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Abstract

Satellite-based image classification facilitates low-cost measurement of the Earth’s surface com-

position. However, image classification techniques can lead to misleading conclusions about

transition processes (e.g., deforestation, urbanization, and industrialization). We propose a

correction for transition rate estimates based on the econometric measurement error literature

to extract the signal (truth) from its noisy measurement (satellite-based classifications). No

ground-level truth data is required to implement the correction. Our proposed correction pro-

duces consistent estimates of transition rates, confirmed by Monte Carlo simulations and panel

validation data. In contrast, transition rates without correction for misclassification are severely

biased.
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1 Introduction

In recent years, publicly available satellite-based data combined with increasingly sophisticated

machine learning algorithms have provided unprecedented access to regional and global estimates

of Earth’s surface composition.1 Compared to other data sources, remote sensing data have the

advantages of providing a relatively low cost of accessing information that is difficult to obtain by

other means, a high spatial resolution, and wide geographic and temporal coverage (Donaldson

and Storeygard, 2016). Not surprisingly, they have been used widely – and increasingly – across a

number of research fields, including economics, geography, biology, ecology, and political science,

as well as being used in setting policy.2

However, image classification techniques, which are used to convert the spectral signature of a

pixel into an interpretable category, can lead to non-negligible misclassifications and bias areal es-

timates (Czaplewski, 1992; Lark et al., 2017; Jain, 2020). These classification errors can also affect

estimates of the transition processes of outcomes of interest – our focus in this paper. Intuitively,

errors in classifications can make transition rates appear excessively high. For example, much of

the apparent land cover change in satellite-based data may be the result of misclassifications (Aber-

crombie and Friedl, 2016). When remotely sensed rates of land cover change are used as inputs

by decision makers (e.g., regulation in Brazilian Amazonia is based on remotely sensed deforesta-

tion rates (Assunção et al., 2019)) biases in transition rates can undermine efficient policy design

and enforcement. Similarly, errors in satellite-based measures of pollution can lead to misleading

information about pollution trends in different geographic areas and adversely affect air-quality

regulations.3

To mitigate these concerns, researchers typically impose a set of heuristic and ad hoc adjust-

ments to stabilize classifications across years. Yet, Friedl et al. (2010) provide strong evidence that

typical heuristic adjustments do not eliminate excessive rates of land cover change. An alternative

solution is to correct classification errors using validation data that can be treated as ground truth

1At the moment, there are approximately 5,000 satellites orbiting our planet, according to the Index of Objects
Launched into Outer Space (http://www.unoosa.org/oosa/en/spaceobjectregister/index.html).

2Economists have been using satellite data to study crop choices and agricultural productivity (Holmes and Lee,
2009; Scott, 2013; Kudamatsu et al., 2016), climate change (Costinot et al., 2016), natural resources and deforestation
(Burgess et al., 2012; Assunção et al., 2019), intensity and distribution of economic activities (Henderson et al.,
2012; Nordhaus and Chen, 2014; Hu and Yao, 2019), urbanization and market boundaries (Goldblatt et al., 2018;
Baragwanath et al., 2019), investments in housing innovation and poverty (Henderson et al., 2016; Marx et al.,
2019), pollution and health outcomes (Fowlie et al., 2019), civil wars (Alix-Garcia et al., 2013), and the political
economy of regional development (Gennaioli et al., 2012; Michalopoulos and Papaioannou, 2013), among many
others. Geographers, biologists, and ecologists have also explored remote-sensing data to investigate land cover and
degradation, terrestrial and marine ecosystems, biodiversity, and carbon emissions and carbon sequestration (Foley
et al., 2005; Bonan, 2008; Geller et al., 2017).

3Fowlie et al. (2019) show that satellite-based measurement errors in pollution can lead to over-regulation in
“clean” areas and under-regulation in “dirty” areas.
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(Czaplewski, 1992). However, extensive validation data are expensive to obtain and extremely

scarce in practice (Goldblatt et al., 2016), and even when validation data exists, there may be few

observations available, which limits the accuracy of the estimates.

In this paper we propose a different approach. We present a hidden Markov model (HMM)

that corrects for misclassification bias. A hidden Markov model is the combination of an unob-

served Markov process with observations that depend only on the contemporaneous hidden state

(McLachlan and Peel, 2000). For instance, when studying land use change, the ground truth land

use is the hidden state and classifications based on remote sensing imagery are the observations.

The idea here is to extract the signal (truth) from its noisy measurement (satellite-based classifi-

cations). The framework assumes that researchers either have access to a panel data (with at least

three time periods) of satellite-based classifications, or that they can generate such classifications

themselves using remotely sensed data.

Based on Hu’s seminal work on non-classical measurement error (summarized in Hu (2017,

2020)), we show how the HMM assumptions allow us to uniquely recover both the true transition

probabilities and the misclassification probabilities from the observed data. The required assump-

tions (fully discussed below in Section 2) are not very restrictive in practice, and some of them are

testable. We discuss two different estimators for the hidden Markov model: a minimum distance

(MD) estimator, that builds directly from the constructive identification results; and a maximum

likelihood (ML) estimator, which is implemented using the expectation-maximization (EM) algo-

rithm (Dempster et al., 1977; van Handel, 2008). Given estimated transition probabilities, we can

construct the most likely trajectory of land uses for each pixel in the data.

From the perspective of implementation, there are at least two attractive features to our ap-

proach. First, we do not require ground-truth data to implement the correction. Second, our

estimator can be implemented using classified data and not raw remote sensing data. These fea-

tures allow for a division of labor between remote sensing specialists, who can classify the raw data,

and applied researchers, who can implement the correction in their application.

We investigate the performance of our strategy in a Monte Carlo simulation study, and using

rich longitudinal ground-level validation data. In the Monte Carlo study, we find that the HMM

method estimates transition probabilities and misclassification probabilities accurately, including

cases where the transition probabilities are time-varying. We also document important trade-offs

between the two estimators: While the MD estimator is substantially faster, the ML estimator

performs better in terms of mean-square errors and is less likely to result in estimates of transition

probabilities that are at the edge of the unit interval [0, 1].

We perform a validation exercise using a unique ground-level truth longitudinal data produced
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by the Brazilian Agricultural Research Corporation (Embrapa). The data describe land use in

various private farmlands in the state of Mato Grosso, Brazil, from 2006 to 2010.4 The state of

Mato Grosso serves as an interesting setting because it is a major center of agricultural production

within Brazil’s Legal Amazon (a bio-administrative unit covering the Brazilian Amazon biome),

and because of the rapid land use change there due to agricultural development – factors that have

attracted considerable attention from researchers and policy makers. This data is unprecedented

in spatial and temporal coverage for the state – and arguably in general, given that longitudinal

validation data are particularly difficult to obtain; typically, validation data are composed of a

single or repeated cross-sections. Longitudinal ground-level data are crucial for validating our

HMM approach, as they allow us to observe true land use transition rates and compare them to

our estimates. The Embrapa data therefore provide a unique opportunity to test the performance

of the HMM correction in practice.

In the validation exercise, we split the ground truth data into two disjoint sets: one which is

used to train a land cover classifier; and another which is used to compare the estimated transition

probabilities and the ground-level land use changes. The classifier’s predictors are based on remote

sensing data from MODIS, which are regularly used to study land cover (see, e.g., the discussion in

Brown et al., 2013). After training the classifier, we implement the HMM corrections – the MD and

ML estimators – and validate them against the ground truth data. We find that the HMM-based

corrections estimate transition rates accurately, while transition rates computed without correction

for misclassifications are 3 to 9 times higher than observed in the ground truth data. We also

improve the overall accuracy of the original classifications by finding the most likely sequence of

land uses for each pixel in the data based on the HMM estimates. Further, as a by-product, the

HMM approach provides precise estimates of the land use misclassification probabilities (i.e. the

classification errors of the uncorrected classifier).

To the best of our knowledge, the closest paper to ours is by Abercrombie and Friedl (2016), who

also consider an HMM-based correction to errors in land use classifications. They implement the

HMM forward–backward algorithm (see van Handel, 2008, Chapter 3) to determine the most likely

land cover for each pixel in a given year. In contrast to their work, we link the HMM procedure

to formal identification results based on a set of explicit assumptions, bringing transparency to the

contexts in which the correction is most appropriate and highlighting which assumptions can be

tested in the data directly, and we propose consistent estimators for transitions and misclassification

probabilities (together with corresponding sampling uncertainty measurements). We also allow for

4We use “land use” and “land cover” interchangeably in this paper. For details about the data set, see Coutinho
et al. (2011) and Brown et al. (2013). While Brown et al. (2013) use that data to obtain substantial progress towards
more refined crop-specific classification, we focus on land use transition estimates.

