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Abstract

This paper investigates the role of long-term exposure to fine particulate pollution (PM 2.5) on
COVID-19 disparities. To isolate the effect of PM 2.5, we leverage pollution spillovers from neigh-
bouring counties not meeting Clean Air Act-set maximums on acceptable pollution levels. We find
a 1l-unit increase in cumulative exposure to PM 2.5 increased COVID-19 deaths by 43.5%. PM 2.5
exposure carries an additional race-specific mortality effect of 6.8%-16% for counties with a high pro-
portion of minority or Black residents. However, counties just above CAA pollution thresholds, which
had significant pollution reductions over time, saw a full standard deviation reduction in COVID-19
deaths per 100,000. Counties with higher representation of minority or Black residents saw reduc-
tions in deaths by 1.50 and 1.15 standard deviations, respectively. Nevertheless, these protective
effects insufficiently compensate for the still higher levels of pollution exposure in counties with more

Black or minority residents and the more consequential impact of pollution for these communities.
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1 Introduction

COVID-19 has revealed stark health inequalities by race, with Black and Hispanic populations consti-

tuting a disproportionate number of cases and deaths, particularly in the United States (US) (Garg et

[2020; [Millett et al. 2020). Black individuals represent 13% of the US population, and approximately

40% of COVID-19 cases overall (U.S. Census Bureau, [2020; (CDC, 2020). These disparities become more

apparent at the state and regional level. For instance, Black individuals make up around one-third of

the population in Georgia and Chicago, but over 70% of current COVID-19 hospitalizations (Gold et al.

2020} [Yancyl, [2020).

This disparity is linked to a complicated network of factors, including the disproportionate repre-

sentation of people of colour in essential work (Rho et al.l [2020)), higher rates of transit use (Anderson]
2016)), and muti-generational households (Schuetz, [2019) that all impact capacity to socially distance.

Factors leading to COVID-19 exacerbation post-infection include unequal insurance coverage and access

to care (Buchmueller et all, [2016)), distrust of the medical system (Kennedy et all [2007), and racial bias

in current medical care (Hall et all [2015; Hoffman et al| [2016)). One’s neighbourhood also likely bears

impact on both spread and exacerbation based on factors like housing density (Diez Rouxl [2001)), and

differential pollution exposure by race (Mikati et all [2018} |Tessum et al [2019). Recent work shows

a correlation between air pollution, specifically air particulate matter (PM), and COVID-19 deaths at

the local-level (Wu et al, [2020; [Setti et al., [2020; [Conticini et al., [2020; |Andree, [2020; [Travaglio et al.l

2020). However, no previous work has discerned the causal effect of long-term exposure to PM 2.5 on
COVID-19 exacerbation in the US, with its considerably higher caseloads, or the differential impact of
PM 2.5 by race. In this paper, we investigate the direct role of environmental pollution in exacerbating

COVID-19 mortality, particularly in minority and Black communities.

Disparities in access to clean air by income and race are well-known (Mikati et al 2018} |Tessum et

. Indeed, US data suggests that counties with the highest PM 2.5 levels have an above-average
representation of Black and minority residents (see|Figure 1]). Counties with the highest COVID-19 cases
and deaths loads also have disproportionate representation of Black and minority residents. Over the
short-term, rollbacks in enforcement by the Environmental Protection Agency (EPA) in the past three
months have directly increased pollution and COVID-19 cases and deaths. Fine particulate matter (PM

2.5), which includes ammonium, carbon, nitrates and sulphates, drives this in particular: an increase in

PM 2.5 by one ug/m? is correlated with a near doubling of COVID-19 death rates (Persico & Johnson)

2020). This effect size was larger for counties with a higher fraction of Black individuals. Nevertheless,
the causal role of cumulative exposure to pollution on current COVID-19 health burdens and its effects
by race, in terms of both differential exposure and differential effect, are not fully understood.

Our paper contributes to the growing literature on PM2.5 and COVID-19 in two main ways. First,

we causally identify the effect of long-term exposure to fine particulate pollution in COVID-19 cases and



mortality in the US, with a specific focus on Black and minority communities. Because PM 2.5 levels
(and exposure to them) are likely endogenous, to understand their causal role on COVID-19 adjacent
disparities, we employ an instrumental variables approach. To do this, we rely on two features of PM 2.5
and its regulation. First, PM 2.5 pollution regularly spills over across geographic boundaries. Second,
counties faced strict regulation of their pollution levels, primarily beginning in 2005 (Currie et al., |2020)).
A county was deemed in non-attainment by the Clear Air Act (CAA) if their PM 2.5 levels were above
15 pug/m?3. We combine these two features to estimate marginal changes in PM 2.5 brought about by
pollution spillovers from neighbouring counties using distance to closest neighbouring county in non-
attainment in 2005E| Using this instrument, we find that a 1 ug/m? increase in PM 2.5 resulted in a 41%
increase in cases and a 43.5% increase in deaths. This is an excess of 100 cases and 5 additional deaths
per 100,000, on average. When accounting for race, at baseline, a 1 unit increase in PM 2.5 increases
COVID-19 deaths by 26%. Counties with a higher than median proportion of Black residents then see
an additional 16% increase in COVID-19 mortality due to PM 2.5. Counties with a high proportion of
minority residents in general saw a 6.8% increase in COVID-19 deaths due to PM 2.5.

Our second contribution focuses on the fact that air pollution has substantially improved in recent
years, in large part due to the Clean Air Act itself (Aufthammer et al., |2009). Air quality changes have
been progressive in nature, with lower-income and racialized communities more likely to be deemed in
non-attainment and thus seeing more considerable pollution reductions (Bento et al., [2015; |Currie et
al., [2020). As evidenced in Appendix the racial gap in PM 2.5 levels substantially declined
across the PM 2.5 distribution from 2000 to 2016 for communities with a high proportion of minority or
Black residents. This decline was especially large for those in non-attainment, whose states are required
to draft detailed plans for pollution abatement and risk losing federal funding for air pollution control
programsﬂ We exploit this strict threshold in a regression discontinuity design. Consistent with prior
literature (i.e., Bento et al., |2015} [Currie et al. 2020), we first demonstrate that the CAA regulation
had an abatement effect. For counties just above the non-attainment threshold of 15 ug/m? in 2004,
PM 2.5 levels in 2016 were over 2% lower on average, with the strongest results in counties with large
minority populations. Next, we consider whether CAA-related air pollution reductions resulted in a
downstream protective effect on current COVID-19 mortality. We compare COVID-19 outcomes for
counties around the non-attainment cut-off in 2004 (the year prior to enforcement) and estimate that
being in non-attainment resulted in 381 fewer cases and 32 fewer deaths per 100,000. For counties with a
high proportion of minority or Black residents, the protective effect increased to 47 and 37 fewer deaths
per 100,000, respectively.

With well-established literature showing links between pollution and respiratory health, it is not

unexpected that long-term pollution exposure also increased COVID-19 health burdens. This relationship

IWe show that our results are robust to multiple forms of this instrument in Appendix [Table 5|
2A comprehensive review of the Clean Air Act can be found in [Currie & Walker| (2019).



is not isolated to the US. The most closely related paper to ours estimates the causal impact of multiple
types of pollution on COVID-19 in the Netherlands and finds similar results . That our
results show a more potent effect of PM 2.5 for US counties with a high proportion of Black or minority
residents demonstrates how historical inequities in access to clean air compound long term, especially in

the face of a global pandemic. This paper fills an identified evidence gap on racial disparities in COVID-

19 outcomes beyond underlying health conditions (Williamson et al. 2020). The protective effect of

pollution abatement long-term bolsters our understanding of environmental policy as both a health
and an economic investment. The impact of pollution abatement policies to reduce health disparities,
especially in Black or minority communities, underlines the importance of equity-improving environment

policy to reduce race-based health inequalities.

2 Environmental Factors in COVID-19 Exacerbation

Prior to COVID-19, a robust literature has linked environmental pollution to health outcomes. Children

in early life and older adults are the most at risk (Currie & Neidell, 2005} [Currie et al. [2009} [Currie|

[& Walker], 2011} [Schlenker & Walker], 2016} Bishop et al., [2018} [Deryugina et all [2019} [Ward, [2015)),

with strong evidence that pollution reductions lead to reductions in asthma-related hospitalizations

and attacksEl For adults over the age of 65 in particular, hospitalization for asthma, respiratory and

heart-related problems increased due to pollution from airport congestion (Schlenker & Walker] |2016).

Recent estimates also found that single day increases in PM 2.5 based on changes in wind direction
increased emergency room visits, hospitalizations and excess mortality for older US adults (Deryugina et

2019). There is also evidence to suggest that pollution exposure directly increases cardio-respiratory

issues (Newell et al., [2017) and diabetes (Bowe et all, 2018). Families from lower socioeconomic status

are at particular risk, with both increased pollution exposure and more extensive negative outcomes

conditional on exposure level (Neidell, 2004).

Recent work has shown a strong correlation between historical and recent pollution on current

COVID-19 infection rates and deaths in the United States. In Italy, provinces with higher pollution

saw higher infection rates and deaths (Setti et al. 2020; Conticini et al. 2020). PM 2.5 levels in 2016

also appear to have a significant impact on current confirmed caseloads and COVID-19 deaths in the

US (Wu et al.| [2020). These PM 2.5 effects compound by race and income (Persico & Johnson, [2020)).

