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Abstract. 

Comparing the wellbeing of groups using self reported measures of wellbeing can be 

challenging. The scale dependency of many summary statistics applied to arbitrary Cantril scales 

attached to ordinal categorical data can engender a lack of coherency in results based upon 

alternative, equally valid scales. Furthermore, the conditions under which results will be robust 

across alternative scales seldom prevail in practice. Here scale independent methods for the 

multilateral and multidimensional wellness measurement and comparison of groups are proposed 

and implemented in a study of the health-loneliness-aging-gender nexus in 21st century China. 

The results indicate that poor health and loneliness appears to increase with age, though not 

monotonically. Improved health status is always associated with better un-loneliness outcomes 

and improved un-loneliness status is always associated with better health outcomes. While a 

large portion of the population are not affected by loneliness, of those who are, ill health is 

generally more likely to be reported. With regard to the health - loneliness joint distribution, 

generally, males enjoy better joint outcomes than their female counterparts in almost every 

comparison and urban dwellers enjoy better outcomes than their rural counterparts.       
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Introduction. 

In reporting a substantial increase in the use of self assessed wellbeing measures in recent years, 

Kahneman and Krueger (2006) stressed the importance of recognizing that such measures 

represent an individuals’ perceptions of experiences rather than their actual utility as 

conventionally conceived by economists3. Evaluating the subjective wellbeing of groups often 

relies upon summary statics applied to scales devised for and attached to assessment categories 

(Cantril 1965, de Jong Gierveld and Kamphuis 1985, Russell 1996 are early examples), 

happiness gradient assessment studies, happiness-income-growth studies, health assessment 

studies and happiness and inequality studies are all cases in point4. The scale dependency 

inherent in such approaches can present challenges when making multilateral group comparisons 

since, as noted in Schroder and Yitzhaki (2017), Liddell and Kruschke (2018) and Bond and 

Lang (2019), the choice of scale is arbitrary and the results are not robust to the use of 

alternative, equally valid, scale choices5. While Allison and Foster (2004) and Apouey (2007) 

were aware of the issue in specific univariate inequality and bi-polarization settings, it has not 

been addressed in a more general multilateral wellbeing measurement environment. Furthermore, 

the problem is exacerbated in multidimensional environments since they usually involve 

arbitrarily assigned dimension weights for aggregation purposes (Klugman, Rodríguez and 

Choi 2011).    

Responses to questions like “How would you assess your health status – 1:Poor, 2:Fair, 3:Good, 

4:Very Good or 5:Excellent ?” or “How Lonely do you Feel - 1:Very, 2:Quite a bit, 3:Somewhat, 

4:A little, 5:Not at all?” are fundamentally ordinal in nature6. While it is clear that each 

successive state or level is to be preferred to its predecessor (i.e. the ordering is monotonic 

increasing), the numbers attached to each level for the purpose of analysis are at best, arbitrary in 

nature. There is no reason to think that “Very Good” has hedonically twice the value or import of 

“Fair”. The number allocation “1:Poor, 3:Fair, 6:Good, 10:Very Good, 15:Excellent” constitutes 

an equally valid, but none-the-less arbitrary, numerical ordering, the numbering process could 

equally be additive, geometric or hypergeometric, indeed it need not be systematic at all as long 

as it is monotonic increasing. In effect any number system accorded the respective categories has 

the status of an assumption about the relative value of categories and different assumptions 

usually result in materially different results. This means that frequently employed objects like 

location measures, measures of variation around them and the weighted sums thereof employed 

in multidimensional analyses in such artificially cardinalized ordinal environments are equally 

                                                           
3 Indeed, utility is an unbounded concept, one can always enjoy more or less utility in the next period, whereas self 

assessed wellbeing is usually recorded on a numerically bounded segment of the real line so situations can arise 

whereby an agent cannot experience more or less wellbeing in a subsequent period. 
4 The means, medians, quantiles, coefficients of variation, Gini coefficients variously employed in Helliwell, 

Layard, Sachs 2012, 2018, Easterlin 1973, 1995, Deaton 2008, Clark, Frijters Shields 2008, DeNeve, Ward, 

Keulenaer, van Landeghem, Kavetsos, Norton 2018, Newell, Girgis, Sanson-Fisher, Savolainen 1999, Ferrer‐i‐

Carbonell, Ramos 2014, are all scale dependent constructs.  
5 Indeed, the issue is not confined to self reported wellbeing data but prevails whenever ordered categorical 

information is used as a proxy for latent continuous variates e.g. when educational status is used as a proxy for latent 

embodied human capital. 
6 One of the most common quality of life - health assessment measures Ware and Gandek (1998) 

https://link.springer.com/article/10.1007/s10888-011-9178-z#auth-2
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ferrer-i-Carbonell%2C+Ada
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ferrer-i-Carbonell%2C+Ada
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ramos%2C+Xavier


arbitrary in nature and any conclusions drawn would not necessarily be robust to any other 

arbitrarily chosen, but equally valid, cardinality assumptions.  

The problem is one of scaling. Since the summary statistics employed (and functions of them 

such as inequality, poverty and polarization measures) are inherently scale dependent, different 

arbitrarily chosen scales can result in different conclusions, highlighting the ambiguity inherent 

in any set of comparisons. Schroder and Yitzhaki (2017) derive the conditions under which such 

ordering ambiguity would not prevail and go on to suggest that the conditions seldom obtain in 

practice, Bond and Lang (2019) offer empirical verification that this is indeed the case in a 

variety of examples. What is required are measures that reflect subjective wellbeing differences 

between groups in many dimensions which are not scale dependent. This will not evade the 

ambiguity problem that is inherent in the data but it will take the arbitrariness of scaling choice 

out of the analysis and provide rankings and orderings that are not the consequence of a chosen 

scale. Here such scale and functional form independent, continuous, consistent ordering 

instruments with independent of irrelevant alternative and non-ambiguity properties, together 

with measures of the extent of ambiguity inherent in a collection of groups, are proposed, 

developed and exemplified in a Chinese health and loneliness study.  

Degrees of loneliness and health are integral to human wellbeing, especially amongst older 

populations (Gerst-Emerson and  Jayawardhana 2015, Ong, Uchino, and Wethington 2016). A 

substantial literature on risk factors for loneliness in older adults (synthesized in Pinquart and 

Sörensen 2003) identified many health-related risk factors including gender, marital status, 

location and socioeconomic resources which have been substantiated in more recent large-scale, 

studies of older adults (Nicolaisen and Thorsen 2014, Perissinotto, Stojacic and Covinsky 2012). 

In a Chinese study Luo and Waite (2014) recorded about 28% of older Chinese adults as 

reporting feeling lonely, with lonely adults facing increased risks of dying over the subsequent 

years. Some of the effect was explained by social and health behaviors, but most of the effect 

was explained by health outcomes. 

In this study the ordering techniques that are developed in section 1 are extended to multivariate 

environments and higher order comparisons in section 2. Section 3 considers the axiomatic 

foundations of the indices that are not obvious by construction. The techniques are applied to 

survey data drawn from the China Health and Retirement Longitudinal Study (CHARLS) 2013 

follow up to a 2011 baseline study in Section 4 and Section 5 draws some conclusions. To 

anticipate the results based on groupings determined by age, gender, partner status, and urban 

rural location, the “scale free” indices indicate that, in spite of a low level of health and 

loneliness inequality, there is not a great deal of ambiguity in the system. While only a small 

portion of the population appear to be lonely, when they are, they are more likely to report ill 

health. Indeed, increased loneliness promotes ill health promotes increased loneliness appears to 

be the prevailing pattern at most levels. With regard to the health-loneliness joint distribution, 

generally, males enjoy better health and un-loneliness outcomes than their female counterparts in 

almost every comparison and urban dwellers enjoy better outcomes than their rural counterparts. 

 

https://ajph.aphapublications.org/author/Gerst-Emerson%2C+Kerstin
https://ajph.aphapublications.org/author/Gerst-Emerson%2C+Kerstin


Section 1. First Order Univariate Comparisons, The Basic Idea. 

To fix ideas, imagine the members of a given group A each had an equal chance of each of 5 

ordered health outcomes, with a discrete uniform probability density function (i.e. 0.2 for each 

level so 𝑝𝑖 = 0.2 𝑓𝑜𝑟 𝑖 = 1, . . ,5), then the cumulative distribution function (CDF) of group A 

would report 0.2 as Poor, 0.4 as Fair or worse, 0.6 as Good or worse, 0.8 as Very Good or worse 

and the whole group as Excellent or worse (since the CDF (𝐹𝑗) is given by compounding the 

probabilities so that 𝐹𝑗 = ∑ 𝑝𝑖 𝑓𝑜𝑟 𝑗 = 1, . . ,5)
𝑗
𝑖=1

7. Suppose further that a group B had a 30% 

chance of poor health 20% chances of Fair, Good and Very Good health and a 10% chance of 

Excellent Health and Group C had a 10% chance of Poor Health, 20% chances of Fair, Good and 

Very Good health and a 30% chance of Excellent Health. For the purpose of discussion, Table 1 

presents the CDF’s of the three groups plus a group B* that is very similar to group B and a 

group C* that is very similar to group C. In comparing A and B groups, note that a randomly 

selected individual from B would have at least as great or greater probability of the same or 

worse outcome than a similarly randomly selected member of group A at every level, 

alternatively put, the group B member has a lesser chance of better outcomes at all levels than 

does the member from group A.  