4



the estimation of time-varying transition probabilities from the data. Allowing for time-varying

transition probabilities is crucial in many applications, e.g. when estimating how (and explaining

why) deforestation processes may change over time.

This paper is organized as follows: Section 2 lays out the framework and the misclassification

problem; Section 3 discusses the use of validation data and heuristic ad hoc solutions to correct mis-

classifications, and presents the hidden Markov model, followed by the HMM formal identification

results; Section 4 describes the two estimation methods, the minimum distance estimator and the

maximum likelihood estimator; Section 5 presents the Monte Carlo simulation studies; Section 6

describes the validation exercise using ground-level truth data from Brazil’s Embrapa; and Section

7 concludes.5

2 Framework

In this section, we illustrate how misclassification of remote sensing data can affect estimates of

transition probabilities. Our running example is the land use classification problem, but results

can be applied to other classification problems using longitudinal remote-sensing data.

Let Sit ∈ S denote the ground truth land use at location i at time t. In applications, a location

is usually a pixel or a spatial point. The set of possible values that Sit can take is S = {s1, ..., sK},

K < ∞. We do not restrict the number of elements in S, so the land cover categories may be

specific and numerous, or they may be very broad such as forest and non-forest. In our Embrapa

validation exercise we use a binary state space S = {crops,pasture}. Extensions to continuously

distributed measurements, such as pollution or nighttime light, are possible, at the cost of more

burdensome notation and additional technical details.6 The true land use Sit is not observed unless

ground-level data is collected for i at t.

Suppose there exists an observable noisy measurement of Sit denoted by Yit ∈ Y = {y1, ..., yK}.

We assume the sets Y and S are equal, but we keep the distinction in the notation to facilitate

the presentation. In typical applications, Yit is the output of a classification algorithm that relies

on machine learning techniques to predict Sit given a vector of remote-sensing variables, Rit. For

example, Rit may be a vector including some vegetation index, and the reflectance patterns of

different wavelengths (infrared, red, blue, etc.) for pixel i at time period t. In other words, we

can take Yit = f (Rit), for some function f that depends on the data used and the classification

5The Appendix presents relevant mathematical derivations for the HMM correction and the de-
tails of the EM algorithm. Code for replicating the Monte Carlo simulations in R is available at
https://github.com/atorch/hidden markov model.

6For variables taking value on the real line, one needs to work in Hilbert spaces, with their corresponding operators,
instead of in Euclidean spaces with transformation matrices, as we do here.
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algorithm.

We assume the researcher has access to a longitudinal data of land use classifications

{Yit : i = 1, ..., N ; t = 1, ..., T}, obtained from remote-sensing data analysis (performed by the re-

searcher herself or by others). In practice, it is common to have a large set of spatial points N and a

small number of time periods T . Under standard regularity conditions, longitudinal data on Yit can

be used to estimate the transition probabilities Pr [Yit+1|Yit], as well as the marginal distribution

Pr [Yit], with high accuracy. We can therefore treat these probabilities as known by the researcher

for identification purposes. Importantly, while not explicit in the notation, we consider the analysis

conditional on some set of observable covariates. For instance, the data may come from different

subregions of a larger region of interest; the analysis can then be performed separately for (i.e.,

conditioned on) each subregion.7

For pixel i at time period t, the probability of observing land use prediction Yit = y is given by

Pr [Yit = y] =
∑
s∈S

Pr [Yit = y|Sit = s] Pr [Sit = s] ,

where Pr [Yit = y|Sit = s] is the probability of observing land use y when the ground truth land use

is s; this is known as the misclassification probability when y 6= s. Errors in classifications may be

the combined result of the specific sensor characteristics of the satellite, the angle of the satellite

with respect to the sun and the earth’s surface, and the atmospheric conditions, including cloud

cover and haze (Lillesand et al., 2004).

In matrix notation, the equation above becomes

PYt = Υ PSt , (1)

where PYt is a K × 1 vector with elements Pr [Yit = yk], k = 1, ...,K; the K × 1 vector PSt has

elements Pr [Sit = sk]; and Υ is a K ×K matrix with Pr [Yit = yl|Sit = sk], for l, k = 1, ...,K. We

follow the literature and refer to the elements of Υ as misclassification probabilities, even though it

includes the probabilities of correct classifications on the diagonal (also known as the “recall rate”),

while the misclassification probabilities are the off-diagonal terms. For now, we consider the case

where Υ is time-invariant, but the results can be extended to misclassifications that may change

over time.

While the vector PYt can be estimated consistently using frequency estimators, it is not possible

to recover the true land use distribution PSt without additional information. Further, there is no

7Incorporating continuously distributed covariates, such as slope and altitude, is more cumbersome, but feasible.
One can apply standard kernel smoothing techniques, or parameterize the transition probability functions.
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guarantee that the observed (estimated) transition Pr [Yit+1|Yit] is close to the true transitions

Pr [Sit+1|Sit].

3 Correcting Satellite-Based Misclassifications

We now consider three possible corrections for misclassified remote-sensing data. The first correc-

tion is based on available cross-sectional validation data. The second is based on heuristic ad hoc

corrections of implausible land use changes in the data. The third is based on our hidden Markov

model approach.

3.1 Correction Based on Cross-Sectional Validation Data

Suppose we have access to a subset of (repeated cross-sectional) validation points for which we

observe both Yit and Sit, i.e., {Yit, Sit : i = 1, ..., Ns; t = 1, ..., Ts}. Given such data, we can directly

estimate Υ. In fact, when fitting a machine learning model such as a land cover classifier, it is

standard practice to split the sample into training and test sets. The training set is used to estimate

the model, and predictions are then extrapolated to the test data and compared to the ground

truth. The comparison produces the so-called “confusion matrix,” which is a matrix with the joint

distribution Pr [Yit, Sit]. The matrix Υ of conditional probabilities Pr[Yit | Sit] can be obtained

directly from the confusion matrix. We can then recover the true land use shares provided the

matrix Υ is invertible:

PSt = Υ−1PYt . (2)

In practice, we expect Υ to be invertible because land use classifications are often sufficiently

accurate to make the matrix diagonally dominant: Pr [Yit = s|Sit = s] is typically much larger than

50 percent, and hence larger than the probability of misclassification
∑

y 6=s Pr [Yit = y|Sit = s].

To verify whether the correction works in a particular case, we may split the test dataset in

two. One subsample can be used to estimate Υ, while the other is used to check whether the

corrected land use classifications are indeed better than the original classification (see Czaplewski,

1992). As discussed in the Introduction, a limitation of this approach is the potential lack of access

to a sufficiently rich validation data set, particularly if our goal is to estimate models that vary

spatially, e.g. by region. Moreover, if our goal is to estimate transition probabilities (rather than

year-by-year land use shares), we need an approach that allows us to estimate more than just the

marginal probabilities Pr[Sit].
8

8To see why marginal probabilities are not enough to obtain transitions, take a binary case S = {s1, s2}. By the
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3.2 Heuristic Ad Hoc Corrections

Even in the absence of ground-level validation data, some errors in land cover classifications are

readily apparent. A potential strategy is to come up with ad hoc rules to correct plausible errors.

For instance, suppose S = {forest, non-forest}. If the predictions for a particular point i were

Yit = forest for each of the first ten years of data, followed by non-forest for the eleventh year,

followed by forest for four more years, then it is reasonable to assume that this point was covered

in forest throughout the sample period and that the eleventh classification was almost certainly an

error. This is conceivable given that it takes longer than a year to regrow forest on newly deforested

land, and given the implausibility of all the classifications other than the eleventh being wrong (or

at least several of them). By implementing such type of reclassifications, one can effectively smooth

out implausible transitions in the data.9

While heuristic-based adjustments improve estimations of transition rates by making use of

time-series information, rather than just cross-sectional information (as typically done in annual

land cover classifications), such adjustments are at the whim of the researcher and so may be highly

arbitrary. Further, they can be incomplete as there may be cases requiring corrections that are

not considered by the researcher. Indeed, typical heuristic adjustments do not eliminate excessive

transitions in land use applications (Friedl et al., 2010).

