the unobservables. Then, when

it comes to counterfactual simulations, they can perform the simulation in several ways to assess

5To solve the feasible counterfactual, we need to specify how the exogenous state variable wmt evolves. We
consider the residual from the pricing equation (39) as the econometrician can measure it. I.e., w = γ0 + γ1z + ν,
where ν = γ2ξ + εw. So, we calculate the true evolution of ν given the underlying processes and assume the
econometrician is able to estimate it.
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whether and how the results of interest might be sensitive to the presence of unobservables and

how they evolve.

Table E1: Sample size, structure and bias

ECCP Standard
True value OLS IV CCP

Real LRE -1.106 Mean Estimate 60.15 -1.104 0.01471
Relative Bias -5540% -0.1561% -101.3%
SD 16.62 0.04227 0.02545
RMSE 63.48 0.04231 1.121

Feasible LRE -1.022 Mean Estimate -1.187e4 -1.064 0.03888
Relative Bias 1.162e6% 4.114% -103.8%
SD 1.382e6 0.1184 0.06774
RMSE 1.382e6 0.1256 1.063

Notes: 5000 replications with sample structure M = T = 160. SD is the standard
deviation across replications. RMSE is root-mean squared error.

Relative Bias is bias as percentage of the true parameter.
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