Table 1. Comparisons of Cumulative Distribution (CDF’s). 

Group       Poor           Fair         Good    Very Good  Excellent UD1 

         A        0.2             0.4            0.6            0.8             1.0 0.5 

         B        0.3             0.5            0.7            0.9             1.0 0.012 

         B*        0.31          0.49           0.7            0.9             1.0 0.012 

         C        0.1             0.3            0.5            0.7             1.0 0.988 

         C*        0.09          0.31           0.5            0.7             1.0 0.988 

Upper Envelope        0.31          0.50           0.70          0.90           1.0  0.000 

Lower Envelope        0.09          0.30           0.50          0.70           1.0  1.000 

 

Essentially Group A is unambiguously better placed than Group B in terms of its overall Health 

outcomes and, if each individual in the calculus had equal weight, Group B could unequivocally 

be deemed to have worse Health Wellbeing than Group A. There is in effect a stochastic 

dominance relationship (Levy 1998, Yalonetzky 2013, Whang 2019) between Group A and 

Group B probability distributions. When A’s CDF is everywhere less than or equal to B’s CDF 

i.e.: 

                    𝐹𝑖
𝐴 ≤ 𝐹𝑖

𝐵 𝑓𝑜𝑟 𝑖 = 1, . . ,5, 𝑤𝑖𝑡ℎ 𝑠𝑡𝑟𝑖𝑐𝑡 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑠𝑜𝑚𝑒𝑤ℎ𝑒𝑟𝑒        [1]  

A is said to stochastically dominate B at the first order. In such a case, if the self assessment 

levels had true cardinal value x, any Wellbeing Value Function 𝑈(𝑥) with 
𝑑𝑈(𝑥)

𝑑𝑥
> 0 would have 

an expected value under A’s distribution that is at least as great as its expected value under B’s 

                                                           
7 The following discussion is relevant for any finite number of ordered outcomes, without loss of generality the 

discourse here confines itself to 5.  



distribution. That the result holds for any such Wellbeing Value Function in the class means that 

it is unambiguous and unequivocal. However, the luxury of cardinality (or a fully specified 

wellbeing value function which attaches a real number to each level of wellbeing) is not 

available, here the Wellbeing Value Function is implicitly revealed as “a greater chance of a 

better outcome”. Non the less, a sense of “Wellbeing distance” between the two groups could be 

gleaned from adding the differences in probability over the outcome levels.  

Letting 𝐹𝑖
𝑗
 be the value of the 𝑗’𝑡ℎ Groups CDF at the 𝑖’𝑡ℎ assessment level for i= Poor, Fair, 

Good, Very Good, Excellent, and j=A, B, B*, C, C*, then a measure of the extent to which A is 

preferable to B is given by CDif(A,B), the cumulative differences, where: 

                                                       CDif(A, B) = ∑ (𝐹𝑖
𝐵 − 𝐹𝑖

𝐴)𝑖       

Noting that 1-𝐹𝑖
𝐵 (1-𝐹𝑖

𝐴) is the chance of having a better outcome than the i’th level in the B (A) 

group, this index has the interpretation of measuring, in an equally weighted sum, the extent to 

which group A has better chances of better outcomes than group B. According to Table 1, it 

would take the value 0.4. Similar arguments can be made regarding the comparison of Group A 

with Group C but this time Group A’s distribution is everywhere at least as high as group C’s so 

that Group C first order dominates Group A, and again the ordering is unequivocal so that Group 

C’s outcomes are preferred to Group A’s outcomes which in turn are preferred to group B’s 

outcomes. Note that Cdif(C, B) = ∑ (𝐹𝑖
𝐵 − 𝐹𝑖

𝐶) = 0.8𝑖 > CDif(A, B) = ∑ (𝐹𝑖
𝐵 − 𝐹𝑖

𝐴) = 0.4𝑖  

provides quantifiable measures of the relative benefits of C over B as opposed to A over B which 

accords with the ordering above. The important point to note is that these measures do not 

depend upon the value of x or any such scale, they would retain the same value whatever values 

of x were attributed to the various levels, they are in effect measures of distance in probability 

which abstract from scaling but non-the-less reflect an ordering of expected wellbeing.  

Note that while C* dominates A (and consequently B) and B* is dominated by A (and 

consequently C), there is no such dominance relationship between distributions C and C* (or B 

and B*). C’s CDF is sometimes above and sometimes below that of C* (similarly with B and 

B*), hence there is some ambiguity as to which is the most (least) preferred distribution in these 

particular comparisons. Thus in Table 1 there is no uniquely best or uniquely worst Group and 

the CDif measure is no longer an unequivocal measure of superiority or inferiority between 

groups, evaluating the relative merits of B and B* or C and C* is problematic. However, 

exploiting this idea of distance further, let 𝐹𝑈𝐸𝑁𝑉,𝑖 be the Upper Envelope of the collection of 

CDF’s under comparison, which is given by: 

   𝐹𝑖
𝑈𝐸𝑁𝑉 = max

𝑗
(𝐹𝑖

𝑗
) 𝑓𝑜𝑟  𝑖 = Poor, Fair, Good, Very Good, Excellent ; 𝑗 = 𝐴, 𝐵, 𝐵∗, 𝐶, 𝐶∗   

𝐹𝑖
𝑈𝐸𝑁𝑉 (line 6 in Table 1) is also a CDF and corresponds to the synthetic worst outcome 

distribution that could be contrived by combining the worst aspects of all the groups (If there 

were a group that was uniquely dominated by all other groups in the collection, its CDF would 

coincide with 𝐹𝑖,𝑈𝐸𝑁𝑉). As such, it is first order stochastically dominated by all other groups, and 

a measure of the merit of any group j relative to this synthetic worst case scenario is given by: 



CDif(UENV, j) = ∑(𝐹𝑖
𝑈𝐸𝑁𝑉 − 𝐹𝑖

𝑗
)

𝑖

 

As an index, its lower bound is 0 (which will arise when a particular group CDF coincides with 

the upper envelope) and in theory its upper bound is the number of assessment categories less 1, 

so if a standardized index confined to the unit interval is required, one could divide by the 

number of outcome categories less 18. However, this turns out to be a little extreme, in effect it 

assumes a worst case scenario group with all its members in the lowest assessment category. A 

more palatable alternative would be to consider the lower envelope 𝐹𝑖,𝐿𝐸𝑁𝑉 where:  

𝐹𝑖
𝐿𝐸𝑁𝑉 = min

𝑗
(𝐹𝑖

𝑗
) 𝑓𝑜𝑟  𝑖 = Poor, Fair, Good, Very Good, Excellent; 𝑗 = 𝐴, 𝐵, 𝐵∗, 𝐶, 𝐶∗ 

This is also a CDF (line 7 of Table 1) which corresponds to the synthetic best possible outcome 

distribution that could be contrived by combining the best aspects of all the groups (If there were 

a group that uniquely dominated all other groups in the collection, its CDF would coincide with 

𝐹𝑖
𝐿𝐸𝑁𝑉). Then CDif(j, LENV) where: 

CDif(j, LENV) = ∑(𝐹𝑖
𝑗

− 𝐹𝑖
𝐿𝐸𝑁𝑉)

𝑖

 

would correspond to the distance of group j from the synthetic best case scenario, in essence a 

measure of how “bad” group j was relative to the synthetic best case scenario.   

Then 𝑈𝐷1(j), a first order relative wellbeing index could be contemplated where: 

                                                  0 ≤ UD1(j) =
∑ (𝐹𝑖

𝑈𝐸𝑁𝑉−𝐹𝑖
𝑗

)𝑖

∑ (𝐹𝑖
𝑈𝐸𝑁𝑉−𝐹𝑖

𝐿𝐸𝑁𝑉)𝑖
≤ 1                    [2] 

This index, a discrete ordinal distribution analogue of the First Order Utopia-Dystopia index 

(Anderson, Post and Whang 2019, Anderson and Leo 2020) which was developed for continuous 

distributions, has many advantages. It can be shown to satisfy many of the axioms required of 

wellbeing indices (Sen 1987, 1995) as it is continuous (at least piecewise), independent of scale 

and functional form and consistent (if a distribution is more preferred the statistic yields a larger 

value), it is normalized and has an independence of irrelevant alternatives property (Anderson 

and Leo 2020). In addition, unlike most other normalized statistics, it attains the value 0 (1) only 

when a particular group has unambiguously the worst (best) outcomes. Its asymptotic 

distribution is readily obtained (See Appendix) which facilitates inference and furthermore, it is 

readily extended to multidimensional, multilateral comparisons obviating many of the weighting 

issues associated with a multidimensional environment. 