Indeed, recent U.S. data shows higher rates of COVID-19 cases and deaths across the PM 2.5 distribution

for high proportion minority or Black resident counties. We demonstrate in appendix that the

3Pollution reductions in California were found to reduce asthma-related hospitalization for children by 5-14%, for a
total of $5.2 million in savings for 1 year (Neidell, [2004). Congestion taxes in New Jersey also helped to reduce acute
asthma attacks (Simeonova et al.,[2018)). Similar results have also been found in the Canadian context, leveraging variation
in pollution exposure from changing wind patterns (Ward, [2015). This effect may even begin in-utero, with pollution linked
to low birth weight and pre-maturity (Sun et al.|7 2016) and resulting lung issues long term (Vollsaeter et al. [2013)). Going
in the opposite direction, children’s hospitalizations for respiratory issues increased by 11% on heavy traffic congestion days
in Germany due to public transit strikes (Bauernschuster et al., |2017).




race gap in COVID-19 deaths appears to grow as we move along the PM 2.5 distribution. However,
there are many endogenous factors at play in the relationship between pollution and COVID-19.

Firstly, many COVID-19 infections are based on capacity (or lack thereof) to socially distance, with

more disadvantaged people potentially less able to evade exposure (Currie et al.l 2020; Bhala et al., 2020;

[Papageorge et al. [2020). Essential work requirements, use of public transportation, and housing quality

and density will all prevent risk avoidance for COVID-19 (Platt & Warwick} 2020). Persons of colour are
more likely to be in an essential service roles and unable to work from home (Rho et al., 2020), making

them more susceptible to transmission (Lewandowski, 2020). Higher public transportation ridership

rates for communities of colour will also impact rates of COVID-19 infections (Anderson, 2016; Knittel

|& Ozaltun, 2020; McLaren, 2020). Poverty and density are additional risk factors for COVID-19 spread

and exacerbation (Chin et al., 2020).

At the neighbourhood level, the role of segregation and redlining — where predominately Black neigh-
bourhoods were systematically excluded from mortgage lending and other financial and governmental

services — significantly impacted housing values and the current economic and health status of Black

communities (McClure et all, 2019; [Williams & Cooper}, [2020). Chronic conditions like asthma have

been linked to redlining, based on the proximity of highways and polluting industries (Nardone et al.

2020). Redlining also contributed to a decline in home-ownership rates, which may approximate stable

housing, wealth, and the ability to control who and how many persons are in your living space (Schuet]
2019). Directly, this will also be correlated with access to clean water for hand washing and inside air

and other pollutantsEI At the highest level, the location of residence is not exogenous, with significant

segregation and corresponding disparities in these confounding variables (Williams & Cooper}, [2020)).

With a confirmed COVID-19 case, potential race-based drivers of COVID-19 death disparities include

health care access, whether based on insurance rates (Buchmueller et al.l 2016} |Sohnl, 2017)), avoidance

due to distrust (Kennedy et all 2007)), or racial bias in care (Hoffman et al., |2016). These factors will

have an impact on both one’s ability to treat underlying conditions and pose barriers to seeking early
COVID-19 testing and treatment in the United States. Prevalence of co-morbidities like hypertension,
diabetes, cardiovascular disease have all been cited as underlying risk factors for COVID-19
, with the potential for differing effects of these conditions on COVID-19 by ethnicity

2020). However, racial differences in these co-morbidities fail to explain a large part of the racial mortality

gap (Williamson et all [2020). Black patients with COVID-19 are no more likely, for example, to have

diabetes, heart disease, or to be classified as obese than non-Hispanic White patients with COVID-19

(Gold et al.,|2020). Due to these numerous confounding variables, identification of a causal PM 2.5 effect

will isolate the precise role of cumulative PM 2.5 levels on current COVID-19 health burdens.

The CAA provides a useful policy intervention to help isolate the marginal effect of PM 2.5 on

4The virality of COVID-19 indoors in homes has been noted by (2020).




COVID-19 outcomes, and understand the role of the policy itself on current COVID-19 health burdens.
While initially established in 1963, the CAA placed more stringent regulations around ozone and PM 2.5
in 1997. These rules defined different counties as non-attainment zones as per the National Ambient Air
Quality Standards (NAAQS) if they had a measure of a PM 2.5 level above 15 ug/m?. Non-attainment
status is determined each year but was only enforced by the Environmental Protection Agency (EPA)
after 2004 (Currie & Walker} [2019). Counties who were given non-attainment status risked losing federal
funding if they failed to reduce their future PM 2.5 levels. Previous work has shown us that the CAA
reductions were progressive in nature, in that they benefited lower-income and racialized communities
to a larger degree (Auffhammer et al., 2009; Bento et al. 2015; |Currie et al., [2020). Knowing this, we
firstly investigate the role of neighbouring county non-attainment on own-county PM 2.5 levels. We focus
on neighbouring counties in non-attainment status given that PM 2.5 can easily cross county borders
to raise the PM 2.5 level of an individual county. Secondly, we estimate how this historical abatement

policy impacted the current rate of COVID-19 cases and deaths at the county-level.

3 Data

To determine the effect of PM 2.5 and CAA regulations on current COVID-19 health burdens, we require
three main data components. We first obtain data on mortality and other health outcomes for both our
main analysis and placebo tests. We use daily cumulative COVID-19 cases and deaths by US county
from the Johns Hopkins University Center for Systems Science and Engineering Coronavirus Resource
Center. We use the most up-to-date case and death records, at which point the United States had over
1.4 million COVID-19 cases and over 87,000 deathsﬂ

The second main component of our data includes measures of air pollution levels, and the county
linkages necessary to create our instrument. We use yearly county PM 2.5 levels from 2000 to 2016,
along with summer and winter maximum temperature and humidity readings from [Van Donkelaar et
al| (2019). These data use satellite measurements of pollution, combined with statistical models using
local characteristics, to produce more accurate, and spatially complete measures of PM2.5 chemical
components.

Leveraging these PM2.5 measures, we next determine areas that were non-attainment zones as per the
NAAQS-set PM 2.5 threshold of 15 ug/m? or higherﬂ We generate an indicator variable for being at or
above the NAAQS threshold from 2000 to 2016. There were 208 counties deemed either non-attainment
or in maintenance status in 1997. This total fell to 86 by 2006, and 18 by 2012 (Appendix .

A crucial part of our identification strategy rests on identifying neighbouring counties and determining

whether they met the EPA’s criteria for non-attainment status. To construct our instrumental variable

5Data was last accessed May 16, 2020.
6Tn December 2012, the NAAQS was lowered to a threshold of 12 pg/m3, but as we rely only on the thresholds as they
were in 2004 and 2005 this does not impact our analysis.



on distance to nearest neighbouring county in non-attainment, we use the National Bureau of Economic
Research (NBER) county distance database on the universe of all US counties. This data set contains
measures of distance from the centroid of each county to the centroids of all other counties. For each
county in our sample, we first measure if they were in non-attainment based on their 2005 PM 2.5 levels.
We then select the closest county in non-attainment for all counties. The average distance to nearest
neighbour in non-attainment is 293 miles. We generate alternative instrumental variables based on the
inverse distance to nearest neighbour in non-attainment, the average PM 2.5 level across all neighbours
within a 25-mile radius, and the proportion of all neighbours in non-attainment within a 25-mile radius.
All instruments are calculated based on 2005 PM 2.5 values. We compare first and second stage results
for each of these instruments in Appendix Table

Finally, to control for confounding variables, we incorporate 2016 US Census data on county-level
population, percent of the population over the age of 65, density, proportion of residents living under
the poverty line, race statistics, including proportion of black, Hispanic, non-white or minority residents,
and white residents. We calculate a measure of remoteness for a given county based on the number of
other counties within a 25-mile radius. We additionally include controls for median household income,
house value, percent owner-occupied, and the proportion of residents with only a high school degree. We
exploit the 2018 5-year American Community Survey to measure public transit use to work. We include
proportion of residents uninsured, as measured in 2010, from the Opportunity Insights county database
and hospital beds per capita from the Homeland Infrastructure Foundation-Level Data. We incorporate
average daily social distancing rate from Uncast to control for endogenous avoidance behaviours for
at-risk populations (Uncast), [2020). Interestingly, early research on COVID-19 exacerbation suggests
asthma and chronic obstructive pulmonary disorder (COPD) are not actually significant risk factors
for COVID-19 exacerbation (Petrilli et all |2020). Persons with underlying respiratory conditions are,
however, more likely to practice avoidance behaviour in the face of risk (Neidell, |2004; [Jankel |2014]).
Thus, the limited connection between asthma and COPD to COVID-19 exacerbation may be driven
by higher rates of social distancing for persons with underlying respiratory or other conditions. We
additionally incorporate days since any social distancing order, based on the COVID-19 US state policy

database (CUSP) (Raifman et al., [2020]). A value of zero is applied if there were not orders in place.

4 Methods

4.1 PM 2.5 and COVID-19

For estimating the effect of the PM 2.5 on current COVID-19 health burdens, our preferred OLS speci-
fication would indicate:

Yri,s = ﬁO + BlPM2~5i,s + pXi,s + s + €i,s (]-)



where Y; ; measures the log of confirmed COVID-19 cases or deaths in county i and state s. The
effect of PM 2.5 levels in 2016 is measured through ;. The matrix X; ; measures county-level control
variables including average temperature and humidity, social distancing rate, days since first case and
social distancing orders, percent of county living below the poverty line, the logs of median household
income and house value, percent owner occupied, average education level, percent uninsured, hospital
beds per capita, racial demographics, percent of population over age 65, county remoteness, share of
workers commuting using public transit, population and density. State fixed effects are incorporated in
the term 7, and we use population weighting. We cluster standard errors at the county-level.