3.3 Correction Based on Hidden Markov Model Approach

We now turn to our proposed solution, which is based on Hu (2017). For each point i, we assume the

stochastic process {Yit, Sit : t = 1, 2, ...} follows a hidden Markov process. Specifically, we assume

ground truth land cover {Sit} follows a first-order Markovian stochastic process with transition

probabilities Pr [Sit+1|Sit], while Yit+1 is independent of past values {Yit−j , Sit−j}, j ≥ 0, conditional

on Sit+1. The conditional independence assumption means that if we know the true land use, past

variables (Yit, Sit) do not contain any additional information about the noisy land-use classification

Yit+1. This is a common assumption in the measurement error literature (Bound et al., 2001).10

Law of Total Probability,

Pr [Sit+1 = s1] = Pr [Sit+1 = s1|Sit = s1] Pr [Sit = s1] + Pr [Sit+1 = s1|Sit = s2] Pr [Sit = s2] .

Even when the marginals Pr [Sit+1] and Pr [Sit] are known, there is only one equation to identify two unknowns
Pr [Sit+1 = s1|Sit = s1] and Pr [Sit+1 = s1|Sit = s2].

9Ad hoc corrections like this are made by Mapbiomas, a publicly available panel database on land cover in Brazil
(https://mapbiomas.org/). Researchers using NASS’s Cropland Data Layer, which is an annual longitudinal data of
land cover predictions for the contiguous United States, often make use of such types of ad hoc adjustments (see,
e.g., Lark et al., 2015)

10Note that the observed process {Yit} does not necessarily follow a first-order Markov process. We also assume the
processes are spatially independent: {Yit, Sit} ⊥⊥ {Yjt, Sjt} for i 6= j (where ⊥⊥ indicates probabilistic independence);
extending the model to allow for both spatial and time dependence is possible, but adds considerable complexity.
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Formally,

Pr[Yit+1, Sit+1| {Yit−j , Sit−j}j≥0] = Pr [Yit+1|Sit+1]× Pr [Sit+1|Sit] . (3)

The HMM assumption is motivated by the fact that land use predictions Yit are typically a

function only of contemporaneous remote sensing data, Rit. If the process {Rit, Sit} satisfies the

HMM assumptions, then so must {f (Rit) , Sit} for any function f .11 The stochastic process is

summarized graphically in Figure 1, in which nodes represent random variables and edges indicate

statistical dependence.

Useful Identities. Given the HMM assumptions, there are a series of identities that are helpful

to obtain the identification results. For any two random variables X,W ∈ S, define the K × K

matrix MX,W with the joint distribution Pr [X = sl,W = sk], l, k = 1, ...,K. Similarly, for any

given yt+1 ∈ Y, define the matrix Myt+1,X,W , with elements Pr [Yit+1 = yt+1, X = yl,W = yk], as

well as the diagonal matrix Dyt+1|X , with diagonal entries Pr [Yit+1 = yt+1|X = sk].
12

From the joint distribution of (Yit, Yit−1) we obtain

MYt,Yt−1 = Υ MSt,Yt−1 . (4)

Similarly, from the joint distribution of (Yit+1, Yit) we get

MYt+1,Yt = Υ MSt+1,St Υᵀ, (5)

where the superscript ᵀ denotes transpose. And, from the joint distribution of (Yit+1, Yit, Yit−1),

we have for a given Yit+1 = yt+1 ∈ Y,

Myt+1,Yt,Yt−1 = Υ Dyt+1|St
MSt,Yt−1 . (6)

Identification and estimation of the HMM is based on (4)–(6). See Appendix A for a derivation of

We therefore focus on temporal dependence within each spatial point and leave extensions incorporating spatial
dependence for future research. The assumption of spatial independence is not uncommon in the literature (see, e.g.,
Abercrombie and Friedl, 2016).

11To see why, note that for any random variable Z, if Rit ⊥⊥ Z|Sit (in words, if Rit is conditionally independent of
Z given Sit), it follows that f(Rit) ⊥⊥ Z|Sit for any function f . In typical applications, the remotely-sensed data Rit

are complicated high-dimensional objects. In theory, we could fit an HMM using the process {Rit, Sit}. We opted for
not doing so because the misclassification probabilities Pr[Yit|Sit] can be represented by a K ×K matrix, which is a
much simpler object than a continuous distribution over high-dimensional sensor data. Finally, note that in typical
annual classifications, one can make use of within-year time-series variation in remote-sensing data to classify annual
land uses; for such cases, we extend our notation allowing the vector Rit to incorporate within-year remote sensor
covariates.

12As we allow the distribution of Yit to vary by year, note that the time subscripts on yt+1 ∈ Y serve to define
the distribution used for Yit+1.
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these equations.

3.3.1 Identification of the Hidden Markov Model

In this subsection, we outline the conditions needed to identify the Markov land use transition

process Pr [Sit+1|Sit], the marginal distribution Pr [Sit] (including the initial distribution), and the

misclassification probabilities Υ using at least three periods of data on Yit. Since we use the

identification results of Hu (2017), our assumptions parallel his.13

The first two conditions were discussed above and we state them here for completeness.

Condition 1. The joint process {Yit, Sit} follows a hidden first-order Markov process.

Condition 2. Yit and Sit have the same support, i.e., Y = S.

Next, we impose a mild restriction on observed classifications Yit:

Condition 3. The matrix MYt,Yt−1 has full rank, i.e., rank
(
MYt,Yt−1

)
= K.

This condition is testable. If the land use classifications Yit are sufficiently persistent, MYt,Yt−1

may be strictly diagonally dominant, which results in a full rank matrix.14 This condition implies

that both matrices Υ and MSt,Yt−1 are invertible too; see equation (4).

Combining (4) and (6), we get

Myt+1,Yt,Yt−1M
−1
Yt,Yt−1

= Υ Dyt+1|St
Υ−1. (7)

This is an eigenvalue-eigenvector decomposition of a matrix constructed entirely from the data,

i.e., from Myt+1,Yt,Yt−1M
−1
Yt,Yt−1

. The columns of Υ are the eigenvectors. Because each column of Υ

must sum to one, the scale of the eigenvectors is fixed. The diagonal elements of Dyt+1|St
are the

eigenvalues. The next two assumptions guarantee a unique eigenvalue-eigenvector decomposition.

The uniqueness of the decomposition means we can uniquely recover the misclassification probabil-

ities Υ and the diagonal matrix Dyt+1|St
from the joint distribution of the observed classifications

(Yit+1, Yit, Yit−1).

Condition 4. Pr [Yit+1 = y|Sit = s] 6= Pr [Yit+1 = y|Sit = s′] for at least one y ∈ Y whenever

s 6= s′, and s, s′ ∈ S.

13These results are based on Section 2 of Hu (2017). See also Hu (2020).
14This is easy to see in the 2× 2 example:

MYt,Yt−1 =

[
Pr [Yit = y1, Yit−1 = y1] Pr [Yit = y1, Yit−1 = y2]
Pr [Yit = y2, Yit−1 = y1] Pr [Yit = y2, Yit−1 = y2]

]
.

Note that for (observed) persistent processes, the diagonal terms are greater than the off-diagonal terms.
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Condition 4 assumes the eigenvalues are all distinct. This is testable: we only need to perform

the eigenvalue-eigenvector decomposition of Myt+1,Yt,Yt−1M
−1
Yt,Yt−1

and check it.15

To interpret this condition, consider an example in which there are three land uses: forest,

pasture, and crops. Take the observed y as forest. Suppose it is very likely to observe a forest

classification tomorrow (i.e. Yit+1 = forest) when today’s true land use is forest; moreover, suppose

it is very unlikely that we would observe forest tomorrow when today’s land use is pasture, and

even less likely to see forest tomorrow when today’s land use is crops (i.e., pasture and crops are

both persistent, but pasture is abandoned more often than cropland). In this case,

Pr [Yit+1 = y|Sit = forest] > Pr [Yit+1 = y|Sit = pasture] > Pr [Yit+1 = y|Sit = crops] ,

for y = forest. Condition 4 is then satisfied.16

Next we turn to the eigenvectors:

Condition 5. Pr [Yit = s∗|Sit = s∗] > Pr [Yit = s|Sit = s∗] for any s 6= s∗, and s, s∗ ∈ S.

Condition 5 fixes the order of the eigenvectors. It implies s∗ is the mode of the distribution

Pr [Yit|Sit = s∗]. In words, given that the true land use is s∗, the probability that the noisy measure

equals s∗ is greater than the probability that Yit equals any other land use s 6= s∗. This condition

is satisfied when Υ is strictly diagonally dominant; as previously mentioned, accurate land use

classifiers generate Υ that is diagonally dominant in practice.17

Next, given identification of the misclassification probabilities Υ from the eigenvalue-eigenvector

decomposition (7), we identify the joint distribution Pr [Sit+1, Sit] under the assumption that Υ is

time-invariant. Specifically, we impose

Condition 6. Pr [Yit+1|Sit+1] = Pr [Yit|Sit].