 

The Upper and Lower envelopes of sub groupings in the collection also have an additional, very 

useful application. Suppose two mutually exclusive collections of groups A and B where A = 

{𝐹𝑖
𝑗
, 𝑗 = 1, . . 𝑘, 𝑖 = 1, . . ,5} and B = {𝐹𝑖

𝑗
, 𝑗 = 𝑘 + 1, . . 𝐾, 𝑖 = 1, . . ,5} and define 𝐹𝑖

𝑈𝐸𝑁𝑉,𝐴
 as: 

 

                                                           
8 At the extreme if all members of group j were in the highest category and all members of any other group were in 

the lowest category the maximum value of CDif(UENV,j) would be K=1 in a K category situation.  



                       𝐹𝑖
𝑈𝐸𝑁𝑉,𝐴 = max

𝑗=1,..,𝑘
(𝐹𝑖

𝑗
) 𝑓𝑜𝑟  𝑖 = Poor, Fair, Good, Very Good, Excellent   

 

and define 𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵

 as: 

 

𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵 = min

𝑗=𝑘+1,..,𝐾
(𝐹𝑖

𝑗
) 𝑓𝑜𝑟 𝑖 = Poor, Fair, Good, Very Good, Excellent 

Then if:  

 

𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵 ≥ 𝐹𝑖

𝑈𝐸𝑁𝑉,𝐴 𝑓𝑜𝑟  𝑖 = Poor, Fair, Good, Very Good, Excellent 
 

All members of the A collection of groups unambiguously dominate all members of the B 

collection of groups (essentially a separating hyperplane can be established between the two 

collections). Collection A can then be considered to be better placed since any randomly selected 

individual from it has a better chances of better outcomes than a correspondingly randomly 

selected individual from group B collection.  

 

To examine whether or not a separating hyperplane could be established between 𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵

 and 

𝐹𝑖
𝑈𝐸𝑁𝑉,𝐴

 (or any pair of CDF’s), consider comparing  |∑ (𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵 − 𝐹𝑖

𝑈𝐸𝑁𝑉,𝐴)5
𝑖=1 | with  

∑ |(𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵 − 𝐹𝑖

𝑈𝐸𝑁𝑉,𝐴)|5
𝑖=1  note that: 

|∑ (𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵 − 𝐹𝑖

𝑈𝐸𝑁𝑉,𝐴)
5

𝑖=1
| ≤ ∑ |(𝐹𝑖

𝐿𝐸𝑁𝑉,𝐵 − 𝐹𝑖
𝑈𝐸𝑁𝑉,𝐴)|

5

𝑖=1
 

 

Equality will occur when (𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵 − 𝐹𝑖

𝑈𝐸𝑁𝑉,𝐴)  ≥ 0 ∀ 𝑖 or (𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵 − 𝐹𝑖

𝑈𝐸𝑁𝑉,𝐴)  ≤ 0 ∀ 𝑖 that is 

to say, equality will occur when there is a first order dominance relationship between the two 

distributions. This suggests, for all 𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵, 𝐹𝑖

𝑈𝐸𝑁𝑉,𝐴 𝑖 = 1, . . ,5 such that 𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵 ≠

𝐹𝑖
𝑈𝐸𝑁𝑉,𝐴 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 = 1, . . ,5  a Surface Separation Index SS, of the form: 

 

                                              −1 ≤ 𝑆𝑆 =
∑ (𝐹𝑖

𝐿𝐸𝑁𝑉,𝐵−𝐹𝑖
𝑈𝐸𝑁𝑉,𝐴)5

𝑖=1

∑ |(𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵−𝐹𝑖

𝑈𝐸𝑁𝑉,𝐴)|5
𝑖=1

≤ 1 

 

Which attains -1 or 1 if and only if there is surface separation. SS will equal 1 when 𝐹𝑖
𝑈𝐸𝑁𝑉,𝐴

 first 

order dominates 𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵

 and will attain -1 when 𝐹𝑖
𝑈𝐸𝑁𝑉,𝐴

 is first order dominated by 𝐹𝑖
𝐿𝐸𝑁𝑉,𝐵

. 

 

 

Section 2. Multidimensionality and Higher Order Comparisons. 
 

In the present case of two dimensioned Health and Loneliness wellbeing, the joint impact of 

health and loneliness outcomes on wellbeing has to be evaluated in terms of the joint probability 

density function (JPDF) and its joint cumulative distribution function counterpart JCDF. With 

respect to the JPDF, 𝑝𝑖,𝑘
𝑗

 is now the probability that an agent randomly selected from the 𝑗’𝑡ℎ 

group is in the 𝑖’𝑡ℎ health and 𝑘’𝑡ℎ loneliness categories respectively, where  𝑝𝑖,𝑘
𝑗

≥



0  𝑎𝑛𝑑 ∑ ∑  𝑝𝑖,𝑘
𝑗

= 15
𝑘=1

5
𝑖=1 . Its corresponding JCDF has a typical element 𝐹𝑖,𝑘

𝑗
 𝑓𝑜𝑟 𝑖, 𝑗 = 1, . . ,5 

where 0 ≤ 𝐹𝑖,𝑘
𝑗

= ∑ ∑  𝑝𝑖∗,𝑘∗
𝑗𝑘

𝑘∗=1 ≤ 1𝑖
𝑖∗=1 , (essentially compounding probabilities across 2 

dimensions) in this case 𝐹𝑖,𝑘
𝑗

 corresponds to the probability that a randomly selected agent from 

group 𝑗 has a health outcome no greater than the 𝑖’𝑡ℎ category and a loneliness outcome no 

greater than the 𝑘’𝑡ℎ category. In this context, if health and loneliness outcomes are temporarily 

endowed with the cardinality measures x and y respectively, and a Wellbeing Value Function 

𝑈(𝑥, 𝑦) with 
𝑑𝑈(𝑥,𝑦)

𝑑𝑥
≥ 0,

𝑑𝑈(𝑥,𝑦)

𝑑𝑦
≥ 0 𝑎𝑛𝑑 

𝑑2𝑈(𝑥,𝑦)

𝑑𝑥𝑑𝑦
≤ 0 is posited, a necessary and sufficient 

condition for 𝐸(𝑈(𝑥, 𝑦)|𝐴) ≥ 𝐸(𝑈(𝑥, 𝑦)|𝐵) is that Group A outcomes stochastically dominate 

Group B outcomes (Atkinson and Bourguignon 1982) which demands: 

 

       𝐹𝑖,𝑘
𝐴 ≤ 𝐹𝑖,𝑘

𝐵  𝑓𝑜𝑟 𝑖 = 1, . . ,5 𝑎𝑛𝑑 𝑘 = 1, . . ,5 𝑤𝑖𝑡ℎ 𝑠𝑡𝑟𝑖𝑐𝑡 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑠𝑜𝑚𝑒𝑤ℎ𝑒𝑟𝑒.   

 

Note that, in this case, Group A’s outcomes would be unambiguously preferred to Group B’s for 

any Wellbeing Value Function in the specified class. In particular, since 𝑈(𝑥, 𝑦) is a function 

which implicitly weights dimensions x and y, this would hold for any weighting scheme9 

consistent with the specified class of Wellbeing Value Functions.  

 

This leads quite naturally to a 2 dimensioned analogue of the aforementioned Utopia-Dystopia 

index for 2 dimensioned ordinal variates UD2 which may be written as: 

 

                                            0 ≤ UD2(j) =
∑ ∑ (𝐹𝑖,𝑘

𝑈𝐸𝑁𝑉−𝐹𝑖,𝑘
𝑗

)𝑖𝑘

∑ ∑ (𝐹𝑖,𝑘
𝑈𝐸𝑁𝑉−𝐹𝑖,𝑘

𝐿𝐸𝑁𝑉)𝑖𝑘
≤ 1                       [3] 

Where: 

               𝐹𝑖,𝑘
𝑈𝐸𝑁𝑉  {𝐹𝑖,𝑘

𝐿𝐸𝑁𝑉} = max
𝑗

(𝐹𝑖,𝑗
𝑗

)   {min
𝑗

(𝐹𝑖,𝑗
𝑗

)}     𝑓𝑜𝑟  𝑖 =

Poor, Fair, Good, Very Good, Excellent  𝑎𝑛𝑑 𝑘 = Very lonely, Quite a bit lonely,
Somewhat lonely, A little lonely, Not at all lonely. 

 

Checking for Ambiguity. 