PM 2.5 levels are, however, not exogenous. Counties in with high PM 2.5 levels likely differ substan-
tially from those with low PM 2.5 levels. presents differences in key control variables by whether
or not a county is in non-attainment. Counties in non-attainment have higher COVID-19 case and death
rates, higher population and density, higher income, lower poverty, and fewer residents with only a high
school education. They also have a higher proportion of Black residents. Counties with the highest
PM 2.5 levels in general have above average representation of Black and minority residents .
Aside from these observable factors, OLS estimates may be biased upwards if there are unmeasured or
unobservable factors driving both PM 2.5 levels and COVID-19 health burdens. These could include
governmental efficiency, types of local industry, commuting patterns, and the work available in given
counties. To account for these factors we employ an instrumental variable strategy based on distance to
nearest neighbouring county in non-attainment in 2005E]

We argue that the distance to the nearest non-attaining neighbour is a reliable instrument for several
reasons. First, because air pollution is not confined to geographic boundaries, pollution in one county can
spill over to its neighbour, and the ease with which it does so is mediated by distance. Indeed, evidence
shows that even Canadian air pollution levels increase based on cross-border pollution wind drift from
U.S jurisdictions, which have more lenient standards (Ward, 2015). We therefore expect that the shorter
the distance to the nearest county in non-attainment, the more local PM 2.5 levels will be affected.
Second, because we leverage non-attainment status in 2005, we avoid issues surrounding contemporaneous
violations of the exclusion restriction. If a neighbouring county or entire state experiences a budget crisis
that affects both their pollution abatement programs and their health care provision, for example, we
might be concerned about a violation of the exclusion restriction. However, because we leverage non-
attainment status in 2005 and include state fixed effects across all specifications, this is less of a concern.
Nevertheless, we may still be concerned that non-attainment of a neighbouring county was somehow
correlated with future health in a region (other than through PM 2.5). If this was the case, we could

expect to also see effects on other non-COVID-19 causes of mortality that are not plausibly driven by

7In Appendix [Table 5| we review alternative instruments based on the inverse distance to nearest neighbour in non-
attainment, the mean PM 2.5 levels for neighbouring counties within 25 miles and the proportion of neighbouring counties
within 25 miles in non-attainment prior to 2005.



pollution. We run a series of placebo tests showing that this is not the case. Finally, to the extent that
local pollution is also driven by counties which are nearby but not above the non-attainment cutoff, our
choice of specification for the instrument would underestimate the impact of neighbours’ pollution, which
we argue would subsequently bias our estimates downwards. We demonstrate in appendix that
our results are robust to using mean PM 2.5 levels of all nearest contiguous neighbours as an instrument.
Our choice of distance to the nearest non-attainment neighbour as our main instrument of choice provides
a more conservative point estimates of COVID-19 effects.

Key variable differences between counties by neighbouring county non-attainment are also shown in
We split these into two groups, whether the next nearest county in non-attainment was above
or below the median of this measure. Counties with close neighbours in non-attainment do still have
larger, more dense populations, and more neighbouring counties within a 25-mile radius. However, the
differences in these and most other variables fall compared to own-county non-attainment differences.
Those cities with close neighbours in non-attainment have higher rates of poverty and persons with only
a high school-level education and higher proportions of Black residents. Those counties without a nearby
neighbour in non-attainment have comparably higher Hispanic populations. These results demonstrate
the own-non-attainment and distance to neighbouring county in non-attainment do not proxy for the
same characteristics.

We provide evidence to support our instrument’s validity in the last columns of The 3
column presents coefficients from regressing our instrument on our outcomes, our PM 2.5 measures, and
our main covariates. We note that our instrument predicts 2005 PM 2.5 levels, as is necessary for a
first stage. After controlling for 2005 PM 2.5 levels, our instrument still minimally predicts deaths and
population density, but no other control variables. When we perform the same exercise but control for
2017 levels of all covariates to predict log-deaths and population density, we retain a 0.1% increase in
deaths due to our instrument, but this is no longer significant at traditional levels. Similarly, a 1-mile
increase in distance to nearest neighbour in non-attainment has not effect on population density (the
estimated coefficient is 0.017 (0.02)).

Using this instrument, our first stage in a two-stage least squares design is then:

PM2.51'75 = p + OllDZ‘Stiys + pXi,s —+ T + €i,s (2)

Our instrumental variable is included in the equation as Dist; ;. This is used to predict PM2.5; ; in 2016.
Control variables are analogous to Using the predicted value of PM 2.5 induced by distance
to nearest neighbouring county in non-attainment in generates a two-stage least squares
estimate of PM 2.5 on COVID-19 outcomes. We then incorporate an interaction term between a race

indicator and PM 2.5 levels to test for differences in PM 2.5 effects by county-level racial demographics.



These race indicators include whether a county has an above median proportion of minority residents
and whether a county has an above median proportion of Black residents. Differences in PM 2.5 effects
by these demographics will provide a first indication of whether pollution impacts communities of colour

differently.

4.2 Protective Effects of non-attainment

To understand the relationship between historical pollution abatement policies and current COVID-19
exacerbation we exploit the CAA non-attainment threshold of 15 pg/m? to assess discontinuous changes
in COVID-19 deaths based on being on the cusp of non-attainment directly before enforcement began
in 2005.

We first demonstrate the effectiveness of the CAA threshold in 2004 in reducing future PM 2.5

emissions for counties just above the cut-off. Our estimating equation is:
PM2.539'% = ag + an I[PM2.5; s > 15] + g(PM2.5; ) + pX; s + 75 + €5 (3)

We next demonstrate that this reduction in PM.25 emissions around the cutoff also affected deaths; our

sharp regression discontinuity takes the form:

Di,s = Qp + all[PMZ.Si,S Z 15} + 9(PM251,5) + pXi,s + Ts + Gi,s (4)

Our outcome variable of interest D; s is log COVID-19 cases or deaths in county 7 in state s. The
local average treatment (LATE) effect of being in non-attainment in 2004 is measured through ay. We
use 2004 PM 2.5 levels to assess own attainment status in order to account for potential anticipatory
county-level PM 2.5 changes in response to known policy changes occurring in 2005. We note that
a county’s ability to adjust their ambient PM 2.5 levels with precision to fall on either one or the
other side of the cutoff are very limited, particularly given the important role of neighbouring county
emissionsﬂ We include an operator g(PM2.5) to allow for differing effects of PM 2.5 above and below
the attainment threshold. To maintain parsimony given the limited effective sample sizes utilized within
the regression discontinuity bandwidth we include a limited set of county-level controls, including level
of social distancing, remoteness, proportion of black and Hispanic residents, and proportion using public
transit. State fixed effects are included through 7,. We employ stratified analysis by whether a county
had above median representation of minority or Black residents to estimate the differential impact of

this policy for communities of colour.

8Indeed, [McCrary| (2008) sorting test results in Appendix [Figure 4] with p-values of 0.24 indicate that this is not a
large cause for concern. We also show in appendix that there are no discontinuous jumps in key control variables,
including daily distance travelled during social distancing time for a given county.



5 Results

5.1 PM 2.5 and COVID-19 Outcomes

We present baseline estimation results in A naive OLS specification, including only state fixed
effects and temperature controls in column (1) estimates that an increase in cumulative exposure to
PM 2.5 by 1 ug/m?® approximately doubles the COVID-19 death and cases count. On average, this
is 245 cases and 11 additional deaths per 100,000. Conditional on confirmed case loads, this baseline
specification still finds a 15% increase in deaths. When accounting for census socioeconomic variables in
column (2), we see a large decrease in effect sizes. Next we account for social distancing practices and
policies and racial demographics in columns (3) and (4), and see another sizable drop in effect sizes for
deaths and cases. These changes indicate an upward bias in estimated PM 2.5 effects driven by the fact
that counties with high levels of PM 2.5 are disproportionately minority or Black (consistent with our
findings in . Column (4) additionally controls for a measure of public transit use to work. To
the extent that we are concerned about commuting patterns as a mechanism for the disproportionate
spread of COVID-19 which may also simultaneously affect PM 2.5 levels, we can directly control for the
proportion of workers who commute to work primarily using public transitﬂ Doing so negligibly changes
our point estimate.

To control for remaining unobservable selection that might increase both PM 2.5 levels and COVID-
19 outcomes, we implement an IV strategy in column (5), instrumenting PM 2.5 with distance to nearest
neighbouring county in non-attainment in 2005. First stage and reduced form results, as well as weak
instrument and Wu-Hausman testing for IV estimation are found in Appendix We argue our
instrument acts only through own-county PM 2.5 in 2005 to impact cumulative PM 2.5 and, eventually,
COVID-19 outcomes as, in our instrument is not predictive of other county-level characteristics.
Our IV estimates demonstrate that an increase in cumulative PM 2.5 exposure by 1 pg/m? increases
the number of COVID-19 deaths by 43.5%. This is an additional 4 COVID-19 deaths per 100,000, on
average. From Panel B, our results indicate an increase in case load by 41%, or 100 cases per 100,000,
on average.