Given Condition 6 and equation (5), we obtain

MSt+1,St = Υ−1MYt+1,Yt (Υᵀ)−1 , (8)

which implies identification of MSt+1,St , and hence of both Pr [Sit+1|Sit] and Pr [Sit].

15Condition 4 corresponds to Assumption 3 in Hu (2017). We take the function ω(y) defined in his assumption to
be the Dirac function here.

16In case the condition is violated for some y, we can use another land-use classification y′ 6= y for which the
condition is valid. If we find no such y, then identification is not guaranteed. On the other hand, when Condition 4
holds for more than one value y, the model becomes overidentified.

17This corresponds to Assumption 4.2 in Hu (2017). Alternatively, one could assume the misclassification proba-
bilities Pr [Yit = y|Sit = s] are decreasing in s for some y; this would correspond to Assumption 4.1 in Hu (2017) and
it also pins down the ordering of the eigenvectors.
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Theorem 1. (Hu, 2017). Suppose Conditions 1–6 hold. Then, the joint distribution of the observed

classifications (Yit+1, Yit, Yit−1) uniquely identifies Pr [Yit|Sit], Pr [Sit], and Pr [Sit+1|Sit].

For completeness, note that when Condition 6 is not satisfied, we need an additional time period

to identify misclassification probabilities at both t and t+ 1; i.e. we need at least T ≥ 4 periods of

data.18

We close this section with an important remark.

Remark 1. (Viterbi Algorithm.) An HMM model is not a classifier per se, but it can be

used to generate land use predictions using the Viterbi algorithm (van Handel, 2008, Chap-

ter 3). Viterbi is a dynamic programming algorithm that generates these predictions given

the estimated HMM parameters and the history of observations {Y1, Y2, . . . , YT }. Formally, it

chooses the sequence {s1, s2, . . . , sT } that maximizes the conditional probability path estimate

Pr [S1, S2, . . . , ST |Y1, Y2, . . . , YT ] for any given pixel.19

Compared to heuristic adjustments, which aim to smooth out implausible transitions based

on ad hoc rules, the Viterbi algorithm together with the HMM method smooths out observations

using misclassification and transition probabilities. The strategy effectively makes corrections to

obvious errors like the one described in Section 3.2 while allowing for the possibility that the data

also contain less obvious errors. Furthermore, the strategy does not require researchers to make

decisions about what sorts of transitions are implausible – the errors can be recovered from the data

itself – although such restrictions can be implemented as restrictions on the estimated transition

rates if desired.

4 Estimators for the HMM Correction

In this section, we consider two estimators for the HMM correction: a minimum distance (MD)

estimator and a maximum likelihood (ML) estimator.

18When both transition probabilities and misclassification probabilities vary by time, equation (7) becomes
Myt+1,Yt,Yt−1M−1

Yt,Yt−1
= Υt Dyt+1|St Υ−1

t , and equation (8) becomes MSt+1,St = Υ−1
t+1MYt+1,Yt (Υᵀ

t )−1. So, we
need one extra time period to identify MSt+1,St . Clearly, Υ1 and ΥT are not identified, and neither are the first and
last transition matrices.

19The probability path estimate Pr [S1, S2, . . . , ST |Y1, Y2, . . . , YT ] can be expressed in terms of initial, transition and
misclassification distributions by exploiting the HMM structure and the Bayes formula. Based on such expression,
the maximization problem can be solved recursively, as the Bellman equation in dynamic optimization problems,
solving for one variable only in each step (see Section 3.3 in van Handel, 2008). Note that finding the most likely
path is different from the problem of finding the most likely land use in a given period Pr [St|Y1, Y2, . . . , YT ].
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4.1 Minimum Distance Estimator

In principle, we can estimate the misclassification probabilities and the joint distribution of Sit using

a plug-in estimator based on equations (7)–(8). However, the eigenvalue-eigenvector decomposition

may result in estimated probabilities that are negative or greater than one in some data sets. In

our experience, this is more likely to happen when the sample size is small and the true parameters

are close to one (e.g. transition probabilities of 0.99). For this reason, it is better to implement a

constrained minimum distance estimator (Hu, 2017).

For convenience, we denote MSt+1,St = Mt for all t, and collect all matrices into M =

{Mt : t = 1, ...T − 1}, where T ≥ 3. Define the following functions, for some y ∈ Y,

g1yt (M,Υ) =
∥∥∥Myt+2,Yt+1,YtM

−1
Yt+1,Yt

Υ−ΥDyt+2|St+1

∥∥∥ ,
g2t (M,Υ) =

∥∥MYt+1,Yt −ΥMtΥ
ᵀ
∥∥ , (9)

where ‖·‖ is a matrix norm. Notice that g1yt is analogous to equation (7) with slight rearrangement,

while g2t is analogous to equation (8). So, under the true misclassification probabilities and joint

distributions, M and Υ, we have that g1yt = g2t = 0. (We omit Dyt+2|St+1
as an argument to g1yt

because it is a function of Υ and MSt+2,St+1 .)

Let g1 be a vector that stacks g1yt for all t ∈ {1, . . . , T − 2}, and let g2 be a vector that stacks

g2t for all t ∈ {1, . . . , T − 1}. Define the vector g = (gᵀ1 , g
ᵀ
2)

ᵀ
, and consider the population criterion

function Q (M,Υ) = g (M,Υ)ᵀ Wg (M,Υ) , where W is a symmetric positive-definite weighting

matrix. By construction, Q (M,Υ) ≥ 0, and the true matrices (M,Υ) are the unique solution to

the following minimization problem:

min
M,Υ

g (M,Υ)ᵀ W g (M,Υ) , (10)

subject to each matrix entry being in [0, 1] and probabilities summing to one.

The minimum distance estimator is the sample analog of (10):

(M̂, Υ̂) = arg min
M,Υ

ĝ (M,Υ)ᵀ Ŵ ĝ (M,Υ) , (11)

subject to the same constraints as above, where ĝ is a vector with elements defined in the same

way as in (9), but replacing Myt+1,Yt,Yt−1 , MYt,Yt−1 , and MYt+1,Yt by their respective frequency

estimators M̂yt+1,Yt,Yt−1 , M̂Yt,Yt−1 , and M̂Yt+1,Yt , and Ŵ is a data-dependent symmetric positive-

definite weighting matrix that converges in probability to W. This is a standard minimum distance

estimator defined over a finite-dimensional parameter space; under standard regularity conditions
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it is consistent and asymptotically normal (Newey and McFadden, 1994). As usual, inference must

be adjusted when parameters are at or near the boundary (Politis and Romano, 1994; Andrews,

1999, 2000).20

In general, if we estimate a model with K hidden land uses from T years of data, we have

to optimize over K(1 + KT ) parameters subject to TK + 1 equality constraints and boundary

conditions for every parameter ensuring it is in [0,1]. For instance, when there are K = 2 land uses

and T = 3 time periods, we have 7 parameters to estimate in total.21

4.2 Maximum Likelihood Estimator

Next, we consider a maximum likelihood estimator. Let Pr [Yi] be the joint distribution of Yi =

(Yi1, ..., YiT ) for a given point i. The log likelihood function is

L =

N∑
i=1

ln Pr [Yi] , (12)

where the likelihood function for observation i integrates-out the hidden states:

Pr [Yi] =
∑
s1∈S
· · ·
∑
sT∈S

Pr [Si1 = s1] Pr [Yi1|Si1 = s1]

T∏
t=2

Pr [Sit = st|Sit−1 = st−1] Pr [Yit|Sit = st] .

(13)

The ML estimator chooses the initial distribution Pr [Si1], the transition probabilities for Sit, and

the misclassification probabilities that maximizes the function L. As is well-known, the ML es-

timator is consistent, asymptotically normal, and asymptotically efficient (Newey and McFadden,

1994).

Because maximizing L directly is difficult in practice, we follow the literature and use the

expectation-maximization (EM) algorithm (Dempster et al., 1977; van Handel, 2008). The EM

algorithm is an iterative method that alternates between performing an expectation (E) step and

a maximization (M) step, until convergence. The E-step computes the posteriors Pr [Si|Yi], where

Si = (Si1, ..., SiT ), exploiting the HMM structure and Bayes rule. The M-step searches over the

parameters to maximize the expected log-likelihood found on the E-step. See Appendix B for more

details.22

20When Condition 4 is satisfied for more than one value of y ∈ Y, the vector g1yt may be augmented accordingly.
When that happens, or when the data on Yit has more than four time periods, T ≥ 4, the model becomes overidentified.