 

When [1] does not hold the situation is ambiguous, there is uncertainty as to whether group A or 

group B is in the preferred position. The absolute value of the surface separation index can be 

used to establish an “unambiguous difference” between any two distributions that are not 

identical and the average surface separation in a collection of distributions will provide evidence 

of the extent of ambiguity inherent in the system. Let the surface separation index between 

groups 𝑘 an 𝑗 be 𝑆𝑆𝑘,𝑗, then 0 < |𝑆𝑆𝑘,𝑗| =
|∑ (𝐹𝑖

𝑘−𝐹𝑖
𝑗

)5
𝑖=1 |

∑ |(𝐹𝑖
𝑘−𝐹

𝑖
𝑗

)|5
𝑖=1

≤ 1, groups 𝑘 an 𝑗 will be unambiguously 

different if |𝑆𝑆𝑘,𝑗| = 1 so that 𝐴𝐼, an index of the extent ambiguity in a collection of 𝐾 groups 

indexed 𝑘 = 1, . . , 𝐾 is given by10: 

                                                           
9 The choice of which has been the source of some controversy in wellbeing measurement, see for example 

Klugman et. al. (2011) and references therein. 
10 An importance weighted version of the statistic is possible which is given by: 



                                                  𝐴𝐼 = 1 −
2

𝐾(𝐾−1)
∑ ∑ |𝑆𝑆𝑘,𝑗|𝑘−1

𝑗=1
𝐾
𝑘=2   

where 𝑤𝑘 is the relative importance of the k’th group (for example its relative population size) 

where 𝑤𝑘 > 0 𝑎𝑛𝑑 ∑ 𝑤𝑘 = 1.𝐾
𝑘=1  

 

In the univariate cardinal measure case, when [1] doesn’t hold (SS < 1) researchers check for 2nd 

or higher order dominance conditions involving integrals of CDF’s. These higher order 

dominance relations reflect additional concavity conditions on the space of admissible Wellbeing 

Value Functions which reflect concerns for inequality and poorness (successive integration 

levels place increasing weight on outcomes in the lower end of the outcome spectrum). 

Accordingly, Atkinson and Bourguignon (1982) go on to discuss the somewhat more complex 

but intuitively similar 2nd order dominance conditions in the two dimensional case. These involve 

integrals of CDF’s which are not possible without the luxury of cardinal measure, however the 

approach can be mimicked by discretely compounding the CDF’s to develop a Joint 

Compounded Cumulative Density Function (JCCDF) which, in the present context, has a typical 

element 𝐶𝐹𝑖,𝑘
𝑗

 𝑓𝑜𝑟 𝑖, 𝑗 = 1, . . ,5 where: 

                                        𝐶𝐹𝑖,𝑘
𝑗

= ∑ ∑  𝐹𝑖∗,𝑘∗
𝑗𝑘

𝑘∗=1
𝑖
𝑖∗=1 .   

  

Again this leads quite naturally to a 2 dimensioned analogue of a Second Order Utopia-Dystopia 

index for 2 dimensioned ordinal variates 2UD2 which may be written as: 

 

                                            0 ≤ 2UD2(j) =
∑ ∑ (𝐶𝐹𝑖,𝑘

𝑈𝐸𝑁𝑉−𝐶𝐹𝑖,𝑘
𝑗

)𝑖𝑘

∑ ∑ (𝐶𝐹𝑖,𝑘
𝑈𝐸𝑁𝑉−𝐶𝐹𝑖,𝑘

𝐿𝐸𝑁𝑉)𝑖𝑘
≤ 1  

Where: 

                

𝐶𝐹𝑖,𝑘
𝑈𝐸𝑁𝑉 = max

𝑗
(𝐶𝐹𝑖,𝑘

𝑗
: j = A, 𝐴∗, B, C, 𝐶∗) 

And 

𝐶𝐹𝑖,𝑘
𝐿𝐸𝑁𝑉 = min

𝑗
(𝐶𝐹𝑖,𝑘

𝑗
: j = A, 𝐴∗, B, C, 𝐶∗) 

𝑓𝑜𝑟  𝑖 = Poor, Fair, Good, Very Good, Excellent: 
𝑘 = 𝑣ery lonely, Quite a bit lonely, Somewhat lonely, A little lonely, Not at all lonely 

 

The intuition behind these second order ordinal comparators is that they are no longer an equally 

weighted sum of CDF differences, they now attach more weight to, and thus focus more 

attention upon, probability differences at the lower end of the preference spectrum. So, if 

discrepancies between groups with respect to the worst outcomes are of greater concern, 2nd or 

higher order comparators may be appropriate. Again, surface separation may be established by 

the proximity of SSC to 1 where: 

 

                                            0 < |𝑆𝑆𝐶𝑘,𝑗| =
|∑ (𝐶𝐹𝑖

𝑘−𝐶𝐹𝑖
𝑗

)5
𝑖=1 |

∑ |(𝐶𝐹𝑖
𝑘−𝐶𝐹

𝑖
𝑗

)|5
𝑖=1

≤ 1  

                                                           

𝐴𝐼𝑊 = 1 −
2

1 − ∑ 𝑤𝑘
2𝐾

𝑘=1

∑ ∑ 𝑤𝑘𝑤𝑗|𝑆𝑆𝑘,𝑗|

𝑘−1

𝑗=1

𝐾

𝑘=2

 

 



 

Section 3. Axiomatic Foundations of Indices. 
 

To facilitate interpretation and comparability, the Economic Wellbeing Literature develops 

indices on an axiomatic foundation (Sen 1995, Gravel Magdalou and Moyes 2020 are examples). 

Wellbeing analysts seek usually indices that obey certain axioms like Continuity, Scale 

Independence, Coherency, Normalization, Monotonicity and Inequality Sensitivity. Continuity of 

the index is usually required with respect to the variable x (usually income or consumption)  

which in the present case is not continuously measured, however these indices are piecewise 

continuous in the variable 𝑝. Scale Independence is required to secure independence from 

monotonic translations of the wellbeing function, note that scaling measures do not appear in any 

formulae here (the indices are scale independent by construction) so independence is secured. 

Coherency (if group 𝑔’s distribution is preferred to group ℎ’s distribution then indices should 

reflect that i.e. 𝑈𝐷(𝑔) > 𝑈𝐷(ℎ)) will be satisfied if the indices can be shown to be monotonic 

increasing in category ordering. Normalization requires that indices values are bounded on the 

unit interval which is the case with respect to the normalized intervals. Monotonicity requires 

that indices are sensitive to category ordering so that ceteris paribus, if an agent enjoys a better 

outcome the index should increase. This is obviously related to the coherency property, but has 

special import in the case of ordered categories. Finally, Inequality Sensitivity is an ethically 

grounded principle of transfers property (Dalton 1920) that requires measures be sensitive to 

dispersion of wellbeing so that, for a given level of aggregate wellbeing, the society that has it 

more equally shared is the society that is preferred. In the current situation adherence to the last 

two properties needs to be demonstrated. 

To fix ideas suppose there exist S ordered categories indexed s=1,..,S in line with their ordering 

so that category s is preferred to category t when s > t. The probability density function (PDF) 

defines the chance that a randomly selected agent resides in a particular category so the 

categories have associated probabilities 𝑝𝑠 ≥ 0 𝑤ℎ𝑒𝑟𝑒 ∑ 𝑝𝑠 = 1𝑆
𝑠=1  and the corresponding 

associated cumulative distribution function (CDF) is given by: 

𝐹𝑗 = ∑ 𝑝𝑖 𝑓𝑜𝑟 𝑗 = 1, . . , 𝑆

𝑗

𝑖=1

 

The Cumulative CDF is given by: 

𝐶𝐹𝑗 = ∑ 𝐹𝑖 = ∑ ∑ 𝑝𝑘

𝑖

𝑘=1

𝑗

𝑖=1

𝑓𝑜𝑟 𝑗 = 1, . . , 𝑆

𝑗

𝑖=1

 

Suppose G groups indexed 𝑔 = 1, . . , 𝐺, their respective PDF’s, CDF’s and Cumulative CDF’s 

are identified with a second subscript 𝑔 (so that 𝑝𝑠,𝑔 is the probability that a randomly selected 

individual in group 𝑔 is in category 𝑠). Define the upper envelope of the collection of group 

CDF’s as 𝐹𝑖
𝑈𝐸𝑁𝑉  

𝐹𝑠
𝑈𝐸𝑁𝑉 = max

𝑔
(𝐹𝑠,𝑔) 𝑓𝑜𝑟  𝑠 = 1, . . , 𝑆.  𝑔 = 1, . . , 𝐺 



And the upper envelope of the group cumulative CDF’s 

𝐶𝐹𝑠
𝑈𝐸𝑁𝑉 = max

𝑔
(𝐶𝐹𝑠,𝑔) 𝑓𝑜𝑟  𝑠 = 1, . . , 𝑆.  𝑔 = 1, . . , 𝐺 

The un-normalized first and second order Utopia-Dystopia indices11 for the g’th group is given 

by: 

UD1(UENV, g) = ∑(𝐹𝑠
𝑈𝐸𝑁𝑉 − 𝐹𝑠,𝑔)

𝑠

 

UD2(UENV, j) = ∑(𝐶𝐹𝑠
𝑈𝐸𝑁𝑉 − 𝐶𝐹𝑠,𝑔)

𝑠

 

Monotonicity property – if an agent transfers to a higher category the index should increase. 