Incorporating an interaction term between PM 2.5 and race allows for differential impact of PM 2.5
by whether a county had a higher than median proportion of Black or minority residents. We see a
particularly strong differential impact of PM 2.5 for counties with a high proportion of Black residents.
At baseline, a 1 unit increase in PM 2.5 increases COVID-19 deaths by 26%. Counties with a higher than
median proportion of Black residents then see an additional 16% increase in deaths. This differential is

less stark for a general measure of minority residents, where the incremental effect of PM 2.5 by race is

9We can additionally investigate the effect of public transit use separately for Black and white residents for a subset
of just over 2500 counties. Appendix demonstrates that the results remain largely unchanged when doing this,
suggesting that patterns of transit use that may differ by race are not driving underlying COVID or PM2.5 disparities.
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6.8%. When accounting for differential effect of PM 2.5 on COVID-19 cases, similar baseline effect and
incremental effects of PM 2.5 by race are present, though slightly lower —suggesting PM 2.5 impacts both
spread and exacerbation beyond spread. Counties with a high proportion of Black residents again see a
higher incremental effect of PM 2.5 over counties with a high proportion of minority residents in general.
Conditioning the mortality rate on county-level case rate, we see that counties with a high proportion
of Black residents specifically see an additional 2.8% increase in deaths conditional on infection rates.
Minority counties do not see the same exacerbation effect.

To ensure that our results were not driven by the outlying case of New York state, which had the
highest number of COVID-19 cases and deaths in the US, we also run this analysis excluding New York
and it’s 62 counties. Our results are robust to this sample speciﬁcationﬂ Another potential cause for
concern with this estimation strategy may be that neighbouring non-attainment status is also correlated
with, in some way, a county’s ability to effectively administer medical care, or with a less health-conscious
population. If this was the case we would expect to find mortality effects for causes which are otherwise
not directly affected by PM 2.5 levels. To verify that this is not the case, presents a series of
placebo tests using county-level data on 2018 annual mortality from infectious diseases, external causes
and diseases of the circulatory system from the Center for Disease Control (CDC)H

In panel A, we present baseline placebo tests for these three cause of death. Because of small-sample
suppression in the publicly available mortality data, the CDC does not publish death counts smaller than
10. In order to be conservative, we round all suppressed counties up to 10 deaths in Panel AE Columns
(1) and (2) present the reduced form and IV results for logged infectious disease deaths. Columns (3) and
(4) present results for logged external causes of death, and columns (5) and (6) show results for logged
deaths from circulatory conditions. Our instrument does not appear to be predictive of increased deaths
from our placebo causes. Panel B limits our sample to counties which had more than 10 deaths each year,
and for whom we do not have data suppression issues. Under this sample restriction, our instrument still
does not predict effects for infections disease, external or circulatory disease deaths. Appendix
further extends these placebo tests to measures of death due to endocrine and digestive diseases, where
we again find no effect of PM 2.5 on mortality. We interpret these results to suggest that our main results
are not driven by underlying relationships between PM 2.5 levels and a county’s health care provision

or other co-morbidities.

10Results are presented in Appendix

112018 is the most recent publicly available year of data for these causes of death. External causes are grouped broadly
into: transport accidents, falls, exposure to inanimate mechanical forces, exposure to animate mechanical forces, accidental
drowning and submersion, other accidental threats to breathing, exposure to electric currents, radiation, and extreme
ambient air temperature and pressure, exposure to smoke fire and flames, contact with heat and hot substances, contact with
venomous animals and plants, exposure to forces of nature, accidental poisonings by and exposure to noxious substances,
overexertion, travel and privation, accidental exposure to other and unspecified factors, intentional self-harm, assault, event
of undetermined intent, legal intervention and operations of war, and complications of medical and surgical care.

12 Although in principal the true number of deaths in each of these cases can range between 0 and 10.

11



5.2 Distributional Racial Differences in PM 2.5 and COVID-19

Knowing the effect of PM 2.5 by race likely differs across the distribution of COVID-19 case burdens,
we estimate the PM 2.5 effect by race across the distribution of COVID-19 deaths using a Re-centered

Influence Function (RIF) regression. We first estimate raw racial gaps in COVID-19 deaths via:

Di,s =a+ ﬁMi,s + Vi (5)

COVID-19 deaths D; ; are estimated using a RIF for each quantile of the COVID-19 death distribution.
Here, M, , is an indicator for a county having a Black (minority) population greater than the U.S.
median. The raw racial gap in COVID-19 deaths is shown first in This plot suggests that the
racial gap in COVID-19 deaths for both high proportion Black and minority counties is concentrated
in very high caseload counties. For counties with a high proportion of Black (minority) residents in the
95th_percentile of COVID-19 deaths, we estimate 127 (126) excess deaths and 200 (265) cumulative excess
deaths due to race. We next estimate our fully specified model, controlling for PM 2.5 and county-level
socioeconomic factors like poverty, median household income, education level, social distancing practices,
and all other main control variables. Controlling for all confounding factors, a 1 unit increase in PM
2.5 lead to 52 additional deaths at the 95"-percentile of COVID-19 deaths and 92 cumulative deaths
across the distribution in either figure. Finally, interacting this PM 2.5 effect by an indicator for Black
(minority), we find a 1 unit increase in PM 2.5 leads to an additional 42 (32) excess deaths for counties
in the 95" percentile of COVID-19 deaths and who have a higher representation of Black (minority)
residents. Cumulatively, this is 65 (47) excess deaths due to PM 2.5 in counties with a high proportion

of Black (minority) residents.

5.3 Protective Effect of non-attainment

We next present estimates of long-term effects of non-attainment status, as deemed by the CAA, on
COVID-19 outcomes. We can see in Appendix that the racial gap in PM 2.5 levels fell signifi-
cantly from 2000 and 2016 across the PM 2.5 distributionE When we plot coefficients from county non-
attainment status before 2005 interacted with racial demographic indicators, we see that non-attainment
appears to play a strong role in improving the racial gap in PM 2.5 over time. This result is especially
so for high PM 2.5 communities.

Because treated counties risked losing federal funding if they did not reduce future PM 2.5 levels,
we hypothesize that counties just above the non-attainment threshold in 2004 (the year prior to strict

enforcement) would have lower PM 2.5 levels in 2016. Results in Panel A of [Table 4| support this

13Panel A shows the estimated coefficients produced from a RIF regression of minority status across the distribution of
PM 2.5 in both 2000 and 2016. Panel B plots the same coefficients but using an indicator for a high proportion of Black
residents.
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hypothesis. Whether or not we condition on covariates (columns 2 and 1, respectively), we find a
negative LATE of non-attainment status, suggesting a reduction in PM 2.5 levels by 2016 (although
these results are not significant at conventional levels). We find the largest effect when we restrict our
sample to counties with an above-median representation of minority groups in column (3). Those counties
just above the threshold had, on average, 0.39 lower PM2.5 ug/m?, consistent with findings in |Currie et
al| (2020)). Finally, in column (4), we restrict the sample to counties with above-median proportions of
Black residents. We find similar results in above-median Black communities, although these results are
smaller than the estimates for minority status and not precisely estimatedE

Panel B exploits this same threshold rule to investigate the effects of non-attainment on deaths per
100,000. We find a LATE of approximately 28.5 fewer deaths per 100,000 in non-attainment counties,
relative to counties just below the threshold. This effect increases to 47 fewer deaths per 100,000 in
counties with an above-median representation of minority residents (column 3), and 37 fewer deaths in
counties with an above-median proportion of Black residents. Importantly, while communities of colour
appear to see the most significant benefit from the protective effects of past non-attainment, we note
that these are also the communities most negatively impacted by PM 2.5 in the first place. While non-
attainment benefited these communities, it was not enough to offset their disproportionate representation

among high-pollution and high COVID-19 regions.

6 Conclusion

COVID-19 has shone a spotlight on already present economic and health inequalities. This study in-
vestigates the role of historical inequities in air pollutants, and the policies employed to combat current
inequities in COVID-19 morbidity and mortality for communities of colour. Using an IV approach, we
first estimated the precise effect of PM 2.5 on COVID-19 caseloads and deaths outside of the many
potential confounding factors. Our results demonstrate a near 50% increase in both cases and deaths
with a 1 unit increase in cumulative PM 2.5 exposure. Nevertheless, we find that 15 to 39% of this effect
is born specifically by counties with a higher representation of minority or Black residents. While not
observable at the county level, if this effect is predominantly driven by the health outcomes of minority
and Black residents, we expect the effect size to be larger. Using distributional analysis, we find much
larger effects of PM 2.5 and PM 2.5 by race for counties with very high COVID-19 caseloads.

We next causally identify differences in COVID-19 outcomes based on being in non-attainment of the
EPA PM 2.5 standards. We find being in non-attainment reduced deaths per 100,000 by a full standard

deviation. For high minority counties, this was nearly a 1.5 standard deviation reduction. For counties

14We note that non-attainment for counties with a high proportion of Black residents has a more substantial impact
on PM 2.5 reductions compared to counties below the non-attainment line and with a minority of Black residents, over a
within-group comparison of non-attainment status. We estimate a decline in PM 2.5 (2016) of -0.991 (0.244) for higher
proportion black counties just above the non-attainment threshold compared to lower proportion black counties just below
the threshold.
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with a high proportion of Black residents, this was a reduction by 1.15 standard deviations. We find
similar results for cases. To the best of our knowledge, this paper is the first to identify protective effects
of the CAA on current COVID-19 health outcomes.