21The total number of parameters before accounting for constraints for T years is K (corresponding to the initial
distribution), plus (T − 1)K2 (corresponding to (T − 1) transition matrices), and K2 (the misclassification matrix).
The number of equality constraints is 1 (for the initial distribution), plus (T−1)K (for the T−1 transition probability
matrices), and K (for the time-invariant misclassification probabilities).

22A key part in the E-step is the Baum-Welch algorithm. It calculates efficiently the probabilities
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As a final observation, note that both ML and MD estimators can handle data that are missing

at random (e.g. due to cloud cover) by restricting the observations to the cases where Yit are non-

mssing. For instance, if Yit is missing at random with probability, say, 0.10, we need to throw out

approximately 1−0.93 = 0.271 of our data to compute M̂yt+1,Yt,Yt−1 and M̂Yt,Yt−1 when calculating

the MD estimator.

5 Monte Carlo Studies

In this section, we present several Monte Carlo experiments to investigate the finite-sample per-

formance of the MD and ML estimators. First, we fix the parameters of the model (the initial

distribution, the transition probabilities, and the misclassification probabilities) and vary the sam-

ple size (i.e., the number of grid points). Then, we fix the number of observations and evaluate how

the estimators perform at different true transition probabilities, misclassification probabilities, and

with different numbers of time periods.

5.1 Setup

We consider two land uses, S = {1, 2}, observed in T = 4 time periods. The initial distribution

over hidden states is

PS1 = (0.9, 0.1)ᵀ ,

where the initial share of land cover s = 1 is 0.9. The transition matrices are

P1 ≡ PS2|S1
=

0.96 0.04

0.02 0.98

 , P2 ≡ PS3|S2
=

 0.9 0.1

0.02 0.98

 , P3 ≡ PS4|S3
=

 0.8 0.2

0.02 0.98

 .

So the probability that a pixel i with land cover s = 1 in period t = 1 stays with the same land cover

in the next time period, t = 2, is Pr[Si2 = 1|Si1 = 1] = 0.96. The transition probability decreases to

Pr[Si3 = 1|Si2 = 1] = 0.9 in the next period t = 3, and decreases further to Pr[Si4 = 1|Si3 = 1] = 0.8

in the last period t = 4. To simplify, we keep the transitions conditioned on state s = 2 the same

over time: Pr[Sit+1 = 2|Sit = 2] = .98 for all t.

The misclassification probabilities are time-invariant and given by

Υ =

0.9 0.2

0.1 0.8

 .

Pr [Sit|Yi1, Yi2, . . . , YiT ], where t ≤ T , which is the posterior probability of the true land use at t given the full
history of classifications.
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Recall that the elements of Υ are Pr [Yit = y|Sit = s] (with Yit along the rows and Sit along the

columns). That means that the probability of classifying land use y = 1 when the true land cover

is actually s = 2 is just Pr [Yit = 1|Sit = 2] = 0.2. Correct classification probabilities here are either

0.9 (for s = 1) and 0.8 (for s = 2), which are within the range of accuracies observed in practice in

typical land cover classifications.

The hidden Markov model generates the observed transitions for Yit:

PY2|Y1 =

0.815 0.185

0.363 0.637

 , PY3|Y2 =

0.775 0.225

0.37 0.63

 , PY4|Y3 =

 0.72 0.28

0.472 0.528

 .

These transitions put much greater probabilities on the off-diagonals than the true transitions. This

implies excessive land cover switching. Frequency estimators of the transition probabilities for Yit

are consistent for PYt+1|Yt , and are therefore inconsistent for the true transitions PSt+1|St
.

To evaluate the performance of the proposed HMM corrections, based on the MD and ML

estimators, we generated samples with N = 100, N = 500, N = 1, 000, N = 10, 000 spatial grid

points, observed for T = 4 time periods. For each sample size, we generate 100 Monte Carlo

replications. In each replication, we estimate the observed transitions for Yit using frequency

estimators, and run both MD and ML estimator starting from six randomly chosen initial values.

The initial values for the diagonals of the true PSt+1|St
and Υ matrices are i.i.d. uniform on

[0.6, 0.98]. The initial values for the first element of the initial distribution PS1 are drawn i.i.d.

uniform on [.85, .95]. For the MD estimator we take the identity matrix as the weighting matrix,

W = I.

5.2 Baseline Results

Table 1 presents the average bias, the standard deviation, and the mean-squared error across the

Monte Carlo replications (on the rows). For each parameter, we show results for the frequency

estimator, the MD, and the ML estimators (on the columns).

As expected, the performances of the MD and ML estimators in terms of the average bias and

mean-square errors are substantially better than the performance of the frequency estimator for

both the initial distribution of land cover and the transition rates. Naturally, both corrections

improve with the sample size, while the frequency estimator does not. The HMM corrections also

estimate the misclassification probabilities accurately.

As the table shows, the ML often dominates the MD estimator by having smaller biases. Also,

especially for smaller sample sizes, the ML has much smaller standard deviations than the MD

estimator. This is not surprising given that the maximum likelihood estimator is efficient. This can
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be seen graphically in Figure 2, where we show the distribution across replications of the estimated

transition probabilities Pr [Sit+1 = 2|Sit = 1], and misclassification probabilities Pr [Yit = 2|Sit = 1],

using box and whisker plots. The true parameter value is marked by dotted lines. The variability

of the MD estimator suggests some caution when using it in small samples. (These graphs slightly

understate the observed variability of the MD estimator, since the graph is truncated at .5 and

some estimated values go above that.) Indeed, in our experience, the greater standard deviation

of the MD estimator (compared to the ML) implies a higher frequency of estimated transition

probabilities that are too close to, or exactly at, the boundary of the parameter space. That

happens more frequently when true transition probabilities are near zero or one.

While not shown in the table, the ML takes longer to converge than the MD estimator (by

factors between 6 and 42, depending on the sample size). That is because the EM algorithm loops

over the entire panel in its E and M steps; by contrast, the minimum distance estimator loops over

the entire panel only once to compute frequency estimators of the joint distribution of Yit, and can

then evaluate its objective function quickly by looping only over time, as opposed to the entire

panel.

We also verify the performance of the estimator with T = 5 and T = 6. Relative to our

T = 4 period baseline, we fix the transition probabilities for the first and last period and set the

transitions for the middle periods equal to each other.23 While the additional time periods require

the estimation of additional parameters, the larger number of time periods could help improve the

precision of the misclassification probability estimates. In Figure 3, we replicate the results from

Figure 2 with N = 1, 000 observations and T = 4, 5, and 6 time periods. As these graphs show,

the results are similar across the different number of time periods.

These considerations suggest combining the MD and ML in practice, whenever possible, taking

into account their strengths. For instance, one could run the MD estimator first (which is fast), and

then use the MD estimate as an initial value for the (asymptotically more efficient) ML estimator.

5.3 Varying Parameter Configurations

We now fix the sample size at N = 1, 000 and T = 4, and investigate the performance of the HMM

corrections for several different parameter configurations. In particular, we hold fixed the transition

probabilities of land use at the levels described before and vary the misclassification probabilities

for the hidden state s = 1. Then we hold fixed the misclassification probabilities and vary the

23In other words, we set

PS2|S1
=

(
0.96 0.04
0.02 0.98

)
, PSt|St−1

=

(
0.9 0.1
0.02 0.98

)
,∀1 < t < T, and PST |ST−1

=

(
0.8 0.2
0.2 0.98

)
.
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transition probability for state s = 1 in the last period.

Figure 4 presents the results for when we vary the misclassification probability for state 1,

Pr[Yit = 2|Sit = 1] (i.e., Υ(2, 1)), between 5 and 25 percent, while holding other parameters fixed.

The top panel shows the behavior of the estimates of the transition probabilities Pr[Sit+1 = 2|Sit =

1], for t = 1, 2, 3, and the bottom panel shows the behavior of the estimates of the misclassification

probability Pr[Yit = 2|Sit = 1]. The lines are non-parametric loess regression lines with a shaded

95% confidence interval, where the data is fit from the different Monte Carlo simulations.

Intuitively, as the true misclassification probability increases, the frequency estimates of the

transitions increase for every period, even though the actual transition rate is constant. In other

words, the frequency estimator predicts many more transitions than actually occur. In contrast, the

MD and the ML estimators predict a flatter transition rate. Also, the MD performance degrades for

the transition probabilities as the misclassification rate increases. When we look at the estimates

of the misclassification rate, the estimates are more similar for the MD and ML approaches, but

the ML is more biased as the true misclassification rate increases.