Working with nUD1 where n is the population of the 𝑔’𝑡ℎ group and assume that group is not 

part of the upper envelope (if it were things just net out). 𝑛𝑝𝑠,𝑔 corresponds to the number of 

people in the 𝑔’𝑡ℎ group in the 𝑠’𝑡ℎ category and 𝑛𝐹𝑠,𝑔 corresponds to the number of people in 

the 𝑠’𝑡ℎ category or lower. Suppose that an agent moves from category s to category s+k and let 

superscript A denote the “after the move” index. Note that: 

 𝑛𝑝𝑡,𝑔
𝐴 = 𝑛𝑝𝑡,𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 < 𝑠, 𝑡 = 𝑠 + 𝑙, 𝑙 = 1, . , 𝑘 𝑎𝑛𝑑 𝑡 > 𝑠 + 𝑘;  

𝑎𝑛𝑑 𝑛𝑝𝑠,𝑔
𝐴 = 𝑛𝑝𝑠,𝑔 − 1; 𝑛𝑝𝑠+𝑘,𝑔

𝐴 = 𝑛𝑝𝑠+𝑘,𝑔 + 1. 

It follows that: 

𝑛𝐹𝑡,𝑔
𝐴 = 𝑛𝐹𝑡,𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 < 𝑠; 𝑛𝐹𝑠+𝑙,𝑔

𝐴 = 𝑛𝐹𝑠+𝑙,𝑔 − 1 𝑓𝑜𝑟 𝑙 = 0, . . , 𝑘 − 1 𝑎𝑛𝑑 𝑛𝐹𝑡,𝑔
𝐴 = 𝑛𝐹𝑡,𝑔 

f𝑜𝑟 𝑎𝑙𝑙 𝑡 > 𝑠 + 𝑘. 

So that 𝑛UD1(UENV, g)𝐴 = 𝑛UD1(UENV, g) + 𝑘 => UD1(UENV, g)𝐴 > UD1(UENV, g) 

For any 𝑠 < 𝑆 − 𝑘:  

Furthermore: 

𝑛𝐶𝐹𝑡,𝑔
𝐴 = 𝑛𝐶𝐹𝑡,𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 < 𝑠; 𝑛𝐶𝐹𝑠+𝑖,𝑔

𝐴 = 𝑛𝐶𝐹𝑠+𝑖,𝑔 − 𝑖; f𝑜𝑟 𝑎𝑙𝑙 𝑖 = 0, . , 𝑘 𝑎𝑛𝑑 𝑛𝐶𝐹𝑠+𝑘+𝑖,𝑔
𝐴 =

𝑛𝐶𝐹𝑠+𝑘+𝑖,𝑔 − 𝑘 𝑓𝑜𝑟 𝑖 = 0, . . , 𝑆 − 𝑘 − 𝑠 

So that 𝑛UD2(UENV, g)𝐴 = 𝑛UD2(UENV, g) + 𝑘! + (𝑆 − 𝑠 − 𝑘)𝑘 => UD2(UENV, g)𝐴 >

UD2(UENV, g) 

As for distribution sensitivity, the requirement is that movement to an adjacent improved 

category for someone in the lower end of the category spectrum should result in a greater 

increase in the index than a similar movement for someone in the upper end of the category 

spectrum. Whilst this is not the case for UD1 it is the case for UD2 since 𝑛UD2(UENV, g)𝐴 −

                                                           
11 To satisfy normalization axioms UD1 and UD2 are divided by ∑ (𝐹𝑠

𝑈𝐸𝑁𝑉 − 𝐹𝑠
𝐿𝐸𝑁𝑉)𝑠   and  ∑ (𝐶𝐹𝑠

𝑈𝐸𝑁𝑉 − 𝐶𝐹𝑠
𝐿𝐸𝑁𝑉)𝑠  

respectively 



𝑛UD2(UENV, g) diminishes with increasing s so that a transfer in the upper end of the spectrum 

results in a smaller increase than a similar transfer at the lower end of the spectrum.  

Section 4. Results. 

This study employs survey data drawn from the China Health and Retirement Longitudinal 

Study (CHARLS) 2013 follow up to a 2011 baseline study. Within each sampled household, a 

Main Respondent (MR), defined to be a family member who was at least 45 years of age, was 

not a nanny, short-term worker, or visitor to the household, and had sufficient knowledge about 

the household, was identified. Both the MR and the MR’s spouse (if any and present at the time 

of the survey) were recruited to be respondents for the baseline survey answering questions about 

their health and loneliness. The sample size after eliminating incomplete records is 13593. 

Initially, to get a sense of the loneliness – health relationship, cardinality of the Self Reported 

assessments measures is presumed and reduced form regressions for S=L (Loneliness) and S=H 

(Health) indices are examined:  

  𝑦𝑖,𝑆 = 𝛼 + 𝛽1,𝑆𝐺𝐷𝑖 + 𝛽2,𝑆𝑈𝐷𝑖 + 𝛽3,𝑆𝐴𝐺𝐸𝑖 + 𝛽4,𝑆𝐸𝐷𝑈𝑖 + 𝛽5,𝑆𝑆𝑆𝑖 + 

(𝛽6,𝑆𝐴𝐺𝐸𝑖 + 𝛽7,𝑆𝐸𝐷𝑈𝑖 + 𝛽8,𝑆𝑆𝑆𝑖) ∗ 𝐺𝐷𝑖 + (𝛽9,𝑆𝐴𝐺𝐸𝑖 + 𝛽10,𝑆𝐸𝐷𝑈𝑖 + 𝛽11,𝑆𝑆𝑆𝑖) ∗ 𝑈𝐷𝑖 + 𝜀𝑖,𝑆    

Table 2. Reduced Form Equations 

     Loneliness   (1 : not at all    5 : very)       Health      (1: good        5 poor) 

     Beta       std dev     std.norm   P(|Z|>0)    Beta       std dev     std.norm   P(|Z|>0) 

const  
gender GD 
urban UD 
AGE  
education (EDU) 
single status (SS) 
AGE .*GD 
EDU  .* GD 
SS .* GD 
AGE .* UD 
EDU .* UD 
SS .*UD 

  1.2336      0.0812     15.1980      1.0000  
  0.0220      0.0989       0.2229      0.5882  
 -0.0512      0.1177     -0.4346      0.6681  
  0.0009      0.0012       0.8161      0.7928  
 -0.0269      0.0060     -4.4987      1.0000  
  0.3860      0.0305     12.6407      1.0000  
  0.0004      0.0015       0.2853      0.6123  
 -0.0055      0.0072     -0.7560      0.7752  
 -0.0116      0.0373     -0.3097      0.6216  
 -0.0020      0.0017     -1.1395      0.8728  
  0.0260      0.0083       3.1235      0.9991  
 -0.1553     0.0440      -3.5337      0.9998  

  3.0828     0.1118     27.5788      1.0000  
  0.2978     0.1362       2.1863      0.9856  
 -0.1914     0.1621     -1.1808      0.8812  
  0.0079     0.0016       4.9506      1.0000  
 -0.0382     0.0082     -4.6362      1.0000  
 -0.0483     0.0421     -1.1479      0.8745  
 -0.0024     0.0020     -1.1816      0.8813  
 -0.0037     0.0100     -0.3708      0.6446  
  0.0577     0.0514       1.1232      0.8693  
 -0.0006     0.0024     -0.2371      0.5937  
  0.0176     0.0115       1.5364      0.9378  
 -0.0847     0.0605     -1.3995      0.9192  

𝜎2    (𝑅2)              0.5437                 (0.0445)              1.0311             (0.0245) 

GD:1=female 0=male. UD 1=urban 0=rural Age is a 4 category variable <50, 50-60, 60-70 and 

>70 EDU is a 10 category variable SS=1 if single 0 otherwise.  

In line with the studies cited in the introduction, Loneliness appears to be negatively correlated 

with education (the more educated the less lonely) in Rural China, positively related to Single 

Status (less so in urban China) and gender effects appear to be weak in this dimension. With 

respect to Poor Health, it appears to be positively related to gender (being female), positively 

related to age, negatively related to education (less so in Urban China)  



Predictions from these equations are used (in a simultaneous regression format) in a regression of 

loneliness on health of the form: 

�̂�𝑖,𝐿 = 𝜃1 + 𝜃2�̂�𝑖,𝐻 + 𝜔𝑖 

The result of which Table 3 reveals as a strong positive relationship between loneliness and poor 

health.  

Table 3. Loneliness – Health Poorness Structural Equation (Predicted Loneliness on 

predicted poor health regression). 

            𝜃                  std dev                std.norm                 P(|Z|>0) 

Constant 
Predicted health poorness 

     -0.6206              0.0247                -25.1680                  1.0000  
      0.5423              0.0071                  76.4716                  1.0000  

𝜎2            (𝑅2)                       0.0177                                     (0.3008)   

However, these results are predicated upon an arbitrary presumption of cardinality in the health, 

loneliness and education measures which could well change with the presumption of a different, 

but equally valid cardinality structure. The question is, what can be said in the absence of any 

arbitrarily assigned cardinality? 

Turning to measures of health and loneliness wellbeing that do not rely upon cardinality, Table 4 

reports the overall joint probability and resulting cumulative distribution functions of loneliness 

and health poorness in the sampled population. 