These results underline how environmental inequities give rise to downstream health inequalities and
the role of environmental policies in reducing both. The significant protective effect of the CAA on reduc-
ing COVID-19 cases and lives lost due to COVID-19 also suggests long-term cost-savings. Yet, pollution
effects, underlying co-morbidities and many of the socioeconomic factors included in this analysis cannot
account for the entirety of the racial gap in COVID-19 outcomes. Structural racial inequities in access
to quality health care (Gee & Ford, 2011} [Bailey et al., 2017; Bhala et all [2020) and direct racism likely
also contribute (Krieger, [2014; Paradies et al.| [2015). This work can inform targeted resource allocation
for community-level interventions for the most at risk based on current pollution levels, but also other
confounding health inequities. The implications of this work also go beyond the pandemic period, as
these communities will likely experience widened health and economic gaps after COVID-19 has come

under control. Targeted pollution abatement policy-making would help to mitigate these gaps long term.

14



References

Anderson, M. (2016, apr). Who relies on public transit in the U.S. — Pew Research Center. Retrieved
2020-06-19, from https://www.pewresearch.org/fact-tank/2016/04/07/who-relies-on-public
-transit-in-the-u-s/

Andree, B. P. J. (2020). Incidence of covid-19 and connections with air pollution exposure: Fuvidence
from the netherlands. The World Bank.

Auffhammer, M., Bento, A. M., & Lowe, S. E. (2009). Measuring the effects of the clean air act
amendments on ambient pm10 concentrations: The critical importance of a spatially disaggregated
analysis. Journal of Environmental Economics and Management, 58 (1), 15-26.

Bailey, Z. D., Krieger, N., Agénor, M., Graves, J., Linos, N., & Bassett, M. T. (2017). Structural racism
and health inequities in the usa: evidence and interventions. The Lancet, 389(10077), 1453-1463.
Bauernschuster, S., Hener, T., & Rainer, H. (2017). When labor disputes bring cities to a standstill: The
impact of public transit strikes on traffic, accidents, air pollution, and health. American Economic

Journal: Economic Policy, 9(1), 1-37.

Bento, A., Freedman, M., & Lang, C. (2015). Who benefits from environmental regulation? evidence
from the clean air act amendments. Review of Economics and Statistics, 97(3), 610-622.

Bhala, N., Curry, G., Martineau, A. R., Agyemang, C., & Bhopal, R. (2020). Sharpening the global
focus on ethnicity and race in the time of covid-19. The Lancet, 395(10238), 1673-1676.

Bishop, K. C., Ketcham, J. D., & Kuminoff, N. V. (2018). Hazed and confused: the effect of air pollution
on dementia (Tech. Rep.). National Bureau of Economic Research.

Bowe, B., Xie, Y., Li, T., Yan, Y., Xian, H., & Al-Aly, Z. (2018). The 2016 global and national burden of
diabetes mellitus attributable to pm2- 5 air pollution. The Lancet Planetary Health, 2(7), e301-e312.

Buchmueller, T. C., Levinson, Z. M., Levy, H. G., & Wolfe, B. L. (2016). Effect of the affordable care
act on racial and ethnic disparities in health insurance coverage. American journal of public health,
106(8), 1416-1421.

CDC. (2020). COVID-19 Hospitalizations (Tech. Rep.). Centers for Disease Control. Retrieved from
https://gis.cdc.gov/grasp/COVIDNet/COVID19{_}5.html

Chin, T., Kahn, R., Li, R., Chen, J. T., Krieger, N., Buckee, C. O., ... Kiang, M. V. (2020). Us
county-level characteristics to inform equitable covid-19 response. medRziv.

Cole, M., Ozgen, C., & Strobl, E. (2020). Air pollution exposure and covid-19 (Tech. Rep.).

Conticini, E., Frediani, B., & Caro, D. (2020). Can atmospheric pollution be considered a co-factor in
extremely high level of sars-cov-2 lethality in northern italy? Environmental pollution, 114465.

Currie, J., & Neidell, M. (2005). Air pollution and infant health: what can we learn from california’s
recent experience? The Quarterly Journal of Economics, 120(3), 1003-1030.

Currie, J., Neidell, M., & Schmieder, J. F. (2009). Air pollution and infant health: Lessons from new
jersey. Journal of health economics, 28(3), 688-703.

Currie, J., Voorheis, J., & Walker, R. (2020). What caused racial disparities in particulate exposure
to fall? new evidence from the clean air act and satellite-based measures of air quality (Tech. Rep.).
National Bureau of Economic Research.

Currie, J., & Walker, R. (2011). Traffic congestion and infant health: Evidence from e-zpass. American
Economic Journal: Applied Economics, 3(1), 65-90.

Currie, J., & Walker, R. (2019). What do economists have to say about the clean air act 50 years after
the establishment of the environmental protection agency? Journal of Economic Perspectives, 33(4),
3-26.

Deryugina, T., Heutel, G., Miller, N. H., Molitor, D., & Reif, J. (2019). The mortality and medical
costs of air pollution: Evidence from changes in wind direction. American Economic Review, 109(12),
4178-4219.

Diez Roux, A. V. (2001). Investigating neighborhood and area effects on health. American journal of
public health, 91(11), 1783-1789.

Garg, S., Kim, L., Whitaker, M., O’Halloran, A., Cummings, C., Holstein, R., ... Fry, A. (2020,
apr). Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed
Coronavirus Disease 2019 — COVID-NET, 14 States, March 1-30, 2020. MMWR. Morb. Mortal.
Wkly. Rep., 69(15), 458-464. Retrieved from http://www.cdc.gov/mmwr/volumes/69/wr/mm6915e3
.htm?s{_}cid=mm6915e3{_}w doi: 10.15585/mmwr.mm6915e3

Gee, G. C., & Ford, C. L. (2011). Structural racism and health inequities: Old issues, new directions].
Du Bois review: social science research on race, 8(1), 115.

Gold, J. A. W., Wong, K. K., Szablewski, C. M., Patel, P. R., Rossow, J., da Silva, J., ... Jackson,

15


https://www.pewresearch.org/fact-tank/2016/04/07/who-relies-on-public-transit-in-the-u-s/
https://www.pewresearch.org/fact-tank/2016/04/07/who-relies-on-public-transit-in-the-u-s/
https://gis.cdc.gov/grasp/COVIDNet/COVID19{_}5.html
http://www.cdc.gov/mmwr/volumes/69/wr/mm6915e3.htm?s{_}cid=mm6915e3{_}w
http://www.cdc.gov/mmwr/volumes/69/wr/mm6915e3.htm?s{_}cid=mm6915e3{_}w

B. R. (2020, may). Characteristics and Clinical Outcomes of Adult Patients Hospitalized with COVID-
19 — Georgia, March 2020. MMWR. Morb. Mortal. Wkly. Rep., 69(18), 545-550. Retrieved from
http://www.cdc.gov/mmwr/volumes/69/wr/mm6918el.htm?s{ }cid=mm6918e1{ }w| doi: 10.15585/
mmwr.mm6918el

Guan, W.-j., Liang, W.-h., Zhao, Y., Liang, H.-r., Chen, Z.-s., Li, Y.-m., ... others (2020). Comorbidity
and its impact on 1590 patients with covid-19 in china: A nationwide analysis. Furopean Respiratory
Journal, 55(5).

Hall, W. J., Chapman, M. V., Lee, K. M., Merino, Y. M., Thomas, T. W., Payne, B. K., ... Coyne-
Beasley, T. (2015). Implicit racial/ethnic bias among health care professionals and its influence on
health care outcomes: a systematic review. American journal of public health, 105(12), e60—-€76.

Hoffman, K. M., Trawalter, S., Axt, J. R., & Oliver, M. N. (2016). Racial bias in pain assessment and
treatment recommendations, and false beliefs about biological differences between blacks and whites.
Proceedings of the National Academy of Sciences, 113(16), 4296-4301.

Janke, K. (2014). Air pollution, avoidance behaviour and children’s respiratory health: Evidence from
england. Journal of health economics, 38, 23-42.

Kennedy, B. R., Mathis, C. C., & Woods, A. K. (2007). African americans and their distrust of the
health care system: healthcare for diverse populations. Journal of cultural diversity, 14(2).

Khunti, K., Singh, A. K., Pareek, M., & Hanif, W. (2020). Is ethnicity linked to incidence or outcomes
of covid-19% British Medical Journal Publishing Group.

Knittel, C. R., & Ozaltun, B. (2020). What does and does not correlate with covid-19 death rates.
medRziv.

Krieger, N. (2014). Discrimination and health inequities. International Journal of Health Services,
44(4), 643-710.

Lewandowski, P. (2020). Occupational exposure to contagion and the spread of covid-19 in europe (Tech.
Rep.).

McClure, E., Feinstein, L., Cordoba, E., Douglas, C., Emch, M., Robinson, W., ... Aiello, A. E. (2019).
The legacy of redlining in the effect of foreclosures on detroit residents’ self-rated health. Health €
place, 55, 9-19.

McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity design: A
density test. Journal of econometrics, 142(2), 698-714.

McLaren, J. (2020). What does and does not correlate with covid-19 death rates (Tech. Rep.).

Mikati, I., Benson, A. F., Luben, T. J., Sacks, J. D., & Richmond-Bryant, J. (2018). Disparities in
distribution of particulate matter emission sources by race and poverty status. American journal of
public health, 108(4), 480-485.