Figure 5 presents the results for when we vary the transition probability for hidden state s = 1

in the last period, Pr[Si4 = 2|Si3 = 1] (i.e., P3(1, 2)), between 5 and 40 percent. The format of

these graphs is similar to those in Figure 4. These graphs show that both MD and ML estimators

continue to perform well at estimating transitions and misclassifications with no notable differences

between them (aside from those discussed above).

6 Validation Exercise Using Land Cover Data

We now investigate the performance of the HMM approach using unique validation data from the

Brazilian Agricultural Research Corporation (Embrapa).24 We outline the data, the implementa-

tion of our methodology, and the validation results.

6.1 Ground-Level and Remote-Sensing Data

The ground-level data contain information on land use at 409 spatial points observed annually

from 2006 to 2010, in the state of Mato Grosso, Brazil. The state of Mato Grosso has attracted

considerable interest from researchers and policy makers both because it is a major center of agri-

cultural production within Brazil’s Legal Amazon (a bio-administrative unit covering the Brazil-

ian Amazon biome) and because of the rapid land use change there due to agricultural develop-

ment. The field data were collected from private farms in an area extending from the coordinate

24We are grateful to Alexandre Camargo Coutinho and Daniel De Castro Victoria, who generously shared their
data with us.
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(59o25′14′′W, 14o2′39′′S) [lower left] to the point (54o25′19′′W, 11o42′16′′S) [upper right], within 14

municipalities in the most intensely cropped region of central Mato Grosso. The data is unprece-

dented in spatial and temporal coverage for the state – and arguably in general. (For details, see

Coutinho et al. (2011) and Brown et al. (2013).)25

Not only are these data of unusually high quality for the Brazilian Legal Amazon (and in

general), they are especially useful for us because longitudinal ground-level data are crucial for

validating our HMM approach. They allow us to observe true land use transition probabilities

and compare them to our estimates. We can also compare our HMM estimates of misclassification

probabilities with a direct estimate of misclassifications Pr [Yit|Sit]. Also important to emphasize,

longitudinal validation data are particularly difficult to obtain in practice; typically, validation

data are composed of a single or repeated cross-sections, which cannot be used to verify transition

probabilities. The Embrapa data therefore provide a unique opportunity to test the performance

of the HMM correction in practice.

Embrapa’s land cover data include various land use categories, but the vast majority of points

are either in crops or pasture. We therefore consider two land uses, i.e. S = {crops,pasture}. A

small number of points do not fit into either of these categories (e.g. points classified as natural

vegetation); we drop these, leaving us with 403 unique spatial points, each point observed for one

to five years in 2006–2010 (unbalanced panel).26

We merge the ground truth land use data with remote-sensing data. Specifically, we use mea-

surements from the sixteen-day composite Terra MODIS 250m.27 MODIS data provide measure-

ments over time of five variables that we observe for each pixel i: the reflectance of (i) near infrared

(NIR), (ii) middle infrared (MIR), (iii) red, and (iv) blue, as well as (v) the enhanced vegetation

index (EVI). Given that MODIS collects information for each pixel every sixteen days, each variable

is recorded 23 times per year. In total, we have 115 MODIS covariates per year – these correspond

to the vector of variables Rit presented in Figure 1. As we discuss below, we use these variables

to predict land use Yit = f(Rit) in each year. We merged the MODIS data with the Embrapa

ground-level data considering the September-to-August harvest years for consistency. In this way,

25While Brown et al. (2013) use that data to obtain substantial progress towards more refined crop-specific clas-
sification, we focus on land use transition estimates. The data were collected via farmer or farm manager interviews.
The cropping practices were recorded for each individual sites and integrated into a Geographic Information System
(GIS) to be combined with the MODIS remote-sensing data (see more below). A total of 40 farmers or farm managers
were interviewed as research participants (Coutinho et al., 2011; Brown et al., 2013).

26Of the 403 spatial points, 63 are missing ground truth land use data in one or more years. Overall, we observe
ground truth land use for 93.5% of point-years.

27More precisely, the MOD13Q1 (Collection 5), with spatial resolution of 250 meters and 16-day composite interval,
obtained from the United States Geological Survey’s Land Processes Distributed Active Archive Center (LP DAAC).
We used one MODIS tile (h12v10), which covers the entire field study area. This is consistent with the analysis in
Brown et al. (2013).
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the 2006 ground-level data, for instance, are merged with sensor data from September 2005 to

August 2006.

After merging the MODIS and the truth ground-level datasets, we randomly split the panel

data into two disjoint sets. The first (“training set”) is used to train a machine learning land use

classifier. With the second set of data (“test set”), we obtain the predicted land use from the

classifier, estimate the HMM model, and then test the predictions of that HMM model on the

ground-truth validation data. The training set contains 60 cross-sectional points (286 point-years);

the test set contains 343 points (1715 point-years).

We opt for a larger fraction of the Embrapa data set to be part of the test set because to reflect

the typical scenario faced by applied researchers using satellite-based data. These researchers will

typically have access to large panels of remote sensing data and machine-learning-based classifica-

tions. Therefore, they will have access to a lot of (potentially misclassified) data points (Yit) to use

in estimating the HMM model.

6.2 Implementation

For our frequency estimator, we use a gradient-boosted ensemble of classification trees, commonly

referred to as a GBM (Hastie et al., 2009, Chapter 10), to predict the land cover using the MODIS

covariates. Specifically, we use the training set to fit our GBM classifier, and then generate out-

of-sample predictions Yit = f(Rit) on the held-out test data.28 The out-of-sample predictions in

the test set constitute our land use classification panel data, {Yit : i = 1, ..., N, t = 1, ..., T}, that is

used to calculate the transition rates based on sample frequencies.

After predicting Yit on the test set, we implement our HMM corrections using both the MD

and the ML estimators described previously.29 We consider two model specifications: a restricted

model with time-invariant transition probabilities, and another in which the transitions are allowed

to vary over time. Confidence intervals are calculated based on subsampling, as suggested by Politis

and Romano (1994) and Andrews (1999, 2000) when parameters are at or near the boundary.30

28The purpose of boosting is to apply “weak” classification algorithms sequentially to produce a “strong” classifier.
The GBM uses a sequence of decision trees in which each individual tree tries to recover the loss (i.e., the difference
between actual and predicted values) obtained by the previous ones in the sequence. The loss function is minimized
using a gradient descent algorithm. To select the optimal number of trees, we follow standard practice and use
cross-validation. See Chapter 10 of Hastie et al. (2009) for recommendations on tuning GBMs.

29For the MD estimator, we used both yt+1 = crops and yt+1 = pasture, as they both satisfy Condition 4.
30We implement 200 replications of a standard i.i.d. subsampling, resampling 250 spatial points over the sample

time period. The 95% confidence intervals are calculated as [θ̂ − δ0.025, θ̂ + δ0.975], where θ̂ denotes the parameter
estimate, and δq is the quantile q of the subsampling distribution. We do not implement bootstrap procedures
because they are inconsistent when parameters are at or close to the boundary (Andrews, 2000). We treat the GBM
parameters as fixed in computing the standard errors and subsample only on the test data.
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6.3 Validation Results

The out-of-sample performance of our GBM classifications is shown in Table 2. This table presents

the so-called “confusion matrix,” which tabulates the test points according to their ground truth

class and predicted class. It also allows us to estimate the misclassification probabilities Υ directly.

The GBM’s land use predictions are fairly accurate given the size of the training set and the

difficulty of the classification problem. Overall, it correctly predicts land use for 92% of the test

points. For crops, the fraction of correctly predicted (or the recall rate) is 92.6% (i.e., Pr[Yit =

crops | Sit = crops] = 0.926), while the recall for pasture is 79.5% (i.e., Pr[Yit = pasture | Sit =

pasture] = 0.795).31 This implies that Υ is diagonally dominant, as required for identification of

the HMM approach (see Condition 5 in Section 3.3.1). This increases our confidence that the HMM

is identified when applied to the Embrapa test data.

Figure 6 shows the estimated results for the restricted hidden Markov model (i.e., imposing

time-invariant transition probabilities). The ground-truth data indicate that the probability that

cropland continues to be cropland in the following year is 99.3%, while the probability of switching

to pasture equals 0.7%. The ground-truth probability of maintaining pasture land is 86.2%, and

the probability of switching from pasture to crops 13.8%. So, both land uses are persistent over

time, and cropland is more persistent than pasture.