Table 4 Overall Joint Distributions and (standard errors). 

       Joint Probability Density Function  Joint Cumulative Distribution Function 

Loneliness Health   
 Poor          Fair        Good       Very    Excellent 
                                                   Good 

Health   
  Poor        Fair        Good        Very    Excellent 
                                                  Good 

Very 
 
Quite a lot 
 
Somewhat  
 
A little 
 
Not at all 

 0.0077    0.0065    0.0021   0.0004    0.0001  
(0.0008) (0.0007) (0.0004) (0.0002) (0.0001)  
 0.0066    0.0081    0.0042   0.0008    0.0002  
(0.0007) (0.0008) (0.0006) (0.0002) (0.0001)  
 0.0074    0.0120    0.0060   0.0011    0.0004  
(0.0007) (0.0009) (0.0007) (0.0003) (0.0002)  
 0.0177    0.0310    0.0260   0.0058    0.0020  
(0.0011) (0.0015) (0.0014) (0.0007) (0.0004)  
 0.1165    0.3064    0.2840   0.1048    0.0422  
(0.0028) (0.0040) (0.0039) (0.0026) (0.0017)  

 0.0077    0.0142    0.0163    0.0167   0.0168  
(0.0008) (0.0010) (0.0011) (0.0011) (0.0011)  
 0.0143    0.0289    0.0352    0.0364   0.0367  
(0.0010) (0.0014) (0.0016) (0.0016) (0.0016)  
 0.0218    0.0483    0.0605    0.0629   0.0636  
(0.0013) (0.0018) (0.0020) (0.0021) (0.0021)  
 0.0394    0.0970    0.1352    0.1434   0.1460  
(0.0017) (0.0025) (0.0029) (0.0030) (0.0030)  
 0.1560    0.5200    0.8422    0.9552   1.0000  
(0.0031) (0.0043) (0.0031) (0.0018) (0.0000)  

 

Note the large portion of the population (80%) that are not affected by loneliness (similar to the 

Luo and Waite 2014 study), of those who are, ill health is generally more likely to be reported 

(note greater density in lower left quadrant of the pdf than the upper right quadrant). Less than 

5% of the population report excellent health and no loneliness. 

Health status conditional Loneliness status probability density and cumulative distribution 

functions (i.e. Given the individuals j’th health status level, what is their chance of the i’th level 



loneliness status?) and the corresponding loneliness conditioned Health distributions are reported 

in Tables 5a and 5b. These distributions reveal a great deal about the health and loneliness nexus. 

What is revealed is consistent first order dominance relationships12 between the distributions 

across the conditioning spectra so that a higher status Health (Un-Loneliness) conditioned     

Table 5a. Health status conditioned loneliness distributions. 

 Health Status conditioned pdf Health Status conditioned cdf 

Loneliness 
Status 

   Poor      Fair      Good     Very   Excellent 
                                             Good 

   Poor      Fair      Good     Very   Excellent 
                                             Good 

Very 
Quite a lot 
Somewhat  
A little 
Not at all 

 0.0494  0.0179  0.0065  0.0035  0.0022  
 0.0423  0.0223  0.0130  0.0071  0.0045  
 0.0475  0.0330  0.0186  0.0097  0.0089  
 0.1135  0.0852  0.0807  0.0514  0.0445  
 0.7473  0.8418  0.8812  0.9283  0.9399  

 0.0494  0.0179  0.0065  0.0035  0.0022  
 0.0917  0.0402  0.0195  0.0106  0.0067  
 0.1392  0.0732  0.0381  0.0203  0.0156  
 0.2527  0.1584  0.1188  0.0717  0.0601  
 1.0000  1.0000  1.0000  1.0000  1.0000 

Health Probs  0.1559  0.3640  0.3223  0.1129  0.0449   0.1559  0.3640  0.3223  0.1129  0.0449 

 Cumulative density differences and (Approximate Standard Errors) 
       Fair vs Poor                 good vs fair        very good vs Good  Excellent vs very good 

Very 
Quite a lot 
Somewhat  
A little 

    0.0315 (0.0147)         0.0114 (0.0090)         0.0030 (0.0058)         0.0013 (0.0044)             
    0.0515 (0.0202)         0.0207 (0.0139)         0.0089 (0.0099)         0.0039 (0.0076)             
    0.0660 (0.0250)         0.0351 (0.0187)         0.0178 (0.0137)         0.0047 (0.0108)             
    0.0943 (0.0328)         0.0396 (0.0282)         0.0471 (0.0239)         0.0116 (0.0203)             

Table 5b. Loneliness conditioned health distributions.  

 Loneliness Status conditioned pdf Loneliness Status conditioned cdf 

Health Staus    Very    Quite    Some-     A little     Not  
                a lot      what                      at all 

   Very    Quite    Some-     A little     Not  
                a lot      what                      at all 

Poor 
Fair   
Good    
Very   Good 
Excellent                                 

 0.4583  0.3317  0.2751  0.2145  0.1364  
 0.3869  0.4070  0.4461  0.3758  0.3588  
 0.1250  0.2111  0.2230  0.3152  0.3326  
 0.0238  0.0402  0.0409  0.0703  0.1227  
 0.0060  0.0101  0.0149  0.0242  0.0494  

 0.4583  0.3317  0.2751  0.2145  0.1364  
 0.8452  0.7387  0.7212  0.5903  0.4952  
 0.9702  0.9498  0.9442  0.9055  0.8278  
 0.9940  0.9900  0.9851  0.9758  0.9505  
 1.0000  1.0000  1.0000  1.0000  1.0000 

Lonely Probs  0.0168  0.0199  0.0269  0.0825  0.8539  0.0168  0.0199  0.0269  0.0825  0.8539 

 Cumulative density differences and (Approximate Standard Errors) 
Quite a lot vs Very      Somewhat vs Quite    Somewhat vs Little    Not at all vs Little 

Poor 
Fair   
Good    
Very   Good                                 

    0.1266 (0.0396)         0.0566 (0.0375)         0.0606 (0.0350)         0.0781 (0.0309)             
    0.1065 (0.0329)         0.0175 (0.0362)         0.1309 (0.0384)         0.0951 (0.0405)             
    0.0204 (0.0160)         0.0056 (0.0183)         0.0387 (0.0215)         0.0777 (0.0276)             
    0.0040 (0.0073)         0.0049 (0.0091)         0.0093 (0.0113)         0.0253 (0.0153) 

 

cumulative Loneliness (Health) distribution is everywhere below a lower Health (Un-Loneliness) 

status conditioned Loneliness (Health) cumulative distribution. What this implies is that a higher 

                                                           
12 First Order Dominance requires the complete absence of significantly negative elements in the 

cumulative density differences columns in Tables 5a and 5b.    

 



level health status outcome results in a dominating health conditioned loneliness outcome 

distribution and improved non-loneliness status results in a dominating loneliness conditioned 

health outcome distribution. What this implies is that improved health status is always associated 

with better loneliness outcomes and improved loneliness status is always associated with better 

health outcomes, note that this assessment has been achieved without resort to arbitrary 

attribution of cardinality. 

The Health Status – Loneliness Connection. 

Much can be gleaned from examining the health - loneliness status connection across cohorts. 

Aside from age, research has identified gender, marital status and urban/rural location as risk 

factors in the Health and Loneliness connection. 4 age groupings {<50, 50 – 59, 60 – 69, ≥ 70}, 

single/partner status, gender, urban/rural status are employed to form 32 mutually exclusive and 

exhaustive groups for a more detailed analysis of these factors. The Overlap (Anderson, Linton 

and Whang 2012) between two probability density functions measures the extent of commonality 

between the two distributions. In the discrete case, for any two PDF’s 𝑝𝑚, 𝑞𝑚 defined over M 

possible outcomes m = 1,..,M, the overlap 𝑂𝑉13 is defined as: 

𝑂𝑉 = ∑ min (𝑝𝑚, 𝑞𝑚)

𝑀

𝑚=1

 

The overlap between a groups health and loneliness marginal distributions reveals the extent to 

which its poor health is associated with its loneliness (in the population overall it is 0.1910). If it 

were 1, then poor health status would uniquely identify the corresponding loneliness status (and 

vice versa), everyone in a given health category would also be in the corresponding loneliness 

category. If it were 0 then the two marginal distributions are segmented and there would be no 

one in a given health category who would be in the corresponding loneliness category (so for 

example someone with the poorest (best) health category would not experience extreme (least) 

loneliness)). The higher the value of the overlap, the greater is the association between poor 

health and loneliness.  

Table 6 reports the poor health – loneliness overlap connection. In short, with the exception of 

young single urban males, the health and un-loneliness association is stronger (higher overlaps) 

for single status individuals relative to their partnered counterparts (lower overlaps) and it 

appears to be higher in rural environments than corresponding urban environments, the weakest 

association (lowest overlaps) appear in the youngest groups. 