Millett, G. A., Jones, A. T., Benkeser, D., Baral, S., Mercer, L., Beyrer, C., ... others (2020). Assessing
differential impacts of covid-19 on black communities. Annals of Epidemiology.

Nardone, A., Casey, J. A., Morello-Frosch, R., Mujahid, M., Balmes, J. R., & Thakur, N. (2020). Associ-
ations between historical residential redlining and current age-adjusted rates of emergency department
visits due to asthma across eight cities in california: an ecological study. The Lancet Planetary Health,
4(1), e24-€31.

Neidell, M. J. (2004). Air pollution, health, and socioeconomic status: the effect of outdoor air quality
on childhood asthma. Journal of health economics, 23(6), 1209-1236.

Newell, K., Kartsonaki, C., Lam, K. B. H., & Kurmi, O. P. (2017). Cardiorespiratory health effects of
particulate ambient air pollution exposure in low-income and middle-income countries: a systematic
review and meta-analysis. The Lancet Planetary Health, 1(9), e368-e380.

Papageorge, N. W., Zahn, M. V., Belot, M., van den Broek-Altenburg, E., Choi, S., Jamison, J. C., ...
others (2020). Socio-demographic factors associated with self-protecting behavior during the covid-19
pandemic (Tech. Rep.). Institute of Labor Economics (IZA).

Paradies, Y., Ben, J., Denson, N., Elias, A., Priest, N., Pieterse, A., ... Gee, G. (2015). Racism as a
determinant of health: a systematic review and meta-analysis. PloS one, 10(9), €0138511.

Persico, C. L., & Johnson, K. R. (2020). Deregulation in a Time of Pandemic: Does Pollution Increase
Coronavirus Cases or Deaths? (Tech. Rep.). IZA Working Paper.

Petrilli, C. M., Jones, S. A., Yang, J., Rajagopalan, H., O’'Donnell, L. F., Chernyak, Y., ... Horwitz,
L. I. (2020). Factors associated with hospitalization and critical illness among 4,103 patients with
covid-19 disease in new york city. medRziv.

Platt, L., & Warwick, R. (2020). Are some ethnic groups more vulnerable to covid-19 than others.
Institute for Fiscal Studies, Nuffield Foundation.

Qian, H., Miao, T., Li, L., Zheng, X., Luo, D., & Li, Y. (2020). Indoor transmission of sars-cov-2.

16


http://www.cdc.gov/mmwr/volumes/69/wr/mm6918e1.htm?s{_}cid=mm6918e1{_}w

medRziv.

Raifman, J., Nocka, K., Jones, D., Bor, J., Lipson, S., Jay, J., & Chan, P. (2020). COVID-19 US state
policy database. Retrieved June 18, 2020, from www.tinyurl.com/statepolicies{%}09

Rho, H. J., Brown, H., & Fremstad, S. (2020, apr). A Basic Demographic Profile of Workers in Frontline
Industries (Tech. Rep.). Washington, D.C.: Center for Economic and Policy Research. Retrieved from
https://cepr.net

Schlenker, W., & Walker, W. R. (2016). Airports, air pollution, and contemporaneous health. The
Review of Economic Studies, 83(2), 768-809.

Schuetz, J. (2019). Cost, crowding, or commuting? Housing stress on the middle class (Tech. Rep.).
Washington, D.C.: Brookings Institute. Retrieved from https://www.brookings.edu/research/
cost-crowding-or-commuting-housing-stress-on-the-middle-class/

Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Perrone, M. G., Piazzalunga, A., ... others (2020).
The potential role of particulate matter in the spreading of covid-19 in northern italy: First evidence-
based research hypotheses. medRziv.

Simeonova, E., Currie, J., Nilsson, P., & Walker, R. (2018). Congestion pricing, air pollution and
children’s health (Tech. Rep.). National Bureau of Economic Research.

Sohn, H. (2017). Racial and ethnic disparities in health insurance coverage: Dynamics of gaining and
losing coverage over the life-course. Population research and policy review, 36(2), 181-201.

Sun, X., Luo, X., Zhao, C., Zhang, B., Tao, J., Yang, Z., ... Liu, T. (2016). The associations between
birth weight and exposure to fine particulate matter (pm2. 5) and its chemical constituents during
pregnancy: A meta-analysis. Environmental pollution, 211, 38-47.

Tessum, C. W., Apte, J. S., Goodkind, A. L., Muller, N. Z., Mullins, K. A., Paolella, D. A., ... others
(2019). Inequity in consumption of goods and services adds to racial-ethnic disparities in air pollution
exposure. Proceedings of the National Academy of Sciences, 116(13), 6001-6006.

Travaglio, M., Yu, Y., Popovic, R., Leal, N. S., & Martins, L. M. (2020). Links between air pollution
and covid-19 in england. medRxiv.

Uncast. (2020). Uncast social distancing dataset. https://www.uncast.com/data-for-good. (Version
April 2020)

U.S. Census Bureau. (2020). U.S. Census Bureau QuickFacts: United States (Tech. Rep.). U.S. Census
Bureau. Retrieved from https://www.census.gov/quickfacts/fact/table/US/PST045219

Van Donkelaar, A., Martin, R. V., Li, C., & Burnett, R. T. (2019). Regional estimates of chemical
composition of fine particulate matter using a combined geoscience-statistical method with information
from satellites, models, and monitors. Environmental science & technology, 53(5), 2595-2611.

Vollseeter, M., Rgksund, O. D., Eide, G. E., Markestad, T., & Halvorsen, T. (2013). Lung function after
preterm birth: development from mid-childhood to adulthood. Thoraz, 68(8), 7T67-776.

Ward, C. J. (2015). It’s an ill wind: The effect of fine particulate air pollution on respiratory hospital-
izations. Canadian Journal of Economics/Revue canadienne d’économique, 48(5), 1694-1732.

Williams, D. R., & Cooper, L. A. (2020). Covid-19 and health equity—a new kind of “herd immunity”.
JAMA.

Williamson, E., Walker, A. J., Bhaskaran, K. J., Bacon, S., Bates, C., Morton, C. E., ... others (2020).
Opensafely: factors associated with covid-19-related hospital death in the linked electronic health
records of 17 million adult nhs patients. MedRziv.

Wu, X., Nethery, R. C., Sabath, B. M., Braun, D., & Dominici, F. (2020). Exposure to air pollution
and covid-19 mortality in the united states. medRxiv.

Yancy, C. W. (2020, 04). COVID-19 and African Americans. JAMA. Retrieved from https://doi.org/
10.1001/jama.2020.6548 doi: 10.1001/jama.2020.6548

17


www.tinyurl.com/statepolicies{%}09
https://cepr.net
https://www.brookings.edu/research/cost-crowding-or-commuting-housing-stress-on-the-middle-class/
https://www.brookings.edu/research/cost-crowding-or-commuting-housing-stress-on-the-middle-class/
https://www.census.gov/quickfacts/fact/table/US/PST045219
https://doi.org/10.1001/jama.2020.6548
https://doi.org/10.1001/jama.2020.6548

Figures

1.00

0.75

0.50

Black Population (%)

50

0 25
PM 2.5 Percentile
— 2000 — 2016
C
1.00

s

<075

c

o

8

3 050

o

[

X

[}

s

m

50
COVID-19 Percentile

— Cases — Deaths

Minority Population (%)

Minority Population (%)

1.001

0.754

0.50 1

0.25

0.004

1.001

0.754

0.50 1

0.25

0.004

PM 2.5 Percentile

— 2000 — 2016

0 25 50 75 100
Percentile
— Cases — Deaths

Figure 1: Racial Demographics by PM 2.5 and COVID-19 Distributions

Note: Top panels plot the average county-level proportion of Black (A) and minority (B) residents by the percentile distribution
of PM 2.5 levels, measured in 2005 (grey) and 2016 (red). The bottom panels plot the same county-level racial proportions by the

percentile distributions for COVID-19 cases (grey) and deaths (red).
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Tables

Table 1: Descriptive Statistics by Nearest Neighbour in non-attainment

Own County Neighbouring County Predictive Power
Non-Attainment (NA) in Non-Attainment of Instrument

NA; =0 NA;, =1 A Close Far A 8
Outcomes
Log Cases 3.270 5.842 2.572%** 4.050 2.632 -1.418*** 0
Log Deaths -0.199 2.687 2.886*** 0.479 -0.720 -1.199*** 0.001*
PM2.5
PM 2.5 (2005) 10.028 15.635 5.607*** 12.644 7.719 -4.925%** -0.013***
PM 2.5 (2016) 6.017 9.196 3.179*** 7.232 4.977 -2.255%** 0.001
Covariates
Pop. Density 220 2,310 2,090* 430 120 -310*** -0.254***
Population 92, 500 561, 300 468, 800** 124, 830 85,740  -39,090** 23.373
Med. HH Income 51,289 57,911 6,623** 50, 833 52,105 1,271* 0.044
Non-remote 2.163 4.598 2.435*** 3.401 1.059 -2.342%** -0.002
Days Since First Case 46.119 52.780 6.661*** 49.564 43.039  -6.525*** 0.001
Days from SD Order 34.707 44.524 9.817*** 42.924 27.031 -15.893*** 0
% Black 0.089 0.153 0.064*** 0.124 0.057 -0.067*** 0
Prop. Public Transit 0.140 0.155 0.015 0.150 0.131 -0.019*** 0
Education 0.207 0.190 -0.017*** 0.214 0.199 -0.015*** 0
Poverty 0.157 0.143 -0.014** 0.164 0.149 -0.015*** 0
% Over 65 0.159 0.133 -0.026*** 0.152 0.165 0.013*** 0
% Hispanic 0.079 0.063 -0.016 0.048 0.110 0.062*** 0
% Uninsured 0.002 0.002 0 0.002 0.002 0 0
N 2,928 82 3,010 1,505 1,505 3010 3010