The GBM classification (i.e. the frequency estimator) estimates transitions from crops to pas-

ture as 6.2%, and transitions in the opposite direction, from pasture to crops, as 48.2%. These

transitions are substantially biased: the first one is roughly 9 times higher than the truth, while

the second is 3 times higher than the correct transition. In contrast, the HMM estimates for the

transitions probabilities (using both MD and ML estimates) are approximately 1.2% for cropland to

pasture and 6.5% from pasture to cropland, which are substantially closer to the true ground-level

transition probabilities than the frequency estimates. The confidence intervals in the figure indi-

cate that these results hold even after accounting for sampling uncertainty. This is consistent with

the simulation results discussed previously, in which the frequency estimator tends to overestimate

switching rates when land use is persistent.

Figure 7 is analogous to Figure 6, but shows results for the unrestricted model, i.e. allowing

for time-varying transition probabilities. The results are similar to the time-invariant case: the

frequency estimator provides excessive land use changes, while the HMM corrections result in point

estimates that are closer to the true transitions. That is the case even when true transitions are

exactly zero, as in the first year of the data, 2006-2007. We also find some evidence that transition

31For comparison, NASS’s widely-used Cropland Data Layer has recall rates of roughly 92% for corn and soy, a
recall of roughly 49% for alfalfa, and an overall accuracy of roughly 90%, in Iowa in 2018. See https://www.nass.

usda.gov/Research_and_Science/Cropland/metadata/metadata_ia18.htm for more detail.
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rates can vary over time (though not substantially in this data set).

Next, we turn to the HMM estimates of the misclassification probabilities; Figure 8 shows the

results computed using MD and ML for both the restricted and unrestricted. The point estimates

are all reasonably close to the true misclassification probabilities obtained from the out-of-sample

confusion matrix for the GBM predictions (see the last column in Table 2.) This is notable since

the HMM is estimated using only panel data of observed classifications {Yit}, with no information

on true land uses {Sit}.

Finally, we apply the Viterbi algorithm based on the HMM maximum likelihood point estimates

to increase the accuracy of the land use predictions for each pixel in the test set, as discussed in

Remark 1 of Section 3.3. Indeed, Figure 9 shows that correcting classifications using the HMM

estimates and the Viterbi algorithm increases the overall accuracy of the land use classifications to

96%, improving on our original classifier’s accuracy of 92%.

7 Conclusion

Satellite-based data allow researchers to access an unprecedented number of rich datasets with

substantial spatial and temporal coverage. These data have proved useful in the study of a vari-

ety of important phenomena, including the incidence of pollution levels, changes to urban areas,

land use changes, deforestation and regeneration processes, the evolution of biodiversity, among

others. In this paper, we show how econometric tools can be used to improve the measurement of

remotely sensed transitions, such as rates of land use change. Based on the econometrics measure-

ment error literature, we show how to obtain estimates of transition probabilities that account for

misclassification. The method is based on a formal set of assumptions that can be analyzed on a

case-by-case basis (avoiding therefore ad hoc adjustments on transitions) and its implementation

does not require ground-level truth validation data.

We propose two estimators based on the identification results and find that they perform well

in Monte Carlo simulation studies and in a validation study based on a high-quality ground-level

land cover data. The results suggest that, in many circumstances, researchers working with remote

sensing data can obtain more accurate estimates of transitions rates than those based on standard

practices, using readily available data.
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Table 1: Baseline Monte Carlo Simulation Results

N=100 N=500 N=1000 N=10000

Freq MD ML Freq MD ML Freq MD ML Freq MD ML

Bias -0.076 -0.022 -0.031 -0.072 -0.013 -0.014 -0.070 -0.005 -0.008 -0.071 -0.002 -0.007
PS1 = .9 s.d. 0.039 0.081 0.057 0.018 0.038 0.028 0.012 0.024 0.020 0.004 0.007 0.008

RMSE 0.085 0.083 0.064 0.074 0.040 0.031 0.071 0.024 0.022 0.071 0.008 0.011

Bias 0.008 -0.018 -0.004 -0.008 -0.003 -0.006 -0.001 -0.004
Υ(2, 1) = .1 s.d. 0.053 0.040 0.018 0.014 0.011 0.010 0.004 0.004

RMSE 0.053 0.043 0.018 0.016 0.012 0.011 0.004 0.006

Bias 0.098 -0.058 -0.007 -0.025 -0.008 -0.020 -0.002 -0.006
Υ(1, 2) = .2 s.d. 0.198 0.108 0.096 0.059 0.051 0.044 0.017 0.017

RMSE 0.220 0.122 0.096 0.064 0.051 0.048 0.017 0.018

Bias 0.113 0.028 0.027 0.106 0.010 0.008 0.104 0.007 0.006 0.104 0.002 0.004
P1(1, 2) = .04 s.d. 0.039 0.065 0.055 0.016 0.027 0.021 0.011 0.017 0.014 0.004 0.006 0.005

RMSE 0.120 0.070 0.061 0.107 0.028 0.022 0.105 0.018 0.015 0.104 0.006 0.006

Bias 0.528 0.149 0.189 0.540 0.081 0.115 0.539 0.056 0.090 0.543 0.023 0.069
P1(2, 1) = .02 s.d. 0.136 0.227 0.219 0.058 0.135 0.123 0.040 0.090 0.081 0.012 0.049 0.041

RMSE 0.545 0.271 0.288 0.543 0.157 0.168 0.541 0.106 0.121 0.544 0.054 0.080

Bias 0.093 0.025 0.012 0.089 0.001 0.004 0.089 0.001 0.002 0.090 0.000 0.003
P2(1, 2) = .1 s.d. 0.043 0.103 0.062 0.019 0.031 0.028 0.012 0.019 0.018 0.005 0.007 0.007

RMSE 0.103 0.105 0.063 0.091 0.031 0.028 0.090 0.018 0.018 0.090 0.007 0.007

Bias 0.479 0.113 0.104 0.474 0.045 0.049 0.468 0.032 0.036 0.468 0.006 0.018
P2(2, 1) = .02 s.d. 0.120 0.192 0.154 0.052 0.082 0.070 0.037 0.067 0.047 0.011 0.026 0.016

RMSE 0.493 0.222 0.185 0.476 0.094 0.085 0.469 0.074 0.059 0.468 0.026 0.024

Bias 0.078 0.054 0.020 0.069 0.002 0.003 0.072 0.002 0.005 0.072 0.001 0.004
P3(1, 2) = .2 s.d. 0.057 0.152 0.083 0.022 0.049 0.036 0.017 0.029 0.026 0.005 0.009 0.009

RMSE 0.096 0.160 0.085 0.072 0.049 0.036 0.074 0.029 0.026 0.072 0.010 0.010

Bias 0.352 0.062 0.089 0.359 0.044 0.046 0.363 0.025 0.040 0.363 0.006 0.021
P3(2, 1) = .02 s.d. 0.097 0.141 0.127 0.040 0.089 0.072 0.029 0.057 0.053 0.009 0.024 0.019

RMSE 0.365 0.154 0.154 0.361 0.098 0.085 0.364 0.062 0.066 0.364 0.025 0.028

Table 2: Confusion Matrix based on Embrapa Validation Data

GBM Classification (Yit) Fraction Correctly Predicted (Recall)

Embrapa Data (Sit) Crops Pasture Total
Crops 1409 112 1521 0.926

Pasture 15 58 73 0.795
Total 1424 170 1594
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Figure 1: Dependency Graph for Hidden Markov Model
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(a) Transition Probability, Pr[Sit+1 = 2|Sit = 1], for t = 1, 2, 3

(b) Misclassification Probability, Pr[Yit = 2|Sit = 1]

Figure 2: Baseline Monte Carlo Simulation Results
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(a) Transition Probability, Pr[Sit+1 = 2|Sit = 1], for t = 1, 2, 3

(b) Misclassification Probability, Pr[Yit = 2|Sit = 1]

Figure 3: Baseline Monte Carlo Simulation Results
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(a) Transition Probability

(b) Misclassification Probability

Figure 4: Monte Carlo Results for Varying Misclassification Probabilities
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(a) Transition Probability

(b) Misclassification Probability

Figure 5: Monte Carlo Results for Varying Transition Probabilities
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Figure 6: Time-invariant Transition Probabilities – Embrapa Validation Data