 

                                                           
13 Assuming 𝑝𝑚 ≠ 𝑞𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚, letting 𝑝𝑚

∗ = 𝑝𝑚 𝑖𝑓 𝑝𝑚 < 𝑞𝑚 𝑎𝑛𝑑 𝑞𝑚
∗ = 𝑞𝑚 𝑖𝑓 𝑞𝑚 < 𝑝𝑚 and let 𝑝 =

∑ 𝑝𝑚
∗𝑀

𝑚=1  and 𝑞 = ∑ 𝑞
𝑚
∗𝑀

𝑚=1 , Asymptotic Standard Errors for OV are readily calculated in the discrete case as: 

√
1

𝑛
(𝑝(1 − 𝑝) + 𝑞(1 − 𝑞)) 

Which for Table 6 has an upper bound of 0.03. 



Table 6.    

Age     single   gender   urban      health-loneliness    Rank 
                                                               Pdf overlap 

 1          0          0          0               0.1563              8          

 2          0          0          0               0.1608              9          

 3          0          0          0               0.1801            15          

 4          0          0          0               0.1693            10          

 1          1          0          0               0.1842            17          

 2          1          0          0               0.3567            32          

 3          1          0          0               0.3179            30          

 4          1          0          0               0.3073            27          

 1          0          1          0               0.1828            16          

 2          0          1          0               0.1729            13          

 3          0          1          0               0.1717            12          

 4          0          1          0               0.1862            18          

 1          1          1          0               0.2435            21          

 2          1          1          0               0.3110            29          

 3          1          1          0               0.2918            25          

 4          1          1          0               0.3109            28          

 1          0          0          1               0.1495              7          

 2          0          0          1               0.1432              6          

 3          0          0          1               0.1321              4          

 4          0          0          1               0.0905              2          

 1          1          0          1               0.0000              1          

 2          1          0          1               0.3043            26          

 3          1          0          1               0.2895            24          

 4          1          0          1               0.3421            31          

 1          0          1          1               0.1700            11          

 2          0          1          1               0.1402              5          

 3          0          1          1               0.1102              3          

 4          0          1          1               0.1786            14          

 1          1          1          1               0.2069            19          

 2          1          1          1               0.2805            23          

 3          1          1          1               0.2476            22          

 4          1          1          1               0.2279            20         

 

To get a sense of rankings, and for comparison purposes, average health 𝜇ℎand average non-

loneliness 𝜇𝑙 represent the two extremes of a Wellbeing Value Function which attaches zero 

weight to loneliness in the former case and zero weight on health in the latter case. The middle 

ground is represented by √𝜇𝑈𝐿𝜇𝐻 , but recall these are based upon an arbitrary choice of scaling 

and are scale dependent, so for comparison purposes, the first order Utopia-Dystopia two 

dimensioned index (Equation [3]) is reported along side them together with their ranks in Table 

7. The first thing to note is the lack of consonance between the scale independent UD2 index and 

the three scale dependent sample mean based indices. The former is robust to any scaling 



structure and to dimension weighting structures whereas the latter is not. The loneliest, health 

poorest individual is unequivocally and unambiguously by all measures a single rural female in 

her 60’s and the most un-loneliest (there doesn’t appear to be a good antonym for loneliness in 

the lexicon!) healthiest individual is an urban partnered male in his 40’s. Generally, loneliness 

and ill health increase with age, are more prevalent in Rural China and more prevalent in 

females. 

Table 7. First Order Wellbeing Indices and Rankings.  

Age single gender urban     𝜇𝑇             𝜇𝐻      √𝜇𝑈𝐿𝜇𝐻      UD2   R(𝜇𝑈𝐿)   R(𝜇𝐻) R(√𝜇𝑈𝐿𝜇𝐻)      R(UD2) 

       1        0        0        0     4.8414     2.7241     3.6316     0.7467         7             8              6                   6    
       2        0        0        0     4.8181     2.6625     3.5816     0.7044       10           11              9                 11    
       3        0        0        0     4.8006     2.5383     3.4908     0.6586       12           23            17                 13    
       4        0        0        0     4.7756     2.4160     3.3967     0.5817       15           28            24                 19    
       1        1        0        0     4.8158     2.6316     3.5599     0.7147       11           15            12                 10    
       2        1        0        0     4.3758     2.6815     3.4255     0.2896       29           10            22                 28    
       3        1        0        0     4.4154     2.5487     3.3546     0.3154       27           22            25                 27    
       4        1        0        0     4.3716     2.5505     3.3391     0.2531       30           21            26                 29    
       1        0        1        0     4.7957     2.5578     3.5023     0.6593       13           19            16                 12    
       2        0        1        0     4.7621     2.4247     3.3980     0.5693       16           27            23                 20    
       3        0        1        0     4.7273     2.3340     3.3217     0.5215       17           29            28                 21    
       4        0        1        0     4.7071     2.3180     3.3032     0.4963       18           31            29                 22    
       1        1        1        0     4.5391     2.4522     3.3363     0.3520       25           25            27                 26    
       2        1        1        0     4.3816     2.4417     3.2709     0.1948       28           26            30                 30    
       3        1        1        0     4.2796     2.2188     3.0815     0.0223       32           32            32                 32    
       4        1        1        0     4.3202     2.3225     3.1676     0.1129       31           30            31                 31    
       1        0        0        1     4.8972     2.9439     3.7970     0.8612         4             2              1                   2    
       2        0        0        1     4.9005     2.8398     3.7305     0.8442         3             3              3                   3    
       3        0        0        1     4.8964     2.7513     3.6703     0.7999         5             4              5                   4    
       4        0        0        1     4.8922     2.5690     3.5451     0.7431         6           18            14                  7    
       1        1        0        1     5.0000     2.7500     3.7081     0.9043         1             5              4                   1    
       2        1        0        1     4.5217     2.6522     3.4630     0.3740       26           14            19                 25    
       3        1        0        1     4.5789     2.6053     3.4539     0.4819       24           16            20                 23    
       4        1        0        1     4.6579     3.0263     3.7545     0.6548       20             1              2                 14    
       1        0        1        1     4.8250     2.7150     3.6194     0.7274         9             9              7                   8    
       2        0        1        1     4.8351     2.6598     3.5861     0.7168         8           12              8                   9    
       3        0        1        1     4.9011     2.5847     3.5592     0.7640         2           17            13                   5    
       4        0        1        1     4.7857     2.5357     3.4836     0.6335       14          24             18                 15    
       1        1        1        1     4.6552     2.6552     3.5157     0.5839       21          13             15                 18    
       2        1        1        1     4.6463     2.7439     3.5706     0.5945       22            6             11                 16    
       3        1        1        1     4.6190     2.5524     3.4336     0.4571       23          20             21                 24    
       4        1        1        1     4.6838     2.7353     3.5793     0.5883       19            7             10                 17   

 

Table 8 reports the first and second order Utopia-Dystopia indices for the multi-variate 

multilateral comparisons together with their respective standard errors (the indices have an 

asymptotically normal distribution so that inference is feasible). The striking feature here is that 



the ordering doesn’t change much when greater weight is placed upon poorer outcomes in the 

comparison process. No group moves more than two places in the ordering and 20 of the 32 

groups do not change places at all, in particular the best joint outcome group (young single urban 

males) and the worst joint outcome group (single rural females in their 60’s) retain their 

positions, but neither group is unambiguously best or worst. Generally, males outrank their 

female counterparts in almost every comparison and Urban dwellers outrank rural counterparts. 

There appears to be very little separation between subgroupings and there is no unambiguously 

best or worst group. 

 

Table 8. 1st and 2nd order comparisons using Multivariate Utopia-Dystopia Indices. 

Age   single gender urban    UD2   s.e.(UD2)      Rank     2UD2   s.e.(2UD2)   Rank 
                                                                                   UD2                                         2UD2 
  1           0           0           0          0.7467    0.0926            6         0.7340      0.0946            7           
  2           0           0           0          0.7044    0.0249          11         0.6959      0.0519          11           
  3           0           0           0          0.6586    0.0248          13         0.6498      0.0503          14           
  4           0           0           0          0.5817    0.0306          19         0.5850      0.0704          17           
  1           1           0           0          0.7147    0.0213          10         0.7002      0.0383          10           
  2           1           0           0          0.2896    0.0455          28         0.2873      0.1066          28           
  3           1           0           0          0.3154    0.0389          27         0.2940      0.0863          27           
  4           1           0           0          0.2531    0.0418          29         0.2353      0.0946          29           
  1           0           1           0          0.6593    0.0251          12         0.6523      0.0537          13           
  2           0           1           0          0.5693    0.0311          20         0.5668      0.0700          19           
  3           0           1           0          0.5215    0.0314          21         0.5214      0.0707          21           
  4           0           1           0          0.4963    0.0323          22         0.4935      0.0721          22           
  1           1           1           0          0.3520    0.0416          26         0.3549      0.0966          25           
  2           1           1           0          0.1948    0.0469          30         0.1992      0.1105          30           
  3           1           1           0          0.0223    0.0475          32         0.0174      0.1090          32           
  4           1           1           0          0.1129    0.0448          31         0.1042      0.1031          31           
  1           0           0           1          0.8612    0.0159            2         0.8541      0.0212            2           
  2           0           0           1          0.8442    0.0159            3         0.8321      0.0252            3           
  3           0           0           1          0.7999    0.0190            4         0.7893      0.0359            4           
  4           0           0           1          0.7431    0.0228            7         0.7389      0.0488            6           
  1           1           0           1          0.9043    0.0095            1         0.9204      0.0107            1           
  2           1           0           1          0.3740    0.0389          25         0.3417      0.0808          26           
  3           1           0           1          0.4819    0.0318          23         0.4673      0.0624          23           
  4           1           0           1          0.6548    0.0353          14         0.6584      0.0852          12           
  1           0           1           1          0.7274    0.0247            8         0.7136      0.0492            8           
  2           0           1           1          0.7168    0.0251            9         0.7047      0.0538            9           
  3           0           1           1          0.7640    0.0190            5         0.7547      0.0385            5           
  4           0           1           1          0.6335    0.0270          15         0.6221      0.0540          15           
  1           1           1           1          0.5839    0.0253          18         0.5592      0.0433          20           
  2           1           1           1          0.5945    0.0297          16         0.5789      0.0596          18           
  3           1           1           1          0.4571    0.0385          24         0.4532      0.0899          24           
  4           1           1           1          0.5883    0.0354          17         0.5935      0.0799          16          