Note: This table presents descriptive statistics across the main comparison groups presented in the analysis. Columns 2-4 compare mean characteristics
for counties by non-attainment status. Columns 5-7 compare characteristics for counties with either close or far neighbouring counties in non-
attainment, as determined by being below (above) the median distance to the nearest neighbour. The final column provides a test of the validity of
our main instrument. We regress each covariate used in the analysis on the instrument and the the remaining covariates, to determine how predictive
our instrument is of underlying county characteristics. * * xp < 0.001, * * p < 0.01, *p < 0.05, . p < 0.10



Table 2: PM 2.5 Levels and COVID-19 Outcomes

OLS

v

(1)

Overall
(2) (3) (4) (5)

Black
(6)

Minority

(7)

Panel A: COVID-19 Deaths

PM2.5 1.063***  0.751***  0.493***  0.442***  0.435*"**  (.258*** 0.377**
(0.112) (0.112) (0.077) (0.074) (0.111) (0.095) (0.110)
PM 2.5*%Race 0.164*** 0.068***
(0.018) (0.021)
Adjusted R? 0.52 0.66 0.77 0.79 0.79 0.79 0.78
Panel B: COVID-19 Cases
PM2.5 1.016***  0.706***  0.387***  0.339***  0.409***  0.266*** 0.355***
(0.106) (0.108) (0.054) (0.053) (0.085) (0.068) (0.082)
PM 2.5*%Race 0.133*** 0.064***
(0.013) (0.016)
Adjusted R? 0.45 0.63 0.85 0.86 0.86 0.87 0.86
Panel C: COVID-19 Deaths | Cases
PM2.5 0.151***  0.129***  0.091***  0.096*** 0.006 —0.017 0.004
(0.041) (0.037) (0.034) (0.033) (0.059) (0.058) (0.059)
PM 2.5*%Race 0.028** 0.002
(0.011) (0.012)
Adjusted R? 0.9 0.91 0.92 0.92 0.92 0.92 0.92
Census - X X X X X X
Social Distancing - - X X X X X
Race - - - X X X b
N 3009 3009 3009 3009 3009 3009 3009

Note: This table presents OLS and 2SLS estimates of the impact of PM 2.5 (2016) on log COVID-19 deaths (panel A), cases
(panel B), and deaths conditional on cases (panel C). We instrument using distance to nearest neighbour in non-attainment in
2005. Baseline specifications include mean winter and summer temperatures and humidity, state fixed effects and population
weights. We incorporate census controls (poverty, population density, median household income, median house value, percent
owner occupied, average education, percent insured, hospital beds per capita, percent of population over 65), average rate of daily
social distancing, days from state social distancing date and date of first case, county-level race demographics (percent Black,
Hispanic, and white and public transit use) . Alternative specification controlling for smoking, average BMI, and other infectious
and external deaths, testing positivity rate, as well as including lags of all control variables do not impact estimated coefficients
but are not included in main specification due to reduction in sample size (results available upon request). The final two columns
incorporate interactive effects by whether a county has a higher than median proportion of Black or non-white residents. Standard
errors are in parentheses and clustered at the county level. * % xp < 0.001, * * p < 0.01, *p < 0.05, . p < 0.10
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Table 3: PM2.5 Levels and Placebo Outcomes

Infectious External Circulatory

Red. Form v Red. Form v Red. Form v
(1) (2) (3) (4) (5) (6)

Pane A: Baseline Placebo Tests

PM 2.5 —0.001 0.001 —0.001
(0.001) (0.001) (0.001)
NA Neighbour Distance 0.064 —0.076 0.100
(0.063) (0.082) (0.066)
Mean Y 2.95 2.95 4.21 4.21 5.47 5.47
N 3,010 3,010 3,010 3,010 3,010 3,010
Adjusted R? 0.27 0.27 0.15 0.14 0.1 0.08
Pane B: Excluding Suppressed Outcomes
PM 2.5 0.000 0.001 —0.001
(0.001) (0.001) (0.001)
NA Neighbour Distance —0.013 —0.094 0.097
(0.071) (0.084) (0.065)
Mean Y 3.90 3.90 4.75 4.75 5.56 5.56
N 1,225 1,225 2,352 2,352 2,931 2,931
Adjusted R? 0.15 0.15 0.12 0.1 0.1 0.08

Note: This table presents the reduced form and 2SLS estimates of PM 2.5 on other log health outcomes as a placebo check.
We estimate the effect of PM2.5 on deaths from infectious disease, external causes, and circulatory system conditions. Each
specification includes all main controls and population weights. County level death counts are suppressed for counts of less
than 10. Panel A results include suppressed outcome counties, replacing suppressed values with a count of 10 deaths to be
conservative. Panel B excludes suppressed data points. * x xp < 0.001, * * p < 0.01, *p < 0.05, . p < 0.10
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Table 4: Non-Attainment Status and COVID-19 Outcomes

Unconditional

(1)

Conditional Minority

(2) (3)

Black
(4)

Panel A: PM 2.5 (2016)

LATE -0.361 -0.115 -0.387* -0.040
(0.286) (0.209) (0.162) (0.189)
Bandwidth 2.590 2.590 2.451 3.365
Effective N 417 417 293 595
Panel B: COVID-19 Deaths
LATE -28.445** -32.600** -47.158* -36.684**
(10.726) (10.518) (20.111) (14.045)
Bandwidth 5.173 5.173 4.288 4.295
Effective N 1,385 1,385 649 868
Panel C: COVID-19 Cases
LATE -312.938* -381.355** -626.681** -408.63*
(143.907) (132.161) (236.994) (196.759)
Bandwidth 4.019 4.019 3.578 3.301
Effective N 994 994 510 578

Note: This table presents regression discontinuity estimates of non-attainment status in

2004 on PM 2.5 measured in 2016 and COVID-19 deaths per 100,000 people. Unconditional

models control for state fixed effects only. To maintain estimation power and parsimony,

conditional models control for poverty rates, racial demographics, average summer and win-
ter temperatures and state fixed effects (Panel A). Conditional models in Panel B control
for social distancing, remoteness of a county, racial demographics and state fixed effects.
Additional specifications controlling for population and density increased both the effect
sizes and the standard errors specifically when sub-setting for Black counties. Standard er-

rors are in parentheses and clustered at the county level.

xp < 0.05, . p < 0.10
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Appendix A: Supporting Figures

A: Overall Gap, Minority B: Overall Gap, Black
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Figure 1: Changes in Racial Gap in PM 2.5 from 2000 to 2016

Note: Panels A and B show show coefficients and confidence intervals from an indicator of whether a county had an above median
proportion of minority (A) or Black (B) residents across the PM 2.5 distribution, as generated by an RIF regression. Panels C and
D show coefficients and confidence intervals across the PM 2.5 distributions for these same race indicators, interacted by whether
the county was in non-attainment before 2005. All regressions control for population, average winter and summer temperatures
and state fixed effects.
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Figure 2: COVID-19 outcomes by PM 2.5 Distribution, by County-level Racial Demographics

Note: The top panels plot binned average log of county-level COVID-19 deaths by percentile of PM 2.5 distribution as measured
in 2016. We plot lines separately for counties with above median proportion of minority residents (grey) and below median (red).
The bottom panels plot the same outcomes, separated by whether a county’s proportion of Black-identifying residents is above
(grey) or below (red) the overall median levels.
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Figure 3: Number of Counties in non-attainment, 2000-2016

Note: Appendix Figure El shows the number of counties in non-attainment
of the Clean Air Act emissions standards from 2000 to 2016 using authors’
own calculations. A county was in non-attainment if their PM 2.5 levels were
above 15 ug/m?®. This threshold changed in 2012 to 12 pg/m®. Standards
enforcement largely began in 2005.
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Figure 4: McCrary Sorting Test

Note: This plot shows the results of a (2008) sorting test. There
appears to be no heaping around the Clean Air Act threshold of 15 ug/ms,
confirmed by a p-value of 0.24.
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A: Gap in COVID-19 Deaths, Minority B: Gap in COVID-19 Deaths, Black
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Figure 5: Racial Gap in COVID-19 Deaths

Note: Plots A and B show coefficients and confidence intervals for the raw race gap, PM 2.5 controlling for all other confounding
variables, and an interaction between race and PM 2.5 across the COVID-19. Black lines show raw race gap for counties with a
high proportion of minority residents (A) or Black residents (B). Red lines show PM 2.5 effects, controlling for social distancing
practices, population, poverty, median household income, average education, state fixed effects and all other baseline controls. The
yellow line plots the interaction between race and PM 2.5, while further controlling for PM 2.5, race and all other controls.
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Figure 6: Mean PM 2.5 by Non-attainment Status

Note: Figure shows the downward trend in PM 2.5 for counties from 2000 to 2016 by non-attainment
status. Non-attainment was estimated as having a PM 2.5 level above 15 ug/m?® from 2000 to 2011 and
12 pg/m?® from 2012 on wards.
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Appendix B: Supporting Tables

We present alternative IV specifications compared to our baseline specification of distance to nearest
neighbour in non-attainment in Table Comparator IV specifications include the inverse distance to
nearest neighbour in non-attainment (2), the average PM 2.5 levels of all neighbouring counties within
a 25-mile radius (3), and the proportion of all neighbouring counties in a 25-mile radius who are in
non-attainment (4). All measurements are based on 2005 values, the year non-attainment enforcement
largely began. Table[5] presents first stage results and weak instrument testing and Wu-Hausman tests for
endogeneity across all specifications. We select distance to nearest neighbour in non-attainment based on
first stage results, its plausibly exogenous impact on own-county PM 2.5 levels and its more conservative
estimated effect on COVID-19 outcomes.