Note: Ground Truth data are the observed transition probabilities in the Embrapa test set, the Frequency estimator
uses the GBM based land use classifications to estimate transitions, while Min Dist and Max Likelihood are the
minimum distance and maximum likelihood HMM estimators for the transition rates. Error bars represent 95%
confidence intervals based on subsampling. The results shown in this figure combine all years in the Embrapa test
set, i.e. they assume time-invariant transition probabilities.
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Figure 7: Time-varying Transition Probabilities – Embrapa Validation Data

Note: Ground Truth data are the observed transition probabilities in the Embrapa test set, the Frequency estimator
uses the GBM based land use classifications to estimate transitions, while Min Dist and Max Likelihood are the
minimum distance and maximum likelihood HMM estimators for the transition rates. Error bars represent 95%
confidence intervals based on subsampling. The results shown in this figure combine assume time-varying transition
probabilities.
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Figure 8: Misclassification Probabilities – Embrapa Validation Data

Note: Ground Truth correspondsdata to the misclassification probabilities from the “confusion matrix” comparing
the Embrapa test set points and the GBM predictors. The Min Dist and Max Likelihood correspond to the minimum
distance and maximum likelihood HMM estimates of the misclassification probabilties. Error bars represent 95%
confidence intervals based on subsampling. The top panel presents the results based on the restricted model with
time-invariant transition probabilities; and the bottom figure, the misclassifications based on the model with time-
varying transition probabilities.
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Figure 9: Classification Accuracy of GBM and HMM-Viterbi methods in the Embrapa Validation Data

Note: GBM corresponds to the accuracy (i.e, the fraction of correctly predicted points) in the test set of the GBM
classifier. The GBM with Time Homogeneous HMM Correction (Viterbi) and the GBM with Time Varying HMM
Correction (Viterbi) correspond to the accuracy of the classifications in the test set based on the Viterbi method,
after applying the HMM (maximum likelihood estimator) correction assuming time-homogeneous and time-varying
transitions, respectively.
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A Appendix: Mathematical Derivation of Useful Identities

Under the HMM assumptions, and by the law of total probability, the joint distribution of

(Yit, Yit−1) satisfies

Pr [Yit, Yit−1] =
∑
s∈S

Pr [Yit|Sit = s] Pr [Sit = s, Yit−1] . (14)

Similarly, the joint distribution of (Yit+1, Yit) is such that

Pr [Yit+1, Yit] =
∑
s′∈S

∑
s∈S

Pr
[
Yit+1|Sit+1 = s′

]
Pr
[
Sit+1 = s′|Sit = s

]
×Pr [Yit|Sit = s] Pr [Sit = s]

=
∑
s′∈S

∑
s∈S

Pr
[
Yit+1|Sit+1 = s′

]
Pr
[
Sit+1 = s′, Sit = s

]
Pr [Yit|Sit = s] , (15)

where the first equality follows from the law of total probability and the HMM assump-

tion (i.e., equation (3) in the main text); and the second equality uses the fact that

Pr [Sit+1 = s′|Sit = s] Pr [Sit = s] = Pr [Sit+1 = s′, Sit = s].

Finally, the joint distribution of (Yit+1, Yit, Yit−1) satisfies

Pr [Yit+1, Yit, Yit−1] =
∑
s∈S

Pr [Yit+1|Sit = s] Pr [Yit|Sit = s] Pr [Yit−1, Sit = s] , (16)

because

Pr [Yit+1, Yit, Yit−1]

=
∑
s′∈S

∑
s∈S

Pr
[
Yit+1, Yit, Yit−1, Sit = s′, Sit−1 = s

]
=

∑
s′∈S

∑
s∈S

Pr
[
Yit+1|Yit, Sit = s′

]
Pr
[
Yit, Sit = s′|Yit−1, Sit−1 = s

]
Pr [Yit−1, Sit−1 = s]

=
∑
s′∈S

∑
s∈S

Pr
[
Yit+1|Sit = s′

]
Pr
[
Yit|Sit = s′

]
Pr
[
Sit = s′|Sit−1 = s

]
Pr [Yit−1, Sit−1 = s]

=
∑
s′∈S

Pr
[
Yit+1|Sit = s′

]
Pr
[
Yit|Sit = s′

](∑
s∈S

Pr
[
Sit = s′|Sit−1 = s

]
Pr [Yit−1, Sit−1 = s]

)
=

∑
s∈S

Pr
[
Yit+1|Sit = s′

]
Pr
[
Yit|Sit = s′

]
Pr
[
Yit−1, Sit = s′

]
,

where the first equality follows from the law of total probability; the second equality decomposes

the joint distribution in terms of the corresponding conditional distributions; the third equality

37



makes use of the HMM assumption (equation (3)); the fourth equality rearranges the terms in the

summations; and the fifth equality follows from the law of total probability.

In matrix notation, equations (14)–(16) are equivalent to the equations (4)–(6) presented in the

main text.

B Appendix: The EM Algorithm

We now briefly explain the EM algorithm. To simplify notation, let θ represent the collection of

HMM parameters, i.e. θ is a list containing Pr [Si1], Pr [Sit+1|Sit] for t = 1, ..., T−1, and Pr [Yit|Sit],

for all t = 1, ..., T . Let y denote the entire panel of observations {yit}; similarly, let s denote values

of the hidden state for the entire panel. Define the log likelihood

l (θ) ≡ ln Pr [Y = y; θ] (17)

and let

J
(
θ, θ′

)
≡
∑
s

Pr
[
S = s|Y = y; θ′

]
ln

{
Pr [Y = y, S = s; θ ]

Pr [Y = y, S = s; θ′ ]

}
. (18)

The EM algorithm begins with an initial guess θ(1) then alternates between steps 1 and 2 below

for iterations j = 1, 2, . . . until convergence:

1. The expectation (E) step: compute the posteriors Pr
[
S|Y = y; θ(j)

]
2. The maximization (M) step: set θ(j+1) to arg maxθ J

(
θ, θ(j)

)
The EM algorithm produces a sequence of parameter estimates for which the log likelihood

l
(
θ(j)
)

is monotonically increasing. In problems where the likelihood function is non-concave, this

means the algorithm could converge to a local maximum.

A key aspect of the E-step of the EM algorithm is the Baum-Welch algorithm. It efficiently

calculates probabilities of the form

Pr [Sit|Yi1, Yi2, . . . , YiT ] ,

where t ≤ T . In words, the model allows us to condition on a long sequence of noisy land use

classifications at a given spatial point, and make probabilistic statements about the point’s true

land use at any period in that history. This is valuable if we are interested in land cover at a

specific point: the fact that we condition on the entire sequence Yi1, Yi2, . . . YiT can potentially

improve predictions when compared to classifiers that use only contemporaneous data to predict

38



land use. For instance, suppose we have 15 years of data at a particular spatial point, and that

the land use set is S = {forest,deforested}. Imagine that our land use prediction model outputs

Yit = forest for the first 10 years, followed by deforestation for a single year, followed by four years

of forest. Intuitively, if our classifier is reasonably accurate but imperfect, we would guess that the

isolated deforestation prediction is erroneous (because transitions are rare), and that the true land

use was forest for the entire 15 years. The HMM naturally accomplishes this sort of smoothing

by explicitly modeling the probability of errors in predicted land use, along with the transition

probabilities in the true underlying state – and with no heuristics nor ad hoc adjustments involved.

The amount of smoothing depends on the estimated parameters – in the edge cases where the off-

diagonals of Υ are zero, for example, we do not need any smoothing. Identifying the parameters

from observed data is therefore crucial in applications.

In our application, the M step of the EM algorithm has a closed-form solution. Denote the

posterior probabilities by πit[k] ≡ Pr[Sit = k|Y = y; θ(j)] and πit[k, l] ≡ Pr[Sit = k, Sit+1 = l|Y =

y; θ(j)]; these can be computed in an efficient forward-backward pass over time using the Baum-

Welch algorithm (i.e., the E step), and the calculations can be done in parallel across spatial points

given our assumption of spatial independence. The updated values of θ are

µ(j+1)[k] =

∑
i πi1[k]∑
i,s πi1[s]

P
(j+1)
t [k, l] =

∑
i πit[k, l]∑
i πit[k]

Υ(j+1)[y, k] =

∑
i,t:Yit=y

πit[k]∑
i,t πit[k]

(19)

See van Handel (2008) for a reference on the EM algorithm applied to discrete HMMs. Extending

the EM algorithm to deal with cases where Yit is missing at random (e.g. due to cloud cover) is

straightforward: in the M step update to Υ, the sums in both the numerator and denominator are

restricted to cases where Yit is non-missing. Modifying the Baum-Welch algorithm (i.e. the E step)

to deal with missingness-at-random in Yit is equally simple.
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