 

Finally, to get a sense of the distributional inequality in the collection of groups the Multilateral 

Transvariation, Distributional Gini and Ambiguity coefficients are provided in Table 9. The 



Overlap is also related to Gini’s Transvariation (Gini 1915) GT, (GT = 1-OV), generalized 

versions of which can be employed to study the extent of distributional variation in the collection 

of distributions (Anderson, Linton, Pittau, Whang and Zelli 2020) via Multilateral Transvariation 

(MGT) and Distributional Gini (DGINI) coefficients. They indicate a considerable amount of 

overlap (i.e. similarity) in the probability density functions with a greater amount of definition in 

their corresponding cumulative densities which results in a fairly low level of ambiguity which 

diminishes with the higher order of stochastic comparison (as it should, given the more 

restrictive family of Utility functions it represents). 

Table 9. 

             Multilateral         Distributional           Ambiguity           Ambiguity  

         Transvariation              Gini                      Index 1                 Index 2 

Coefficient                0.0613                    0.2120                   0.2047                  0.1908 

 

Conclusions. 

The scale dependence of most summary statistics and the arbitrary nature of Cantril type scales 

applied to ordinal categorical data poses an ambiguity problem for analysts when ranking and 

ordering groups. Different, but equally valid, scale choices can produce conflicting, ambiguous 

results which are not robust to choice of scale. The conditions required of comparator group 

distributions, which have been shown by Schroder and Yitzhaki (2017) to be necessary for 

robustness and the absence of ambiguity, seldom appear to hold in practice (Bond and Lang 

2019). Here ranking, ordering and inequality measures for ordinal categorical data together with 

a measure of the ambiguity inherent in the data have been proposed and implemented in a study 

of health and loneliness in China. Subgroups defined by age, gender, partner status and 

urban/rural location were compared and contrasted. For comparison purposes, scale dependent 

group means were compared with a comparable robust scale independent measure and some 

notable differences in ranking were apparent. 

As for the robust scale independent results, while the overall health and loneliness connection is 

not strong, the poor health and loneliness association appears strongest for single status 

individuals in rural environments and weakest in the youngest groups some substantive and 

robust scale independent conclusions can be drawn. Health conditioned un-loneliness status 

distributions and loneliness conditioned health status distributions imply that improved health 

status is always associated with better un-loneliness outcomes and improved un-loneliness status 

is always associated with better health outcomes. While a large portion of the population are not 

affected by loneliness, of those who are, ill health is generally more likely to be reported. With 

regard to the health loneliness joint distribution, generally, males enjoy better health and un-

loneliness outcomes than their female counterparts in almost every comparison and urban 

dwellers outrank their rural counterparts. There appears to be very little separation between 

subgroupings (the distributional Gini coefficient is low) and there is no unambiguously best or 

worst group. However, the loneliest, health poorest individual is unequivocally and 

unambiguously by all measures a single rural female in her 60’s and the un-loneliest healthiest 



individual is an urban partnered male in his 40’s. Generally, loneliness and ill health increase 

with age, are more prevalent in Rural China and more prevalent in females. 
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Appendix. 

Assume independent subgroups indexed k=1,..,K with the i’th level self reported happiness level 

probability 𝑝𝑖,𝑘 𝑖 = 1, . . , 𝑚  stacked in the m x 1 vector 𝑝𝑘 which is multinomial with a variance 



                      𝑉 (𝑝𝑘) = (

𝑝1 0 .
0 𝑝2 .
. . .

0
0
.

0 0 . 𝑝𝑚

) − (

𝑝1
2 𝑝1𝑝2 .

𝑝2𝑝1 𝑝2
2 .

. . .

𝑝1𝑝𝑚

𝑝2𝑝𝑚

.
𝑝𝑚𝑝1 𝑝𝑚𝑝2 . 𝑝𝑚

2

) 

Given the m x m dimensioned integrating matrix D, where: 

𝐷 = (

1 0 .
1 1 .
. . .

0
0
.

1 1 . 1

) 

𝐹𝑘, the CDF of the k’th group is such that  𝐹𝑘 = 𝐷𝑝𝑘 with variance 𝐷𝑉 (𝑝𝑘) 𝐷′ 

Generally, 𝐹𝑘 − 𝐹𝑙 will have a variance 𝑉(𝐹𝑘 − 𝐹𝑙) = 𝐷 (𝑉 (𝑝𝑘) + 𝑉 (𝑝𝑙) − 2𝐶𝑂𝑉 (𝑝𝑘, 𝑝𝑙)) 𝐷′ 

and 𝐷(𝐹𝑘 − 𝐹𝑙) will have a variance 𝐷𝑉(𝐹𝑘 − 𝐹𝑙)𝐷′ . Note that 𝐶𝑂𝑉 (𝑝𝑘, 𝑝𝑙) = 0 with subgroup 

independence, however when considering either 𝐹𝑈𝐸𝑁𝑉 − 𝐹𝑘 or 𝐹𝑘 − 𝐹𝐿𝐸𝑁𝑉 this will not 

necessarily be the case because the two vectors under comparison may have common elements 

(essentially when an element in 𝐹𝑘 is a component of the corresponding frontier.  

If the respective envelopes do not contain elements of 𝐹𝑘, independence and zero covariance will 

prevail since the envelopes will be made up of elements from distributions that are independent 

of 𝐹𝑘
14. However, letting 𝑝𝐸𝑁𝑉 be the PDF implied by the upper or lower envelope,  if the 

envelopes and 𝐹𝑘 have elements in common, the respective rows and columns of the variance-

covariance matrix will be 0 since it will be the case that  𝐷2𝐶𝑂𝑉 (𝑝𝑘, 𝑝𝐸𝑁𝑉) 𝐷′ =

𝐷 (𝑉 (𝑝𝑘) + 𝑉 (𝑝𝐸𝑁𝑉)) 𝐷′ for those particular rows and columns and zero elsewhere and the 

Variance- covariance matrix in this case will thus be 𝐷 (𝑉 (𝑝𝑘) + 𝑉 (𝑝𝐸𝑁𝑉)) 𝐷′ with the 

corresponding rows and columns set to 0. 

Typically, first and second order Utopia-Dystopia indices work with scaled sums of the 

differences which, letting d be the m dimensioned unit vector, are of the form: 

𝑑′(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝑘) and 𝑑′𝐷(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝑘)  

With respective variances: 

𝑑′𝑉(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝑘)𝑑 and 𝑑′𝐷𝑉(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝑘)𝐷′𝑑. 

For scaled indices where the scaling factors are 𝑠1 = 𝑑′(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝐿𝐸𝑁𝑉) and 𝑠2 =

𝑑′𝐷(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝐿𝐸𝑁𝑉) respectively the corresponding variances would be:    

                                                           
14 Similarly when 𝐹𝑈𝐸𝑁𝑉 and 𝐹𝐿𝐸𝑁𝑉 are being compared independence will prevail since by 

definition they will not have elements in common unless all distributions have a common 

element or elements which for most applications is unlikely. 



𝑑′𝑉(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝑘)𝑑/𝑠1
2 and 𝑑′𝐷𝑉(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝑘)𝐷′𝑑/𝑠2

2. 

When estimates of the underlying 𝑝𝑖
′𝑠 are maximum likelihood estimates asymptotic normality 

of the sums and differences can be claimed (Rao 1973) so that, based upon a null hypothesis of 

no difference: 

√𝑇𝑑′(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝑘)~𝑁(0, 𝑑′𝑉(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝑘)𝑑)  

And 

                                   √𝑇𝑑′𝐷(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝑘)~𝑁(0, 𝑑′𝐷𝑉(𝐹𝑈𝐸𝑁𝑉 − 𝐹𝑘)𝐷′𝑑)  

Where T is the appropriate sample size factor. 