Table 5: Instrument Variable Comparisons

(1) (2) (3) (4)

Mean 292.908 0.012 11.284 0.124
(Std. Dev.) (262.065)  (0.017) (2.724)  (0.275)

Panel A: First Stage (PM 2.5)

Distance to NA Neighbour —0.008***
(0.001)
Inverse Distance to NA Neighbour 12.498***
(3.405)
Mean Neighbour PM 2.5 0.390***
(0.024)
Proportion NA Neighbours 0.739***
(0.117)
F-Stat 235 175 218 148
Weak Inst. P-val. 0.000 0.000 0.000 0.000
Wu-Hausman P-val. 0.979 0.359 0.867 0.032
N 3,010 3,010 2,204 2,122
R Sq 0.84 0.80 0.87 0.83
Panel B: Second Stage (Log Deaths)
PM 2.5 0.435*** 0.184 0.700*** 1.132%*
(0.111) (0.147) (0.067) (0.168)
N 3,010 3,010 2,201 2,119
Adjusted R? 0.84 0.8 0.87 0.83

Note: Table presents instruments calculated based on the distance to nearest neighbour in non-attainment,
the inverse distance, mean neighbouring county PM 2.5 and the proportion of neighbouring counties in non-
attainment. All instruments based on 2005 PM 2.5 data. Controls in both stages include mean winter and
summer temperatures and humidity, state fixed effects, poverty, population density, median household income,
median house value, percent owner occupied, average education, percent insured, hospital beds per capita,
percent of population over 65, average rate of daily social distancing, days from state social distancing date
and date of first case, and county-level race demographics and population weights.. *x*xp < 0.001, ** p < 0.01,
*p < 0.05, . p < 0.10
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Table 6: PM2.5 Levels and Additional Placebo Outcomes

Endocrine

Digestive

Red. Form v
(1) (2)

Red. Form IV
(3) (4)

PM 2.5 0.001
(0.001)
Distance to NA Neighbour —0.121
(0.090)
Mean Y 4.32 4.32
N 1,915 1,915
R Sq 0.16 0.13

—0.000
(0.001)
0.017
(0.064)
4.27 4.27
1,730 1,730
0.11 0.11

Note: This table presents the reduced form and 2SLS estimates of PM 2.5 on other log-health
outcomes as an additional placebo check. Each specification includes all main control variables and
population weights. Standard errors are in parentheses and clustered at the county level. Results
exclude suppressed data points. * % *p < 0.001, ** p < 0.01, *p < 0.05, . p < 0.10
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Table 7: Testing for Discontinuity of the Controls

Daily Distance Travelled =~ Remote  Prop. Black  Prop. Hisp  Prop. White = Mean Summer Temp. Mean Winter Temp.

LATE 0.003 -2.4 -0.163 -0.016 0.149 -1.558 -1.433
(0.035) (2.124) (0.127) (0.073) (0.188) (1.791) (2.215)
Bandwidth 2.415 1.479 1.175 1.540 1.433 1.422 2.720
N 365 102 60 105 94 92 469

Note: This table presents regression discontinuity estimates of non-attainment status in 2004 on the control variables used in our RD analysis. Standard errors are in parentheses and
clustered at the county level. * % xp < 0.001, * * p < 0.01, *p < 0.05, . p < 0.10



Table 8: PM 2.5 Levels and COVID-19 Outcomes : Accounting for Race-Specific Public Transit Use

OLS v

Overall Black Minority
(1) (2) (3) (4) (5) (6) (7)
Panel A: COVID-19 Deaths

1043 07257 0.480***  0.453***  0.428***  0.288***  0.363***
(0.114)  (0.114)  (0.078)  (0.074)  (0.109)  (0.095)  (0.107)

PM 2.5*Race 0.143*** 0.075***
(0.019) (0.022)
Adjusted R? 0.51 0.65 0.77 0.79 0.79 0.79 0.78
Panel B: COVID-19 Cases
PM2.5 0.989*** 0.671*** 0.373*** 0.353*** 0.413*** 0.298*** 0.351***

(0.108)  (0.109)  (0.054)  (0.050)  (0.082)  (0.069)  (0.078)

PM 2.5*Race 0.117%  0.071***
(0.014)  (0.016)

Adjusted R? 0.9 0.91 0.92 0.92 0.92 0.92 0.92
Panel C: COVID-19 Deaths | Cases
PM2.5 0.152***  0.129***  0.089***  0.089*** —0.009 —0.026 —0.011

(0.042)  (0.038)  (0.034)  (0.034)  (0.059)  (0.059)  (0.060)

PM 2.5*Race 0.022** 0.002
(0.011)  (0.012)

Adjusted R? 0.9 0.91 0.92 0.92 0.92 0.92 0.92
Census - X X X X X X
Social Distancing - - X X X X X
Race - - - X X X X
N 2542 2542 2542 2542 2542 2542 2542

Note: This table presents OLS and 2SLS estimates of the impact of PM 2.5 (2016) on log COVID-19 deaths (panel A), cases
(panel B), and deaths conditional on cases (panel C). We instrument using distance to nearest neighbour in non-attainment in 2005.
Baseline specifications include mean winter and summer temperatures and humidity, state fixed effects and population weights. We
incorporate census controls (poverty, population density, median household income, median house value, percent owner occupied,
average education, percent insured, hospital beds per capita, percent of population over 65), average rate of daily social distancing,
days from state social distancing date and date of first case, county-level race demographics (percent Black, Hispanic, and white).
Unlike in this specification, we use measures of race-specific public transit use to work for Black and white residents.
Alternative specification controlling for smoking, average BMI, and other infectious and external deaths, testing positivity rate,
as well as including lags of all control variables do not impact estimated coefficients but are not included in main specification due
to reduction in sample size (results available upon request). The final two columns incorporate interactive effects by whether a
county has a higher than median proportion of Black or non-white residents. Standard errors are in parentheses and clustered at
the county level. x x xp < 0.001, * * p < 0.01, *p < 0.05, . p < 0.10
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Table 9: PM 2.5 Levels and COVID-19 Outcomes : Excluding New York State

OLS v

Overall Black Minority
(1) (2) (3) (4) (5) (6) (7)
Panel A: COVID-19 Deaths

PM2.5 0.9417*  0.560***  0.471***  0.451**  0.463*  0.326"**  0.395***
(0.097)  (0.082)  (0.076)  (0.069)  (0.104)  (0.094)  (0.103)

PM 2.5*Race 0.141"*  0.076***
(0.018)  (0.023)

Adjusted R? 0.61 0.73 0.76 0.78 0.78 0.78 0.77
Panel B: COVID-19 Cases
PM2.5 0.864*** 0.477*** 0.374*** 0.358*** 0.459*** 0.350*** 0.396***

(0.079)  (0.059)  (0.052)  (0.045)  (0.077)  (0.068)  (0.073)

PM 2.5%Race 0.113*** 0.071%**
(0.013)  (0.017)
Adjusted R? 0.62 0.78 0.82 0.85 0.85 0.85 0.84
Panel C: COVID-19 Deaths | Cases
PM2.5 0.046 0.066* 0.062* 0.068* —0.047 —0.061 0.395***

(0.036)  (0.036)  (0.035)  (0.035)  (0.062)  (0.061)  (0.103)

PM 2.5*Race 0.020* 0.076***
(0.011) (0.023)

Adjusted R? 0.9 0.9 0.91 0.91 0.9 0.91 0.91

Census - X X X X b'e b'e

Social Distancing - - be X X X X

Race - - - X X X X

N 2480 2480 2480 2480 2480 2480 2480

Note: This table presents OLS and 2SLS estimates of the impact of PM 2.5 (2016) on log COVID-19 deaths (panel A), cases
(panel B), and deaths conditional on cases (panel C). We instrument using distance to nearest neighbour in non-attainment in
2005. Baseline specifications include mean winter and summer temperatures and humidity, state fixed effects and population
weights. We incorporate census controls (poverty, population density, median household income, median house value, percent
owner occupied, average education, percent insured, hospital beds per capita, percent of population over 65), average rate of daily
social distancing, days from state social distancing date and date of first case, county-level race demographics (percent Black,
Hispanic, and white). Unlike in this specification, we exclude New York State from the sample. Alternative specification
controlling for smoking, average BMI, and other infectious and external deaths, testing positivity rate, as well as including lags
of all control variables do not impact estimated coeflicients but are not included in main specification due to reduction in sample
size (results available upon request). The final two columns incorporate interactive effects by whether a county has a higher
than median proportion of Black or non-white residents. Standard errors are in parentheses and clustered at the county level.
* % xp < 0.001, * * p < 0.01, *p < 0.05, . p < 0.10
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